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I ntroduction

The representation of geometrical optics, as it isgmtes! in the extensive literature
on the subject, starts, in most cases, by develop@mgheory of lens systems. When the
problems posed are treated satisfactorily, such a precgsdified, in and of itself, since
the lens instruments that serve to generate imagestemal objects, in fact, ultimately
define the most important and also the most difficult topic in practical optics.
Moreover, the restriction that one therefore impasesies with it the drawback that, on
the one hand, the true meaning of the assumptions atigethrems that one derives from
them are occluded in places, and, on the other hangathdo results of a general nature
will be complicated. Giving a good explanation for thisation constitutes that chapter
of geometrical optics that is usually referred to &dtudy of distinguished points of a
lens system, and which | would, however, prefer to tbal“first approximation” in the
theory of optical images. Namely, if one discards alesumptions and line of reasoning
of this chapter as inessential, as was first done bBE&B, then what would remain is a
train of thought that shall be presented in the follgumanner.

The starting point is the concept that geometricats@tiways begins with, namely:
Two spaceswandQ, are mapped onto each other in a “ray-like” manner —arg. line
oin wdetermines a lin& in Q and conversely. The two spaces then mean the fiidst a
last medium in any optical system, tb@re the rays that emanate from luminous points
of the first medium, while the “conjugate” rayslefine the corresponding advance of the
light path in the latter medium. Rays that go throagpoint define a “homocentric”
sheatf.

If one considers the sheaf Bfthat is conjugate to a homocentaesheaf then, in
general, it is “astigmatic’ — i.e., non-homocentrc and the deviation from the
homocentric union of rays is the “astigmatism” ortigimacy” of the sheaf. Likewise,
the osheaf that is conversely associated with a homocedtsheaf is generally
astigmatic. If the conjugate sheavesarand Q are simultaneously homocentric as a
result of special circumstances then they will defame“anastigmatic” pair of sheaves
and the union of the two points is an “anastigmaticinppair. When nothing more
specific is assumed about the ray-wise map of the pacesw Q then the following
two cases relating to the appearance of anastigmatitspaihbe provisionally possible:

1. Anastigmatic points are completely absent.

2. They are present and isolated; let them be geametations where the lines,
surfaces, and solids can be mapped.

If the latter case enters into consideration theastgmatic bodies will be present,
and the spatial domains that are taken from these bodiesandQ will be mapped to
each other, not only ray-wise, but also point-wiseuirhsa way that the union of points
of the anastigmatic pairs of ray-sheaves will likesvdetermine the elements that are
conjugate to each other under the point-wise map. If with, ABBE, asks about the
general properties of the point-wise map that is thus geggthen this would imply — as
one might confirm in CZAPSKI (loc. cit.,, page 24, et yeqthat it is nothing but a

1) On this, confer the presentation in the book of S. BZKI: “Theorie der optischen Instrumente
nach ABBE,” Breslau, E. Trewendt, 1893.



4 The Eikonal

collineation between the two spaces considered. Wishrésult, however, the problem
that must be solved in the theory of optical imagewhénfirst approximation is already
resolved essentially, since one now only needs td twed-known properties of the
collinear map when clad in optical garb in order to ob#dliof the general theorems that
one can infer in the first approximation. To them bglere.g. — the theorems on focal
points, principal points, cusps, and their correspondirgngd, and furthermore, the
theorems on the position of the object and image, agd®ghe magnification and
brightness, on the action of the apertures and fieldew, etc. In truth, these theorems
are not by any means optical theorems, but belong tay¢heral study of space or
geometry. Likewise, their applicability to optics deggnnot upon this or that particular
property of the optical system that is under scrutinyg, upon two much more general
things, namely, on the one hand, the concept thatrdteafid last media can be mapped
to each other ray-wise, and, on the other hand, thengstion that anastigmatic bodies
exist, so astigmatism is absent, or at least, canegkected in the first approximation.
One will first set foot in the realm of real optichen one treats the problem of how
maps of the type in question can be realized, whethemugty or approximately.

The present line of inquiry that is being sketched, and lwWWBBE pursued,
obviously renders in the first approximation of geometrgaics that which one strives
to achieve in any scientific investigation, namely, thatnextraction of the logically
necessary and sufficient assumptions; as a prizeyiglgs the fact that the totality of
general theorems in this chapter of geometrical opticdddoe condensed, to a certain
extent, into the one simple expression: “The objectthadmage are collinear.”

In the book by CZAPSKI, the purely geometric theoryppfical maps was truncated
at the first approximation; the second approximation errépresentation of astigmatic
ray paths was already established for certain forneptidal systems. There is, however,
no intrinsic basis for not extending the purely geometxamination to the second
approximation. The following article shall show thatlsao advance on the ABBE train
of thought is not only feasible, but also preferable. mBgans of it, it will be indeed
possible to reduce the starting point for problems of eemgeneral nature to the most
mathematically simple form from the outset.

If one again starts with the concept that two spagcasdQ are mapped to each other
ray-wise then, in the event that no further assumptare added, one must first attend to
the theorems that are true for such maps in generbenWne dresses these theorems in
optical clothing, they are likewise converted into matatements on the properties of the
ray paths through any optical system, where naturallyéhge of these statements for
practical purposes of geometrical optics can turn out taee different. Such a
geometric theory will now also encompass maps thatleaat, at present — are without
interest in the study of optical instruments. Theuaggion that nothing further should
be given besides the ray-wise map betweemdQ is unnecessarily general, and allows
one to single out a well-defined class in the totalitlbpossible ray-wise maps in the
problems to be addressed here.

If one thinks of the first mediunw as being an arbitrary surface, and considers the
normals to this surface as a sheaf of rays that, @ukid way of generating them, we
would like to briefly refer to as “surface normals” thevo cases are possible, namely,
the conjugate sheaf in the second mediuns or is not composed of surface normals, as
well. The former case enters into view, as one knawsdong as the light path from the
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first to the last medium is consistent with theioady laws of refraction and reflection,
and the statement of this property constitutes the obrde the known theorem of
MALUS. For that reason, we would like to refer to thguirement that every sheaf of
surface normals of the first medium shall, in turn,agate a sheaf of surface normals in
the last medium as the MALUS condition, and we dsntarrange all ray-wise maps
into two large groups, according to whether they do onatdulfill the stated condition.
Now, the cases in the theory of optical instrumentshich MALUS’s theorem is valid
play only a subordinate role, and are left completelyheywayside. It then makes good
sense for us to take the following two theorems assthding point for a geometric
theory of optical maps:

1. The first medium is mapped ray-wise to the last one.

2. The map satisfies the MALUS condition.

If one now asks about the general properties of thesetaof maps that are present
then the investigation of that question would yield thet faat any individual map is
completely characterized by a definite mapping functih four variables, for which |
will use the term “eikonal” in order to have a con@s@ression. Each map that satisfies
MALUS’s theorem is then associated with a definitkoeal, and conversely; all
peculiarities of a given map find their counterpart imregponding peculiarities of the
eikonal. The eikonal is- and herein lies its main property the generator of the
equations for a contact transformation, through which any fetermining data are
coupled with each other, and which one might define tthé&éwo conjugate linegand
>. Thus, in the first approximation, the contact tramsfttion enters into the picture in
place of the collinearity relation.

It is perhaps not superfluous to clarify the role thateikonal plays in the geometric
theory of astigmatic ray paths by comparison with b@opart of applied mathematics.
In the presentation of analytical mechanics, the problemsvhich HAMILTON'’s
principle is valid are generally afforded a privilegecerolThis privileged status is well-
founded, since the validity of HAMILTON'’s Ansatz allowse to treat all questions that
are common to the envisioned class of problems in a dnifianner. The concept of
eikonal now plays an entirely similar role to the MATON Ansatz in mechanics, but
in the generally much narrower realm of geometricalcgpit delivers the simplest form
of the Ansatz for the general treatment of generaltguess The fact that the associated
difficulties that any special problem gives rise to mhestovercome by means of special
tools that are developed for the individual cases igparage matter. In regard to this, |
would like to remark, in order to avoid any misunderstargithgt it may take some time
before its validity is confirmed by the examinationpsbperties that all optical systems
have in common, which will probably use purely numerica@thods of calculation in
real-world optics. Precisely on the grounds of the dewveénts that will be given later
on, | regard it as self-evident that the discovery ofech-needed purely analytical or
algebraic replacement for the aforementioned numearethods cannot be accomplished
at all by means of the usual elementary tools that taoeiradisposal, although one also
occasionally encounters tedious arguments in the literdibat purport to have overcome
these difficulties.

After the foregoing discussion, | now turn to the tmeent of the problem that was
suggested above. In order to avoid repetition, | willdéfege begin with a series of
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assumptions, and then, in order to have everything inptaee, briefly develop some
well-known things to the extent that is necessary.



l.
Establishing the notations. Focal lines. Condition for a surface normal sheaf.

A given spacevwill be referred to an arbitrarily chosen, right-Ethsystem of axes
(X, ¥, 2; they-axis and the-axis shall be referred to as tlageral axesand theyzplane,
as thebase plane We write the equations for the points of a lme or, as we would
also like to say, eay - in the form:

= = , (]_)

where them, p, g mean the direction cosines and (0,k) is the location of the
intersection ofowith the base plane. The four mutually independent questiitk, p, g
are the necessary and sufficient determining dataodfoor, more briefly, theray
coordinates The totality of o defines a four-fold extended manifold. In order to
abbreviate this somewhat cumbersome way of speakiagsytmbolz, shall be used in
order to refer to an-fold extended manifold, without regard to its other qualitsegs is
then the symbol for an infinite number of things. Thhs o collectively define an .

If one imposes certain conditions on Wighen, depending upon the circumstances, a
Mo, M, b, OF als Will be selected from thg, . Thega, o, (5 can also be obtained when
one thinks of thd, k, p, g as representing functions of 1, 2, 3 variable parametspg,

A 14 of rays shall be referred tofamily and ais, as asheaf If the rays of a family or a
sheaf go through a fixed poimtthen we call the structutgomocentri¢c and refer to the
common pointsz as thevertex of the family or the sheaf; if the structure is not
homocentric then it shall be calledgtigmatic. If one thinks of an arbitrary sheaf of
parallels7 as being drawn through the origin to the raythen it intersects a sphere of
radius one centered at the origin at points whose codediraie then, p, q of unit rays.
The spherical figure that is generated by the intersegbioints can serve as the
representative of the sheaf of an aperture and shedltesl theaperture figure

If one selects an arbitrary rag with the coordinateh, k, p, q from the sheaf then the
rays of the sheaf that are infinitely close dg define an “elementary sheaf” with the
“central ray” oo ; the coordinates of the neighboring rays are given by:

h + dh, k + dk, p +dp, g +daq,

where theh, k, p, g are thought of as expressed in terms of functions of \arying
parameters — sayy and 5. The shortest distance between the central ray laad t
neighboring ones is, in general, of the same infysehall order as the quantity:

Jda?+dg?,
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but it can be of higher order for special positions eftikeighboring ray. If the latter is
the case then one will say that the neighboringimsrsectsthe central ray and one will
refer to the intersection point as floeal pointof the elementary sheaf. If one defines:

dh=h;da+h,dB dk=kda+k:ds
dm=m da+m dg, dp=p.da+p.ds dg=qida+aq.dg
and writes the ray equations (1) in the form:
X=Am, y=h+Ap, z=k+AqQ (2)
then one will obtain the three conditions:

O=mdl+Amadr+A m ¢,
O=pdi+(p+h)dr+(Ap+ h) &, 3)
0=qdA+(Aq+k)dr+(A g+ k) &,

for the intersection of the central and neighboriagsr which, upon eliminating trex,
da, dg, reduce to the one equation:

m Am Am
0={p Ap+h Ap+h). (4)
q Agq+k Aq+k

If Ais determined from this quadratic equation then the codsedired the focal point
follow from (2) and the ratios of theéx, dS will follow from (3), which then determine
the position of the intersecting neighboring rays.

If one searches for the focal point of all raysh&f sheaf in question then its locus is a
well-defined surface — the so-calledusticof the sheaf — that generally consists of two
distinct sheets, due to the double-valuednesk dh order to obtain the equation of the
caustic, one must eliminate the quantitiesy, £ from (2) and (4). If one preserves the
parametric representation of the caustic that is giyef2) and (4) and sets:

dx=xyda+xdf dy=yida+y.df dz=zda+zdgS

A=Ada+ A dS5
then the determinant:

m X %
D=|p % ¥%
a 2 3%

will go over to:
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m m+Am M,+A m
D=|p ph+ip+h pl+Ap+ Ry,
q ah+Agq+k  dh+Ag+k

from which it will follow, due to (4), that:
D=0. (5)

If one now considerx(y, 2) to be, on the one hand, a point of the caustic, amthe
other hand, the focal point of the elementary she#f thie central rayh{ k, p, g) then
equation (5) will say that the central ray and the rmtmthe caustic are perpendicular to
each other, or that the central regntactsthe caustic. Thus, the sheaf in question
represents the totality of all lines that contact tthe sheets of the caustic. In special
cases, one or both of the sheets can degenerate usticdemes; furthermore, both sheets
can reduce to a single point, which can happen with hentoc sheaves.

If one lays thex-axis of an elementary sheaf along the central rayth®moment,
and chooses the variable parameters to be the quaptitethen, since only infinitely
small values of the, g can come under consideration when one neglects thétepsaaf
higher order, one can define the equations:

m=1, h=hp+hq, k=kip+kaq,

y=(hith)p+hyq, z=kip+ (ki +ko)q,
A = (h +hy) (hy + hp) —ho kg,

pA=(e+X)y-hz qA=-hyz+ (M +X) z

If one now establishes that in the limit of thenedmtary sheaf in question the
aperture figure shall be an infinitely small circlettisadescribed around the central ray
with a radiuse then the extent of thg g will be given by the condition:

p’+ P < &

If one further intersects the sheaf with a plara th parallel to the base plane and
lies at a distance from the origin then the outline of the cross seectioiigure is
determined by the equation:

£02=((e+X)y—he 27+ (2= (hu +3) 27

and is therefore an ellipse. For both abscissastbkeA vanish, the ellipse will reduce
to rectilinear line segments — viz., the so-caltezhl lines The known construction of an
elementary sheaf from its central ray and focal lthes follows from this immediately.

In the spaceuy letx = ¢(x, y) be the equation of an arbitrary surface, so the nsrtoal
the surface will define a sheaf of rays; such sheavdklshaalledsurface normals.If
one writes:

dx=dg = g1 dy + ¢ dz (6)
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then the ray coordinates of the normal that belongshéo point %, y, 2 will be
determined by the equations:

m__pP__4 @)
1 _¢1 ¢2
h:y—B( =y + X¢, k:z—% =Z+ X . (8)
m m

If one defines = mx+ py + gzthen one will have:
dv=(Mmdx+pdy+qda + (x dm+ydp+zdg.

The first parenthesis on the right vanishes, on acooiui@) and (7), and due to the fact
that:
m+p’+q =1, m dm+ p dp+ q dg=0,

and with hindsight of (8), one obtains:
dv=hdp+kdqg ()

The expressioh dp+ k dqis then a total differential for surface normal sle=a and one
has, ifv, h, k are thought of as represented by functions optlg that:

_ov k_av oh _ ok

h=—, =—, —=—.
ap 0q Jg o0p

(10)

This result may also be inverted. For a given sheaheai, k are expressed as
functions of thep, q then:
oh _ ok

a_% 11
o9 op (11)
so there exists a certain functiofp, g) for which one has:
h:@, k:@, du=hdp+kdg (12)
op aq

Instead of the, g, one can introduce new variabfeg by means of the equations:

m (1+f2+g%) =1, p=-mf g=-mg (13)
define the function:
u 1
Wp, Q) = - (f;q) =—u(p, ) YT+ F2+g2, (14)

and then formulate the equations:
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ow ow
=—, z= —, x=yf+zg—w. 15
Y= 59 y g (15)

We regard the system (15) as the parametric representdta surface;x(y, 2) is a
surface point and thie g are the variable parameters. We now seek thearelbétween
theh, k, p, g of the normal sheaf to this surface. To that endfames the expression:

V=XMm+yp+zq

in which them, p, g are to be set equal to the direction cosines of theal at &, y, 2).
Now, it follows from (15) by differentiation that:

dx=fdy+gdz
from which, one infers that:
m_pP_49
1 -1 -g (16)

p=-mf, g=-mg m@+ f+ §)=1.

From this, one further obtains:
v =m(X-y,f-2z9
=-m wf, g),

or, when one compares (13) and (16) and observes (14):

v =u(p, a),

from which, one deduces the equations for the normal sifethie surface (15) in the
form:
h=2 k=

ap 0q
which is identical to that of the original pair of eqaas (12) for the chosen sheaf. Thus,
if a sheaf satisfies the condition (11) then it isfaste normal, and the system (15) will
deliver the equation for the surface, as long as theiumafp, q) is obtained by the
guadrature:

u=J (h dp+k dg.
With that, we can state the following theorem:

The necessary and sufficient condition for a sh#afays to be surface normal is
given by the equation:
oh _ ok

on_ ok 17
o9 op (17)
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which likewise states that h éyk dq is a total differential.

The preceding remark, which is quite simple, in princiglieeady includes the
solution of the problem to be treated later on; from hereproceed along a direct and
long-established path to the properties of the eikonal.

Since parallel surfaces have the same normal sheafface normal sheaf is always
associated with a family of parallel surfaces whosarnon normals generate the sheaf.
As usual, we shall refer to each one of these surfeses/ave surface If one appeals to
the known theorems on surface curvature then one mitiadiately obtain a series of
properties of the surface normal sheaf. It does ret §eem necessary to specify these
theorems here; they are all connected with the renmatkthe caustic of such a sheaf is
likewise the surface of the curvature center of itsexsawface.

The reasoning up to now related to rays in a single speea)ow go on to the
consideration of two spaces at once. This might protwkeremarks of an extraneous
nature. For the sake of clarity, | will often denotetiphderivatives by simply adding an
index; this will suffice whenever the schema for the sefs$ke indices is invoked in the
form:

do(x, y,z ...) =g dx+ g, dy+ @g3dz+ ...

Furthermore, when it is appropriate, the following -sedblanatory notation for the
determinants that appear shall be employed:

A B C
‘ 2 slz ‘ = A B, A B G| =(ABQuwys etc,
A B G

which is also useful for double indices; e.g.:

B
‘ Awy e (Aa Bﬁ)ya, etc.

Ass B/JJ




.
Fundamental equationsfor a ray-wise map.

For the simultaneous consideration of two spacasndQ, the quantities invandQ
that are associated with or “conjugate to” each oth#rbeiconsistently denoted by the
corresponding small and large symbols, respectively. h Badhe two spaces will be
referred to its own provisionally arbitrarily chosentsys of axesx, y, 2 and &, Y, 2), o
and Z will be rectilinear rays whose coordinatés Kk p, g and {, K, P, Q) will be
defined as in the previous section, whiteandM will mean the direction cosines along
the x and X axes, resp. The spacesandQ are the representatives of the first and last
medium of any optical system, which, following the nonletuce, we will also call the
object spaceandimage space The main characteristics of the customary geometric
theory of optical maps now consist in the facts thattwo spaces will be regarded, not
as they are for most physical problemsamely, the totality of points in@ — but as a
M Of lines, and that one associates the loesd that appear as spatial elements with
each other pair-wise. We have referred to this arrargéabove as the ray-wise map of
wontoQ; any lineg in object space determines a llben image space, and conversely.
The H, K, P, Q are thus functions of thie, k,p, g, and the pair-wise map states that a
system of equations of the form:

H=Ahkpg K=Hhknpqg } (18)

P=C(hkpg Q& Ohkpq

exists. As long as nothing further is assumed abountg theA, B, C, D can — with a
restriction — be any functions of tie k, p, g. The restriction is that any must also
determine ag, so the system (18) must be soluble for hhds, p, . Therefore, the
functional determinant of th&, B, C, D, when defined in terms of the k, p, g, which is
the expression:

0OA 0B 9C 0D
oh oh odh o0h
0OA 0B 9C 0D
ok o0k odk 0dk
A=19a 9B aC oD/ (19)

ap dp ap ap
oA 0B oC 0D
dqg dq 0dq 0q

cannot vanish identically. & becomes zero or infinite for a special system of \safae
theh, k, p, g then that will correspond to a singular point of thgonaan example of this is
total reflection,jnter alia.

The g, Z that are associated with each other by (18) are conjadmteents of the
map; all of the other conjugate structures are composed frem. When it is
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preferable, we will also combine the two mutually conjugais into a single notion of
the “light path;” the course of a light path is then gV its two componentgands in
object space and image space. As before, we refertoigi, of light paths as éamily
or asheaf respectively.

