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INTRODUCTION 

 
The natural development of any scientific research is characterized by an intimate 
collaboration between experiment and theory.  In certain epochs, theory takes the lead 
and may foreshadow new and unknown effects; we have seen an extraordinary example 
of such a foreshadowing, by de Broglie, of the wavelike character of electronic motion.  
On the contrary, in other epochs − like the present one, for example − the discoveries of 
new facts achieve such a rhythm that theory lags the experimental developments quite 
considerably.  Nevertheless, one may say that the observation of facts and their 
interpretations are always on a par. 
 The theory that I shall discuss here does not have the character that one would call 
normal.  It sometimes happens that a well-established experimental fact remains 
unexplained for a long time, and completely isolated from other known observations.  A 
celebrated example is provided for us by the phenomenon - which was already known by 
Newton – of the equality between mass (a measure of inertia) and weight (a measure of 
gravitation); in other words, by the confirmation that all bodies fall with the same 
acceleration in a vacuum.  The researchers who usually employed this fact forgot this, 
and regarded it as an unsolved problem; 200 years passed before Einstein began to 
wonder about it again, and discovered, in a theory which has grown lengthy and 
commonplace, the foundations of the theory of general relativity. 
 The situation that we are placed in here is not that different from the preceding one, in 
the sense that the problem that we are concerned with is neither too old nor completely 
forgotten; nevertheless, 50 years have already passed since I first posed it.  The problem 
is that of the difficulties that are raised by the existence of an infinite proper energy for 
point-like electric charges. 
 J. J. Thomson, who was the first to discover the existence of free electrons and 
measure their specific charge, has likewise proposed the fundamental hypothesis that 
their mass is of electromagnetic origin.  I will cite a phrase from an autobiography that 
was recently published [1] (1), in which he described his first researches (1891) on the 
consequences of Maxwell’s theory: 
 

                                                
 (1) The numbers between brackets ,[ ], refer to the bibliography that one finds at the end of this work. 
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“If one adopts the hypothesis of an electric constitution for matter then it is permissible to 
assume that mass has an electric origin, and that, as a consequence, it does not arise in the 
atoms themselves, but in the space that surrounds their charges.” 
 
 J. J. Thomson admits that this “space surrounding a charge e” is the space that is 
external to a small sphere of radius, a, and proves that the mass that is actually calculated 
must be proportional to the electrostatic energy, which is e2/a.  This expression must be 
infinite as a τ 0; the idea of a mass of electromagnetic origin therefore necessarily leads 
to speculations concerning the structure of the electron.  This problem did not receive a 
satisfactory solution during the “classical” period of physics, and has not disappeared 
even with the creation of the modern theory of quanta.  At the present time, it constitutes 
a “black hole” in our theoretical description of natural phenomena, and it is only a 
meager consolation that in the course of time other black holes have likewise obscured 
our horizon. 
 The latter difficulties have their origin in the discovery of new elementary particles, 
which were unknown up till now and made the electron give up its privileged position as 
a unique fundamental particle. 
 At present, there exists several particles: the electron, the positron, the proton, the 
neutron, and probably the neutrino, and we are certain that any correct theory of these 
particles must embrace the whole set and not just be content to describe them one at a 
time; indeed, one already knows a certain number of phenomena in which these particles 
are produced or destroyed, or ultimately transformed into each other. 
 Nonlinear field theory is a residue of the epoch during which the electron was 
considered to be the premier element of physics.  It provides an elegant form solution to 
the problem of the infinite proper energy and the electromagnetic mass; in truth, this 
solution came much too late.  The existence of the neutron clearly shows that mass is not 
indissolubly linked with charge.  At the same time, experimental research concerning 
nuclear phenomena has shown the existence of forces between particles – charged or not 
– whose nature is completely different from that of electromagnetic forces.  Moreover, it 
has not been possible to realize a complete agreement between nonlinear electrodynamics 
and the principle of quantum theory.  Finally, we have not succeeded in ridding ourselves 
of the infinite terms that are characteristic of quantum field theory. 
 Despite these objections, I permit myself to develop this theory for your 
consideration, and for the following reasons: in the history of scientific research, one 
confirms, in a completely general fashion, that often one of the reasons for progress in a 
given direction is the radical elimination of all parasitic hypotheses that are hidden in the 
theory.  The linear electrodynamics of Maxwell contains such parasitic hypotheses.  They 
are not only useless, but also give rise to considerable difficulties, particularly as far as 
proper energy is concerned. 
 Now, it is possible to develop a general theory that avoids these difficulties.  
Similarly, if this theory does not immediately solve the grand problem of elementary 
particles then it nevertheless merits the distinction of providing the means to grasp the 
essential points; one already confirms the existence of a certain number of connecting 
points that link nonlinear electrodynamics with the considerations of a completely 
different genre, like Dirac’s theory of positrons, for example.  Last, but not least, the 
generalized field theory forms a harmonious mathematical edifice, whose great beauty 
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might constitute a point of interest for those who appreciate the elegance of analytical 
methods. 
 For this last reason, the mode of exposition that is adopted here will have a very 
pronounced mathematical character.  I will begin with some considerations concerning 
the principles of variation that apply to the motion of continuous media, and then pass to 
the general case, in which I conclude with the case of the electromagnetic field (2)

                                                
 (2) For this exposition, I have made ample usage of the thesis that was presented to Cambridge Univeristy 
by my old student and collaborator, M. P. Weiss, whose has completely studied the mathematical basis for 
the field theory in the context of the calculus of variations and functional calculus; part of this thesis was 
published in [2]. 



CHAPTER I. 
 

CLASSICAL THEORY. 
 
 1.  Variational principle for a continuous medium [1]. – Consider an n-
dimensional space, with coordinates x1, x2, …, xn. 
 We define a closed n−1-dimensional hypersurface S in this space, by means of the 
equations: 
(1.1)    xi = xi(u1, …, un-1) (i = 1, 2, …, n), 
 
in which the uk (k = 1, 2, …, n – 1) are n – 1 parameters.  Call the domain that they refer 
to D and define ν functions in this domain zα(x1, …, xn), which we write, to abbreviate: 
 

zα(xi)   (α = 1, 2, …, ν); 
let: 

(1.2)     ( )i
k k

z
z x

x

α
α ∂=

∂
, 

be their derivatives (3). 
 Suppose that one is given a function of these various variables, a function that we call 
the “Lagrangian” of the system: 
(1.3)     L(x, zα, kzα ). 

 
 We form the integral: 
(1.4) I = [ , ( ), ( )]i i i

kD
x z x z x dxα α

∫ L , 

 
in which dx signifies dx1, …, dxn.  I is a functional that depends on the choice of surface S 
that is given by (1.1), as well as the values of the ν functions zα in D and on S. 
 In order to obtain a useful mechanical interpretation, it is necessary to make the 
number of dimensions n equal to 4 - three space dimensions and one time dimension. 
 The functions zα(xi) describe an arbitrary property of a medium that fills the space 
(elastic deformations, electromagnetic potentials, etc.).  We postulate the equations of 
motion that are obtained by annulling the variation δI of I for independent variations of 
these arguments, i.e., of S and the zα on S and in D. 
 It is essential to also consider the variation of the boundary, as well as that of 
dependent variables on the boundary if one would also like to understand the behavior of 
singularities.  We treat the latter problem in section 9. 
 In order to perform the variation, we introduce a family S(ε) of hypersurfaces S with 
one parameter ε, which are situated in a neighborhood of the given hypersurface, and for 
which: 
(1.5)     i i ix x εξ= + . 

                                                
 (3) Latin indices always refer to the x’s, and the Greek ones, to the z’s.  As usual, one must sum over any 
index that appears twice.  We have taken pains to choose the notation in such a manner that the one index 
will appear on top and the other, on the bottom. 



Chapter I 5 

 Similarly, we subject the functions zα in D to a linear variation by replacing zα(xi) 
with: 
(1.6)   ( ) ( ) ( )i i iz x z x xα α αεη= +   in D. 
 
The values of these functions on the deformed boundary S(ε) = S  will be: 
 
(1.7)  ( ) ( ) ( ) ( ) ( )i i i i i

iz x z x x z x zα α α α α αεη ε ξ η= + = + +   on S. 

 
The total variation of zα on the boundary may be written εzα, and is given by: 
 
(1.8)   ( ) ( )i iz x z xα α αεζ= + . 
 
By comparing this with (1.7), one sees that: 
 
(1.9) ηα = zα − i

iz
αξ   on S. 

 
The first variation of the integral I is: 
 

(1.10)   0
0 0 0

( )
( )

D D

dI d d
I dx dx

d d d ε

εδ
ε ε ε + ∆

     = = +     
     

∫ ∫ L
L

 

 
in which the index 0 indicates that ε → 0, and D + ε∆ represents the domain bounded by 
the deformed boundaryS . 
 In order to simplify this integral, we introduce a geometric language and speak of 
vectors and tensors.  Nevertheless, one must note that in our case this is not the ordinary 
tensor calculus since, in our new form, we do not postulate any relation between, on the 
one hand, the transformation laws and independent variables, and, on the other, those of 
the dependent variables.  We separately transform the space of x by introducing new 
variables: 

1 2( , , , )i i nx x x xϕ= ⋯  
and the space of x: 

1 2( , , , )nz x x xα αψ= ⋯ , 
 
but we make no hypothesis concerning the metric on these spaces.  With these 
conventions, dxi is a contravariant vector in the space of x and dzα is a contravariant 
vector in the space of z; however, zα, for example, is a scalar in the space of x, whereas is 
a covariant vector in the same space, but is contravariant in the space of z.  The 
Lagrangian L is a scalar in the space of x as well as of z.  The transformation properties 

are deduced immediately for no particular quantity from the number and position of the 
Greek or Latin indices. 
 Much later, we shall establish the usual characteristic relations of ordinary tensor 
calculus between the transformations of the x and z spaces; at the moment, we shall 
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distinguish between tensors, properly speaking, and tensor densities, a distinction that is 
superfluous for the instant. 

 The n derivatives
1

k

dx

du
, 

2

k

dx

du
, …,

n

k

dx

du
 are the components of contravariant vector that 

is tangent to S.  There are n – 1 vectors of this type that one may obtain by successively 
taking k = 1, 2, …, n – 1; one may assume that they are linearly independent, or else the 
choice of parameters uk on S would not satisfy the required conditions. 
 Consider an arbitrary contravariant vector ak in the space of x and define a covariant 
vector Nk in the same space by relation: 
 

(1.11)   Nk a
k =

1 2

1 2

1 1 1

1 2

2 2 2

1 2

1 1 1

n

n

n

n

n n n

a a a

x x x

u u u

x x x

u u u

x x x

u u u− − −

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

⋯

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯

. 

 
Nk is therefore the minor that one obtains by starting with the matrix of n – 1 rows and n 
columns: 

k

r

x

u

  ∂
   ∂  

 

 
by suppressing the column k, taken with the convenient sign. 

 The vector Nk is normal to S; indeed, by replacing ak with
k

r

x

u

∂
∂

in (1.11) one obtains: 

(1.12)    Nk

k

r

x

u

∂
∂

= 0  (r = 1, 2, …, n – 1). 

 
 This being the case, first consider the second term in the variation δI in (1.10): 
 

(1.13)  { }0 0 00

1
( ) lim ( ) ( )

D D D

d
dx dx dx

d ε εεε ε+ ∆ + ∆→
= −∫ ∫ ∫L L L  

 

    = 00

1
lim ( ) dx

εε ε ∆→ ∫ L . 

 
This integral must be taken over the domain ε∆ that lies between the surfacesS and S, 
which one may imagine are decomposed into cyclinders that have their axes normal to S.  
The volume of one of these cylinders is: 
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1 2

1 2

1 1 1

1 2

2 2 2

1 2

1 1 1

n

n

n

n

n n n

a a a

x x x

u u u

x x x

u u u

x x x

u u u− − −

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

⋯

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯

ε ∆u1 ∆u2 … ∆un-1, 

 
which, by virtue of (1.5) and (1.11), is equal to: 
 

ε Nk ξk ∆u1 ∆u2 … ∆un-1. 
 
From (1.13), one thus obtains: 
 

(1.14)   0
0

( ) k
kD S

d
dx N du

d ε
ξ

ε + ∆

  = 
 

∫ ∫L L , 

 
in which du signifies du1 … dun-1. 
 The first term in (1.10) is: 
 

(1.15)  ( , , ( )
k

i k
k k k kz zD D

d
x z z dx N dx

d
α α

α α α α α αεη εη η η ξ
ε

 + + = +  
∫ ∫L L L , 

 
in which the indices that affect L are indicated by partial derivatives. 

 We introduce the following abbreviations: 
 
(1.16)  

zαL = qα,  
k

kz
pα

α=L ; 

 

kpα  is a contravariant vector in the space of x.  Since ηα is a scalar in the space of 

x, kp α
αη is also a contravariant vector in the same space.  Now, for any vector ak of this 

type one has Gauss’s theorem: 

(1.17)    
k

k
kkD S

a
dx a N du

x

∂ =
∂∫ ∫ . 

 
 We write: 

( )
k

k
k k

k k k kz

p
p p

x x x
α

α
α α α α

α α
ηη η η ∂∂ ∂= = −

∂ ∂ ∂
L , 

 
and apply (1.17); in this case, (1.15) takes the form: 
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(1.18)   
k

k
kkD S

p
q dx p N du

x
α αα

α αη η
 ∂

− + ∂ 
∫ ∫ . 

 
We substitute expression (1.9) for ηα in the surface integral. 
 By adding (1.14) and (1.18), one obtains the total variation: 
 

(1.19)   δI = [ ] ( )k
kD S

dx X Z duα α
α αη ξ ζ+ +∫ ∫L , 

 
in which, to abbreviate, we have used the following notations: 
 

(1.20)   [L]α = 
k

k

k kz z

p
q

x x
α α

α
α

∂∂− = −
∂ ∂

L L . 

 
 This operation is called the Euler variational derivative.  The qα correspond to the 
“external forces” and thekqα  to the “internal tensions.”  Therefore: 

 

(1.21)    
,

,

i
k k i

i
i

X U N

Z p Nα α

 =
 =

 

in which: 

(1.22)  i
kU = i

kp zα
αδ −ikL   

1

0
i
k

for i k

for i k
δ
 =

=  ≠ 
, 

 
is a mixed tensor of second rank in the x-space.  In the language of functional calculus, 
such as was developed by Volterra and other authors, [L]α is called the derivative of I 

with respect to zα, taken at the point xi of the domain D, whereas Xk and Zα are the 
derivatives of I with respect to xk and zα at the point uk of the boundary S. 
 
 
 2.  Euler equations and conservation laws. – From the fundamental lemma of the 
calculus of variations, since the functions ηα are arbitrary, the variation δI may be 
annulled only if: 

(2.1 )  [L]α = 0
k

k

p
q

x
α

α
∂

= − =
∂

,  (α = 1, 2, …, ν). 

 
 These equations are the Euler differential equations, which constitute the equations of 
equilibrium or motion (field equations) in dynamical applications.  When they are 
satisfied, the first variation of I reduces “limiting form:” 
 

(2.2) δI = ( )k
kS

X Z duα
αξ ζ+∫ . 
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When one likewise annuls this integral, one restricts the number and nature of the 
possible boundary conditions for the functions zα on S.  The simplest case is the one in 
which the zα take given values on a given surface, S; in this case, ξk = 0, ζα = 0, and, as a 
consequence, δI = 0.  Nevertheless, when one imposes no “artificial” condition of this 
nature, the equation δI = 0 itself provides the “natural” boundary condition.  For example, 
if the zα may take any given value (ζα arbitrary) on a given surface (ξk = 0) then the 
derivatives kzα  may not be completely arbitrary on S, but must take satisfy the following 

“dynamical” boundary condition: 
 
(2.3) Zα = ipα Ni = 0, 

on S. 
 In the applications to electrodynamics, the value of the variation δI on the boundary 
will be used to determine the behavior of the field in the neighborhood of the singularities 
(charges). 
 It is often useful to consider the nν quantities kzα  no longer as the derivatives of the 

functions zα, but as independent quantities.  On the other hand, if a certain number nν of 

similar functions ( )i
kz xα  may be essentially considered to be derivatives

k

z

x

α∂
∂

 then they 

must satisfy the following
( 1)

2

n nν −
 “integrability conditions:” 

 

(2.4)    0k i
i k

z z

x x

α α∂ ∂
− =

∂ ∂
. 

 
We shall now deduce an identity that leads to the conservation law for dynamics. 
 To that effect, a celebrated method, due to Klein [1], uses the notion of infinitesimal 
transformation.  In our case, we are particularly concerned with a displacement of all 
space that does not alter the functions, zα; we must therefore take ξk = const., and 
determine the variations ηα and zα in such a fashion that this displacement does not vary 
the zα.  We therefore write: 

zα(xi + εξi) + zα = (xi), 
 
from which, it follows that: 
 

0i
iz
α αξ η+ =   or ζα = 0. 

 
This displacement therefore provokes a variation of I that is equal to: 
 

(2.5)  
0

( ; , ) k

k k k
k xD D

d
I x z z dx dx

d
α αδ εξ ξ

ε
 = + =  

∫ ∫L L . 

 
Now, our general formula (1.19) gives ξk = const., ζα = 0, ηα = − k

kzαξ  for this: 
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(2.6)   k
k kD S

I z dx X duα
αδ ξ  = − +

 ∫ ∫[L] . 

 
By equating (2.5) and (2.6) and using (1.21), one obtains: 
 

(2.7)   )k

i
k i kxS D

U N du z dxα
α= +∫ ∫ ([L] [L] . 

 
This integral identity may be transformed into another that contains only the derivatives 
by using Gauss’s theorem to transform the surface integral into a volume integral. 
 One obtains: 

(2.8)    k

i
k

ki x

U
z

x
α

α
∂

= +
∂

[L] [L] . 

 
 One may obtain a more general identity by directly differentiating relation (1.22).   
We admit that neither the Euler equations (2.1) nor the integrability conditions (2.4) are 
satisfied, and consider L and

i

i

z
p αα = L as functions of xi, zα(xi).  This being the case, the 

derivative of L with respect to xk (since zα and kzα are considered to be functions of xk) is: 

 

k
i

i
i k kx z z

zz

x x x
β β

ββ ∂∂ ∂= + +
∂ ∂ ∂
L
L L L . 

From (1.22), it results that: 
ii

ik k
ki k k k

pU z
z p

x x x x

β
β β

β

∂∂ ∂∂= −
∂ ∂ ∂ ∂

L
- , 

 
from which: 

(2.9)   k

ii
ik k i k

ki k k k ix

pU z z z
q z p

x x x x x

β β β
β β

β β

 ∂  ∂ ∂ ∂ ∂
= + − + −    ∂ ∂ ∂ ∂ ∂  
L . 

 
 This identity is more general than (2.8); nonetheless, if the integrability conditions 

(2.4) are satisfied then the last term disappears, and one may set k k

z
z

x

β
β ∂=

∂
; in this case, 

(2.9) reduces to (2.8). 
 If, moreover, the Euler equation (2.1) is satisfied then one will have: 
 

(2.10)   k

i
k
i x

U

x

∂
=

∂
L  or k

i
k i xS G

U N du dx=∫ ∫ L . 

 
Now consider “conservative” system, in which any phenomenon is independent of the 
absolute position of the system in space, i.e., for which L does not depend upon the xk 

(space and time) explicitly: 
kx

L = 0. 
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In this case, we have the conservation laws: 
 

(2.11)   0
i
k
i

U

x

∂
=

∂
 or 0i

k iS
U N du=∫ . 

 
At the end of this section, we mention a particular type of system that proves to be 
important in electrodynamics, namely, the ones for which the Euler equations (2.1) and 
the integrability conditions (2.4) are interchangeable; one may call these systems self-
dual or auto-conjugate. 
 An obvious first condition for realizing self-duality is qa = zαL = 0, i.e., the “force” 

must be null.  A second condition is obviously the equality of the number of equations 
(2.1), on the one hand, and (2.4), on the other, namely: 
 

(2.12)    
( 1)

2

n nν ν− = , 

 
whose only positive solution is n = 2, ν arbitrary. 
 The self-dual systems are therefore possible only in a two-dimensional x-space, and 
must have a null “force.”  However, this result is valid only for the most general system, 
i.e., for the ones that contain the largest possible number of Euler equations and 
“independent” integrability conditions; this may not be the case for certain categories of 
particular systems and we shall see later on that electrodynamics fall into one of these 
categories precisely. 
 One may easily convince oneself that in the general case the two necessary conditions 
that we indicated above are likewise satisfied.  Indeed, it suffices to introduce new 
quantities H, * izα , *

ip α  that are defined by: 

 

(2.13)    

*1 *2
2 1

* 2 * 1
1 2

* *

,

,

,l l
l l

z z z z

p p p p

p z z p

α α
α α

α α
α α

β β
β β

 = = −
 = − =
 = − =H L L+

 

 
and to consider a new integral to vary: 
 

(2.14)    * *( , )l
lG

I x p dxα= ∫ H , 

 
with the integrability conditions: 
 

(2.15)    
* *
2 1
1 2

0
p p

x x

α α∂ ∂
− =

∂ ∂
. 

 
In this last relation, one concludes the existence of ν functions p*α such that: 
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(2.16)    
*

*
i i

p
p

x

α
α ∂=

∂
, 

 
and one obtains: 
(2.17)   * 0

p α =H ,  *
*

i

i

p
z αα = H . 

 
The Euler equations are: 

(2.18)    
*1 *2

1 2
0

z z

x x
α α∂ ∂

+ =
∂ ∂

. 

 
One immediately sees that this “dual” theory is identical with the one that we have 
studied. 
 As examples of “self-dual” theories with ν = 1, one may cite the following (one sets zi 

= 
i

z

x

∂
∂

): 

 
 1.  The Cauchy-Riemann conditions that appear in the theory of analytic functions 
may be considered as integrability conditions and Euler equations for a system that has 
the Lagrangian: 

L = 1
2 [(z1)

2 + (z2)
2]. 

 
 2.  The theory of minimal surfaces is derived from the Lagrangian: 
 

2 2
1 21 ( ) ( )z z= + +L . 

 
 3.  A simple form for nonlinear electrodynamics was studied by Pryce, in which one 
completely determine the solutions that correspond to point charges, which follow from : 
 

2 2
1 21 ( ) ( )z z= − −L . 

 
 
 3.  Mie’s electrodynamics [1]. – The theory that we have described up till now 
describes the properties of all types of continuous dynamical systems – elasticity, 
hydrodynamics, electromagnetic, or gravitational fields.  The treatment is the same; the 
only differences are the physical significance of the variables za and the choice of the 
function L. 

