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INTRODUCTION

The natural development of any scientific researchhagracterized by an intimate
collaboration between experiment and theory. In gemgiochs, theory takes the lead
and may foreshadow new and unknown effects; we haveaeextraordinary example
of such a foreshadowing, by de Broglie, of the wavelikaracter of electronic motion.
On the contrary, in other epochdike the present one, for exampldhe discoveries of
new facts achieve such a rhythm that theory lags therimgral developments quite
considerably. Nevertheless, one may say that therwtgmn of facts and their
interpretations are always on a par.

The theory that | shall discuss here does not havelthracter that one would call
normal. It sometimes happens that a well-establishedriengr@al fact remains
unexplained for a long time, and completely isolatedhfaiher known observations. A
celebrated example is provided for us by the phenomenon hwiais already known by
Newton — of the equality between mass (a measureedidhp and weight (a measure of
gravitation); in other words, by the confirmation thdlt lzodies fall with the same
acceleration in a vacuum. The researchers who usualioged this fact forgot this,
and regarded it as an unsolved problem; 200 years passed beisteinEbegan to
wonder about it again, and discovered, in a theory wihias grown lengthy and
commonplace, the foundations of the theory of genefativity.

The situation that we are placed in here is not tifi@reint from the preceding one, in
the sense that the problem that we are concerned svitbither too old nor completely
forgotten; nevertheless, 50 years have already passedldingt posed it. The problem
is that of the difficulties that are raised by th@stence of an infinite proper energy for
point-like electric charges.

J. J. Thomson, who was the first to discover thestemce of free electrons and
measure their specific charge, has likewise proposedutidamental hypothesis that
their mass is of electromagnetic origin. | willecih phrase from an autobiography that
was recently published [1})( in which he described his first researches (1891) on the
consequences of Maxwell’s theory:

(") The numbers between brackets ,[ ], refer to thkdgjraphy that one finds at the end of this work.
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“If one adopts the hypothesis of an electric constitutaxr matter then it is permissible to
assume that mass has an electric origin, and thatcansequence, it does not arise in the
atoms themselves, but in the space that surrounds Heeges.”

J. J. Thomson admits that this “space surrounding egelea is the space that is
external to a small sphere of radiasand proves that the mass that is actually calculated
must be proportional to the electrostatic energy, wis@i/a. This expression must be
infinite asa 1 0; the idea of a mass of electromagnetic origin tbezenecessarily leads
to speculations concerning the structure of the electiidns problem did not receive a
satisfactory solution during the “classical” period of physiand has not disappeared
even with the creation of the modern theory of quardtathe present time, it constitutes
a “black hole” in our theoretical description of naturabpbmena, and it is only a
meager consolation that in the course of time otheekbholes have likewise obscured
our horizon.

The latter difficulties have their origin in the dis/ery of new elementary particles,
which were unknown up till now and made the electron gvés privileged position as
a unique fundamental particle.

At present, there exists several particles: the electhe positron, the proton, the
neutron, and probably the neutrino, and we are certainathacorrect theory of these
particles must embrace the whole set and not jusbbtet to describe them one at a
time; indeed, one already knows a certain number aigrhena in which these particles
are produced or destroyed, or ultimately transformed irtb ether.

Nonlinear field theory is a residue of the epoch during whieh electron was
considered to be the premier element of physics. oMiges an elegant form solution to
the problem of the infinite proper energy and the eledgmatic mass; in truth, this
solution came much too late. The existence of the oewlearly shows that mass is not
indissolubly linked with charge. At the same time, expental research concerning
nuclear phenomena has shown the existence of foetegén particles — charged or not
— whose nature is completely different from that ecalbomagnetic forces. Moreover, it
has not been possible to realize a complete agreemviedn nonlinear electrodynamics
and the principle of quantum theory. Finally, we havesoeceeded in ridding ourselves
of the infinite terms that are characteristic of quamfield theory.

Despite these objections, | permit myself to develtys ttheory for your
consideration, and for the following reasons: in theohsbf scientific research, one
confirms, in a completely general fashion, that often @inthe reasons for progress in a
given direction is the radical elimination of all psitec hypotheses that are hidden in the
theory. The linear electrodynamics of Maxwell comséasuch parasitic hypotheses. They
are not only useless, but also give rise to considerdifficulties, particularly as far as
proper energy is concerned.

Now, it is possible to develop a general theory thatidsvahese difficulties.
Similarly, if this theory does not immediately solilee grand problem of elementary
particles then it nevertheless merits the distinctibmproviding the means to grasp the
essential points; one already confirms the existerfice @ertain number of connecting
points that link nonlinear electrodynamics with the cosgitions of a completely
different genre, like Dirac’s theory of positrons, fxample. Last, but not least, the
generalized field theory forms a harmonious mathenlagiddice, whose great beauty



Introduction 3

might constitute a point of interest for those who aepjte the elegance of analytical
methods.

For this last reason, the mode of exposition thatdispted here will have a very
pronounced mathematical character. | will begin wgitme considerations concerning
the principles of variation that apply to the motidrcontinuous media, and then pass to
the general case, in which | conclude with the cas¢hefelectromagnetic field?)(

() For this exposition, | have made ample usage of thsisttieat was presented to Cambridge Univeristy
by my old student and collaborator, M. P. Weiss, wha@sedompletely studied the mathematical basis for
the field theory in the context of the calculus of viloizgs and functional calculus; part of this thesis was
published in [2].



CHAPTER 1.

CLASSICAL THEORY.

1. Variational principle for a continuous medium [1]. — Consider ann-
dimensional space, with coordinatésx’, ..., X".

We define a closed-1-dimensional hypersurfacgin this space, by means of the
equations:

(1.1) X=X, ...,u™) (=12, ...n),

in which theu® (k = 1, 2, ...,n— 1) aren — 1 parameters. Call the domain that they refer
to D and definev functions in this domaia?(x’, ..., X"), which we write, to abbreviate:

Z(X) (@=1,2,...V);
let:

(1.2) 2 (%) =

be their derivatives’).
Suppose that one is given a function of thesewuarvariables, a function that we call
the “Lagrangian” of the system:

(1.3) &z, 7).

o
ax<

We form the integral:
(1.4) | = jD,g[xi, (%), (X)) o,

in whichdx signifiesdx’, ..., dX". | is a functional that depends on the choice ofsa$
that is given by (1.1), as well as the values efitiunctionsz? in D and onS.

In order to obtain a useful mechanical interpretatit is necessary to make the
number of dimensions equal to 4 - three space dimensions and one timengion.

The functionsz’(x) describe an arbitrary property of a medium tliig fhe space
(elastic deformations, electromagnetic potentiats,). We postulate thequations of
motionthat are obtained by annulling the variatidnof | for independent variations of
these arguments, i.e., and thez” onSand inD.

It is essential to also consider the variationtled boundary, as well as that of
dependent variables on the boundary if one wowd Bite to understand the behavior of
singularities. We treat the latter problem in geto.

In order to perform the variation, we introductamily S¢) of hypersurface$S with
one parametes, which are situated in a neighborhood of the gikrgpersurface, and for
which:

(1.5) X =X +&&.

() Latin indices always refer to thés, and the Greek ones, to the. As usual, one must sum over any
index that appears twice. We have taken pains to cltbeg®otation in such a manner that the one index
will appear on top and the other, on the bottom.
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_hSimiIarIy, we subject the functior® in D to a linear variation by replacin:gj’(xi)
\(AiltG) Z7°(X)= Z(X)+en“( X inD.
The values of these functions on the deformed bour®{@yy S will be:
(1.7) Z°(X)=Z(X)+en? ()= Z(N+e( 2 +n) onS
The total variation o£” on the boundary may be writterf’, and is given by:
(1.8) Z°(X)= Z(X)+&l”.
By comparing this with (1.7), one sees that:
(1.9) n=z"-72¢ onS.

The first variation of the integralis:

(1.10) 5l = (d:j(;) jo - J'D(%jodx{% [ (L’)dejo

in which the index 0 indicates that— 0, andD + €A represents the domain bounded by
the deformed boundasy.

In order to simplify this integral, we introducegaometric language and speak of
vectorsandtensors. Nevertheless, one must note that in our casesmet the ordinary
tensor calculus since, in our new form, we do radtplate any relation between, on the
one hand, the transformation laws and independamthles, and, on the other, those of
the dependent variables. We separately transfoemspace ok by introducing new
variables:

Yi :¢i()(1, )(2,’){‘)
and the space of
Z7 :[//”(xl, )(2,...’ ){‘),

but we make no hypothesis concerning the metrictlese spaces. With these
conventions,dxX is a contravariant vector in the spacexodnd dZ’ is a contravariant
vector in the space af howeverz?, for example, is a scalar in the space,ofihereas is
a covariant vector in the same space, but is ceatent in the space af. The
Lagrangiang is a scalar in the spacefs well as oz The transformation properties
are deduced immediately for no particular quarftiyn the number and position of the
Greek or Latin indices.

Much later, we shall establish the usual char@tierrelations of ordinary tensor
calculus between the transformations of thand z spaces; at the moment, we shall
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distinguish betweetensors, properly speakingndtensor densitiesa distinction that is
superfluous for the instant.

o dX dx dx’ .

Then derlvatlvesduk CaE A are the components of contravariant vector that
is tangent t&5 There aren —1 vectors of this type that one may obtain by succegsivel
takingk =1, 2, ...,n —1; one may assume that they are linearly independeats@ithe
choice of parameterg on Swould not satisfy the required conditions.

Consider an arbitrary contravariant vecabin the space of and define a covariant

vectorNy in the same space by relation:

at a2 ... a8

o ox X

out  aut out

1 2

(1.11) Neak=| X 09X ox
ou®>  ou? ou?

oxt  ox? o oX

aun—l aun—l a lJn—l

N is therefore the minor that one obtains by stantmy the matrix oin —1 rows andch

columns:
ox~
ou'

by suppressing the colunkntaken with the convenient sign.
k

The vectoiN, is normal taS; indeed, by replacing® withgirin (1.11) one obtains:
u

k
(1.12) N =0 =12 ...n—1).
ou

This being the case, first consider the second tetheirariationd in (1.10):

(1.13) %.[DH:A (£)odx= Igltr(l)%{ .[D+£A(£)O dX—'[D(L') 0 d>}

This integral must be taken over the domainthat lies between the surfa@andS,
which one may imagine are decomposed into cyclindershthag their axes normal ®
The volume of one of these cylinders is:
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a a a
o ox X

out  aut ou

1 2

o ox o OX A AR oAU
ou®>  ou? ou?

ox o X

ou"  gu™t ou™

which, by virtue of (1.5) and (1.11), is equal to:
eNg &AU AW ... AU™
From (1.13), one thus obtains:

d K
(1.14) (E jM £), dxjo = jsg N & du,

in whichdu signifiesdu® ... du™™.
The first term in (1.10) is:

d i a a a a
(1.15) .[D[Eﬁ(x,z" +en”, 4 +£/7k} dx:jD(L‘zan + L) NE* d,

in which the indices that affeg are indicated by partial derivatives.
We introduce the following abbreviations:

(1.16) £,=0a L, =R

p¢ is a contravariant vector in the spacexof Since;“ is a scalar in the space of
X, pkn“is also a contravariant vector in the same spadew, for any vector® of this
type one has Gauss’s theorem:

da
(1.17) .[Da7dx:js a N, du.
We write:
on’ _ 9 . op;
0 a — KK — ay _ @ a’
zg’]k pa an axk(pa” ) ,7 an

and apply (1.17); in this case, (1.15) takes thefo
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(1.18) .[D[qa _op, }7"dx+ '[S g Na° du

ox~

We substitute expression (1.9) fgf in the surface integral.
By adding (1.14) and (1.18), one obtains the total variation:

(1.19) A =[ [£],n7dx+ [ (X &+ Z,¢7) du,
in which, to abbreviate, we have used the follownagations:

_ 0 o _, _00
(1-20) E]C(_Sza _G?Sf =0, W

This operation is called theuler variational derivative. The g, correspond to the
“external forces” and thg to the “internal tensions.” Therefore:

(1.21) {Xk=UiKNw
Z[I: pﬂN’
in which:
_ , . . 1 for i=k
1.22 U, =£0 -p o, = ,
( ) k ¢ pazl? L k {O for |¢kj

is a mixed tensor of second rank in thspace. In the language of functional calculus,
such as was developed by Volterra and other aythQ}s is called the derivative df

with respect toz?, taken at the point of the domainD, whereasX, and Z, are the
derivatives of with respect toX andz” at the point of the boundar{

2. Euler equations and conservation laws- From the fundamental lemma of the
calculus of variations, since the functionf§ are arbitrary, the variatiod may be
annulled only if:

(2.1) [€la==q, P 0, (@=1,2,..,).

These equations are tBeler differential equationsyhich constitute the equations of
equilibrium or motion (field equations) in dynaniicapplications. When they are
satisfied, the first variation ¢freduces “limiting form:”

(2.2) a :js(xkgk +2Z.77)du.
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When one likewise annuls this integral, one restrices thbmber and nature of the
possible boundary conditions for the functiaison S. The simplest case is the one in
which thez” take given values on a given surface, S; in this dseD, “ =0, and, as a
consequenced = 0. Nevertheless, when one imposes no “artificcahdition of this
nature, the equatiod = O itself provides the “natural’ boundary condition.r Egample,

if the ¥ may take any given value{ arbitrary) on a given surfacé (= 0) then the
derivativesz’ may not be completely arbitrary @& but must take satisfy the following

“dynamical’ boundary condition:

(2.3) Zo= PN =0,
onS

In the applications to electrodynamics, the value efvidriationd on the boundary
will be used to determine the behavior of the field in #igimborhood of the singularities
(charges).

It is often useful to consider tim quantitiesz’ no longer as the derivatives of the
functionsZz”, but as independent quantities. On the other hand;dftain numbenv of

similar functionsz’(X) may be essentially considered to be derivat%%gsthen they
X

(n-1)

must satisfy the following > “integrability conditions:”

07 o7 _
(2.4) =0

We shall now deduce an identity that leads to theservation law for dynamics.

To that effect, a celebrated method, due to Klglnuses the notion of infinitesimal
transformation. In our case, we are particuladyaerned with a displacement of all
space that does not alter the functiod§, we must therefore také" = const., and
determine the variationg” andz? in such a fashion that this displacement does/aot
thez”. We therefore write:

Z(X +&8) + 77 = (),

from which, it follows that:
Z& +n" =0 or &=0.
This displacement therefore provokes a variationtbét is equal to:

d k k. 5a — ck
(2.5) ol Z[EIDS(X + &7 ,zé’)dxl =& foka d>.

Now, our general formula (1.19) givé‘i:,: const..l7 =0, n7=-2"&" for this:
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(2.6) 51 =& [—jD[s]azgdH [ du].
By equating (2.5) and (2.6) and using (1.21), one obtains:
(2.7) [UNdu= [ (12], +[e], £) db.

This integral identitymay be transformed into another that contains trdyderivatives
by using Gauss’s theorem to transform the surfategial into a volume integral.
One obtains:

(2.8) Uy _ @

axi - X

One may obtain a more general identity by dirediljerentiating relation (1.22).
We admit that neither the Euler equations (2.1)therintegrability conditions (2.4) are

satisfied, and conside? andp; = £, as functions ok, Z(X). This being the case, the

derivative ofg with respect to& (sincez” and z; are considered to be functionsxdf is:

0L 0z° 0z°

— =L, tL,—+L,—.

T TP T ax
From (1.22), it results that:

U, _ac  0p, .

X o ok X 'd‘*
from which:
u! 928 9p (97 of
2.9 k=g + d atu IS S5
&9 x o ( ok szj ‘jﬁ[a% ox
This identity is more general than (2.8); noneths] if the integrability conditions

B
(2.4) are satisfied then the last term disappears,one may set’ =gik; in this case,
X

(2.9) reduces to (2.8).
If, moreover, the Euler equation (2.1) is satifieen one will have:

oy,

ox

(2.10) =g, or jSULNiduz jGSXk dx.

Now consider “conservative” system, in which anyepbmenon is independent of the
absolute position of the system in space, i.e.which £ does not depend upon tRe

(space and time) explicitly:
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In this case, we have tlkenservation laws

U, _

(2.11) o~

or jSU,LNidu:O.

At the end of this section, we mention a particulgre of system that proves to be
important in electrodynamics, namely, the oneswhbich the Euler equations (2.1) and
the integrability conditions (2.4) are intercharigeaone may call these systesf-
dual or auto-conjugate.

An obvious first condition for realizing self-ditglis g. =£ , = 0, i.e., the “force”

must be null. A second condition is obviously dwuality of the number of equations
(2.1), on the one hand, and (2.4), on the otheneha

(2.12) yn(n-1)

=y,

whose only positive solution is= 2, v arbitrary.
The self-dual systems are therefore possible onby two-dimensionak-space, and
must have a null “force.” However, this resultvaid only for themost generakystem,

e., for the ones that contain the largest possiuimber of Euler equations and
“‘independent” integrability conditions; this maytrime the case for certain categories of
particular systems and we shall see later on tleatredynamics fall into one of these
categories precisely.

One may easily convince oneself that in the gemaise the two necessary conditions
that we indicated above are likewise satisfied.debd, it suffices to introduce new

quantitiesy, z,, p.“ that are defined by:
z, = 2;’ z=-1
(2.13) P = R d,
= L - p}}; =4 %

and to consider a new integral to vary:
(2.14) =] o', pi7)dx,
with the integrability conditions:

op,” _op”

(2.15) PN =

In this last relation, one concludes the existerfcefunctionsp “ such that:
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(2.16) oo =907
ox'
and one obtains:
(2.17) 9. =0, z!' = LI
The Euler equations are:
0z} 0z
(2.18) o a>z<n? =0

One immediately sees that this “dual” theory isnti=al with the one that we have
studied.
As examples of “self-dual” theories with= 1, one may cite the following (one sats

1. The Cauchy-Riemann conditions that appeahéntheory of analytic functions
may be considered as integrability conditions antkiEequations for a system that has
the Lagrangian:

£=4(2)°+ @]

2. The theory of minimal surfaces is derived friva Lagrangian:

=1+ (2) +(z) .

3. A simple form for nonlinear electrodynamicsswaudied by Pryce, in which one
completely determine the solutions that corresgombint charges, which follow from :

£=\1-(2) - (2).

3. Mie’s electrodynamics [1].— The theory that we have described up till now
describes the properties of all types of continudysamical systems — elasticity,
hydrodynamics, electromagnetic, or gravitationalds. The treatment is the same; the
only differences are the physical significance tué variables” and the choice of the
function £.

More particularly, we concern ourselves with thieceomagnetic field here;
nevertheless, in order to make out theory absglutevariant, we are obliged to
incorporate gravitation, which, following Einsteis,related to the geometric structure of
space- i.e., to its metric.

We therefore have two groups of functiafisthe one describes the electromagnetic
field, and the other, the gravitational field, oetnic. Likewise, if we are given that:
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Fosd = g8 =",

then the rule for the displacement of indices is same for tensors as it is for tensor
densities.

Now examine the properly physical problem of the respecinfluence of the
gravitational and electromagnetic forces on the phenarttat interest us here, namely,
the ones that concern the behavior of elementaryriabparticles.

Obviously, we are completely disposed to make a placeéophenomenon of inertia
in out theory, whose point of departure has been the prodielecdromagnetic mass,
precisely. Nevertheless, there exist very strong aegisrthat permit us to neglect the
gravitational forces with respect to the electromagretces, especially “in the interior”
of particles. Consider two identical material parsabé massn and charge and letr be
the distance between them; the ratio between tleedonf electric attraction (Coulomb)

2
and gravity is equal tﬁe—z, whereK = 6.66 % 10® C.G.S., and the gravitational
m

constant. By introducing the numerical values into éixijsression that correspond to the
electron,e/m = 5.3 x 10" C.G.S., one thus obtains the value for the ratio, which
demonstrates the insignificance of the role that gramitaplays in the structure of
electrons.