In general, the properties of a family or a sheafags that are important for the
applications are lost under the map. Thus, the fandliesheaves that are homocentric in
w are no longer homocentric, but astigmaticQnand the same thing is true for the
transition fromQ to w If a family of light paths is homocentric in batpaces then we
would like to speak of aonical family, because ther and Z will then define conical
coverings (Kegelméntel). The connecting points — oreesti of the conjugate families
of rays define a pair of conjugate conical points. IrhesHdhe two spacesmandQ, the
conical points define po , 14, 12, 15, While the conical point-pairs can rise t@a, as
the example of the refraction at a plane teachedHes.systems of prisms, one’s efforts
are usually directed towards generating lines at conicatgoin

If a sheaf of light paths is homocentric in bothcgsathen, as we mentioned earlier,
we call itanastigmaticthe vertices of the two conjugate sheaves of rayghah define
a pair of conjugate anastigmatic points. This type oftpo@m appear as isolated or
define ata, (&, 15 . If the latter is the case then we shall speaknaktigmatic lines or
surfaces or bodies. The anastigmatic relationship detwines, surfaces, or bodies
likewise implies a point-wise map of these spatial ®onto each other. For systems of
lenses, most of the attention is directed towardsast lgenerating anastigmatic surface-
pairs, since, as one may show, anastigmatic bodiesoanpatible with the properties of
isotropic media only in a single trivial case. Moreo\wr the conical relation, a point-
wise map can come about between the conical poirteeahanifolds in question, so the
loci of conical points inrwandQ must be of the same dimension as the manifold otpoin
pairs, which does not always need to be the caseeaafdhementioned example of a
refracting plane teaches us.

If the infinitely-distant planes of the object spaaed image space define an
anastigmatic surface-pair then we shall call the tabgscopic. Obviously, all sheaves of
parallelowould then generate sheaves of parallel image space.

We will also apply the epithet “anastigmatic” torantary sheaves, as long as they —
necessarily by neglecting quantities of higher order — Ineasegarded as homocentric in
wandQ simultaneously. For such sheaves, the focal lindsotim sides come together at
a point, as the behavior of the cross-sectional eflifisat were treated above shows.

The properties of a sheaf that are absent for atrampmap in general also include
the relationship between ray and wave normals. In doder surface normad-sheaf to
generate such&sheaf in the image space, the partial derivativeéseoh, B, C, D in
(18) must fulfill no less than five equations of conditiaa one may show.
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The MALUS condition in itsfirst and second form.

When nothing further is given for a ray-wise map thengdystem of equations:

(20)
P=C(hkpg Q Ohknpy

H=Ahk p9g, K=Bhknpaq, }
which is indeed the analytical expression for any ntapjrivestigation must be restricted
in scope to certain properties of a ray structure in ¢lgpace that are changed by the
map, where the latter objective would constitute a pragessification. For the
elementary sheaf whose features are exhausted by being tngefocal lines, the
guestion may answered without difficulty after one chanigesd | would like to at least
present the result. One thinks of the sheaf{paindk as being represented by functions
of p, g, and likewiseH, K, by functions of thé, Q, and further sets:

dh=hy dp+hy dg, dk = ki dp+ k dg
dH=H;dP +H, dQ, dK=K; dP+ K, dQ,
hi ko —ho ki = (h K12 =1, H1Ko—H2Ky) =(HK)12=1L,
dA:Aldh+A2dk+A3dp+A4dq, dB=B;dh+B,dk+ B3dp+B4dq,
dC=C;dh+Codk+ ngp+ C4dq, dD =D; dh+ D> dk + D3dp+ D4dq,

and finally, ifF, G mean any two of the four functioAsB, C, D, let:

[F G] = |(F G)]_z + h]_(F G)14 + hz(F G)31 + k]_(F G)24 + kz(F G)23 + (F G)34 ,

So one has:
H,[CD] =[ A0, H]CD H Ch
K,[CD|=[BO, K|CD < CB (21)
L[CD] =[ AB.

The quantitiedd;, Hp, Ki, Ky, L are then piecewise linear functions of thehy, ki,
ko, | with a common denominator. Since the focal lines @determined by these two
sequences of quantities, as we saw earlier, the sydtequations (21) will answer the
guestion of the change that the focal lines will exgereé under the map. | would not
like to dwell further on the argument that follows frainms, but turn myself to that class
of maps that are, for the time being, of interest tongedcal optics alone. From now
on, we consider only such maps that satisfy the aforeomed MALUS condition: The
A, B, C, D shall thus be treated as th@face normal sheaf in object space for which the
map preserves surface normalBhis condition requires that the expression:

H dP+K dQ (22)
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must be a total differential, or, what amounts to Hmaesthing, that it must be integrable,
as long as this is the case with the expression:

h dp+kdg (23)
when theh andk have also been chosen to be functions ofptleg as well. Since the

integrability of (22) does not change when HeK, P, Q are replaced with tha, B, C,
D, instead of (22), we can also write:

AdC+BdD=adp+bdg (24)
where:
a= AGh+ Gk+ Q+ B DO Dk+ D, } (25)
b=ACh+Ck+ G+ B Dh+ Dk+ D).
The integrability condition for (24) is:
db_oa =0, (26)
op 9dq

in which theh, k are thought of as functions of theqg. The development of (26) gives,
when suitably reduced:

0 =I[(A Q2+ B D)1 + [(A Q14+ (B D)14 + h[(A C)z1 + (B D)3y
+ Ki[(A C)24 + (B D)24] + ko[(A C)z2 + (B D)3z] + (A Oza+ (B D)aa .

The right-hand side will now vanish as long as the esgo@ (23) is integrable. The
vanishing must then result as long as one sets:

_ov _ 0% _ o
h__l hl__zl 2 — )
ap op opadq
K= ov K = 0%v _ 0%
1=

oq’ poa. T oq
if v(p, ) means an entirely arbitrary function. This is, howepessible only if the five
conditions:
0=AQ12+ (B D), 0=ACQwu+BD)u,
0=AQs+ ([BD)s, 0=QA 03+ (BD)aa,
0=A0O3+BD)3 +(AC2+BD)2

are satisfied identically; i.e., for arbitrary, mutuaihglependent values of the k, p, g.
We write the conditions thus found, with the introdoctof the auxiliary quantity:

E-= (A C)13 + (B D)13 = (A C)24 + (B D)24, (27)
in the form:
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(AC);, +(BD);, =0  (AQ,+(BD,=0
(AC)42+(BD)42:_E ( AQ13+( BD 13— E (28)
(AC)p;+(BD) ;=0  (AQ,+(BD,=0

and call this system the first form of the Malus equations of conditi@y, include
everything there is, as long as no further conditioesaalded that are allowed on the
grounds of Malus’s theorem.

With the system (28), we arrive at an extensivelyaeded realm that is referred to
as the study otontact transformations For the further investigation, it is then only
necessary for us to simply carry over the theorefmthie study to our present study.
Since contact transformations have still not reachstét& of ironclad constitution in the
textbooks, the results that are necessary here wilekdeed directly.

If one denotes eight arbitrarily-chosen quantities by:

Fi, Fo, F3, F4 and Gy, Gy, Gg, Gy,

and one linearly couples equations (28) with each otherdansof six multipliers:

F G2, (FG)za,
F G)1s, (FG)az,
F Ga, (FG)2s

then one will obtain the combined equation:
(FGA Qw23+ (FGB D12aa= —E[(F G)12+ (F G)24],

from which, the original equations can once more emieygpecializing thé&, G.
If one replaces the symbol-p&6 with the pairs:

AB, AD, CB, CD, AC, BD,
successively then one will obtain the six new equations

E[(A B)13 + (A B)24] =0, E[(A D)13 + (A D)24] =0,
E[(C B)13+ (C B)24g] =0, E[(C D)13+ (C D)4 =0,

E[(A O3+ (A O24] = — (A B C D12aa,
E[(B D)13 + (B D)24] =- (B DA 01234.

The last two equations give, when summed:
2(A BC D1234: E[(A C)13 + (B D)13 + (A C)24 + (B D)24],

from which, on account of (27), it follows that the ¢tional determinant of the map is:
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A= (A BC D1234: E2. (29)

SinceA may not vanish identically, one can now also wriee ¢fquations thus found
as:

(AB);;+(AB,,=0 (BQ;;+(BQ,=0
(AC),+(AC),,=0 (BD)+(BD,=0 (30)
(AD),,+(AD),,=0 (CD),+(CD),,=0.

Starting from this system, we can once more go backwandk arrive at the
conditions (28). To that end,ufandv mean any two functions of the k, p, g then we
next introduce the symbali(v) by the equation:

_(Ouodv Qduadv duov 0ud v
uv)=|——-—— |+ ————— |,
ohdp o0Jpadh okoqgq 09k
or, when it is written with indices:
(U V) =UVz+ (UV)2g. (31)

With that, system (30) can be put into the form:
(AB)=(AD)=(C, B=(C D=0, } (32)
(AC)=(B,D)=E

One now thinks of the four mapping functiohsB, C, D as being subject to either
the condition (30) or the condition (32), with the addhtil demand that the functional
determinant:

A=(ABCDias

does not vanish, ard is a possibly indeterminate function of thek, p, g. If F andG
mean any two functions of the variablesk, p, g, and one defines, with the partial
derivativesFy, F, ..., the determinant product:

A A A A F F -F -F
B B B B % G G -G -G
C, C, C Cl|lo o 1 o
D, D, D, D, 0O O 0 1

then this is, on the one hand, equalM@ G)ss, and, on the other hand, when one
multiplies it out, it is equal to the determinant:
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(AF) (AG) A A
(BF) (BG) B B
(CF) (c9 ¢ G|
(DF) (bG) D, D,

If one replaces the symbol-p&6 with the sequence of six pairs:
AB, AC, AD, BC, BD, CD
then, with the abbreviatiodi= A —E?, one will obtain the six equations:
0=dAB)3s=dA O3z4=AA D)3s= AB Cz4= AB D)34 = AC D)4,

from which, it follows that:
0=0, E?=A, (33)

because the simultaneous vanishing of the six determiifaB)s, , ..., and also the
vanishing ofA, would be deduced from it. If one now further couplessikeeonditions
(30) with each other linearly by means of the six mudtigt

(CD)as, (A D)gs,
(D Bag, C Aags,
(B Qag, (AB)as,

where thea, £ mean any two of the indices 1, 2, 3, 4, then one btlhin the combined
equation:
(AB C Diagp+ (A B C Daagsg =E[(D B)as + (C Aud

which vyields the earlier conditions (28), with no furttessumptions, as long as one
replaces the index padr with the pairs 12, 13, 14, 23, 24, 34, in succession. Wéit th
the conditions (30) and (28) are equivalent to each other.

We refer to the system:
0=(A,B)=(A D)=(C,B=(CD } (34)

E=(AC)=(BD

as the second form of the Malus conditions.

For the three arbitrary functions v, w of h, k, p, g, the following well-known
identity is true:

(u, (v, W) + (v, (W, 1)) + (W, (U, v)) =0,

as is verified by direct computation. If one replattesy, v, w in this withA, B, C then,
from (34), it will become:
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(A,0)+B (CA)+(C0)=0,

from which, €, B) = 0. If one treats the three other combinatidB®, ACD, BCD in the
same way then one will obtain, in all, four condiso

0=@E A =(EB)=(,C) = (E D) (35)

If one thinks of the functiom as not being expressed in terms of bk, p, q
directly, but in terms of any sort of coupligg ¢, ... of those variables, then the relation:

u
0¢

(U v) =

(¢,v)+§—;(¢/,v)+

will follow from the definition of the symbolu; v). If one thinks of the variables in=

f(h, k, p, ) as being expressed in terms of theK, P, Q by means of the mapping

equations then one will obtain an expresgifii, K, P, Q); if one introduce#\, B, C, D

into this in place of thel, K, P, Q then one will arrive at the identity transformatio
u=f(h, k p,a) =g9(A B, C, D).

Upon considering such a transformation, one has:
ou Jou Ju Jdu
uA=—(AA+—(B A+— +— :
(u, A) 6A( ) aB( A aC(GA) 6D(DA

One obtains similar equations when one cho&s&3 or D to be the second element in
the bracket symbol. With hindsight of (34), itles from this that:

uA=-eM (up=-e2
oC oD 36
Ju ou (36)

(U’C):EG_A\ (U, D): E£

With this, equations (35) give:
O:a_E:a_E:a_E:a_E; (37)
0A 0B o0C oD

i.e., Eis either independent of thek, p, g or it is constant.



V.
The spatial indices and their relation to the refraction quotients.

By the introduction of the MALUS condition, we araly required to insure that
every surface normafrsheaf in object space becomes a similar sheaf in inpege sone
will not, however, arrive at the fact that this pragecan be inverted with no further
assumptions, so each surface norlmaheaf is conjugate to such a sheaf in object space.
It will be shown that this invertibility is a necessargnsequence of the original
assumption. If one employs the K, P, Q in place of theh, k, p, g as the independent
variables in the symbou(v) then this will be indicated by a prime thus:

,_(0uov duoadv Judv Ooudv
uv =————— [+ —————|. (37)
OH 0P 0POH 0K0Q 0QdK
One then obtains:

LU s 0U 0 b 0u
uv) = H (H’V)+6K(K’V)+6P(P’V)+6Q(Q’V)

ou ou ou ou
=—(AV)+—(B,V+— — ,
aH( V)+a|<( V)+6P(C\b+aQ(D\b
and from this, with (36):

)= E(ﬂﬂ_w_vjﬁ Qudv_9udy
’ oH oC 0POA 0KOD 0QoB)

When one writedH, K, P, Q for the A, B, C, D that they are analogous to, this
eqguation gives:
(u, v) = E(u, v)', (38)
or, when one ses= 1 :E:

(u, v)' =e(u, v). (39)

If one substitutes all pair-wise couplings of thé& p, q for u andv, and computesu(
V) using the original defining equation then ond ggit:

(hky=(had=(pK=(pd=0 } (40)

(hp=(kad=e
If one considers the original mapping equations:
H=A, K =B, P=C, Q=D
as having been solved for thek, p, g and written in the form:

h=a(H, K, P, Q), k=b(H, K, P, Q),
p=c(H, K, P, Q), g=dH, K, P, Q)
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then the ray-wise map fro@ to a or the original inverse map, will be expressed by it,

and the system (40) will go to:

,b) =(ad) = | = =0

(a,b) =(a, ) (ct)’ (¢9d (41)
(a,c)=(bdy=¢e

This is, however, the MALUS condition for the invemsap, and indeed in the second
form. We can then say: If the map frasnto Q satisfies MALUS'’s theorem then this
will also be true immediately for the inverse map, erimp fronQQ to « the constanE
goes into the reciprocal value under the inverse map.

The quantitye then takes the form of the square root of the functidatdrminani
and, like the functiong, B, C, D, can depend upon the choice of coordinate axes. In
order to investigate this, we think of there being a secygsid® of axesX' Y Z') and
denote the space that it refers to®Yy correspondingly, all quantities that refer @
shall take on a prime. If one introduces the symhaD] for the map fromwto Q, for
the moment, then we will next have three mapg)j, (wQ’'), (Q Q'), and the three
inverses Q o), (Q'w), (Q' Q) that are associated with them. Since MALUS’s thao
shall be valid for the first mapa(Q), it must then be true for the other five, with no
further assumptions. If one denotes the corresportgitgnstants withe(wQ), E(wQ'),

... then one has:
1 =E(wQ) E(Qw) =E(wQ") E(Q"c) = E(Q Q") E(Q'Q). (42)

If one poses the mapping equations KY') in the form:

H'=A(hk pa, K=B(hkpaq, } (43)
PP=C(hkpa, Q=D(hkpaq
and recalls the meaning of the symhg\)’ then one will have:
EwQ)=HP), EwQ)=H,P), EQQ)=H,PY,
from which, with (38), it will follow that:
E(wQ') = E(wQ') [E(Q Q). (44)

In order to ascertain the effect of a change in therdinate axesX Y 3, one must
calculate the symboH(, P')".
If we now subject the coordinate axes to a parallel dispt@nt, under which the new
origin will be shifted to:
X=a Y=b, Z=c,
then one will have:
X =X-3q, Y =Y-Db, Z' =Z-c.

We pose the equations of one and the same ray, aedefeQ andQ’, namely:
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Y:H+%, Z:K+%,
M M

Y’:H'+ﬂ, Z’:K'+Q_)$,
M’ M

so one has:
M'=M P=P Qg=Q

45
H'=H+ 2 p K=Kk+Q2 ¢ (49)
M M

If one calculatesH, P')’ then it becomes:
H,P) =1,

such that a displacement of the coordinate ax&swnll not change the value &.
If we now consider a rotation around the origin thenwehave to set:

X=aX+BY+yZ, M'=aM+[BP+ yQ,
Y=ad X+BY+)yZ, P=adM+LP+yQ,
Z=ad"X+B'Y+y Z, Q=a"M+B P+yQ

where thea, [, ), ... mean the direction cosines of the new aXesY, Z) with respect
to the old onesX, Y, Z). If one writes the equations for a ray, when refro the old
axes, in the form:
X=pM, Y=pP+H, Z=pQ+K

then one will have:

X=pM +BH+yK=0g M,

Y=pP+FH+yK=0gP +H,

Z=pQ+f H+yK=gQ+K,

from which, it will follow that:

!

H'= H + /K= (BH + 1K),

K'=8'"H+)'K —%([)’H + yK).

(46)

Substitution inK’, P')" = 1 gives, after an appropriate reduction, in turn:
H,P) =1,

thus, E also remains unchanged under a rotation. If one thieaws through the same
argument for the inverse maps and the coordinate chargéhen, with consideration of
(42), one will come to the conclusion that the consiaist independent of the choice of
coordinate axes, so it only relates to the other priggest the map@Q).
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If the arbitrary mapsQ), (Q Q') are given for the three spacesQ, andQ' then
the composed mapJQ') and the three inverse maps will be determined by themwolf
maps that are not inverse to each other satisfy the W8Atonditions then this will also
be true for the remaining maps. For the condEa(88) yields:

E(wQ') = E(wQ) [EQ Q). (47)

This relation may be extended immediately. One thiriks geries oh spacesaw,
w, ..., Gy as given, with each one being mapped to the next onés Wihlling the
MALUS condition, so the composed mapsk(ap), which also satisfy the MALUS
condition, are determined by way of the maps &), (& @), ..., (-1 @), and one
obtains by repeated application of (47):

E( ap) =E(w @) [E(w @) ... E(a wy). (48)

One now thinks of each spaag as being associated with a certain constant “index”
"2, and chooses the numerical value of this spatiakisdeh that:

r r r
1 E(w w) =—2, ooy E(ah1 @) =2,
r (a2 a) . (ah-1 ab) =

n

E(w w) =

in which obviously one of thE’s — e.g.,l'1 — can be chosen arbitrarily. It then follows
from (48) that:

r
E Cq. a'h = —
(a a) r
or, more generally, that:
r
Elay ap) = =<. (49)
My

In the case of optics, the indicEsare connected in a simple way with the refraction
exponents of the individual media or spaces. An opsigstlem is, for our considerations,
regarded as a series of spaeas wp , ... that are bounded by definite refracting or
reflecting surfaces; the individual refractions or refilens then generate the ray-wise
map of each individual space to the one that immedgidbdibws it. Since a reflection
can be regarded as a refraction with the refractioa #afl, it suffices to treat the case of
a single refraction; the relations (47) to (49) then imatetly given the values of tHe
for a series of refractions. If one therefore nowkkiof the object space and the
image spac€) as adjacent to each other along a surfacand that furthermore andN
are the indices of refraction of the two spaces trenwill have to calculate the quantity:

E=(H.P),

which is independent of the ray coordinates, as well apalséion of the coordinate
axes. If one lets the axes §, 2 and , Y, 2) coincide for both spaces, lays thaxis
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along the normal to a pointof ®, the base plane in the tangent planeremd the lateral
axes in the directions of the principal curvatures thena@an express the equation of the
surface in the form:

X = ¢(x, ) =%(af+ﬁf) .

from which, we then define:

dx=¢1dy+¢,dz ¢1=ay+ ..., g=bz+ ..

The incident ray, the refracted ra¥, and the incident perpendicular pass through a
given point &, v, 2) of the surface. From the law of refraction, thpressions:

NM —nm NP —np NQ — ng

are proportional to the direction cosines of the inaigeerpendicular, and these will be,
in turn, proportional to:

1,-¢1,— @2,
S0 one may set:
NM-nm _ NP-np_ NQ-nq
1 _¢1 _¢2 ,
or:
NM =nm+ A, NP=np-A ¢, NQ=ngq-A1 ¢..

Furthermore, according to whether the poigty( 2) is attributed to one ray or the
other, one will have:

y=h+— al H+X—P
m M
or:
z= k+Xq— @
m M
resp.

The differentiation of these equations gives:
N dM=n dm+ dA,

N dP=n dp—¢:dA —A dg¢.,
N dQ=ndg— ¢, dAd —-Adg,,

dy=dh+ dx + xd(—pj —dH+ " dx+ xd(ﬂj,
m m M M

dz=dk+ Jdx+ xd(ﬂj dK + 3dx+ xd(gj
m m M
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from which, one obtains the equations:
dx=¢,dy+ ¢,dz dpr=ady+ ..., dg, =f(dz+ ...

