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On the quantum mechanics of collision processes. 
 

[Preliminary announcement (1)] 
 

By Max Born, Göttingen. 
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Translated by D. H. Delphenich 
 

 By examining collision processes, the viewpoint will be developed that quantum mechanics, in its 
Schrödinger form, not only allows one to describe stationary states, but also quantum jumps. 
 
 
 Up to now, the quantum mechanics that was founded by Heisenberg has been applied 
exclusively to the calculation of stationary states, and the vibration amplitudes that are 
associated with transitions.  (I deliberately avoid the phrase “transition probabilities.”)  In 
that regard, the formalism that has been developing quite far since then is well-
established.  However, this way of posing the question addresses only one aspect of the 
quantum-theoretic problem; in addition, it raises the just-as-important question of the 
essence of the “transition” itself.  The opinions seem to be split in regard to that issue; 
many assume that the problem of transitions in quantum mechanics cannot be posed in 
the foregoing form, but that it would be necessary to introduce some new concepts.  As a 
result of a general impression that the logical structure of quantum mechanics is closed, I 
myself came to suspect that this theory is complete, and that it must then contain the 
transition problem.  I believe that I have now succeeded in proving that. 
 Bohr has already directed attention to the fact that all of the main difficulties in the 
quantum picture that we encounter in the emission and absorption of light by atoms also 
appear in the interaction of atoms at short separations, and thus, for collision processes.  
For them, one deals with systems of material particles that are subordinate to the 
formalism of quantum mechanics, instead of with the very obscure wave fields.  I have 
therefore taken the problem in hand of examining more closely the interaction of a free 
particle (α-ray or electron) and an arbitrary atom and establishing whether a description 
of collision processes is not possible within the context of the foregoing. 
 Of the various forms of the theory, only the Schrödinger form proves to be suitable, 
and on that basis I would like to regard it as the most fundamental formulation of 
quantum laws.  The general train of thought in my argument is now the following: 
 If one would like to calculate the interaction of two systems quantum-mechanically 
then, as is known, one cannot, as in classical mechanics, single out one state of one 
system and establish how it would be influenced, since all of the states of both systems 

                                                
 (1) This announcement was originally prepared for “Naturwissenschaften,” but due to space limitations, 
it could not be included there.  I hope that publishing it here will not seem superfluous. 
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are coupled in a complicated way.  That is also true for an aperiodic process, such as a 
collision, in which a particle (say, an electron) comes in from infinity and again vanishes 
to infinity.  However, here the picture confronts the fact that before, as well as after, the 
collision, when the electron is sufficiently distant and the coupling is small, one must be 
able to specify a well-defined state of the atom and a well-defined rectilinear motion of 
the electron.  We must deal mathematically with the asymptotic behavior of the coupled 
particles.  I did not succeed in doing that with the matrix formulation of quantum 
mechanics, but with the Schrödinger formulation. 
 According to Schrödinger, an atom in its nth quantum state is an oscillatory process of 

a state quantity in all of space with constant frequency 0
1

nW
h

.  In particular, an electron 

that moves rectilinearly is such an oscillatory process, and it corresponds to a plane wave.  
If two of them interact with each other then a complicated oscillation will result. 
However, one sees directly that one can stipulate its behavior at infinity.  Indeed, one has 
nothing but a “deflection problem,” in which a plane wave that is incident upon the atom 
is deflected or scattered; in place of the boundary conditions that one employs in optics 
for the description of screens, here one has the potential energy of the interaction of the 
atom and the electron. 
 The problem is then: Solve the Schrödinger wave equation for the atom-electron 
combination under the boundary condition that, for a certain direction in electron space, 
the solution goes asymptotically to a plane wave with just that direction of advance (viz., 
the incoming electron).  With the solution, thus-characterized, we shall now be interested 
chiefly in the behavior of the “deflected” wave at infinity; that will then describe the 
behavior of the system after the collision.  We then look into this a bit more closely.  Let 

0
1 ( )kqψ , 0

2 ( )kqψ , … be the eigenfunctions of the unperturbed atom (we assume that there 

is only a discrete series of them).  The unperturbed (rectilinearly) moving electron 

corresponds to the eigenfunction sin 
2π
λ

(α x + β y + γ z + δ), which defines a continuous 

manifold of plane waves whose wave length (according to de Broglie) is linked to the 

energy τ of the translational motion by the relation τ = 
2

22

h

µλ
.  The eigenfunction of the 

unperturbed state in which the electron comes out of the + z direction will then be: 
 

0 ( , )n kq zτψ  = 0 2
( )sinn kq z

πψ
λ

. 

