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On the quantum mechanics of collision processes.

[Preliminary announcemert)[
By Max Born, Gaottingen.
(Received on 25 June 1926)

Translated by D. H. Delphenich

By examining collision processes, the viewpoint wil developed that quantum mechanics, in its
Schrddingerform, not only allows one to describe stationaagesdt, but also quantum jumps.

Up to now, the quantum mechanics that was foundddesenberghas been applied
exclusively to the calculation of stationary states] the vibration amplitudes that are
associated with transitions. (I deliberately avoidghease “transition probabilities.”) In
that regard, the formalism that has been developing daitesince then is well-
established. However, this way of posing the question sskelseonlyone aspecof the
guantum-theoretic problem; in addition, it raises the-ggsimportant question of the
essence of the “transition” itself. The opinionsrsde be split in regard to that issue;
many assume that the problem of transitions in quamh@&chanics cannot be posed in
the foregoing form, but that it would be necessary tmduce some new concepts. As a
result of a general impression that the logical stmecof quantum mechanics is closed, |
myself came to suspect that this theory is complete,that it must then contain the
transition problem. | believe that | have now succdadgroving that.

Bohr has already directed attention to the fact thabfathe main difficulties in the
guantum picture that we encounter in the emission arr@tien of light by atoms also
appear in the interaction of atoms at short sepastamd thus, for collision processes.
For them, one deals with systems of material pastitleat are subordinate to the
formalism of quantum mechanics, instead of with the wdrscure wave fields. | have
therefore taken the problem in hand of examining marsety the interaction of a free
particle @-ray or electron) and an arbitrary atom and establishimgtiver a description
of collision processes is not possible within the cxindé the foregoing.

Of the various forms of the theory, only t8ehrédingerform proves to be suitable,
and on that basis | would like to regard it as the mastddmental formulation of
guantum laws. The general train of thought in my argtimemw the following:

If one would like to calculate the interaction wfot systems quantum-mechanically
then, as is known, one cannot, as in classical nmgchasingle out one state of one
system and establish how it would be influenced, sincefdhe states of both systems

() This announcement was originally prepared for “Naissenschaften,” but due to space limitations,
it could not be included there. | hope that publishingrie ell not seem superfluous.
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are coupled in a complicated way. That is also trueafoaperiodic process, such as a
collision, in which a particle (say, an electron) cenmrefrom infinity and again vanishes
to infinity. However, here the picture confronts thet that before, as well as after, the
collision, when the electron is sufficiently distand the coupling is small, one must be
able to specify a well-defined state of the atom and ladeéined rectilinear motion of
the electron. We must deal mathematically with thargtotic behavior of the coupled
particles. 1 did not succeed in doing that with the riwaformulation of quantum
mechanics, but with th&chrédingeformulation.

According toSchroédingeran atom in its™" quantum state is an oscillatory process of

L . 1 .
a state quantity in all of space with constant frequeﬁwf. In particular, an electron

that moves rectilinearly is such an oscillatory precasd it corresponds to a plane wave.
If two of them interact with each other then a caogikd oscillation will result.
However, one sees directly that one can stipulateeitgvior at infinity. Indeed, one has
nothing but a “deflection problem,” in which a plane wa\et ik incident upon the atom
is deflected or scattered; in place of the boundary dondithat one employs in optics
for the description of screens, here one has the paitemergy of the interaction of the
atom and the electron.

The problem is then: Solve tH&chrodingerwave equation for the atom-electron
combination under the boundary condition that, for #agedirection in electron space,
the solution goes asymptotically to a plane wave withthest direction of advance (viz.,
the incoming electron). With the solution, thus-chamaned, we shall now be interested
chiefly in the behavior of the “deflected” wave at infynithat will then describe the
behavior of the system after the collision. We tleaxk into this a bit more closely. Let

w2 (), ¢2(q,), ... be the eigenfunctions of the unperturbed atom (weressioat there
is only a discrete series of them). The unperturbedtilirearly) moving electron

corresponds to the eigenfunction szblg(ax + By + yz+ 9), which defines a continuous

manifold of plane waves whose wave length (accordindet@roglig is linked to the
2

energyr of the translational motion by the relatior 2h The eigenfunction of the

ZEa

unperturbed state in which the electron comes btiteo+z direction will then be:
0 _ 0 . 27T
Y. (.2 =y, (qk)5|n7 Z.