SinceE is independent of the k, p, g, we can use any special ray as the basis for the
calculation ofE. We choose the ray in tlkeaxis to be that ray and then set:

q:P:Q:O, m=M=1,
K=0, x=y=0, $1= ¢ =0,

and then obtain from this:

N=n+,

N dP=ndp—-A ady, N dQ=ndg- A Bdz

dx=0, dy=dh=dH, dz=dk=dK,

or:

dH =dh, dK = dk,

dP=-N""odh+ Ndp, do=-N""pdk+ N dg
N N
From this, it then follows that:

a_H:]_, E:an_N, a_H:O, E:O,
oh oh N ok ok
MH_o P _n MH_o P _,
ap op N 0q 0q

and, when one then calculates

E=(H,P)= (50)

n
N
Therefore, if no reflections appear in an optical sysietin the series of mediay , @,
..., and the corresponding exponents of refractiomane, ..., when compared to empty
space, then one will have the following relationday two indices :

rarﬁ:nanﬁ,

and one can set thieequal to the correspondimgwith no further assumptions. For the
case of a reflection, one must write:



IV. The spatial indices and their relation to theaefion quotients. 27

in (50), and in a given optical system one may accolysgy:
a=xn,,

in general, where the sign is chosen to be + or —rdeapto whether the ray path up to
the mediumwy, includes an even or odd number of reflections, respyti
In summation, we may now state the following theorem

If the two spacesv and Q are mapped to each other ray-wise by the system of
equations:

H=Ahkpo, K=Bhkpq } (51a)

P=C(hk pad, Q& Ohkpq

then the necessary and sufficient condition for the fulfillment oMiddes condition is
given by the system of equations:

(H,K)=(H,Q)= (P,K)= (P,Q)= 0,
(H.P)=(KQ=E=T, (51b)

in which the indices n, N of the two spaces meataioeconstants that will be essential
for the map and independent of the choice of coatdi axes, and which go over to the
indices of refraction of the two spaces, whichtaieen to be positive or negative.

If one would like to keep the mapping equationghe form (51a) for the further
investigations then one will always have to consithe conditions (51b) along with
them, which would make the reasoning extremelyotgsli This grievance may be
circumvented if one gives the mapping equationsranffrom the outset in which the
MALUS condition is fulfilled by the form itself. e means for achieving this is the
introduction of a certain generating function —.yvithe eikonal — to the presentation of
which, | now proceed.
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Definition of theeikonal. Critical determinant.
If one forms the differential expression:
dS=n(p dh+qg dk + N(H dP+ K dQ) (52)
from the variables of a map then if one considers thgpmg equations (51a), one can
write it in the form:
dS =n(p dh+ g dk + N(A dC+B dD), (53)
from which, one can derive a third form:
dS' =adh+ Bdk+ ydp+ ddqg (54)

by further development, in which:

a=np+ N(AG+ BD), y= N AG+ BD), } (55)
B=ng+ N(AG+ BD), o= N AG+ BD).
With that, one computes the expressions:
%—%:N(C&ﬁ N( DB, ?,—f;—g—% N(Che+ N DBy
g_g—g—‘r’]:N(CA)lg+ N( DB, + 1 g—'i—g—i= N Ch,+ N DB,+ n (56)
‘Z_Z_g_‘;: N(CA,,+ N(DB,, Z_Z‘g_i: N(CA,,+ N DB,

Due to (28) and (51b), the right-hand sides of¢hequations vanish, so it follows
that the left-hand sides are also zero; i.e., ttessiondS is a total differential, or,
more briefly,dS is integrable. This result may be inverted. @meks the expression
dS as being formed from four possibly arbitrary fuoos A, B, C, D, and the two
likewise possibly arbitrary constamisN, and wherdS' is described in this way the left-
hand sides of (56) will vanish @S’ is integrable. However, the vanishing of the tigh
hand sides that follows from this will once moradeto the MALUS condition. The
latter is then equivalent to the integrabilitydd'.

The integration oflS' delivers a certain functioR(h, k, p, q) for S'. We would now
like to assume, for the moment, that when thetlastof the mapping equations (51a):

P=C(h,kp,g),  Q=D(hknp 0 (57)
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are solved fop, g, (51a) can then be brought into the form:

(58)

np=¢(hk R Q, nF¢g(hkPRQ
NH=®(hk P,Q, NK=W(hkRQ.

If one expresses the q in terms of theh, k, P, Q thendS’ will be converted int@lS
in which the integrability has not changed, whih, k, p, g) will be converted into an
expressiorke(h, k, P, Q), and one will have:

dE(h, k, P, Q) =dS=n(p dh+qg dk + N(H dP + K dQ),
from which, it will follow that:

np:a—E, nq:a—E, NH:a—E, NK:a—E.
oh ok oP 0Q

(59)
This system must now be identical with (58), since otiser one would obtain from the
combination of (58) and (59) — i.e., as a result of the mgpgquations (51a) and the
conditions (51b) — at the very least, an equation ofaha:

0 =f(h, k, P, Q),

which is again the assumption that was made to begim wWVith that, we have the
theorem: If the mapping equations can be written in the &8) then the right-hand
sides will be equal to the partial derivatives of gaie functionF(h, k, P, Q).

Conversely, one now thinks of a functigth, k, P, Q) as being given arbitrarily and
forms the system of equations (59) from it. Bfis chosen in such a way that the
equations (59) can be solved for tHeK, P, Q or theh, k, p, g then a certain ray-wise
map will be defined by (59). For it, the expression:

dS=n(p dh+q dk + N(H DP + K dQ)

will be a total differential, namely, it will equdE, so it will further follow that thelS'
that follows fromdSwill be integrable, so the MALUS condition will albe fulfilled. It
then suffices that the mapping equations can be writteghe form (59), in order to
insure that the map fulfills the MALUS conditions. hist the functiork plays the role
of a generating function for the mapping equations; from ao, we will refer to such a
function as theikonalof the map in question.

In the foregoing argument, it was assumed that equaft’) could be solved for the
p, . In order to recognize the possibilities that thusrgmenore completely, let it first
be remarked that the expressid@@Djs4 is the functional determinant of ti& D with
respect to th@, g. If this expression, which we will call treFitical determinantof the
eikonalE(h, k, P, Q), does not vanish identically then the equations (57sakéble for
the p, g and one can put the map into the form (58), from whicé,existence of the
eikonal E(h, k, P, Q) is likewise established. ConverselyC)ss cannot vanish
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identically when the eikonal exists. IE€D)s4 did vanish identically then at least one
relation of the form:
0 =f(h, k, P, Q)

would follow, which is incompatible with the existencetbé system of equations (59).
We can then say: The eikoriglh, k, P, Q) does or does not exist according to whether
the critical determinantdD)s4 does not or does vanish identically, respectively.

The determinantGD)s4 can now vanish under certain circumstances, which can be
verified most simply by an example, such:

H=A=-p, K=B=-q, P=C=h, Q=D=k, n=N.

The eikonalE(h, k, P, Q) does not exist then, since the mapping equations cd@not
solved for theH, K, p, g. In this case, however, there always exists anddner for the
eikonal that enters the picture in place of the mg&ikonal. Namely, in the MALUS
condition equations, one can perform certain exchangen igariables, k, p, g andH,

K, P, Q, under which these equations do not change. As a consequietius, the
integrability of the differential expressiod§ dS, dS' also remains when one performs
the same exchanges in them. If one denotes a substitbéibtakes the quantitieg x»,

X3, ... INtO V1, Y2, Y3, ... in the usual notation by a symbol:

(Xl X2 )(3 .o .j
yl y2 y3 cee
then the substitutions:

Sl B e e
-p h -q k -P H -Q K
whether they are taken individually or in combinatiorgvén the aforementioned
character. They are, as one can confirm most silyplglirect trial and error, likewise
the only ones that changis without altering the MALUS equations. The applicatain
the substitutions (60) tdS then produces 16 different forms, which, if we make the
abbreviation:

p,g, H,K

hk F)’an(p dh+ g dk + N(H dP+ K dQ), (61)

we can summarize in the following table:
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k H, K
p=POBE s BGRK gy PRAK gy RERE
h.k, P,Q -pkPRQ h-aRQ - FakQ
-P,K -PK - PK -
=P 3PK g NITRK g R RE g DEEK
h,k,H,Q pkHQ h-q PR K -aHQ (62)
9= P49 1o RARZR gy o PEHZR ). BENZQ
hk P, K “pkPK h—q, P, K “p-qPK
[1]_pq,PQ[]_thQ[]_pk FLQ[]_ hi P Q
h k, H, K p, k H, K h—q H -p-gHK

Under an application of the substitutions (60), theseeeix formulas go into each
other, and thus define a closed group. In order to the fing&dhesponding critical
determinants, one must perform the same substitutio(€Ms4 that take the eikonal
form [1] into the fifteen other forms. This gives tfalowing table for the critical
determinants, which corresponds to the summary (62) tertarby-

(CD)ss (CD)y (CD 5 (CDy,
(AD);, (AD)y, (AD),; (AD g,
(CB)y (CBy (CBy (CBy,
(AB);, (AB, (AB, (ABy,

(63)

Whenever an eikonal form is absent from (62) because nibt possible, a zero
appear in the corresponding location in (63), and conyersé&/e would now like to
show that no more than three zeroes can appear im arrcolumn of (63). For instance,
if one has:

(CD)34 = (CD)14 = (CD)23 = (CD)lz =0

then, due to the identity:
(CD)12 (CD)34 + (CD)13(CD)42 + (CD)14 (CD)23 =0

one would also have:
(CD)lz (CD)34 =0

which, when coupled with the MALUS condition equation:

0= (CD) = (CD)13 + (CD)24,
would immediately give:
(CD)12 = (CD)34,

e., the six determinants that one forms from @eand D, would all be zero, from
which, the vanishing of:
A= (ABCD)1234: 0
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would follow. Since this is inadmissible, and since om&y, moreover, immediately
carry over the line of reasoning employed to the remginows and columns of (63) by
an application of (60), this would yield the fact thatesst one term in every row and
column of (63) must be different from zero. Correspogly, at least one possible
eikonal form appears in each row and column of (62), shah the number of the
eikonals that actually exist for a given map amounts least four. One can see the fact
that the remaining maps can produce only four eikonals siogily by a concrete
example, such as, for instance:

H=A=h, K=B=k, P=C=p, Q=D=q.

If one examines the cases with only four eikonals rotorsely then, as | would like
to discuss shortly, the maps for the eikonal [1] will tlkeform:

E(h,k, P, Q =P(ah+ ) +Q(yk+J +ch+ {k+ n,

where thea, b, ... mean constants; the eikonals are summarized éonotier possible
cases correspondingly.

Since the vanishing of a critical determinant impossggegial condition on tha, B,
C, D by way of MALUS’s theorem, one can say tiageneral- i.e., under an arbitrarily
selected map — all sixteen eikonals will be present. sitteen forms do not all generally
possess the same value in a given case for the applicafite lateral axes of the
coordinates appear in the eikonals [1], [4], [13], [16] ingame way, whether in the line
segments$, k or H, K, or the direction quantitigs q or P, Q. These forms will then have
an advantage when the map has no essential pecuianitiee various directions around
the x-axis. Examples of this are: the ordinary systemirgds| the water droplets in
rainbows, the Earth’s atmosphere, etc. For the mangitwelve eikonal forms, a
noteworthy exception comes about in regard to the ocmeref the variables between
the lateral axes in at least one of the two spagé€s. These forms can be advantageous
when the map itself also exhibits corresponding exceptadorsg the lateral axes.
Examples of this are systems of prisms and cylindregzedds. For the investigations of a
general nature, one usually makes do with the four fojhq4], [13], and [16], since
ultimately one can already manage with [1]. In ordepverlook when one of these four
forms is absent, one must inspect the geometric meaningpeofvanishing of the
determinants:

(CD)3za, (CD)12, (ABss, (AB)34 .

| begin with the caseAB)s4 = 0, which belongs to [13]. This condition says that at
least one equation of the form:
0 =f(h, k, H, K) (64)

exists between thie, k, H, K. If h andk are constant then (64) is the equation of a curve
in the base plane @. A homocentricc-sheaf whose vertex lies in the base planevof
thus generates &sheaf whose rays go through a definite curve invtB@lane that is
independent of thdy, k. One of the two sheets of the caustic of Hasheaf then
degenerates, and indeed, into the curve in question. Asisedquence, the curvature
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lines in the associated family of waves consist @les. On the other hand, if one makes
H andK constants then one will arrive at similar theoreexsept that the roles @dand
Q have been switched. The two base planes are thusesudfconical points, and there
exists agis of conical point-pairs.

If (CD)s4 = O then there exists at least one equation of time: for

0 =f(h, k P, Q).

The homocentric sheah,'k constant” generates a causticinone of whose sheets
degenerates into an infinitely distant curve. As a aqmesece, the associated waves are
developable surfaces. Furthermore, a caustic belongpaoalielZ-sheaf incy one of
whose sheets degenerates into a curve iyHpdane. The case wher@K)i» vanishes
leads to the same results as the foregoing, excapthb roles ofw andQ have been
switched.

Since in the three cases treated the property thatetpenerate curves must lie in the
base plane can be removed immediately by a change aficat® axes, one see that for
any map one can bring about the existence of the eikonak [1], [13], [16] by a
suitable choice of axes. Things are different for [Agw CD)12 = 0. In this case, there
exists at least one equation of the form:

0=f(p,q, P, Q).

Parallel sheaves imgenerate a caustic @ with an infinitely distantdegenerate curve,
and the same is true for parallekheaves in the space

For further investigations, it is preferable to bring sirdeen different forms into a
unified schema, which will now be presented.
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Relations between the elkonals of amap. The expression ©.
Composition of eikonals.

The individual eikonal will come about by integrating théedéntial expressions that
are summarized in (62):

paq’HiK
dS= ——— =n(p dh+qg dk + N(H dP + K dQ),
hk PO (p dh+q dk +N( Q

The quantities beneath the line include the inddpenhvariables of the eikonal whose
differentials appear S the quantities above the line are the coefficeot these
differentials, up to the factoesn, £ N. In all sixteen cases, one obtains the firstpsdc
third, and fourth independent variables when ornecte one element from the series of
four pairs of quantities:

(hK, (pa), (HK), (PQ). (65)

If one calls the sequence of chosen eleménts T, U then the place of the
corresponding eikonal in the table (62) is deteadinompletely by the symbol:

Et, u, T, U).

Thus, the four variables of the sequences wikilse be associated with the four
lateral axes in the order z Y, Z. If one further denotes the sequence of variathlat
remain in (65) after the choice by, T, U byv, w, V, Wthen one will have:

dE(t,u, T,U)=tnvdttnwdutNV dTtNWdU

in which the rule for the sign has yet to be giv&tow, some of the eight variables of the
map are linear quantities or line segments likk, H, K and some of them are direction
guantities likep, q, P, Q, and one sees that the sign + or — appeadSimccording to
whether the differentialdt, du, dT, dU are taken from the sequerdie dk, dP, dQ or the
sequencelp, dg, dH, dK, resp. Thus, the sigsix) takes the value + 1 or — 1 according to
whetherx is a line segment or direction quantity, resp.gose generally has:

dE(t,u, T, U) =n gt) v dt+n gt) wdu— N &gt) VdAT-N gU) W dU, (66)
from which, the mapping equations follow immedigtel the form:

o0E 0E
ne(t)v=—, ne(u w=—,
® ot (v ou

oE oE (67)
~Neg(MV="xo, -Ne(UyW=—.
aT ou
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The symboE is thus the sign for an operation whose form obvioushedds upon
the map in question, as well as on the choice of indbp#nvariables; the result of the
operation is then a function whose form likewise depembn the two stated things.

Equations (67) say that a contact transformation elxettgeen any four quantities:

nh,nk, p,g and NH,NK P, Q.

In this theorem, one finds the actual origin of a#l groperties to be sought that are
common to the maps considered here. As long as the enagns undetermined, the
expressiorE can possess any arbitrary form, with the restricti@at the equations (67)
must represent an actual map, so the system (67) muslulbdesfor thet, u, v, w as well
as theT, U, V, W. The necessary and sufficient condition for tluesssts in saying that
the determinant:

0°E 0°E _ 0°E 0°E

(68)
0toT guoU 0toU oudT

must vanish identically.
If E(t, u, T, U) andE(ty, ui, T1, Up) are two different eikonals for the same map then
the initial term in the difference:
dE(t, u, T, U) —d Et1, uy, Ty, Uy)
will contribute an amount to bottE that is equal to:

n é(t) vdt—n é(t]_) vy dty,
which we write in the form:
n S(t) -;‘g(tl) (V dt_ \{ dp + n‘g(t) _Zg(tl) ( Vv dH‘ y qb )

The product:
[&(t) + &(ty)] (v dt—vy dty]

will always be equal to zero since only the followingteases are possible:

l: t=wvy, Vv =1y,
l: t =1y, V =V,

for I, the first factor vanishes, while for Il, thecead one does. If one further writes:

[&t) — &ty)] Lv dt+ vy d] = [&(t) - &(ta)] Dd(tta)
+ [e(t) — &ty)] (v -ty) dt+ (v 1) diy]

then the second summand on the right will vanish in lsages | and Il, such that its
contribution to the difference in question of tiiein all cases will be the expression:
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nw d(tt,).

From this, when one understands that inconsequentialcwsisire always ignored in
E, one deduces that:

Bt u, T, U) = E(ts, Ug, Ty, Uy) =

ns(t)—ze(tl) tt + nL;(“i) uy —NMTI— NL;(UJ uy. (69

Naturally, the relation between two eikonals for $hene map is given by this, under
the assumption that both of them exist. Moreover, Emu469) can make sense even
when this assumption is not fulfilled. One needs onlgliserve that the eikonals were
originally generated as functionshofk, p, q by integrating an expression of the form:

dE = adh+ Bdk+ ydp+ 3dg

If one now thinks of functions thus obtained asaeiplg thek, and correspondingly
expresses thg, U, T1, Uz as functions of thé, k, p, g then (69) will become an identity.
If one denotes the derivatives of the eikdaé| u, T, U) by indices according to the
schema:
dE=E;dt+E,du+ E;dT + E; dU,
dE,=E dt+Ep du+ EpdT + Exn dU,

then it will follow from the mapping equations:

ne(t)jv= g re(Yw= E 20
-Ng(MV=E -Ns(UW= E (70)
by differentiation that:
ne(t)dv= E,dt+ E,du E dF E dU
ne(t)dw= E,dt+ E,duw E, dHF E, dU (71)

~Ng(T)dV= E,dt+ E,dw E dF E dU
~Ne(U)dW= E,dt+ E,dw E, dF E dU

Solving fordT, dU, dV, dW, with the use of the aforementioned determinantioglat
gives:

(EE),dT=-(EE) ,d-( EE) du a()t E, ov af )u E dw} )
(E;E),,dU= (EE),dtr( EE) dw a()t E,dv af Ju E dw
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-Ne(T)(EE),dV=(EE B ,;, dt( EEG ,,du
+tne(M)(EB),, dvt ®(9( EB 5, dw

-Ne(U)(EE),,dW=(EE E) 5, dt( EE B 4, du
+ne(t)(E,E) s dvt B(9( E B) 5, dw

(73)

If one denotes the derivatives ©f U, V, W with respect ta, u, v, w by indices
according to the schema:
dT=T;dt+Todu+ Tzdv+ T, dw

then one will obtain th&,, U, , Vo, W, — i.e., the partial derivatives of the previously
employed mapping functions B, C, D with respect to théa, k, p, g — by dividing thedt,

du, dv, dw out of equations (72) and (73). Conversely, in order to egpiteE,z in
terms of thel,, U, , Vo, W,, we would like to denote the left-hand sides in (70) By (
(2), (3), (4), so we write:

(1) =n &b v, (2) =n gu) w, (3)=-Ne&mV, (4) == NgU) W,

which makes:
d(a) =Ejpdt+E,pdu+ EpdT + EpdU,

from which, after dividing out thdt, ..., the system of four equations follows:

Mg,  +ET+EN,
dal. g, +ETrEL,
a?;) (74)
W = Ea3T3 + En4U3’
d(a) _
a—W - Ea3T4 + En4U4-
Its solution yields:
- 9(a) o(a) 9(a)
(TU)34 Eal_(TU)34 at +(TU) 41 6V +(TU) 13 aW '
10 2@, 1y 8@,y 0@
(TU)34 Eaz - (TU) 34 au + (TU) 42 av + ( TU) 23 6W ' (75)
_ o(a) o(a)
(TU)34Ea3_ U4? _USG—W’
- _19@) 9(a)
(T)3500= ou T ow

The Egs with unequal indices will then be determined inotways; setting the
expressions thus obtained equal to each othersyrething but the MALUS conditions.
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If the values of the four ray coordinatesi, T, U are given for a given eikonglt, u,
T, U) then the values of the four remaining coordinates, V, W are also determined
from the four mapping equations (70), and therefore thecomqugate rayss; >~ and the
light path ; £). Accordingly, we would like to regard the combinatigru( T, U as the
light path coordinates and briefly speak of the light pith, (T, U). Now, should a light
path go through the poinggx, y, 2 andl(X, Y, 4 in the object and image spaces, resp.,
then one would obtain the condition for that situatibrome added the four extra
equations:

Xq XP XQ

y=h+22  z2=k+X8 v=p+ZD z=k+Ds (76)
m m M M

to the four mapping equations. Solving (70) and (76) for the efy coordinates would
then determine the light path that goes throogindl1. If one now expresses thew,

V, Won the left-hand side of (70) in terms of the, z, X, Y, Z andt, u, T, U by means of

(76) then carrying out the calculation of the sixteeredéiit cases will yield that the left-
hand sides are equal to the partial derivatives of ceggimessions. This situation
allows us to give the conditions that were given by (T@) @6) a simple form. It may
suffice to suppress the intermediate computations and agilyethe result. One first
defines:

_X_ [2 2 Y
= X +(y—h2+(z- K2,

" _ X _ _ 2
I=kp+ = py+y1- B Q/ %+ (z ¥, -

|"=kq+%=qz+\/1— ¢ G/ #+(y- B2,

I m

=Xm+ yp+ zq

where these expressions are regarded as functidnamdk, p andk, h andq, p andgq,
respectively, and furthermore:

h+ qdk= - h e dl
pdh+ qdk=-d| hdp- qdke ¢ } (78)

pdh- kdg=- dI, hdp- kdg dl

One imagines the corresponding expressions for theigesaht L', L”, L" in image
spaceQ as being added to equations (77) and (78). One then fuldigmes the
following table of expressions(t, u, T, U), which correspond to the sixteen eikonals in
the table (62) term-by-term:
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[: F(hkPQ=-n+N" [2: HpkPQ=-rk+ N,
[3: F(hgP Q=-nl+N", [4: HpgqPQ=-l+ NL
[5: F(hkHQ=-nl+NU [6]: FpkHQ=-nl+ NL,
[7]: F(hgH Q=-nl+Nl" [8: FpgHQ=-h"+NL",

79
[9]: F(hk P,K)y=-nl+ NL, [10]: F(pk B K=-nl+ NL (79)
[11]: F(h,g,P,K)=—nl"+ NL, [12]: F(p g P K)=— nf+ NL,
[13]: F(h,k,H,K)=-nl+ NL, [14]: F(p,k H, K)==nl+ NL
[15]: F(h,q,H,K)=-nl"+ NL, [16]: F(p,g H,K)=—n" +NL.
If one now defines the following expression, which inckid sixteen cases:
O(t,u, T,U) =E(t,u, T,U) = F(t, u, T, U) (80)

then the system of eight equations (70) and (76) can ecespWith the four conditions:

:a_G:a_G:a_G:a_@, (81)
ot ou 0T oU

which say that the light path, ¢, T, U) should go through the two pointgx, y, 2 and
nex Yy, 2).