 More particularly, we concern ourselves with the electromagnetic field here; 
nevertheless, in order to make out theory absolutely invariant, we are obliged to 
incorporate gravitation, which, following Einstein, is related to the geometric structure of 
space − i.e., to its metric. 
 We therefore have two groups of functions zα: the one describes the electromagnetic 
field, and the other, the gravitational field, or metric.  Likewise, if we are given that: 



Chapter I 13 

ik k k
igs g gs− = − = s , 

 
then the rule for the displacement of indices is the same for tensors as it is for tensor 
densities. 
 Now examine the properly physical problem of the respective influence of the 
gravitational and electromagnetic forces on the phenomena that interest us here, namely, 
the ones that concern the behavior of elementary material particles. 
 Obviously, we are completely disposed to make a place for the phenomenon of inertia 
in out theory, whose point of departure has been the problem of electromagnetic mass, 
precisely.  Nevertheless, there exist very strong arguments that permit us to neglect the 
gravitational forces with respect to the electromagnetic forces, especially “in the interior” 
of particles.  Consider two identical material particles of mass m and charge e and let r be 
the distance between them; the ratio between the forces of electric attraction (Coulomb) 

and gravity is equal to
2

2

e

Km
, where K = 6.66 % 10-8 C.G.S., and the gravitational 

constant.  By introducing the numerical values into this expression that correspond to the 
electron, e/m = 5.3 × 1017 C.G.S., one thus obtains the value for the ratio, which 
demonstrates the insignificance of the role that gravitation plays in the structure of 
electrons. 
 In spite of this result, there exists a large number of works that have the objective of 
explaining the cohesion of the electron by gravitation (i.e., the fact that it resists the 
action of electric forces that tend to dissipate it into space).  This idea, which was 
introduced by Einstein [3], has given rise to numerous attempts to synthesize the laws of 
electromagnetism and gravitation.  One has developed elegant mathematical theories that 
generalize the initial idea of Einstein of describing the natural laws by means of 
Riemannian geometry.  For example, today we possess an affine geometry of the 
universe and a projective one, which constitute some theories that unite the laws of 
gravitation and electromagnetism into the same mathematical formalism.  Meanwhile, for 
my own part, I estimate that these theories are really quite remote from the physics that I 
will actually describe here, and which constitute, in my opinion, one of the necessary 
stages that one must pass through before reaching a satisfactory theory of elementary 
particles. 
 In order for us to perfectly account for the approximation that shall introduce, we 
shall take a variational principle for our point of departure that does not disregard 
gravitation a priori.  The most general principal will a Lagrangian L for its point of 

departure, which is tensorial density that is a function of gik , ik
l

g

x

∂
∂

, 
2

ik
l m

g

x x

∂
∂ ∂

, as well as ϕi , 

i
lx

ϕ∂
∂

= ϕl,i.  In the absence of more precise information we are nevertheless reduced to 

assuming that L is the sum of a term that corresponds to Einstein’s theory and another 

term that represents the electromagnetic action: 
 

(3.4) I = 1
2 R gdx K dx− +∫ ∫L , 
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in which K is the gravitational constant (Einstein’s notation), and L depends on ϕi and ϕl,i 

= i
lx

ϕ∂
∂

; as a result of the invariance postulate, L will also depend on the gik, but we 

assume that it is independent of theik
l

g

x

∂
∂

(we shall return to this point).  By varying the gik, 

one obtains the equations of gravitation: 
 
(3.5)    Rik – 1

2 gikR = − KTik, 

 
in which Rik is the Riemann curvature tensor and Tik is a second rank tensor whose 
density is given by: 
 

(3.6)  g− Tik = Tik = Trsgrigsk, Trs = 
rs srg g

∂ ∂+
∂ ∂
L L

 (4). 

 
 Our fundamental approximation consists of neglecting the term in K in (3.5), which 
expresses the coupling between the electromagnetic field and the gravitational field.  By 
replacing the left-hand side of (3.5) with 0, one solution of this system is a quasi-
euclidean space, which one assume to be reducible, by a convenient choice of coordinate 
axes, to the normal form: 

(3.7) gik =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−
−

−
. 

 
 There is no doubt that this hypothesis may be reasonably applied to all of space, 
except perhaps at the center of an electron itself, at which one may find deviations if the 
fields become infinite.  Nevertheless, the object of our theory is precisely to avoid the 
appearance of infinitely large quantities, at least as far as energy is concerned; with these 
conditions, it seems that there is no risk in assuming that space still remains Euclidean at 
the center of the particles considered.  We shall return to this question later on, when we 
indicate the solution of a particular case of combined gravitational and electromagnetic 
fields.  At that point in time we shall discuss the problem of the influence of the 
gravitational forces on the mass of the particle. 
 We may assume that the gik have the values, (3.7), which are valid in a Lorentz 
coordinate system.  We meanwhile prefer to abstain from doing this, in order to avoid the 
possibility of sign difficulties that originate in the signature of the matrix (gik), and to 
have the possibility of introducing any coordinate system in spacetime that suits us. 
 

                                                
 (4) In the sequel, we shall employ the symbol∂  with two meanings: 1.  derivatives with respect to ϕi, ϕi,k, 
gik, etc.; 2.  “total” derivatives with respect to xk.  One must be careful to observe the distinction between 
these two meanings. 
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If one takes the indicated fundamental tensor then one obtains the general 
electrodynamics that was developed by Mie in 1913, but with two new hypotheses: 

 1. The Lagrangian depends on ϕk, ϕl,k = k
lx

ϕ∂
∂

, and gkl, but is independent of the 

derivatives rl
m

g

x

∂
∂

. 

 
 The integral: 

(3.8) I = ,( , , )k l k klg dxϕ ϕ∫L  

 
is invariant under all coordinate transformations.  The interpretation of the second 
postulate is the following: the value of I must be the same in any coordinate system if L 

is the same function of the preceding variables, when taken in the system considered. 
 Instead of 2, Mie himself naturally postulated the invariance under Lorentz 
transformations.  In place of 1, he introduced the hypothesis that L essentially depends on 

the derivatives ϕl,k, but only by the intermediary of antisymmetric combinations: 
 

(3.9) fkl = ϕk,l – ϕl,k = l k
k lx x

ϕ ϕ∂ ∂
−

∂ ∂
= − flk , 

 
which represent the components of the field.  Now, one may prove that this necessarily 
stems from 1 and 2 if we remark that all of the invariants of the ϕk,l that are distinct from 

the invariants of the frl necessarily contain the derivativeskl
m

g

x

∂
∂

.  For example, one may 

form the invariant that corresponds to the Lorentz invariant div ϕ = k
kx

ϕ∂
∂

= ϕk,k ; in this 

case, we must employ the covariant derivative.  The quantity: 
 

div ϕ = 
( )kl

l

k

g gi

xg

ϕ∂ −
∂−

 

 

is invariant, but contains
kl

m

g

x

∂
∂

.  We do not insist upon that here because we give a simple 

proof of this theorem in the following section (sec. 4). 
 
For the moment, we assume that L is a function of ϕk, fkl, gkl . 

 The variation of L is given by: 

 

(3.10)    k kl kl
kl kl kl

d d df dg
f g

ϕ
ϕ

∂ ∂ ∂= + +
∂ ∂ ∂

L
L L L

. 
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The partial derivative of L with respect to one of the variables fkl or gkl must be taken 

without accounting for the symmetry properties of the latter; therefore, one must, for 
example, take the derivatives with respect to gkl or glk separately. 
 We now introduce the following notation: 
 

(3.10a)  sk =
kϕ

∂
∂
L

, pkl =
kl lkf f

∂ ∂−
∂ ∂
L L

, Tkl = 
kl lkg g

∂ ∂+
∂ ∂
L L

. 

 
The derivatives of L with respect to fkl and gkl have actual symmetry property; by 

contrast, pkl and Tkl are antisymmetric and symmetric, respectively: 

 
(3.11)   pkl = − pkl,   Tkl = Tkl. 

 
 One may now write (3.10) in the form: 
 

1 1
2 2

k
k kl lk kl lk

kl lk kl lk

d d df df dg dg
f f g g

ϕ
   ∂ ∂ ∂ ∂= + + + +   ∂ ∂ ∂ ∂   

L s
L L L L

, 

 
and since fkl = − flk, gkl = glk : 
 
(3.10b)   1 1

2 2
k kl kl

k kl kld d df dgϕ= + +L s p T . 

 
The invariance postulate has another important consequence, which is expressed by the 
relation: 
(3.12)   l

kδL = skϕk + pkl fkl + Tklgkl, 

 
which we prove in the following section (sec. 4). 
 From our notion of derivative, we have: 
 

pk,l =
, ,

ij

k l ij k l kl lk

f

f f fϕ ϕ
∂∂ ∂ ∂ ∂= = −

∂ ∂ ∂ ∂ ∂
L L L L

= pkl. 

 
 This being the case, the Euler equations that come from the variation of the integral 
(3.8) − in other words, the field equations – have the form: 
 

(3.13)     
lk

k
lx

∂ =
∂
p

s  

 
(for the translation into ordinary vector notation, see sec. 5).  They show that the plk 

constitute the other category of field components, and that the sk represent the spatial 

density of charge and current.  From (3.13), one deduces the equation of continuity: 
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(3.14)     0
k

lx

∂ =
∂
s

. 

 
The integrability conditions (2.4) of the general theory lose any significance if one takes 
the fkl instead of the ϕk,l as variables that L depends upon; they are replaced by the 

following conditions: 

(3.15)    0,ik kl li
l i k

f f f

x x x

∂ ∂ ∂
+ + =

∂ ∂ ∂
 

 
which are equivalent to (3.9), and which are necessary and sufficient for us to conclude 
the existence of potentials ϕi when one starts with a given set of fkl. 
 In an n-dimensional space, their number is equal to: 
 

1
6 ( 1)( 2)

3

n
n n n

 
= − − 

 
, 

 
which gives 4 for n = 4.  They are not all independent; there are only 3 independent ones 
for n = 4.  If one introduces the ordinary vector notation, one sees that (3.15) represents 
the second group of field equations. 
 We now examine the problem of conservation laws.  For this, we transcribe the 
expression, (1.22), forl

kU  for our particular case: 

(3.16)   ,
,

l l l j
k k k jδ ϕ= −U L p   ,

,

l j

l jϕ
 ∂=  ∂ 

L
p . 

 
 We consider the gkl to be given functions of the xk in appearance, so it therefore does 
not seem to be a conservation law, properly speaking, but simply the relation (2.10), 
which may be written here: 

(3.17)    1
2

l
rsk rs

l k

g

x x

∂ ∂
=

∂ ∂
U

T . 

 
 Another difficulty is the fact that, from (3.16), lkU depends on the ϕk,l, explicitly.  

Meanwhile, if one substitutes the expression (3.12) for l
kδL  then, due to the fact that pk,l 

= pkl, one obtains: 

(3.18)    ,
l l l jl
k k k j kϕ ϕ= + +U T s p , 

 
in which we have made use of the usual rule for lowering the index k of Tkl.  With the aid 

of this equations, one may eliminate thelkU  from (3.17), and one obtains a relation for Tkl 

that may be interpreted as a truly covariant conservation law. 
 In regard to (3.13), one has: 
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(3.19)  
,

2

,

( ),

( ) ( ) 0,

jl
l jl jl jlk

k j k k kj j j

l jl jl
k j k kj l j

x x x

x x x

ϕϕ ϕ ϕ ϕ

ϕ ϕ ϕ

 ∂∂ ∂+ = + = ∂ ∂ ∂


∂ ∂ + = =
∂ ∂ ∂

p
s p p p

s p p

 

 
since pjl is antisymmetric.  This shows thatlkT and l

kU , which are related by (3.18), differ 

only by a quantity with vanishing divergence; hence: 
 

(3.20)    
l l
k k
l lx x

∂ ∂
=

∂ ∂
U T

, 

 
and (3.17) becomes: 

(3.21)    1
2

l
rsk rs

l l

g

x x

∂ ∂
−

∂ ∂
T

T = 0. 

 
The expression in the left-hand side is the covariant divergence of the tensorial density 

l
kT , [4]; the latter satisfies a covariant conservation law, as was intended. 

 The preceding argument directly exhibits the relation between Mie’s electrodynamics 
and the general case that was treated in sec. 1, by assuming that relation (3.12) is known.  
We indicate this in another way by starting with the law (3.21). 
 From the definition (3.10b) one has: 
 

1 1
2 2( )l k kl klk kl kl

k

f g

x x x x x

ϕδ ∂ ∂ ∂∂ ∂= + +
∂ ∂ ∂ ∂ ∂l l l l l

L
L = s p T . 

 
As a result, by virtue of (3.14): 
 

( )k l
l lk k k

kx x x x

ϕ ϕ ϕϕ∂ ∂ ∂∂+ =
∂ ∂ ∂ ∂l l l l

s s
= s s , 

and, by using (3.13): 
 

( )lj lj
kj kjlj

kj

f f
f

x x x

∂ ∂ ∂+
∂ ∂ ∂l l l

p p
= p  

   = 1
2

kj kj jklj j lj l
kj kl

f f f
f f

x x x

∂ ∂ ∂ 
+ = + + ∂ ∂ ∂ 

l l l
p s p s . 

 
By adding these equations and taking (3.15) into account, one obtains: 
 

(3.22)   1
2[ ]l lj rs rs

k l k kjj j

g
f

x x
δ ϕ ∂∂ − − =

∂ ∂
L s p T . 
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This anticipates the proof of formula (3.12), which will be established in section 4 by 
invariance considerations; the expression between parentheses is found to be Tlmglm = 

l
kT , and (3.22) becomes (3.21). 

 When the field equations are satisfied, the variation of I reduces to its value on the 
boundary, which we write as: 

(3.23) δI = ( )k k
k kS

x duδ δϕ+∫ X P  

with 
(3.24)    Xk =

l
k lNU ,  Pk = plkNl. 

 
Since and differ only by terms with null divergence, one may replace the first equation 
with: 
(3.24a)     Xk =

l
k lNT . 

 
The importance of this surface integral will appear much later, when we concern 
ourselves with the motion of point-like charges [5]. 
 
 
 4.  Generalized invariance. – Consider an infinitesimal coordinate transformation 
that is given by: 
(4.1)    ( )k k k ix x xεξ= + , 
 
in which the ξk are arbitrary continuous functions of the xi.  The inverse transformation is: 
 
(4.2)    ( )k k k ix x xεξ= − . 
 
We introduce that expression into (3.3), which represents the transformation of ϕi and gik 
that is induced by the preceding; one easily obtains: 
 

(4.3)   

,

,

l

k k lk

i j

kl kl ik ijl l

x

g g g g
x x

ξϕ ϕ ε ϕ

ξ ξε

 ∂= − ∂


 ∂ ∂ = − +  ∂ ∂ 

 

 
and, upon differentiatingkϕ : 

,

j m
k

l k k jl m k l

x

x x x x

ϕ ξϕ ϕ ε ϕ
 ∂ ∂ ∂ ∂= = − ∂ ∂ ∂ ∂ 

, 

 
or 

(4.4)  , , , ,

j j j

l k l k j k l j jl k k lx x x x

ξ ξ ξϕ ϕ ε ϕ ϕ ϕ
 ∂ ∂ ∂= − + + ∂ ∂ ∂ ∂ 

. 
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In (4.3) and (4.4), the right-hand sides must be considered as functions of xk and the left-
hand sides as functions of kx , which are related to the xk by the transformation (4.1). 
 We call the term in ε the “variation” δϕk of ϕk, the variation δgkl of gkl , the 
variation δϕk,l of ϕk,l , etc.; one has: 
 

δϕk = ( ) ( ),k l k lx xϕ ϕ− ⋯ 

Now write: 
(4.5)   , ,( , , ) ( , , )k kl l k k kl l kg gϕ ϕ ϕ ϕ δ= = +L L L L , 

and use the notations: 
 

(4.6)   sk =
kϕ

∂
∂
L

, pk,j =
,k jϕ

∂
∂
L

, Tkj =
kj jkg g

∂ ∂+
∂ ∂
L L

, 

one has: 
(4.7) δL = sk δϕk + pk,j δϕk,j + 1

2 T
kj δgkj. 

 
 Upon substituting the value of the variations given by (4.3) and (4.4), and 
conveniently modifying the indices, one obtains: 
 

(4.8)  δL = − ε(skϕk + pk,jϕk,j +T
kjgkj)

k

lx

ξ∂
∂

+ pk,j ϕj

2 j

k lx x

ξ∂
∂ ∂

. 

 
The Jacobian of the transformation, (4.1), is: 
 

(4.9)   
1 2 3 4

1 2 3 4

( , , , )
1

( , , , )

k

k

x x x x

x x x x x

ξε∂ ∂= + +
∂ ∂

⋯  

 
With the notations that we introduced, the invariance postulate 2 of section 3 is expressed 
by: 

(4.10)    
D D

dx dx=∫ ∫L L , 

 
in whichD is the domain of thekx that corresponds to the domain D of the xk by the 
transformation (4.1).  By virtue of (4.5) and (4.9), one obtains: 
 

(4.11)   ( ) 1 0
k

kD
dx

x

ξδ ε
  ∂+ + − =  ∂  

∫ L L L . 

 

Since this relation is valid for any domain D it must be the quantity under the∫ sign that 

is annulled. 
 By replacing dL with its value (4.8) one obtains an equation of the following form: 
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(4.12)    
k

l
k lx

ξ∂
∂

D + pk,j ϕj

2 j

k lx x

ξ∂
∂ ∂

 = 0, 

in which 
(4.13)  l l

k kδ=D L − (skϕk + pk,jϕk,j + pj,lϕj,k + Tkjgkj). 

 
In (4.12), the values of the first two derivatives of xk are arbitrary at any given point; 

since
2 j

k lx x

ξ∂
∂ ∂

is symmetric in k, l, one has: 

(4.14)   pk,l + pl,k = 0,  0l
k =D . 

 
 The first of these equations shows that L depends only upon the combinations fkl = 

ϕk,l – ϕl,k.  Because of (4.13), the second one shows [1] the relation (3.12): 
 
(4.15)   l

kδL  = skϕk + pk,jfkj + Tkjgkj. 

 
Now consider the problem of expressing the function L, or rather, the corresponding 

invariant L that is defined by L = L g−  by means of the elementary invariants of ϕk , fkl , 

gkl . 
 The invariants of the tensors fkl and gkl may be determined as a linear combination of 
the two matrices g = (gik), f = (fik) in a linear family a(λ) = [aik(λ)] defined by: 
 
(4.16) g + λf = (1 + λfg−1)g = a(λ)g. 
 
Since g-1 = [gik], the general element of fg−1 is fij g

jk = k
if . 

 The element of the unit matrixkiδ  is likewise that of a mixed tensor, and one has: 

 
( )k k k

i i ia fλ δ λ= + . 

 
It follows from this that the simultaneous invarinats of f and g are the coefficients of the 
characteristic polynomial, or of the determinant of a(λ): 
 
(4.17) | a(λ) | = | 1 + fg−1 | = 1 + F1λ + F2λ2 + … + Fnλn. 
 
Since f is anti-symmetric and g is symmetric, the transposed matrix to g + λf is g – λf = 
a(−λ)g.  Since the determinant of the transposed matrix is identical to that of the initial 
matrix, one has | a(λ) | = | a(−λ) |; therefore, the development (4.17) of a(λ) contains only 
even powers.  For n = 4, one will have: 
 
(4.18) | a(λ) | = 1 + Fλ2 – G2λ4, 
 
with the two invariants: 
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(4.19)  

1 1 1
2 2 2

2 1 2
23 14 31 24 12 34

,

| | 1
| | ( ) .

| | | |

i k ik ik mn
k i ik im knF f f f f f f g g

f
G fg f f f f f f

g g
−

 = = =

 = − = = + + − −

 

 
The square root of the second invariant is not itself an invariant with respect to all of the 
transformations, but only with respect to the ones that have a positive Jacobian.  G may 
be written in a simple form with the aid of the dual tensor that was introduced by 
Maxwell. 
 By slightly modifying the definition of the latter, we introduce the contravariant dual 
tensorial density that corresponds to the covariant anti-symmetric tensor fik the defining 
formulas will be: 
 

(4.20)  
*23 *31 *12

14 24 34
*14 *24 *34

23 31 12

, , ,

, , .

f f f

f f f

 = = =
 = = =

f f f

f f f
 

 
Here, the usual law for the displacement of indices in a Lorentz system (namely: change 
the sign for indices 1, 2, 3, but not 4) gives: 
 

(4.21)  
* 14 * 24 * 34
23 34 12
* 23 * 31 * 12
14 24 34

, , ,

, , .

f f f

f f f

 = − = − = −
 = − = − = −

f f f

f f f
 

 
*
klf  is a tensorial density; one may see this [2] by means of the completely anti-symmetric 

tensorial density δiklm, which is defined in the following manner.  We develop the 
determinant of the tensor akl: 
 

(4.22)   | a | = 
1

4!
akκ alλ amµ anν δklmn δκλµν. 

 
The coefficients are: 

(4.23) δiklm = 

1 1,2,3,4;

1 1,2,3,4;

0 .

if iklm is an even permutation of

if iklm is an odd permutation of

in any other case

+
−



 

 
 This being the case, we apply (4.22) to the tensor gkl; if we divide by − | g |. One 

obtains the invariant −1 in the left-hand side; therefore,
| |

klmn

g

δ
−

is a fourth order 

contravariant tensor and δklmn is the corresponding tensorial density.  As usual, define the 
covariant tensorial density: 
(4.24)    dklmn = dκλµν gkκ glλ gmµ  gnν, 

 
and multiply by dklmn; by virtue of (4.22), one obtains: 
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dklmn d
klmn = 4! | g |. 

 
By replacing akl with the unit tensor in (4.22), one sees that: 
 

dklmn dklmn = 4! ; 

 
therefore, from the preceding: 
(4.25)     dklmn = | g | dklmn. 

 
 We may now write: 
 
(4.26)   f*kl = 1

2 d
klmnfmn,  

*
klf  = 1

2  dklmnf
mn, 

 
which shows precisely that f*kl and *

klf  are tensorial densities. 

 The square root of the second equation (4.19) gives: 
 

(4.27) G = 
1

g−
1
8 d

klmnfkl fmn = 
1

g−
1
4 fkl f*

mn = 1
4 fkl f*

mn, 

 
in which fkl is the tensor that corresponds to the density fkl. 

 Now consider the simultaneous invariants of ϕk and fkl with respect to the metric 
tensor gkl.  We proceed in the following manner: we first form the vectors: 
 
(4.28)   ψk = fklϕl,  χk =

*
klf ϕl, 

 
and then the invariants of the three vectors ϕk, ψk, and χk, namely: 
 
the squares of the length: 
 

(4.29)   
* *

,

,

,

k kl
k k l

k km l
k kl m

k km l
k kl m

A g

B f f

C f f

ϕ ϕ ϕ ϕ
ψ ψ ϕ ϕ
χ χ ϕ ϕ

 = =
 = =
 = =

 

the scalar products: 

(4.30)   *

*

,

,

.

k k l
k kl

k l
k kl m

k km l m
k kl

f

f

f f

α ψ ϕ ϕ ϕ
β χ ϕ ϕ ϕ
γ ψ χ ϕ ϕ

 = =
 = =
 = =

 

 
since fkl is anti-symmetric, one has: 
 
(4.31)   α = 0, β = 0; 
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moreover, one has the identities: 
 
(4.32)   B – C = FA,  γ = GA, 
 
which are a consequence of the relations: 
 

(4.33)   
* *

* * *

,

.

kl kl k
il il i

kl kl k
il il i

f f f f F

f f f f G

δ
δ

 − =
 = =

 

 
One may easily verify the exactitude of these formulas in a Lorentz system, for example: 
 

2 * *2 23 24 * *23 * *24
1 1 13 14 13 14

l l
l lf f f f f f f f f f f f− = + − −  

   23 24 24 23
13 14 14 34 0,f f f f f f f f= + − − =  

  *2 *23 *24
1 13 14 13 14 14 31 0.l
lf f f f f f f f f f= + = − =  

 
The most general Lagrangian will thus be: 
 

L = L(A, B, C, G) g− , 

 
In which L is an arbitrary function of the four elementary invariants. 
 At this point, we verify the exactitude of relation (3.12) by a simple algebraic 
reasoning [3]. 
 Let J be any of the four elementary invariants; the three quantities: 

 

ml
km

g
g

∂
∂
J

, ml
km

f
f

∂
∂
J

, l
k

ϕ
ϕ
∂

∂
J

, 

 
are homogenous functions of the gkl of the same degree ng as J itself; the same is true 

with respect to fkl and ϕk, whose degrees of homogeneity are nf and nϕ , respectively.  
Moreover, one has: 
 

(4.35)  k
ml g l

km

g n K
g

∂ =
∂
J

, k
ml f l

km

f n K
f

∂ =
∂
J

, k
l l

k

n Kϕϕ
ϕ
∂ =

∂
J

, 

 
with the same k

lK in the three cases. 

