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 Among all pure mechanical systems for which equations exist that yield analogues for 
the so-called second law of the mechanical theory of heat, it seems to me that the one that 
I (*) and Maxwell (** ) have examined in several treatises plays the most important role, by 
far.  Not only is the analogy with the equations of the theory of heat true for all such 
systems without exception, and for all equations that determine their behavior without 
exception, but it is also true for most of the other systems, to the extent that under 
mechanically simple conditions they will exhibit far-reaching and undeniable analogies 
that are subordinate to what Maxwell and I considered as special cases.  Moreover, other 
mechanical grounds exist that make it likely that warm bodies generally carry with them 
the character of the latter systems. 
 In the last-cited treatise, I merely cited the general theorem that relates to the 
convertibility of internal energy into external work performed for these systems without 
proof.  We first imagine an arbitrary mechanical system whose internal forces are 
conservative.  The relative positions of all the parts of the system shall be determined by 
b coordinates p1, p2, p3, …, pb, whose differential quotients with respect to time, which 
we would also like to call the velocities, shall be called 1p′ , 2p′ , …, bp′ .  Let the internal 

and external forces that act upon the system be given as functions of the coordinates, and 
in addition, let the total entire energy content of the system be given.  That will 
correspond to a warm body for which the internal nature, external forces, and temperature 
are given.  Experience teaches us that the behavior of the warm body is determined 
completely, as opposed to that of the mechanical system, which can be completely 
different according to its initial state.  However, a wide variety can exist in the number of 
initial conditions that are required in order to determine the form of the motion of the 

                                                
 (*) “Studien über das Gleichgewicht der lebendigen Kraft zwischen bewegten materiallen Punkten,” 
Wien Sitzber., Bd. LVIII, Jahrg., 1868. 
 “Einige allgemeine Sätze über Wärmegleichgewicht,” Wien Sitzber., Bd. LXIII, Jahrg., 1871. 
 “Analytischer Beweiss des zweiten Hauptsatzes der mechanischen Wärmetheorie aus den Sätzen über 
das Gleichgewicht der lebendigen Kraft,” Ibidem. 
 “Ueber die Eigenschafter monocyklischer und anderer damit verwandter Systeme,” Wien Sitzber., Bd. 
CX, Jahrg., 1884; this Journal, Bd. 98. 
 (** )  “On Boltzmann’s Theorem on the average distribution of energy in a system of material points.”  
[Cambridge Philosophical Transactions, vol. XII, part. III), Wiedemanns Beiblätter, Bd. 5 (1881), 403.]  
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mechanical system.  The motion of the system is determined by 2b first-order differential 
equations in the 2b independent variables p1, p2, …, pb, 1p′ , 2p′ , …, bp′ , and the 