 
Now, let V(x, y, z; qk) be the potential energy of the interaction between the atom and the 
electron.  With the help of simple perturbative calculations, one can show that there is a 
uniquely-defined solution of the Schrödinger differential equation when one considers 
the interaction V that goes asymptotically to the function above for z → + ∞. 
 We now come to the problem of how that solution function will behave “after the 
collision.” 
 We can now calculate: The deflected wave that is produced by the perturbation has 
the asymptotic expression: 
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(1)( , , ; )n kx y z qτψ  = 0

0
( , , )sin ( ) ( )nm nm m kx y z

m

d k x y z q
α β γ δ

τ τ

ϖ α β γ α β γ δ ψ
+ + + >

Φ + + +∑∫∫  

 
at infinity.  That means: The perturbation can be regarded as a superposition of solutions 
of the unperturbed process at infinity.  If one calculates the energy that belongs to the 
wave length nm

τ

λ  according to the de Broglie formula that was given above then one will 

find that: 

nmW
τ

 = 0
nmhν  + τ, 

 
in which 0

nmν  are the frequencies of the unperturbed atom. 

 If one would now like to reinterpret this result as a corpuscular one then only one 
interpretation will be possible: ( , , )nm

τ

α β γΦ  determines the probability (1) that the 

electron that comes out of the z-direction will be deflected into the direction that is 
determined by α, β, γ (and with a change of phase δ), in which its energy τ has increased 
by a quantum 0

nmhν  at the cost of the energy of the atom (collision of the first kind for 
0

nW  < 0
mW , 0

nmhν < 0; collision of the second kind for 0nW  > 0
mW , 0

nmhν < 0). 

 Schrödinger’s quantum mechanics then gives a completely definite answer to the 
question of the effect of a collision; however, one is not dealing with any causal 
relationship.  One gets no answer to the question “what is the state after the collision,” 
but only to the question “how probable is a prescribed effect of the collision” (in which, 
one must naturally verify the quantum-mechanical law of energy). 
 This raises the whole problem of determinism.  From the standpoint of our quantum 
mechanics, there is no quantity that could establish the effect of a collision causally in the 
individual cases; however, up to now, we have no clue regarding the fact that there are 
internal properties of the atom that require a definite collision effect, even from 
experiments.  Should we hope to discover such properties (perhaps phases of the internal 
atomic motions) and to determine the individual cases?  Or should we believe that the 
agreement between theory and experiment regarding our inability to give conditions for 
the causal evolution is in pre-stabilized harmony with the fact that such conditions do not 
exist?  I myself tend to abandon determinism in the atomic world. 
 In practice, there exists indeterminism, in any case, for experiment physicists, as well 
as for theoretical ones.  The “profit function” Φ that has been much-studied by 
experimenters is now also rigorous theoretically.  One can find it from the potential 
energy of the interaction V(x, y, z; qk); thus, the computational processes that are 
necessary for this must be developed in order to communicate them at this point.  Here, I 

                                                
 (1) Editor’s remark: A more precise argument will show that the probability is proportional to the square 

of the quantity nm

τ

Φ .  
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would only like to say a few words about the meaning of the function nm

τ

Φ .  For example, 

if the atom is in the normal state n = 1 before the collision then it will follow from: 
 

τ + 0
1mhν  = τ − 0

1mhν  = 1mW
τ

 > 0 

 
that one must necessarily have m = 1for an electron with less energy than the lowest 
excitation level, and thus, 11W

τ

; that will then result in the “elastic reflection” of the 

electron with the profit function 11

τ

Φ .  If τ exceeds the first excitation level then there will 

also be excitation with the profit 12

τ

Φ , in addition to the reflection, etc.  If the atom in 

question is in the excited state n = 2 and τ < 0
21hν  then there will be reflection with profit 

22

τ

Φ  and collisions of the second kind with the profit 21

τ

Φ .  If τ > 0
21hν  then further 

excitations will enter in, etc. 
 The formulas then give the qualitative behavior under collisions completely.  The 
quantitative exhaustion of the formulas for special cases must remain deferred to a more 
thorough examination. 
 It does not seem excluded to me that the close connection of mechanics and statistics, 
as it comes to the fore here, will require a revision of the basic concepts of statistical 
thermodynamics. 
 I further believe that the problem of the irradiation and radiation of light must also be 
treated in a completely analogous way to the “boundary-value problem” of the wave 
equation and would lead to a rational theory of damping and line width that is in harmony 
with the picture of light quanta. 
 A thorough presentation will appear in this Zeitschrift next. 
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