 Upon examining the structure of these invariants, one sees that they are all formed 
from products of the ϕk and fkl multiplied by the corresponding product with upper 
indices.  The number of upper indices is therefore equal to 1

2 nϕ, + nf, but, at the same 

time, it is obviously equal to the number of factors gkl that are necessary to lower the 
indices.  Since gkl has degree –1 with respect to gkl one will have: 
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(4.36) − ng = 1
2 nϕ, + nf. 

 
 This being the case, we differentiate L; we obtain: 

 

kl
kl lk

kl lk kl lk

g g
L g

g g g gg g

 ∂ − ∂ −  ∂ ∂ ∂ ∂= + = + + − +    ∂ ∂ ∂ ∂∂ ∂   
∑

L L J J
T , 

kl

kl lk kl lk

g
f f f f

 ∂ ∂ ∂ ∂= − = − − ∂ ∂ ∂ ∂ 
∑

L L J J
T , 

k

k k

g
ϕ ϕ

∂ ∂= = −
∂ ∂∑
L J

s , 

 
in which the sum is taken over the four elementary invariants.  By virtue of (4.35), (4.36), 
one deduces: 
 

( 2 2 )k km km km k
l lm lm ml l f gf g gg g L g K n n nϕϕ + + = − + − Σ + +s p T  

k k
l lL gδ δ= − = L , 

 
in accord with (3.12). 
 
 5.  Vectorial notation in ordinary space. -  Naturally, Mie himself did not develop 
his theory by making use of the generalized invariance principle, which was introduced 
by Einstein some time later.  He used only the vectorial notation of ordinary space, and 
postulated invariance only under Lorentz transformations.  In my opinion, this restriction 
is not essential, and I believe that today there is still no reason to change the words that I 
published in an article in 1913 [1] in which I introduced the quadrivector and the six-
component Minkowski vector, and in which I gave a simplified proof of Mie’s 
conservation laws (which is, moreover, equivalent to the one that was used here, page 
???).  The words are the following: 
 “The universally recognized incompatibility between the differential equations of the 
electromagnetic field and the existence of points (electrons) at which the charge 
accumulates and persists without the benefit of external forces is closely related to the 
linear character of these equations; above all, it is therefore necessary to abandon the 
linear character of the fundamental equations.  Mie has realized this program in the most 
general and most elegant manner that one may conceive of in the context of physics 
today, which has its origin in the analytical mechanics of Lagrange.” 
 The reasons for which Mie’s theory did not succeed in the context of classical physics 
reside in the scope of his object; we correct this point in the following section. 
 Obviously, the appearance of quantum theory has considerably modified this 
problem. 
 In what follows, we take the velocity of light equal to unity and adopt the Heaviside 
units for electromagnetic quantities. 
 With the ordinary vectorial notation, we have, on the one hand, the spacetime vectors: 
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(5.1) 

1 2 3 4

1 2 3 4
1 2 3 4

( , , , ) ( , , , ) ( , ) ( , ),

( , , , ) ( , ) ( ),

( , , , ) ( , ) ( ),

x x x x x y z t t coordinates time

vector and scalar potential

current and chargedensity

ϕ ϕ ϕ ϕ ϕ
ρ ρ

 = =
 =
 = −

r

a

s s s s v

 

 
and, on the other hands, the six-component vector of the field: 
 

(5.2)  
*14 *24 *34

23 31 12
*23 *31 *12

14 24 34

( , , ) ( , , ) ,

( , , ) ( , , ) ,

f f f

f f f

 = =
 = =

B

E

f f f

f f f
 

 

(5.3)  
23 23 23 * * *

14 24 34
14 24 34 * * *

23 31 12

( , , ) ( , , ) ,

( , , ) ( , , )

 = − − − =
 = − − −

p p p p p p

p p p p p p

H

=-D.
 

 
With this notation, the field equations, (3.13) and (3.15), are: 
 

(5.4)  
0, 0,

, .

rot div

rot divρ ρ
+ = =

 − = =

E B B

H D v D
 

 
The form of the Maxwell equations is preserved in any coordinate system [2]; this results 
from the fact that we have chosen to define (B, E) as a tensor and (H, D) as a tensorial 

density. 
 This difference disappears in a Lorentz system in which the gik are given by (3.7); 
one has: 

(5.5)  
1 2 3

23 31 12

14 24 34

( , , ) ( , )

( , , ) ,

( , , ) ,

s s s

p p p

ρ ρ= − 
 = = 
 = = 

H

Dp p p

v

H

D

  (Lorentz system), 

 
which, with (5.2), forms the usual definition, which coincides with ours only in the case 
of special relativity. 
 The easiest manner of writing the tensor density of energy-momentum (3.12) consists 
of employing the matrix notation; one has: 
 

(5.6) 

00 0 0

00 0 0
( )

00 0 0

00 0 0

z y x

z x yl
k

y x z

x y z

− −
− − −

= +
−

H H DL

H H DL
T

H H DL

D D DL

 

0

0
( , , , ),

0

0

z y x x

z x y y
x y z

y x z z

x y z

B B E a

B B E a

B B E a

E E E

ρ ρ ρ ρ

ϕ

−
−

× +
−

− − −

v v v  
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or, explicitly: 

(5.7)  

1
1
4
4
1
2
2

1
1
4
4
2

,

,

,

,

,

.

y y z z x x x x

x y y x y x

y x x y x y

z y y z x

z y y z x

B B E a

B E a

B E a

B B

E E a

ρ
ρϕ

ρ
ρ
ρ ρ
ρ

 = − − +
 = + +
 = +
 = +
 = +


= +

E

T L H H +D v

T L

T H +D v

T H +D v

T D -D v

T H -H

D

 

 
The relations are valid in any coordinate system.  In this case, the symmetry of the tensor: 
 

(5.8) Tkl = gkm 
1l km l

m mT g
g

=
−

T  

 
is not a simple condition; nevertheless, if one considers a Lorentz system with the gkl that 
are given by (3.7), one will have: 
 
(5.9)  Tkl = k

lT−   for l = 1, 2, 3, and  Tk4 = 4
kT . 

 
 Now introduce the following vector notations: 
 

(5.10)  

( ) ,

,

.

x y z

x y z

x y z

X X X

M Y Y Y Maxwell tensions

Z Z Z

U energy density

Poynting vector




= =

 =
 =





S

 

 
One may then write the following formulas, which have an immediate significance: 
 

(5.11)  (Tkl) =
( )M

U

−
−

S

S
, 

( )
( )l

k

M
T

U

− −
=

S

S
, 

 
and then one has: 
 

(5.12)  

,

,

,

( ) ( ) .

x y y z z x x x x

y x y x x y x y x y y x y x

X H B H B D E v a L

U L

X Y H B D E v a H B D E v a

ρ
ρϕ

ρ ρ
ρ ρϕ

= + − − −
 = ⋅ + +
 = = − − − = − − −
 = × + = × −

D E

S E H a D B v
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In this case, the symmetry condition on Tkl takes the simple form: 
 

(5.13)  
( ) ( ) ( ),

( ) ( ) ( ).

ρ
ρ ϕ

× + × = ×
 × − × = +

H B E D v a

E H D B a v
 

 
 The conservation laws (3.21) take the form: 
 

(5.14)  
0,

0,
xdiv

div

 + =


+ =

X S

S U

ɺ

ɺ
 

 
in which the rows of the matrix of the Maxwell tensor are considered as vectors X = (Xx, 
Xy, Xz), … 
 In a Lorentz system, the four elementary invariants are: 
 

(5.15)  
2 2

2

,

[( ) ] ,

A

B

ϕ
ϕ

 = −


= × +

a

a B E
 

 

(5.16)  
2 2,

.

F

G

 = −


= ⋅

B E

B E
 

 
 The entire system of formulas is vacuous until one chooses the form of the function 
L(A, B, F, G); once this function is fixed, one has: 
 

(5.17)   

, ,

, .

L L

L L

ρ ρ
ϕ

∂ ∂ = − ∂ ∂


∂ ∂ = = −
 ∂ ∂

a

B E

v = -

H D

 

 
 Mie tried to find a function L for which there exists a solution to the field equations 
that corresponds to a stable particle (electron) and has a spherically symmetric charge 
distribution.  His attempt was not crowned with success; however, even if he had 
succeeded, it would still be unconvincing, except in the case for which this solution was 
imposed by a universal principle that reduces the extraordinary generality of the theory.  
However, such a principle is not known, as of yet. 
 Another characteristic of Mie’s theory that raises three strong objections is the 
explicit appearance of the potentials (a, ϕ) in the Lagrangian, and, as a consequence, in 
the field equations.  It then follows that the absolute values of the potential must have a 
precise physical significance, which contradicts everything that is known about the 
electromagnetic field experimentally.  Similarly, if we call into question the validity of an 
extrapolation of this knowledge to the atomic domain, then we may not escape the 
following difficulty: suppose that one has discovered a Lagrangian L such that one must 
find a solution of the field equations that corresponds to a particle.  If L depends upon the 
potentials then this solution no longer exists when one displaces the particle in space to a 
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point where the potentials have a different value from the preceding one (different by a 
constant that constitutes potential difference between two positions at an infinite distance 
from the center of the particle).  With these conditions, the theoretical explanation for the 
existence of particles, which defines the principal objective of Mie’s theory, must be 
illusory. 
 In Maxwell’s theory, since the physical laws have one degree higher they are 
insensitive to certain variations of the potential; they present what one calls gauge 
invariance: the physical laws do not change if one replaces ϕk by: 
 

(5.18)    k k kx

χϕ ϕ ∂= +
∂

, 

 
in which χ is an arbitrary function.  This derives simply from the fact that the 
transformation (5.18) does not alter the expression (3.9) for the field components.  When 
one derives Maxwell’s equations from the corresponding variational principle, one 
confirms that the ϕk appear in an explicit fashion in L, but only in the form of a linear 
combination; L has the following form: 
 
(5.19) L = L0 + ϕi s

0i = L0 – ρ0(v0a – ϕ), 

 
in which L0 is a function of F and G that has the following form, in vacuo: 
 
(5.20) L0 = 1

2 F = 1
2 (B2 – E2). 

 
The s0i = − (ρ0 v0, ρ0) are given functions of x, y, z, t that represent the density of charge 

and convection current, and satisfy the continuity equation: 
 

(5.21)    
0

0
i

ix

∂ =
∂
s

. 

 
The transformation (5.18) simply adds the term: 
 

(5.22)   
0 0 0

0
i i i

i
i i i ix x x x

χ χ χχ∂ ∂ ∂ ∂= − =
∂ ∂ ∂ ∂

s s s
s , 

 
to L, which constitutes a divergence, and does not make any contribution to the 
differential equations. 
 In reality, this case does not enter into the general theory that was discussed in the 
foregoing if we are given that L contains x, y, z, t explicitly, which appear in the given 
functions s0i.  It then follows that any conservation law of type (5.14) will no longer be 

valid; in the right-hand sides, instead of 0, the Lorentz force and power density will 
appear: 
(5.23) ρ0[H + (v0 × E)], ρ0vE. 
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Strictly speaking, the Maxwell theory is therefore not a particular case of the Mie theory. 
 If one applies the Maxwell theory to the problem of elementary particles, then − as 
described in the introduction − one is led to the concept of a mass of electromagnetic 
origin.  The pioneering work of J. J. Thomson has been continued by a great number of 
researchers, and has attained its culmination in the electron theory of H. A. Lorentz [3].  
In this theory, the electron is considered as a spherically symmetric charge distribution 
that is maintained in place by cohesive forces of unknown, but certainly not 
electromagnetic, origin. The dimensions of these particles must be finite, or else the 
proper energy would be infinite.  This proper energy is, for the most part, of 
electromagnetic nature, but it also depends upon cohesive forces to a certain degree.  As 
one knows nothing about these forces, the absolute value of the energy is itself unknown. 
 Meanwhile, it has been possible to account for the experimental fact that was 
discovered by Kaufmann [4] of the variation of mass with velocity.  This problem has 
been treated by several authors, and, in particular, in a more complete fashion, by M. 
Abraham [5], under the hypothesis that the electric charge is fixed in a perfectly rigid 
material support.  The hypothesis of an absolute rigidity, which was perfectly natural in 
the classical period of physics, is nevertheless becoming unacceptable with the 
introduction of the postulates of relative by Einstein.  Rigidity and relativity are 
contradictory notions. 
 Somewhat later, Lorentz applied the Fitzgerald contraction to the electron and thus 
discovered his well-known formula that gives the mass as a function of velocity, a 
formula that is found to be in closer accord with the experimental results than that of 
Abraham.  The Lorentz hypothesis may be expressed by saying that the electron is rigid 
in the coordinate system in which it is instantaneously at rest.  30 years ago, in one of my 
first articles, I showed that this relative rigidity exists for an entire class of motions that 
correspond to constantly accelerated motion in classical mechanics, and I then deduced 
[6] a generalization of the Lorentz formula for this non-uniform motion several years 
before Einstein began the systematic study of similar motions in his general theory of 
relativity.  Langevin [7] has recently treated the same problem from the standpoint of 
general relativity, and has confirmed the formula that I gave. 
 These theories that concern the rigid or quasi-rigid electron are not satisfactory 
because they all suffer from the following difficulty: let E be energy, and let P, be the 
total electromagnetic momentum of the electron.  Its electromagnetic mass may then be 

defined by either
2

E

c
or

P

c
; now, one finds that these values do not coincide.  The 

difference seems to result from the fact that the forces that shape the electron in the 
manner of a rigid body provide a certain contribution to the translational momentum 
without performing any internal work. 
 The only means of avoiding the difficulties that were provoked by the antagonism 
between relativity and rigidity seems to be the adoption of the unitary field theory of Mie, 
which represents an attempt to assimilate the cohesive forces with the electromagnetic 
forces into a field with a nonlinear connection.  Nevertheless, we have just seen that this 
same theory has not succeeded in solving the problem, since Mie used the absolute values 
of the potentials in order to describe the discrepancies by starting with the linearity that 
gave the charge density. 
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 6.  Unitary electrodynamics with pointlike charges. – Nevertheless, the problem 
possesses a solution [1].  It is obtained by assuming that the potentials do not appear in 
the field laws, i.e., the L depends only on fkl and gkl, and that: 

 

(6.1) sk = 
kϕ

∂
∂
L

= 0. 

 
Meanwhile, with these conditions it is indispensable to admit that there exist point-like 
singularities that represent the particles.  One may then choose the function: 
 

(6.2) L(gkl , fkl) = L(F, G) g− , 

 
in such a fashion that the proper electromagnetic energy of a point-like charge is finite; 
all of the contradictions that affect the old theories of the rigid electron disappear. 
 I have called the resulting theory the unitary theory of the electromagnetic field, in 
spite of the fact that the singularities correspond to distinct components of the field; in 
reality, Mie’s ideal of a complete unitary theory was not attained for the good reason that 
it is impossible to attain.  It is a question of appreciation, of knowing whether the 
preceding statements agree with the modified theory that I now present; nevertheless, for 
my own part, I prefer to retain the expression, since we have that in any case this theory 
offers the possibility of a purely electromagnetic explanation of mass.  We shall discuss 
this question of the origin of mass later on. 
 Before we give an example of a function L that replaces the preceding conditions, we 
must consider the problem from another viewpoint that leads to the general formulation 
(6.2), of L, namely, the namely, the viewpoint of self-duality, as was defined in section 1 
for an arbitrary variation. 
 The inspection of equations (5.4) for the electromagnetic field and the symmetry that 
one confirms between electric and magnetic vectors suggests the existence of an 
absolutely complete symmetry as a necessary condition in any unitary theory of fields 
and matter.  This general condition is equivalent to that of self-duality; we express this 
analytically. 
 The first condition to replace is expressed precisely by (6.1).  As far as the second one 
is concerned, we have seen that in the n-dimensional case the number of integrability 
conditions (3.15) is 12 n(n – 1)(n – 2), which is equal to the number of Euler equations 

only if n = 4.  The fact (5) that the self-duality of the electromagnetic field is possible 
only in our four-dimensional universe seems to be an extremely remarkable coincidence! 
 Meanwhile, one must not lose sight of the fact that self-duality has only a certain 
purely formal character; it is not fundamental, since one has not accounted for the 
singularities.  Experience has shown us the existence of point-like electric charges, but 
we have not yet discovered isolated magnetic poles.  Later on, we shall verify the manner 
by which one treats this dissymmetry. 
 

                                                
 (5) As observed by my collaborator, P. Weiss. 
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 In all of the reasoning that is concerned with the electromagnetic field equations, it is 
very convenient to use the notion of self-duality; we therefore dedicate the following 
statements to showing how one must construct the system of formulas that are dual to the 
ones that we have written up till now. 
 Introduce the function: 
 
(6.3)  H = L – 1

2 p
ik fik = L + 1

2 f
*lk *

lkp = L + ED – BH, 

 
 Which one may call the Hamiltonian of the system, by analogy with the function that 
appears in point mechanics.  By virtue of (3.10b) and the fact that sk = 0, we have: 

 
(6.4)  dH = 1

2 T
ik glk – 1

2 fik dp
ik = 1

2 T
ik dglk + 1

2 f* ik *
ikdp . 

 
The natural independent variables for H are therefore gik, *

lkp ; in accord with the general 

notion of duality, we admit that the*lkp may be expressed by the antipotentials *
kψ : 

 

(6.5)    *
lkp =

* *
k i
i kx x

ψ ψ∂ ∂
−

∂ ∂
. 

 H will have the form: 

(6.6) H = H(P, Q) g− , 

 
in which P, Q are the elementary invariants of gik ,

*
lkp that correspond to F, G, as defined 

by (4.19) and (4.27), namely: 
 
(6.7)  P = * *1

2
ik

ikp p = D2 – H2, Q = *1
4

ik
ikp p = DH. 

 
 A variational principle that uses the integral: 
 

(6.7) I* = *( , )ik ikG
g p dx∫ H , 

leads to the equations: 

(6.9)    
*

0
kl

kx

∂ =
∂
f

, 

 

(6.10)   
* * *

0ik kl li
l i k

p p p

x x x

∂ ∂ ∂
+ + =

∂ ∂ ∂
. 

 
 The equations are indicated in the initial equations (3.13) and (3.15), which may be 
written in tensorial and vectorial notation, in the following fashion for sk = 0: 

 

(6.9a)  0ik kl li
l i k

f f f

x x x

∂ ∂ ∂
+ + =

∂ ∂ ∂
 or rot E + B = 0,  div B = 0, 
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(6.10a)   0li
k

f

x

∂
=

∂
 or rot H – D = 0, div D = 0. 

 
 If we keep the gik’s constant then (3.10) and (6.4) become: 
 

(6.4a)    
,

.

d d Hd

d d d

= − +
 = −

E B

E B

DL

H D H
 

 
The two dual representations differ from each other, not by their differential equations, 
but the choice of primary variables for the field: 
 

(6.11)  
( , ) , ,

( , ) , .

∂ ∂ = − = ∂ ∂
 ∂ ∂
 ∂ ∂

E B
E B

E B

⋯

⋯

L L
L

H H
H

D H

D H = = -
HD

 

 
 The energy tensor is expressed in terms of L in the same fashion as with H: 
 

(6.12) Tik =
ik ki ik kig g g g

∂ ∂ ∂ ∂+ = +
∂ ∂ ∂ ∂
L L H H

. 

 
 By virtue of (6.4), the diagonal elements of the mixed tensor k

iT  that is given by (5.7), 

may be expressed in two perfectly equivalent ways: 
 

(6.12a)  
1
1
4

1

,

.
y y z z x x y y z z x xB B E E E B = − − + = − − +

 = − = + DE B

T L H H D H D D H

T L H H
 

 
 Since U = 4

4T  is the energy density [see (5.11)], the function, H, has a simple 

significance in the purely electric case.  This circumstance often makes the use of H more 

convenient than that of L. 

 In a Lorentz coordinate system, the energy tensor is expressed by (5.12), if one 
suppresses the terms in ρ.  The symmetry relations, which are the expression of 
relativistic invariance, may be written: 
 

(6.13)   
( ) ( ),

( ) ( ).

× = − ×
 = × = ×

H B E D

S E H D B
 

 
This double expression for the Poynting vector is remarkable, and will be used later on to 
establish the equations of motion for a charged particle. 
 



Chapter I 34 

 When one refuses to use the tensorial calculus at any price, which has, moreover, the 
advantage of making the covariance of the equations immediately obvious, one may 
likewise introduce other fundamental functions instead of L and H.  In particular, one of 

these representations is very useful for the application of the principles of quantum theory 
to electrodynamics.  Indeed, the only means of attacking such a problem is to take the 
Hamiltonain of dynamics as the point of departure, i.e., energy; now, the function, H, that 
we have called Hamiltonain here is not, in general, identical with the energy density (this 
would be true only in the absence of the magnetic field, as have seen). 
 One confirms that, from (6.12a), the energy density is given in a Lorentz system by: 
 
(6.13) U = H + HB = L + DE; 
 
from this, by accounting for (6.4), one deduces: 
 

(6.14a)   
,

, ,

dU d d

U U

= +


∂ ∂ = = ∂ ∂

E D H B

E H
D B

 

 
in such a way that the function U(D, B) may be likewise employed as the foundation for 
the theory. 
 Finally, there exists another possibility, which is written in ordinary vectorial 
notation: 
(6.15)   V = H – ED = L – BH, 
 

(6.15a)   
,

, ;

dV d d

V U

= − +


∂ ∂ = − = ∂ ∂

D E B H

D B
E H

 

 
however, the function V(E, H) has no immediate physical significance. 
 The interesting point in all of these representations of the theory is the fact that the 
field equations are certainly covariant, but the fundamental functions are not invariants.  
My collaborator, M. B. S. Madhava Rao, has studied this question, and has concluded 
with the following result [2].  Einstein and Mayer have shown that the group of Lorentz 
transformations may be separated into two more restricted groups; they are constructed 
from two types of quantities, the semi-vectors, which are covariant under the one of these 
restricted groups, but not under the entire Lorentz group.  Madhava Rao has shown that 
relations (6.14a) and (6.15a) are covariant under these partial groups, and may therefore 
give us reasons to believe that the field equations are covariant under the complete group. 
 When one exhibits the discrepancies between the general theory of fields and that of 
Maxwell, it is convenient to introduce the tensor: 
 
(6.16)  mkl = fkl – pkl  [(m23, m31, m12) = M , (m14, m24, m34) = P], 
 
and the vector: 
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(6.17)  σk =
lk

l

m

x

∂
∂

  [(σ1, σ2, σ3, σ4) = (−j, −σ)]. 

 
 In a Lorentz system, one has, with the ordinary vectorial notation: 
 
(6.17a)   M  = B – H,  P = D – E, 
 
which shows that M  and P are the densities of the electric and magnetic moment; as a 
result, one has: 
(6.18a)   j = − rot M  + P,  σ = − div P. 
 
 The field equations may be written in the Maxwell form: 
 

(6.19)  
*

, ,

0 0, 0.

kl
l

k

kl

k

f
or rot div

x

f
or rot div

x

σ σ
∂ = − = = ∂


∂ = − = =
 ∂

B E j E

E B B

 

 
Here, the right-hand sides are not given functions, but depend on the field components, 
according to the relations, (6.18a).  One may call j and σ the current density and the free 
charge.  M  and P are the vacuum polarizations; this notion plays an important role in the 
attempts of Hesenberg to evaluate the differences from Maxwell’s theory by starting with 
the relativistic wave mechanics of the electron (see sec. 13, 14). 
 It obviously possible to introduce an energy tensor that is a function of only the fkl: 
 
(6.20)    1

2
l l lm
k k kmS F f fδ= − , 

 
in which F = 1

2 fkl f
kl is the Lagrangian of Maxwell’s theory; one obtains conservation 

laws by the usual procedure in the form: 
 

(6.21)    
l

lk
kll

S
f

x
σ∂

=
∂

; 

 
in the right-hand side the Lorentz force appears, along with the power of the free charge: 
 
(6.22)    E + (j × B) and jE. 
 