In order to have everything in one place for later appbns, we derive a rule for the
eikonal of a composition of maps. Let three spaoesw, ay with indicesny, ny, N3,
resp., be given, along with the coordinates:

hy, ki, p1, G, hy, ko, P2, hs, ks, ps, O3

of the three raysn, o, o5, resp., of a light path. For the eikonal of the ¢hneaps
(ww), (kaw), (aaaw), one chooses three variablest,, t3 from the variable pairsh(
p1), (h2 p2), (hs ps3), resp., and likewise the variables u,, us from the pairsty; q.), (h,
02), (hs gs), resp., while the quantities that remain in the paitsbe correspondingly
denoted, as before, bwy, v, v andwi, W, Wz, resp. If one now thinks, on the basis of
the choice that was made, of the three eikonalseoftitee maps as being:

" = E(ty, ug, to, W), D =E(ty, Uy, t3, U3), P =E(ts, Us, t1, Lh)
then it will follow immediately from the defining equati¢66) that:
do +dod’ +dd” =0,
from which, we will further obtain, since the additm@nstants in thé do not enter in:

O+ +0" =0. (82)
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If one further sets down the three times four mappin@tays, using (67), in which
obviously thev, w happen to be expressed in two different ways, thenliftoynating the
v, w one will obtain the relations:

-9

0 0
q)r+q)n -_Y q)n+q) -7 q)+q)n ’
3 @+ ®) = (@ 0= (@)

’ (83)
— a ! n — a n — a n
0=— (P +P)=—(P"+P)=— (D + D").
ou, ou, ou,

Since only two conditions can exist between the sixab#est, u, of the six equations
(83), four of of them are a consequence of the remainiag tw

For applications, it is convenient to give the foregoomniulas a somewhat different
form by ignoring the symmetry. If one thinks of the mégs «») and (& w) as being
given, and the composed mag («) as being constructed from them then one must
derive, from the given eikonals:

W = E(ty, U, tz, W), W' = E(ty, Uy, t3, Ug),
the eikonal:
W' = E(ts, uy, t3, Ug)
for the composed map. Since:

W=o W =0, W =—q,

one can, from (82) and (83), set down the equations:

W=y + g :i(W+W'):i(W+W’),
ot, ou

2

oW _o¥ o' _o¥ ow' _ow' o' _o¥

o, o, du ou dt, o, ou, oy,

This yields the following ruleFrom the eikonals of the two given mgps$ «) and
(a2 ), if one forms the expression:

S=E(ty, ug, to, Up) + E(ty, Uy, t3, Us) (85)
and eliminates the variablesdnd w in them with the help of the conditions:

O:E O—E

: = 86
ot, au, (86)
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then S will go to the eikonal(fg, uy, t3, us) of the composed mdjy «z); furthermore,
one will have:

iE(tl,uutg,u?,)=ait E(t, u, b, W), %E(L U, &, W)= Hi u b w),

o
ot, ou,
87
B ©0

ou,

)
Et u,t, us)—m Kt u t W

3

0 0
G_QE(H’ u,t, US)_G_tg E(L, b, &, W),

For this rule, it is obviously essential that the selceariable pair in the eikonal to
(aa @) be identical to the first variable pair in the eikor@al&p az). If this condition
were not fulfilled then, upon taking (69) into accountsimilar rule could be posed,
which is, however, substantially more complicated.

The prescription that is included in (85) and (86) may bemdined with no further
assumptions. If one is given the maps:

( w), (@ w), ..., (W1 «)
for ther spacesu, @, ..., @ , with the eikonals:
E(tla ull t21 UZ), E(t21 u21 t31 u3)l sy E(tr—l, ur—l, tr, Ur), resp

then one will obtain the eikon&i(ti, us, t;, uy) for the composed mapJy @) when one
eliminates the variablds, uy, ..., t.-1, U—1 in the expression:

S: E(tla ull t21 u2) + +E(tr—l, ur—l, tr, Ur),

with the help of the equations:
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Anastigmatic bodies and surfaces. Parametric representation.
Cosine and sine theorem.

With the foregoing developments, | will break awaynirdhe preparations of a
general nature and go on to the applications of the timsoiteat were found. For the first
situation, | might treat the question of anastigmatisimch, together with the resolution
of chromatic aberration (Farbenfehler), constitutesréal difficulty in practical optics.

If anastigmatic bodies appear in the ray-wise mapvad Q, so the sheaf that is
homocentric inwis, in turn, homocentric in image space, then thatpesise map of the
two spaces onto each other that it generates will [dewe collinear, which was already
suggested in the Introduction for the proof of the CZAP&{resentation. Thus, the
two cases of the affine or telescopic— and the actual collinear maps can be separated
from each other. For the affine map, the relatiomvben the conjugate pointgx, vy, 2)
andl(X, Y, Z) may, by a suitable choice of coordinates axes, be brantghthe form:

X=ax Y=hby, Z=cCz (88)

where thea, b, c mean the essential constants for the map. By caosoparfor the actual
collinear map one arrives, by a suitable choice of,aatethe equations:

X

, Y:g, Z=—, (89)

where theq, b, ¢, in turn, mean constants. Next, the mapping equatiamgeba the ray
coordinated, k, p, g andH, K, P, Q are presented, which connect #g, zand theX, Y,
Z by the equations:

y:h+x—, z= k+iq,
m

XP T( (%0)
Y=H+—, Z= K+—Q.
M M

In the case of the telescopic map, one obtains {88nand (90), by eliminating the

v,z Y, Z
b(h+ﬁ’j: H+ 2P c(k+ﬁj =K+ 2Q
m M m M

from which, sincex may be chosen arbitrarily along a light path, one has:
H =bh, K =ck —=

With the abbreviation:
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1= @m?+ bp)’ + (g’ =a + (0* - &) p* + (- &) I,

one then obtains the mapping equations in the expligit forterms oH, K, P, Q:

H=bh  K=ck P=2P =% (91)
H H
If one calculates the values of the symbdis K), ... in the MALUS conditions

according to (51b) then this will yield:

b2 _b2 p2 b2_ a2

H,K) =0, H P)=E=— ot
U U
b? - a? c’-a°
2 2 - g2
K, Q) =E=—-b’q’——, (P, Q) = 0.
U U

Now, if an actual map is present then teb, ¢ must be different from zero; the
vanishing of the expressionBl,(Q) and K, P) that is required by MALUS’s theorem
would then lead to the conditions:

b? =a? =&, E=zu=+a (92)

If one treats equations (89) and (90), which belong tcatteal collinear map in a
similar way, then upon carrying out the intermediate matations the map will be
represented by the equations:

V' =a® + (bh)® + (ck)?,

The application of (51b) gives the two conditions:

2 2, W2
0=H, Q) = bchki=9 — pend T
(mv) (mv)
2 2, 212
0= KP) = bichki P - pchi@ F K
(mv) (mv)

which must be fulfilled identically; i.e., for arbitramalues of theh, k, p, g. This is,
however, not possible, since thec cannot be equal to zero; the MALUS conditions then
lead to a contradictionTherefore, Malus’s theorem allows for anastigméoclies only

in the case where the point-wise map possessdgrthe
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X=xUux, Y=xLuy, Z=* Uz

which is then a geometrical similarityl his case is realized, e.g., by reflection in a plane
For the sake of simplicity, it is not necessary ¢ofgrther, but only to treat the form that
iS most important for practical optics, namely, for tharposes of dealing with
microscopes, cameras, and telescopes, as well aasyesg)l which do not cause one to
treat geometrically similar maps of bodies. The doreg result- which is well-known,
moreover— may also be derived in a geometric way when one shioatsfdr collinear
maps MALUS’s theorem couples the assumption of anaatignbodies with the
property of angle preserving, which is the case only fomg#acal similarities.

From what we just said, in the description of actual sn&xcept for the limiting
cases, optics must restrict oneself to the anastigmahat comes about only between
specific surfaces. In order to see the extent to lwthics is mathematically possible, we
consider the following case: Let any surfageand® be given arbitrarily incoandQ,
which we would like to briefly refer to as the object@and image space. These two
surfaces are associated with each other in some veaytet each pointfx, y, 2) in ¢ be
conjugate to a poirfl (X, Y, 2) in ®, and conversely. Analytically, this will be expressed
by saying that the coordinatesy, zandX, Y, Z are expressed by certain functions of two
varying parameterg andS. Having established that, one then forms the expmessio

=-n(mx+py+q2 +NMX+PY+Q 2+ a, B, (93)
where ¢ means an arbitrarily chosen function of the parametgefs and the rectilinear

coordinates are thought of as functions of the two pateima We now establish a
relationship between the directions of the two rays by the pair of equations:

or 0x ay 0z 6X oY, 972y oy
=—=-n Mm—+ p—=+ — +P—+Q—
oa ( oa oa aaj k( oa oa j da’ (94)
or 0X oy . 0z X, PY 92 oy
O=—=-nm—+ p—=+ — |+ M—+ P—+ Q— .
o [ 0B 0B aﬁj “( B 0B 6ﬁj o

If the ray o is given then the pointfx, y, 2 and the parameter padr, S will be
determined in the object surfageas well as the directiom, p, g; furthermore, the point
M(X, Y, 2) in ® will be given by this, and the directidm, P, Q will be given by (94), and
therefore also the ray. Equations (94) thus define a ray-wise map, which gegeatads
not have to satisfy MALUS’s theorem. If one lete rayo vary in such a way thagx,

Yy, 2 remains fixed, while the directiam, p, q varies, therf1(X, Y, 2) will also remain
fixed, while the directionM, P, Q of Z will change; ¢ and ® then define a pair of
anastigmatic surfaces for the map in question. Tlhesacttion points of the conjugate
rays with the base planes @andQ are given by:

h:y_x_p, k:z—x_q, H:Y—%, K:Z—XVQ. (95)
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If one now eliminates the parametard from " by means of equations (94) then the
I will be converted into a certain functi@nof the four variableg, g, P, Q, and, from
(94), the total differential o will assume the form:

dd=-nl y=22)do- f =29) der N[ v=2P ap- N =29 ac
m m M M

which, from (95), will lead to the equations:

—nh:a—A, —nk:a—A, NH:a—A, NK:a—A. (96)
op Jq oP 0Q

The map considered thus possesses an eikoofahe form [4] orE(p, g, P, Q, from
which the validity of MALUS’s theorem again followsThus, anastigmatic maps of
surfaces are not only mathematically possible, butcanealso construct infinitely many
such maps, even though the two surfaces and the typentfvaee relationship between
them is prescribed arbitrarily by means of the arbitfangtion ¢{a, J).

The equations (94) include an important relation betwemrjugate rays of an
anastigmatic pair of sheaves. Since the parameterapa? determines the conjugate
points 7z 1 in the object space and image space completely, walsandenote these
points by7{ a, /) andl(a, ). If one lets the parameters vary, not independeritgach
other, but with a condition existing between them, tireand 1 will trace out certain
curves in the two surfaces that are conjugate point-by-pdmfarticular, we consider
the two well-defined curve families gy ® that are given by the equation:

a, p) = constant, (97)

and seek the tangenin the family of curves that go througiia, p) that contacts the
family at this point. It will be written:

dx=xyda+xdf dy=yida+y.df dz=zda+zdgS
d¢ =¢ada+ y¢pdp,

and if one further lets cast] be the cosine of the angle between two direct®andt
then one has, whedt means the arc length element of the curve in

dtcostx) =dx=x; da + %, dS,
dtcosty) =dy =y, da +y, dg,
dtcostz) =dz=z da + » dg,

where theda anddg have to satisfy the condition:

0=¢ada+ g dB
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One thus obtains, § means a proportionality factor:
gcostx) =x1 =X Y1,  gcosty) =i 2—Y2 1, gcostd =z Yo—2 Y1,
O =PI+ D) =2 (X%t V%t 2+ K B G

In the same way, we define the relations for the tatnféo the curve through(ap),
namely:

GCOSQ(Y)lel//z—le/ll, GCOS(FY):Yll//z—Yzl/Il, GCOSG—Z):lez—Zzl/Il,
G =i (XZ+ Y2+ Z) = 2h g ( X XK+ N+ ZQ+%( R+ ¥+ 3.

From the equations (94), it follows, when one combin&saarly with the factorg/,
and -y, that:
N[M(x1¢e —Xef1) + p(Yri —Yotf1) + Azt —22401)]
= N[M(Xelo — Xotp1) + P(Y14lo = Yot 1) + Q(Zate — Zoyp 1)),
or:
ngcosto) = NG cos(l 2). (98)

The quantities that appear in this equation relate taileetions of the conjugate
rays gandX in the anastigmatic sheaf pair with the verticgsf) andl(ap), and to the
location of the elements of the two surfageand® that belong tarandll, resp., and
finally, to the arc length elements of the familidscarves that are determined by (97)
and lie indg andd®. Since the quantitiegy G are regarded as constant inside the two
surface elementdg, d®, resp., one obtains the theorem: Inside of the shieafugh
which the two surface elemerdg, d® are mapped anastigmatically onto each other, the
guotient of the two cosines cog) and cos(Z) is constant for conjugate rays. | would
like to briefly refer to this theorem as tbesine theoremThe celebrated sine theorem is
included in it as a special limiting case. In order to stims; we put equations (94) into
a somewhat different form. If one thinks of the bpkmes ofw Q as lying in the
contact planes ofig, d®, and further, the-axis andX-axis are the normals to these
surface elements, then one can, if the coordinateare chosen for the parametetss,
and the lateral axes are chosen suitably, set:

X]_:O, y]_:l, Z]_:O,
X2 =0, y2=0, =1,
X1 =0, Y1 =4, Z1 =0,
XZZO, Y2:0, Zzzb,

wherea andb mean the lateral expansions for the mapsigfand d®, resp. If one
further sets:

m= cos, p = sinr coss, g = sinr sins,

M=cosR, P =sinRcosS Q =sinRsinS
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where ther, R can be regarded as the elevations andstlse as the azimuths of; Z,
resp., then one will obtain from (94):

—N asinR cosS+nsinr coss = ¢4,
—NbsinRsinS+nsinr sins= ¢,

NsinR _ ¢,coss-¢, sins |
nsinr  ay,cosS- ly, sin<

(99)

the sine quotient of the two elevations thus depenmbn the azimuths, in general. Now,
if the parameterg and ¢ vanish simultaneously for the value pair in questihen
equations (98) and (99) will lose their meaningg¢sithey assume an indeterminate form.
In this case, one can, however, write:

NsinR _ coss _ sins
nsinr  acosS bsinS’

(100)

As long as the andb are different, the sine quotient thus dependsuiin, on the
azimuth; by comparison, & = b then one will have:

NsinR _
nsinr

s=S L (101)
a

This is the sine theorem, as it was discovered &y— CZAPSKI (loc. cit., page 102).

In the cosine theorem and its corollary, the sheorem, one treats, as the foregoing
shows, a theorem not of optics, but of line geoymetis valid for the ray-wise maps that
arise from a contact transformation, as long astaraatic surface elements appear.



VIII.
Simple cases of anastigmatic surfaces. Tangent theorem.

As long as nothing more specific is assumed about thestinfacesg, ® and the
arbitrary functiony, equations (93) and (94), which are employed for the nat&in of
the eikonal, cannot be further consolidated. By compari®ne can represent the
eikonal explicitly as long as the two anastigmaticfesies ¢, ® consist of planes.
Depending upon whether these two planes, which we woulddikiéstinguish from each
other as th@bject planeand themage planelie at finite points or infinite ones, one can
identify the following four cases:

Object plane Image plane
l. | atinfinity at infinity

Il. | at infinity finite (102)
. |finite at infinity
V. | finite finite.

If one likewise takes the planes to be the baseeplaassuming that they lie at finite
points, then this will yield the following table:

Case |: for p g constant that makesP Q, constant
. " constant " H ,K constant
hq (103)
lm: " h kconstant ! P, Q constant
IV: " h kconstant " H , K constant.

Should the mapping equations:

H=A(hk p 0, K=B(h,k p, q), P=C(h k p, q), Q=D(h,k p, q)
have the property that for constantq the value paiP, Q happens to be constant then
the variablesh, k must be absent fror®@ and D; i.e., with the previously-employed
notation, the partial derivatives must satisfy:

01:CZZD1:D2:0.

The repetition of this argument leads to the table:

Case I. C =C,=D,=D,= 0,
" Il. =A =B=8-=0,
A=A=B=B (104)
“ I C,=C,=D,=D,=0,
" IV. A=A=B7=B-=0
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Since one can obtain cases I, I, IV from | bg fhreviously-employed substitutions:
H K P Q h k p ¢
-P -Q H K) \-p -q h k
(105)

h k p g H K P Q
-p -g h k -P-Q H K

it would then suffice for the further calculations tosue the details only in case I.
In the table of critical determinants (63), if the term

(CD)14, (CD)2s, (CD)12, (AD)12, (CB) 12

vanish for case I, due to the first row of (104), thewiit follow that the terms €D)zy,
(AB)12, are certainly not identically zero, and the eikoigls k, P, Q) andE(p, g, H, K)
certainly do not exist. If one employs, as is sufintj only the form [16} or E(p, g, H,
K) — then the right-hand sides of the mapping equations:

—Np:a_E, _NQ:é)_E
oH oK

will be free ofH andK, soE will be a linear function ol andK of the form:

E=Ha(p,q) +K Ap,q) + Kp, 9),

where a, [, y mean any functions of thg q, with the restriction that the determinant

presented in (68) does not vanish, so the two functm@sd £ of the p, q will be

independent of each other. Upon making the substitutions {bi5y,elds the following

eikonal forms and mapping equations:

[16]: E(p,q H,K)=Ha(p g+ KZ(p g+y(p q,
T ke 199, (9B 9y
] NP=a(pa. —nh= By Kot ap: (106)
_NQ=B(p g, -nh= KDy KBV
oq dq 0q

[4: E(pg P Q=R(pg+ G(pd-y(PH

Ja o5 dy
NH=a(p, ), —-nh= P—+ +—,
I, (P9 ap Q% ap (107)

NK =A(p.o), -nk= P2+ PP

og 0q aq
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[13]: E(hk H,K)= Ha(h K+ KB(h K+y(h K,
_NP= 9a 9B, 9y
. NP=a(h . o= R on " an (108)
. _ 0, 9B oy
NQ=B(h K, nog= Ha_k FPRFTR

[: E(hk P Q= R(hR+ B(hk+y(hk
NH=a(h K, np= P22+ B+

V. T oh “oh oh’ (109)
da . 9B oy
NK =B(h k), ng= P—+
AR, na= P & ok

Case | is realized by any prism theorem; the anastigmelationship between the
two infinitely-distant planes will be employed by ampestroscope in order to obtain the
sharpest possible slit image by illuminating the collimatwdt eyepiece.