independent variable time t.  Their integrals will include 2b integration constants, to 
which, one can always add a constant to t, since we exclude the case in which the 
equations of motions include the absolute value of time explicitly; we would like to 
denote it by – τ.  From the usual rules, 2b initial values must be given in order to 
determine the integration constants, and thus the values of all coordinates and velocities 
for t = 0.  Now, since one of these initial values determines the value t, and this gives 
merely when the motion takes place, the form of the equations (i.e., the form and position 
of the paths in space and the type and manner by which they are described) are 
determined by 2b – 1 values, or speaking more generally, along with the differential 
equations for the motion, 2b – 1 mutually independent quantities must be given for the 
purpose of the complete determination of the form of the motion, and we would like to 
call these quantities parameters.  However, the quantity t merely determines the time 
when the path is defined.  Nonetheless, exceptions can and will occur, in general.  
Namely, one can find integral equations that can be satisfied by not just one, or a finite 
number of combinations of coordinates and velocities, but by an infinite number of them, 
such as the way that the equation arcsin x = A arcsin y will be satisfied by an infinite 
number of value pairs for x and y when A is irrational.  If we think of all the integration 
constants as being given then we can express any of the variables p1, p2, …, pb (e.g., p1) 
as a function of the second one (e.g., p2) and the 2b−1 integration constants when we 
eliminate p3, p4, …, pb and t – τ.  Now, the resulting equation can be arranged such that it 
will be fulfilled by a single number or a finite number of values of p1 for given values of 
the integration constants.  However, like the equation arcsin x = A arcsin y that was cited 
above, it can also be satisfied by a sequence of values of p1 that go to each other 
continuously, such that p1 is merely included between certain limits, inside of which it is 
capable of assuming an arbitrary value. 
 An example of this is given by the motion of a material point in a plane with 
rectangular coordinate x, y, upon which the forces C = − a2x, Y = − b2y act in the two 
coordinate directions, which then moves according to the same laws as the point of light 
in the Lissajous figures.  When a and b, and thus, the period of oscillation of the two 
tuning forks, are commensurable, the material point will describe a closed curve.  If we 
then choose the two rectangular coordinates x and y for p1 and p2 then, as long as the 
values of the integration constants and x are given, that of y will be restricted to a finite 
number of values.  By contrast, if a and b are incommensurable then the material point 
will traverse the entire interior of a surface that lies in a rectangle over a very long time 
interval, and as soon as x is given, y is merely included between two limits. 
 In that case, we would like to say that one of the integral equations is infinitely multi-
valued.  Precisely analogous cases also appear for central motion: If the path is a closed 
one then none of the integrals of the equations of motion will be infinitely multi-valued, 
while the latter case will come about as long as the path is not closed.  Whenever an 
integral is infinitely multi-valued, the number of independent variable parameters that are 
required for the determination of the form of the motion will be one less, and thus, only 
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2b – 2 (*).  In the first-cited example, the three integration constants are two energies of 
motion in the directions of the X and Y axes and the phase difference between these two 
motions.  If the path is closed then a knowledge of the three values of these quantities, 
which play the roles of three completely-determined variables, is necessary for the 
determination of the form of the motion. 
 However, if a and b are incommensurable, so the path is not closed, then the 
knowledge of the values of the first two integration constants will suffice to determine the 
motion completely.  The first two integration constants are thus what I called the 
parameters of the path; no matter what the initial phase difference of the motions in the 
two coordinate directions might be, in the course of an infinitely-long time interval, all 
possible phase differences will always occur.  All paths for which the values of the first 
two integration constants are the same will go to each other after a finite or infinite time 
interval, so all of the remaining quantities will then determine only the time interval over 
which the path is traversed.  We can also say: When the path is closed, all pairs of values 
of x and y that correspond to a path will define a manifold of only one dimension.  If the 
two energies in the two coordinate directions are given then infinitely many paths with 
different forms will be possible.  By contrast, in the second case, all values of x and y will 
be traversed that are actually compatible with the two equations of the vis viva.  The third 
integral of the equation of motion will lose its meaning.  The moving pair of values of x 
and y thus now defines a manifold of two dimensions.  Central motion with closed or 
unclosed paths will also behave similarly. 
 A second integral of the equations of motion can be infinitely multi-valued in just the 
same way.  For central motion, there can be a cylinder with an infinitely-small base of 
arbitrary form, moreover (e.g., perpendicular to the plane of the path), on whose 
circumference, the moving point will be reflected like an elastic ball.  In that way, after a 
very long motion, the values of the surface velocity would be changed again and again, 
and in the course of a very long time, they would assume an infinite sequence of values 
that went into each other continuously, such that the surface equation would also lose its 
meaning.  (Cf., my treatise: “Lösung eines mechanischen Problems,” Wiener 
Sitzungsberichte, Bd. 58, II Abtheilung, Jahrgang 1868.)  By the same device, a single 
equation for the vis viva would enter in place of the two equations.  Moreover, if that 
cylinder had a position such that it would be met by all paths that are compatible with the 
equation of the vis viva (so for central motion, it would lie infinitely close to the circular 
path and for the Lissajous motion, it would lie infinitely close to the coordinate origin) 
then in the course of time, in fact, all possible combinations of values of x, y, dx / dt and 
dy / dt that are compatible with the equation of vis viva would be traversed. 
 We would now like to consider the most general case, for which we assume that k 
integrals of the equation of motion are infinitely multi-valued.  After eliminating t – τ, 
only 2b – k – 1 integral equations would then remain, which would not be infinitely 
multi-valued, and the variables could run through all possible values that are compatible 
with the 2b – k – 1 equations in the course of time.  In that way, we can imagine a system 
in which k = 2b – 2, so it will be one in which all possible values of the variables will be 