In spite of this result, there exists a large numlbevarks that have the objective of
explaining the cohesion of the electron by gravitatios.,(the fact that it resists the
action of electric forces that tend to dissipatentbispace). This idea, which was
introduced by Einstein [3], has given rise to numerowsgits to synthesize the laws of
electromagnetism and gravitation. One has developed élegdinematical theories that
generalize the initial idea of Einstein of describing thetural laws by means of
Riemannian geometry. For example, today we possesdfiae geometry of the
universe and a projective one, which constitute some tlsethia unite the laws of
gravitation and electromagnetism into the same matteahéormalism. Meanwhile, for
my own part, | estimate that these theories arkyrgaite remote from the physics that |
will actually describe here, and which constitute, in ngynmn, one of the necessary
stages that one must pass through before reaching tactatig theory of elementary
particles.

In order for us to perfectly account for the approximatibat shall introduce, we
shall take a variational principle for our point of depes that does not disregard
gravitationa priori. The most general principal will a Lagrangi&nfor its point of

2

dg, 0°Q,

departure, which is tensorial density that is a functiogko—-, —; , as well asp;,
ox  oxox"
09. . .
a—¢,'= @i. In the absence of more precise information we axenmheless reduced to
X

assuming that® is the sum of a term that corresponds to Einsteirésrthand another
term that represents the electromagnetic action:

(3.4) | = j 1R /-gadx+ Kj £ dy,
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in whichK is the gravitational constant (Einstein’s notatiomy & depends o, and ¢

=%; as a result of the invariance postulagewill also depend on they, but we

X

assume that it is independent of%lgé (we shall return to this point). By varying the,
X

one obtains thequations of gravitation
(3.5) Rk — 3 xR = — KT,

in which Ry is the Riemann curvature tensor ahg is a second rank tensor whose
density is given by:

(3.6) J-0 Tk =T =T%igsk, T°=—+— (9.

Our fundamental approximation consists of neglectingeha inK in (3.5), which
expresses the coupling between the electromagneticaireldhe gravitational field. By
replacing the left-hand side of (3.5) with O, one solutidrthis system is a quasi-
euclidean space, which one assume to be reducible, by amsentvchoice of coordinate
axes, to the normal form:

-1 0 0
0 -1 0

3.7 .=

(3.7) o 0 -1
0 0 0

There is no doubt that this hypothesis may be reasomgplyed to all of space,
except perhaps at the center of an electron itselthah one may find deviations if the
fields become infinite. Nevertheless, the object of theory is precisely to avoid the
appearance of infinitely large quantities, at least madaeenergy is concerned; with these
conditions, it seems that there is no risk in assgrthat space still remains Euclidean at
the center of the particles considered. We shallmeatuthis question later on, when we
indicate the solution of a particular case of combinediti#onal and electromagnetic
fields. At that point in time we shall discuss the lpjeon of the influence of the
gravitational forces on the mass of the particle.

We may assume that tlgg have the values, (3.7), which are valid in a Lorentz
coordinate system. We meanwhile prefer to abstain @toimg this, in order to avoid the
possibility of sign difficulties that originate in thegnature of the matrixgk), and to
have the possibility of introducing any coordinate systeapacetime that suits us.

(*) In the sequel, we shall employ the symbalith two meanings: 1. derivatives with respectag
Ok, etc.; 2. ftotal’ derivatives with respect tg. One must be careful to observe the distinction betwee
these two meanings.
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If one takes the indicated fundamental tensor then on&insb the general
electrodynamics that was developed by Mie in 1913, buttwithnew hypotheses:

1. The Lagrangian depends @n ¢« :Zﬂ, and gy, but is independent of the
X

derivativesag—rI )
ox"

The integral:

(3.8) 1= [ (@, A G )X

is invariant under all coordinate transformation3he interpretation of the second

postulate is the following: the value of | musttbe samen any coordinate system £

is the same functioaf the preceding variables, when taken in theesystonsidered.
Instead of 2, Mie himself naturally postulated tirevariance under Lorentz

transformations. In place of 1, he introducedijagothesis thaf essentially depends on

the derivativesp x, but only by the intermediary of antisymmetric donations:

= - =00 0P __
(3.9) fiu = @i — Pk PV fi,

which represent theomponents of the fieldNow, one may prove that this necessarily
stems from 1 and 2 if we remark that all of theaina&nts of thepy that are distinct from

. . . . . .0
the invariants of thé, necessarily contain the derlvatl\g&m'—. For example, one may
X

form the invariant that corresponds to the Lorantariant div ¢ :a;ﬁ'f= @ In this

X
case, we must employ the covariant derivative. quamntity:

0 0(J-94 9"
d|v¢—ﬁ ™

. . . 0g" . .

is invariant, but contalngg—m. We do not insist upon that here because weagsienple
X

proof of this theorem in the following section (sdg.

For the moment, we assume tlgais a function ofg, fu, gu .
The variation of is given by:

0L 0L 0L
dg, +—df, + —dg,.
09y g ofy ‘ 09y .

(3.10) de =
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The partial derivative of with respect to one of the variablgsor gy must be taken

without accounting for the symmetry properties of thgeta therefore, one must, for
example, take the derivatives with respedd®r gk separately.
We now introduce the following notation:

(3.108) k=08 0L 0L gu_ 0L 0C
a¢k af|(| af|k agkl aglk

The derivatives of with respect tofy and gy have actual symmetry property; by
contrastp and3* are antisymmetric and symmetric, respectively:

(311) pkl - _ pkl’ zkl — zkll

One may now write (3.10) in the form:

0L 0L 0L 0L
de =s*dg, +i| —df, +— df |[+1 dg, + dg |,
s dg, 2 (afkl kI aflk \(kj 2 {agkl 4 aglk Qj

and sincdy = — fi, O = i :
(3.1M) de = skd¢k +%]:1kI df, +—§Tk' dg, .

The invariance postulatdias another important consequence, which is expressdw by t
relation:

(3.12) L0} = 5" P + p* g + g,

which we prove in the following section (sec. 4).
From our notion of derivative, we have:

w_ 0L _ac ofy _oc oc = ¥
a¢k,| afij a¢|<,| afkl aflk

This being the case, the Euler equations that come thhemariation of the integral
(3.8) - in other words, th&eld equations- have the form:

o _
3.13 —— =5
(3.13) ™
(for the translation into ordinary vector notatioeessec. 5). They show that th'é

constitute theother category of field componenemd that thes* represent thepatial
density of charge and currenErom (3.13), one deduces thguation of continuity
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Os*
3.14 —=0
( ) ox’

The integrability conditiong2.4) of the general theory lose any significaiicae takes
the fy instead of thegy, as variables thaf depends upon; they are replaced by the

following conditions:

(315) afik +afkl +afli -

X  ax  oax

which are equivalent to (3.9), and which are neamgsand sufficient for us to conclude
the existence of potentiags when one starts with a given seffpf
In ann-dimensional space, their number is equal to:

m — 1n(n-1)(n- 2)
3) ° !

which gives 4 fom = 4. They are not all independent; there are 8rilydependent ones
for n = 4. If one introduces the ordinary vector natatione sees that (3.15) represents
thesecond group of field equations.

We now examine the problem cbnservation laws For this, we transcribe the

expression, (1.22), far, for our particular case:

| ,_ og
3.16 U =L, -9 4, M=
(3.16) P o {p 5¢|J

We consider they to be given functions of thé in appearance, so it therefore does
not seem to be a conservation law, properly spgakoat simply the relation (2.10),
which may be written here:
ast!
ox

ag IS

(3.17) v

— 1T
_ET

Another difficulty is the fact that, from (3.16)f, depends on the,, explicitly.
Meanwhile, if one substitutes the expression (3f@a)CJ; then, due to the fact thaf"
=p¥, one obtains:

(3.18) U =T, +s¢, +p' [/

in which we have made use of the usual rule foreling the indeX of <4 With the aid

of this equations, one may eliminate tfefrom (3.17), and one obtains a relation %5t

that may be interpreted as a truly covariant corag@m law.
In regard to (3.13), one has:
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Sg +1'0, =f,‘°—’,-¢k+p" L= 40
(3.19) ;
o BV B =500 =0

sincep’ is antisymmetric. This shows tigtandsl, , which are related by (3.18), differ
only by a quantity with vanishing divergence; hence

o, 0%
3.20 K ="k,
(3.20) ox  oX
and (3.17) becomes:
A% dg
3.21 ——k _1gms I -,
(3.21) ax 27 oX

The expression in the left-hand side is tlowariant divergencef the tensorial density
T., [4]; the latter satisfies a covariant conservataw, as was intended.

The preceding argument directly exhibits the retabetween Mie’s electrodynamics
and the general case that was treated in sec. dsdmming that relation (3.12) is known.
We indicate this in another way by starting with taw (3.21).

From the definition (3.18) one has:

as « 09 ag
251 e dS 1 kl kI +;zkl ki
( Al VAR I L M R ¥
As a result, by virtue of (3.14):
a(5k¢k) a¢k +¢ %
ox * o kax FTe
and, by using (3.13):
ap" fi) _ of oty E
ox' X  oX

cof,. . 6f af

By adding these equations and taking (3.15) intmawt, one obtains:

a j — S agrs
(3.22) 67[25:( — 56 —p’ fil =3% ax
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This anticipates the proof of formula (3.12), which will éstablished in section 4 by
invariance considerations; the expression between passs is found to b& g, =
T, , and (3.22) becomes (3.21).

When the field equations are satisfied, the variatibhreduces to its value on the
boundary, which we write as:

(3.23) a= js(aekaxk +B*ap, ) du
with
(3.24) X =UN,, P =p*N

Since and differ only by terms with null divergenome may replace the first equation
with:
(3.249) X =% N,.

The importance of this surface integral will appeauch later, when we concern

ourselves with the motion of point-like charges [5]

4. Generalized invariance—~ Consider an infinitesimal coordinate transfororat
that is given by:
(4.1) X< = X+ e84(X),
in which the& are arbitrary continuous functions of the The inverse transformation is:

(4.2) XK = XX —&f4(X).

We introduce that expression into (3.3), which espnts the transformation @gfandgix
that is induced by the preceding; one easily obtain

_.9¢
gax" b

_ & 0&!
Ok :gkl_g[gk f t g aij

P =9,
(4.3)

and, upon differentiating, :

_09 _ 0 ([ _ 65’
aj"k_ai'_axm(q)k ax“’)ja—)é

or

(4.4) ¢|,k :¢|,k _‘9(¢,k X |J ¢|1

0g  o¢ s
% oxox
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In (4.3) and (4.4), the right-hand sides must be coreitlas functions of‘ and the left-
hand sides as functions &f, which are related to thé by the transformation (4.1).

We call the term ing the “variation” ogx of @, the variationdgy of ga , the
variation gy of ¢, etc.; one has:

0 =P (X) =P (%),

Now write:

(4-5) 2:£(¢k’gkl1¢|,k):£(¢k'gkl 1¢|,k)+521

and use the notations:

(4.6) H=9% kiz 0L = gq_ 08, 0L
04, 04, | ag“  ag*

one has: _ _

(4.7) 8L =55 O +p) O +1 T A

Upon substituting the value of the variations given HEy3) and (4.4), and
conveniently modifying the indices, one obtains:

0%¢&!
axkox

. . a k )
(4.8) I =~ &5 p + 0 +Tk19kj)6_i' +p“ g

The Jacobian of the transformation, (4.1), is:

a(yl,72’73’74)_ N ag(k

(49) 00, X2, 8, X)) T T aX

With the notations that we introduced, the invarianceéytate 2 of section 3 is expressed
by:
(4.10) j53d>—< :jDsdx,

in whichDis the domain of thg“that corresponds to the domdin of the X by the
transformation (4.1). By virtue of (4.5) and (4.9), oneadist

(4.11) j{(mcxﬁ)(ﬂ 5%}—2}@: 0.

X

Since this relation is valid for any domdit must be the quantity under tﬁesign that

is annulled.
By replacingd€ with its value (4.8) one obtains an equation efftillowing form:
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0 | 4 0%€
4.12 D, +p ¢ =0,
(412) o TP Aoy
in which _ _ _
(4.13) Dy = L9~ (5B + pInj + p i + TG4
In (4.12), the values of the first two derivativesxbfare arbitrary at any given point;
2zj

since% is symmetric irk, |, one has:

Ix“ox
(4.14) p'+ptk =0, D, =0.

The first of these equations shows tBatlepends only upon the combinatidgs=
&1 — . Because of (4.13), the second one shows [1] theoel¢Bi12):

(4.15) L0} = 5" gy + pMig + Ty

Now consider the problem of expressing the functinor rather, the corresponding
invariantL that is defined by =L ,/—g by means of thelementary invariantsf ¢, fq,
Okl -

The invariants of the tensdlig andgu may be determined as a linear combination of
the two matriceg = (gi), f = (fi) in a linear familya(A) = [ax(A)] defined by:
(4.16) g + M= (1 +Afg g = a(\)g.
Sinceg™ = [gu], the general element & " isf; g = £*.

The element of the unit matdX is likewise that of a mixed tensor, and one has:

(A= +A5"

It follows from this that the simultaneous invarinats ahdg are the coefficients of the
characteristic polynomial, or of the determinana@f):

(4.17) |a(A) | = |1 Hg™ | = 1 +Fid + Fol® + .+ Fol".

Sincef is anti-symmetric and is symmetric, the transposed matrixgte- Af is g —Af =
a(-A)g. Since the determinant of the transposed matrix istichd to that of the initial
matrix, one hasd(A) | = |a(-A) |; therefore, the development (4.17)p0f) contains only
even powers. Far =4, one will have:

(4.18) la() | = 1 +FA?2 = G2A%,

with the two invariants:
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F :% fki fik :% fic f*=4f fkngik g™,

2 'im

- f 1
G'=- 119 = (it Tt Taff

(4.19)

The square root of the second invariant is not itselhaariant with respect tall of the
transformations, but only with respect to the ones lthae a positive Jacobiarfc may
be written in a simple form with the aid of tloial tensorthat was introduced by
Maxwell.

By slightly modifying the definition of the latter, wetroduce thecontravariant dual
tensorial densitythat corresponds to tlemvariant anti-symmetritensorfi the defining
formulas will be:

(4.20) {f*23 = fi fm = fu f*lz = fau

*14 _ *4 *34 _
]( - T2z ]( - f311 ]( - f12'

Here, the usual law for the displacement of indicea Lorentz system (namely: change
the sign for indices 1, 2, 3, but not 4) gives:

(4.21) {&=—Pﬂ fu==f2, fp=-f,

* :—f23, * :—f?’l, * - 12
14 24 34

f, is a tensorial density; one may see this [2] by meatisembmpletely anti-symmetric

tensorial densitydk'm, which is defined in the following manner. We develop the
determinant of the tensag;:

(4.22) la| :%ak.( a, @y any M I,

The coefficients are:
+1 if iklmis an even permutation df, 2, 3,4
(4.23) Jm=1-1 if ikimis an odd permutation of,2,3,4;
0 in any other case

This being the case, we apply (4.22) to the teggpif we divide by— | g |. One

Imn

obtains the invariant-1 in the left-hand side; therefoi7ék:is a fourth order
-19

contravariant tensor andf™ is the corresponding tensorial density. As usualndetfie

covariant tensorial density:

(4.24) Okimn = DK/"W Ok« O Oy Onus

and multiply byo"™ by virtue of (4.22), one obtains:
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Dklmnaklmn = 4' |g |

By replacingay with the unit tensor in (4.22), one sees that:

okimnkimn = 41 ;
therefore, from the preceding:
(4.25) Okimn = |g | 0™.
We may now write:
(4.26) RN L ., fr =1 Oumd™,

which shows precisely that! andf;, are tensorial densities.
The square root of the second equation (4.19) gives:

1
J-9

in whichf is the tensor that corresponds to the deri€ity

Now consider the simultaneous invariantsgafand fy with respect to the metric
tensorgy. We proceed in the following manner: we first form vleetors:

(4.27) G=—— 10" iy =

mn _ mn
2R = e

(4.28) = fud), Xk = fq &,
and then the invariants of the three vecii sk, and i, namely:

the squares of the length

A:¢k¢k :¢k¢|gkl’
(4.29) B =¢/k¢/k = fy fkm¢ I¢m’
C=xux" =1, "¢'¢,,
the scalar products
a:wk¢k = fk|¢k¢l,
(4.30) B=x8" =i ¢,
y=wx =, "g'e"

sincefy is anti-symmetric, one has:

(4.31) a=0, =0;
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moreover, one has the identities:
(4.32) B-C=FA, y=GA,

which are a consequence of the relations:

f £4— £ FK = Fg¥,
(433) il " il . é .
f £ =f 1 =G,

One may easily verify the exactitude of these formirasLorentz system, for example:

ff2 = 2 = f2+f f2—f - ™
=f 2+ f,f2 -2, ,-f%,=0,

flI f*2| = f13f*23 + fl4f*24 = fle 14~ f14f 31: O
The most general Lagrangian will thus be:

£=L(A B,C, G) /-9,

In whichL is an arbitrary function of the four elementary inzats.

At this point, we verify the exactitude of relation 13) by a simple algebraic
reasoning [3].

Let J be any of the four elementary invariants; the threetgiem

0J 0J 0J
Ny A 9

f 1 1
00 ofy, ™ 09, e

are homogenous functions of tge of the same degreg asy itself, the same is true

with respect tofiy and ¢, whose degrees of homogeneity areand ngs, respectively.
Moreover, one has:

0J 0J 0J
(4.35) —ng| =n, K|k’ ) fo =1 |k’ Ra i
0% Of 09,

¢ :n¢K|k’

with the sameK“in the three cases.

Upon examining the structure of these invariants, oase et they are all formed
from products of thegy and fy, multiplied by the corresponding product with upper
indices. The number of upper indices is therefore efqualng, + ny, but, at the same

time, it is obviously equal to the number of factgfsthat are necessary to lower the
indices. Sincg has degree —1 with respecttpone will have:
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(4.36) = Ng = 1Ny, + .

This being the case, we differentigtewe obtain:

i 0L | 08 {a\/_ a\/_J FZ[GJ an

09, ag||< ag aglk 09, 0g,

0L 08 _ — 0y 03
:‘-{kl -
afkl af,k Z [ of, of, j

in which the sum is taken over the four elementary iawés. By virtue of (4.35), (4.36),
one deduces:

s*G +p"f,, + T4, =4/-99" g, L+J- EK(p +2n +2p)
=LJJ-g =245,

in accord with (3.12).

5. Vectorial notation in ordinary space.- Naturally, Mie himself did not develop
his theory by making use of the generalized invesaprinciple, which was introduced
by Einstein some time later. He used only the omadt notation of ordinary space, and
postulated invariance only under Lorentz transfaiong. In my opinion, this restriction
is not essential, and | believe that today thestillsno reason to change the words that |
published in an article in 1913 [1] in which | iattuced the quadrivector and the six-
component Minkowski vector, and in which | gave iandified proof of Mie’s
conservation laws (which is, moreover, equivalenthe one that was used here, page
???). The words are the following:

“The universally recognized incompatibility betwethe differential equations of the
electromagnetic field and the existence of poirgtedtrons) at which the charge
accumulates and persists without the benefit oéresl forces is closely related to the
linear character of these equations; above al§ therefore necessary to abandon the
linear character of the fundamental equations. Wi realized this program in the most
general and most elegant manner that one may e@noéiin the context of physics
today, which has its origin in the analytical meaba of Lagrange.”

The reasons for which Mie’s theory did not succeethe context of classical physics
reside in the scope of his object; we correcthbist in the following section.

Obviously, the appearance of quantum theory hassiderably modified this
problem.

In what follows, we take the velocity of light eqjuo unity and adopt the Heaviside
units for electromagnetic quantities.