Case Il corresponds to the ideal one for the purpdsesetescope or a camera that is
photographing infinitely-distant objects. Case lll is itheersion of Il, and represents the
ideal collimator. One thinks of case Il as being redlizg a centered system of lenses,
so when the image in the focal plane of the image sma@®rrectly drawn — i.e.,
perspective to the infinitely-distant object — for a @hlé choice of coordinates, the
following relation must exist:

a(p, 6) =NH = NP Ap, 6) =NK =129,
m m

wherea means the focal length of the image space. Oneheiti have:

2
-nh= NaP1 9 + Na pq+ +6_y’
m’ n ap

-nk= NaP'Dq +NaQ—p3+
nm odq

The right-hand sides, and therefore lth&, can be independent of theq only when:

P=Q=0, 6_y: constant, 6_y: constant.

ap aq

Therefore, a strictly anastigmatic focal pointt bat an anastigmatic focal plane, can
appear in the object space of such a system. Nowe such a focal plane must be
present when the system of lenses is symmetris, ghvies us that for a symmetric
construction the correctness of the picture andatgstigmatism contradict each other.
One of them can be attained only at the cost obther. Were the anastigmatism in both
focal planes achieved for such an objective them wauld be dealing with a union of
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cases Il and Il, and the k would have to depend upon tReQ linearly, and likewise,
the H, K would depend linearly upon tig gq. Since the system is centered, this would
lead, by a suitable choice of axes, to mapping equatiothee dbrm:

NH = ap, NK =agq,
-nh=aP, -nk=aQ,
and to an eikonal:
E(p, a, P, Q) =a(pP + Q). (110)

Thus, in order obtain the picture in the focal planehef image space, one must then
project the infinitely-distant object centrally to@here of radius : N, and then from the
sphere image, parallel to the figure axis of the objectiverder to form the orthographic
projection onto the focal pland) (

Case IV corresponds to the ideal microscope object®feould the map of the two
planes make them geometrically similar to each othen one must have, by a suitable
choice of coordinates:

H=ah np= NaP+a—y,
oh

3 (111)
Yy
K =ak, ng= NaQ+r—,
q Q+ak

wherea means the linear expansion. If one now thinks of axgdfipoint with the

abscissag, andXy on thex-axis andX-axis as having been selectedirandQ then one

can consider the lines from to the pointstf, k) and fromX, to the conjugate image
points {, K) to be corresponding projection rays. Now, should tliaes also always
be components of the same light path, then the eqggation

%-0 _0-h _0-k X,-0 _0-H _0-K
m p q M P Q

must be satisfied, so with the abbreviations:
F=x +h*+kK, S=XZ+H +K> =X +a& (h* +K),

one would have:

When this is substituted in equations (111), thiltgive:

() The fact that there are good camera objectives wjtinmetric arrangements is obviously no
contradiction to the remarks above, since here weahvays dealing with the purely mathematical
anastigmatism, which is linked to no limitations be aiperture of the sheaf.
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dy _ Na*h_ nh oy _Na’k _ nk

oh S S ok S S

from which, it follows by integration that:

®h, K) =NS—ns= Ny X2 + @ (IF+ I&) - nf §+ H+ K. (112)

Conversely: Whery possesses the form (112) there will exist an ‘@atiopic” pair of
pointsxo andXp on thex-axis, and one will have:

The so-calledangent theoremin its strict form, is included in this (cf., CBSKI, pp.
111). Its validity is linked with the fact thapossesses the form (112).

IX.
Anastigmatic elementary sheaf. Reduced form of the condition.

The parametric representation of an eikonal witprescribed anastigmatic surface
that was developed in equations (93) to (96) waseh in such a way that it led to the
eikonal formE(p, g, P, Q). This representation can be carried over to ahyhe
remaining forms with no further assumptions. Lhet tmutually associated point&x, v,

2) andr1(x, y, 2) of the prescribed anastigmatic surfaces be orae whefined in such a
way that the rectangular coordinates would be sgmted as functions of two variable
parametersy, £, and furthermore leE(t, u, T, U) be one of the expressions that were
summarized in Table (79), which includes the camatés ofrz I, in addition to the light
coordinateg, u, T, U. One next defines the expression:

M =F(t u T, U)+ ¢a,b),

where ¢ means an arbitrary function of the £ If one now eliminates the two
parameters frorh with the help of the equations:

0= 0=C
da FYZ}

thenT will go over to an eikonaF(t, u, T, U) for which the surface pointg N are
conjugate anastigmatic points. The proof will med, step-by-step, in the same way as
the previous case.
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In the present manner of representation, seven ailgtchosen functions of the two
parametersy, 5 next enter the picture, namely, the six rectangutardinates and the
function ¢. If one chooses two of the coordinates — g.gnd z — then five arbitrary
functions will still be remain. This situation shoWmt a considerable latitude is already
present from the requirement of anastigmatic surfaiteis; self-explanatory that the
latitude in the requirement that only anastigmatic csimeisolated anastigmatic points
should appear is even greater. | shall not pursue tlex tatb cases here, which are
much less important for optics than the anastignsatitaces, but treat the question of the
existence of the stated surfaces from another angle.

Instead of constructing the eikonal of the prescribedtamatic surface, one can
also pose the question of which conditions the eikonest satisfy if anastigmatism is to
be present. One can pursue this in different ways.

If the eikonalE(t, u, T, U) is represented explicitly as a function of its ahtes then,
from (80), the expression:

O(t,u, T,U) =E(t,u, T, U) - F(t,u, T, U)
that we defined by means of the system of equations (81), or

O:a_G:a_G:a_@:a_@, (113)

will give the conditions for the light ray, (u, T, U) to go through the pointxXx, vy, 2),
M(X, Y, 2) that lie inw Q. If the point-pairzz M is given arbitrarily then one will obtain
the light ray that goes through it when one solves te&ns (113) for the light ray
coordinates. In general, the number of solutions that appdais way is finite; i.e.,
equations (113) are independent of each other. Opticalgkspg this comes down to
saying: An eye with sufficiently small pupils that omedf in an image space generally
sees illuminated points of the object space as isolftedinated points, and indeed, in
the directions that are given by the light rays. #&efinite positions of the pointg I,
however, the case in which the number of solutions figitely large can also come
about, so for the desired light ray one will obtain anifold 14 or /4 ; the 7z T will then
define pairs of conical or astigmatic points. The dedoc such distinguished points is
then equivalent to the discussion of solutions of (113)gerwone considers the cases
where, of the four equations, one or two of them tgllconsequences of the remaining
ones. For the actual implementation of this discusstois naturally required that the
eikonal be actually given, since one does not arrivdhatsimplest formulation of the
problem in the other case.

Another path that generally comes under consideratiy for the eikonals with
anastigmatic pairs of surfaces is the following onepafametric representation with five
arbitrary functions for this class of eikonals will bbtained by means of the system of
equations that was given recently:

M =F( u T, U) + Aa b), 0:_0' =—.
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If one now takes the partial derivatives of the eikonal
M =E(,u T,U)

with respect tot, u, T, U up to an order such that the arbitrary functions can be
eliminated, and then actually carries out the elimimatieen one will obtain the partial
differential equations whose common solutions define tkenai that we imagine.
Instead of this direct path, | prefer to follow a detowhich, however, possesses the
advantage that the meaning of the individual relations ggsemore directly. When one
temporarily restricts oneself to it, one thus arrivésoaly the investigation of the
behavior of the elementary sheaves. For this, ficasfto employ only the eikonal form
E(p, g, P, Q), which leads to the simplest formulas; the restnicthat is introduced may
be subsequently lifted by a simple argument. We thu$reet,(80):

O, g, P,Q =E(p,q,P, Q) +n(xm +yp + zg —N(X M + YP + ZQ.

For the partial derivatives with respect to they, P, Q, we employ the following
notation of the indices according to the schema:
df(p, g, P, Q) =f1dp + f2dq + fs dP + 4, dQ,
in which one has:

m = —% m = —an m=m= 0,
5 o (115)
M,=M,=0, M,=—— M,=-—<,
1 2 3 M 4 M
__g°-1 __pq _p-1
m,=- 7 m, - mzz—7’
Q*-1 PQ P-1 (116)
M33: ME M34:_W IV|44__ M3
We introduce the abbreviation:
(©1 0203 04)1234= (117)

for the determinant that is defined by tBgs, and set the sub-determinants of third order
equal to:

=93u. 118
20 ap ( )

aB
The conditions that for a light rdy with the light path coordinates g, P, Q, both

raysap, g, P, Q) andZ(p, g, P, Q) go through the point&Xx, y, z2) andl(X, Y, 2), resp.,
are given by the four equations:
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0=0,=E +n(xm+ ), 0=0,= E+ r(xm+ % } (119)

0=0,=E,-N(XM,+Y), 0=0,= E- N(XM+ 2.

If these four equations were fulfilled by the pietesz N under consideration then
an infinitely close light ray with the coordinates:

p +dp, g + dg P+ dP, Q+dQ

would not generally go through the two pointd1, and furthermore, in order for this to
be the case, the displacemedippsdqg, dP, dQ would have to satisfy the four conditions:

O:d@a:@mdp+@aqu+@agdp+@a4dQ (0':1,2,3,4),

which, when written out, would take the form:

0=(E, +nxm,) dp+ ( E,+ nxm) dg E dP E dQ
0= (B, +nxm,)dpt( B+ nxm) dg & dP £ dQ
0=E;dp+ E,da+ ( E;— NXMy dR( B~ NXM) dQ
0=E;dp+ E,da+ ( E;— NXMy dR( B~ NXM) dQ

(120)

If the determinant of this linear system, namely:
= (01 ©2 O3 O4)1234 = (E1 + nXxmy, Ez + nxnp, Es — NXMa, E4 — NXMj)1234, (121)
were non-zero then it would follow from (120) that:
0=dp=dg=dP=dQ,

which would say that none of the light rays that hba L go throughvz . ShouldL be
intersected by a neighboring light ray in object spackimsage space thefwould have
to vanish. In this case, one of the four equations (12f)ldvbe superfluous as a
consequence of the other three, and the three remaiquadiens would determine the
ratiosdp, dqg, dP, dQ, and thereby the light ray or its neighbor with tteesd property. If
one developg’ then one will obtain an expression that is quadraticand X, and thus,
an expression of the form:

0=9=Xax+Bx+ P +X(d X+ Bx+pP)+a”C+p"'x+y, (122)

where the coefficients depend upBg, , my,, My, . From this,sz (or ) are chosen
arbitrarily, soll (or 7 is then determined, and, in fact, in a two-to-onenmea, in
general. If one imagines picking out all of the ligays that neighbok that define an
elementary homocentric sheaf with vertexthen the locus of the focal lines on the
conjugate>-sheaf is nothing but the two poirfisthat are determined by (120), and the
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corresponding statement is true when, converseig, given andris determined from it

by (122). If one regards and X in the doubly-quadratic equation (122) as rectangular
point coordinates in a plane then the equation will defigertain curve of fourth degree.
The double points of these curves determine those locatiotise light ray. where one
finds anX that doubly coverx and anx that doubly covers, and thus, where the
elementary sheaf in question is homocentric or anaatigran both sides. The condition
for the anastigmatism of an elementary sheaf wighcéntral light ray. is then given by
the three conditions:

09 _ 09

7=0, —= — =0, (123)
0Xx oX

where the last two, when developed, assume the form:
0 =my1dhy + 2Myadho + Mooy, 0 =Mazdhs + 2Mzgiha + Masdas.  (124)

The further examination of (124) would lead to the theothat all of thed,z vanish.
One can, however, arrive at the same result mareisely by the following argument: If
an anastigmatic elementary sheaf should exist alongith the verticessz M then
infinitely many systems of values must exist for tagos of thedp, dg, dP, dQ that
satisfy the equations (120); therefore, one of these egsatnust then imply the other
two, which immediately leads to the equations:

0 = s @ B=1,2,3,4), (124)

which include self-evident conditions, due to the symmefrthe determinanty. Of
these equations, we would first like to employ these four:

D13 =3 =514 =54=0, (125)

and for the moment, a special position of the coordiaaes. If one defines thxeaxis
and theX-axis to be parallel to the raysandZ, resp., of the light ray in questianthen
one will have:

p:q:P:Q:O’ m=M=1,

M1 =Mp2 =Maz =My =-1, M2 =Mzss = 0.

If, as is always possible, one further defines thedhtees in such a way that:
Ei2=E=0
then the four conditions (125), when developed, will agstha form:

(Ezz—nX) (Eaa + NX) E1z= Eoa (E1 E2)za,
(Ez2 —nX) (Ezz + NX) E14 = — Eo3 (E1 E2)za,
(E11—nX) (Eaa + NX) Ezz = — E14 (E1 E2)z4,
(E11—nX) (Eszs+ NX) E2a = Ei3(E1E2)za,
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from which one can, with the abbreviations:

P =Ei13 E14+ Ex3 B4, P = Eiz B3+ E14 B4,

derive the series of relations:

E,+*NX _ _ ELE, E,—nx __ExE,
By + NX ) EisEss , E, —nx ) EisEss ,
PNX= E11 Ezs E24+ E22 E13 E14 —,0' NX= %3 |-:14 Ezi*’ E44 E13 E23

p(E,-nd= (E,- E)E;E, P(Es NX= ( By E) E;Eq (126)
P(E,—n¥) =-(E,- E) E3E, P(Es+ N¥=-( By E) E,E,

If one substitutes the expressions that were foung, #in all of the 4,3 andJ then,
with the abbreviation:
-E -E
®= Eﬂp 22 Eggp, 24 Ei13 E14 E23 Eosa — (B E)aa, (127)

one will get:
P = ExE,(Ey= EQ®, 09,7~ EP,
P, =~E BBy EQ®, 079, EP,
PIu= ELE(E,-E)®, pd,~= EP,
Py =~ELE{E - EQ®, pF,~-EP,

(128)

1912 = 1934 = 0, F= CDZ.

57

From this, the necessary and sufficient conditiartlie existence of an anastigmatic

elementary sheaf along the light days given by the vanishing of the expressibn If

this condition is fulfilled then one will find the twonited points/Zx, vy, 2), N(X, Y, 2)
from the equations:

PNX =E1 Exz B + Ex2 E13E1g, — 0 NX=Es3E14 E24 + Ess E13 B2z,
ny =- E; —nxm , NY = Ez — NXM3
nz =-E; —nxm , NZ = E4 — NXM,

The form of the result thus found is coupled with {hecsal choice of coordinate
axes; this restriction shall now be lifted, and we Idik@wise take the opportunity to
discuss certain limiting cases.
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General form of the conditions for anastigmatic elementary sheaves

One thinks of the coordinate axes as generally being aybiaad correspondingly,
the element of the determina#itis fixed. The condition that all sub-determinats
should vanish can also be presented in the followingn:fétr will be fixed with the four
variablesx;, X2, X3, X4, and the@gas coefficients of the quadratic form:

R = zgaﬂ 4 ﬂ
- zEaﬂXaXﬂ+ m( m f(+2 m xXx m 22) _NX(M33)§+2M34X3X4+ M44)€4)’
a.p
(a,=1,2,3,4).

The vanishing of théf,zthen says that the foriR can be represented as the sum of
just two squares. This property remains unchangbén one performs a linear
transformation on the form or introduces new vdesh, z, z3, z in place of thex, xo,

X3, X4 by means of the substitution:

x=az+Bz, %=0,z+8,% } (129)
X, =032+ 3,2, X%=0,%t[,%

On just this basis then the determinant that neleé by the coefficients of the
transformed form will then vanish, as well as itgh-sleterminants of third order.
Furthermore, this behavior of the transformed fommplies the same property for the
original form.

The transformation (129) should now be chosemah & way that:

m,X +2m,xx+ m,% =-22a2,
M33X§+2M34X3X4+ |\/|44X24:—22324.

This comes about when one sets:

B . m B . m
a2 =(m+ Iloq),/m2 el BN2= (m- ipq) /m,
a,\2 =i\ m(nf + ) BA2=i/m(m+ B), (130)

a2 = (M +PQ) . A/2= M-iPQ)
a,N2 =-iyM M2 +P?), B2=iM M2 +P?).

The part oR that depends updf,z assumes the form:

P2
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HZﬂEaﬂXHXf HZﬂGaﬂznzﬂ,
where: | |
Gllz Ellalall-i_ ElZ(ag 2+a92+ EZQ g 1
GlZ = Ellalﬂl+ ElZ(ap2+a ﬂ)+ EZQ g 4 (131)
622: Ellﬁlﬂl+ E12(ﬁ1£2+,8ﬂ)+ E2§§’l

GS3: 3ﬂ30'3+ E34(ag4+ag%+E4ggi4
GS4 = 33”383+ E34(aﬁ4+aﬁ%+ E4q ﬁ 4 (132)
G44: 33ﬂ383+ ESA(ﬁﬁ4+ﬁﬁQ+ Eﬁﬁ 4

G,=Bgaa+Eag+Egat+Egq,
GZ3 = ElSﬂp?;-*_ EZQBg 3+ Elﬁq 4+ EZﬁq 4 (133)
G14 = Elﬂlﬂ?;-*_ EZQ 283+ Elgﬁ 4+ Eg g 4
Cu=Elft E L ELLFELS

If one subsequently calls the determinant of the foamed form< then since:

R:ZﬂGHﬂznzﬂ—anlzZ+Z\IZo,z4,

one will have:

Gll GZl_ nx C%l G41

J= GlZ —nX G‘zz Qz G42 , (134)
Gl3 st G33 G43+ NX
Gl4 Gz4 G34+ NX G44

where d is, in turn, symmetric, sinc€qs = Gg,. Since, from previous statements, we
know from the outset that the vanishing of the ten ndwdeterminants,z leads only to

a condition between thggsz or theG, that is free ok, X, we can make an arbitrary
choice of thed,s for further investigation. We next employ the twadibions:

$11 =0, $2 =0,
which lead to the two equations:

0=G,,(Gsy + NX)*~2G,,G( G+ NX+ G8# G857 G,GiG, } (135)
O:Gll(G34+ NX)Z_ZGI3614(G34+ NX)+ Q.sélii' G‘44éls_ G,G;G,

In the same way, one obtains frél and 44 :
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0= G44 (Glz - nx)z -2 G4lG42( G12_ ny+ Gh éhz'*’ sz Gdl_ G44 Gll G‘zz } (136)
0= Gs3 (Glz - nx)z -2 C%l sz( G12_ ny+ Gh @2'*' sz Ql_ C%s Gll sz

From (135), one next derives the proportion:

(Gou+ NX)* _ —2(Gy, + NX)*
u

1
v w'
where:

. ‘ GyGay  GyGost GuCorm Gzzegae4j
C;l3cal4

(137)
G33Gi4+ G44G213_ C':'11@‘33G4
V:‘ GG3i* GuGs Cu e ‘ Gz GuGt| (138)
633G124+ C':‘44G‘i3 Gll Gll G13G14

From this, one obtains, and by switching the indices, alsoin the form:

2(G,, + NX) = GllG33Gé4+ GllG446223_ GzzG?,aéu_ GzzG44é‘1,3
GGG~ GGGy, (139)
2(G, - nx) = GllG33G;4_ GllG44G?23+ GzzG33C§14_ GzzG44é‘1_3
G33G14Go~ G1G1sGys

The proportion above further leads to the conditio

0=¥Y=vw-uw

which is free ofx, X. In order to represent this more clearly, we adtrce the
abbreviations:

r13 = (GllG33_ G13G13 Gz4 r 25 ( GzzG 33 G ZQ )3 Gi4

r14 = (GllG44_ G14G14) st r 24— ( GzzG a4 G ZAG )4 G 13

(140)
r = Gl3Gl4G23G24’
and thus obtain the sequence from:
V=T13Goa+T14G3—T23G1a— 24 G13= (3 Ga)12 + (M1 G3)12,
UW= (G13 Gz — 23 G13) (M4 G24— [M24 G14) + T (G3 Gg)12(Gs Ga)12
= (M3 Ga)12(M3 Ga)12 + T(G3 Ga)12(Gs Ga)12,

W= [(FSG4)12 + (r4GS)12] - 4(|_SG3)12(F4G4)12 - 4r(GsG4)12 (G3G4)12, (141)
W = [(M3Ga)12 — (M4G3)12] — 43l 4)12(G3Ga)12 — A (G3G4)12(G3Ga)12.