 This shows that one must attempt to find the discrepancies associated with the 
classical values of the electromagnetic forces any time that one is concerned with fields 
that are essentially variable on a distance scale that is comparable to that of the diameter 
of the free charge distribution of a particle; this result will be confirmed later on. 
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In this theory, the true charges − i.e., the ones for which the integral nD dσ∫ , when taken 

over a closed surface, is finite − are always concentrated at a point. 
 A certain number of general results concerning the field and the energy of an isolated 
point-like particle at rest may be obtained without specifying the Lagrangian L. 
 In the electrostatic case, the field equations reduce to: 
 
(6.23)   rot E = 0, div D = 0. 
 
The first one is satisfied identically for a spherically symmetric field of the form E 

= rE
r

r
.  The second becomes: 

(6.23a)    2( )r

d
r D

dr
= 0, 

whose general solution is: 

(6.24) Dr = 2

1

4

e

rπ
, 

 
in which the constant is chosen in such a fashion that for any closed surface that 
surrounds the origin one has: 

(6.25)    rD dσ∫ = e. 

 
The field D is exactly the same as in Maxwell’s theory. 
 Moreover, there exists a general relation between the value of the total energy E, and 
that of the electrostatic potential at the place where the point-like charge is found ϕ(0).  
To deduce this, we use the property that was mentioned before, that in the electrostatic 
case the energy density coincides with the Hamiltonain H, I such a way that: 
 

(6.25) E0 = 4π 2

0
Hr dr

∞

∫ . 

 
We consider H as a function of P = D2 (Q = HD is annulled); we will have: 
 

(6.27)   3 2 3( ) 3 r

r

dDd H
r H r H r

dx D dr

∂= +
∂

; 

 
now, by virtue of (6.11) and (6.24): 
 

r

H

D

∂
∂

= Er,  
3

1

2
rdD e

dr rπ
= − , 

so: 

(6.28) Hr2 = 31
3 ( )

6 r

d e
r H E

dr π
+ . 
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Since we assume that the integral (6.26) converges, H may not tend to infinity at the 
origin r = 0 more rapidly than r -(2+ε), 0 < ε < 1; forr = ∞ , we must make the hypothesis 
that H behaves like the energy density in Maxwell’s theory, i.e., that it varies like r-4.  It 
then follows that r3H is annulled for r = 0 and r = ∞ .  The electrostatic potential is given 
by: 

(6.29) ϕ(r) = rr
E dr

∞

∫ , 

 
and from (6.26) and (6.28), one obtains: 
 
(6.30) E0 = 2

3 eϕ(0). 

 
 E0 is the space integral of the 44 component of the energy tensor Tkl.  It is easy to 
prove that the integrals of all the other components of Tkl are annulled for a spherically 
symmetric electrostatic field.  Indeed, this is obvious for the integrals of the components 
Tk4 that comprise the vector S, which is annulled for B = 0; it thus remains for us to prove 
this for the Maxwell tensor M(Xx, …, Xy, … ), which is given by (5.12): 
 
(6.31)  Xx = Dy Ey + Dz Ez – H,  …, Xy = Dx Ey, … 
 

H depends only upon P = D2 and E =
dH

dP
2D.  The hypothesis of spherical symmetry 

signifies that D = f(r)r ; therefore: 
 

(6.32)   22 0,y

dH
X dv f xydv

dP
= − =∫ ∫  

 

which is null since
dH

dP
f 2 depends only on r.  Thus: 

 

( ) 2 22 4
3 34x

dH
X dv H dv D H r dr

dP
π  = − = − 

 
∫ ∫ ∫DE . 

 

Since
r

dH

dD
= 2

dH

dP
Dr, and since (6.23a) gives

2
0r

r

dD
D

dr r
+ = , one may write (6.27) in 

the form: 

2 2 2 33 4 ( )r

dH d
r H r D r H

dP dr
− = , 

from which: 

(6.33)   34
( ) 0

3x

d
X dv r H dr

dr

π= − =∫ ∫ . 

 
Thus, the integral of the energy tensor has only one non-null component, namely, the 
component E0 with the indices 44.  This theorem is known by the name of Von Laue’s 
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theorem, since he first observed that in order to consider the energy and momentum as a 
spacetime vector, it is necessary that the conditions stated in the preceding theorem must 
be satisfied.  In a Lorentz system that moves with the velocity v these components are 
equal to: 

(6.34)   0

21

E

v
=

−

v
G ,  0

21

E
E

v
=

−
. 

 
 
 7.  An example of a unitary theory of electromagnetic fields. – The first known 
example of a function L that is compatible with the existence of point-like charges with 
finite proper energy was discovered by appealing to the following analogy: 
 The classical formula for kinetic energy1

2 mv2 fixes no upper limit on velocity.  Now, 

the theory of relativity shows us that this is incorrect; in reality, the kinetic energy must 

be written:
2

1
1

1
m

v

 
−  − 

, an expression that corresponds to the Lagrangian 

2(1 1 )m v− − , and which leads to an upper limit on velocity, which is taken to be unity 
here. 
 In electrodynamics, the classical Maxwell Lagrangian L = 1

2 (B2 – E2) has a structure 

that is very analogous to that of kinetic energy1
2 mv2.  This Lagrangian leads to an infinite 

proper energy for a point-like particle.  We shall attempt to avoid this infinity by the 
same formal change as in relativistic mechanics by setting: 
 

(7.1) L = 2 2 2
2

1
1 ( ) 1b B E

b

 
+ − −  

 
. 

 
b is a universal constant − the absolute field – which may be taken as equal to unity in a 
number of problems.  The constant, −1, was introduced so that the expression, (7.1), 
would reduce to that of Maxwell’s theory L = 1

2 (B2 – E2) for fields that are small 
(compared to b). 
 In electrostatic case, one has: 
 

(7.2) L = 2 2
2

1
1 1b E

b

 
− −  

 
, 

(7.3) Dr = 
2

2

1
1

r

r
r

EL

E
E

b

∂− =
∂

−
, 

(7.4) Er = 
2

2

1
1

r

r

D

D
b

−
. 
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By virtue of (6.24), one may write: 
 

(7.5) Er = 
4 4

0

1

4

e

r rπ +
, 

by setting: 

(7.6) r0 =
4

e

bπ
. 

 
r0 is a length that we call the electron radius.  (7.5) shows that Er is finite everywhere; for 

r = 0, its value is b =
2

04

e

rπ
, and for

0

r

r
> 1 it differs very little from the Coulomb field 

24

e

rπ
.  The potential is: 

(7.7) ϕ(r) =
0 04rr

e r
E dr f

r rπ
∞  

=  
 

∫ , 

in which: 

(7.8) f(x) =
41x

dy

y

∞

+
∫ . 

 

By substituting y = tan
2

β
, x = tan

2

ξ
, one obtains: 

 

(7.9) f(x) = 1 1
2 221

2

1
(0) ,

21 sin

d
f F

π

ξ

β ξ
β

 = −  
 −

∫ , 

 

in which F(k, ξ) is Jacobi’s elliptic integral of the first type for k =
1

2
= sin

4

π
: 

(7.10)   
0 21

2

1
,

2 1 sin

d
F

ξ βξ
β

  = 
  −

∫ . 

For x = 0, one has: 

(7.11)   f(0) =
1

, 1.8541
22

F
π  = 

 
. 

 
The potential (7.7) has its maximum at the origin and its value at this point is: 
 

(7.12)   ϕ(0) = f(0)
04

e

rπ
= 1.8541

04

e

rπ
. 

 
The variation of the function, f(x), is indicated in the figure 1; it has the same appearance 
as arc cot x.  For example, one has: 
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1 1
2arctan 2 arctan ( )

2
x x

x x

πξ π ξ   = = − = −   
   

; 

 
on the other hand: 

1 1 1
, , ,

2 2 2
F F Fξ π ξ π     + − =     
     

, 

so: 

(7.13)    f(x) +
1

f
x

 
 
 

= f(0). 

 
As a consequence, it suffices to calculate the values of f(x) between x = 0 and x = 1 (or 

between ξ = 0 and ξ =
2

π
). 

 To account for the differences between this theory and Maxwell’s one may calulate 
the free charge density from formula (6.19), which must be: 
 

(7.14)   σ = div E = 2
2

1
( )r

d
r E

drr
, 

 
 By substituting (7.5), one finds: 

(7.15)   σ = 3
2

2 4
0

2

4 (1 )

e

r x xπ +
,  

0

r
x

r

 
= 

 
. 

 
 At a great distance, the density decreases like r−7; at the center, it must be infinite like 
r−1.  The charge 4πσ r2 dr that is contained in the space between two spheres of radius r 
and r + dr is null for r = 0, and, finally, the total charge may be written (by setting x 

= tanϕ ): 

22

0 0
4 cosr dr e d e

ππ
σ π ϕ ϕ= =∫ ∫ ; 

 
as one would expect, it is equal to e. 
 The total energy is calculated by means of (6.30); one obtains: 
 

(7.16)   E0 = 2
0

2

34

e

rπ
f(0) =

2
04

e

rπ
1.2361. 

 
 We may now confirm the hypothesis that Hr3 → 0 for r → 0 and r → ∞ , do which 
we have made use of in the proof of (6.30).  Indeed: 
 

H = L + ED =
2

2 1 1
D

b
b

 
+ − 

 
 

, 
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(7.17)  r3H =
2 2

2 3 4 2
4

0

1 1
1 1 ( 1 )

4 4

e e
b r x x x

b rrπ π

 
    + − = + −   

     

, 

0

r
x

r

 
= 

 
, 

 
and the function of x is precisely zero for x = 0 and x =∞ . 
 We have thus proved that the Lagrangian (7.1) leads to a finite energy for a point-like 
charge at rest.  It is clear that we may equate this energy to the rest mass (multiplied by 
c2, if we return to the usual units), without encountering the same obstacles as in the 
theory of the rigid electron, since out theory is invariant from the relativistic viewpoint. 
 Meanwhile, we may use this property to determine the absolute field or the equivalent 
length, r0, by identifying our point-like charge with the electron.  Upon passing to 
electrostatic units, we must leave the factor 4π aside in (7.17); by setting E0 = mc2, one 
then obtains: 

(7.18)   r0 = 1.2361
2

2
0

e

m c
= 3.47 % 10-13 cm., 

 
and 

(7.19)   b =
2

0

e

r
= 3.96 × 1015  E.S.U. 

 
The order of magnitude for the electron radius r0 is correct.  The value of the field b is 
enormous; all of the experimentally realizable fields are negligible compared to it.  
Therefore, one must not expect to measure an arbitrary effect that is directly related to the 
existence of a finite maximum field [1].  The differences between this theory and 
Maxwell’s theory are noticeable only for distances of order 10−13 cm., i.e., for nuclear 
dimensions.  This result has great importance; it shows that the true electrodynamical 
laws that govern the elementary processes of nuclear transformations may be very 
complicated, or else one would be forced to confirm the differences with the Maxwell 
theory when one is confined to examining extra-nuclear phenomena. 
 Furthermore, one may not solve the field equations for the case of several point-like 
charges at definite positions in a rigorous fashion.  However, Pryce [2] has proved that 
the field is uniquely determined by the charges.  We write the relation between D and E 
[(7.3), (7.4)] in the following form, in which we have set b−2 = α: 
 

(7.20)   D =
21 Eα−

E
,  E =

21 Dα+

D
. 

 
One may remark that for α = −1 one obtains the equation for minimal surfaces in four-
dimensional space; indeed, the integral that must be varied: 
 

(7.21)   2 21 1 ( )E dxdydz grad dxdydzϕ+ = +∫ ∫ , 
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represents the area of the surface, ϕ = ϕ(x, y, z).  The theorem of uniqueness to which we 
alluded above is likewise true for the geometric problem. 
 Let ϕ1, ϕ2 be two solutions to (6.23) that correspond to the vectors E1, D1, and E2, D2; 
it is convenient for all that follows to define a vector and a scalar by the formulas: 
 
(7.22)   G = (ϕ2 − ϕ1)(D1 – D2), 
 
(7.23)    u = (E1 – E2)(D1 – D2). 
 
The proof of the uniqueness theorem then reduces to that of the following lemma: 
 
 LEMMA. – One has u ≥ 0 at any point.  The equality is valid only for: 
 

E1 = E2. 
 
u may be written in one of the following two forms: 
 

u = (E1 – E2) 1 2

2 2
1 21 1E Eα α

 
 −
 − − 

E E
, 

 

u = (D1 – D2) 1 2

2 2
1 21 1D Dα α

 
 −
 + + 

D D
. 

 
If one can prove the lemma by using the first of these two expressions with a choice of α 
then one may likewise prove it for – α; indeed, it will suffice to exchange both the D’s 
and E’s in them and use the second expression.  Therefore, it is not necessary to treat the 
case of the minimal surface α = −1 separately. 
 Take α = 1; one will have: 
 

2u = (E1 – E2) 1 2 1 22 2 2 2
1 2 1 2

1 1 1 1
( ) ( )

1 1 1 1E E E E

    
    + − + − +

    − − − −    

E E E E  

 

  = 2 2 2
1 2 1 22 2 2 2

1 2 1 2

1 1 1 1
( ) ( )

1 1 1 1E E E E

   
   − − + − +
   − − − −   

E E E E . 

 

 If 2 2
1 21 E E> ≥  then one will have

2 2
1 2

1 1

1 1E E
≥

− −
, and conversely.  Therefore, the 

first term is never negative, and one may annul it only if 2 2
1 2E E= ; the second one is 
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essentially non-negative, and becomes zero only when E1 = E2.  The lemma is therefore 
proved (6). 
 
 From (7.22), one obtains: 
 

div G = div[(ϕ2 – ϕ1)(D1 – D2)] 
 = (D1 – D2) grad(ϕ2 – ϕ1) + (ϕ2 – ϕ1) div(D1 – D2). 

 
 Since D1 and D2 are solutions of div D = 0, and E1, E2 are given by: 
 

E1 = − grad ϕ1,   E2 = − grad ϕ2, 
one has: 
(7.24)    div G = (D1 – D2)(E1 – E2) = u. 
 
 Now let R be a region of three-dimensional space that is bounded by a surface Σ on 
which the value of ϕ is given; one thus has ϕ2 = ϕ1, and as a consequence, G = 0.  By 
virtue of Gauss’s theorem, when applied to (7.24), one will have: 
 

(7.25)   0nR
u dxdydz G dσ

Σ
= =∫ ∫ , 

 
thus u = 0 in R since u is non-negative.  In this case, the lemma demands that E1 = E2 in 
R; since ϕ2 = ϕ1 on Σ, one will likewise have ϕ2 = ϕ1 in R. 
 In the same fashion, one may prove that E1 = E2 when one is given the value of the 
normal component of D on Σ, since one likewise has Gn = 0 in this case; nonetheless, ϕ1 
and ϕ2 are not equal, but differ by a constant. 
 Nevertheless, the most important problem for physical applications is not concerned 
with the questions of boundary conditions, but wit the treatment of point-like charges. 
 One may prove the following results: 
 
Assume that the positions and values of a set of charges are given.  If the vector D is of 
order r−2 in a neighborhood of one charge and at infinity then equations (6.23) have one 
and only one solution in all of space. 
 
 To show this take R to be the space between a sphere of large radius ρ that includes 
all of the charges in its interior and a series of small spheres of radius ε that are centered 
on each of the charges and do not intersect each other.  By virtue of Gauss’s theorem, 
which is applied by always considering the exterior normal, one may write: 
 

                                                
 (6) One may easily see that a sufficient condition for this lemma in an arbitrary unitary theory is: 
 

0
L

F

∂ >
∂

,  
2

2
2 0

L L
F

FF

∂ ∂+ >
∂∂

. 

 
This condition expresses the ideas that D and E have the same direction, and that their values increase or 
decrease together. 
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n nR
u dxdydz G d G d

ρ ε
σ σ= −∑∫ ∫ ∫ . 

 

Since the magnitude of the charge is e = nD dσ∫ , one has: 

 

1 2( ) 0nD D d
ε

σ− =∫ . 

 
In the neighborhood of a definite charge ϕ = ϕ0 + O(ε−1); therefore: 
 

0 0 1
1 2 1 2[ ( )]( )n nG d O D D d

ε ε
σ ϕ ϕ ε σ−= − + −∫ ∫  

   = 0 0 1
1 2 1 2( ) ( ) ( )nD D d O dϕ ϕ σ ε σ−− − +∫ ∫ , 

 
and since dσ = ε2dω, in which dω is the element of the unit sphere, one will have: 
 

( )nG d O
ε

σ ε=∫ . 

 
By hypothesis, D is O(ε−2) at infinity; from (7.20), one concludes that E = O(ε−2), hence 
ϕ = O(ε−1).  The contribution of the large sphere is therefore: 
 

3 1( ) ( )nG d O d O
ρ ρ

σ ρ σ ρ− −= =∫ ∫ ; 

hence: 
1( ) ( )

R
u dxdydz O Oε ρ −= +∫ . 

 
 We make ε go to zero, ε → 0, and ρ to infinity, ρ → ∞ ; the right-hand side goes to 
zero.  Since the integral is non-negative and non-decreasing, it must, consequently, be 
zero.  The lemma then demands, as before, that one have E1 = E2 at every point of R. 
 Following my suggestions, Pryce has succeeded in completely solving the 
electrostatic problem in two dimensions [3].  The fundamental idea that he used is 
precisely that of using the equivalence of this problem with that of minimal surfaces to 
the best advantage.  There exists a method of solution for the latter problem, which was 
described by Weierstrass, and which consists of representing x, y, and ϕ by analytic 
functions of a complex parameter.  One may transpose this method without adding 
anything and apply it to the electrostatic problem in two dimensions.  We confine 
ourselves to indicating the solution. 
 Let f(ξ) be an arbitrary function of the complex parameter ξ. 
 One has: 

(7.26)  
2 2

1 1
1 ( ) , 1 ( ) ,

2 ( ) ,

x f d y i f d

d
i f

ξ ξ ξ ξ
ε ε

ξϕ ψ ξ
ξ

    = + −   
    

 + =


∫ ∫

∫

R = R
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in which RA signifies the real part of the complex number A. 

 The force that is exerted on a closed domain of the xy-plane that is bounded by a 
curve is expressed by means of the line integrals: 
 

(7.27)  
11 12

21 22

[ cos( , ) cos( , )] ,

[ cos( , ) cos( , )] ,

X X v x X v x ds

Y X v x X v x ds

 = +


= +

∫

∫
 

 
in which v is the exterior normal to the element ds.  Into this formula we introduce the 
expressions, (5.12), for the Maxwell tensions (for the two-dimensional case); the 
expression for the components of the force as a function of the parameter ξ will be: 
 

(7.28)  

( ) ,

1
( ) .

C

C

i
X f d

Y f d

ξ ξ
π

ξ ξ
π

  = − 
  


  = −   

∫

∫

R

R

 

 
 The integrals must be taken over the closed curve C that bounds the domain 
considered.  When this domain does not contain any charge, X and Y are null, by virtue of 
Cauchy’s theorem.  When this domain does contain a charge, X and Y have finite values 
that represent the forces that are exerted on it (and which are due to the other charges).  In 
the following paragraph, we discuss the problem of forces in detail and examine, in 
particular, the extent to which formula (7.27) follows from fundamental hypotheses. 
The choice of the function f(ξ) is subject to a number of restrictions that follow from an 
exact analysis of the physical significance of the magnitudes that are expressed by means 
of this function.  One finds that | ξ | [ 1, i.e., that the representative point ξ must be found 
in the interior of or on the circle ξ = 1, and that f(ξ) must be real for any | ξ | = 1; hence, 
f(ξ) must not have (regular) zeroes in | ξ | = 1; it may have zeroes on the circle, | ξ | = 1, 
but they must be simple.  f(ξ) may be multi-valued; on one of the corresponding Riemann 
surfaces f(ξ) must be infinite at the point ξ = 0, while remaining finite for all of the other 
sheets.  Finally, the developments must be well defined. 
 When one chooses a function f(ξ) that satisfies these conditions, one may show, in 

general, that the field D is given by D = D
r

r
 in the neighborhood of a charge, with: 

 

D =
2 | ( ) |F

r

θ
,  F(θ) = f(eiθ), 

 
in such a way that the charge is represented by: 
 

(7.29)    e =
2

0

1
( )F d

π
θ θ

π
− ∫ . 
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In this case, the forces are given by the following formulas: 
 

(7.30)  X =
2

0

1
( )cosF d

π
θ θ θ

π
− ∫ , Y =

2

0

1
( )sinF d

π
θ θ θ

π
− ∫ . 

 
The simplest choice is f(ξ) = constant, namely: 
 

(7.31)   f(x) =
1

2
a−  (a = real). 

 
In this case, the integrals of (7.26) are easily calculated, and give: 
 

(7.31a)  ϕ = a sin−1 r

a
 
 
 

, ψ = aθ  (e = a), 

 
in which r, θ are polar coordinates.  This is the solution, in two dimensions, of the 
problem of one point-like charge [and corresponds to the one that was previously given 
for three dimensions, namely (7.7)]. 
 In order to represent the case of two point-like charges, one must take f(x) to be a 
function with two manifestations whose type depends on whether one is dealing with 
charges of the same or opposite signs, namely: 
 
for two charges of the same signs: 
 
 

(7.32) f(ξ) =
1

k a a ξ
ξ

 ′+ − − 
 

 

  

1
21 1

2 2 1a aξ ξ
ξ ξ

−     ′× − − − − +    
    

  with ( , 1)a a′ > , 

 
and for two charges with opposite signs: 
 

(7.33) f(ξ) =
1

2 cosk a α ξ
ξ

 
− − 

 
 

  

1
2

2 2 1 1
4( sin ) 4 cos 1a aα ξ α ξ

ξ ξ

−      × − − + + + +     
     

 ( 0)a > . 

 
The expressions for the potential and force are too complicated to be reproduced here.  
Meanwhile, consider the particular case of two charges with equal but opposite signs; in 
this case, f(ξ) has the following simple form: 
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(7.34)    f(x) =
1

2

k

a ξ
ξ

′

− −
. 

 
The field is analogous to that of a classical dipole, except in a neighborhood of the 
charges.  It gives the relatively simple expressions for the charge, force, and distance: 
 

(7.34a)   

2

0

2

0

0

,
2( cos )

cos
,

2( cos )

1 ( 1)cos
2 .

3 ( 1)cos

k d
e

a

k d
X

a

a a
r k d

a a

π

π

π

θ
π θ

θ θ
π θ

θ θ
θ

 ′
=

−
 ′ =

−
 + − −′ =

+ − −

∫

∫

∫

 

 

 One sees that 
X

e
 and 

r

e
 depend only upon the constant a; by eliminating it, one 

obtains an expression for 
X

e
 as a function of 

e

r
 that reduces to X =

2e

r
 at a great distance, 

as one would expect for a two-dimensional problem with a logarithmic potential.  At 
small distances, the forces remain finite and tend to X = e. 
 This latter result may be generalized for the case of the problem of two different 
charges; in this case, X tends to the absolute value of the smallest charge. 
 Pryce has shown the existence of an interesting solution that corresponds to a singular 
line of finite length, and which is given by: 
 

(7.35)  f(ξ) =
2(1 )

a ξ
ξ

−
+

  (a real). 