With the ordinary vectorial notation, we have,tbe one hand, thgpacetime vectors
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5, X)=(xyz) =6¢,9 ( coordinates tine
(5.1) (¢,,9,.05.0.) =@,9) (vector and scalar potentid|
(s',s°,5°,s") =—(pv,p) (currentand charge densijy

and, on the other hands, thig-component vector of the field

(5.2) {(fzs’ o fi) = (477%) =B,
(fur fon fa) = (. F%.*) =E,

pl*4'_p241_p*34) =9,

23 23
(5.3) {(p S P2 P
p23’_p311_p12) =—9.

po)= (-
(™ p*) = (-
With this notation, the field equations, (3.13) 48dL5), are:

tE+B =0, divB = 0,
(5.4) {ro iV

rot$H - = pv, div®d = p.

The form of the Maxwell equations is preserved in any coordinatersjitethis results
from the fact that we have chosen to defiBeK) as a tensor andy| ®) as atensorial
density.
This difference disappears in a Lorentz systemwlhirch thegik are given by (3.7);
one has:
(s:s, 8) = (0v,—p)
(5.9) (Pos» Ps1y P) = H=H, (Lorentz system),

(p14’p241p34) =9=D,

which, with (5.2), forms the usual definition, whicoincides with ours only in the case
of special relativity.

The easiest manner of writing the tensor dengignergy-momentum (3.12) consists
of employing the matrix notation; one has:

£ 0 0 0 9, -9 -9,
0 £ 0 -9, 0 -9 -9
56) (%)= +| 7 X y
()(k)oofg 8, 9, 0 -®,
o00o0%¢g]|®» D D 0
0 B, -B E| |a
-B, 0 B, E ay( )
X +| Yl(po,, p0,,00,,0),
B, -B, 0 E| |a Y
-E, -E, -E, 0| |¢
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or, explicitly:
Ill = S_ﬁyBy _ﬁsz—i_@ xEx+ ,OU xax
T, = L+DE + pg,

(5 7) Tzl:5:)"By—i_gyEX-*_'O‘oyax’

T =9,B+D,E +pv,a,
T, =9,B,—D B, + v 0,
T24 :ﬁzEy_ﬁyEz+pax‘

The relations are valid in any coordinate systémthis case, the symmetry of the tensor:

(5.8) T4 =gmT! :igkmzrln

J-9

is not a simple condition; nevertheless, if onestgrs a Lorentz system with the that
are given by (3.7), one will have:

(5.9) ™ =—T* for 1=1,2, 3, andT =T/},

Now introduce the following vector notations:

X, X, X,
(M)=1Y, Y, Y|= Maxwelltension
zZ, Z, Z
(5.10) U =energy density

S = Poynting vector

One may then write the following formulas, whichvéan immediate significance:

o M) - - -
(5.11) ™= o Us‘, (Tk)—‘ . j,

and then one has:

X,=H,B +H,B,-D,E,-pv,a- L

U=DIE+p¢+L,

X, =Y, =-H,B-DE-pva=-HB- DE-p V3
S=(ExH)+ pa=(DxB)- pgV.

(5.12)
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In this case, the symmetry condition ontékes the simple form:

(5.13) {(H xB) +(ExD) = p(v xa),

(ExH) - (DxB) = pla+gv).

The conservation laws (3.21) take the form:

. + = -
(5.14) dvX+S, =0,
divS+ U=0,
in which the rows of the matrix of the Maxwell tensoe considered as vectofs= (Xy,
XY’ XZ),
In a Lorentz system, the four elementary invariargs a
A: 2 _ /2
(5.15) 7 -a i
B=[(axB) +¢E",
F=B2-E*
(5.16) ’
G=BI[E.

The entire system of formulas is vacuous until oreoshks the form of the function
L(A, B, F, G); once this function is fixed, one has:

(5.17) af¢ aal_a
=& =%
=38 oE

Mie tried to find a functior for which there exists a solution to the field equations
that corresponds to a stable particle (electron) andahgsherically symmetric charge
distribution. His attempt was not crowned with succdssvever, even if he had
succeeded, it would still be unconvincing, except in the faasehich this solution was
imposed by a universal principle that reduces the extraoydgemerality of the theory.
However, such a principle is not known, as of yet.

Another characteristic of Mie’s theory that raidésee strong objections is the
explicit appearance of the potentiads §) in the Lagrangian, and, as a consequence, in
the field equations. It then follows that the absoltakies of the potential must have a
precise physical significance, which contradicts everythima is known about the
electromagnetic field experimentally. Similarlywe call into question the validity of an
extrapolation of this knowledge to the atomic domaimnthve may not escape the
following difficulty: suppose that one has discoverddagrangiarL such that one must
find a solution of the field equations that corresponds particle. IfL depends upon the
potentials then this solution no longer exists when os@aties the particle in space to a
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point where the potentials have a different value froengreceding one (different by a
constant that constitutes potential difference betvte® positions at an infinite distance
from the center of the particle). With these caods, the theoretical explanation for the
existence of particles, which defines the principal objecof Mie’s theory, must be
illusory.

In Maxwell's theory, since the physical laws havee otegree higher they are
insensitive to certain variations of the potentiakeythpresent what one callgauge
invariance the physical laws do not change if one replagdsy:

(5.18) b =g+ X
oXx

in which y is an arbitrary function. This derives simply frometfact that the
transformation (5.18) does not alter the expression (3.9héofield components. When
one derives Maxwell's equations from the correspondiagational principle, one
confirms that thegx appear in an explicit fashion In but only in the form of a linear
combinationL has the following form:

(5.19) L=Lo+¢is® =Lo—(Va—g),
in whichLg is a function of andG that has the following form, in vacuo:
(5.20) Lo=1F=1(B°-F).

Thes® = - (& V°, ) aregivenfunctions ofx, y, z, that represent the density of charge
and convection current, and satisfy the continuity eqoati
650i

5.21 -=0
(5.21) W

The transformation (5.18) simply adds the term:

0i 0] a
50i6_)(:65 _)(_Xas _0s X

ox  oX X X

(5.22)

to L, which constitutes a divergence, and does not nake contribution to the
differential equations.

In reality, this case does not enter into the gandeory that was discussed in the
foregoing if we are given that containsx, y, z, texplicitly, which appear in the given
functionss”. 1t then follows that any conservation law of éy(5.14) will no longer be

valid; in the right-hand sides, instead of O, therdntz force and power density will
appeatr:

(5.23) OH + (V° x E)], FVE.
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Strictly speaking, the Maxwell theory is therefore agarticular case of the Mie theory.
If one applies the Maxwell theory to the problem @&ne¢ntary particles, then as
described in the introduction one is led to the concept of a mass of electromagnet
origin. The pioneering work of J. J. Thomson has hmmettinued by a great number of

researchers, and has attained its culmination in th&@tetheory of H. A. Lorentz [3].
In this theory, the electron is considered as a smiBrisymmetric charge distribution

that is maintained in place by cohesive forces of unknotwut certainly not
electromagnetic, origin. The dimensions of theseiglest must be finite, or else the
proper energy would be infinite. This proper energy @&, the most part, of
electromagnetic nature, but it also depends upon cohesoesfto a certain degree. As
one knows nothing about these forces, the absolute gathe energy is itself unknown.

Meanwhile, it has been possible to account for theeemental fact that was
discovered by Kaufmann [4] of the variation of mass withocity. This problem has
been treated by several authors, and, in particular,mo@ complete fashion, by M.
Abraham [5], under the hypothesis that the electricgehas fixed in a perfectly rigid
material support. The hypothesis of an absolute rigiditych was perfectly natural in
the classical period of physics, is nevertheless begpnunacceptable with the
introduction of the postulates of relative by EinsteirRigidity and relativity are
contradictory notions.

Somewhat later, Lorentz applied the Fitzgerald contradb the electron and thus
discovered his well-known formula that gives the massa function of velocity, a
formula that is found to be in closer accord with tkpesimental results than that of
Abraham. The Lorentz hypothesis may be expressed bygsthat the electron is rigid
in the coordinate system in which it is instantaneoustegsit 30 years ago, in one of my
first articles, |1 showed that this relative rigidgyists for an entire class of motions that
correspond to constantly accelerated motion in classieghanics, and | then deduced
[6] a generalization of the Lorentz formula for thignAuniform motion several years
before Einstein began the systematic study of similatians in his general theory of
relativity. Langevin [7] has recently treated the sanwblem from the standpoint of
general relativity, and has confirmed the formula trgdJe.

These theories that concern the rigid or quasi-riggetten are not satisfactory
because they all suffer from the following difficultet E be energy, and let P, be the
total electromagnetic momentum of the electron. eléstromagnetic mass may then be

defined by eithqu2 orE; now, one finds that these values do not coincide. The
cc cC

difference seems to result from the fact that thee®rthat shape the electron in the
manner of a rigid body provide a certain contributionthe translational momentum
without performing any internal work.

The only means of avoiding the difficulties that werevoked by the antagonism
between relativity and rigidity seems to be the adoptictheunitary field theoryof Mie,
which represents an attempt to assimilate the cohésiges with the electromagnetic
forces into a field with a nonlinear connection. Néweless, we have just seen that this
same theory has not succeeded in solving the problem,Miragsed the absolute values
of the potentials in order to describe the discreparmestarting with the linearity that
gave the charge density.
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6. Unitary electrodynamics with pointlike charges.— Nevertheless, the problem
possesses a solution [1]. It is obtained by assumirighbgotentials do not appear in
the field laws, i.e., th&€ depends only ofy andgy, and that:

(6.1) U

09,

Meanwhile, with these conditions it is indispensableatimit that there exigioint-like
singularities that represent the particlene may then choose the function:

(6.2) £(gu, fi) = L(F, G)H,

in such a fashion that the proper electromagnetic erargypoint-like charge is finite;
all of the contradictions that affect the old thesié the rigid electron disappear.

| have called the resulting theory theitary theory of the electromagnetic fieid,
spite of the fact that the singularities correspondisbinct components of the field; in
reality, Mie’s ideal of a complete unitary theory wat attained for the good reason that
it is impossible to attain. It is a question of apmBen, of knowing whether the
preceding statements agree with the modified theoryl thaitv present; nevertheless, for
my own part, | prefer to retain the expression, simeehave that in any case this theory
offers the possibility of a purely electromagnetic erptéon of mass. We shall discuss
this question of the origin of mass later on.

Before we give an example of a functiothat replaces the preceding conditions, we
must consider the problem from another viewpoint thatdea the general formulation
(6.2), ofL, namely, the namely, the viewpoint of self-dualitywsss defined in section 1
for an arbitrary variation.

The inspection of equations (5.4) for the electromagtield and the symmetry that
one confirms between electric and magnetic vectors stgygbe existence of an
absolutely complete symmetry as a necessary conditi@my unitary theory of fields
and matter. This general condition is equivalent to daelf-duality; we express this
analytically.

The first condition to replace is expressed precisellty). As far as the second one
is concerned, we have seen that in thdimensional case the number of integrability
conditions (3.15) is; n(n —1)(n — 2), which is equal to the number of Euler equations

only if n = 4. The fact?) that the self-duality of the electromagnetic fieddpiossible
only in our four-dimensional universe seems to be anmelseremarkable coincidence!

Meanwhile, one must not lose sight of the fact g&lf-duality has only a certain
purely formal character; it is not fundamental, since tvas not accounted for the
singularities. Experience has shown us the existehp®int-like electric charges, but
we have not yet discovered isolated magnetic poleter ba, we shall verify the manner
by which one treats this dissymmetry.

(°) As observed by my collaborator, P. Weiss.
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In all of the reasoning that is concerned with the edectignetic field equations, it is
very convenient to use the notion of self-duality; werdfee dedicate the following
statements to showing how one must construct thersyst formulas that are dual to the
ones that we have written up till now.

Introduce the function:

(6.3) §=g-1p*f=g+1if*p = ¢ +ED -BH,
2 2 k

Which one may call thelamiltonian of the systerby analogy with the function that
appears in point mechanics. By virtue of (®)1&nd the fact that“ = 0, we have:

(6.4) d9 = 2% gy — L ficdp™ = 3 Tdg + £ **dp,.

Thenatural independent variables foy are thereforgik, p, ; in accord with the general
notion of duality, we admit that th® may be expressed by thatipotentialgy, :

. _0y, oy
(65) plk_ 6Xi a)& :
£ will have the form:
(6.6) H=H(P,Q+-g,

in which P, Q are the elementary invariants@{, p, that correspond t&, G, as defined
by (4.19) and (4.27), namely:

(6.7) P={p,p"“=D"-H’, Q=4p, p*=DH.

A variational principle that uses the integral:

(6.7) 1= [ 9(dy, Pl dx
leads to the equations:
af*kl

6.9 =0,
(6.9) W

op, . 9p, , 9R
6.10 -+ ——+—1=0.
(6.10) ox  oxXx X

The equations are indicated in the initial equeti¢3.13) and (3.15), which may be
written in tensorial and vectorial notation, in fiolowing fashion fors® = 0:

of, + afk_l + of; =0 or rotE +B = 0, divB =0,

(6.%) ox oxX oX
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a,

6.10a
( ) ox*

=0 or rot$s - =0, div® =0.
If we keep theayi's constant then (3.10) and (6.4) become:

deg =-9dE + HMB,
(6.4a) {

d$H=EdD-Bds.

The two dual representations differ from each othet,ly their differential equations,
but the choice of primary variables for the field:

S(E,B) @:—6_2, j’j:a—g’

oE 0B
(6.11) o5 0
D,%) - E=—2 B=—22,
H(D, ) v 5

The energy tensor is expressed in ternis infthe same fashion as with

ok 0L 9L _ 09 , 99

(6.12) = .
d9, 09, 0g, 0g,

By virtue of (6.4), the diagonal elements of the mixatsbrE* that is given by (5.7),
may be expressed in two perfectly equivalent ways:

(6.12) {‘211ZS_ﬁyBy_ﬁsz+®xEX:ﬁ_®yEy—’DZEZ+57) B

T'=L-DE=9H+HB.

SinceU =%, is the energy densitys¢e (5.11)], the function,$y, has a simple
significance in the purely electric case. This circiamse often makes the usefpmore

convenient than that of.

In a Lorentz coordinate system, the energy tensaxpgessed by (5.12), if one
suppresses the terms m The symmetry relations, which are the expression of
relativistic invariance, may be written:

(6.13) { (HxB) =-(ExD),

S=(ExH) =(DxB).

This double expression for the Poynting vector is remarkahiwill be used later on to
establish the equations of motion for a charged particle.
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When one refuses to use the tensorial calculus at &w®; prhich has, moreover, the
advantage of making the covariance of the equations diatedy obvious, one may
likewise introduce othediundamental functionmstead off and$). In particular, one of

these representations is very useful for the appicatf the principles of quantum theory
to electrodynamics. Indeed, the only means of attackuadp a problem is to take the
Hamiltonain of dynamics as the point of departure, emergy; now, the function, H, that
we have calledHamiltonainhere is not, in general, identical with the energy tieihis
would be true only in the absence of the magnetic faddave seen).

One confirms that, from (6.4 the energy density is given in a Lorentz system by

(6.13) U=H+HB =L +DE;

from this, by accounting for (6.4), one deduces:

dU =EdD+H B,

6.14a
( ) E:a_U, H:a_U’
oD 0B

in such a way that the functid(D, B) may be likewise employed as the foundation for
the theory.

Finally, there exists another possibility, whick written in ordinary vectorial
notation:
(6.15) V=H-ED =L -BH,

dvV=-DE+BdH,

6.1:
( ) D:—a_v, B:a_U;
oE oH

however, the function \K, H) has no immediate physical significance.

The interesting point in all of these represeataiof the theory is the fact that the
field equations are certainly covariant, but thedamental functions are not invariants.
My collaborator, M. B. S. Madhava Rao, has studl@d question, and has concluded
with the following result [2]. Einstein and Maykave shown that the group of Lorentz
transformations may be separated into two moreicesd groups; they are constructed
from two types of quantities, the semi-vectors,clare covariant under the one of these
restricted groups, but not under the entire Lorgmtwip. Madhava Rao has shown that
relations (6.14) and (6.1%) are covariant under these partial groups, and timenefore
give us reasons to believe that the field equatascovariant under the complete group.

When one exhibits the discrepancies between thergktheory of fields and that of
Maxwell, it is convenient to introduce the tensor:

(616) mkl — fkl _ dd [(m23, m31, m12) — M, (m14, n124, m34) — P],

and the vector:
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(6.17) & =9 [(d", &, &, &) = (-, -9

r.nlk

ox
In a Lorentz system, one has, with the ordinaryorgdtnotation:

(6.17a) M =B —-H, P=D-E,

which shows thaM andP are thedensities of the electric and magnetic momasta

result, one has:

(6.18) j=—rotM +P, o=-divP.

The field equations may be written in the Maxwell form

of ¥
—=0 or rotB-E=j, diE =0,

(6.19) gfx*k'
W =0 or rotE-B=0, divB=0.

X

Here, the right-hand sides are m¢enfunctions, but depend on the field components,
according to the relations, (648 One may call and othe current density and thee
charge.M andP are thevacuum polarizationghis notion plays an important role in the
attempts of Hesenberg to evaluate the differences Maxwell's theory by starting with
the relativistic wave mechanics of the electrsee§ec.13, 14).

It obviously possible to introduce an energy tettkat is a function of only th&"

(6.20) S =1F5, - " f

km?
in which F = 1, f is the Lagrangian of Maxwell's theory; one obtagmservation
laws by the usual procedure in the form:

(6.21) X - f0;

in the right-hand side the Lorentz force appedos)gawith the power of the free charge:
(6.22) E+(xB) and |E.

This shows that one must attempt to find the dgancies associated with the
classical values of the electromagnetic forcestang that one is concerned with fields
that are essentially variable on a distance stalti$ comparable to that of the diameter
of the free charge distribution of a particle; ttesult will be confirmed later on.
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In this theory, thérue charges- i.e., the ones for which the integrﬁandU, when taken

over a closed surface, is finiteare always concentrated at a point.

A certain number of general results concerning thd &ed the energy of an isolated
point-like particle at rest may be obtained without dyex the Lagrangiath.

In the electrostatic case, the field equations reduce t

(6.23) rote = 0, divD = 0.

The first one is satisfied identically for a sphatig symmetric field of the fornk

r
=E, —. The second becomes:
r

(6.22) 94 p)=0,
dr
whose general solution is:
e 1l
6.24 D =——,
(6.24) " amr?

in which the constant is chosen in such a fashion fibvatany closed surface that
surrounds the origin one has:

(6.25) jDrdaz e

The fieldD is exactly the same as in Maxwell's theory.

Moreover, there exists a general relation betweendhee of the total enerdy, and
that of the electrostatic potential at the place nettbe point-like charge is foung(0).
To deduce this, we use the property that was mentiorfedebe¢hat in the electrostatic
case the energy density coincides with the HamiltoHal such a way that:

(6.25) Eo = 477.[: Hrdr .

We consideH as a function oP = D? (Q = HD is annulled); we will have:

(6.27) i(r‘°’H):3r2H +r36—HOlDr ;
dx oD dr
now, by virtue of (6.11) and (6.24):
oH _ dD,. _ e 1
-~ Er, - T 3
aD, dr 2mrr®

SO.

d e
6.28 Hr’=1"(r*H)+—E. .
(6.28) 3dr( ) 6r '
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Since we assume that the integral (6.26) conveddesiay not tend to infinity at the
origin r = 0 more rapidly than®*®, 0 <& < 1; forr =0, we must make the hypothesis
thatH behaves like the energy density in Maxwell’'s theamy, that it varies like™. It
then follows thatH is annulled for = 0 andr =« . The electrostatic potential is given
by:

(6.29) #(r) = jr‘” E dr,
and from (6.26) and (6.28), one obtains:
(6.30) Eo = £ eg(0).