(142)
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The form (142) for the expressic¥ reveals the fact thaY does not change when
one performs the substitution of indices:

1, 2, 3, 4
3, 4,1, 2
For that reason, the use of equations (136) instead of (k383 yprecisely the same

expression. Therefore, the desired condition for dppearance of an anastigmatic
elementary sheaf can be presented in the form:

W =0, (143)

which is valid for arbitrary coordinate axes; it thaoludes the second-order derivatives
of the eikonaE(p, g, P, Q), in addition to the, g, P, Q. The point-pairrz N of the two
vertices of the elementary ray sheaves is obtairad {139), in combination with the
equations:
y:h+x_p, z:k+x_q, Y:H+£, Z:K+£_
m m M M

In the foregoing calculations, it was tacitly assdmntigat the pair of equations (135)
and (136) have only one root in common with each otlieh that along the light rdy
in question only one anastigmatic elementary sheaf appedhis case is, in fact,
regarded as the general one, since, as will presentligdvens the appearance of two or
more anastigmatic sheaves generates even more oosditeyond the ones that are
contained in (143). Should two anastigmatic sheaves elgisg & then, due to the
geometric meaning of equations (135) and (136), both pairs ofi@asi&tould have two
common roots, so the equations of each pair would haagree in their coefficients, up
to a factor. This would lead to the relations:

GZ3G24 - G13G14 GS3C5224+ G44C§23: G33élj_ G44613

GZZ Gll , G22 Gll (144)
C;41642 - GSlG32 G11G242+ GZZC§4l: Cil c;?p22+ G22 QI.
C;44 G33 G44 G33

The expressions in (137) and (138) that are denotegh\hyv vanish in this case, and
likewise the expressio®, while the formulas presented in (139) for #)& assume the
form 0 : 0. If one next sets:

Gll = A G13G14, G33: /'1 GSlG32 } (145)
GZZ = A G23G24, G44: /'1 G4lG42

then the four conditions (144) will be fulfilled iderdlty such that now, in place of the
conditionW¥ = 0, the two equations that arise from (145) by eliminatingnd x will
appear. If one introduces the abbreviations:
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I =G13G14G23 G4, A =G13Gog + G4 Gos (146)

then the quadratic equations for the&X will assume the form:

0 =A(Gas + NX)? = 2Gas + NX) + (A — Aul),
0 =(G12 — NX)% = 2G12 — NX) + A(A = Aul),

whose solution is contained in the formulas:

v? = - /IIUG13G24)(1_ /IIUG14G23)’ } (147)

AG,+ NX) =1xv, u(G,—-ny=1+v.

In order to correctly associate the pairs of ro6t” and X', X" for x, X, one can
subject one of the unused sub-determinants to — say -erhéion:

H1a =0,

which, when developed, and with hindsight of (145), (146), (14i),lead to the
equation:

1-v?
Al

(Glz - nX)(G34 + NX) =G13Gyy [,U(Glz - nx) + /](G34 + NX) - 2] +

which will then imply that one must set:

MGy + NX) =141, A(G,+ NX)=1-v, } (148)

UG, —nX)=1-v, u(G,— nX)=1+v,

wherex' andX' belong to conjugate vertices, and likewisendX".

Since equations (135) and (136) are of only secmutee, if more than two point-
pairs of the desired type are present along a t@ythen one must have infinitely many
of them. This requires that the four equations5§18nd (136) must be fulfilled for
arbitraryx, X, so one must have:

Gll = GZZ = G33 = G44: O’ } (149)

C513C514: G23G24: Gl3623: C;l4c-:'24: O
Now, from (133), one has:
B B

= E1 E2)as {aP)12 AaB)z4 = (E1 E2)za i 1) i M?).

El3al+ EZQZ Elg l+ EZQ 2

(G1 G2)as =
P E8tEB, Egat+ESL,
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Since the determinank{ E)s4 cannot vanish, except for the excluded points of the
map (cf. (68)), this will also be true fo&{ Gy)34. If one now sets — for exampleGas
equal to zero in (149) the@;4 andG,3 must be non-zero, from which, the vanishing of
Ggz4 will follow, moreover. However, one has, from (149):

either Gi3=Gyy=0 or Guu=Gy3=0. (150)

The expressions for the X in (139) will then be plainly indeterminate; in their gda
will appear the relation between the conjugat¥ that the still-unused sub-determinants
Jqpyield. If one next chooses the first of the twoesagl50) then the determinafwill
have the form:

0 G,—nx O G,
g |Gumnx 0 G, 0

0 G,, 0 G+ NX

G 0 G, + NX 0

The sub-determinant$;1, %, J33, a4 Vanish identically, as one could foresee, and
likewise, thed 3 and$,4 vanish identically, while the other ones lead to tingagion:

0= (Glz - nX)(G34 + NX) —G14 Go3, (151&)
and for the second case (150), the following equation eintéssplace:
0= (Glz - nX)(G34 + NX) —G13Gys. (151b)

A simple example of the aforementioned special sagezen by refraction through a
sphere. Under this map, there will be two pairs of &astic elementary sheaves along
any light rayL that does not go through the center of the sphere/eftiees of the other
pairs are found in the well-known aplanatic sphereshdflight pathL goes through the
center then there are infinitely many anastigmatimelgary sheaves alohg

The investigation up to now employed the eikde@, g, P, Q), so it is valid only for
the maps that possessed this eikonal. This restrichialh sow be dropped. Now, we
shall treat the conditions that pertain to the lattarelopment that we carried out in order
for a light pathL to be intersected by infinitely neighboring ones in abgpace, as well
as in image space. If one poses the mapping equatitmsnoriginal form:

O0=a=A(hk p, g —H, 0=£=B(hk p, g) —K,
0=y=C(h,k p,q) —P, 0=0=D(h k p,q) -Q,

and replaces the k, H, K with the expressions:

h:y—x_p:y+xrnl, k:Z—X—q:Z+XrT]2,
m
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H:Y—£=Y+XM3, K:Z—ﬁ =Z+ XM,
M M

then one will obtain the conditions for the light patior (p, g, P, Q) to go through the
two points7gx, y, 2) andl(X, Y, Z). If one writes the derivatives of tlee S, y; o with
respect to the indices 1, 2, 3, 4 according to the schema:

da=mndp+adg+az;dP + a, dQ

then the desired conditions for the anastigmatic eteary sheaf will be given by the
notion that not only the determinant:

n = (aByd)12za,
but also the sub-determinants:

on 9n on  0n (A=1,2, 3,4)

oa, 0B, 0y, 04

must vanish. With this Ansatz, the previous calculaticens be repeated step-by-step.
Any equation in the new calculation corresponds to a itkefeguation in the previous
ones, and conversely. The transition between two assda@guations is then obtained
directly when one employs the relations betwéerB, C, D, and the eikonals in the
relations developed in (70) to (75). One next obtaineraiton ¥ = 0, in which not
only the ray coordinates, but also the first-order déxiga appear, but the rectangular
coordinates of the two vertices of the two sheaxeBl are missing. From this, the
explicit expressions for the loci of the N emerge, expressed in terms of the quantities
that enter intdd.

The foregoing manner of representation is independenhenfassumption that a
definite eikonal form — e.gE(p, g, P, Q) — also actually exists for the map in question.
The Ansatz above is even useful for the ray-wise mlagisdo not satisfy the MALUS
theorem, and thus cannot possess any eikonal. Furtlerome can, in turn, introduce
each of the sixteen eikonals that exist for the majuestion by means of equations (70)
to (75) using the representation that starts with&h®, C, D. The restriction that arises
from the use of the form&(p, g, P, Q) thus reduces to the one that one must, if need be,
transform the previously-developed expressions to anoikenad form before using
them in the transition.
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Classification of eilkonals.

If the expressio¥ were constructed for a given eikorilt, u, T, U), under the
guidance of the foregoing section, then the vanishin efould be the necessary and
sufficient condition for an anastigmatic elementahngaf to exist along the light patth (
u, T, U). If 7z N are the vertices of this sheaf in object space andarspace then one
will think of /ras the vertex of a homocentriesheaf that therefore corresponds to a
well-definedZ-sheaf in image space, together with the correspondnsficaand wave
family that is associated with it. Now, the vanishirfigdbalso says that the individual
waves of the family referred to will be cut by the tighy in question at the umbilical
points. The corresponding statement will be true wime seeks the conjugatesheaf
to a homocentriZ-sheaf with the vertekl.

The W that belongs to a particular type of eiko&#l, u, T, U) admits the totality of
eikonals of this type, and correspondingly, the astetianaps divide into three large
groups, according to whether:

1) Y reduces to a non-zero constant

2) Wis identically equal to zero.

3) Wis an arbitrary function of the light coordinates, T, U.

In the first case, the conditidh = O will not be fulfilled by any light rays; there sig
no anastigmatic elementary sheaf aadortiori, there is also no anastigmatic point-pair.
The eikonals of this group are defined to be the solutionhefsecond-order partial
differential equatio¥ = a.

In the second groupy vanishes for any light ray, so an anastigmatic eléangn
sheaf exists along any light ray. This sheaf and thgcee that belong to it define a
manifold 1, . Since space includes onlyta of points, any/r must be the vertex of
infinitely many elementary sheaves. Thus, one musindissh two cases. |If ther
define ays or a solid then any point of this solid is the vertéxaqs of elementary
sheaves. Thersheaf with such arwill be its vertex generates waves in image space that
possess as of umbilical points or an umbilical point curve in imagpace. On the
contrary, if therrdefine ats, or a surface then anyis the vertex of a» of elementary
sheaves. The homocentric sheaf with suchaa its vertex generates waves in the image
space with g of umbilical points; i.e., these waves are spheagsl the surface of
points 77that one imagines is one component of an anastigrmpati of surfaces. These
case in which therreduces to a4 or a4 cannot come about for the present group since
if that were true then the manifold of the anastigmmelementary sheaf would be at most
a s . On the contrary, the locus of the poirntsan very well include isolated curves or
points, in addition to the stated bodies or surfaces.

In order to decide which of the two cases we discussest eto the picture, one
must remember that from the pervious examination, alotigthe expressiot, also the
loci of the 7z I would be included in the parametric representation:

x=a(t, u, T, U), y=At u, T, U), z= U t,u, T, U), (152)
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X=A(t, u, T, U), Y=B(tu,T,U), Z=T(tuT,U). (153)

Now, should the verticegof the elementary sheaf define a surfaaehich, from the
above, would have the same propertyias then the four variables u, T, U would
appear in the functions, 5, yin only two contexts, so the four functional determisaof
the a, B, ythat are defined by any three of the varialiles, T, U would vanish
identically. Of the four equations that arise, twotleém are a consequence of the
remaining ones; thus, when anastigmatic surfaces arenpyé&o more conditions will
be added to the condition thét = 0. Since the functiong, £, yin (152) include the
derivatives of the eikonal up to second order, the additiconditions will represent two
third-order differential equations, which, together wita gecond-order equatiép = 0,
will define the eikonals that have anastigmatic surfaces

In the third of the aforementioned grou@scan vanish only for certain light rays that
define ays . The verticesT can define a4 or (& or (4, while the anastigmatic points
define at most a4. The appearance of anastigmatic surfaces is thdaded from this
group.

The anastigmatic bodies are still missing from theedoing discussion. As one
easily sees, they belong to the second group as a linuieg and appear when the
expression fox is plainly undetermined in (152).

The conditions for the appearance of anastigmatic esféave been essentially
developed. Up till now, the expressighwas not entirely concise, while the parametric
representation for this class of eikonals that wasmgivefore in (114) simply failed to
suffice. However, one generally comes to lucid equationshe cases of anastigmatic
plane pairs that are most important in optics. Th®i@krepresentation that is given in
(106) to (109) shows that for the forms [1], [4], [13], [1®le eikonaE(t, u, T, U) must
satisfy the conditions:

2 2 2

ZGE:aE :(BEZ, (154)
0T< 0ToU odU

as long as the coordinate axes were chosen suitabbredMer, when one goes over to
the theory of optical instruments, the difficultiésit one must then overcome belong to a
circle of problems that is essentially different fréime ones that were treated up to now.
Since this situation, as far as | know, requires dyfaomplex, specialized examination, |
will restrict myself to only a brief sketch of it. u@stions such as the following ones then
arise:

Are ray-wise maps realizable by means of optical presesse.g., refraction and
reflection?

What are the essential properties of eikonals thae drom one, two, three, etc.,
refractions?

What are the properties of eikonals when one is tgatefraction at centered
spherical surfaces?

Does the number of constant parameters that emntethe eikonals possess a limiting
value or does it go beyond all limits with the in@®g number of refractions?

The resolution of these and similar questions is nacgsshen one wishes to
essentially leave behind tigeneraltheory of optical systems for the more contemporary
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view of things. As long as practical optics is composed simmary of a great number
of deviations from the single path of numerical testt th practicable at this point in
time, the progress that has actually been achieved sséingially be the result of an art
that is acquired by years of instruction and experient®ses details one must always
pick up anew, but which cannot be handed down in the féan edifice of finished and
generally valid theorems, as with other theoreticahains that have been worked out
completely. Undoubtedly, the power of contemporaryosicope and camera objectives
rests upon the unconscious pause to consider certainabdaerss whose rigorous
formulation would provide the insight into the true bdsisthe results that have been
obtained. An example of this is the proof that wasi@drout by ABBE that the sine law
in optics was already obeyed, and thus unconsciouslytebkif® own discovery of it').

With these remarks, we may now treat some applicatibat illustrate how one uses
eikonals in special cases.

() See the remarks of CZAPSKI above on page 103.
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Eikonal of arefracting surface.

The first example that shall be examined is refoactat a surface. Instead of
presenting the equations for this directly, we will fesplore the conditions for the two
componentgrandZ of a light path to intersect each other under a regvinap. If one
lets the system of axeX,(Y, Z) in the image spad® coincide with the system of axes (
Y, 2) in object spacevthen the equations:

y= h+x_p: H+LP,

m M (155)
z=k+ 3= K+X—Q

m M

must exist between the ray intersectigny( z2) and the ray coordinatés k, p, q andH,
K, P, Q, from which it follows that:

H_h= (B_ﬁj, K — k= X(ﬂ_gj,
m m
(156)
(= H-h _ K-k
PpP_P 9 _Q
m M m M

—nh:a—E, —nk:a—E, NH:a—E, NK:a—E
ap 0q oP 0Q

then one will obtain the following linear differentiduation foiE from (156):

(na_E.}- NEJ(_q__Qj: (na_E+ Na_Ej(_p__Pj
oP op)\m M 0Q Joqg)\m M

If one introduces the new variables:
e=NM-nm, f=NP-np, g=NQ-nq

thenE can be represented as a functioe,df g and one of the original variables — e.,
—in the form:

E(p.a. P, Q) = ¢(ef, g, p).

The differential equation fap will then assume the form:
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N%(ﬂ—gjzo,
oplm M

i.e., p cannot be included explicitly, but only the three quass®) f, g. Conversely, if
the eikonal possesses the foge, f, g) then the conjugate rays will intersect each other.
By means of the equation:

E(p.a, P, Q) = ¢(ef, g),

one then defines the mapping equations:

__10E_ pdp,0¢ ,_ 10E__qdp 03¢

nop mae 9f ntq med g (157)
= ia_E:—ﬁ%-f-% = iﬁ:—_Q%-f-%
NoP Moe of’ NOQ Made dg

and if one introduces thh, k, H, K into (156) and (155) then this will give two
expressions for the y, z, whose values agree, namely:

x:%, y—% z—% (158)
oe

Coof ag

The foregoing equations (158) define the locushefpointsli(x, y, z) at which the
two conjugate rays cut each light path. Sincettiality of light paths define g, but
the possible rays through a point defings athe locus of pointBl will then be gus or a
2
If, as we shall first assume, the equations (H58)independent of each other in ¢he
f, g then thee, f, g can be expressed in terms of ¥hg, z, so one will have thdl is azs.
In this case, the expression:

T= e%+ f%+

9 _
de of J 09 4 (159)

cannot reduce to a constaritlentically. Otherwise, due to the identity:

op .09 09 _
e—+f—+g— =¢-—c 160
de of gag ¢ (160)

the expressiop —e would be a homogeneous function of first ordethefe, f, g, and
the right-hand sides of (158) would be homogendonstions of order zero; thus, they
would be representable as functions of the twoigotdf : e andg : e. However, this
contradicts the assumed solubility of the syste®8)1 If one thinks of the, f, g in (159)
orin:

r=ex+fg+gz—-¢
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as being expressed in terms of #hg, z and then forms the functiortx, y, 2) then, from
(158), one will have:
dr(x,y,z2) =edx+fdy +gdz (161)
In the family of surfaces:
(%, ¥, 2) = constant,

the direction cosines of the normal to the surfaeg gioes through the point(x, y, 2)
will then be proportional to the f, g.

A 14 of rays or a family of them goes through the rayrsgetionll in question. Let
M(xo, Yo, 20) — or, more briefly[1o — be any of these intersection points. If one defihes
r-surface througlhly and determines the system of valagdo, go for thee, f, g from:

_09 _0¢ _0¢
=% PTH P

then the direction cosines of the surface normBlawill be proportional to they, fo, go .
The family of light rays for whichly is the common intersection point will be
determined by the equations:

NM —nm =g, NP —np=§, NQ-ng=g;

I.e., the conjugate rays of the family behave asfibiction were taking place &t with
indices of refractionn, N and the surface normal as the incidence perpendicular.
Furthermore, the rays will be arranged symmetricalbyad the incidence perpendicular,
and thus define a circular cone.

By comparison, if the right-hand sides in (158) are inddpat of each other then the
locus of ray intersection3 will reduce to a certain surfade whose equation iR, y, zis
obtained from (158) by eliminating the f, g; any pointl on this surface is then the
common ray intersection point for a sheaf of ligggs. This sheaf may be decomposed
into circular cones in the following manner: A givenmdily in @ is associated with a
of systems of values for the f, g that satisfy the equations (158). el fo, go is an
arbitrarily-selected solution of (158) then the equations:

NM —nm = e, NP —np=fy, NQ—-ng=go

will determine a family of light paths that have tt@mmon ray intersectiollp . The
conjugate rays of this family will, in turn, behave aseifraction took place dfly with

the indices of refraction, N and an incidence perpendicular whose direction cosirees
proportional to the quantitiemy, fo, go . In general, these incidence perpendiculars are
now all different from each other and define a fgmil However, should the
perpendiculars all coincide, as is necessarily the frasthe refraction at a single surface,
then all of the solutions of (158) that belong to a pbBintwvould have to be proportional
to each other — i.e., the right-hand sides of (158) woane o involve only the ratios of
thee, f, g — so they would have to be homogeneous of order aexd,ig. The function
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@ will then be homogeneous of first order, up to an additrestant. Therefore, we have
obtained the following theorem:

If E(p, g, P, Q) is the eikonal for refraction at a surface then, if the coordinate axes
for the object space and image space coincide, it can be representedamthe

E(p,q. P, Q) =d(ef, g), (162)

whereg, except for an additive constant, means a homogeneous function of firsbrder
the three quantities:

e=NM -nm f=NP —np g=NQ - ngq; (163)

the refracting surface itself is determined by the equations:

x=92 -0, 0 (164)

de oo ~ag’
This converse of this theorem is also true.

As an example, we would like to choose:

E(p,q.P.Q =d(ef g =ae+/f] (165)

where thea, S mean constants, and the quaniiig determined by the equation:

=€+ f’+ ¢
=N?+n*-2NnMm+ Pp+ QJ (166)
=(N- n)2(1+ onptMN= sz_ qu :
(N-n)

The sign ofl should coincide with that & —n; i.e., in the equation:

J=(N-n [1+ oNnLZ |\/|(an—_:);32— qu , (167)

the roots should always be taken to be positiviaceSp is homogeneous of first order in
e f, g, for this eikonal we are then dealing with refractat a single surface and indices
of refractionn, N. We obtain the equation of the surface from (Ii64he form:
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Be y:% _ g

X=a+ —, , z="—,
J

from which it follows that:

(x-a vy + 2=

the refraction happens at a sphere of radiyswith a center that lies along theaxis
with the abscissa. Since one deals with only spherical sections for mfaces, we
assume, in order to present the formula for this dasethe abscissasshould increase
in the direction of the light motion; therefore, onlyspiive values for thé, n will come
under consideration. For a light path alongxais, one then has:

M=m=+1,

f=g=0,
e=N-n, J=

N —n,

from which, it follows that the vertex abscissa megtiala + 5. If one assumes that the
curvature radiug of the refracting spherical section is positive egative according to
whether the surface has its hollow side in the diractib increasing or decreasing
resp., then one will have:

a=(a+p+p, p==P.

The eikonal considered may then be written in the form

E(p.a.P.Q=(@+pe-p), (167)

where a is the vertex abscissa, + p is the center abscissa, apdis the radius of
curvature.