Now, letV(X, y, z qk) be the potential energy of the interaction betwiée atom and the
electron. With the help of simple perturbativeccddtions, one can show that there is a
uniquely-defined solution of th8chrddingerdifferential equation when one considers
the interactionV/ that goes asymptotically to the function abovezfor + .

We now come to the problem of how that solutionction will behave “after the
collision.”

We can now calculate: The deflected wave thataslpced by the perturbation has
the asymptotic expression:
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wRyzg) =[] dw®,(@.B.y)sink,, @x+ By+y z- W, (d)

T

at infinity. That means: The perturbation can be regaadeal superposition of solutions
of the unperturbed process at infinity. If one calcslatee energy that belongs to the
wave lengthA = according to thele Broglieformula that was given above then one will
find that:

an = hI/r?m + T’

in which v?_ are the frequencies of the unperturbed atom.

If one would now like to reinterpret this result asaapeiscular one then only one
interpretation will be possible®  (a,p,y) determines the probability’)( that the
electron that comes out of tizedirection will be deflected into the direction thiat
determined by, £, y(and with a change of pha#g in which its energy has increased
by a quantumhv®  at the cost of the energy of the atom (collisiérihe first kind for

W? <W?, hv? < 0; collision of the second kind fak° >W?, hv° < 0).

Schrddinger'squantum mechanics then gives a completely definite ensovthe
guestion of the effect of a collision; however, onen dealing with any causal
relationship. One getso answer to the question “what is the state after dtision,”
but only to the question “how probable is a prescribed effetite collision” (in which,
one must naturally verify the quantum-mechanical lanwnefgy).

This raises the whole problem of determinism. Fromsthadpoint of our quantum
mechanics, there is no quantity that could establiskeffaet of a collision causaliy the
individual caseshowever, up to now, we have no clue regarding the fedtthere are
internal properties of the atom that require a defimtdlision effect, even from
experiments. Should we hope to discover such prop@oeekaps phases of the internal
atomic motions) and to determine the individual cases?shOuld we believe that the
agreement between theory and experiment regarding ourityabilgive conditions for
the causal evolution is in pre-stabilized harmony withfdtt that such conditions do not
exist? | myself tend to abandon determinism in the atevorld.

In practice, there exists indeterminism, in any casegXperiment physicists, as well
as for theoretical ones. The “profit functiord that has been much-studied by
experimenters is now also rigorous theoretically. Oame find it from the potential
energy of the interactioiV(x, y, z qk); thus, the computational processes that are
necessary for this must be developed in order to commartivam at this point. Here, |

() Editor's remark: A more precise argument will shtnattthe probability is proportional to the square
of the quantity®,,,, .
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would only like to say a few words about the meaning ofuhetion ® . For example,

T

if the atom is in the normal state= 1 before the collision then it will follow from:

r+hy) =r-hv’ =W,_>0

T

that one must necessarily hane= 1for an electron with less energy than the ldwes
excitation level, and thus\,,; that will then result in the “elastic reflectiordf the

T

electron with the profit functior®,,. If 7exceeds the first excitation level then there will

T

also be excitation with the prof®,,, in addition to the reflection, etc. If the atom i

T

question is in the excited state= 2 andr < hvy, then there will be reflection with profit
®,, and collisions of the second kind with the profit,. If 7> hvy then further

excitations will enter in, etc.

The formulas then give the qualitative behavior undeliseamis completely. The
guantitative exhaustion of the formulas for special casest remain deferred to a more
thorough examination.

It does not seem excluded to me that the close caanextmechanics and statistics,
as it comes to the fore here, will require a revisadrihe basic concepts of statistical
thermodynamics.

| further believe that the problem of the irradiatand radiation of light must also be
treated in a completely analogous way to the “boundalyevproblem” of the wave
equation and would lead to a rational theory of dampindiaedvidth that is in harmony
with the picture of light quanta.

A thorough presentation will appear in this Zeitschrefkin