Eo is the space integral of the 44 component of the gnempsorTy. It is easy to
prove that the integrals of all the other componentgcére annulled for a spherically
symmetric electrostatic field. Indeed, this is obvioust@ integrals of the components
Twa that comprise the vect& which is annulled foB = O; it thus remains for us to prove
this for the Maxwell tensa¥(Xy, ..., Xy, ... ), which is given by (5.12):

(631) XX:DyEy+DzEZ_H, seay Xy:DxEy,

H depends only upoR = D? andE :(;—E 2D. The hypothesis of spherical symmetry

signifies thatD =1(r)r; therefore:

__ofdH o
(6.32) jxydv_ 2j$f xydv= 0,
. . dH .,
which is null smced—Pf depends only on Thus:

[ X,dv=[(2DE - H) dv= 477'[(—32—'; - Hj P dr.

Sinced—H: Zd—H D,, and since (6.28 givesd& +2 D, =0, one may write (6.27) in

db, dpP dr r
the form:

3r?H —4r2d—HDr2 =L ¢,
dP dr
from which:
4 d

6.33 X dv=—-———(r*H)dr=0.
(6.33) [, 2l (7

Thus, the integral of the energy tensor has only won-null component, namely, the
componentsy with the indices 44. This theorem is known by tizene ofVon Laue’s
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theorem since he first observed thatorder to consider the energy and momentum as a
spacetime vectoft is necessary that the conditions stated in theegpliag theorem must
be satisfied. In a Lorentz system that moves with\elocityv these components are
equal to:

(6.34) G=_DY E=_ o

J1-V? ’ 1-v2

7. An example of a unitary theory of electromagnetic fields— The first known
example of a functioh that is compatible with the existence of point-like glearwith
finite proper energy was discovered by appealing to thevialg analogy:

The classical formula for kinetic ene@pmf fixes no upper limit on velocity. Now,

the theory of relativity shows us that this is incotyat reality, the kinetic energy must

1
J1-V?
m(1-+/1- V), and which leads to an upper limit on velocity,isthis taken to be unity
here.

In electrodynamics, the classical Maxwell Lagrangi = 1 (B> — E?) has a structure
that is very analogous to that of kinetic en%g‘y\ﬁ This Lagrangian leads to an infinite

proper energy for a point-like particle. We shatlempt to avoid this infinity by the
same formal change as in relativistic mechanicsding:

be writtenm( —1}, an expression that corresponds to the Lagrangian

(7.1) L =b? (\/1+bi2(52 - E?) —1}.

b is a universal constanttheabsolute field- which may be taken as equal to unity in a
number of problems. The constanf,, was introduced so that the expression, (7.1),
would reduce to that of Maxwell's theotty = 1 (B* — E?) for fields that are small

(compared tdp).
In electrostatic case, one has:

(7.2) L :b{ 1—b—12 E? —1},
(7.3) D, = - oo ___ & ,
OE, 1,
1_§ Er
(7.4) E = b
1—iD2
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By virtue of (6.24), one may write:

e 1
7.5 E=———,
(7.5) e
by setting:

e
7.6 ro=,——.
(7.6) *\amo

ro is a length that we call tredectron radius. (7.5) shows that &s finite everywhere; for

r =0, its value i :iz, and f0|L> 1 it differs very little from the Coulomb field

47, o
e e
> - The potential is:
(7.7) o) =["Edr=—" f(—rj,
r 4, \r,
in which:
) dy
(7.8) f(x) = :
v

B 3

By substitutingy = tanE , X = tanz, one obtains:
(7.9)

—1[" d — _1 (1 j
i =2[——98___¢(0 1R — &,
(X) Z.L '71—%si (0) 5 ¢

in whichF(k, &) is Jacobi’s elliptic integral of the first typerfk :i = sing

V2
1 ¢ dg
7.10 Fl L el 968
(7:10) [\/5 5j '[O 1-1isirf B
Forx =0, one has:
(7.11) £(0) =F [i ’—Tj =1.8541
. 5571854

The potential (7.7) has its maximum at the origid ds value at this point is:

(7.12) #(0) =f(0)—= :1.8541%.

arm, arm,

The variation of the functiori(x), is indicated in the figure 1; it has the same appeze
as arc cok. For example, one has:
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E(Ej = 2arctan1 = {7—27— arctanj =m-¢& X ;

X X

on the other hand:
1 1 _=( 1
(e e{merld)
So:
(7.13) f(x) +f (éj: f(0).

As a consequence, it suffices to calculate the valtié§x) betweenx = 0 andx = 1 (or
betweené = 0 andé :7—2T ).

To account for the differences between this theod Maxwell's one may calulate
thefree charge density from formula (6.19), which must be:

(7.14) o=dvE=+ 9 (%),
redr

By substituting (7.5), one finds:
(7.15) o= 2 {X:Lj.
Ay x@1+ x*)? o

At a great distance, the density decreaseg Tikat the center, it must be infinite like

rY. The charge Aor?dr that is contained in the space between two sphenesinfsr

andr + dr is null forr = 0, and, finally, the total charge may be written (biyirsg x

=,/tang):

"oamdr =e gcos¢d¢ =g
0 0

as one would expect, it is equalgo
The total energy is calculated by means of (6.80¢; obtains:

(7.16) B =2 250) =2

A} 4}

1.2361.

We may now confirm the hypothesis th#t — 0 forr — 0 andr — o, do which
we have made use of in the proof of (6.30). Indeed

2
H=L+ED :bz{,/l+g——1},
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(7.17) r3H :bz{ 1+(%} i“— }ﬂ?:(_;j _1 J1+ x* = x?)x,

and the function of is precisely zero fox = 0 andx =co.

We have thus proved that the Lagrangian (7.1)sléad finite energy for a point-like
charge at rest. It is clear that we may equatedhergy to the rest mass (multiplied by
¢, if we return to the usual units), without encarittg the same obstacles as in the
theory of the rigid electron, since out theoryngariant from the relativistic viewpoint.

Meanwhile, we may use this property to determimeeabsolute field or the equivalent
length, ro, by identifying our point-like charge with the elen. Upon passing to
electrostatic units, we must leave the factaragide in (7.17); by setting, = mc&, one
then obtains:

2
(7.18) fo = 1.2361° = 3.47% 10 cm.,
m, ¢
and
(7.19) b=-=3.96x 10° E.S.U.

o

The order of magnitude for thetectron radius 4 is correct. The value of the fiellis
enormous; all of the experimentally realizable dgelare negligible compared to it.
Therefore, one must not expect to measure an anpigffect that is directly related to the
existence of dinite maximum field [1]. The differences between thiedry and
Maxwell's theory are noticeable only for distanadsorder 10" cm., i.e., for nuclear
dimensions. This result has great importancehaws that the true electrodynamical
laws that govern the elementary processes of nudteasformations may be very
complicated, or else one would be forced to contin@ differences with the Maxwell
theory when one is confined to examining extra-eacphenomena.

Furthermore, one may not solve the field equationghe case of several point-like
charges at definite positions in a rigorous fashittowever, Pryce [2] has proved that
the field is uniquely determined by the charg¥®ge write the relation betwedh andE
[(7.3), (7.4)] in the following form, in which wealve seb™? = o

(7.20) D=—_EF g=—0

J1-qE? " J1+aD?

One may remark that far = -1 one obtains the equation for minimal surfacefour-
dimensional space; indeed, the integral that meistabied:

(7.21) J\/l+ E2 dxdydz:J'«/1+ ( gragh)? dxdyc,
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represents the area of the surfages ¢(x, y, 3. The theorem of uniqueness to which we
alluded above is likewise true for the geometric problem.

Let ¢1, ¢» be two solutions to (6.23) that correspond to the ve&ig D, andE,, Dy;
it is convenient for all that follows to define a t@cand a scalar by the formulas:

(7.22) G = (¢2 - 91)(D1—-Dy),
(7.23) u = (E1 —E2)(D1 —-Dy).
The proof of the uniqueness theorem then reduces to ttia @dllowing lemma:
LEMMA. — One has & Oat any point. The equality is valid only for:
Ei1 = Eo.

u may be written in one of the following two forms:

E E
= €1 -E S
u=(E-E) fi-ae? \/1_051

u= (Dl — D2) Dl - D2 } .
Jl+aD? |[1+aD?
If one can prove the lemma by using the first @sthtwo expressions with a choicegof
then one may likewise prove it fora indeed, it will suffice to exchange both tbés
andE’s in them and use the second expression. Therefas not necessary to treat the
case of the minimal surfaze= -1 separately.
Takea = 1; one will have:

1 1

1 1
2u= (E;—Ey)| (E,+E, - E,-E,
. {( ' ){ﬁ—az Jl—Ei}( ){JEJ%H

1 1 1 1
=(Ef -E2) - +(E, -E,)? + .
{Jl—Ef J1- Ej {Jl— SN Ej

If1>E? = E7 then one will have >
1B 1-E

first term is never negative, and one may annainiy if E> = EZ; the second one is

, and conversely. Therefore, the
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essentially non-negative, and becomes zero only \EhenE,. The lemma is therefore
proved f).

From (7.22), one obtains:

divG = dIV[(¢2 — ¢1)(D1 — Dz)]
= (D1 —-Do) grad@. — ¢1) + (@2 — ¢1) div(D1 —Dy).

SinceD; andD; are solutions of dib = 0, andE;, E; are given by:

E:1 =-grad¢s, E, =— grad¢,,
one has:
(724) divG = (Dl - Dz)(El - Ez) =u

Now letR be a region of three-dimensional space that is boubged surface on
which the value o# is given; one thus hag, = ¢, and as a consequen€z,= 0. By
virtue of Gauss’s theorem, when applied to (7.24), onehaile:

(7.25) J'Ru dxdydz:L G d =0,

thusu = 0 inR sinceu is non-negative. In this case, the lemma demé#rat€; = E; in
R; sinceg, = ¢1 onZ, one will likewise havep, = ¢; in R.

In the same fashion, one may prove that- E; when one is given the value of the
normal component dd on Z, since one likewise h&s, = 0 in this case; nonethelegs,
and ¢, are not equal, but differ by a constant.

Nevertheless, the most important problem for plalsapplications is not concerned
with the questions of boundary conditions, buttivé treatment of point-like charges.

One may prove the following results:

Assume that the positions and values of a setafgels are given. If the vector iB of
order r2 in a neighborhood of one charge and at infinitgrttequation$6.23) have one
and only one solution in all of space.

To show this tak® to be the space between a sphere of large radinat includes
all of the charges in its interior and a seriesmgll spheres of radiusthat are centered
on each of the charges and do not intersect edmehr.oBy virtue of Gauss'’s theorem,
which is applied by always considering the extenormal, one may write:

(°) One may easily see that a sufficient conditiortties lemma in an arbitrary unitary theory is:

2
oLy, 26|;F+67L>O_
oF oFZ  OF

This condition expresses the ideas thandE have the same direction, and that their values incr@ase
decrease together.
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jRu dxdydz:jp G dr—ZL Gd.
Since the magnitude of the charge isj D,do, one has:
[ (D,-D,),do=0.

In the neighborhood of a definite charges ¢° + O(¢™); therefore:

[ Gdo=[[4 -9+ QAe(D - D), do
=(¢) —¢)[ (D, - D,),do + [O(e™)do,

and sincalo = £da in whichdwis the element of the unit sphere, one will have:
LGn do = Q(¢).

By hypothesisp is O(£?) at infinity; from (7.20), one concludes tHat= O(¢ %), hence
¢ =0(£%). The contribution of the large sphere is themrefo

J,Gudo =] O(p*)dr= Qo)
hence:
J'Rudxdydz: Q)+ Qo).

We makes go to zerog - 0, andpto infinity, p — o; the right-hand side goes to
zero. Since the integral is non-negative and recrahsing, it must, consequently, be
zero. The lemma then demands, as before, thatarek; = E, at every point oR.

Following my suggestions, Pryce has succeeded amptetely solving the
electrostatic problem in two dimensiof3]. The fundamental idea that he used is
precisely that of using the equivalence of thisbgm with that of minimal surfaces to
the best advantage. There exists a method ofi@oltdr the latter problem, which was
described by Weierstrass, and which consists ofesgmtingx, y, and ¢ by analytic
functions of a complex parameter. One may trarespgbs method without adding
anything and apply it to the electrostatic problemtwo dimensions. We confine
ourselves to indicating the solution.

Letf(¢) be an arbitrary function of the complex paraméter

One has:

ce [ L)t y=[ i 2-1]reee,
& &
(7.26)

oriv=2f 1)
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in whichfRA signifies the real part of the complex numBer

The force that is exerted on a closed domain ofxthglane that is bounded by a
curve is expressed by means of the line integrals:

X = j[xllcos(v,x)+ X,, COS(v,x)]ds
(7.27)
Y = j [ X,,coS(V, X)+ X,, cos(v, x)]ds

in whichv is the exterior normal to the elemeats Into this formula we introduce the
expressions, (5.12), for the Maxwell tensions (for the-timensional case); the
expression for the components of the force as a fumcti the parametef will be:

x =3[~ L[ 1@,
JrYC
(7.28)

Y =m(—1j f(E)dEj.
Vi C

The integrals must be taken over the closed c@véhat bounds the domain
considered. When this domain does not contain any chéyg]Y are null, by virtue of
Cauchy’s theorem. When this domain does contain a chérgedY have finite values
that represent the forces that are exerted on itdanch are due to the other charges). In
the following paragraph, we discuss the problem of foinedetail and examine, in
particular, the extent to which formula (7.27) followsnr fundamental hypotheses.

The choice of the functiof(¢) is subject to a number of restrictions that folloanf an
exact analysis of the physical significance of the mitages that are expressed by means
of this function. One finds that||[ 1, i.e., that the representative paofnust be found

in the interior of or on the circlé = 1, and that(¢) must be real for anyd| = 1; hence,
f(§) must not have (regular) zeroes ifi||= 1; it may have zeroes on the circlé,||= 1,

but they must be simpld($) may be multi-valued; on one of the correspondingriien
surfaced (&) must be infinite at the poi= 0, while remaining finite for all of the other
sheets. Finally, the developments must be well defined.

When one chooses a functif(d) that satisfies these conditions, one may show, in

general, that the fielD is given byD = DL in the neighborhood of a charge, with:
r

p=2EO " Fg =@,

in such a way that the charge is represented by:

(7.29) e=-=["F(6)d0.
Vi 0
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In this case, the forces are given by the following fdasu

1 com 1 com .
(7.30) X :——j F () cosdé, Y:——j F(6)sin6dé.

70 70
The simplest choice §¢) = constant, namely:

1

(7.32) f(x) :—Ea (a =real).
In this case, the integrals of (7.26) are easily caled|and give:
(7.313) p=a sin‘l(%j , Y=ab (e = a),

in which r, 6 are polar coordinates. This is the solution, in twmetisions, of the
problem of one point-like charge [and corresponds to teetbat was previously given
for three dimensions, namely (7.7)].

In order to represent the casetwb point-like chargespne must také(x) to be a
function with two manifestations whose type depends batker one is dealing with
charges of the same or opposite signs, namely:

for two charges of the same signs

(7.32) 1(&) :k{a+ a —5—%}

X{(Za—f—%j(Za’ —E——;H E +1} with (g, a >1),

andfor two charges with opposite signs

(7.33) (&) :k{Zacosa —E—ﬂ

{4(&12 -sinfa)- 4a(5+%j cos7/+[5+glﬂ 2 + } (a>0).

The expressions for the potential and force arectmoplicated to be reproduced here.
Meanwhile, consider the particular casewd charges with equal but opposite sigims
this casef(&) has the following simple form:
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—1.
2__
/aff

The field is analogous to that of a classical dpaxcept in a neighborhood of the
charges. It gives the relatively simple expressifon the charge, force, and distance:

(7.34) f(x) =

:Ejzn de
m’ [2(a-cosh)
——.[2” cosfdé

J2(@a- cos@)

7 a+l-(a—-1)co¥
° Ja+3-(a-1)cod

(7.349)

r=2k' dé.

One sees thacé and r depend only upon the constamtby eliminating it, one
e e
2

. . X . € .
obtains an expression fer as a function OE that reduces t&¥ =— at a great distance,
e r r

as one would expect for a two-dimensional probleith \& logarithmic potential. At
small distances, the forces remain finite and teri=e.

This latter result may be generalized for the caSéhe problem of two different
charges; in this cas¥,tends to the absolute value of the smallest charge

Pryce has shown the existence of an interestilgico that corresponds to a singular
line of finite length, and which is given by:

afe

(7.35) &) =3 (1+8)

(areal).

At a great distance, it has the character of aléipolution. Finally, Pryce has shown
that the function:

(7.36) (&) :—l{ %

mj @>0)

corresponds to a point-like charge in a constatgreal fieldE. He found:

2ka

(Za %k
JaZ -1 JaZ -1

(7.36) E :%, e=
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the force is equal to the product of the charge andidglik as in Maxwell's theory. We
shall verify later on (sec. 10) that this result may bduted from much more general
hypotheses.

Unfortunately, it seems impossible to transpose thehodein the case of two
dimensions to that of three dimensions. Aside froengitoblem of a point-like charge at
rest, there is only one other problem that one maat irethree-dimensional space, at
least by approximation methods: ittlee problem of the stationary field of a constant
current that is filamentary and circularl have suggested the study of the case of an
annular singularityin the hope that it may provide us with a model thapiglicable to
the proton.

The energy of this singularity may have no particuldmevaince we are given that it
depends on the radius of the circle and the intensithe current. Nevertheless, this
ambiguity is reduced by applying the quantum postulate, which dksmbat the kinetic
moment be a multiple df/ 27z | hope that the solution to this problem will givethe
possibility of accounting for the high value of the makthe proton. M. B. S. Madhava
Rao has taken pains to carry out the complicated edions that this solution demands
[4]. One may perform them completely, due to the thet the nonlinearity of the
equations affects the solution only the immediate neididmm of the ring, the interior of
a torus, to whose exterior one may apply Maxwell's égna. Now, on the one hand,
one knows the solution to Maxwell's equations for anudaimsurface quite well, and, on
the other, that the solution in the interior of a tomay be found by a simple
approximation method; it is therefore perfectly possiblelitain an approximate solution
that satisfies the equations at every point and froang,can calculate the total eneky
the kinetic momeni, and the magnetic momemt The final result is the following:

2
(7.37) E :ﬁlog[l—(saj , M= 4e2vlog[@j, m=25V,
a r r 2

in which e is the total charge, which is uniformly distributed ba ting of radius, v is
the velocity of rotation, and
2
ry = 1677[Ej ! :
fy 1-Vv2

in whichrg is the radius of the electron that was defined/§), (7.18).
The primary consequence that one may infer isalte@ving one. One has:

(7.38) —=—=—,

in whichE =m s the rest mass; this relation is identical ® ¢ine that exists between the
magnetic moment and angular momentum of an eleabrbital in classical theory.
Therefore, such an annular singularity certainlgsioot constitute a model for a particle
with “spin,” for which this ratio is equal to twidbe preceding value.
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By takingv close toc (the velocity of light) and equal t®/ 17, one obtains a mass
around 1840 times that of the electron (a point-like chame), at the same time, an
angular momentum equal p however, this state of the ring does not constauseable
equilibrium position.

This result shows that the nonlinear theory of etanfignetic fields does not provide
a solution to the problem of two fundamental elementaagses [5].

8. Other examples of unitary theories— We now examine the question of knowing
whether one justify the choice of the function, (7.by reasons that are more
fundamental than the ones that we gave, or if theist efier functions that are just as
well adapted, or better, to the objective we are pursuing.

Infeld has proposed an argument [1] that leads to didumthat slightly different
from (7.1) and coincides with it in the electrostatisesathe calculation of the field and
the energy of a point-like charge thus remains the ssnmethe present situation.

Infeld’s idea is closely related to the concept thastein constantly followed that
the gravitational field and the electromagnetic field areeality, two aspects of one and
the same “unified” fielduy.

We assume that this field is arbitrary from the dpmint of its symmetry
characteristics; in any case, it may be additively isgpd into a symmetric part and an
antisymmetric part:

Ud = 0w +fu, Ou = Ok, fu = —fi.

The first part describes the metric, or gravitatiofi@ld, and the second part, the
electromagnetic field. The Lagrangian will be the @est function that makes the
integrall invariant under any arbitrary transformation; this welbwn function is the
square root of the determinantwf (taken with the — sign):

JFlul=y=Tg+ fI=y=lg ¥/ ¥ fg* .