                                                
 (*) In general, it can happen that when the equations of motion and the 2b – 2 parameters are given, the 
form of the motion is not determined uniquely, but a finite number of forms of motion are possible, such 
that in order to obtain a unique determination, the limits between which the last integration constants lie 
must be given.  
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traversed that are compatible with the equation of the vis viva.  An example of this is 
given by either the Lissajous motion that was perturbed by an infinitely thin cylinder that 
was just discussed or central motion.  All motions for which b = 1 serves as a much 
simpler example.  Such a system would take on the same properties that warm bodies 
exhibit in experiments, to the extent that its state would be determined completely when 
one knew the total energy that was contained within it, in addition to the external and 
internal forces.  The probability of the different states, as well as the total behavior of 
such a system, can now be calculated with particular ease.  (Cf., my cited “Studien,” 
section III and my treatise “Einige allgemeine Sätze über Wärmegleichgewicht,” section 
II.)  However, warm bodies even possess a property of much greater generality, in that 
the different phases that its state of motion assumes in the course of time are not 
experimentally noticeable, but due to the large number of atoms in it, as soon as any atom 
enters into another phase state, in exchange, it will again assume a neighboring phase 
state that the former previously possessed.  It undoubtedly follows from this that only 
completely random differences in the state of warm bodies will be brought about by the 
different initial conditions, while all essential and observable properties of them will 
depend upon merely the total value of its energy, in addition to the internal and external 
forces.  The precise mathematical expression of just this situation encounters 
complications, however, and can best be formulated by means of the following artifice.  
(Cf., on this, my previously-cited treatise “Einige allgem. Sätze über 
Wärmegleichgewicht,” section I; Maxwell’s cited treatise, page 549.) 
 In place of a single system, we choose infinitely many systems that are completely 
the same, and in each of which the same energy is contained, as well, but which possess 
all possible initial states, moreover.  All of them should experience the same energy 
increase, and the external conditions should change in the same way for all of them.  All 
properties that are independent of the random initial conditions must now also belong to 
the totality of systems in the same way.  For example, if the work that a system exerts 
against any external force were to contain the mean energy that a component of the 
system contains, or similarly, depend upon the initial state of the system essentially, then 
the mean value of these quantities for the totality of systems would naturally not equal 
the value of it for a single system.  However, if the values of these quantities do not 
depend upon the initial state in a perceptible way then that mean value would have to be 
equation to the value of the same quantity for each individual system.  It is thus not at all 
necessary for us to calculate the values of these quantities for every individually-
determined system that is subject to initial conditions, but it will suffice to calculate its 
mean value for the entire totality of systems.  This calculation will be made easier by the 
fact that it is left entirely to our discretion how we would like to define the totality – i.e., 
if N is the number of systems, and dN is the number of systems for which the initial state 
lies between certain infinitely-close limits then dN can contain an entirely arbitrary 
function of the variable that determine the initial state.  For a suitable choice of that 
function, we can now make it possible for equations to be true for the totality of all 
systems that have the same simplicity as for a system that runs through all possible states 
that are compatible with the equation of vis viva by itself.  Now, since we have proved 
that for each individual system, the value of the quantities that are independent of the 
initial conditions is equal to the mean value of the same quantities for an arbitrarily 
defined totality of systems, it will suffice to determine the mean value of such quantities 
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for that totality for which the calculation becomes as simple as possible.  We would now 
like to make such a choice. 
 We thus imagine that we are given, not a single such system, but infinitely many (N) 
equally-arranged systems.  Moreover, we follow precisely the method that was given by 
Helmholtz (*), by which, at a single stroke, we will bring a hitherto-unsuspected clarity to 
all of these investigations.  We divide the coordinates of each system into two classes: a 
of them s1, s2, …, sa shall be completely constant, as long as the state of the system is 
unvarying, and change into another state under a transition only extremely slowly.  These 
coordinates shall also have precisely the same values for all N systems, and their values 
for all N systems shall change in precisely the same way.  In the theory of heat, they 
characterize what one cares to refer to as the external conditions under which the warm 
body is found.  By contrast, the motion of heat shall be represented by rapid variations of 
the second class of coordinates p1, p2, …, pb .  The differential equations that determine 
the variation of these coordinates shall likewise be precisely the same for all N systems.  
All forces that strive to change the value of the rapidly-varying quantities shall be called 
internal forces of the system.  By contrast, the ones that act upon only the slowly-varying 
coordinates shall be called external forces.  The initial values of the rapidly-varying 
coordinates shall be as diverse as possible for the different systems; now, a totality that is 
especially convenient is characterized by the fact that the number of those systems for 
which the initial values of the coordinates lie between the limits: 
 