 
At a great distance, it has the character of a dipole solution.  Finally, Pryce has shown 
that the function: 

(7.36)  f(ξ) =
2

2

2

1 2
k

a

ξ
ξ ξ

 
−  − + 

 (a > 0), 

 
corresponds to a point-like charge in a constant external field E.  He found: 
 

(7.36a)  E =
1

r
,  e =

2

2

1

ka

a −
, X =

2

2

1

k

a −
= eE; 
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the force is equal to the product of the charge and the field, as in Maxwell’s theory.  We 
shall verify later on (sec. 10) that this result may be deduced from much more general 
hypotheses. 
 Unfortunately, it seems impossible to transpose the method in the case of two 
dimensions to that of three dimensions.  Aside from the problem of a point-like charge at 
rest, there is only one other problem that one may treat in three-dimensional space, at 
least by approximation methods: it is the problem of the stationary field of a constant 
current that is filamentary and circular.  I have suggested the study of the case of an 
annular singularity in the hope that it may provide us with a model that is applicable to 
the proton. 
 The energy of this singularity may have no particular value since we are given that it 
depends on the radius of the circle and the intensity of the current.  Nevertheless, this 
ambiguity is reduced by applying the quantum postulate, which demands that the kinetic 
moment be a multiple of h / 2π.  I hope that the solution to this problem will give us the 
possibility of accounting for the high value of the mass of the proton.  M. B. S. Madhava 
Rao has taken pains to carry out the complicated calculations that this solution demands 
[4].  One may perform them completely, due to the fact that the nonlinearity of the 
equations affects the solution only the immediate neighborhood of the ring, the interior of 
a torus, to whose exterior one may apply Maxwell’s equations.  Now, on the one hand, 
one knows the solution to Maxwell’s equations for an annular surface quite well, and, on 
the other, that the solution in the interior of a torus may be found by a simple 
approximation method; it is therefore perfectly possible to obtain an approximate solution 
that satisfies the equations at every point and from it, one can calculate the total energy E, 
the kinetic moment M, and the magnetic moment m.  The final result is the following: 
 

(7.37)  E =
2

1

4 16
log

e a

a r

 
 
 

, M = 4e2v
1

16
log

a

r

 
 
 

,  m =
2

aev
, 

 
in which e is the total charge, which is uniformly distributed on the ring of radius a, v is 
the velocity of rotation, and 

r1 = 16π 
2

2
0

1

1

a

r v

 
 

− 
, 

 
in which r0 is the radius of the electron that was defined by (7.6), (7.18). 
 The primary consequence that one may infer is the following one.  One has: 
 

(7.38)    
2 2

m e e

M E µ
= = , 

 
in which E = m is the rest mass; this relation is identical to the one that exists between the 
magnetic moment and angular momentum of an electron orbital in classical theory.  
Therefore, such an annular singularity certainly does not constitute a model for a particle 
with “spin,” for which this ratio is equal to twice the preceding value. 
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 By taking v close to c (the velocity of light) and equal to r0 / 17, one obtains a mass 
around 1840 times that of the electron (a point-like charge), and, at the same time, an 
angular momentum equal to h; however, this state of the ring does not constitute a stable 
equilibrium position. 
 This result shows that the nonlinear theory of electromagnetic fields does not provide 
a solution to the problem of two fundamental elementary masses [5]. 
 
 
 8.  Other examples of unitary theories. – We now examine the question of knowing 
whether one justify the choice of the function, (7.1), by reasons that are more 
fundamental than the ones that we gave, or if there exist other functions that are just as 
well adapted, or better, to the objective we are pursuing. 
 Infeld has proposed an argument [1] that leads to a function that slightly different 
from (7.1) and coincides with it in the electrostatic case; the calculation of the field and 
the energy of a point-like charge thus remains the same as in the present situation. 
 Infeld’s idea is closely related to the concept that Einstein constantly followed that 
the gravitational field and the electromagnetic field are, in reality, two aspects of one and 
the same “unified” field ukl. 
 We assume that this field is arbitrary from the standpoint of its symmetry 
characteristics; in any case, it may be additively separated into a symmetric part and an 
antisymmetric part: 

ukl = gkl + fkl, gkl = glk, fkl = − flk . 
 
 The first part describes the metric, or gravitational, field, and the second part, the 
electromagnetic field.  The Lagrangian will be the simplest function that makes the 
integral I invariant under any arbitrary transformation; this well-known function is the 
square root of the determinant of ukl (taken with the – sign): 
 

1| | | | | | |1 |u g f g fg−− = − + = − + . 
 
Now, from sec. 4, we have already studied the matrix, a(1) = 1 + fg−1; we have seen that, 
from (4.18): 

| a(1) | = | 1 + fg−1 | = 1 + F – G2. 
 
If we wish that L should coincide with 12 F for weak fields, then it will suffice to subtract 

1 from the preceding expression; one thus obtains: 
 

(8.1)    L = 21 F G+ − − 1. 
 
This expression differs from (7.1) by the term − G2 = − (E·B)2, which is annulled for an 
electrostatic field.  Meanwhile, since any function of F, G is likewise permissible as a 
Lagrangian L, we may imagine the term − G2 being replaced by –λG2, in which λ is an 
arbitrary constant; for λ = 0, one obtains (7.1) (with b = 1).  In the sequel, we will always 
employ the Lagrangian (8.1); by suppressing the terms in G2, we obtain the results that 
correspond to (7.1). 
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The argument that led to (8.1) is not very convincing since, by treating gik and fik on the 
same plane, one must obtain the electromagnetic equations as well as the gravitational 
equations by means of the same Lagrangian.  Another objection to the process that 
consists of simply adding the two types of fields to obtain ukl is the enormous difference 
between their values, as expressed in the usual units.  Nevertheless, we shall study the 
function, (8.1), because of its remarkable properties. 

 A first property is the following: the Hamiltonain that corresponds to 21 F G+ −  − 
1 is exactly that same function, with the F and G replaced with the dual invariants P and 
Q (6.7).  One easily finds that one has the relations: 
 

(8.2)  
2 2 2

2 2 2

1 1

1 1

F G Q

G P Q

+ − +=
+ + −

 and  G = Q 

 
between F, G and P, Q, in which: 
 

(8.3)    H = 21 P Q+ − − 1. 
 
 Likewise, the other fundamental functions U and V, (6.14) and (6.15), resp., have 
simple values: 

(8.4)   
2 2 2

2 2 2

1 1,

1 1,

U D B S

V E H S

 = + + + −


= + + + −

 

 
in which S2 is the square of the Poynting vector [see (6.13)]: 
 
(8.4a)   S2 = (D × B) 2 = (E × H) 2. 
 
 Another interesting form for the theory was discovered by Schrödinger [2].  It 
employed the complex combinations: 
 
(8.5)   F = B – iD, G = E + iH, 

 
which form a true six-component vector; one confirms that the appropriate Lagrangian is 
the following: 

(8.6)    
2 2−′ = F G

L
FG

; 

 
its partial derivatives with respect to F and G are precisely equal to the complex 
conjugates of F and G: 

(8.7)   F* =
′∂
′∂
L

G
, G* =

′∂
′∂
L

F
. 
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Schrödinger has proved these relations by a detailed study of Lorentz transformations.  
He has shown that there exists a “normal” Lorentz system in which all of the four 
vectors, F, G, F*, G*, are parallel at a given point; when one develops the first theory in 

this particular system, one may easily prove that it is identical to the one that is obtained 
by means of the preceding complex representation. 
 The most remarkable property of′L is its character as a rational function: it is simply 
the quotient of two invariants.  Nevertheless, this advantage is purely formal; the square 
root appears again when one wishes to perform a concrete calculation.  Schr`dinger has 
likewise drawn attention to the fact that this complex representation permits two types of 
fields; the one, for which the two vectors, F and G are parallel in the normal Lorentz 
system, and the other, for which the same vectors are anti-parallel.  There is no valid 
argument that permits us to exclude the one or the other of these cases.  Now, in the real 
form of the theory, this difference corresponds to the possibility of taking the + sign or 
the – sign under the radical; it therefore seems that one must admit the possibility of this 
double sign in the original theory [3]. 
 Madhava Rao [4] has undertaken a detailed comparison of the formulas of 
Schrödinger with the formulas of our theory. 
 P. Weiss [5] has proposed another complex form for the theory that is essentially 
new.  He introduces the space vectors B ± iE and D ± iH, which do not collectively 
define a six-component vector.  He proves that the group of orthogonal transformations 
of complex three-dimensional vectors is isomorphic to the group of transformations of 
vectors with six real components (i.e., the antisymmetric second rank tensors in four-
dimensional space) that is induced by the Lorentz group.  This theorem permits us to 
present the entire theory in a perfectly symmetrical form. 
 Weiss then criticized the Lagrangian (8.1), and proposed to replace it by the real part 
of the following complex function of the invariants F and G: 
 

(8.8)     1 2( )F iG+ +  − 1; 

 
nevertheless, his arguments do not seem convincing to me. 
 The only reasonable proposal for the adoption of a general principle from which the 
choice of Lagrangian must follow uniquely was made by Infeld [6]; it demands that the 
field components, fkl(B, E), present no singularities. 
 Consider a point-like charge with one of the Lagrangians (7.1) and (8.1), which 
coincide in the electrostatic case, moreover.  In these two cases, the point at which the 
charge is found is a singular point not only for D, which varies like e / r2, but also for E, 
since all of the components of E jump from –1 to +1 (in natural units for which b = 1), 
when one traverses the singularity along a line.  This singularity is inoffensive since it 
does not alter the character of the energy that its magnitude is finite.  Nevertheless, it is 
interesting to search for a Lagrangian for which E and its first derivatives are everywhere 
continuous, including the central point of a spherically symmetric field. 
 Infeld has discovered a similar function by a systematic study that I would like to 
sketch out in what follows.  He starts with the hypothesis that the complete symmetry of 
the theory, which is expressed by its character as a self-dual theory, must allow us to use 
a variational principle that simultaneously contains the two groups of self-dual tensors.  
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He introduces an action function T that depends on fkl(E, B) and * ( , )klp D H , naturally by 

the intermediary of the invariants F and P (G = Q is excluded).  The fkl must be derived 
from potentials and the pkl, from “anti-potentials,” in such a fashion that they satisfy two 
groups of integrability conditions: 
 

(8.9)   
*

0
kl

l

f

x

∂ =
∂

,   0
kl

l

p

x

∂ =
∂

. 

 
 In turn, one restricts the generality of the function T(F, P) by imposing the condition 
that fkl and pkl must be “canonically conjugate,” i.e., that one has: 
 

(8.10)   
* *

*

2 ,

2 .

kl kl
kl

kl kl

kl

T T
p f

Ff

T T
f p

Pp

∂ ∂ = = ∂∂
 ∂ ∂ = =
 ∂∂

 

 
These relations must permit us to calculate the*

klp as functions of the fkl.  Meanwhile, their 

number is equal to 2 × 6 = 12, and, as a consequence, in order for them to be compatible 
it is necessary that T satisfy certain conditions that are expressed by: 
 

(8.11)  4 1
T T

F P

∂ ∂ =
∂ ∂

,   0
T T

F P
F P

∂ ∂+ =
∂ ∂

. 

 
The latter condition shows that T is a homogenous function of degree zero in F and P – in 
other words, that it depends uniquely upon: 
 

(8.11a)    ε =
F

P
− . 

 
 A simple discussion of the characteristics of T(ε) leads to the following result: In 

order for E to be continuous at a point where D ≈
2

1

r
, it must be of the form: 

 
(8.12)    T = − log ε + 1 + ε + …, 
 
in which the terms that are indicated by dots contain higher powers of ε. 
 When one neglects these terms, one obtains the simplest T(ε); the corresponding 
Hamiltonian is: 
(8.13)    H = 1

2 log(1 + P). 

 
The Lagrangian has a more complicated form, but the formula that relates pkl and fkl is 
simple, and is expressed by means of P or F: 
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(8.14)   fkl =
1

klp

P+
, pkl =

1 1 4

2

F

F

− ± +
fkl. 

 
 The sign of the radical must be chosen in such a fashion that the continuity condition 
for the field components is satisfied.  The critical points are defined by 1 + 4F = 0; at 
these critical points - which form a surface, in general – F attains its minimum F = − 1

4 , 

and the radical disappears.  In order to preserve continuity, the sign of the radical must be 
changed when one traverses a surface F = − 1

4 .  Since pkl → fkl at a great distance from the 

charges, we see that it must take the “plus” sign in these regions; therefore, there exists a 
surface − 1

4 = F that surrounds a charge, in whose interior it must take the “minus” sign. 

 This reasoning is confirmed by the result of actual calculation for the problem of an 
isolated point-like charge.  Instead of (8.13), we write: 
 

(8.13a)    H =
2

2
log 1

2

b P

b
 + 
 

; 

 

with P = D2, Dr = 2

1

4

e

rπ
, one obtains: 

 

(8.15)  Er =
2

2 4
04 1

e x

r xπ +
  0

0

;
4

r e
x r

r bπ
 

= =  
 

. 

 
The surface, in whose interior the sign of the radical in (8.14) changes, is a sphere whose 

radius is defined by (Er/b)2 = 
22

1
441

x

x

 
= + 

, namely, x = 1.  The free charge density is: 

 

(8.16)   σ = div E =
2 4 2

0

4

4 (1 )

e x

r xπ +
; 

 
it is annulled for r = 0, and, for large r it decreases like r−7, exactly as in the case of sec. 
7.  One may easily verify that the integral of σ over all space is equal to e. 
 For the potential, one finds: 
 

(8.17)   ϕ(r) =
2

4
04 1x

e y
dy

r yπ
∞

+∫ . 

Its value for r = 0 is: 

(8.18)   ϕ(0) =
0

2

4 4

e x

rπ
=

04

e

rπ
1.11, 

 
and, by virtue of (6.30), the energy is: 
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(8.19)   E0 =
2

0

2

4 6

e

r

π
π

 =
2

04

e

rπ
0.741. 

 
The numerical coefficient is noticeably smaller than in (7.16). 
 As one easily sees, there exists no solution to a point-like magnetic charge.  This 
theory therefore accounts for the empirical confirmation that electricity and magnetism 
are not interchangeable.  This fact seems to constitute the most serious argument in favor 
of the continuity hypothesis on E; indeed, since the singularity of D may not be avoided, 
the existence of a discontinuity in E has no great importance, although it remains 
inoffensive, i.e., it leaves energy finite. 
 
 
 9.  The conditions for dynamic equilibrium [1]. – Now consider the problem of the 
motion of a point-like charge under the action of an external electromagnetic field. 
 Before we do that, we must explain what we mean by the latter expression – “external 
electromagnetic field” – which necessitates certain clarifications in our nonlinear theory, 
in which fields may no longer be superposed.  It is obvious that we intent “external field” 
to mean the field at an infinite distance from a point-like charge, which must be 
considered as having been given.  Naturally, this is possible only if we are concerned 
with doing an approximate calculation; indeed, if the particle moves with a variable 
velocity, it will emit waves that will be functions of the motion and which one may not 
consider as having been given.  Therefore, we are principally concerned with “quasi-
stationary” motions, here, for which one may neglect the reaction that is produced by the 
emission of waves. 
 We make no particular hypothesis concerning the Lagrangian; we only admit that the 
field, its energy, and momentum all have finite values. 
 One may endlessly debate the question of whether the establishment of new equations 
of motion does or does not demand new hypotheses.  In our first article, Infeld and 
myself treated this problem by appealing to a variational principle; we have formulated 
this principle in such a manner that the integral must be stationary for not only variations 
of the field in space, but also for variations of the world-lines of the charge. 
 Leaving aside the question of whether the mathematical method that have used is 
correct or not, we continue to think that out viewpoint is justified, in principle, and that if 
one wants to make it completely acceptable, only a slight alteration is sufficient. 
Feenberg [2] has raised the following objection: having proved that one may determine a 
field for any arbitrary motion of the charge, he concluded from this that the actual motion 
must be fixed among all of the other possible ones by means of supplementary 
hypotheses.  Pryce made remarks that were analogous to the preceding ones.  I think that 
this objection falls short of the mark.  In order to show this,  I would like to consider the 
very simple example of a problem in the calculus of variations that has one trait in 
common with ours, namely, the following problem: to find the shortest distance from a 
point P to a line L.  The common trait consists of the fact that one may not give the 
position of the point Q of closest approach to P on the line; in our problem it corresponds 
to the unknown motion of the charge. 
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By varying the integral that gives the distance, one obtains: 
 
1. A differential equation that expresses that the extremal must be a straight line; 
2. A boundary condition that expresses that the extremal must be normal to L. 

 
The viewpoint that was adopted by Feenberg leads us to neglect the boundary conditions 
that follow from the variational problem.  To give the motion of the charge is the same as 
arbitrarily giving the angle by which the extremal must cut the line L.  For a given angle 
− for example, 45o − there exists a solution to the problem, namely, the curve PR (fig. 2), 
which is rectilinear (therefore, it satisfies the differential equation), and which cuts the 
line L at 45o.  Nevertheless, it does not realize an extremum of the initial integral; indeed, 
the length of any curve that is analogous to C (fig. 2) (a straight line from P to a 
neighborhood of L, which it must intersect at an angle of 45o) is obviously smaller than 
PR.  The lower limit of the length of all these curves is the length of the perpendicular 
PQ; this does not belong to the category of the preceding curves since it does not cut L at 
45o.  From this analysis, it results that the integral has no minimum when one imposes 
this arbitrary condition.  Such a minimum exists only for the “natural” boundary 
conditions, which express that the angle with L must be 90o. 
 In a similar fashion, the solution to the field equations for an arbitrary motion of the 
charge does not necessarily provide an extremum for integral I (or, more correctly, “does 
not necessarily annul the first variation,” assuming that the integral is not positive 
definite).  We must find what the natural boundary conditions are, and see whether they 
correspond to a motion of the charge.  If this is not the case, then we must conveniently 
modify the integral we start with and use the new boundary conditions. 
 In section 3, we calculated the variation on the boundary for an arbitrary four-
dimensional surface; we found, see (3.23), (3.24), and (3.24a), that: 
 

(9.1)   δI = ( )k k
k kS

x duδ δϕ+∫ X P , 

with 
(9.2)   Xk =

i
k iNT ,  Pk = pik Ni . 

 
 The surface S in our problem is a tube of infinitely small section that surrounds the 
world-line of a singularity (a singularity of D, since E may be continuous, cf. sec. 8).  We 
introduce parameters on S in the form of time t0 along the world-line, and two other 
parameters (polar coordinates) that define the position of the surface element in two 
dimensions dσ of an infinitesimal sphere s in three-dimensional space t0 = const. 
Therefore, on the surface of sphere, one has: 
 

1 2 3

0 0 0

0
x x x

t t t

∂ ∂ ∂= = =
∂ ∂ ∂

,  
4

0

1
x

t

∂ =
∂

, 

 
and the definition (1.12) of Ni gives: 
 
(9.3)   (N1, N2, N3) du = n dσ dt0,   N4 = 0, 
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in which n is the unit vector that is directed along the normal to the sphere s, and dσ is its 
surface element. 
 We now introduce the vectors: 
 
(9.4)  X(Xx, Xy, Xz); Y(Yx, Yy, Yz); Z(Zx, Zy, Zz), 
 
and the integrals are taken over the sphere s (and indicated by an O): 
 

(9.5)  
O

dσ∫ Xn  = Fx, 
O

dσ∫ Yn  = Fy, 
O

dσ∫ Zn  = Fz, 

 

(9.6)   ( )
O

dσ×∫ nH = γγγγ, 
O

dσ∫ nD  = ε,  
O

dσ∫ Sn  = f. 

 
We may write (9.1) in ordinary vectorial notation in the form: 
 

(9.7)   δI = 0( )f t dtδ δ δ εδϕ− + + +∫ F r γ αγ αγ αγ α , 

 
in which F is the vector with components (9.5) and r  is the radius vector with 
components x, y, z.  δr  and δt are the variations of the world-line and δa, δϕ are the 
variations of the potentials on the world-line. 
 The natural boundary conditions are: 
 
(9.8)   F = 0,  f = 0, 
and 
(9.9)   γγγγ = 0,  ε = 0. 
 
From the definition (9.6), one sees that (9.9) signifies the complete absence of charge and 
current. 
 Therefore, a field that is determined by a point-like charge does not correspond to a 
null first variation of I.  In fact, the integral I does not permit the existence of any point-
like charge; for this to be the case, one must correct the statement of the variational 
principle by adding another integral to the primitive integral, one which is taken over the 

world-line of the singularity.  Since the proper time of the world-line is dτ = 2
01 v dt− , 

one will have: 

(9.10)    I = k
kdx e u dϕ τ+∫ ∫L . 

 
In this expression, the constant e represents the charge of the singularity, and uk is the 
world-vector of velocity, which is related to the ordinary vector by the relations: 
 

(9.11)   (u1, u2, u3) =
21 v−

v
,  u4 =

2

1

1 v−
. 

 
The line integral may be likewise written: 
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(9.12)    0( )k
ku d dtϕ τ ϕ= +∫ ∫ va . 

 
By varying a and ϕ in this new integral, one confirms that the natural boundary 
conditions (9.9) must be replaced by the following: 
 

(9.13)  γ · ( )
O

dσ×∫ nH = ev,  ε ·
O

dσ∫ nD = e, 

 
whereas the first conditions (9.8), as well as the field equations, do not change. 
 We must therefore consider (9.10) as the exact expression of the integral that must be 
varied; (9.13) expresses that the charge generates the field.  (9.8) represents the 
conditions for dynamic equilibrium, which one may deduce from the equations of motion 
(7). 
 Obviously, we are making a new hypothesis when we admit that (9.8) remains the 
same as before and does not need to be modified.  This hypothesis amounts to admitting 
that there does not exists a mass that is concentrated at a point, but that any mass is of 
electromagnetic origin, and, as such, is distributed over the field that surrounds the 
charge. 
 The discovery of the neutron (and the existence of the neutrino, if it is confirmed) has 
cast a shadow of doubt on the truth of this assumption.  Meanwhile, the essential problem 
for us is not the question of the electromagnetic origin of mass, but that of the elimination 
of the infinite masses that Maxwell’s theory implies.  We estimate that this problem is 
completely solved by the considerations that were discussed in the preceding sections and 
by the deduction of the laws of motion that we shall give.  In the latter, all mass has an 
electromagnetic origin; if a supplementary one exists, it will suffice to simply add it to 
the latter.  Personally, I believe that the concept of the mass representing the proper 
energy of the field of a singularity will be preserved, just as one must abandon the usual 
electromagnetic theory in favor of a more satisfying one (for example, in favor of the 
theory that is based on the hypothesis of the neutrino, which was suggested by de Broglie 
[4] and developed by Jordan and Kronig [5]). 
 Having arrived at this point, we must discuss the influence of gravitation on 
electromagnetic phenomena in more detail. 
 B. Hoffman [6] has solved the system of simultaneous equations (3.5), (3.13), and 
(3.15) of gravitation and electromagnetism in the case of a spherically symmetric field 
and with a function L of the form (7.1) or (8.1).  The calculations are too long for us to 
reproduce them here; we shall content ourselves by giving the results, in which we shall 
simplify certain important points, moreover.  Hoffmann included the cosmological term 
in the equations for gravitation and assumed the existence of magnetic poles that coincide 

                                                
 (7) Pryce has proved that by choosing a dual variational principle (6.8), and replacing the integrability 
conditions (6.10) by: 

ik
i

k

p
j

x

∂ =
∂

, 

 
in which j1 designates the charge-current vector density, one obtains not only the same field equations (6.9), 
but also the conditions (9.13) of dynamic equilibrium [3]. 
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with point-like electric charges; we ignore the terms in the equations that correspond to 
these hypotheses. 
One may show that there exists a system of coordinates in which the world-line element 
has the following form: 
 
(9.14)   ds2 = A dt2 – A−1 dr2 – r2(dθ2 + sin2θ dϕ2), 
 
and in which the electromagnetic field of a point-like charge is exactly the same as the 
one that was given in section 7.  This amounts to saying that by a convenient choice of 
coordinate system gravitation has absolutely no influence on the electromagnetic field of 
a particle at rest.  This result is not surprising if one recalls that the field equations have 
the form of the generalized Maxwell equations [cf. sec. 5, (5.4)] in any coordinate 
system, provided that one considers (E, B) as a tensor and (D, H) as a tensorial density. 