Now, from sec. 4, we have already studied the matfl) = 1 +fg™*; we have seen that,
from (4.18):

la(l) | =|1+#g™*|=1+F -G~

If we wish thatl should coincide with; F for weak fields, then it will suffice to subtract
1 from the preceding expression; one thus obtains:

(8.1) L=v1+F-G2 - 1.

This expression differs from (7.1) by the terr®® = - (E-B)?, which is annulled for an
electrostatic field. Meanwhile, sin@ny function ofF, G is likewise permissible as a
LagrangiarnL, we may imagine the termG? being replaced byAG?, in which A is an
arbitrary constant; fod = 0, one obtains (7.1) (with= 1). In the sequel, we will always
employ the Lagrangian (8.1); by suppressing theden G, we obtain the results that
correspond to (7.1).
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The argument that led to (8.1) is not very convincing sibgdyeatinggx andfi on the
same plane, one must obtain the electromagnetic eqaats well as the gravitational
equations by means of the same Lagrangian. Anothertiobjeto the process that
consists of simply adding the two types of fields tcaobty is the enormous difference
between their values, as expressed in the usual ungsertieless, we shall study the
function, (8.1), because of its remarkable properties.

A first property is the following: the Hamiltonain thedrresponds ta/1+F -G* -
1 is exactly that same function, with theandG replaced with the dual invariarsand
Q (6.7). One easily finds that one has the relations:

1+F?-G* _ 1+Q?

8.2 =
(8.2 1+G? 1+ P - Q°

and G=Q

betweerF, G andP, Q, in which:

(8.3) H={J1+P-Q* - 1.

Likewise, the other fundamental functiobsandV, (6.14) and (6.15), resp., have
simple values:

U=yV1+D*+B?+S2 -1

(8.4)
V=Vi+E2+ H2+ S -1

in which S is the square of the Poynting vectseé(6.13)]:
(8.4a) F=(DxB)?=(ExH)2

Another interesting form for the theory was dise@d by Schrodinger [2]. It
employed the complex combinations:

(8.5) §=B-iD, &=E+iH,

which form a true six-component vector; one condirttmat the appropriate Lagrangian is
the following:

2 _ 22
(8.6) g'= 5 -6 ;

TS

its partial derivatives with respect #® and G are precisely equal to the complex
conjugates off and&:

oL’ oL
8.7 *=_"_ 03* = )
(8.7) 3 Py 03
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Schrodinger has proved these relations by a detaileg¢ stutorentz transformations.
He has shown that there exists a “normal’ Lorentztesy in which all of the four

vectors,§, &, §*, &*, are parallel at a given point; when one develops thetfieory in

this particular system, one may easily prove that itléntical to the one that is obtained
by means of the preceding complex representation.

The most remarkable property#fis its character as a rational function: it is diynp
the quotient of two invariants. Nevertheless, this athgeis purely formal; the square
root appears again when one wishes to perform a concretdatan. Schr dinger has
likewise drawn attention to the fact that this compiepresentation permits two types of
fields; the one, for which the two vectofs,and G are parallel in the normal Lorentz
system, and the other, for which the same vectorsaatigoarallel. There is no valid
argument that permits us to exclude the one or the ofttbese cases. Now, in the real
form of the theory, this difference corresponds topbssibility of taking the + sign or
the — sign under the radical; it therefore seemsahatmust admit the possibility of this
double sign in the original theory [3].

Madhava Rao [4] has undertaken a detailed comparisomheofformulas of
Schrodinger with the formulas of our theory.

P. Weiss [5] has proposed another complex form fortlikery that is essentially
new. He introduces the space vectBrs iE andD + iH, which do not collectively
define a six-component vector. He proves that the gobupthogonal transformations
of complexthree-dimensional vectors is isomorphic to the group asfsformations of
vectors with sixreal components (i.e., the antisymmetric second rank tensoisur-
dimensional space) that is induced by the Lorentz groupis theorem permits us to
present the entire theory in a perfectly symmetiah.

Weiss then criticized the Lagrangian (8.1), and proptseeplace it by the real part
of the following complex function of the invariarfisandG:

(8.8) J1+2(F +iG) - 1;

nevertheless, his arguments do not seem convincing to me.

The only reasonable proposal for the adoption of a gépenciple from which the
choice of Lagrangian must follow uniquely was made by Infé]dit demands that the
field components(B, E), present no singularities.

Consider a point-like charge with one of the Lagramgi§/.1) and (8.1), which
coincide in the electrostatic case, moreover. Isdh®o cases, the point at which the
charge is found is a singular point not only Byrwhich varies likee / r?, but also forE,
since all of the components Bfjump from -1 to +1 (in natural units for whith= 1),
when one traverses the singularity along a line. Tigudarity is inoffensive since it
does not alter the character of the energy that agnitude is finite. Nevertheless, it is
interesting to search for a Lagrangian for whichnd its first derivatives are everywhere
continuous, including the central point of a spherically rsatnic field.

Infeld has discovered a similar function by a systemstudy that | would like to
sketch out in what follows. He starts with the hypothésat the complete symmetry of
the theory, which is expressed by its character a#-diwsd theory, must allow us to use
a variational principle that simultaneously contaims two groups of self-dual tensors.
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He introduces an action functidnthat depends ofy(E, B) andp, (D,H), naturally by

the intermediary of the invarianEsandP (G = Q is excluded). Thé; must be derived
from potentials and thgy, from “anti-potentials,” in such a fashion that tleatisfy two
groups of integrability conditions:

af *kl B 0 apkl

8.9 =
(8.9) ox’ ox’

In turn, one restricts the generality of the fumefT(F, P) by imposing the condition
thatf,; andp® must be “canonically conjugate,” i.e., that ons:ha

w_ 0T _6T2fk|

(8.10) oY  oF ’
. K — oT _a_T Kl
op, OP

These relations must permit us to calculategthes functions of thé,.. Meanwhile, their

number is equal to 2 6 = 12, and, as a consequence, in order for tbeoe tompatible
it is necessary that satisfy certain conditions that are expressed by:

(8.11) Moty Mes9p=y.
oF 0P oF oP

The latter condition shows thaétis a homogenous function of degree zerb andP — in
other words, that it depends uniquely upon:

F
8.11a £=,[-—.
(8.11a) 5

A simple discussion of the characteristicsTof) leads to the following result: In

order forE to be continuous at a point wh@eziz, it must be of the form:
r

(8.12) T=-loge+1+e+ ...,

in which the terms that are indicated by dots darttigher powers oé.

When one neglects these terms, one obtains thelesthd(¢); the corresponding
Hamiltonian is:
(8.13) H = 1log(1 +P).

The Lagrangian has a more complicated form, buffdh@ula that relatepq andfy is
simple, and is expressed by meanP of F:
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-1+ 1+ 4F
(8.14) T I e

fu.
1+P 2F ¢

The sign of the radical must be chosen in suashidn that the continuity condition
for the field components is satisfied. The critipaints are defined by 1 +4= 0; at
these critical points - which form a surface, imgal —F attains its minimun¥ = -+,
and the radical disappears. In order to presesagnuity, the sign of the radical must be
changed when one traverses a surface-; . Sincepy - fi at a great distance from the
charges, we see that it must take the “plus” sigiihése regions; therefore, there exists a
surface-1 = F that surrounds a charge, in whose interior it nais¢ the “minus” sign.

This reasoning is confirmed by the result of acbadculation for the problem of an
isolated point-like charge. Instead of (8.13),wrée:

b? P
8.13% H=—Iog| 1+ — |;
012 ’ oof s F)

with P = D?, D, :iiz, one obtains:
4y

e X r e
8.15 E =———— X=—:r =, [— |.
(8.15) " am? 1+x° ( r’ 0 j

The surface, in whose interior the sign of thecalin (8.14) changes, is a sphere whose

X2

X4

2
radius is defined byg/b)? = (1 j =1, namelyx=1. The free charge density is:

(8.16) o=dvE=_° 4% .
4y (1+x7)

it is annulled forr = 0, and, for large it decreases like’, exactly as in the case of sec.
7. One may easily verify that the integrakobver all space is equal &
For the potential, one finds:

e (o Y
8.17 r) = -2 d
(8.17) PO = e 1oy
Its value forr = 0 is:
(8.18) #(0) =—= x2__e 1.11,
am, 4 4,

and, by virtue of (6.30), the energy is:
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e’ \/EIT:GZ

4m, 6 arm,

(8.19) Eo = 0.741.

The numerical coefficient is noticeably smaller tha7.16).

As one easily sees, there exists no solution to a-pkénmagnetic charge. This
theory therefore accounts for the empirical confiiorathat electricity and magnetism
are not interchangeable. This fact seems to constiteatmost serious argument in favor
of the continuity hypothesis df; indeed, since the singularity Bf may not be avoided,
the existence of a discontinuity # has no great importance, although it remains
inoffensive, i.e., it leaves energy finite.

9. The conditions for dynamic equilibrium[1]. — Now consider the problem of the
motion of a point-like charge under the action of aemal electromagnetic field.

Before we do that, we must explain what we mean byather lexpression — “external
electromagnetic field” — which necessitates cert&@nfecations in our nonlinear theory,
in which fields may no longer be superposed. It is obvibaswe intent “external field”
to mean the field at an infinite distance from a pdk& charge, which must be
considered as having been given. Naturally, this is pessibly if we are concerned
with doing an approximate calculation; indeed, if the partitioves with a variable
velocity, it will emit waves that will be functions tiie motion and which one may not
consider as having been given. Therefore, we are paihciponcerned with “quasi-
stationary” motions, here, for which one may negleetreaction that is produced by the
emission of waves.

We make no particular hypothesis concerning the Lagrangmienly admit that the
field, its energy, and momentum all have finite values

One may endlessly debate the question of whetheisthblishment of new equations
of motion does or does not demand new hypotheses. Inrsurafticle, Infeld and
myself treated this problem by appealing to a variationakppie; we have formulated
this principle in such a manner that the integral mustdi®@gsary for not only variations
of the field in space, but also for variations of therldlines of the charge.

Leaving aside the question of whether the mathematictioniethat have used is
correct or not, we continue to think that out viewpasnjustified, in principle, and that if
one wants to make it completely acceptable, only ahtslajteration is sufficient.
Feenberg [2] has raised the following objection: having mtdkiaet one may determine a
field for any arbitrary motion of the charge, he concludedfthis that the actual motion
must be fixed among all of the other possible ones by snednsupplementary
hypotheses. Pryce made remarks that were analogoues poeiceding ones. | think that
this objection falls short of the mark. In order towtthis, | would like to consider the
very simple example of a problem in the calculus ofatmms that has one trait in
common with ours, namely, the following probleto:find the shortest distance from a
point Pto a line L The common trait consists of the fact that orsy mot give the
position of the poin@Q of closest approach #®on the line; in our problem it corresponds
to the unknown motion of the charge.
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By varying the integral that gives the distance, onaiobt

1. A differential equation that expresses that the enxditanust be a straight line;
2. A boundary condition that expresses that the extremat be normal ta.

The viewpoint that was adopted by Feenberg leads us tachéggeboundary conditions
that follow from the variational problem. To give thetian of the charge is the same as
arbitrarily giving the angle by which the extremal musttbetlineL. For a given angle
- for example, 45— there exists a solution to the problem, namely, theedeR (fig. 2),
which is rectilinear (therefore, it satisfies thefeliéntial equation), and which cuts the
line L at 45. Nevertheless, it does not realize an extremumenintihial integral; indeed,
the length of any curve that is analogousQdfig. 2) (a straight line fronP to a
neighborhood of,, which it must intersect at an angle of¥ obviously smaller than
PR The lower limit of the length of all these cunisshe length of the perpendicular
PQ; this does not belong to the category of the precedinges since it does not dutat
45°. From this analysis, it results that the integra ha minimum when one imposes
this arbitrary condition. Such a minimum exists only the “natural’” boundary
conditions, which express that the angle Witimust be 99

In a similar fashion, the solution to the field eqoasi for an arbitrary motion of the
charge does not necessarily provide an extremum fagralte(or, more correctly, “does
not necessarily annul the first variation,” assumihgt tthe integral is not positive
definite). We must find what the natural boundary coowld are, and see whether they
correspond to a motion of the charge. If this is notcdse, then we must conveniently
modify the integral we start with and use the new boyndanditions.

In section 3, we calculated the variation on the bogndar an arbitrary four-
dimensional surface; we found, see (3.23), (3.24), andd3.kvat:

(9.1) a :js(aekaxk + B, ) du,
with
(9.2) X =%N,, B =p*N.

The surfaces in our problem is a tube of infinitely small sectithat surrounds the
world-line of a singularity (a singularity &f, sinceE may be continuougf. sec. 8). We
introduce parameters d®in the form of timety along the world-line, and two other
parameters (polar coordinates) that define thetipasof the surface element in two
dimensionsdo of an infinitesimal spheres in three-dimensional spadg = const.
Therefore, on the surface of sphere, one has:

o _o¢ ok, o
ot, ot, ot, ot,

and the definition (1.12) d¥; gives:

(93) Q\|1, No, N3) du=n dO'dto, N4, =0,
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in whichn is the unit vector that is directed along the nortmdahe sphers, anddois its
surface element.
We now introduce the vectors:
(94) X(XXl XYl XZ), Y(YXl YYl YZ)! Z(ZXl ZYl ZZ);
and the integrals are taken over the spbéamd indicated by a®):

(9.5) [ xndo =F, [ Yndo =F, [ zndo =F,

(9.6) J'o(.\ﬁx n)do =vy, J'O”Dnda =&, J'oSnda =f.
We may write (9.1) in ordinary vectorial notationthe form:
(9.7) a= —j(Far + f ot + ydu + £0g)dt,

in which F is the vector with components (9.5) andis the radius vector with
component, y, z. & and & are the variations of the world-line awd, o¢ are the
variations of the potentials on the world-line.

The natural boundary conditions are:

(9.8) F=0, f=0,
and
(9.9 y=0, e=0.

From the definition (9.6), one sees that (9.9) ifigmthe complete absence of charge and
current.

Therefore, a field that is determined by a poike-kcharge does not correspond to a
null first variation ofl. In fact, the integrdl does not permit the existence of any point-
like charge; for this to be the case, one mustecbrthe statement of the variational
principle by adding another integral to the prinetintegral, one which is taken over the

world-line of the singularity. Since the propené of the world-line islr =+1-Vv*dt,,
one will have:

(9.10) | :jsdx+ ej Ug, o .

In this expression, the constantepresents the charge of the singularity, ahé the
world-vector of velocity, which is related to thedmary vector by the relations:

(9.11) O W2 ) =— ut =
1-v?

The line integral may be likewise written:
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(9.12) [ug.dr = [(va+g)dt.

By varying a and ¢ in this new integral, one confirms that the natusaundary
conditions (9.9) must be replaced by the following:

(9.13) y-J'o(ﬁxn)dU:ev, £-J'o©ndaze,

whereas the first conditions (9.8), as well asfigld equations, do not change.

We must therefore consider (9.10) as the exaatesgpn of the integral that must be
varied; (9.13) expresses that the charge genethtesfield. (9.8) represents the
CYOnditions for dynamic equilibrium, which one masddice from the equations of motion
().

Obviously, we are making a new hypothesis whenadmit that (9.8) remains the
same as before and does not need to be modifiaés hypothesis amounts to admitting
thatthere does not exists a mass that is concentrated at a painthat any mass is of
electromagnetic origin, and, as such, is distridudeer the field that surrounds the
charge.

The discovery of the neutron (and the existendd@®heutrino, if it is confirmed) has
cast a shadow of doubt on the truth of this assiemptMeanwhile, the essential problem
for us is not the question of the electromagnetigim of mass, but that of the elimination
of the infinite masses that Maxwell's theory imglieWe estimate that this problem is
completely solved by the considerations that wéeussed in the preceding sections and
by the deduction of the laws of motion that we kbale. In the latter, all mass has an
electromagnetic origin; if a supplementary one texig will suffice to simply add it to
the latter. Personally, | believe that the conaafpthe mass representing the proper
energy of the field of a singularity will be preged, just as one must abandon the usual
electromagnetic theory in favor of a more satigfyone (for example, in favor of the
theory that is based on the hypothesis of the meytwhich was suggested by de Broglie
[4] and developed by Jordan and Kronig [5]).

Having arrived at this point, we must discuss thBuence of gravitation on
electromagnetic phenomena in more detail.

B. Hoffman [6] has solved the system of simultareeequations (3.5), (3.13), and
(3.15) of gravitation and electromagnetism in thsecof a spherically symmetric field
and with a functiorL of the form (7.1) or (8.1). The calculations &we long for us to
reproduce them here; we shall content ourselvegibyg the results, in which we shall
simplify certain important points, moreover. Ho#m included the cosmological term
in the equations for gravitation and assumed tliitence of magnetic poles that coincide

(") Pryce has proved that by choosing a dual variatior@atipte (6.8), and replacing the integrability
conditions (6.10) by:

apik o

E

in whichj* designates the charge-current vector density, one ebtafronly the same field equations (6.9),
but also the conditions (9.13) of dynamic equilibrium [3].
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with point-like electric charges; we ignore the teimshe equations that correspond to
these hypotheses.

One may show that there exists a system of coordinatehich the world-line element
has the following form:

(9.14) ds = Adf —A™ dr’ —r*(dé + sirf@dg?),

and in which the electromagnetic field of a point-likeuge is exactly the same as the
one that was given in section 7. This amounts to sayirigotha convenient choice of
coordinate system gravitation has absolutely no influencthe electromagnetic field of
a particle at rest. This result is not surprising ¥ eecalls that the field equations have
the form of the generalized Maxwell equatiort$. [sec. 5, (5.4)]in any coordinate
systemprovided that one considels,(B) as a tensor anc), $) as a tensorial density.

The magnitudé — viz., Einstein’s gravitational potential — is given by:
2
(9.15) A(r) =1—-=[mp +m(r)],
r
in whichmy is an integration constant, and:
(9.16) m(r) :4nI;Ur2dr :

represents the fraction of the electromagnetic gnévat is contained in the interior of a
sphere of radius, for the Lagrangian, (7.1), it is equal to:

2 r
(9.17) 471.[OrUr2dr :4ﬂ(ij i.[()?o W1+ x* = x*)dx,
rO

4

()

. . : . Lo m(r
and this expression is proportionalrtéor smallr; therefore, its contributior~—= to the
r

potentialA remains finite for — O.
For a null chargen(r) = 0, one has the well-knowds of Schwarzschild, witiA = 1

—ZTmO, which must be infinite for = 0. my represents the gravitational mass of the
uncharged sphere, which signifies that the geodesicpamfesthat are defined by the
precedingds coincide approximately with the trajectories of a yttht takes the form of
a point of massy that moves according to Newton’s law.

We now constrain the motion of the test particledgion such that the distance
from the center of our particle is large comparethtin this case, formula (9.15) tells us
that the charge of the particle contributes to the tawnal mass of a quantity

m(e) = m, which is equal to the total electromagnetic epdlat we have calleB, up
till now. The effective mass decreases exactlynablewton’s theory when the test
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particle approaches the center of the particle: theggraensity that is distributed over a
spherical shell contributes nothing to the gravitationabacit the points in its interior.
The postulate that the coefficiengg of the elementary world-interval all remain
finite, like the electromagnetic field leads to the conditiomy = 0. The mass is then of
strictly electromagnetic nature, but, at the same tibconstitutes the gravitational mass,
in the sense that was analyzed above.
The center of the patrticle is not a regular poingneifmy, = 0; indeed, the limit:

(9.18) lim @ :47{—6} L

-0 ar) r?’

is finite. The length of the circumference of radiughat is centered on the particle is
2 L
thus not equal to 2 but—Z; the geometry at the center of the particle is tloeeehon-

euclidean.