If one treats the composition of two refractions Ewthree median, w, ax that
are bounded by each other then if the exponent of tefratand direction cosineas, p,
g for the individual spaces are affected with the indice®, 3, resp., then one must next
construct the expression:

I =@(n2mp —Ng My, N2 P2 — My Pa, Mo G — Ny Ga)
+ (Y(Ns Mg — N2 M, N3 P3 — N P2, N3 3 — N2 Cp),

where ¢, ¢ are homogeneous functions of their arguments. Thengltion ofp, andqg;
by means of the conditions:

then convertd” into the eikonalE(pi, i, ps, gs) of the composed map of the two
refractions. One proceeds in a similar way when arbjtranany refractions are
composed. As long as nothing more is assumed aboutfthetirey surfaces, one must
regard theg, ¢, ... as arbitrary functions. If one now wants to fitkee common
characteristic properties of the maps that consistvof three, etc., refractions then one
must eliminate the arbitrary functions and the variaples for the intermediate media,
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which leads to partial differential equations. Thenéelation of the arbitrary functions
can be performed with no great difficulty, although | hanveceeded in bringing the final
formulas into a sufficiently tractable form only inetlsase of two refracting surfaces of
revolution with a common axis, and it seems that oaentefrom this to preserve the
intermediate variables in the search for general relatidvioreover, it is recommended
that in the case where the refracting surfaces argletety known, one should present
the formulas in such a way that the required elimamais not analytic, but must be done
numerically. For example, if an ordinary systemlefses with centered spherical
surfaces and the individual media, @, ..., @ are given then one lays tkeaxis in the
figure axis of the system and lets the base plandseahtlividual spaces coincide. The
eikonalsE(aw @), E(w ), ... of the individual refractions are then to be lelsthed by
means of (167). If one attaches the quantitjdsg k, p, g to the numbers of their media
then one will next obtain the pair of equations:

np=E@w) o _ 0E(ww)
nlhl apl , kl aql ’

: _0E(ww,) _ 0E(ww,)
I =— 127 =—— 17

nzhz apz k2 aqz (168)

l: -n hZ:M _ kzzaE(wzws)
ST e oq,
IV: n3h3 :%&sa&)’ rbkszaEf;;ZwS)

In order to follow the progress of a given raythe first medium, one must find the
quantitiespy, g2 from the giverhy, ki, p1, i using | and then calculate thg k, from II;
from 11l and 1V, what then follows is a sequencesahilar valuegs, s, ps, Qs, €tc. If
one brings the solutions and substitutions thatrageiired in (168) into a form that is
appropriate for numerical computations by the idtrciion of suitable auxiliary variables
then one will arrive at the well-known computatibpeescription for rays that do not lie
in an axis plane. Whether one then chooses tlgenimimetric form or the purely
algebraic form for the calculations is then basedpersonal tastes. In the algebraic
system of formulas that is mentioned below, asasy/ o verify, the problem to be solved
for the map (167) is to findH, K, P, Q from givenh, k, p, g when:

E(p, g, P, Q =@+ (NM-nm) —0J,
F =N? +n? = 2Nn(Mm+ Pp + Qq).

The equations are then manipulated in such a hatythe largest possible family of
final values is attained with a prescribed logamikh number of digits, such that the loss
of precision by which one arrives at simple fornsuia minimized; the final equations
give the changes that thek, p, q suffer under refraction directly. Thus, givierk, p, g,

one computes the sequence from:
m2 =1 _p2 _ q2,
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Npc=h+ 22 Noh=k+ 2 P, _fa-np
m m m
Q=&+ + ), &= +1-{,N?, J=N-n+4q,
_(N_n)JQ -7 _
ZS_W’ &= —I(ép + na),
%=1—Ze, P-p=-pd—&, Q-q=-qd -,
_a_J N-n ﬁ'*'d N-n <o
CIEMPTM em P AN
H-h=¢g, K—k=ng.

In this, the following “control equation” comesaali:
n(hp - kp) = N(HQ —KP).

If one desires to determine the focal lines fqraviously-computed light path then
the calculations will take the following form byethapplication of the eikonal: One
differentiates the equations (168), when one cansadl coordinates to be variable. The
coefficients of the differentials are then knownmarical quantities, and due to the
special form of the equations, the elimination loé ¢lh, dk, dp, dq that belong to the
intermediate media presents no significant diffiegl After the final elimination, one
will obtain equations of the following form for tlal, dk, dp, dq of the two end mediax
anda :

-ndhy =Enndp +Erpdog + Eizdp + Ensdg,
-ndk =Exndp +Expdo + Exzdp + Exsdg,
nrdh =Es1dp + Es2dop + Essdpr + Ess dg,
nrdk =Esadp +Es2dog + Essdp + Essdg,

where theEz are likewise the second-order partial derivativethe eikonaE(ps, a1, pr,
g-) of the composed map. However, the quantities tre must substitute in the
equations for the focal lines (122) are given msthderivatives.

If one wishes to find the changes in the focakdirnthat come about under the
displacement of a light path then one must thenwktiee third-order derivatives of the
eikonal. When one follows through with this manmdrreasoning, it leads to the
problem of presenting the eikonal as a power sel@®lopment in its variables. Such
power series developments are, up to now, usedaptynto represent the so-called
aberrationsin systems of spherical lenses in a purely aradytvay. The shortcomings
that come with this process are well-known. Theugs of terms of a particular order
rapidly becomes exceptionally unwieldy with incriegsorder; furthermore, one cannot
always infer any conclusion regarding the numerazder of magnitude of a term from
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the analytical order number. The former flaw lieshe nature of things. The connection
between the rays in the first and last medium alrdadds to a complicated algebraic
picture after even a few refractions. Correspongindie caustic that a homocentoe
sheaf generates in image space is an algebraic surféicdenvilopable singularities, and
one can practically say that the art of the optic@msists in condensing such
singularities into as small a space as possible. néf poses the problem of finding
concise forms for the development then this must bptaddo the special nature of the
relations being represented; however, this comes dovan domplete insight into the
general and essential properties of these relationge asiderstand them at the moment.
The use of power series developments and their imneegiageny is therefore restricted
to the cases in which the changes in a light path tedbeing investigated remain inside
a limited scope. Since the consideration of thesesaasen any event, an approximation,
one might still show the form that things take forteeed maps when one employs the
eikonal, after one has developed it in a power sergsised the initial terms.



XIT.

Centered maps. Seriesdevelopment up to fourth order. Aberration curve.
Theoretical minimum error for symmetric systems.

As before, let the two spaces that get mapped to eaehlmlay Q, and let each of
them be related to its proper system of axeg, @) and ¥, Y, Z), resp. A light path with
the two componentg;, Z will imply a certain motion that takes the two rays the
positionss, S, and indeed the motion @f shall consist of a rotation around th@xis
with the rotational anglgg. Now, should the corresponding motionofikewise be a
rotation, and indeed a rotation around ¥iaxis and with the same rotational angle
then it would be self-explanatory that certain condgishould be fulfilled for the map,
as well as the position of the coordinate axes. eélhconditions are fulfilled in general —
i.e., for any rayoand for any value of — then we would like to call the map “centered;”
the x-axis and theX-axis would then be the “centering axes.” The simpldsut not the
only — examples of such maps are systems of lenses in whielctieh takes place on
coaxial surfaces of revolution.

For the next considerations about centered maps, Vileaghays make thex and X
axes the centering axes. If the light pathY') arises from the light patho) by the
previously-considered rotation through the quangityand we now further denote the
coordinates ot/, Z' by primes, then we will get the equations:

h' = hcos¢g - ksing, p' = pcos¢g — gsing,
kK = hsin ¢ + kcosg, g = psing + qcosy,
H' = Hcos¢g —-Ksing, P =P cos¢g —Q sing,
K'= Hsin ¢ +K cosg, Q' =Psin ¢ +Q cosg,

assuming that the positive directions of the latexakan the image space were chosen
suitably. If one were to switch the directionY+—Y, or +Z, — Z in image space with
each other then one would have to write the opposite valuen place of] in the
equations foH', K', P, Q. Due to the centering of the map, the mapping equatioss mu
again assume their original form under the introductibh’, k', ..., in place oh, k, ...
The same thing is true for the eikor&&lp, g, P, Q), which then contains the four
variables only in those combinations that do not changeruhe transformation above.
If we now assume- as is always appropriate for optical applications + tha map
behaves regularly in the neighborhood of the light path:

p=g=P=Q=0,
so no discontinuities will arise, théifp, g, P, Q) will be developable in powers of q,

P, Q. If we write, accordingly:
E=Gy+G +G, + ...,
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where all terms of dimensioa are combined intds, , then each individuat must
behave just likee; i.e., it will take on the original form under theasition toh', K, ...
This property can also be expressed as follows: Ifubstgution:

p=rcoss, (Q=rsins, P=Rcos§ Q=RsinS
is carried out irG, thenG will contain thes, Sonly in the combinatios — S in addition

to ther, R From that, one proves with no difficulty that tBecan be represented as
entire homogeneous functions of the four combinations:

a=p’+f, f=pP+qQ y=P’+Q’ d=pQ-qP
and as a resulg can be developed into an ordinary power serieg i y; o All terms
in E are thus of even dimensionpng, P, Q, and furthermore the expressionsHtiok, H,

K contain only terms of odd dimension. Therefdrek, H, K vanish simultaneously for
the light path:

p:q:P:Q:O;

i.e., this light path falls along the centering axes.
If, for the moment, one writes:

E(p,q,P,Q) =Ei1da +E,dS+Esdy+E,do

then the mapping equations will become:

-nh=2pE+ PE+ QE, NH= pE+2 PE gE } (169)
-nk=29E+ QE- PE,  NK= qBE+2 QF+ pE
from which it will follows that:
n (pk—hg) =N (PK-HQ). (170)

If the crrays lie in a plang that goes through theaxis then the left-hand side of
(170) will vanish, so it follows that the right-handlesimust also be zero. In any event,
the conjugate& therefore lie in a plan€ that goes through thé-axis. If one rotateg
around a certain angle th&rotates by the same angle. If one now directsdtexdl
axes in such a way that tkg —plane andzplane are conjugate to tb&-plane and<Z-
plane, resp., then two raysand ¢’ that are symmetric about tlg-plane will give two
raysZ andZ' in image space that are symmetric aboutdifgplane. The two light paths
that are associated with them will then switch relen one simultaneously changes the
sign ofk, g, K, Q. Since this sign change leaves the eikonal unchanged,odie t
defining equation:

E =] (- nh dp—nk dg+ NH dP+ NK dQ),

and of the four quantities, B, y; J, only the sign oP changes, the series development of
Ein a, B y;, owill contain only even powers @t However, due to the identity:
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0% =ay-pB?

they can be eliminated. Therefore, when the latet@$ in object space and image space
are erected in conjugate plamg$s, the eikonal can be written in the form:

E(p,q. P, Q) =f(a, 5, ) (171)

and developed into an ordinary power seriesyinB, y. We will always think of the
lateral axes as having been chosen in the way thaustagiven, s& will be assumed to
have the form (171).

Precisely the same considerations can be applie@ tattier three eikonals:

E(h, k P, Q), E(h,k H,K), E(p,q, H, K).
The combinations:

h* + 1K, hP+kQ P +Q,
h* + 1K, hH+kK  H+K5
>+, pPH+qK H+K?

then enter in place @, S, y

If one goes up to the terms of order four in the sel@&lopment foE(p, q, P, Q)
then one will always get sufficiently clear relaso We next remain in the first
approximation for the terms of second order and assuaite th

E=a(P’+¢)+b(pP+qQ +c(P*+Q). (172)
The mapping equations become:

—nh=2ap+ bP  NH= bp 2 cP
ap rec } (173)

-nk=2aqg+ bQ NK= bg 2 cQ

If we again introduce pointgx, vy, 2), (X, Y, Z) that lie on the conjugate rays >
then we will have:

h= y—x_p, H:Y—ﬁ),

m )'\:' (174)
k=z-X9  k=2z-XQ

m M

Since third-order terms were neglected in (173), the saithée true for (174); i.e., we
can sem=M = 1 and get:

-n(y-xp=2ap+ bP N X% XP= bp2 cP

} (174a)
-n(z- xg =2 ag+t bQ N Z X@E bg2 cQ

The quotients:
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ny _ (nx—-2a)p- bP nz _ (nx—2a)g- bQ

- , (175)
NY bp+(NX+29P NZ bg+(NX+2090Q
will both be independent of the light path, as lasgone chooses X such that:
(nx—2a) (NX+ ) +b*= 0.
In this, one will have:
ny _ nz _nx-2a_ -b . (176)
NY Nz b NX +2c

These are the known equations for the collineabietween conjugate points I1.
The collineation that contradicts MALUS’s theorerntl wbviously come about by setting
the quantities 1 m and 1 -M equal to zero in (174). The abscissas of thel foaiats in
object space and image space will become:

The coefficiento is the reduced focal length, and one gets frorb) iivat:

_nxef___ b _f(x-F)=-Pb
= N X (x=HX-F) === (177)

<<
N[N
o

The abscissas of the centers are given by thateamnd

y=Y, z2=/Z,
and indeed, one gets:
x:f+£, X=F-—
N n

The cusps or the conjugate points of equal rayrdamce follow from (174a) by the
conditions:
y:z:Y:Z:O’ p:P,q:Q_

The abscissas of the cusps then become:

x:f+9, X=F-—.
n N

The foregoing definition of the two focal pointsidathe reduced focal length
obviously touch upon the behavior of the elemenstigaf that lies infinitely close to the
centering axes. With the quantitie§, b, one then has:
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2 2 2 2
E(p, q, P, Q):nf%m(p P+q Q) —NF - ;Q , (178)

—nh=nfp+ bR NH= bp- NF
nh= nfp+ bP bp- P} (179)

—nk=nfQ+ bQ  NK= bg NFQ

In order to obtain the meaning of the other cogffits in the eikonal that comes
under consideration here, we assume:

E(h, k, P, Q) = ay(h? + k%) + ax(h P+ k Q) + ag(P* + Q?),
E(h, k, H, K) = by(h? + k) + by(h H + k K) + ba(H? + K?),
E(p, g, H, K) =ca(p® + ) + c2(p H + q K) + ca(H* + K?),

and add the mapping equations to them:

np=2a;h +a, P, NH =ayh + 253 P,
np= 2h + by H, -NP=byh + 203 H,
-np=2ch+cH, -NP=c;h + 2c3 H,

which must be equivalent to the system (173). Byngaring them with (173), one
obtains the eikonals:

h2+k2_th+ kQ nNfF+ BDI§+ @
2f f n 2f

E(h,k,P,Q) =-n

2 2 2 2
E(h k H, K) = (nN) _Fh2+k+bhH+ kK+f H + K |
nN f F+ 17 2N nN 2n

2
E(p. g, H, K) = nN f F+b2Dp2+ q2_b pH+ aK H+ K |
2F F 2F

In these forms, one recognizes that the serieelalewent breaks down for certain
positions of the base planes. Hth, k, P, Q), the wbase plane cannot go through the
focal point of the object space, becaudses then equal to zero; the corresponding
statement is true fd&(p, g, H, K). Finally, forE(h, k, H, K), the base planes cannot be
conjugate. These restrictions in the positionh& base plane are not present for the
eikonalE(p, g, P, Q).

If one now includes the fourth-order terms in $leeies development then the sheaf of
rays that appears will generally be astigmatice discussion of the basic equations (81)
or:

0_69_ 00 _ 00 _ 00

ot ou 0T oU
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which now appear in rational form with certain tempoyauhdetermined coefficients,

can now be carried out in very different ways, adow to whether one desires to

examine them or some property of the map. A convenieanmfor the visualization of

the ray evolution consists in looking for the intergeciof a family of planes that are

perpendicular to the centering axis. With the inclngibfourth-order terms, one sets:
PP+l =u, pP+qQ=u, P*+Q*=us,

E(P,g,P,Q=infu+bw-INFw+G,

2G = zﬂaaﬂuauﬂ (a, =1, 2, 3),

dG=G1du + G dwp, + Gs dws,
O=infu+bw-3 NFuw+G+n(xm+yp+zg-NXM+YP+ZQ). (180)
The differentiation o® with respect tg andP next delivers two conditions, namely:
0= p(uf +2G )+ P(b+ G)+ rE r%‘j,

(181)
0=p(b+G)+ P-NF+2G)- 7\( Y—%j,

while the other two are obtained by switching the latesads. With the use of the
relation:

y—-h= B( ,
m
we can bring the conditions (181) into the form:

__ymnf+2G _hn(x- m)-2mG
X b+G x b+ G

(182)

- y=h NX_
NY = < m(b+ G) + P{M NF+2(§}.

The elimination oP gives:

NY = Ay +Bh,
where
XA=mb+G,- M +2C’1( NmX_ NmF+2Qj,
b+G, | M
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XB=—mb- G, - NXZMH -2 mq( NX_ NF+2G3J.
b+G, M

These equations are still correct when one indube terms of all order i@. If one
now develops them in, further performs the allowed omissions, and esgas thd>, Q
in uin terms ofy, z, h, k using (182) then one will obtakandB in the form:

A=Ay + A (Y +2) +As (yh+ zK + As (h? + 1),
B =By + A (Y +2) +B; (yh+2zK +Bs (h? +K),

where theA,, By, ... depend upon only the constants of the eikomalthe abscissas X.

One now thinks of an aperture as being given enldaise plane of the object space
whose opening shall be a circle with a radibghat is described around theaxis.
Furthermore, one thinks of the coneasfays that has the given poiofx, y, 2) in object
space as its vertex and possesses the boundahg @iperture for its base. This cone
generates a-family in image space whose intersection withpglane:

X = constant
is determined by the equations:

NY=Ay + Bh, NZ = Az+ Bk
If one assumes that= 0, which is no essential restriction, and sets:
h=D cos¢, k=D cos¢

then one will obtain a representationYodndZ that takes the form:

Y =a+ Bcosp +y cop? , } (183)

Z= sing (0 +¢& cosp ).

The intersection of the-family considered, which was referred to as theefaation
curve” by CHARLIER ¢{), is of degree four, and, as one sayscursal or of rank zero;
i.e., the coordinates can be represented as rafionetions of one parameteérby the
substitution:

1-t? : 2t

cosy = ——, sing = ,
y 1+t2 ¢ 1+t2

and, for that reason, the curve consists of aeilngg that turns back upon itself.
When one includes the terms up to ordein2the development of the eikonal, one
will get the following representation for the alaion curve:

() “Ueber den Gang des Lichtes durch ein System von sphérn Linsen,” Der k. Ges. d. Wiss. zu
Upsala, presented on 20 June 1893.
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Y=a,+a,cosp+---+a, cogp’ , } (184)

Z :Sin¢ (ﬂ0+:31 COS¢+"'+:3r—1 Co¢r_l )’

and indeed, except for the limiting cases, the terms thighcoefficientsa; and 51
actually occur. The curve is then once more unicursdlpbdegree 2 Now, for a line
system that is composed of given algebraic surface&.-family that is considered here
is an algebraic ruled surface of a completely detemiimie degree, and the same thing
is true of the intersection curve, while the series ldgwveent that is used leads to
arbitrarily high degrees for successively higher approximatioThis contradiction can
be resolved by the fact that the true form of the aberraurve is not unicursal, in
general.

In order to clarify these remarks, one can perforendhlculations in the case of a
refracted sphere. As before, we assume that theadikas the form:

E(p, q, P, Q) = (@+r)(NM- nm) —rJ, (185)
F=N? +n’ = 2Nn (Mm+ Pp + Q0), (186)

and construct the mapping equations from it:

_atp p+M(p— M_pj, k= a+Pq+M(Q— M—qj, (187)
m J m m m

__atp_ np P __atp_ . mp Qj
H=--"£p+-~X -m— |, K=———0Q+—| g—-m— |, 188
M J (p Mj Q (q M (169)

the first pair of which, with the abbreviation:

h+2Pp =Npe, k+2Pqg =Npp,
m m
can be brought into the form:
0=Jé+P-M P 0=Jh+Q-M 3, (189)
m m
We further introduce the three auxiliary quantiieeg; I', which are connected by the
equations:
y=Al-an®, M =+J1-aN?, (190)
and set:

J=Ny—-nl, (191)

by which the relationship betwedranda is determined. It follows from (186) and (191)
that:
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(Ny—n)?=N? + n? — 2Nn(Mm + Pp + Q0),

(192)
Mm+Pp+Qq=Mna +T y
Furthermore, the combination of (189) and (192) gives:
M
—=Mng -+ 4+ I(pE+ ),
m (193)

M
P=pl-d Q=d -,

with which, theM, P, Q are expressed in terms lafk, m, p, g, as well as the constants
and a. If one forms the square-sum of the last two equsitiban, after an appropriate
reduction, one will get:

a=&+ - (pé+an) (194)

As above, we again imagine the circular aperture ofisdd, place the base plane of
the eikonal in the plane of the aperture, and correspgiycset:

h=D cos¢, k=D sing.