(1)   p1 and p1 + dp1,  p2 and p2 + dp2, …, pb and pb + dpb, 
 
and, at the same time, whose momenta lie between the limits: 
 
(2)   q1 and q1 + dq1,  q2 and q2 + dq2, …, qb−1 and qb−1 + dqb−1, 
is equal to: 

(3)     dN = N ⋅⋅⋅⋅ 

1 2 3 1 2 1

1 2 1 2 1

b b

b

b b

b

dp dp dp dp dq dq dq

p
dp dp dp dq dq dq

p

−

−

⋅ ⋅ ⋅ ⋅
′

⋅ ⋅ ⋅
′∫∫

⋯ ⋯

⋯ ⋯

. 

 
The last momentum qb is determined from the equation of vis viva.  The integrations are 
all extended over all possible values of the variables that are run through during the 
motion of all systems.  As Maxwell (loc. cit., pp. 554, formula 28) has proved, if the 
distribution of systems is a completely stationary one – i.e., as long as the values of the 
slowly-varying coordinates are constant – the number of systems for which the 
coordinates and momenta lie between the limits (1) and (2) will always remain the same.  
(I have proposed the name of ergode for such a totality of systems.)  In that regard, the 
totality of all N systems then possesses precisely the property of warm bodies that its 
properties remain unchanged under the invariability of the external conditions (viz., the s) 
and the conservation of energy.  Therefore, if the value of any quantity does not change 
noticeably under unchanged external conditions and the conservation of energy, and also 
does not depend upon the initial conditions in a perceptible way then the value of these 

                                                
 (*) Sitzber. d. Akad. d. Wiss. zu Berlin, 6 March and 27 March 1884.  
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quantities for every individual system must equal its mean value for the totality of all N 
systems, which was already discussed thoroughly above.  We can always transform the 
coordinates in such a way that the vis viva is represented as a sum of squares of momenta.  
With no loss of generality, we can then assume that for constant s the equation of energy 
for an individual system can be written in the form: 
 
(4)    2 2 21

1 1 2 22 ( )b bq q qµ µ µ+ + +⋯  + V = L + V = E. 

 
The force function V is a function of the slowly and rapidly varying coordinates.  It can 
happen that some of the slowly-varying coordinates s do not appear in the coefficients µ; 
they then play the role of parameters that enter into the force function whose slow 
variation represents the slow change in the rule by which the external forces act.  By 
contrast, other s can be true coordinates that will remain conserved for an unchanged 
state by suitable external forces (viz., the Lagrange forces) whose change, however, 
represents a change in spatial position for certain parts of the system.  These s can also be 
included in the coefficients µ, along with the rapidly-varying coordinates.  In order to 
avoid misunderstanding, I remark that I never make the Helmholtz assumption that V 
does not include the rapidly-varying coordinates, which is an assumption that is replaced 
with the consideration of a totality of very many systems by me.  Since the number of 
systems for which the coordinates and momenta lie between the limits (1) and (2) 
remains stationary as long as E and s do not change, they are also always determined by 
the formula (1).  The number of systems for which just the coordinates are included 
between the limits (1), while the momenta have arbitrary values is: 
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(Cf., Maxwell, loc. cit., pp. 556, formula 41.) 
 We must now move on to the definition of one of the most important concepts, 
namely, the energy that is supplied from the outside under a transition from a certain state 
to another one that differs from it by infinitely little, and indeed, we say: δ1Q is the 
energy that is supplied by one of the dN systems, dδQ is the energy that is supplied by 

dN systems, and δQ is the energy that is supplied by all N systems.  If all coordinates p 
and s have the same values in the varied state that they do in the original one then the 
energy that is supplied from the outside will obviously be equal to the increase in the vis 
viva δL; by contrast, if the values of the coordinates have also changed in the varied state 
then the vis viva would have to increase from the work δA that is done by that coordinate 
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change with no additional supply of energy.  The total increase in vis viva δL is thus 
equal to the vis viva δ1Q that is supplied from the outside plus the δA that is obtained by 
doing work.  One thus has: 
(6)      δ1Q = δL – δA. 
 