This inconvenience may be avoided by the use of the Hamaih (8.13) of Infeld, in
which the field is everywhere continuous. Infeld and hhaffin [7] have calculated the
field, which is simultaneously electromagnetic and gaaanal, to which it corresponds.
The result is the same as before: there exists aicabtedsystem in which the expression
for any spherically symmetric electrostatic field he tsame, whether in the presence of
gravitation or not; the world-interval has the form (9.Mith (9.15) and (9.16). If the
gravitational forces must be finite theg = 0, then they must likewise be continuous; the
value ofm(r) is:

_(eY11 o 2 1
(9.19) m(r) —47'[(5_[) EEJ.O[ ]x Iog(1+ X4jdx,

and tends to zero far —» 0. Therefore, A~ 1 forr - 0, and the geometry in the
neighborhood of the center is Euclidean.

We may summarize the results above by saying thatdbefirm our opinion that
gravitation adds nothing to the structure and cohesioreafexitary particles. Einstein’s
gravitational equations may be combined with the electgoetsc equations without
altering them. This result is very satisfying if ondle@s that Einstein’s theory has a
rather formal character since it simply adds the cureaterm to the electromagnetic
Lagrangian and does not explain the gravitational canstahis latter problem will find
its solution only much later on. The importance of Ems$ general invariance
postulate in the electromagnetic theory resides nohenlink that it establishes with
gravitation; rather, it appears in the consequencesvirat discussed in section 5.

1. The derivatives of the Lagrangian with respect togihare the components of the
energy tensor, which is consequently symmetric;

2. The derivatives of the potentials appear only in thesamtmetric combinations .
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10. Equations of motion [1].—The natural boundary conditions (9.8) give us the
possibility of integrating the conservation laws foeyy and momentum (5.14) over an
arbitrary three-dimensional domain without accounting foe tsingularities. By
integrating over all space, one obtains:

j Xnda+dGX =0,
o dt
(10.1)
[ sndo+3E =0,
o dt

in which the symbobo under thqr sign indicates a closed surface at infinity, and:

(10.2) G:'[de, E:jUdv,

are themomentunandtotal energyresp.

One may establish the equations in the case for wheckxternal field does not vary
appreciably over a distance that is large compared t@thes of the electron.

It suffices to treat the case in which the infinitudetlze total field reduces to a
constant field that represents thdernalfield in a neighborhood of the electron.

In all of what follows, we use a Lorentz systenerdfore, we no longer distinguish
between vectors and vector densities. It is convenietdkieD andB as independent
variables.

Let D, B® represent the constant “external” field, and D&, B® represent the
“interior” or proper field of the electron. One has:

(10.3) lim DY =0, lim B” = 0,

and the total field is: _ _
(10.4) D =D" + D@, B=B"+B®.

Define the field E®, H®, by:

(10.5) E© :(a_uj , H® :(a_uj ,
oD ). 0B .

in( \)/vhich the indee specifies that the variables in the functions @ered areD® and
B'®.

One may then separate this total fi&ldH into an exterior fieldE®, H®, and an
interior field E®, HY:

(10.6) E=E®+E®, H=H®+HO:
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theE®, HY depend not only upon tt®, B®, but one has, in any case:

lim E® =0, limH® = 0.

The interior field differs from the external onaly by a constant field; it therefore
satisfies the fundamental axioms. Moreover, isfat conditions (9.8) and (9.13) at the
point where one finds the charge since all of thdase integrals are annulled for a
constant field.

One finds that the Poynting vector is:

(10.7) S=59+ (D®xB® + (DY x B®) + 5V,
in whichS® = (D" x BY) is the internal Poynting vector asf is a constant that may be

ignored; indeed, it provides only a constant temrthe expression for the momentum and
this does not change (10.1). We therefore have:

(10.8) G=g" +(D<e> ij‘”dv) - (B<e> ij‘”dv) .

The derivative of energy with respect to time is:

dE_d Udv:j(a—UB+a—UDjdv
dt dt 0B dD
:'[(HB+ED)dv,

by virtue (6.14). By substituting (10.4) and ()0d@ne obtains:

dE _ CrYORM=ICT 0! (R () yEORH O
(10.9) E—J.(H BO +E@DO +HOB® +EDD O)gy,
Now define the internal energy by:
(10.10) EO =[dt[(H"BY +EVD")dv,

which depends on the motion of the charge andttexrel field. If the latter is wealk, it
tends to the equilibrium value:

(10.1@9) EV = j U (B®,DV)dv.

One may then write (10.9) and the derivative of.§)10wnith respect to time in the
following form:
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dE _ dE”
dt - dt
dG _ dg®
dt dt

+ H‘e).[B“)dv+E‘e)J'D“) dv,
(10.11)

+(D® x [BUdv) - (B® x [DaV).

Now calculate the surface integrals of (10.1). The dguesitinside thg( sign may be

developed iD®, B, orE®, H®, since the latter are very small compared to thereat
field over a surface of any sort that is situated seffity far away.
The components of the vectdrmay be writtendf. (5.12)]:

X,=H,B,+H,B,+ DE+ DE- U,
-H,B, - E,D,
_HXBZ_ EXDZ'

(10.12) X, =
X, =

We substitute (10.4) and (10.6) in these formulas, and ctetljie terms of second
order; by taking (6.1#) into account, one easily obtains:

(10.13) &n) = (X®n) + HP (8n) - EP (D"n)
+[B®x (nx HO)L, + [D© x (n x EV)],.

For S, by using the expressiok & H) one obtains:
(10.14) 6n) = (S%n) + EOHY x n) —~HOEY x n).
Now consider the equations of the internal field:

rotH" -b" =0, divD" =0,
rotEY + BO =0, divB® =0,

and integrate them over all space, to the exclusi@nsofhall sphere that has the charge at
its center. The values of the corresponding surfaiegyrals are given by (9.13); one
obtains:

I (nxHMdo = a/+J' DY dy I nDY = e
(10.15) " _ ® S

L(nXE"))daz —LB")dv, LnB“ do =0.

Now integrate (10.13) over a surface that is situatechfatity; the constant terms
contribute nothing, and we find, by accounting for (10.15), that:
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[ (xn)do =-4E® +(vxB"),]

1016 +(B‘e)><J'D“)dv) —(D‘e)XJ'B“)dv)
10.1 X X
L, (Sn)do = —evE®

—E‘e)jD‘i)dv— H(e)J‘B(i) dv

By substituting (10.11) and (10.16) in (10.1), aes that all of the terms that contain
volume integrals are pairwise equal and oppositd,cnsequently disappear. The final

result is:
(i)
dc™ _ e[E‘e) + (v X B‘e))]
(10.17) dt
| dE"
ar

These equations are thell-known equations of motion of the Lorentz theory of the
electronif one replace€®, G” with the corresponding values for stationary motisat
are given by (6.34). The system (10.17) remaingetiwless valid even if the motion
may not be considered as quasi-stationary; incése, one must correct the value SH¥
andE® in order to account for the emitted waves. Feembes calculated the higher-
order approximations and has shown that the caorederms of the first order
correspond to the well-known classical radiatioact®n exactly.

| have tried to generalize these formulas in amotdense, by assuming that the
particle possesses not only a point-like chargealso a magnetic (or electric) dipole [2].
The two corresponding moments are related to #ié biy formulas that are analogous to
the conditions (9.13), in which the radius vectppears inside the integrals taken over
infinitely small spheres considered, for example:

J'or(nD)dU: erg+p,

in whichro(t) is the radius vector of the singularity, gmds the electric moment. This
method provides us with the supplementary equatidnsotion that relate the angular
momentunM and the center of electric ener@yf the field to the dipole moments, p,
whether magnetic or electric:

dM_(i) = (B(e) X m) —(E(e) xp),
(10.18) d(ti)
G () (3 )

Kramers [3] has postulated the existence of tmeesaquations by taking a purely
descriptive viewpoint; he assumes, moreover, tatantisymmetric tensoM, PY) is
proportional to the tensom p), and he has proved that this hypothesis leadsi€o
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following result:if the particle at rest has a magnetic momend, amd a null electric

moment then the ratil\e/ln% of the magnetic moment to the angular momentum will be

equal to%, in which ng is the rest masghis value is twice the value of the analogous
0

ratio for the orbital motion of the electron. To hithjs result seemed to provide a

sufficient basis upon which to develop a classical thebtkie spinning electron.

It is not possible for me to discuss this last poareh Equations (10.18) are probably
correct, but the manner by which | have obtained them the nonlinear field theory is
not defensible. The reason is simptds impossible to choose and to employ arbitrary
types of singularities. In section 9, we saw that each singularity mussfatertain
“natural” boundary conditions, and not merely conditioth&t one may impose
arbitrarily.

For any field theory of the type considered, these ibond have the form (9.13), i.e.,
they are uniquely compatible with the existence of atgike charge. One may not
assume the existence of a supplementary point-like mbakctric, magnetic, or both)
without radically modifying the structure of the theoryieh consists of field equations.
The experimental proof of spin indicates that similandifications are becoming
necessary. Up to the present, | have made no attemittis direction because success
seems doubtful to me as long as one remains in thextaftene classical theory without
introducing quantum considerations.

Here, we shall stop this discussion of the classicaatinent of nonlinear
electrodynamics; we briefly recall the results:

It is possible to generalize Maxwell's equations in suahaaner as to render the
proper energy of a point-like charge finite. Neverthgldbere exists an infinitude of
possible generalizations that replace this conditiosh eaf which leads to another
“structure” for the electron and other numerical fastoBoth fundamental laws of the
classical theory of the electron, anmely, Maxwellguaions for the field that is
“external” to the electron, and the expression ferltbrentz force that is produced by an
external field are valid in any case [4]. Thereforenlim@ar electrodynamics does not
alter the essential characteristics of the old tkean any manner, while eliminating their
“black hole” - the infinite proper energy — and permittinge timtroduction of the
hypothesis of a purely electromagnetic mass. Nevedbgelt gives no indication of the
effective structure of the electron; the “black holg” therefore transformed into a
“question mark.”

The problem that is now posed is that of knowing whathermay respond to this by
using quantum theory.
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QUANTUM THEORY

11. Quantum dynamics of continuous media.— The *“quantization” of
electrodynamics is as old as quantum theory itselfeedd the idea of a quantum
appeared for the first time in Planck’s theory of rdig i.e., in the statistical theory of
electromagnetic waves.

Between 1900 and 1906, during the first developmental period ofugnaheory,
one could not precisely establish whether the quantunesmonded to a property of the
exchange of energy between matter and radiation orraatbastic of electromagnetic
radiation itself. The decisive step towards the sedgmpathesis was made by Einstein,
who gave an explanation for photoelectric phenomeaawias based on the concept of
light quanta,or photons,and ultimately provided arguments in favor of the exstenf
the latter that were derived from the analysis ef flactuations of the radiated energy.
The next step was made by Debye, who deduced Planck’s lforfram purely
electromagnetic arguments, while appealing to neithetreles nor atoms; his procedure
basically consists of a “quantization” of the methodwdych Rayleigh and Jeans found
their law of radiation. One develops the radiati@tdfin a Fourier series and considers
each of the terms as an oscillator that obeys Plarlekw for quanta. This method
constitutes the point of departure for all of the imgrmoents that were ultimately made
to the quantum theory of radiation; we shall confineselwes here to mentioning just one
of them.

Debye’s field quantization provided the value for the mesergy (Planck’s
formula), but did not account for the fluctuations af #mergy. Einstein showed that one
may calculate the fluctuations for an arbitrary systey means of a general formula of
statistical mechanics due to Gibbs, provided that one ktiosvexpression for the total
energy of the system as a function of temperaturbe 8pplication of this method to
Planck’s formula gives a result that is in flagramtcadiction to the one that is obtained
directly by means of the classical theory of lighthew term appears, which Einstein
interpreted as a proof of the existence of quanta oflous corpuscles.

This disaccord was eliminated by the discovery of quamheohanics. In our first
work on the mechanics of matrices, Heisenberg, Jordah,nayself [1] treated this
problem and found a formula that agrees with the stalstormula of Einstein. Later
on, Heisenberg [2] criticized the derivation of this falanbecause of an infinite term
that one encounters along the way, and showed how miisit be done to avoid it: it
suffices to assume that the cavity in which one cateslthe energy fluctuations has no
perfectly well defined boundary, but that it possesses aedegf uncertainty as to its
position in space. With this correction, which is intietpatrelated to general conditions
of uncertainty in quantum mechanics, one obtains a coenpéeord between the results
of statistical thermodynamics and those of the quanb@ary of waves.

A great step forward was made by Dirac, who systeniigtiagplied the rules of
guanta to the system of “radiation + material pastland obtained Einstein’s well
known formulas that give the probability of emissiord absorption of an atom in a
radiation field. These formulas are the quantum equivaddé the classical laws of
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emission and absorption that Planck used to begim wiey directly obey that formula
without encountering the obstacles that one did in tiggnal theory, which are based on
a mélange of classical and quantum conditions that ahctr@ach other, strictly

speaking.

In fact, Dirac’'s theory gives us much more, namelycomplete theory of the
emission, of absorption, dispersion, and diffusionightl by electrons or atoms (the
Rayleigh, Raman, and Compton effects), and finallfhefdeeper nature of the spectral
lines (Weisskopf, Wigner, Fermi). Meanwhile, this adibie theory [3], which
accounted for a very large number of phenomena, encedrtgerious obstacles. Dirac’s
method consisted of considering the binding forces betwesdtemand radiation to be
small perturbations of the uncoupled system of atom aald. fi The first application
provided reasonable results that were confirmed by expeasmieut the second one and
the approximations of higher order lead to divergentgnatle. They are related to the
number of different frequencies of a radiating fieldt thige present in a given frequency
interval, and are analogous to the infinite proper enefgis field. Nevertheless, the
analogy can go no further: whereas the energy at abszdud appears as a constant and
may be simply omitted, the higher-order infinites sesenitable.

The most general attempt to establish a quantum tledomave fields that was in
accord with the principle of relativistic invariance waade by Heisenberg and Pauli [4].
It consisted of a systematic generalization of tlassital theory that we discussed in
section 1, and contains the theory of Dirac, as a®lall the previous ones, as special
cases. It likewise provided an appropriate method for thatigation of nonlinear
electrodynamics; this quantization was carried out by dndeld myself in the case of a
pure radiation field [5], and by Pryce in the case dfifi¢hat contain point-like charges
[6].

The problem that interests us here is solely thabheflectromagnetic mass, and for
that problem all of the work that has been done gindg glightly satisfying results. The
nonlinear equations, which were accepted to be useful in mdhka classical proper
energy of an electron finite, have not succeeded inewtly the same objective in
guantum theory. In any case, it has been impossibleoi@ prhether this objective has
been achieved or not, since the equations are too coraglitatbe solved even in the
simplest case.

For this reason, | will not reproduce that theory hevhich is quite extensive,
moreover, but | will confine myself to brief indicat® concerning its principal
characteristics.

The application of the principles of quantum theorgtsystem depends, in the first
place, on the possibility of expressing its lawsha schema of Hamiltonian dynamics,
for which we know the rules that permit us to pass frantlassical law to the
corresponding quantum law.

The variational principle that we took as our point opatéure in section 1 is
therefore no longer useful.

In point mechanics one may replace the Lagrangiambthar fundamental function,
which is called the Hamiltonian and which represenésahergy of the material point
considered; meanwhile, in the dynamics of continuous ntbdi@ exists no simply and
unambiguous relation of the type that allowed us to ptboea manner that is analogous
to the preceding one. For example, in electrodynathe$unctionH that we have called
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the “Hamiltonian” does not represent either the figldrgy or the energy density at all.

If we would like to apply the usual quantization rules thenmust use the total energy
as the fundamental function, which is the space iategrthe 44 component of a second
rank tensor. This signifies that we are constrainedbBnd@on the symmetry in the
formulas with respect ta', %, X, X, as well as the use of tensor calculus. With these
conditions, relativistic invariance is no longer imnatdj and it must proved separately
(®). In the sequel, we therefore treat the coordimate t separately, and intend the
expression “a point” to mean a point ordinary three-dsimamal space:

(X", %) = (%, Y, 3.

Consider the continuous medium envisioned to be the lnia discontinuous
system. For this, divide three-dimensional space cetelyl into identical celld\x =
AXACAC, which we enumerate by three integérsly, 1. Replace any continuous
functionZ® by a discontinuous function that has the constanezil in the cell (3, I, 13).

a

The space derivatives = gzk
X

will be replaced by difference quotients:

AZ° — Zﬂl - Z’
AX* AX

in whichl + 1 represents the neighboring cell in the directiogk = 1, 2, 3).
Denote the derivative with respect to tigjebyz” . The integral (1.4) is replaced by
the sum:

(11.1) g= Zs( a 41 fij—z,gm

which is taken over these cells, and the funcfiois considered to be the Lagrangian of a
mechanical system that has #idor its variables. The moments are:

oL 0¢
(11-2) Pal = azf’ = afl' Ax= Pq| AX
in which

0L 0L
11.3 Py = ., Py= .
(11.3) “Tor Y o

z" appears not only in theterm of the sum (11.1), but also in the neighboting 1
terms; for this reason, one has:

() An invariant process that avoids these difficultiasl makes relativistic invariance obvious was given
by Weiss [7].
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i@f} _a£| _ 62, _ 6£| 1 —_
AX62|”_6Z' ¥4 [ 07 1+1 A X |

in the limit, Ax - O:

(11.4) 1 08 08 ) {aslj_ oL

m—— » — - = :
Aoz 97 L3.0%\ 07 ) o2

This formula shows that the process of differentiatihe discontinuous function
envisioned gives us, in the limit, “the functional detive,” which disappears in the
Euler equation of the continuous system (2.1).

The Lagrange equations of motion of (11.1), namely:

(11.5) EpaI —a—£=0,
dt 0z’

are likewise equivalent to the Euler equations, (2.1); mthdese may write them in the
form above when one takes (11.3) and (11.4) into account:

: d (og) og d
(11.6) AP W {azgj_az’ =2 558 L, =0

k=1,2,3 k=1, .4

We may now pass to the Hamiltonian form of dynamia$ @&fine the total energy, or
Hamiltonian, by:

(11.7) H=Yp.7 -€=2(REZ-2)Ax- [(Pz-9) d

The variation ofd is:
OH =) (p, 0% +£d p -08)A>,
|
in which:

oL oz" +6—L52f’.

52,:6[,
Z 07

Therefore, by virtue of (11.2) and (11.3):

OH = Z(—a—l;ézf’ + 70 F;jA X,
|

07
or.

OH oL OH
11.8 = =7,
( ) boYal o4l oP?
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By combining these equations with (11.6) one obtains themseal equations:

(11.9) yad :5—H, P =- oH
oP? oz

The previous argument proves that one may consider aingons medium as the
limiting case of a discontinuous system in all respecWith these conditions, the
guantization method is obviously the following:

From the mechanical viewpoint, we have the commutédion

, , h ,
11.10 A — A p =—39 5,

in which I,1" are the indices of two different cells. In relatifiil.10) we may pass
directly to the limitAx — 0O, since theyy are, by definition, proportional to the volurhg
of the cell pee (11.2)]. To do this, we first multiply (11.10) by a disdonbus
functionf,, which is constant in each cell and approaches a contiffuncton f(x', ,

x%) in the limit, in such a manner that:
> fubx [ fax.
T

By summing'over a spatial volumé' one obtains:

. . f, if lisinV',
2. filx Do g P :L.a_aﬁ | I I | -
ey AX AX 271 O iflisnotinV'.

In the limit, Ax — 0, one will have:
(11.11) [, fOODERX Z( 3

-f(@@(»}:i%{f(x) flisinV,
2m

0 if lisnotinV'.

in whichx represents a poing'( »?, x°), andx’ another.
It is convenient to describe formulas of this typen abbreviated form by using the
symbolic Dirac delta functiod, which is defined by:

b _|f(0) if x=0isin(a,b),
(11.12) j FJo(x) dx= {o if X =0is notin(a,b).