 The magnitude A – viz., Einstein’s gravitational potential – is given by: 
 

(9.15)   A(r) = 1 – 
2

r
[m0 + m(r)], 

 
in which m0 is an integration constant, and: 
 

(9.16)   m(r) = 2

0
4

r
Ur drπ ∫ , 

 
represents the fraction of the electromagnetic energy that is contained in the interior of a 
sphere of radius r; for the Lagrangian, (7.1), it is equal to: 
 

(9.17)   2

0
4

r
Ur drπ ∫ = 0

2
2 2

0
0

1
4 ( 1 )

4

r

r
e

x x dx
r

π
π

  + − 
 

∫ , 

 

and this expression is proportional to r for small r; therefore, its contribution
( )m r

r
 to the 

potential A remains finite for r → 0. 
 For a null charge m(r) = 0, one has the well-known ds of Schwarzschild, with A = 1 

− 02m

r
, which must be infinite for r = 0.  m0 represents the gravitational mass of the 

uncharged sphere, which signifies that the geodesics of space that are defined by the 
preceding ds coincide approximately with the trajectories of a body that takes the form of 
a point of mass m0 that moves according to Newton’s law. 
 We now constrain the motion of the test particle to region such that the distance r 
from the center of our particle is large compared to r0; in this case, formula (9.15) tells us 
that the charge of the particle contributes to the gravitational mass of a quantity 

( )m m∞ = , which is equal to the total electromagnetic energy that we have called E0 up 
till now.  The effective mass decreases exactly as in Newton’s theory when the test 
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particle approaches the center of the particle: the energy density that is distributed over a 
spherical shell contributes nothing to the gravitational action at the points in its interior. 
 The postulate that the coefficients gkl of the elementary world-interval all remain 
finite, like the electromagnetic field fkl leads to the condition m0 = 0.  The mass is then of 
strictly electromagnetic nature, but, at the same time, it constitutes the gravitational mass, 
in the sense that was analyzed above. 
 The center of the particle is not a regular point, even if m0 = 0; indeed, the limit: 
 

(9.18)    
2

20
0

( ) 1
lim 4

4r

m r e

r r
π

π→

 =  
 

, 

 
is finite.  The length of the circumference of radius 1 that is centered on the particle is 

thus not equal to 2π, but
2

A

π
; the geometry at the center of the particle is therefore non-

euclidean. 
 This inconvenience may be avoided by the use of the Hamiltonian (8.13) of Infeld, in 
which the field is everywhere continuous.  Infeld and Hoffmann [7] have calculated the 
field, which is simultaneously electromagnetic and gravitational, to which it corresponds.  
The result is the same as before: there exists a coordinate system in which the expression 
for any spherically symmetric electrostatic field is the same, whether in the presence of 
gravitation or not; the world-interval has the form (9.14), with (9.15) and (9.16).  If the 
gravitational forces must be finite then m0 = 0, then they must likewise be continuous; the 
value of m(r) is: 
 

(9.19)  m(r) = 0

2
2

40
0

1 1 1
4 log 1

4 2

r

r
e

x dx
r x

π
π

 
  
 

   +   
   

∫ , 

 
and tends to zero for r → 0.  Therefore, A → 1 for r → 0, and the geometry in the 
neighborhood of the center is Euclidean. 
 We may summarize the results above by saying that they confirm our opinion that 
gravitation adds nothing to the structure and cohesion of elementary particles.  Einstein’s 
gravitational equations may be combined with the electromagnetic equations without 
altering them.  This result is very satisfying if one reflects that Einstein’s theory has a 
rather formal character since it simply adds the curvature term to the electromagnetic 
Lagrangian and does not explain the gravitational constant.  This latter problem will find 
its solution only much later on.  The importance of Einstein’s general invariance 
postulate in the electromagnetic theory resides not in the link that it establishes with 
gravitation; rather, it appears in the consequences that were discussed in section 5. 
 
1. The derivatives of the Lagrangian with respect to the gkl are the components of the 

energy tensor, which is consequently symmetric; 
 
2. The derivatives of the potentials appear only in the antisymmetric combinations fik . 
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 10.  Equations of motion [1]. –The natural boundary conditions (9.8) give us the 
possibility of integrating the conservation laws for energy and momentum (5.14) over an 
arbitrary three-dimensional domain without accounting for the singularities.  By 
integrating over all space, one obtains: 
 

(10.1)   

0,

0,

xdG
d

dt

dE
d

dt

σ

σ

∞

∞

 + =



 + =


∫

∫

Xn

Sn

⋯  

 

in which the symbol ∞  under the∫ sign indicates a closed surface at infinity, and: 

 

(10.2)   G = dv∫S , E = Udv∫ , 

 
are the momentum and total energy, resp. 
 One may establish the equations in the case for which the external field does not vary 
appreciably over a distance that is large compared to the radius of the electron. 
 It suffices to treat the case in which the infinitude of the total field reduces to a 
constant field that represents the external field in a neighborhood of the electron. 
 In all of what follows, we use a Lorentz system; therefore, we no longer distinguish 
between vectors and vector densities.  It is convenient to take D and B as independent 
variables. 
 Let D(e), B(e) represent the constant “external” field, and let D(i), B(i) represent the 
“interior” or proper field of the electron.  One has: 
 
(10.3)   lim

∞
D(i) = 0,  lim

∞
B(i) = 0, 

 
and the total field is: 
(10.4)   D = D(i) + D(e),  B = B(i) + B(e). 
 
Define the field, E(e), H(e), by: 
 

(10.5)    E(e) =
e

U∂ 
 ∂ D

,  H(e) =
e

U∂ 
 ∂ B

, 

 
in which the index e specifies that the variables in the functions considered are D(e) and 
B(e). 
 One may then separate this total field E, H into an exterior field E(e), H(e), and an 
interior field E(i), H(i): 
 
(10.6)   E = E(e) + E(i),  H = H(e) + H(i); 
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the E(i), H(i) depend not only upon the D(e), B(e), but one has, in any case: 
 

lim
∞

E(i) = 0,  lim
∞

H(i) = 0. 

 
 The interior field differs from the external one only by a constant field; it therefore 
satisfies the fundamental axioms.  Moreover, it satisfies conditions (9.8) and (9.13) at the 
point where one finds the charge since all of the surface integrals are annulled for a 
constant field. 
 One finds that the Poynting vector is: 
 
(10.7)   S = S(e) + (D(e) × B(e) + (D(i) × B(e)) + S(i), 
 
in which S(i) = (D(i) × B(i)) is the internal Poynting vector and S(e) is a constant that may be 
ignored; indeed, it provides only a constant term in the expression for the momentum and 
this does not change (10.1).  We therefore have: 
 

(10.8)   G = G(i) +( )( ) ( )e i dv× ∫D B − ( )( ) ( )e i dv× ∫B D . 

 
The derivative of energy with respect to time is: 
 

dE d U U
Udv dv

dt dt

∂ ∂ = = + ∂ ∂ 
∫ ∫ B D

B D
 

    = ( )dv+∫ HB ED , 

 
by virtue (6.14).  By substituting (10.4) and (10.6), one obtains: 
 

(10.9)  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )e i e i i i i idE
dv

dt
= + + +∫ H B E D H B E D . 

 
Now define the internal energy by: 
 

(10.10)   E(i) = ( ) ( ) ( ) ( )( )i i i idt dv+∫ ∫ H B E D , 

 
which depends on the motion of the charge and the external field.  If the latter is weak, it 
tends to the equilibrium value: 
 

(10.10a)   E(i) = ( ) ( )( , )i iU dv∫ B D . 

 
One may then write (10.9) and the derivative of (10.8) with respect to time in the 
following form: 
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(10.11)  

( ) ( )

( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

,

.

i
e i e i

i
e i e i

dE dE
dv dv

dt dt

d d
dv dv

dt dt


= + +


 = + × − ×


∫ ∫

∫ ∫

H B E D

G G
D B B D

 

 

Now calculate the surface integrals of (10.1).  The quantities inside the∫ sign may be 

developed in D(i), B(i), or E(i), H(i), since the latter are very small compared to the external 
field over a surface of any sort that is situated sufficiently far away. 
 The components of the vector X may be written [cf. (5.12)]: 
 

(10.12)  

,

.

x y y z z y y z z

y x y x y

z x z x z

X H B H B D E D E U

X H B E D

X H B E D

= + + + −
 = − −
 = − −

 

 
 We substitute (10.4) and (10.6) in these formulas, and neglect the terms of second 
order; by taking (6.14a) into account, one easily obtains: 
 
(10.13)  (Xn) = (X(e)n) + ( )e

xH (B(i)n) − ( )e
xE (D(i)n) 

+ [B(e) × (n × H(i))]x + [D(e) × (n × E(i))]x. 
 
For S, by using the expression (E × H) one obtains: 
 
(10.14)  (Sn) = (S(e)n) + E(e)(H(i) × n) − H(e)(E(i) × n). 
 
 Now consider the equations of the internal field: 
 

rot H(i) − D(i) = 0, div D(i) = 0, 
rot E(i) + B(i) = 0, div B(i) = 0, 

 
and integrate them over all space, to the exclusion of a small sphere that has the charge at 
its center.  The values of the corresponding surface integrals are given by (9.13); one 
obtains: 

(10.15)  

( ) ( ) ( )

( ) ( ) ( )

( ) , ,

( ) , 0.

i i i

i i i

d e dv d e

d dv d

σ σ

σ σ
∞ ∞ ∞

∞ ∞ ∞

 × = + =


× = − =

∫ ∫ ∫

∫ ∫ ∫

n H v D nD

n E B nB
 

 
Now integrate (10.13) over a surface that is situated at infinity; the constant terms 
contribute nothing, and we find, by accounting for (10.15), that: 
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(10.16)  
( ) ( )

( ) ( )

( ) ( ) ( ) ( )
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E D H B

 

 
By substituting (10.11) and (10.16) in (10.1), one sees that all of the terms that contain 
volume integrals are pairwise equal and opposite, and consequently disappear.  The final 
result is: 

(10.17)  
( )

( )
( ) ( )

( )
( )

,

.

i
e e

i
e

d
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 These equations are the well-known equations of motion of the Lorentz theory of the 
electron if one replaces E(i), G(i) with the corresponding values for stationary motion that 
are given by (6.34).  The system (10.17) remains nonetheless valid even if the motion 
may not be considered as quasi-stationary; in this case, one must correct the values of G(i) 
and E(i) in order to account for the emitted waves.  Feenberg has calculated the higher-
order approximations and has shown that the correction terms of the first order 
correspond to the well-known classical radiation reaction exactly. 
 I have tried to generalize these formulas in another sense, by assuming that the 
particle possesses not only a point-like charge, but also a magnetic (or electric) dipole [2].  
The two corresponding moments are related to the field by formulas that are analogous to 
the conditions (9.13), in which the radius vector appears inside the integrals taken over 
infinitely small spheres considered, for example: 
 

( )
O

dσ∫ r nD = er0 + p, 

 
in which r0(t) is the radius vector of the singularity, and p is the electric moment.  This 
method provides us with the supplementary equations of motion that relate the angular 
momentum M  and the center of electric energy P of the field to the dipole moments m, p, 
whether magnetic or electric: 
 

(10.18)   
( ) ( )

( ) ( )

( )
( ) ( )

( )
( ) ( )

,

.

i
e e

i
e e

d

dt

d

dt


= × − ×


 = × + ×

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B m E p

P
E m B p

 

 
 Kramers [3] has postulated the existence of the same equations by taking a purely 
descriptive viewpoint; he assumes, moreover, that the antisymmetric tensor (M (i), P(i)) is 
proportional to the tensor (m, p), and he has proved that this hypothesis leads to the 
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following result: if the particle at rest has a magnetic moment, m0, and a null electric 

moment then the ratio 0
( )
0
i

m

M
 of the magnetic moment to the angular momentum will be 

equal to
0

e

cµ
, in which m0 is the rest mass; this value is twice the value of the analogous 

ratio for the orbital motion of the electron.  To him, this result seemed to provide a 
sufficient basis upon which to develop a classical theory of the spinning electron. 
 It is not possible for me to discuss this last point here.  Equations (10.18) are probably 
correct, but the manner by which I have obtained them from the nonlinear field theory is 
not defensible.  The reason is simple: it is impossible to choose and to employ arbitrary 
types of singularities.  In section 9, we saw that each singularity must satisfy certain 
“natural” boundary conditions, and not merely conditions that one may impose 
arbitrarily. 
 For any field theory of the type considered, these conditions have the form (9.13), i.e., 
they are uniquely compatible with the existence of a point-like charge.  One may not 
assume the existence of a supplementary point-like moment (electric, magnetic, or both) 
without radically modifying the structure of the theory, which consists of field equations.  
The experimental proof of spin indicates that similar modifications are becoming 
necessary.  Up to the present, I have made no attempts in this direction because success 
seems doubtful to me as long as one remains in the context of the classical theory without 
introducing quantum considerations. 
 Here, we shall stop this discussion of the classical treatment of nonlinear 
electrodynamics; we briefly recall the results: 
 It is possible to generalize Maxwell’s equations in such a manner as to render the 
proper energy of a point-like charge finite.  Nevertheless, there exists an infinitude of 
possible generalizations that replace this condition, each of which leads to another 
“structure” for the electron and other numerical factors.  Both fundamental laws of the 
classical theory of the electron, anmely, Maxwell’s equations for the field that is 
“external” to the electron, and the expression for the Lorentz force that is produced by an 
external field are valid in any case [4].  Therefore, nonlinear electrodynamics does not 
alter the essential characteristics of the old theories in any manner, while eliminating their 
“black hole” - the infinite proper energy – and permitting the introduction of the 
hypothesis of a purely electromagnetic mass.  Nevertheless, it gives no indication of the 
effective structure of the electron; the “black hole” is therefore transformed into a 
“question mark.” 
 The problem that is now posed is that of knowing whether one may respond to this by 
using quantum theory. 
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QUANTUM THEORY 
 
 

 11.  Quantum dynamics of continuous media. – The “quantization” of 
electrodynamics is as old as quantum theory itself; indeed, the idea of a quantum 
appeared for the first time in Planck’s theory of radiation, i.e., in the statistical theory of 
electromagnetic waves. 
 Between 1900 and 1906, during the first developmental period of quantum theory, 
one could not precisely establish whether the quantum corresponded to a property of the 
exchange of energy between matter and radiation or a characteristic of electromagnetic 
radiation itself.  The decisive step towards the second hypothesis was made by Einstein, 
who gave an explanation for photoelectric phenomena that was based on the concept of 
light quanta, or photons, and ultimately provided arguments in favor of the existence of 
the latter that were derived from the analysis of the fluctuations of the radiated energy.  
The next step was made by Debye, who deduced Planck’s formula from purely 
electromagnetic arguments, while appealing to neither electrons nor atoms; his procedure 
basically consists of a “quantization” of the method by which Rayleigh and Jeans found 
their law of radiation.  One develops the radiation field in a Fourier series and considers 
each of the terms as an oscillator that obeys Planck’s law for quanta.  This method 
constitutes the point of departure for all of the improvements that were ultimately made 
to the quantum theory of radiation; we shall confine ourselves here to mentioning just one 
of them. 
 Debye’s field quantization provided the value for the mean energy (Planck’s 
formula), but did not account for the fluctuations of the energy.  Einstein showed that one 
may calculate the fluctuations for an arbitrary system by means of a general formula of 
statistical mechanics due to Gibbs, provided that one knows the expression for the total 
energy of the system as a function of temperature.  The application of this method to 
Planck’s formula gives a result that is in flagrant contradiction to the one that is obtained 
directly by means of the classical theory of light; a new term appears, which Einstein 
interpreted as a proof of the existence of quanta of luminous corpuscles. 
 This disaccord was eliminated by the discovery of quantum mechanics.  In our first 
work on the mechanics of matrices, Heisenberg, Jordan, and myself [1] treated this 
problem and found a formula that agrees with the statistical formula of Einstein.  Later 
on, Heisenberg [2] criticized the derivation of this formula because of an infinite term 
that one encounters along the way, and showed how what must be done to avoid it: it 
suffices to assume that the cavity in which one calculates the energy fluctuations has no 
perfectly well defined boundary, but that it possesses a degree of uncertainty as to its 
position in space.  With this correction, which is intimately related to general conditions 
of uncertainty in quantum mechanics, one obtains a complete accord between the results 
of statistical thermodynamics and those of the quantum theory of waves. 
 A great step forward was made by Dirac, who systematically applied the rules of 
quanta to the system of “radiation + material particles” and obtained Einstein’s well 
known formulas that give the probability of emission and absorption of an atom in a 
radiation field.  These formulas are the quantum equivalent of the classical laws of 
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emission and absorption that Planck used to begin with; they directly obey that formula 
without encountering the obstacles that one did in the original theory, which are based on 
a mélange of classical and quantum conditions that contradict each other, strictly 
speaking. 
 In fact, Dirac’s theory gives us much more, namely, a complete theory of the 
emission, of absorption, dispersion, and diffusion of light by electrons or atoms (the 
Rayleigh, Raman, and Compton effects), and finally, of the deeper nature of the spectral 
lines (Weisskopf, Wigner, Fermi).  Meanwhile, this admirable theory [3], which 
accounted for a very large number of phenomena, encountered serious obstacles.  Dirac’s 
method consisted of considering the binding forces between matter and radiation to be 
small perturbations of the uncoupled system of atom and field.  The first application 
provided reasonable results that were confirmed by experiments, but the second one and 
the approximations of higher order lead to divergent integrals.  They are related to the 
number of different frequencies of a radiating field that are present in a given frequency 
interval, and are analogous to the infinite proper energy of this field.  Nevertheless, the 
analogy can go no further: whereas the energy at absolute zero appears as a constant and 
may be simply omitted, the higher-order infinites seem inevitable. 
 The most general attempt to establish a quantum theory of wave fields that was in 
accord with the principle of relativistic invariance was made by Heisenberg and Pauli [4].  
It consisted of a systematic generalization of the classical theory that we discussed in 
section 1, and contains the theory of Dirac, as well as all the previous ones, as special 
cases.  It likewise provided an appropriate method for the quantization of nonlinear 
electrodynamics; this quantization was carried out by Infeld and myself in the case of a 
pure radiation field [5], and by Pryce in the case of fields that contain point-like charges 
[6]. 
 The problem that interests us here is solely that of the electromagnetic mass, and for 
that problem all of the work that has been done gives only slightly satisfying results.  The 
nonlinear equations, which were accepted to be useful in making the classical proper 
energy of an electron finite, have not succeeded in achieving the same objective in 
quantum theory.  In any case, it has been impossible to prove whether this objective has 
been achieved or not, since the equations are too complicated to be solved even in the 
simplest case. 
 For this reason, I will not reproduce that theory here, which is quite extensive, 
moreover, but I will confine myself to brief indications concerning its principal 
characteristics. 
 The application of the principles of quantum theory to a system depends, in the first 
place, on the possibility of expressing its laws in the schema of Hamiltonian dynamics, 
for which we know the rules that permit us to pass from a classical law to the 
corresponding quantum law. 
 The variational principle that we took as our point of departure in section 1 is 
therefore no longer useful. 
 In point mechanics one may replace the Lagrangian by another fundamental function, 
which is called the Hamiltonian and which represents the energy of the material point 
considered; meanwhile, in the dynamics of continuous media there exists no simply and 
unambiguous relation of the type that allowed us to proceed in a manner that is analogous 
to the preceding one.  For example, in electrodynamics the function H that we have called 
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the “Hamiltonian” does not represent either the field energy or the energy density at all.  
If we would like to apply the usual quantization rules then we must use the total energy 
as the fundamental function, which is the space integral of the 44 component of a second 
rank tensor.  This signifies that we are constrained to abandon the symmetry in the 
formulas with respect to x1, x2, x3, x4, as well as the use of tensor calculus.  With these 
conditions, relativistic invariance is no longer immediate, and it must proved separately 
(8).  In the sequel, we therefore treat the coordinate x4 = t separately, and intend the 
expression “a point” to mean a point ordinary three-dimensional space: 
 

(x1, x2, x3) = (x, y, z). 
 
 Consider the continuous medium envisioned to be the limit of a discontinuous 
system.  For this, divide three-dimensional space completely into identical cells ∆x = 
∆x1∆x2∆x3, which we enumerate by three integers l1, l2, l3.  Replace any continuous 
function zα by a discontinuous function that has the constant value lzα  in the cell (l1, l2, l3).  

The space derivativesk k

z
z

x

α
α ∂=

∂
 will be replaced by difference quotients: 

1l l
k k

z zz

x x

α αα
+ −∆ =

∆ ∆
, 

 
in which l + 1 represents the neighboring cell in the direction xk (k = 1, 2, 3). 
 Denote the derivative with respect to time4zα  byzα

ɺ .  The integral (1.4) is replaced by 

the sum: 

(11.1)   1, ,l l
l l l

l l

z z
z z x x

x

α α
α α+ −

= ∆ = ∆ ∆ 
∑ ∑ɺL L L , 

 
which is taken over these cells, and the functionL  is considered to be the Lagrangian of a 
mechanical system that has thelzα for its variables.  The moments are: 

 

(11.2)    pαl = l

l l

x
z zα α

∂∂ = ∆
∂ ∂ɺ ɺ

LL
= Pαl ∆x , 

in which 

(11.3)     Pαl = 
lzα

∂
∂ɺ
L

 ,  Pα = 
zα

∂
∂ɺ
L

. 

 

lzα appears not only in the l term of the sum (11.1), but also in the neighboring l + 1 

terms; for this reason, one has: 

                                                
 (8) An invariant process that avoids these difficulties and makes relativistic invariance obvious was given 
by Weiss [7]. 
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1

1

1 1l l l

l l l ll l
x z z z z xα α α α

+

    ∂ ∂ ∂∂ = − − −    ∆ ∂ ∂ ∂ ∂ ∆     
⋯

L L LL
; 

 
in the limit, ∆x → 0: 

(11.4)    
1,2,3

1
lim l l

k
kl l kx z z x z zα α α α

δ
δ=

 ∂ ∂∂ ∂→ − = ∆ ∂ ∂ ∂ ∂ 
∑

L LL L
. 

 
 This formula shows that the process of differentiating the discontinuous function 
envisioned gives us, in the limit, “the functional derivative,” which disappears in the 
Euler equation of the continuous system (2.1). 
 The Lagrange equations of motion of (11.1), namely: 
 

(11.5)    0l
l

d
p

dt z
α α

∂− =
∂
L

, 

 
are likewise equivalent to the Euler equations, (2.1); indeed, one may write them in the 
form above when one takes (11.3) and (11.4) into account: 
 

(11.6)  
1,2,3 1, ,4

0
kk k z z

k kk

P
x z z x

α αα α α
= =

 ∂ ∂ ∂ ∂+ − = − = ∂ ∂ ∂ ∂ 
∑ ∑

⋯

ɺ
L L

L L . 

 
We may now pass to the Hamiltonian form of dynamics and define the total energy, or 
Hamiltonian, by: 
 

(11.7)  ( ) ( )l l l l l
l l

H p z P z x P z dxα α
α α α α= − = − ∆ → −∑ ∑ ∫ɺ ɺ ɺL L L . 

 
The variation ofH is: 

( )l l l l l
l

H p z z p xα α
α αδ δ δ δ= + − ∆∑ ɺ ɺ L , 

in which: 

l l l
l l

L L
z z

z z
α α

α αδ δ δ∂ ∂= +
∂ ∂

ɺ
ɺ

L . 

 
Therefore, by virtue of (11.2) and (11.3): 
 

l l
l l

L
H z z P x

z
α α

ααδ δ δ
 ∂= − + ∆ ∂ 

∑ ɺ , 

or: 

(11.8)   
H

z zα α
δ δ
δ δ

= − L
,  

H
z

P
α

α
δ
δ

= ɺ . 
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 By combining these equations with (11.6) one obtains the canonical equations: 
 

(11.9)   
H

z
P

α
α

δ
δ

=ɺ ,  
H

P
zα α

δ
δ

= −ɺ . 