From equation (4), one has δL = δ(E – V).  In order to determine δA, we would like to 
always arrange that the variation implies that we consider the rapidly-varying variables as 
not being capable of variation; i.e., we would always like to compare the original state of 
a system with the varied state of a system for which the rapidly-varying coordinates have 
precisely the same value.  If the s are not true coordinates, but merely parameters that 
enter into the force function V, then any varied state will be compared to an unvaried 
state in which all coordinates have the same values.  One will then have δA = 0, and the 
energy that is supplied by each system will have the value: 
 

δ1Q = δL = δ (E – V). 
 

Since these quantities possess the same value for all dN systems, dδQ = dN ⋅⋅⋅⋅ δ(E – V), 
and the energy that is supplied by all N systems will be: 
 

δQ = ( )dN E Vδ⋅ −∫ . 

 
 By contrast, if true coordinates are also present among the s that determine the spatial 
position of the system components, and therefore they are also present in the coefficients 
µ, then the coordinates p will indeed have the same values in the varied state as in the 
unvaried one that they are compared to, but not the coordinates s.  Work will then be 
performed by varying the last coordinates, which will consist of two parts: 
 1) Ones that are exerted by the forces that are determined by the force function V; 
the increase in the vis viva of the system that they produce will be: 
 

− 
1

a

k k

V

s=

∂
∂∑ ⋅⋅⋅⋅ δsk , 

and 
 2) Ones that are exerted by the Lagrange forces, which insure that the coordinates s 
will stay constant.  The latter work yields the vis viva: 
 

1

a

k k k

V L

s s=

 ∂ ∂+ ∂ ∂ 
∑ δsk = 

2

1 1 2

a b
h h

k hk k

qV

s s

µ
= =

 ∂∂ + ⋅ ∂ ∂ 
∑ ∑ δsk , 

 
since the Lagrange force that acts against the growth of the sk possesses the value 

−
k k

V L

s s

∂ ∂−
∂ ∂

.  The total value of δA is then: 
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if δ means the total increase that arises from the slow variation of the s and the E while 
the p are kept constant.  Therefore, one will have: 
 

δ1Q = δ(E – V) – δA = δ(E – V) − 
2

1 2

b
h

h
h

q
sδ

=
⋅∑ . 

 
If we would like to determine dδQ from this then we would have to multiply by the value 
of dN that is given by equation (3) and integrate the q over all possible values.  Thus, one 

does not think of E – V as a function of the q, and furthermore one thinks that: 
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is nothing but the mean value of 2 / 2h hqµ , which is the same for all q, and is equal to (E – 

V) / b. (Cf., Maxwell, loc. cit., pp. 558, formula 52.)  One will then have: 
 

dδQ = dN ⋅⋅⋅⋅ 
1

1
( ) ( )

b
h

h h
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− − − 

 
∑ . 

 
The energy that is supplied by the totality of all systems is then: 
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A possible variation of the limits produces no variation of the integral thus-determined, 
since the function under the integral sign vanishes at the limits, where it is not at all 
capable of variation.  When certain variables go back to themselves, such as angles that 
increase by 2π, a variation of the limits does not actually exist, or one can say that the 



Boltzmann – On the mechanical analogies for the second law of thermodynamics. 9 

terms that arise by varying the upper and lower limits will cancel.  Since the vis viva of 
all N systems combined possesses the value: 
 

T = 

2
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one can also write: 

Q
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, 

 
with which, the formula to be proved is presented in full generality.  If one of the systems 
moves during a very long time t, and if δt is the increment in time t, during which the 
coordinates lie between the limits (1), then one will have: 
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Thus, if everything depends upon a single variable p that again assumes the same value 
after a finite time interval t (viz., the period of oscillation) then one will have: 
 

t = 
2

dp

E Vµ −∫ , δQ = 2T δ ln (T ⋅⋅⋅⋅ t). 

 
 Two masses m and µ that move in a circle with slowly-varying distances r and ρ from 
two fixed centers with the likewise slowly-varying angular velocities w and ω can serve 
to make this concrete.  Here, one has r = s1, ρ = s2, w = 1p′ , ω = 2p′ .  N point-pairs must 

be present, for which all possible pairs of values for w and ω can occur for which: 
 

2 2 2 2

2 2

mr w µρ ω+  

 
has the required value E of total energy.  Naturally, the condition that the properties of 
each individual point-pair are independent of their initial conditions is therefore not 
fulfilled by this example, which is why the theorem to be proved here will be true for 
only the mean value over all point-pairs, but not the values of the individual point-pairs 
themselves. 
 
 Graz, September 1885. 