It follows that we may assume th&t-x) = Jx).
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We use the same symbgKk) to denote a three-dimensional function that is actuall
equal to product{x’) ) 4x°). By means of the bracket notation:

(11.13) FG-GF=[F, G],
one may write the commutation laws in the followingnf [8]:

(11.14) [P.(X), Z°(¥)] :zim_éfa( x- R .

These laws must be completed by the following ones, wdnelbvious:
(11.15) [2(%, Z(R]=0, [P,(%, B(X)]=0.

We remark that the time variabté = t always has the same value in all of the functions
that appear in (11.14) and (11.5).

By applying the following well known formulas of quantumechanics to the system
of cells envisioned, and passing to the limit, one obthm®quations of motion:

(11.16) 2,="[H,z2), B =2 (AP,

h h
One may directly show that these equations are fdynakntical to the Euler equations,
(2.1), of the classical theory. From this it theruftssthat there exists a first integral of
energy H = const., and corresponding first integrals that exptessconservation of
momentum (which ignore here, because we have coedidtiem no further in the
general classical theory of section 1). Finally, omey prove that if the commutation
conditions (11.14) and (11.15) are valid at a given inggahey will be likewise valid at
any other later instarnt

12. Quantum electrodynamics— We apply the preceding general theory to the
particular case of the electromagnetic field; the nawin functionsz” will be the
potentialsgy, and we must take to be a function of the field componefis= @k — @, -

A serious difficulty is presented when one wishe®tanfthe moments:

(12.1) P :a‘;—’g :(;’7’?.
4.k k
One finds:
(12.2) pe=0f 08 0% _pu__p k=1,2,3),

04, Of, of,

but also:
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(12.3) =95 _o
09,,

This relation, which expresses the fact that the nmbrokthe scalar potential is null,
corresponds to a remarkable degeneracy of the electrotaldragrangian, and leads to
considerable complications. They result from the faat (in classical theory) the three
space componenB, P,, P; must satisfy the relation:

k
(12.4) > op _ -divD =0,

k
k=1,2,3

and that, as a consequence, one may not directly applgdmmutation conditions
(11.14) and (11.15). Indeed, one will have:

[#c(X. 6, (x)] =0,
(12.4) [P*(9, P (X)]=0,

[PX(0. 4, (X)] =21m4k5< x= %).

Meanwhile, the latter gives:

P o] =0 g

The left-hand side is null, by virtue of (12.4), and tlghtdhand side is not. Therefore,
condition (12.4)- i.e., one of the Maxwell equations is in contradiction with the
commutation laws.

One may imagine several methods by which one may ahsidlifficulty. The most
reasonable one seems to be the one that advocatasdlof formulas (12.5) alone as a
heuristic means of discovering the true commutatiarditimns of the field components
[sec. 11; 4], which are not in contradiction with (12.4)wee shall prove in a moment.

By differentiating (12.5) with respect ¥y, z,one obtains:

[B.(X, B,(X)] =0,
[D.(%), D,(X)] =0,
(12.6) [D, (%), B,(X)] =0,

[D, (%), B,(X)] =-{ D3 B(R]= h 90

27 ox’

By forming the bracket of dild, one obtains:
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2 2
[B, (X, divD] = h_(a 0_0 5j=0;
2m\odyoz 0y
the contradiction has disappeared [1].
The variables that appear in the commutation condjtiGia6), are precisely the
components of the vectof3, B. This incites us to consider them as fundamental
variables instead of the potentiglsg. The opportunity to make this choice manifests

itself in the fact that the “natural” variables of ttw¢al energyE = j Udv (which is the

fundamental quantity of quantum theory) are preciselyvéetorsB and D; the other
vectorsE andH may be deduced by differentiation:

(22.7) E :a—U, H :a—U.

oD 0B

By systematically taking this viewpoint, Infeld and mydeli/e developed a coherent
theory of nonlinear quantum electrodynamics. True, éenliginning we had hoped to
likewise obtain the laws of motion for the charges.e., the singularities- in this
fashion; this hope vanished, like Mie’s hopes of constrgatirstrictly classical unitary
theory of the electromagnetic field. Later on, walsexamine the main point of this
particular problem in detail. For the moment, | wilktisketch quantum electrodynamics
in the absence of point-like charges, and then add $elmarvations about the manner
that seems to me to be the best for studying the gerasal

It is clear that one must renounce the complete stnmynbetween space and time
coordinates; it is nevertheless possible to write thetemsaof motion in the form of a
symmetric set by adding similar equations to (11.16) thater¢he space derivatives and
the total momentum.

ConsideD andB as operators that operate on a certain functiongmacisely, on a
functional), which we shall not write explicitly. ading done this, we adopt the
Heisenberg viewpoint, and not that of Schrodinger. I lHeisenberg picture, the
operators depend on the space and time variables, afahtlod variation in our case is
the following one.

Let F(D, B) be an arbitrary function of the field, and let:

(12.8) E :jUdv, G :dev,

be the energy and momentum of this field; the vamatfF in space and time is given
by:
(12.9) 6_F:2_m[E, Fl, 6_F:_2_m[GX, Fl,

ot h 0x h

Theselaws of motion when completed by the commutation conditions (12.6)tlaee
fundamental equations of the theory.
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The first question that one poses is that of whethersystem is invariant under
Lorentz transformations.

This will not be the case if one chooses the func{io, B) arbitrarily. We have
previously seen (sec. 6, pp. 192) that the invariance condgioime symmetry of the
energy tensor, which may be expressed by the followvogvector equations:

(12.10)
DxE =H xB.

{Sz Dx B=Ex H,

By replacinge andH with their expressions (12.7) in these relations, @tain six
partial differential equations fotJ(D, B) that constitute necessary and sufficient
conditions for the invariance of the system considlerény functionU that is derived
from an invariant Lagrangido(E, B) naturally satisfies these conditions (12.10).

The second question to examine is that of the invagiafidche commutation laws,
(12.6). This invariance was proved by Heisenberg and Palieicdse of Maxwell's
theory in their fundamental work, which was previouslgdit Infeld and myself gave a
general proof that was not, however, completely satiefy, but it has been since
improved by Infeld [2] and, independently, by Pryce [3]. Thehogthat was employed
consists of applying an infinitesimal Lorentz transfation to the anti-symmetric tensors
(E, B) and D, H), as well the variableg, y, z, tandx,y,Z,t{ that appear in the
commutation laws, and proving that the latter do not chaide actual calculations are
too complicated to be reproduced here.

Often, it is more convenient to replace the commutakdovs with formulas that
contain arbitrary functions in place of tldefunction. To accomplish this, Infeld and
myself proceeded in the following fashion:

Let F and G be arbitrary functions ofD and B; form the space

integralsj deandj Gdv, which are taken over an arbitrary domginOne has:

(12.11) Udedev} j{g';(m ggj Z—E(D ggj}d\
1 G e Cosi

in which = is the vectorial operategr—,i,i. By virtue of g, i = - [b, 4, the two
ox 0y 0z

right-hand sides of (12.11) must be identical, \Whiestricts the arbitrariness of the
admissible functions. They must be such, thairttegral:

(ES IR

is annulled when taken over the boundary of thealoivi



Chapter 11 74

One obtains the form (12.6) of the commutation lawsaking:

F=B,,..., G =Dy,
If one then takes:
F=B,,..., orDy, ...; G=UorS, S, S,

and if one accounts for (12.7), one obtains, by startiitg the equations of motion
(12.9):

(12.12) { B =—(OxE), D= (dOxH),

divB =0, divD =0,
for the entire set of field equations.
By taking:
F =duy, G=U,
one obtains:
U =-div(ExH) =-divS,
I.e., the law of conservation of energy in diffeiahform; in the same fashion, one may

prove the conservation of momentum.
The totalangular momenturof the field is defined by:

(12.13) M = j (r xS)dv,
and thecenter of energy by:
(12.14) 1(Eq +qE):erdv.

The corresponding commutation laws are the follguwin

MxM ="M
27
(12.15) q=[E,q] =GE™,
g=[Eq] =0,

and the other relations betwegnG, M are known, exactly as if they acted on material

points.
A well-known reason, when applied to the firstegfuations (12.15) gives us that the
proper values of the total kinetic moment are eitle +1, +2, £3, ..., or

ii,ig,iS
2 2

—,... (the unit isL_).
2 2m
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We have believed from the beginning — Infeld and myseliat it is possible to
explain spin by considering it to be a quantum state eftactromagnetic field with a
half-integer number; to this end, we defined an “inteknatic moment,” i.e., a moment
with respect to the center of eneigyhat presents certain properties that are analogous to
those of spin. Nevertheless, this identificatioarn®neous, as Pauli has remarked. Pryce
rigorously proved that that the electromagnetic angaolamentum has only integer
proper values even if one admits the existence of singega(without spin) [4].

This result clearly shows that it is impossible tplai the existence of particles by
means of nonlinear field theory without their expliairoduction, and without attributing
them to convenient spin variables.

The problem has been treated by Heisenberg and Pauhegratrticular case of a
Maxwell field (for whichU =1 (D? + B?)), and by Pryce for the case of the general field

theory [with U(D, B) arbitrary and subject to only the conditions of igistic
invariance] [3].

In this latter theory, the position of a singularisyrépresented by a radius ved§6t
with the componentg"”,&"£”; moreover, one attributes each of them to an “initrins
moment"1¢”, which isnot related to the velocity by the simple well-knowret&n that
contain sthe mass, since here one does not introduss foathe particles. Pryce
systematically described the commutation laws betwbese quantities and the field
components. We shall not dwell on these exceedingtypticated considerations here;
we content ourselves by indicating the final resultsciviare relatively simple.

Exactly as in the theory of uncharged fields, theme three groups of fundamental
laws:

1. The expressions for the energy and momentum:

E=[U(D,B)dv- a”n",

12.16
( ) G = [(DxB)dv+ Y nt”;

in these formulag™ (a{”,a{”,a'”)are a group of Dirac operators (3 matrices with 4
rows and 4 columns) that satisfy:
(M) (M) 4 (M (D —
(12.17) aa)” +aa,” =200 ..
2. The equations of motion for an arbitrary quarfity

(12.18) OF __ 2 e o a—F:—Z—”'[GX, Fl,
at h ox h

3. The commutation laws:
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h 00
10,%,8,001 =~ %,
[D,(3), 7] = —e( x- &7,
(1219) [ (n) n.(n)]_L -
2m
n n —_ h n
[, "] —z—mejé(x—f‘ N B( 3 dy -,

in addition, all of the quantities that were not memid commute with them. One may
show that the set of these equations is invariant trenmelativistic standpoint.
The energy operator of (12.16) has the form of the gnepgrator for a Dirac
electron, in which the mass term was replaced byribegg of the electromagnetic field.
One may now show that these laws generally conthiof ahe ones that must be
included, namely, Maxwell's equations with a point-likeade and corresponding
current, as expressed in termsodfinctions:

D=-rotH =eY o(x—&M)a™, diD =) d(x-&M),
(12.20) Z Z
B +rotE =0, divB = 0;

in turn, the well-known fact from Dirac’s theory thhe velocity of the particla is a™:
(12.21) £V =g,

and finally the Lorentz equations of motion in the fafiog form:
" = e[ 8(x=&M)[E +(&™ xB)] dv.

One may then show that the components of the mameGt commute withE, and thus
constitute first integrals of motion.
The total angular momentum becomes:

M =[(r xS)dv+ " «rt) +%%Zn:°(n) |

in whicha{” =a{” [@!", ... are the components of spin; from this, it follothatM is

likewise a first integral. The term that does oontain spin has integer proper values;
consequently, the total angular momentum behavastlgxas it must for a system of
particles that each possesses spin.

The main problem with this theory is that of thésgence of finite proper values for
the energy of an isolated particle, and their dattan. Nevertheless, no solution to this
problem has been obtained up till now.
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We do not know whether this theory, which is formalhe counterpart of the
classical non-linear field theory, does or does nettaio the quantum solution to the
problem of electromagnetic mass. Meanwhile, in any cabether one solves this
problem or not, the theory that we have presented herg mot be considered as
satisfactory, for the following reasons.

When one take® to have the Maxwell expressio%*’n(D2 + B?), one falls back to the

guantum electrodynamics of Heisenberg and Pauli, whichatenDirac’s theory of
radiation as a particular case. All of the infirtgems that make this theory unacceptable
appear again, and it does not seem that one may renienarby accounting for the
terms that are nonlinear ihandB.

The discovery of uncharged particles casts doubt on thé/mieetromagnetic origin
of mass. The hypothesis of the existence of pointdikmwles (or multipoles) is in
contradiction with the “natural’” boundary conditions,damonsequently, may not be
accepted, just as in the classical field theory. Tladlpm of a correct generalization of
the theory that makes the existence of these dipotesiltipoles) appear normally has
not been correctly studied.

The analysis of nuclear processes has revealed therexdsforces of a new type in
regions of the order of magnitude one “electron radis®e now know that forces of a
character that is unknown up till now appear betweenrsudrons or between a neutron
and a proton that are situated at a small distance &ach other. Fermi’'s theory Bf
disintegration introduced another, completely new, typé ioteraction that
simultaneously introduces four particles, a neutron, a py@o electron, and a neutrino.
We may not reasonably hope to obtain a correct valuthéoelectromagnetic mass if the
fundamental laws of nature are of a very differepetyrom the electromagnetic type in
precisely the region where all of the energy offihgicle is concentrated.

Pryce’s equations contain two constants: the elemeatarge and Planck’s constant
h. Now, we know that these two constants are notpieddent; they are related by

%:1—;7; this combination of constants, h, cis a dimensionless number: viz.,
Sommerfeld’s “fine structure constant.” It seemsyvimprobable that one may develop
a theory of particles that applies to only the &tat, while neglecting the existence of
heavier particles whose mass is 1840 times higlesatisfactory theory of elementary
particles must explain the values of the two dineriess numbers 137 and 1840.

We are very far from such a theory. Some attermptihis sense have points in
common with nonlinear field theory; we shall exaenttiem in the last section of this
work.

13. Dirac’s theory of the electron and nonlinear electrodynaios. — The quantum
theory of the electron permits us to attack thélenm of nonlinear electrodynamics in an
entirely new manner. The importance of the attengftDirac, Heisenberg, and their
collaborators resides in the fact that they weeefitist to theoretically justify the relation
that exists between the elementary charge and iPfapgonstant, in other words, the
value of the fine structure constant. In the seque shall rapidly sketch this theory.

The relativistic wave equation of an electronasivked from the classical equations of
motion, which, as we have seen, are a consequdrecaanlinear electrodynamical law
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that is defined by an arbitrary Lagrangian. These equatioag be written in the
following canonical form:

ow ow
13.1 r=—m, ==,
(13.1) o p o
with the Hamiltonian:
(13.2) W={(p-ed*+ng}:+ &,

in which a, ¢ are the vector and scalar potentials. By perifognthe derivations in
(13.1), one obtains:

P~ €a

J-ea)?+nf

X =

e

P =
J(p-ea)’ +nf

0 0 0 d
X{(px—ea()a—i”(@— e@)aiyu( p- eaa—a;}— %%,

From the first group of equations, one deduces that

2

13.3 —ea)’ +nf =0

(13.3) (p-ea)’ +nf =—

therefore:

(13.4) p= m + eg;
1-V?

with these values, the second group becomes:

dl mX _ |.0a  .0a da, 0¢
13. — =g % Y -, .
(13.5) dt(,/l_VZ +eaxj e{ 0X * 7 ox * o0X 0X

By using the relations between potentials and sietchmely,
E=-0¢ —-4q B =rota,

these equations are equivalent to:
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dl mv |_ (vx
(13.6) a(\/l__vz}e{E (vxB)},

in accordance with (10.17), (6.34).
Write (13.2) in the symmetric form:

(13.7) W-eg)*— (p—ea)® =ny.

One may employ this relation to make the wave rhed matter that was proposed
by Schrédinger agree with the principle of relativiby consideringWw andp to be
operators of the form:

(13.8) W=—"2 p=— . (hzij,

that operate on a wave functigix, vy, z, }.

One calls the wave equation that is thus obtathedequation of Klein and Gordon
[1]. This equation does not satisfy all of the @ibtions that are required by the statistical
interpretation of quantum mechanics [2]. One comdithat the probability density for
the presence of a particle is not positive defjrithe equation contains second derivatives
with respect to time, which is in contradiction vithe fundamental statistical postulate
that requires the functiory, to be completely determined by its initial valuésally,
this equation does not account for the spin ofebetron. These objections led Dirac to
replace it with his celebrated relativistic equatj8]:

(13.9) W-eg—-a(p—ea) -} ¢ =0,

in whicha(ay, oy, a,), b are four matrices with four rows and four coluntinat satisfy
the commutation laws:

aa,+taa, =0,

(13.%9)
a B+ pa, =0,

This equation is linear MV (i.e., of first order ind/df), and permits us to bring the
mechanical and magnetic properties of the spinpetfect accord with experiments.

The two equations (13.7) and (13.9) present thwegdefect of leading to negative
proper values for energy. For example, in the cdskbe absence of a field € 0, ¢ = 0)
one will have a solution by taking proportional to:

e%(Wt—pr )

whereW andp are constants that are related by:
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W —p® = n¢.

It is clear that for a givep, W may have two values that are equal and of opposité/gign

Now, this is precisely the defect that insures themfpin of this theory. Dirac
proposed to assume that all of the negative energyssaat¢eoccupied by electrons that
exist everywhere, but are not observed, in the hopeshbégtwould not contribute to
formation of observable electromagnetic fields. Amemal action may nevertheless
raise an electron from a negative energy state tdhansetate of positive energy, and thus
make it observable; at the same time, the “hole” h#tus created in the infinite set of
negative energy electrons becomes likewise obsenafdeexperiments must reveal it to
us in the form of a positively charged particle. Difast believed that these “holes”
must represent protons [4], despite the difficulty withs tidentification that was
presented by the fact that the mass of the proton is 184%3 fyreater than the mass of
the electron. Meanwhile, in this same epoch, Andediscovered the existence of
positive electrons in cosmic rays [5]; Dirac immeeiat recognized that these
experiments constituted a confirmation of his theory.

The fundamental idea is the following: in the universe gbleast, in the part that is
known), there exists a surplus of positive energy elesttbat constitute the external
envelope of the atoms. It may happen that as a r@saltcollision between electrons or
photons one of the negative energy electrons is aidofrieen its sleep and given a
positive energy: one then observes the appearancepafr ahat is composed of an
electron and a “positron.” A positron has a meartifife of short duration; indeed, it
may combine with any electron that it encounters albegaay and emit energyr8c?,
plus the kinetic energy of the two particles). Thsulieof this combination is light —
more preciselytwo photons — at least if one wants the principle of eoration of
momentum to be satisfied. In the language of theryhefd*holes,” this signifies that the
electron jumps into a place in the vacuum that is cupied by a negative energy
electron, and may no longer be observed.

This theory permits us to foresee, for example, ti@nmum value of a photon’s
energy Iif it is to give rise to a pair, or, on thentary, to make the annihilation of an
electron and a positron possible; this then permits usatculate the probability of
materialization and dematerialization under the cttalction of an external (nuclear)
field, etc.; the results are in amazing accord with expents [8].

The difficulties that this theory encounters stemmfrine fact that the unobservable
electrons are infinite in number, being found in the nggaé&inergy states, so they
themselves provide an infinite contribution to the valuéshe energy density, the
current, and the charge, and on first glance this canioibb is devoid of any physical
significance. Dirac himself [9], as well as Heisenbjd1@j, have proposed formal rules
for the elimination of these infinite terms. RedgntVeisskopf [11] has simplified these
rules considerably, and has shown that by startingesglentially physical postulates it is
possible to isolate, and in a unique and well-defined martmertly finite partial sums
that are susceptible to a physical interpretation amoaglitrergent sums that formally
represent the charge, current, energy, etc. In theeteve shall follow Weisskopf.
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We now arrive at the point where this theory joins uphwhat of nonlinear
electrodynamics.