 
The previous argument proves that one may consider a continuous medium as the 
limiting case of a discontinuous system in all respects.  With these conditions, the 
quantization method is obviously the following: 
 From the mechanical viewpoint, we have the commutation law: 
 

(11.10)   
2

l l l
l l l

h
p z z p

i
β β β

α α αδ δ
π

′ ′ ′− = , 

 
in which l, l ′  are the indices of two different cells.  In relation (11.10) we may pass 
directly to the limit ∆x → 0, since the pαl are, by definition, proportional to the volume ∆x 
of the cell [see (11.2)].  To do this, we first multiply (11.10) by a discontinuous 
function lf ′ , which is constant in each cell and approaches a continuous function f(x1, x2, 

x3) in the limit, in such a manner that: 
 

l
l

f x fdx′
′

∆ →∑ ∫ . 

 
By summingl ′over a spatial volumeV ′  one obtains: 
 

,

0 .2
ll ll l

l
l inV

f if l is in Vp p h
f x z z

if l is not in Vx x i
β βα α

αβδ
π

′ ′
′

′ ′

′ ∆ − =   ′∆ ∆  
∑  

 
In the limit, ∆x → 0, one will have: 
 

(11.11)  ( ) { ( ) ( )
V

f x dx P x z xβ
α′

′ ′ ′∫  

( ) ,
( ) ( )}

0 .2

f x if l is in Vh
z x P x

if l is not in Vi
β

α αβδ
π

′′− =  ′
 

 
in which x represents a point (x1, x2, x3), andx′ another. 
 It is convenient to describe formulas of this type in an abbreviated form by using the 
symbolic Dirac delta function δ, which is defined by: 
 

(11.12)  
(0) 0 ( , ),

( ) ( )
0 0 ( , ).

b

a

f if x is in a b
f x x dx

if x is not in a b
δ

=
=  =

∫  

 
 It follows that we may assume that δ(−x) = δ(x). 
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 We use the same symbol δ(x) to denote a three-dimensional function that is actually 
equal to product δ(x1) δ(x2) δ(x3).  By means of the bracket notation: 
 
(11.13)    FG – GF = [F, G], 
 
one may write the commutation laws in the following form [8]: 
 

(11.14)   [ ( ), ( )] ( )
2

h
P x z x x x

i
β β

α αδ δ
π

′ ′= − . 

 
These laws must be completed by the following ones, which are obvious: 
 
(11.15)   [ ( ), ( )] 0z x z xα β ′ = , [ ( ), ( )] 0P x P xα β ′ = . 

 
We remark that the time variable x4 = t always has the same value in all of the functions 
that appear in (11.14) and (11.5). 
 By applying the following well known formulas of quantum mechanics to the system 
of cells envisioned, and passing to the limit, one obtains the equations of motion: 
 

(11.16)   
2

[ , ]
i

z H z
hα α
π=ɺ , 

2
[ , ]

i
P H P

h
α

α
π=ɺ . 

 
One may directly show that these equations are formally identical to the Euler equations, 
(2.1), of the classical theory.  From this it then results that there exists a first integral of 
energy H = const., and corresponding first integrals that express the conservation of 
momentum (which ignore here, because we have considered them no further in the 
general classical theory of section 1).  Finally, one may prove that if the commutation 
conditions (11.14) and (11.15) are valid at a given instant t0 they will be likewise valid at 
any other later instant t. 
 
 
 12.  Quantum electrodynamics. – We apply the preceding general theory to the 
particular case of the electromagnetic field; the unknown functions zα will be the 
potentials ϕk, and we must take L to be a function of the field components fkl = ϕl,k – ϕk,l . 

 A serious difficulty is presented when one wishes to form the moments: 
 

(12.1)     Pk =
4,k kϕ ϕ

∂ ∂=
∂ ∂ ɺ
L L

. 

One finds: 

(12.2)   Pk =
4, 4, ,4k k kf fϕ

∂ ∂ ∂= −
∂ ∂ ∂
L L L

= P4,k = −D  (k = 1, 2, 3), 

 
but also: 
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(12.3)     P4 =
4,4ϕ

∂
∂
L

= 0. 

 
 This relation, which expresses the fact that the moment of the scalar potential is null, 
corresponds to a remarkable degeneracy of the electrodynamical Lagrangian, and leads to 
considerable complications.  They result from the fact that (in classical theory) the three 
space components P1, P2, P3 must satisfy the relation: 
 

(12.4)   
1,2,3

0
k

k
k

P
div

x=

∂ = − =
∂∑ D , 

 
and that, as a consequence, one may not directly apply the commutation conditions 
(11.14) and (11.15).  Indeed, one will have: 
 

(12.4)   

[ ( ), ( )] 0,

[ ( ), ( )] 0,

[ ( ), ( )] ( ).
2

k l
k l

k k
l l

x x

P x P x

h
P x x x x

i

ϕ ϕ

ϕ δ δ
π


 ′ =
 ′ =


′ ′ = −


 

 
Meanwhile, the latter gives: 
 

1,2,3

, ( ) ( )
2

k

lk l
k

P h
x x x

ix x
ϕ δ

π=

 ∂ ∂′ ′= − ∂ ∂ 
∑ . 

 
The left-hand side is null, by virtue of (12.4), and the right-hand side is not.  Therefore, 
condition (12.4) − i.e., one of the Maxwell equations − is in contradiction with the 
commutation laws. 
 One may imagine several methods by which one may avoid this difficulty.  The most 
reasonable one seems to be the one that advocates the use of formulas (12.5) alone as a 
heuristic means of discovering the true commutation conditions of the field components 
[sec. 11; 4], which are not in contradiction with (12.4), as we shall prove in a moment. 
 By differentiating (12.5) with respect to x, y, z, one obtains: 
 

(12.6)   

[ ( ), ( )] 0,

[ ( ), ( )] 0,

[ ( ), ( )] 0,

[ ( ), ( )] [ ( ), ( )] ,
2

x y

x y

x x

y z z y

B x B x

D x D x

D x B x

h
D x B x D x B x

i x

δ
π

′ =
 ′ =

′ =
 ∂ ′ ′= − =
 ∂

⋯

⋯

⋯

⋯

 

 
 By forming the bracket of div D, one obtains: 
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2 2

[ ( ), ] 0
2x

h
B x div

i y z z y

δ δ
π
 ∂ ∂= − = ∂ ∂ ∂ ∂ 

D ; 

 
the contradiction has disappeared [1]. 
 The variables that appear in the commutation conditions, (12.6), are precisely the 
components of the vectors D, B.  This incites us to consider them as fundamental 
variables instead of the potentials ϕk.  The opportunity to make this choice manifests 

itself in the fact that the “natural” variables of the total energy E = Udv∫  (which is the 

fundamental quantity of quantum theory) are precisely the vectors B and D; the other 
vectors E and H may be deduced by differentiation: 
 

(12.7)   E =
U∂

∂D
,  H =

U∂
∂B

. 

 
 By systematically taking this viewpoint, Infeld and myself have developed a coherent 
theory of nonlinear quantum electrodynamics.  True, in the beginning we had hoped to 
likewise obtain the laws of motion for the charges − i.e., the singularities − in this 
fashion; this hope vanished, like Mie’s hopes of constructing a strictly classical unitary 
theory of the electromagnetic field.  Later on, we shall examine the main point of this 
particular problem in detail.  For the moment, I will first sketch quantum electrodynamics 
in the absence of point-like charges, and then add several observations about the manner 
that seems to me to be the best for studying the general case. 
 It is clear that one must renounce the complete symmetry between space and time 
coordinates; it is nevertheless possible to write the equations of motion in the form of a 
symmetric set by adding similar equations to (11.16) that relate the space derivatives and 
the total momentum. 
 Consider D and B as operators that operate on a certain function (more precisely, on a 
functional), which we shall not write explicitly.  Having done this, we adopt the 
Heisenberg viewpoint, and not that of Schrödinger.  In the Heisenberg picture, the 
operators depend on the space and time variables, and the law of variation in our case is 
the following one. 
 Let F(D, B) be an arbitrary function of the field, and let: 
 

(12.8)   E = Udv∫ ,  G = dv∫S , 

 
be the energy and momentum of this field; the variation of F in space and time is given 
by: 

(12.9)   
2

[ , ]
F i

E F
t h

π∂ =
∂

, 
2

[ , ]x

F i
G F

x h

π∂ = −
∂

, … 

 
These laws of motion, when completed by the commutation conditions (12.6) are the 
fundamental equations of the theory. 
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 The first question that one poses is that of whether the system is invariant under 
Lorentz transformations. 
 This will not be the case if one chooses the function (D, B) arbitrarily.  We have 
previously seen (sec. 6, pp. 192) that the invariance condition is the symmetry of the 
energy tensor, which may be expressed by the following two vector equations: 
 

(12.10)   
,

.

= × = ×
 × = ×

S D B E H

D E H B
 

 
 By replacing E and H with their expressions (12.7) in these relations, one obtain six 
partial differential equations for U(D, B) that constitute necessary and sufficient 
conditions for the invariance of the system considered,  Any function U that is derived 
from an invariant Lagrangian L(E, B) naturally satisfies these conditions (12.10). 
 The second question to examine is that of the invariance of the commutation laws, 
(12.6).  This invariance was proved by Heisenberg and Pauli in the case of Maxwell’s 
theory in their fundamental work, which was previously cited.  Infeld and myself gave a 
general proof that was not, however, completely satisfactory, but it has been since 
improved by Infeld [2] and, independently, by Pryce [3].  The method that was employed 
consists of applying an infinitesimal Lorentz transformation to the anti-symmetric tensors 
(E, B) and (D, H), as well the variables x, y, z, t and , , ,x y z t′ ′ ′ ′  that appear in the 
commutation laws, and proving that the latter do not change.  The actual calculations are 
too complicated to be reproduced here. 
 Often, it is more convenient to replace the commutation laws with formulas that 
contain arbitrary functions in place of the δ function.  To accomplish this, Infeld and 
myself proceeded in the following fashion: 
 Let F and G be arbitrary functions of D and B; form the space 

integrals Fdv∫ and Gdv∫ , which are taken over an arbitrary domain V.  One has: 

 

(12.11)  
4

,
i F G F G

Fdv Gdv dv
h

π  ∂ ∂ ∂ ∂     = ∇ × − ∇ ×      ∂ ∂ ∂ ∂    
∫ ∫ ∫ B D D B

 

     
G F G F

dv
 ∂ ∂ ∂ ∂   = − ∇ × − ∇ ×    ∂ ∂ ∂ ∂    
∫ B D D B

, 

 

in which = is the vectorial operator , ,
x y z

∂ ∂ ∂
∂ ∂ ∂

.  By virtue of [a, b] = − [b, a], the two 

right-hand sides of (12.11) must be identical, which restricts the arbitrariness of the 
admissible functions.  They must be such, that the integral: 
 

F G F G
dσ ∂ ∂ ∂ ∂   × − ×    ∂ ∂ ∂ ∂    

∫ n
B D D B

, 

 
is annulled when taken over the boundary of the domain V. 
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One obtains the form (12.6) of the commutation laws by taking: 
 

F = Bx, …, G = δDx, … 
If one then takes: 

F = Bx, …, or Dx, …; G = U or Sx, Sx, Sx, 
 
and if one accounts for (12.7), one obtains, by starting with the equations of motion 
(12.9): 

(12.12)  
( ), ( ),

0, 0,div div

= − ∇ × = ∇ ×
 = =

B E D H

B D
 

 
for the entire set of field equations. 
 By taking: 

F = dU, G = U, 
one obtains: 

Uɺ  = − div(E×H) = −−−− div S, 
 
i.e., the law of conservation of energy in differential form; in the same fashion, one may 
prove the conservation of momentum. 
 The total angular momentum of the field is defined by: 
 

(12.13)    M  = ( )dv×∫ r S , 

 
and the center of energy q by: 
 

(12.14)    1
2 ( )E E U dv+ = ∫q q r . 

 
The corresponding commutation laws are the following: 
 

(12.15)    1

,
2
[ , ] ,

[ , ] 0,

h

i
E E

E

π
−

 × =


= =
 = =



M M M

q q G

q q

ɺ

ɺɺ ɺ

 

 
and the other relations between q, G, M  are known, exactly as if they acted on material 
points. 
 A well-known reason, when applied to the first of equations (12.15) gives us that the 
proper values of the total kinetic moment are either 0, ±1,  ±2,  ±3, …, or 

1 3 5
, , ,

2 2 2
± ± ± … (the unit is

2

h

iπ
). 
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 We have believed from the beginning – Infeld and myself – that it is possible to 
explain spin by considering it to be a quantum state of the electromagnetic field with a 
half-integer number; to this end, we defined an “internal kinetic moment,” i.e., a moment 
with respect to the center of energy q that presents certain properties that are analogous to 
those of spin.  Nevertheless, this identification is erroneous, as Pauli has remarked.  Pryce 
rigorously proved that that the electromagnetic angular momentum has only integer 
proper values even if one admits the existence of singularities (without spin) [4]. 
 This result clearly shows that it is impossible to explain the existence of particles by 
means of nonlinear field theory without their explicit introduction, and without attributing 
them to convenient spin variables. 
 The problem has been treated by Heisenberg and Pauli for the particular case of a 
Maxwell field (for which U = 1

2 (D2 + B2)), and by Pryce for the case of the general field 

theory [with U(D, B) arbitrary and subject to only the conditions of relativistic 
invariance] [3]. 
 In this latter theory, the position of a singularity is represented by a radius vector ξξξξ(n) 
with the components( ) ( ) ( ),n n n

x y zξ ξ ξ ; moreover, one attributes each of them to an “intrinsic 

moment” ππππ(n), which is not related to the velocity by the simple well-known relation that 
contain sthe mass, since here one does not introduce mass for the particles.  Pryce 
systematically described the commutation laws between these quantities and the field 
components.  We shall not dwell on these exceedingly complicated considerations here; 
we content ourselves by indicating the final results, which are relatively simple. 
 Exactly as in the theory of uncharged fields, there are three groups of fundamental 
laws: 
 
 1.  The expressions for the energy and momentum: 
 

(12.16)   

( ) ( )

( )

( , ) ,

( ) ;

n n

n

n

n

E U dv

dv

 = −



× +


∑∫

∑∫

D B

G D B

α πα πα πα π

= π= π= π= π
 

 
in these formulas, ( ) ( ) ( ) ( )( , , )n n n n

x y zα α ααααα are a group of Dirac operators (3 matrices with 4 

rows and 4 columns) that satisfy: 
 
(12.17)   ( ) ( ) ( ) ( ) 2n m m n

x y y x xy mnα α α α δ δ+ = . 

 
 2.  The equations of motion for an arbitrary quantity F: 
 

(12.18)  
2

[ , ]
F i

E F
t h

π∂ = −
∂

, 
2

[ , ]x

F i
G F

x h

π∂ = −
∂

, … 

 
  3.  The commutation laws: 
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(12.19)  

( ) ( )

( ) ( )

( ) ( ) ( )

[ ( ), ( )] , ,
2

[ ( ), ] ( ), ,

[ , ] , ,
2

[ , ] ( ) ( ) , ,
2

y z

n n
x x

n n
x x

n n n
y z x

h
D x B x

i x
D x e x

h

i
h

e x B x dv
i

δ
π

π δ ξ

ξ π
π

π π δ ξ
π

∂ ′ = ∂


= − −
 =

 = − ∫

⋯

⋯

⋯

⋯

 

 
in addition, all of the quantities that were not mentioned commute with them.  One may 
show that the set of these equations is invariant from the relativistic standpoint. 
 The energy operator of (12.16) has the form of the energy operator for a Dirac 
electron, in which the mass term was replaced by the energy of the electromagnetic field. 
 One may now show that these laws generally contain all of the ones that must be 
included, namely, Maxwell’s equations with a point-like charge and corresponding 
current, as expressed in terms of δ functions: 
 

(12.20)  

( ) ( ) ( )( ) , ( ),

0, 0;

n n n

n n

rot e x div x

rot div

δ ξ α δ ξ = − = − = −

 + = =

∑ ∑D H D

B E B
 

 
in turn, the well-known fact from Dirac’s theory that the velocity of the particle n is αααα(n): 
 
(12.21)                ξξξξ(n) = αααα(n), 
 
and finally the Lorentz equations of motion in the following form: 
 

ππππ(n) = ( ) ( )( )[ ( )]n ne x dvδ ξ− + ×∫ E Bξξξξ . 

 
One may then show that the components of the momentum G commute with E, and thus 
constitute first integrals of motion. 
 The total angular momentum becomes: 
 

M  = ( ) ( ) ( )1
( ) ( )

2 2
n n n

n n

h
dv

π
× + × +∑ ∑∫ r S ξ π σξ π σξ π σξ π σ , 

 
in which ( ) ( ) ( )n n n

x y zσ α α= ⋅ , … are the components of spin; from this, it follows that M  is 

likewise a first integral.  The term that does not contain spin has integer proper values; 
consequently, the total angular momentum behaves exactly as it must for a system of 
particles that each possesses spin. 
 The main problem with this theory is that of the existence of finite proper values for 
the energy of an isolated particle, and their calculation.  Nevertheless, no solution to this 
problem has been obtained up till now. 
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 We do not know whether this theory, which is formally the counterpart of the 
classical non-linear field theory, does or does not contain the quantum solution to the 
problem of electromagnetic mass.  Meanwhile, in any case, whether one solves this 
problem or not, the theory that we have presented here may not be considered as 
satisfactory, for the following reasons. 
 When one takes U to have the Maxwell expression 1

2 (D2 + B2), one falls back to the 

quantum electrodynamics of Heisenberg and Pauli, which contains Dirac’s theory of 
radiation as a particular case.  All of the infinite terms that make this theory unacceptable 
appear again, and it does not seem that one may remover them by accounting for the 
terms that are nonlinear in D and B. 
 The discovery of uncharged particles casts doubt on the purely electromagnetic origin 
of mass.  The hypothesis of the existence of point-like dipoles (or multipoles) is in 
contradiction with the “natural” boundary conditions, and, consequently, may not be 
accepted, just as in the classical field theory.  The problem of a correct generalization of 
the theory that makes the existence of these dipoles (or multipoles) appear normally has 
not been correctly studied. 
 The analysis of nuclear processes has revealed the existence forces of a new type in 
regions of the order of magnitude one “electron radius.”  We now know that forces of a 
character that is unknown up till now appear between two neutrons or between a neutron 
and a proton that are situated at a small distance from each other.  Fermi’s theory of β-
disintegration introduced another, completely new, type of interaction that 
simultaneously introduces four particles, a neutron, a proton, an electron, and a neutrino.  
We may not reasonably hope to obtain a correct value for the electromagnetic mass if the 
fundamental laws of nature are of a very different type from the electromagnetic type in 
precisely the region where all of the energy of the particle is concentrated. 
 Pryce’s equations contain two constants: the elementary charge and Planck’s constant 
h.  Now, we know that these two constants are not independent; they are related by 

22 1

137

e

ch

π = ; this combination of constants e, h, c is a dimensionless number: viz., 

Sommerfeld’s “fine structure constant.”  It seems very improbable that one may develop 
a theory of particles that applies to only the electron, while neglecting the existence of 
heavier particles whose mass is 1840 times higher.  A satisfactory theory of elementary 
particles must explain the values of the two dimensionless numbers 137 and 1840. 
 We are very far from such a theory.  Some attempts in this sense have points in 
common with nonlinear field theory; we shall examine them in the last section of this 
work. 
 
 13.  Dirac’s theory of the electron and nonlinear electrodynamics. – The quantum 
theory of the electron permits us to attack the problem of nonlinear electrodynamics in an 
entirely new manner.  The importance of the attempts of Dirac, Heisenberg, and their 
collaborators resides in the fact that they were the first to theoretically justify the relation 
that exists between the elementary charge and Planck’s constant, in other words, the 
value of the fine structure constant.  In the sequel, we shall rapidly sketch this theory. 
 The relativistic wave equation of an electron is derived from the classical equations of 
motion, which, as we have seen, are a consequence of a nonlinear electrodynamical law 
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that is defined by an arbitrary Lagrangian.  These equations may be written in the 
following canonical form: 

(13.1)    
W∂=

∂
r

p
, 

W∂= −
∂

p
r

, 

 
with the Hamiltonian: 

(13.2)    W =
1
22 2

0{( ) }e m eϕ− + +p a , 
 
in which a, ϕ are the vector and scalar potentials.   By performing the derivations in 
(13.1), one obtains: 
 

2 2
0( )

x xp ea
x

e m

−
=

− +p a
ɺ , 

… 

 
2 2

0( )
x

e
p

e m
=

− +p a
ɺ  

  ( ) ( ) ( )yx z
x x y y z z

aa a
p ea p ea p ea e

x y z x

ϕ∂ ∂ ∂ ∂× − + − + − − ∂ ∂ ∂ ∂ 
, 

… 
 

From the first group of equations, one deduces that: 
 

(13.3)    
2

2 2 0
0 2

( )
1

m
e m

v
− + =

−
p a , 

therefore: 

(13.4)   p =
21

m

v−

v
+ ea; 

 
with these values, the second group becomes: 
 

(13.5)   0

21

yx z
x

am x a ad
ea e x y

dt x x x xv

ϕ∂   ∂ ∂ ∂+ = + + −     ∂ ∂ ∂ ∂−   

ɺ
ɺ ɺ , … 

 
By using the relations between potentials and fields, namely, 
 

E = − ∇ϕ  – a,  B = rot a, 
 
these equations are equivalent to: 
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(13.6)     { }0

2
( )

1

md
e

dt v

 
= − ×  − 

v
E v B , 

 
in accordance with (10.17), (6.34). 
 Write (13.2) in the symmetric form: 
 
(13.7)    (W – eϕ)2 – (p – ea)2 = 2

0m . 

 
 One may employ this relation to make the wave theory of matter that was proposed 
by Schrödinger agree with the principle of relativity, by considering W and p to be 
operators of the form: 

(13.8)   W
i t

− ∂=
∂
ℏ

, xp
i x

∂=
∂
ℏ

, … 
2

h

π
 = 
 
ℏ , 

 
that operate on a wave function ψ(x, y, z, t). 
 One calls the wave equation that is thus obtained the equation of Klein and Gordon 
[1].  This equation does not satisfy all of the conditions that are required by the statistical 
interpretation of quantum mechanics [2].  One confirms that the probability density for 
the presence of a particle is not positive definite; the equation contains second derivatives 
with respect to time, which is in contradiction with the fundamental statistical postulate 
that requires the function, ψ, to be completely determined by its initial values; finally, 
this equation does not account for the spin of the electron.  These objections led Dirac to 
replace it with his celebrated relativistic equation [3]: 
 
(13.9)    {W – eϕ – αααα(p – ea) – βm0}ψ = 0, 
 
in which αααα(αx, αy, αz), b are four matrices with four rows and four columns that satisfy 
the commutation laws: 

(13.9a)    

0,

0,

x y y x

x x

α α α α

α β βα

+ =


 + =


⋯

⋯

 

 
 This equation is linear in W (i.e., of first order in d/dt), and permits us to bring the 
mechanical and magnetic properties of the spin into perfect accord with experiments. 
 The two equations (13.7) and (13.9) present the grave defect of leading to negative 
proper values for energy.  For example, in the case of the absence of a field (a = 0, ϕ = 0) 
one will have a solution by taking ψ proportional to: 
 

( )i Wt
e

−pr
ℏ , 

 
where W and p are constants that are related by: 
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W2 – p2 = 2
0m . 

 
It is clear that for a given p, W may have two values that are equal and of opposite sign W 

= 2 2
0m± +p . 