From the standpoint of the observability of phenomémaproduction of pairs, or the
inverse process, has meaning in vacuo since the infinitudecifans that are found in
the negative energy states are unobservable. lués ttrat the appearance of these
processes depends on the presence of an external eleptatimdield; meanwhile, the
fields do not actually take part in the exchanges ofggnertheir presence, and play only
the role of catalysts, as we have already pointed out

The theory therefore demands that the phenomenasofg@lton or emission of light
in the presence of a constant external field must maganing in vacuo. Now, this
demand is in contradiction with the law of superpositiwhjch is derivable from the
linear Maxwell theory; indeed, according to that theorjight wave may traverse any
portion of space that is devoid of matter without obsioac independently of the
presence or absence of an arbitrary electromagndtiari¢his space.

We must therefore expect to find results that arteréint from the ones that the
Maxwell theory provides; the general characteristithese results may be glimpsed by
establishing an analogy with a similar situation thated wnown in the theory of atoms.
Consider a light wave that traverses a substance waimsas are all found in the
fundamental state. |If the spectrum of the light waentains a frequency that
corresponds to the difference in energy between aneexstiate and the fundamental
state of the atom then this frequency will be absorimeldtlae atom excited. If the light
does not contain frequencies that are sufficientlyatés to excite it to the first excited
state of the atom then there will be no absorptiogenwhile, this does not signify in any
sense that the substance in question exerts no adtuahce on light wave that traverses
it. The atom is polarized by the light at its propeqgdrency; there is diffusion and, in
turn, the interference of diffused waves, dispersam,effect which may be likewise
described by attributing a dielectric constant that istgredan one to the substance
traversed.

Now, in the relativistic theory of the electronetiiacuum behaves in a fashion that is
analogous to that of the preceding hypothetical substandeged, in this theory, the
“vacuum” is not absolutely devoid of matter, sincesjton the contrary, replaced by an
infinite number of electrons in stationary statesnely, each of them are in the lowest
possible state that permits the Pauli exclusion priacipA light wave of sufficient
energy (> Mc?) may be absorbed by the passage of an electron irtacited state of
positive energy. Nonetheless, if the energy is suticient for the production of a
similar jump then the light wave will diffuse, in estly the same manner as the one that
were analyzed above. This process may likewise beibdedais a virtual double jump,
there and back, between the fundamental state andxtide state. The general
electronic configuration of the vacuum does not change,there is no production of
pair; nevertheless, the vacuum acquires an additionagyerd polarization that is a
function of the field of the luminous wave.

Heisenberg and his collaborators, Euler and Kockel [12]e ldeveloped this theory
under the hypothesis of a very slight variation of éxéernal field in space and time
(field of the luminous wave); to be precise, under the thgms that any componeht
satisfies the following conditions:
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h h  OF
— | grad F k| F |, — | ——KI[F |,
clg <IF | C|at|<| |

in whichc is the velocity of lightJ).

We assume the same hypotheses, and, moreover, weeadisainthe density of
radiation is small enough that there are no potenif&drdnces that are higher than
2mec?; with these conditions, we may reasonably assuntethieae is no production of
pairs.

Another simplifying hypothesis is the one that coni$tseglecting the interaction of
the electrons in vacuo. In reality, it is impossitueseparate this “internal” field from the
external electromagnetic field of the light wavejcsly speaking, one must therefore
consider the method that we use to be analogous todti®dof the self-consistent field
that was used by Hartree [13] to calculate the electrorids in the atom; one knows
that in this manner of proceeding every electron ide¢teaeparately under the action of
the field, which is the sum of the external field anel tiean field that is produced by the
other electrons. A more exact analysis of the questiast make use of the method of
second quantization of the electronic waves; this véllentheless be too complicated,
and will make another type of divergent process appeaisticampletely foreign to the
problem that we consider.

We shall perform the calculations for the casehefDirac electron. Nevertheless, it
is remarkable to confirm that the same theory may beldped for an electron that
satisfies the Klein-Gordon equation, the differencendgpehat the statistics that the
electrons must obey will be that of Dirac-Fermi ie fitst case and Bose-Einstein in the
second. Pauli and Weisskopf [14] have shown that arsitedory of the electron without
spin, which is based on the Klein-Gordon equation, ifeply possible, and Weisskopf
applied that to the problem of the polarization of thewm; in fact, this latter effect
depends only upon the existence of negative energy stategdias nothing to do with
spin. Nevertheless, since the electron actually gssesespin, the preceding scalar theory
has the character of a very abstract theoreticaéldpment that is much too far from
reality.

14. Theory of holes and polarization of the vacuum- We assume that the total
energy density of the vacuum is composed of two parts:
(14.1) U=u+U’;
the first oneU° represents the Maxwell density (in electrostati¢s)ni

(14.2) U%=1(E*+B?),

and the second ohE is the contribution of the “vacuum electrons:”

() In what follows, we shall no longer set 1, in order to show precisely the manner by which the
various constants dependan
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(14.3) u'=>u.
The contribution a single electron is given by:
(14.4) U/ =@ wy ),
in which w is the internal energy of the electron agdis the proper function that

describes the state in which it is found; the scaladyet of the two functiong/ and ¢
simply signifies that one forms the sum over the spdex:

(14.5) @)=y e".

If the electron has no spin, we will have:

w=_C _\w ey

2

in whichW is the total energy, or Hamiltonian, which is given(b$.2).

For an electron without spin, we must use (13.9) awste (13.2). We introduce the
velocity of lightc and notate the charge, which is negative, l@y(e-> 0), instead 0§
we will have:

(14.6) w=W +eg =a(cp +ea) + A
¢ will be a proper function of the operat so:
(24.7) Wi =W ;

W is the corresponding proper value. The sum (14.3) iposed of a part that gives the
total energW, a part that we designate by:

(14.8) U=>W@.¢),

and the second part has its origin in the tegmand is equal to:

(14.9) > @.eh4).

This last part may be reduced to another one deaends od . Indeed, if we
integrate (4, eg () over all space then we obtain the diagonal elé@gn On the other
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hand, if we replacep with Ag, and writeW = Wy — Aeg, then we will haveleg; =
ow,
-A—".
04
We now solve the wave equation in the case of a aonslectric fieldE; we may
then equate the value of the latter with the parametdr Consequently, the integral of

the expression (14.9) over all space—lﬁ%, and this expression must likewise be

valid for the densities whenever the external fieldoisstant. We therefore have:

(14.10) U':U—Ed—u.
dE

The calculation ofU' is therefore effected in the following manner: we first
determine the negative proper valvgsand the corresponding proper functiasdor an

electron. Then, we form the dendityf (14.8) by taking the sum over all the negative
states, and finally, we perform the indicated operatiqi4.10).

The calculation may be simplified even more if oakes the case of a particular
external field; since the final result must enjoy nelstic invariance, we may easily pass
from the this particular case to the general case affatrary field by applying a Lorentz
transformation.

Heisenberg and Euler have chosen the particular dageconstant magnetic field
superposed with a constant electric field that is paredlehe latter. This hypothesis
gives rise to certain difficulties; indeed, in a constield that is as small one desires
there exist considerable potential difference betweentgpdhat are situated at great
distance from each other. On the other hand, the-kmeilvn “Klein paradox” [1]
requires that any potential difference that is gretitan 2Zn,c> may give rise to a pair,
i.e., may provoke the jump from an electron in a nggagtate to one in a positive state.
Now, we would like to completely exclude the case of pasdpction. To avoid this
difficulty, Weisskopf took an electric field that is pleato a magnetic field and slightly
periodic in space, with the potential:

g, g,
(14.12) p=¢.e" +gp,eh .

Then, he proceeds in the following manner: He firstesothe Dirac equation under
the hypothesis that only the magnetic fi@ld= (Bx, 0, 0) exists. This problem may be
treated rigorously. It is characterized by the possibitf separating the partial
differential equation into three other terms that aonbnly one of the three independent
variablesx, y, z two of them have a continuous spectrum, and the thied las a
discontinuous spectrum of the type of the harmonic lasail This corresponds to the
fact that in classical theory, the motion of arcefen in a magnetic field gives rise to a
helix. The proper functions are given by:
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o7h —j H,(7),

(14.12) W= a(p,) eg[(xwzww R (2:2

in which 77 is a linear function of andb is proportional to the magnetic field:

2h b 2eh
14.13 =l y+— — and b=—B.
( ) n (y b pzj~/2h2 o

Hn(n) is then™ proper function of the harmonic oscillator, noripadl to unity. a(py) is a
“spinor” with two components. The negative eneigygiven by:

1-o0

(14.14) Wh(px) :—c\/ i+ ngc+ mTj ,

in which ois another spinor that has the proper values,néll-4, that correspond to the
two possible positions of the electron spin.
One substitutes (14.12) and (14.14) into (14®)e sum must be taken over 0, 1,
., 0= +1,-1, and over the continuous domainpf p,, ranging from-oto+c. The
relation (14.13) shows that when one integrates pye¢he variabley disappears; the
result is (writingp instead ofpy):

(14.15) (8]72;_1 jgzlz;)j W,(p) dp.
Set:
x:b(n+1_aj.
2

xis null forn = 0, o= 1, but takes theamevalueb, 2b, 3b, ..., for two combinations oh
andg; for examplex=2bforn=2,s=1, aswell as fon=1,0=-1. We thus have:

(14.16) z > W, = F(0)+ 22 F(nb),

o=-1n=0

in which:

(14.17) F(X) = -c\[p° + nE G + x.

It is clear that the sum (14.16) is divergent;aréweless, one may transform it in such
a manner that the physical significance of the jgat terms is obvious; if we apply the
MacLaurin-Euler summation formula, this gives:
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(14.18) F(0)+ ZiF (nb):%{j F(x)dx+z (- 1) (;k()l B¢ g2k (0)}

since all of the derivatives®(x) of F(x), namely:

3
2

(14.19) ﬂhr‘(p+ﬁ&+»% FWm-(p+ﬁ&+»

is annulled whex — oo. By is the Bernoulli number of rark

By substituting (14.18) into (14.15), one obtains energy density of the vacuum
electrons in a magnetic fiell expressed by means of a power series in a qudntiitst
is proportional tdB.

We isolate the only part off that can have a physical significance; Weisskopf
characterized it by the following conditions:

1. The energy density of the electrons must be amhwleng with the field.

This signifies that the zeroth-order term in thevedepment (14.15), has no physical
significance; now, this is precisely the term tbatains the divergent integral I6¢x).

2. The vacuum polarizability must be annulled, jusitas in the case of the absence
of a field.

By “vacuum polarizability” we mean the factar that measures the degree of
disagreement with Maxwell’s theory in the equation:

H=Y -5+ _g1+a)
0B 0B

a is a function oB, and our postulate consists of saying that trer@iconstant term in

!

the development of this function in powers & |. In this case%%: aB contains no

term of first order itJ , nor a term of second order iB |.
We must therefore eliminate the terkvs 1 in (14.18) that give rise to termskhin

U. Indeed, the integral of these terms gueliverges, as one may see by analyzing the
behavior ofFY(x) in (14.19). The terms of higher order give tiseonvergent integrals,

as one sees in (14.18); we are thus led to thewiolh finite expression fdJ :

7O = 2k (2k-1)
(14.19) U ﬂzh?’z( )(2k)|b j FYdp

- p2e 108 (4K = 5) e dp
) 4n2h3z( )(2k)' !

4k-3 "

T (p ) 7
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This power series may be expressed with the aid of hyleramtangents by the
following formula:

3
(14.20) go=-_1 mfcz[ﬂj

=dn _, n? o2
=—— — e’ Bncoth(y’B)— 1- B |;
8 h JO n® { 7eothis) 3

93 is the magnetic field compared to the criticaldfil;:

B
(14.21) B=—;
by
the critical field is given by:
2 2
(14.22) b =MC _p, € - B

en ~ °hc 137

in whichbg is the Coulomb field of the chargeat a distance that is equal to the electron
radius:
(14.23) bo ==, me? = =

r0

2
r0

Now calculate the contribution of the electric ldiethat is given by (14.11).
Weisskopf proceeded in two stages. First, he asduhat the field is sufficiently small
that one may apply the ordinary perturbational methvhich thus gives the first terms in
the development into a power seriesBnthen, he determined the general law of the
desired law by considering its relativistic invaiia.

We content ourselves by discussing the essertimiacteristics of this method of

calculation without reproducing the details. Thems in the second approximatioff
toU , which are due to the electric potentialare proportional to:

9%, _1=
raa L

in whichg/# is the frequency that appears in (14.11), andhichvthe bar signifies that
one takes the mean over all space. (14.10) th@nssthat:

- — @
(14.24) U’:U‘°)+U(2’—E—d(L;E =U°-u®,
The calculation gives:
3
1 mec) 1 ,p=dn _
@ — Rl el A _
(14.25) U _Snzmocz( . j 3¢ jo o e’[Dcoth(7®)-1],

in which:
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(14.26) ¢=—.

Now write the first terms of the development of@nms of® and¢& that is deduced
from (14.20) and (14.25), namely:

jooo L (M) ey Ao
U= 360772%(:2[ h j (9 R j
(14.27) .
@-_ 1 my,c 2532 _ 4q ...
U 360nzmoc2(hj(5@.© 2D+,

These formulas are valid for fields, B that are parallel to each other; one may
generalize to arbitrary fields by means of the followangument.

As we know, from section 4, that the energy dentitynay not be an arbitrary
function ofE, B (or of D, H), the postulate of relativity imposes certain coodii that
are not, moreover, very simple. On the other harelkmow that one may choose the
LagrangiarL arbitrarily as a function of the elementary invariggts- B> andEB; when
one is giverL, one obtain®&J by means of the equation:

(14.28) U=ep-L=e%_L.
oE
Let:
(14.29) L=L"+L"%

be the development &f in which:

1
LO == E2 _ BZ ,
(14.30) 8( )
L' =a(E? - B?)*+ B(EB)*+¢{(E*~ B) *+{(E*~ B)(EB) * -
By starting with (14.28), one obtains:

(14.31) U' = a(E? - BY)(3E? + B + AEB)?
+ E* —BY)(5E? + B?) + (EB)*(3E*=B?) + ...

It suffices to compare (14.27) and (14.31) to abthe values o&,5, ¢, ¢, ...:
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1 mcY 1 1 ern _ 1 hcl
a mOC2 PV 2 47 27 2 14
3607 n) bl 3607° mic 36@r’ € I
L=Ta,
(14.32) _ 1 Cz(m)cjsﬂ'_l: 1 p® _ 1 (@T_l
360772m0 ho)7h 3607 mPc®  36@r’\ &) K
13
{= 25-

Some analogous invariance considerations may igewe employed to determine
the terms ofJ' that are of higher order B The fact that. depends only o&? — B and
(E-B), signifies, for example, that there exists a nucaé relationship between the
coefficientsE* andB*.

If one designates the real and imaginary partd bl RA andIA, respectively, the
final result may be written:

,_ b &, dp
14.33 L' = e’
( ) 8 hcj0 n®
cosr7R{\/€2 -D2+ A ED }
cosjl {Jez -2+ 2 €D

2
x| in(€ED) +1+%(@2—©2) .

This expression was discovered by Heisenberg atet 2] with the aid of a method
that was much more complicated than the precedieg which may be described as a
theory of the “diffusion of light by light.”

We therefore see that the theory of “holes” leasi$o a well-defined Lagrangian for
the electromagnetic field. We are now confrontetth whe task of comparing the various
Lagrangians that have introduced in the precededian with the aim of making it
possible for mass to be assimilated by the elecgmetic energy of a point-like charge.

This latter concept is obviously | contradictioittwthe theory that we just developed
and in which the mass of the electron is a fundaateonstant of the wave equation that
constituted our point of departure. We may theeefoope to find a complete accord
between the results of the two theories, even dytlare dissimilar in their basic
hypotheses; nevertheless, there is reason to iséesaif they may be made to coincide
in the domain in which both of them do not diffeotmuch from a common viewpoint,
namely, in the domain of Maxwell's equations.

We will thus have to compare the development (4vdth that of a Lagrangian of a
type that was studied in the preceding sections.w@ have seen, there is a considerable
ambiguity in the choice of that Hamiltonian, but weay reasonably hope that the
coefficients of the developments of all the funesialo not differ much from each other.
With these conditions, take the function that weehstudying all along.
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2 2 _ 2
(14.34) L :Z—{l—\/H & o = (Bb‘lE)}: Lo+ L+ L,
7T

which we write with the — sign in electrostatic units,order to be in accord with thee
formulas of Weisskopf. The developments give:

LO :8_]]'T(E2 _ BZ),

p=_1
32mb?

(14.35)

[(E*-B%)*+4(EB)?].

The comparison with (14.30) gives:

1
327?

(14.36) a=

One already confirms that there is a divergence lmtwhe two theories: In the
“hole” theory, one hag: 7 (formula 14.32), and in this one one hgz 4.
a a

Nevertheless, if we press on and we postulate the tgarftithe a coefficients in both
theories then we may write the relation:

he _ 45

(14.37) e

On the other handy is related to the “electronic radius” lhy:E2 andr, to the
r0
2

proper mass bync? == 1.2361, in such a way that:
rO

(14.38) b= © B

&2 2~ (1.2361f
1.2361
{mocz j

By substituting in (14.37), one finds that:

h_;: _ 457(1.2361) _ o,
e 4

This result, which is due to Euler and Kockel [8]pf considerable interest. It shows
that by postulating the identity of the departuresn Maxwell's equations with terms in
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developments that are obtained, on the one hand, by maé#res quantum theory of the
vacuum, and, on the other, the classical theory oéletromagnetic mass, one is led to
a relation between charge and the Planck constant; her avords, one obtains a
numerical value for the fine structure constant. Tvatue is very weak, and the

experimental value %: 1.67 times greater [4]; nevertheless, the order of radmis

correct and the process of calculation shows howreemsionless number of that order
may be presented in the form of a combination of othetofs, such as the factors 45,
etc., in (14.38), for example.

This reasoning constitutes the first known indicatiora aheoretical explanation for
the “mysterious” number 137, if we leave aside the sp&ioms of Eddington to the

n*(n® +1)

effect that this number will be an integer given byftrenula: +1, forn=4.

We now establish a comparison between the tworiggedor higher values of the
field.

We remark that, in the first place, the “charaster field” b; is much smaller than
the absolute field of the unitary theory; indeednf (14.22) and (14.38), one has:

(14.40) b = % = (1.2361] b :E.

137 137 9C

Then, we observe that for large value&dhe higher-order terms in the development
of the expression (14.33) become:

2
€ g Iog—E

14.41 g
( ) L 241 he b

(and a similar expression for large valueBdf The ration between this additional term

and the corresponding teﬁﬁcr E? in Maxwell's theory is:
T

1 2

(14.42) Lo L% g ==L jog =,
L 3mrhc "k 1290 T h

This result proves that the nonlinear terms theg theory of holes introduces
constitute only weak corrections to the Maxwelldig even for very strong fields. A
Lagrangian of the type (14.33) is therefore of nblity for the problem of
electromagnetic mass. This negative result musbasurprising; indeed, it suffices for
us to recall that the origin of that Lagrangiarthe wave equation of the electron, and
that this equation already contains the mass asaodiéicient of an essential term.
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15. Final remarks. — The preceding monograph examined only one facet of the
general problem of adapting physical theories to the teesdl modern experimental
discoveries. Nonlinear electrodynamics may be congidaseasuperstructurefor the
classical Maxwell theory; meanwhile, there existsirnastructure whose role is to
reduce Maxwell's laws to a simpler set of equatiorspdke of the theory of light that is
based on the hypothesis of the neutrino, such as wagineda by de Broglie and
completed Jordan and Kronig. At this point in time, wey maly guess which of these
concepts will be victorious in the end, and we may not kadwther they are finally
absorbed by another concept that embraces both of tkiame. thing seems certain: the
fact that it fails to give us a general principle thegulates phenomena at the nuclear
level. Theoretician need to follow experimental egsh attentively and to analyze their
results with care, in the hopes of finding a clue camogrthe nature of this unknown
principle. The object of this monograph was preciselgite a similar analysis of the
actual state of electrodynamics.
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