 Now, this is precisely the defect that insures the triumph of this theory.  Dirac 
proposed to assume that all of the negative energy states are occupied by electrons that 
exist everywhere, but are not observed, in the hopes that they would not contribute to 
formation of observable electromagnetic fields.  An external action may nevertheless 
raise an electron from a negative energy state to another state of positive energy, and thus 
make it observable; at the same time, the “hole” that is thus created in the infinite set of 
negative energy electrons becomes likewise observable, and experiments must reveal it to 
us in the form of a positively charged particle.  Dirac first believed that these “holes” 
must represent protons [4], despite the difficulty with this identification that was 
presented by the fact that the mass of the proton is 1840 times greater than the mass of 
the electron.  Meanwhile, in this same epoch, Anderson discovered the existence of 
positive electrons in cosmic rays [5]; Dirac immediately recognized that these 
experiments constituted a confirmation of his theory. 
 The fundamental idea is the following: in the universe (or, at least, in the part that is 
known), there exists a surplus of positive energy electrons that constitute the external 
envelope of the atoms.  It may happen that as a result of a collision between electrons or 
photons one of the negative energy electrons is aroused from its sleep and given a 
positive energy: one then observes the appearance of a pair that is composed of an 
electron and a “positron.”  A positron has a mean lifetime of short duration; indeed, it 
may combine with any electron that it encounters along the way and emit energy (2m0c

2, 
plus the kinetic energy of the two particles).  The result of this combination is light – 
more precisely, two photons – at least if one wants the principle of conservation of 
momentum to be satisfied.  In the language of the theory of “holes,” this signifies that the 
electron jumps into a place in the vacuum that is unoccupied by a negative energy 
electron, and may no longer be observed. 
 This theory permits us to foresee, for example, the minimum value of a photon’s 
energy if it is to give rise to a pair, or, on the contrary, to make the annihilation of an 
electron and a positron possible; this then permits us to calculate the probability of 
materialization and dematerialization under the catalytic action of an external (nuclear) 
field, etc.; the results are in amazing accord with experiments [8]. 
 The difficulties that this theory encounters stem from the fact that the unobservable 
electrons are infinite in number, being found in the negative energy states, so they 
themselves provide an infinite contribution to the values of the energy density, the 
current, and the charge, and on first glance this contribution is devoid of any physical 
significance.  Dirac himself [9], as well as Heisenberg [10], have proposed formal rules 
for the elimination of these infinite terms.  Recently, Weisskopf [11] has simplified these 
rules considerably, and has shown that by starting with essentially physical postulates it is 
possible to isolate, and in a unique and well-defined manner, the only finite partial sums 
that are susceptible to a physical interpretation among the divergent sums that formally 
represent the charge, current, energy, etc.  In the sequel, we shall follow Weisskopf. 
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 We now arrive at the point where this theory joins up with that of nonlinear 
electrodynamics. 
 From the standpoint of the observability of phenomena, the production of pairs, or the 
inverse process, has meaning in vacuo since the infinitude of electrons that are found in 
the negative energy states are unobservable.  It is true that the appearance of these 
processes depends on the presence of an external electromagnetic field; meanwhile, the 
fields do not actually take part in the exchanges of energy in their presence, and play only 
the role of catalysts, as we have already pointed out. 
 The theory therefore demands that the phenomena of absorption or emission of light 
in the presence of a constant external field must have meaning in vacuo.  Now, this 
demand is in contradiction with the law of superposition, which is derivable from the 
linear Maxwell theory; indeed, according to that theory, a light wave may traverse any 
portion of space that is devoid of matter without obstruction, independently of the 
presence or absence of an arbitrary electromagnetic field in this space. 
 We must therefore expect to find results that are different from the ones that the 
Maxwell theory provides; the general characteristic of these results may be glimpsed by 
establishing an analogy with a similar situation that is well known in the theory of atoms.  
Consider a light wave that traverses a substance whose atoms are all found in the 
fundamental state.  If the spectrum of the light wave contains a frequency that 
corresponds to the difference in energy between an excited state and the fundamental 
state of the atom then this frequency will be absorbed and the atom excited.  If the light 
does not contain frequencies that are sufficiently elevated to excite it to the first excited 
state of the atom then there will be no absorption; meanwhile, this does not signify in any 
sense that the substance in question exerts no actual influence on light wave that traverses 
it.  The atom is polarized by the light at its proper frequency; there is diffusion and, in 
turn, the interference of diffused waves, dispersion, an effect which may be likewise 
described by attributing a dielectric constant that is greater than one to the substance 
traversed. 
 Now, in the relativistic theory of the electron, the vacuum behaves in a fashion that is 
analogous to that of the preceding hypothetical substance; indeed, in this theory, the 
“vacuum” is not absolutely devoid of matter, since it is, on the contrary, replaced by an 
infinite number of electrons in stationary states, namely, each of them are in the lowest 
possible state that permits the Pauli exclusion principle.  A light wave of sufficient 
energy (> 2m0c

2) may be absorbed by the passage of an electron into an excited state of 
positive energy.  Nonetheless, if the energy is not sufficient for the production of a 
similar jump then the light wave will diffuse, in exactly the same manner as the one that 
were analyzed above.  This process may likewise be described as a virtual double jump, 
there and back, between the fundamental state and the excited state.  The general 
electronic configuration of the vacuum does not change, and there is no production of 
pair; nevertheless, the vacuum acquires an additional energy of polarization that is a 
function of the field of the luminous wave. 
 Heisenberg and his collaborators, Euler and Kockel [12], have developed this theory 
under the hypothesis of a very slight variation of the external field in space and time 
(field of the luminous wave); to be precise, under the hypothesis that any component F 
satisfies the following conditions: 
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ℏ
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F
F

mc t

∂
∂

ℏ
≪ , 

 
in which c is the velocity of light (9). 
 We assume the same hypotheses, and, moreover, we assume that the density of 
radiation is small enough that there are no potential differences that are higher than 
2m0c

2; with these conditions, we may reasonably assume that there is no production of 
pairs. 
 Another simplifying hypothesis is the one that consists of neglecting the interaction of 
the electrons in vacuo.  In reality, it is impossible to separate this “internal” field from the 
external electromagnetic field of the light wave; strictly speaking, one must therefore 
consider the method that we use to be analogous to the method of the self-consistent field 
that was used by Hartree [13] to calculate the electronic orbits in the atom; one knows 
that in this manner of proceeding every electron is treated separately under the action of 
the field, which is the sum of the external field and the mean field that is produced by the 
other electrons.  A more exact analysis of the question must make use of the method of 
second quantization of the electronic waves; this will nevertheless be too complicated, 
and will make another type of divergent process appear that is completely foreign to the 
problem that we consider. 
 We shall perform the calculations for the case of the Dirac electron.  Nevertheless, it 
is remarkable to confirm that the same theory may be developed for an electron that 
satisfies the Klein-Gordon equation, the difference being that the statistics that the 
electrons must obey will be that of Dirac-Fermi in the first case and Bose-Einstein in the 
second.  Pauli and Weisskopf [14] have shown that a scalar theory of the electron without 
spin, which is based on the Klein-Gordon equation, is perfectly possible, and Weisskopf 
applied that to the problem of the polarization of the vacuum; in fact, this latter effect 
depends only upon the existence of negative energy states, and has nothing to do with 
spin.  Nevertheless, since the electron actually possesses spin, the preceding scalar theory 
has the character of a very abstract theoretical development that is much too far from 
reality. 
 
 
 14.  Theory of holes and polarization of the vacuum. – We assume that the total 
energy density of the vacuum is composed of two parts: 
 
(14.1)    U = U0 +U ′ ; 
 
the first one U0 represents the Maxwell density (in electrostatic units): 
 
(14.2)     U0 = 1

2 (E2 + B2), 

 
and the second oneU ′  is the contribution of the “vacuum electrons:” 

                                                
 (9) In what follows, we shall no longer set c = 1, in order to show precisely the manner by which the 
various constants depend on c.  
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(14.3)     i
i

U U′ ′=∑ . 

 
 The contribution a single electron is given by: 
 
(14.4)    ( , )i i iU wψ ψ′ = , 

 
in which w is the internal energy of the electron and ψi is the proper function that 
describes the state in which it is found; the scalar product of the two functions ψ and ϕ 
simply signifies that one forms the sum over the spin index: 
 
(14.5)    (ψ, ϕ) = *k k

k

ψ ϕ∑ . 

 
If the electron has no spin, we will have: 
 

W =
2

0

2

2
1

m c

v

c
−

= W – eϕ, 

 
in which W is the total energy, or Hamiltonian, which is given by (13.2). 
 For an electron without spin, we must use (13.9) instead of (13.2).  We introduce the 
velocity of light c and notate the charge, which is negative, by – e (e > 0), instead of e; 
we will have: 
(14.6)    w = W + eϕ = αααα(cp + ea) + βm0c

2. 
 
ψi will be a proper function of the operator W, so: 
 
(14.7)    Wψi = Wiψi ; 
 
Wi is the corresponding proper value.  The sum (14.3) is composed of a part that gives the 
total energy W, a part that we designate by: 
 
(14.8)    ( , )i i i

i

U W ψ ψ=∑ɶ , 

 
and the second part has its origin in the term eϕ, and is equal to: 
 
(14.9)     ( , )i i

i

eψ ϕψ∑ . 

 
 This last part may be reduced to another one that depends onUɶ .  Indeed, if we 
integrate (ψi, eϕ ψi) over all space then we obtain the diagonal element eϕii.  On the other 
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hand, if we replace ϕ with λϕ, and write W = W0 – λeϕ, then we will have λeϕii = 

iiWλ
λ

∂
−

∂
. 

 We now solve the wave equation in the case of a constant electric field E; we may 
then equate the value E of the latter with the parameter λ.  Consequently, the integral of 

the expression (14.9) over all space is iidW
E

dE
− , and this expression must likewise be 

valid for the densities whenever the external field is constant.  We therefore have: 
 

(14.10)    
dU

U U E
dE

′ = −
ɶ

ɶ . 

 
 The calculation of U ′  is therefore effected in the following manner: we first 
determine the negative proper values Wi and the corresponding proper functions ψi for an 
electron.  Then, we form the densityUɶ of (14.8) by taking the sum over all the negative 
states, and finally, we perform the indicated operation in (14.10). 
 The calculation may be simplified even more if one takes the case of a particular 
external field; since the final result must enjoy relativistic invariance, we may easily pass 
from the this particular case to the general case of an arbitrary field by applying a Lorentz 
transformation. 
 Heisenberg and Euler have chosen the particular case of a constant magnetic field 
superposed with a constant electric field that is parallel to the latter.  This hypothesis 
gives rise to certain difficulties; indeed, in a constant field that is as small one desires 
there exist considerable potential difference between points that are situated at great 
distance from each other.  On the other hand, the well-known “Klein paradox” [1] 
requires that any potential difference that is greater than 2m0c

2 may give rise to a pair, 
i.e., may provoke the jump from an electron in a negative state to one in a positive state.  
Now, we would like to completely exclude the case of pair production.  To avoid this 
difficulty, Weisskopf took an electric field that is parallel to a magnetic field and slightly 
periodic in space, with the potential: 
 

(14.11)    ϕ = *
0 0

ig ig
x x

h he eϕ ϕ
−

+ . 

 
 Then, he proceeds in the following manner:  He first solves the Dirac equation under 
the hypothesis that only the magnetic field B = (Bx, 0, 0) exists.  This problem may be 
treated rigorously.  It is characterized by the possibility of separating the partial 
differential equation into three other terms that contain only one of the three independent 
variables x, y, z; two of them have a continuous spectrum, and the third one has a 
discontinuous spectrum of the type of the harmonic oscillator.  This corresponds to the 
fact that in classical theory, the motion of an electron in a magnetic field gives rise to a 
helix.  The proper functions are given by: 
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(14.12)   ψi =

1

[( ( )] 2

2

( )
( )

2 2

x z n x
i

xp zp W p
x

n

a p b
e H

h
η

π
+ +  
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 

ℏ
ℏ

ℏ
, 

 
in which η is a linear function of y and b is proportional to the magnetic field: 
 

(14.13)  η =
2

2

2z

b
y p

b
 + 
 

ℏ

ℏ
 and b =

2e
B

c

ℏ
. 

 
Hn(η) is the nth proper function of the harmonic oscillator, normalized to unity.  a(px) is a 
“spinor” with two components.  The negative energy is given by: 
 

(14.14)   Wn(px) =
2 2 2

0

1

2xc p m c b n
σ− − + + + 

 
, 

 
in which σ is another spinor that has the proper values, +1 and –1, that correspond to the 
two possible positions of the electron spin. 
 One substitutes (14.12) and (14.14) into (14.8).  The sum must be taken over n = 0, 1, 
…, σ = +1, −1, and over the continuous domain of px, py, ranging from−∞ to+∞ .  The 
relation (14.13) shows that when one integrates over pz the variable y disappears; the 
result is (writing p instead of pz): 
 

(14.15)   
1

0
2 3

1 0

( )
8

n
n

b
U W p dp

σπ

+ ∞ +∞

−∞
=− =

 =  
 

∑∑∫ɶ

ℏ
. 

 
Set: 

x =
1

2
b n

σ− + 
 

. 

 
x is null for n = 0, σ = 1, but takes the same value b, 2b, 3b, …, for two combinations of n 
and σ; for example, x = 2b for n = 2, s = 1, as well as for n = 1, σ = −1.  We thus have: 
 

(14.16)   
1

1 0 1

(0) 2 ( )n
n n

W F F nb
σ

+ ∞

=− = =
= +∑∑ ∑ , 

 
in which: 

(14.17)   F(x) = 2 2 2
0c p m c x− + + . 

 
 It is clear that the sum (14.16) is divergent; nevertheless, one may transform it in such 
a manner that the physical significance of the divergent terms is obvious; if we apply the 
MacLaurin-Euler summation formula, this gives: 
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(14.18)  2 (2 1_

0
1 1

1
(0) 2 ( ) ( ) ( 1) (0)

(2 )!
k k kk

n k

B
F F nb F x dx b F

b k

∞ ∞∞ −

= =

 
+ = + − 

 
∑ ∑∫ , 

 
since all of the derivatives F(k)(x) of F(x), namely: 
 

(14.19)  F(1)(x) =
1

2 2 2 2
0( )

2

c
p m c x

−
− + + , F(2)(x) =

3
2 2 2 2

0( )
4

c
p m c x

−
+ + , 

 
is annulled when x → ∞ .  Bk is the Bernoulli number of rank k. 
 By substituting (14.18) into (14.15), one obtains the energy density Uɶ  of the vacuum 
electrons in a magnetic field B expressed by means of a power series in a quantity b that 
is proportional to B. 
 We isolate the only part of Uɶ  that can have a physical significance; Weisskopf 
characterized it by the following conditions: 
 
 1.  The energy density of the electrons must be annulled, along with the field. 
 
This signifies that the zeroth-order term in the development (14.15), has no physical 
significance; now, this is precisely the term that contains the divergent integral of F(x). 
 
 2.  The vacuum polarizability must be annulled, just as it is in the case of the absence 
of a field. 
 
 By “vacuum polarizability” we mean the factor α that measures the degree of 
disagreement with Maxwell’s theory in the equation: 
 

H =
U U ′∂ ∂= +

∂ ∂
B

B B
= B(1 + α). 

 
α is a function of B, and our postulate consists of saying that there is no constant term in 

the development of this function in powers of | B |.  In this case, 
U ′∂

∂B
= αB contains no 

term of first order inUɶ , nor a term of second order in | B |. 
 We must therefore eliminate the terms k = 1 in (14.18) that give rise to terms in b2 in 
Uɶ .  Indeed, the integral of these terms over p diverges, as one may see by analyzing the 
behavior of F(1)(x) in (14.19).  The terms of higher order give rise to convergent integrals, 
as one sees in (14.18); we are thus led to the following finite expression forUɶ : 
 

(14.19)  0Uɶ = 2 (2 1)
2 3

2

1
( 1)

(2 )!4
k k kk

k

B
b F dp

kπ

∞ +∞ −
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ℏ

 

  = 2
2 3 2 1 4 3
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k

Bc k dp
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k
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⋯

ℏ
. 
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 This power series may be expressed with the aid of hyperbolic cotangents by the 
following formula: 

(14.20)  
3 2

0 2 2 20
02 30

1
coth( ) 1

38

m c d
U m c eηη ηη η

π η
∞ −   = − − −  
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∫ɶ

ℏ
B B B ; 

 
B is the magnetic field compared to the critical field b1: 

 

(14.21)     B =
1

B

b
; 

the critical field is given by: 

(14.22)    b1 =
2 3 2
0 0

0 137

m c be
b

e c
= =

ℏ ℏ
, 

 
in which b0 is the Coulomb field of the charge e at a distance that is equal to the electron 
radius: 

(14.23)    b0 = 2
0

e

r
, m0c

2 = 
0

e

r
. 

 
 Now calculate the contribution of the electric field that is given by (14.11).  
Weisskopf proceeded in two stages.  First, he assumed that the field is sufficiently small 
that one may apply the ordinary perturbational method, which thus gives the first terms in 
the development into a power series in E; then, he determined the general law of the 
desired law by considering its relativistic invariance. 
 We content ourselves by discussing the essential characteristics of this method of 

calculation without reproducing the details.  The terms in the second approximation(2)U  
toUɶ , which are due to the electric potential V, are proportional to: 
 

2
2 2

02

1

2

g
V E=

ℏ
, 

 
in which /g ℏ  is the frequency that appears in (14.11), and in which the bar signifies that 
one takes the mean over all space.  (14.10) then shows that: 
 

(14.24)   
(2)

(0) (2) 0 (2)dU
U U U E U U

dE
′ = + − = −ɶ ɶ . 

 
The calculation gives: 
 

(14.25)  
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1 1
[ coth( ) 1]
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ℏ
E D D , 

in which: 
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(14.26)     E =
1

E

b
. 

 
 Now write the first terms of the development of in terms of D and E that is deduced 

from (14.20) and (14.25), namely: 
 

(14.27)  
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
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D D

E D E D

 

 
These formulas are valid for fields E, B that are parallel to each other; one may 
generalize to arbitrary fields by means of the following argument. 
 As we know, from section 4, that the energy density U may not be an arbitrary 
function of E, B (or of D, H), the postulate of relativity imposes certain conditions that 
are not, moreover, very simple.  On the other hand, we know that one may choose the 
Lagrangian L arbitrarily as a function of the elementary invariants E2 – B2 and EB; when 
one is given L, one obtains U by means of the equation: 
 

(14.28)    U = ED – L =
L

L
∂ −
∂

E
E

. 

 
 Let: 
(14.29)    L = L0 + L1, 
 
be the development of L, in which: 
 

(14.30)  
0 2 2

1 2 2 2 2 2 2 3 2 2 2

1
( ),

8
( ) ( ) ( ) ( )( )

L E B

L E B E B E Bα β ξ ζ

 = −

 = − + + − + − + EB EB ⋯

 

 
 By starting with (14.28), one obtains: 
 
(14.31) U1 = α(E2 – B2)(3E2 + B2) + β(EB)2 

+ ξ(E2 – B2)2(5E2 + B2) + ζ(EB)2(3E2 – B2) + … 
 
It suffices to compare (14.27) and (14.31) to obtain the values of α,β, ξ, ζ, …: 
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 Some analogous invariance considerations may likewise be employed to determine 
the terms of U ′  that are of higher order in E.  The fact that L depends only on E2 – B2 and 
(E·B), signifies, for example, that there exists a numerical relationship between the 
coefficients Ek and Bk. 
 If one designates the real and imaginary parts of A by RA and IA, respectively, the 
final result may be written: 
 

(14.33)  
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 This expression was discovered by Heisenberg and Euler [2] with the aid of a method 
that was much more complicated than the preceding one, which may be described as a 
theory of the “diffusion of light by light.” 
 We therefore see that the theory of “holes” leads us to a well-defined Lagrangian for 
the electromagnetic field.  We are now confronted with the task of comparing the various 
Lagrangians that have introduced in the preceding section with the aim of making it 
possible for mass to be assimilated by the electromagnetic energy of a point-like charge. 
 This latter concept is obviously I contradiction with the theory that we just developed 
and in which the mass of the electron is a fundamental constant of the wave equation that 
constituted our point of departure.  We may therefore hope to find a complete accord 
between the results of the two theories, even if they are dissimilar in their basic 
hypotheses; nevertheless, there is reason to be satisfied if they may be made to coincide 
in the domain in which both of them do not differ too much from a common viewpoint, 
namely, in the domain of Maxwell’s equations. 
 We will thus have to compare the development (14.30) with that of a Lagrangian of a 
type that was studied in the preceding sections.  As we have seen, there is a considerable 
ambiguity in the choice of that Hamiltonian, but we may reasonably hope that the 
coefficients of the developments of all the functions do not differ much from each other.  
With these conditions, take the function that we have studying all along. 
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which we write with the – sign in electrostatic units, in order to be in accord with thee 
formulas of Weisskopf.  The developments give: 
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The comparison with (14.30) gives: 
 

(14.36)    α =
2

1

32 bπ
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 One already confirms that there is a divergence between the two theories: In the 

“hole” theory, one has
β
α

= 7 (formula 14.32), and in this one one has 
β
α

= 4.  

Nevertheless, if we press on and we postulate the identity of the α coefficients in both 
theories then we may write the relation: 
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 On the other hand, b is related to the “electronic radius” by b =
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1.2361, in such a way that: 

 

(14.38)   b = 0
2 22

2
0

(1.2361)
1.2361

be

e

m c

=
 
 
 

. 

 
By substituting in (14.37), one finds that: 
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4
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e

π=ℏ = 82. 

 
 This result, which is due to Euler and Kockel [3], is of considerable interest.  It shows 
that by postulating the identity of the departures from Maxwell’s equations with terms in 



Chapter II 91 

developments that are obtained, on the one hand, by means of the quantum theory of the 
vacuum, and, on the other, the classical theory of the electromagnetic mass, one is led to 
a relation between charge and the Planck constant; in other words, one obtains a 
numerical value for the fine structure constant.  This value is very weak, and the 

experimental value is
137

82
= 1.67 times greater [4]; nevertheless, the order of magnitude is 

correct and the process of calculation shows how a dimensionless number of that order 
may be presented in the form of a combination of other factors, such as the factors 45, 
etc., in (14.38), for example. 
 This reasoning constitutes the first known indication of a theoretical explanation for 
the “mysterious” number 137, if we leave aside the speculations of Eddington to the 

effect that this number will be an integer given by the formula
2 2( 1)

1
2

n n + + , for n = 4. 

 We now establish a comparison between the two theories for higher values of the 
field. 
 We remark that, in the first place, the “characteristic field” b1 is much smaller than 
the absolute field of the unitary theory; indeed, from (14.22) and (14.38), one has: 
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 Then, we observe that for large values of E the higher-order terms in the development 
of the expression (14.33) become: 
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(and a similar expression for large values of B).  The ration between this additional term 

and the corresponding term 21
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 in Maxwell’s theory is: 
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 This result proves that the nonlinear terms that the theory of holes introduces 
constitute only weak corrections to the Maxwell theory, even for very strong fields.  A 
Lagrangian of the type (14.33) is therefore of no utility for the problem of 
electromagnetic mass.  This negative result must not be surprising; indeed, it suffices for 
us to recall that the origin of that Lagrangian is the wave equation of the electron, and 
that this equation already contains the mass as the coefficient of an essential term. 
 
 
 



Chapter II 92 

 15.  Final remarks. – The preceding monograph examined only one facet of the 
general problem of adapting physical theories to the results of modern experimental 
discoveries.  Nonlinear electrodynamics may be considered as a superstructure for the 
classical Maxwell theory; meanwhile, there exists an infrastructure whose role is to 
reduce Maxwell’s laws to a simpler set of equations; I spoke of the theory of light that is 
based on the hypothesis of the neutrino, such as was imagined by de Broglie and 
completed Jordan and Kronig.  At this point in time, we may only guess which of these 
concepts will be victorious in the end, and we may not know whether they are finally 
absorbed by another concept that embraces both of them.  One thing seems certain: the 
fact that it fails to give us a general principle that regulates phenomena at the nuclear 
level.  Theoretician need to follow experimental research attentively and to analyze their 
results with care, in the hopes of finding a clue concerning the nature of this unknown 
principle.  The object of this monograph was precisely to give a similar analysis of the 
actual state of electrodynamics. 

_______ 
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