If we further restrict ourselves to a parakefamily that goes through the aperture
thenm, p, q will be constant. Finally, if the “plane of therseen,” in which the aberration
curve will intersect the-family, possesses the abscigsthen the coordinateg Z of a
point on the curve will be determined from (188) and (193henform:

Y:B(x—a—p)—J—Ij( X— arp—gj,

m ] (195)
Y xas V- = g p_ NP

—m(X a-p) M(X a-p Jj'

If we take the special value+ p for X, which is justified for our purposes, and further
make the allowed simplificatiog= 0 then we will get:

(Np)*a =D?+ p*(a+ p)*+2my a+ p) Dcosp— p B cogp? ,
nmo nmp (196)
Y=¢6—F—, Z=p——.
J M d M
The expressiom is of second degree in cgsand furthermore the quotients ¢ and
Z : np include the irrationalitieg; ', which cannot be simultaneously eliminated by
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rational substitutions for cog. For that reason, the rank of the curve in question is
certainly greater than zero.

The goal that the introduction of the aberration cwalvell serve to facilitate can be
achieved, moreover, in a much simpler way, as long asdhes development of the
eikonal up to a certain order exists. If we next asstiraewe have a parallel sheaf in
object space that is bounded in some way — e.g., by cirapkrtures — then a middle
light path will belong to any sheaf of light paths wheserdinates in image space might
beHo, Ko, Po, Qo . If one sets:

H=Ho+dH, K=Kog+ XK, P=Py+P, Q=Q+ A
then one will have for the eikon&(p, g, P, Q):

NaN=_OE Nk =_9E
9(oP) 9(9Q)
and the expressions on the right-hand sides cacob®&ructed immediately, as long as
one has derived the developmentah the &P, X from the original series. If the plane
of the screen has the absci¥stden for the point¥, Z in the plane of the screen, one will
get:

éY:m_Xa—M’ ﬂ:m_xa—M

0(oP) 9(9Q)

If one now subjects — e.gP, XQ — to the condition:
H? + X = constant D?

then thez-sheaf will decompose into families that fall saciéintly close to the boundary
of a circular aperture and generate the aberratiove in the plane of the screen.

Should the vertex of the homocentrzsheaf lie at a finite point, then the
development would be performed in the same waye@xthat the eikondt(h, k, P, Q)
would then be used.

As an example of the foregoing, we would like doK for the theoretical minimum
for the residual error for a symmetric objectives was already mentioned previously, it
is not possible to simultaneously fulfill the reqaments of anastigmatism and a correct
image for a symmetric map of the focal plane. tdeo to fix the presentation, one
imagines a photographic objective that is well-dedi for infinitely-distant subjects, and
for which two congruent line systems are arrangggnaetrically in the plane of the
aperture, and are thus united into a single cemteystem. With the allowed
simplificationn =N = 1, we assume that the eikonal has the form:

E(p,q, P, Q) =f(1 —m) + bu—F(1 —M) + G(u, v, w),

u=p°+q, v=pP+qQ w=P*+Q,
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whereb means the reduced focal length, &h8 means the focal point abscissas. The
development ofs in u, v, w begins with terms of second order. Due to the assumed
symmetry, one has:

f=-F, G(u, v, w) = G(w, v, u).

An arbitrary light path cuts the plane of the screaenimage space that is
perpendicular to the figure axis and has the absista point whose coordinates are:

Y=(X- Fy—-+bp+%§, Z=X- F}—-+bq+9§

0Q

Because the system of lenses is well-defined for iefiritlistant objects, only those
sheaves of light paths will come under consideratiah¢bnsist of parallel rays in object
space.

For the middle rays, due to symmetry, the elementaggfsthrough the center of the
plane of the aperture satisfies the relation:

p=P, q=Q.

We next demand that this elementary sheaf in the fpleade must generate an
anastigmatic image. One will then have for the midayes:

X=F, Y= bp+a—G Z= bq+a—G.
oP 0Q

In order to get the condition for the focal linescmncide on the middle rays, we
must vary the light path, so we must introduce the egmres:

P+ P, Q+ X,

in place ofP, Q, while thep, g remain unchanged. The corresponding variationsaofd
Z become:

2
éY:aea aeaQ 19°G

OoP + ...,
oP? 0POQ 20P

2 2 3
= 0°G 5P+665 +£a—G5p2+
0PAQ P 20P0Q

With the allowed simplificatiol = 0, Q = 0, one will get, up to terms of second order
in P, Q:
2 3 2
0 C255 19 CjéPz 1 0°G
oP 20P 20P0Q

o = 22 5,
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9°G 9°G
o= oQ+
0Q? 2 PO’

oPLDQ,

and the concurrence of the focal lines require thatvtbeequations:

2 2
acj:o, acj:o
oP 0Q

be fulfilled forq=Q =0,P =p.
The condition for the correct image would give theations:

Y:@ :bp+a_G, Z:% :bq+a_G,
m oP m 0Q

which reduce to the equation:

1 _0G _
pb(a_lj ST (p=P)

forg=Q =0. We would like to temporarily write this canan in the form:

pb(g(m) — 1) =‘3—§,

in which ¢(m) means a — for the time being — arbitrary funcoém. In other words, we
would next like to admit a distortion of the imagose magnitude depends upon the
value of the expression:

m¢(m) — 1,

and vanishes along with it. If, to abbreviate, @l@notes the partial derivatives with
respect tay, v, w by indices according to the schema:

difu, v, W) = ¢n du+ ¢p dv + ¢ dw
then forqg=Q = 0, one will get:

0G
= = + 2PG;,
P p G Gs

9°G

e =2Gs+p* G+ 4p P Gy + 4P Ggs,
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2
96 2,
0Q
0°G _ 2 2 P 3
i 6pGo1 + 12PGay + p° Gooo + 6p° PGro1 + 120P Gosy + 8P Gaas,
63—6 = 2063 + 4PGs

PO : >

where ultimatelyp is to be written forP. The anastigmatism of the elementary sheaf
through the middle of the aperture and the equation tdrtdien then produce the three
identities:

0 =Gs(p”, p%, p°),

b(p(m) - 1) =228 =G, + 26, = Go (B 1. D),
p oP

0 =Gz (%, p°, P°) + 4 Gas(p%, P, P°) + 4 Gas (P, P, P°),

in which one has seh = /1- p>. If one differentiates these equations with respep

repeatedly and observes that the numbers 1 and Bepermuted in the indices Gf
then one will obtain, after suppressing the intetiaie calculations:

61126332613"'%, 6122623:—2613—%, Go2 = 4Gy3,
4m 4m
G222=12G123+ 18G131— 2Gg33 + b¢ n:n¢
G223 =~ 4 G123 -5 G133 + Gazz — b¢ _n;¢ :

4am

¢ —mp’

Ga23= Gr23+ Gi33—Gaaz+ b St
8m

whereg ' and¢ " mean the first and second derivative(h), resp. With hindsight of
this, the expressions above # andJZ go to:

n

5Q2
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7 =" s5p50.
2m

These formulas give the main terms in the developmedP,ildQ, and are true for
arbitraryp or arbitrary image angle, since no series developmnept g, P, Q was, in
fact, carried out. Any image point that generates kwmentary sheaf by the middle of
the aperture in the focal plane, is therefore assmtiavith a coma or mane of light
(Lichtmé&hne) for sheaves of finite opening, whose form d@épepon only the distortion
functionmg¢ for a given focal length in its main terms. Shoulddmiortion be present,
one would then haveag = 1, and one would obtain:

__ bp (3P __ bp
o= 4m3( nt +5Qj’ =T om PR

so the coma would have one and the same form in ita teams for all symmetric
systems that produce a correct anastigmatic imageifotal plane with the elementary
sheaves through the aperture plane. This form can be chaongeslvhat when one
allows a small astigmatism or a small distortion tlee elementary sheaf, which comes
about in such a way that one superposes a small vara@iiohlikewise symmetric form
with the eikonaE that is used. Therefore, one cannot arrive at areajgie reduction
in the assumed main coefficients in this way without iedéstortion if the vanishing of
these coefficients leads to the condition:

@ = constant,

and in this case, infinitely distant lines will be mappee@ftipses whose midpoints lie on
the optical axis, and whose semi-major axis is equdedocal length.

Therefore, the symmetric systems are endowed with a principailedef: If, for a
given opening, one desires sufficient correctness in the image irfsagiven image
angle then the sharpness of the image can be increased beyond a well-defintddhii
is established theoretically in advance for no choice of refractingsest The fact that
one already comes very close to this limit for currmehotographic objectives can be
proved with no difficulty by a small rough calculation ngiseveral STEINHEIL
constructions on the values of the opening and the usalalgeirangle. Since the
remainder of the blurring is necessarily connected whighrtature of the symmetry, its
further reduction can be achieved only by abandoning the sysnmét might not be
superfluous to emphasize this point expressly, especialpubeca concise proof of the
stated theorem would be hard to accomplish with the tthas have been used in
geometrical optics up to now.



XIV.
Anastigmatism on the axis. Aplanacity. Image concavity. Distortion.

In the following, it shall be shown how the conditidos an ideal objective can be
defined using the lowest terms in the eikonal series @enéered map. The fact that one
must arrive at known relations concerning these matteedfiexplanatory. For the sake
of brevity, we would now like to refer to the appearaotan anastigmatic surface-pair
as “aplanacity,” and also apply this expression wheraxedealing an infinitely small
piece of a surface. The requirements that one ailyinenposes upon an objective are
first, aplanacity, second, the planarity of the imdgea planar object, and third the
correctness of the image. The second and third d¢onsliassume the first one, since
otherwise one could not speak a point-wise map of wéaces onto each other. By
contrast, the aplanacity still does not imply thag®a planarity and the correctness of the
image, and likewise, aplanacity and image planaritycangpatible with a distortion.

Similarly, as above in (180), we assume:

O(p,q, P, Q=3 nfy+ by-3 NF+ Ry u 1) (197)
+n(xm+ ypt zg—- N XM YP ZQQ
whereD is imagined to be developed in powers of the quantities:
uw=p’+f, Uu=pP+qQ Uz =P +Q°.
If we decompos® into:
D=G+G +G" + ...,
in which the terms of equal order have been combined, Ge', ... will be

homogeneous of fourth, sixth, etc. order, respp,i, P, Q. The four fundamental
equations will be:

O:a_@, 0:6_9, 0:6_@, 0:6_@, (198)
op oP oq 0Q
of which, the first two, when written out, will assarthe form:
0= p(nf+2D,)+ P(b+ D)+ r( y- anJ
(199)

0= p(b+ D,)+ P NF+2D,)- N( Y- prJ

if the partial derivatives are once more denoted by thensah

do(u, Uz, Uz) = g1 duy + g dp + @3 dus .
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The still-missing two equations follow from (199) by switgdnp, P with g, Q, resp.

Since the map is centered, in the case of apland@tyonjugate surfaces must be
surfaces of revolution around the centering axes. Wittdmght of the case of systems
of lenses, if we assume that the surfaces behave riggatidhe axes then their equations
can be written in the form:

x:)%+)((yz+ f)'*‘ X( };+ 2)2+"" } (199a)

X=X+ X(Y+ Z)+ X(¥+ D)%+

The initial termsxy, Xp are the abscissas of the “surface vertices;”the. surface points
on the centering axes. These axis points are conjugat&edacollinear map through
paraxial elementary sheaves that was treated in th@psesection, so:

0 =b*+n N(x—H (X —F).
The lateral expansion that is associated with hest

V= b :_n(XO—F).
N(x - f) b

(200)

For the pair of elementary sheaves that runs ltwhe points, Xo along the
centering axis, one has, from (199):

O=n(f-x)p+bP, 0=bp+NX—F)P,
SO
(=P b __ N(X-F)_ NV; (201)
P n(x-f) b n

i.e., in the elementary sheaf betwegmandX, in questionk is the sine of the inclination
of the conjugate axes with respect to the assatcates.

In order to obtain the desired conditions direethd at one blow, one must express
two of the quantities in two of the fundamental &ipns (198) in terms of the remaining
ones and substitute them in the other two equa({it®®); e.g., th@, g in:

0= 6_@ 0= 6_@
ap oq

The resulting pair of equations must then be idahin the case of aplanacity; i.e., it
must be fulfilled for arbitrary, Q. This leads to two types of conditions: ones ok
only the form of the eikonals is important, and ®ieat relate to the form of the two
aplanatic surfaces. In order to be able to bettelerstand the meaning of the individual
conditions, it is preferable to first treat a spédase, namely, the relationship between
the vertices of the two surfaces. | begin with‘tyglanacity on the axis;” i.e., the surface
elements at the verticag, X, shall form an aplanatic pair. In this case, ndy anust the
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point-pair Xo, Xo be anastigmatic, but the sine theorem must also uee tThe sine
conjugate inclinations can then depend upon at most the aziafiibugh in the present
case, due to the symmetry about the centering axis atleeyndependent of the azimuth,
and are thus constant. Its value that is valid fonitely-small inclinations is, from
(201), equal tok, and this value is then also substituted for finite intloms. Since the
conjugate rays have equal azimuths for the pair of sheaeggestion, it is permissible to
consider only the light path that runs in theplane andXY-plane; i.e., one can set the
quantitiesq, Q, z, Z equal to zero in the fundamental equations (198). Twdexet
equations are then fulfilled, while one obtains the otiverfrom (199) forg = 0,Q = 0.
If one sets:

y=Y=0, X=X, X=Xo, p=kP, (202)

in (199) then the desired conditions will thus be found, haa humber will be infinitely
large, since one is not dealing with relations betweemtimerical values of a finite
number of quantities, but with relations between fumstidor the time being.

Now, instead of performing the substitutions (202) imrmaedy, we would like to
take a small detour. For the moment, we start wittais@mption that planar elements at
the pointsxg, Xoon the axes that are perpendicular to the axes shofie @a aplanatic
pair, and instead of them, consider the family of lightpdhat are determined by the
conditions:

q=Q=0, p =«P, (203)

whereck is calculated fromxg or Xo using (201). These light planes cut the normal planes:
X=Xo, X=Xo

with certain “lateral deviations,” i.e., with well-fieed displacements from the axes or

the pointsx , Xo. These lateral deviations are equal to the valugsYthat follow from

(199), when one makes the substitution (203) in it. We wneite, with hindsight of
(201):

b p
-ny =— —(p—-kP)+2 P X
ny K(p kP)+2pDQ + PD, + n%(vmj,

NY = b(p —kP) + pD; + 2PD, —NXo (P—%},

where the value zero is to be useddp® in D, m, M. If one introduces, to abbreviate:
D(p, P) =D(p*, pP, P) + nx,(y1- p +3 )~ NX,(V1- P +1 B),
and splits the terms of equal dimens®rinto:

D(p, P) =A(p, P) +A'(p, P) + A" (p, P) + ...
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then A, A, A", ... will be of order 4, 6, 8, ..., resp.,mP. If one further writes:
do =9, dp+©2 dP, dl =2(; dp+2[2 dP, etc.

then one can set the lateral deviations equal to:

ny=%(p—KP)—©1( p B,

(203a)
NY= b( p-« B+D,( p B
From this, it follows that witlp = «P:
ny=-P2l (x,1)- P2 (k,1)----,
204
NY = P2, (x,1)+ P,k 1)+, } (204)

since thell are homogeneous ;) P.
The®l,, Ay, ... are then — except for the factors af andN — the coefficients in the

developments of the lateral deviationsHn Now, should aplanacity be present in the
axis thery, Y would have to vanish independentlyRyfso one would have:

0 =2, = Ay, 0=9A, =2, (205)

in (204). One now has:
pA,(p, P)+ RA,(p P=4A(p B,
pAy(p, P)+ PA,(p P=6A"(p B, (206)

Therefore, due to (205), the expressions:
A(k, 1), 2A'(k, 1),
also vanish, and one can say tkidd a double root for the equations:
0=2(k 1) ="k, 1) = ...
The expressio® arises fron® when one makes the substitutions:
X = Xo, X =Xo, y=Y=z=2Z2=0, g=Q=0 (207)

and suppresses the terms of second order. Noee Hiwe terms of second order possess
the form:
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b
3N (=% P +bpP+ N (X —F) P* =~ — (p—kP)’,

one can also say that the condition for aplanacitite axis consists in the idea that @e
must be divisible by:
(p—&P)?,

after performing the substitutions (207).

The conditions (205) are simple enough in their exteorah. In fact, the nuisance
that is associated with their application would onlpsist in the fact that the number of
eikonal coefficients to be calculated increases wgengkly with increasing order of the
affected terms.

When aplanacity on the axis is present, naturally,t@ymaatism also exists between
the two axis pointg, , Xo . Now, in order to be able to present the conditiongust the
last property, we next imagine a homocentrsheaf with its vertex at the axis poxat.
The conjugatez-rays cut the normal plané = X, with well-defined lateral deviations
that one obtains from (203a) just liké when one makey equal to zero in it and
eliminates one of the quantitipsP. We next write (203a) in the form:

ny:%(p—KP)—Ql, NY=b(p - «P) + D, (208)

once more and construct from it:
NY=-VY) =kD,+9,.

In this, whery has been set equal to zero, we assume the conditions:

p= kP +%©1(p, P), NY = kD:(p, P) + DaAp, P), (209)

where the right-hand side of the second equation begirts teiims of third order.
Solving forp can be carried out with the help of LAGRANGE's inversfiormula, so the
conditions become not as simple as before, by fat,fanthat reason, | shall restrict
myself to the two initial terms, namely:

NY = 4P A(k, 1) + ° (Q['(K,l)+2£b2[l(/(,l)2j . (210)
Anastigmatism then leads to the conditions:

0=9(x 1), O :m'(x,1)+2£bml(/(,1)2, etc.
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For the treatment of the aplanacity outside the axésgo back to equations (199),
write them, with consideration given to (201), in thaxior

- ny :—%(D—KP)+ZPD1+PD2—HP>© 1;nm—np =X,

m
(211)
NY= b(p - «P) + pD; + 2PDs + NPX LU XKAXO ,
and construct from this:

1-m

N(Y-yV)=2« pR+( pr« B D+2 PD- R P~
(212)

—n/(pX 0 NP)gﬂ+ Npu.

m M M

One then adds to (211) and (212) the associated equatioragitigatrom the ones
that were written down by switching the lateral axpsq are expressible in terms of the
remaining quantities from (211) and the associated equatiodsara then substituted
into (212) and the associated equations.

For the development, we would to go only up to terms ofl tonder in (211) and
(212), so we must think @ as being restricted to its initial term of order foum.(199a)
or:

B y2 + ZZ B Y2 + ZZ
X = Xo o + ..., X—=Xo R + ...,

the right-hand sides are of second orderraflare the semi-curvatures of the aplanatic
surfaces at the vertices. Accordingly, we nextevw{212) in the form:

N(Y-yV)=2« pD+( pr« B D+2 PD-3 r pxu } (213)

-nk p(x— %) +3 NPX y+ NP X X).

Sincep, q appear in only the terms of third order, it sig8do use the terms of first
order in (211), namely:

nK'y Nk Z
=kP+ —=, = KQ+ —.
p b q=kQ b
Substitution in (213) gives:

N(Y —yV) =yA + PB, N(Z —zV) =zA+ QB,

A= %(2/@1+D2— 1nkxo Uy —NK (X = X)),
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B = 2(k* D1 + kD2 + D3) — 1nk’Xo Us —NK* (X —Xo) + 3 NXo Uz + N(X = Xo),
whereus, Uy, Uz depend upon the quantities:
V+Z=p yP+zQ=0 P*+Q’°=r1

by way of the equations:

u—/<2r+2nK20+m2p w=kr+ Lo Us = T.
1 b b ’ 2 b ’ 3 .

If one assumes, with hindsight of the desired approximatio

p\/Z
2R’

x—xozﬁ, X—=Xo=
2r

D= %z DU, Ug (a,5=1, 2, 3),
ap

o

¢, W, )= D-ingf+1 N G=1>"¢_ u 4,
a.p

611 = Dll_% NXo, ¢ 33~ D33+711 NX 0 (214)
QElZ = D12’ 613: D13 ¢ 22— D 22 ¢ 25 D 28

A(p, P)=¢(p, pP, P)

] . . . ) (215)

:EQEnp +€12p P+(€13+5Qf 22) p P2+QE zsplj'*'QE 33F’1’
dQ[(p, P) =2, dp + 2, dP,
de(Ul, U, U3) =¢ dy + ¢ dw + E3dug
then one will get:
A:n—g(ZK€l+€2—¥j,
' (216)

2 2
B:2(K2Q31+KQ32+Q33)_(”K) p+(nK) p
2rn 2RN

in which A, B represent linear combinationsgfo; r:

A=Aip+ A0+ Asr, B=Bipo+Bo+Bsr. (217)
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The coefficients in them become:

NV i

A= —L||®B- , B =2k Epq + Epp, 218

1 ( b j [ ZNVrj 11 12 ( )
NV .

A= B B, B' = 4K €11+ 4K C1p + Ena, (219)
NV

=29 (k,1),
A= mRKD) (220)

A (k,1)= 2/(3611 + 3¢ 1 TKE g E L )HE

NV ) "
Bi=2 — | | " —+_—_|, B = KE1q + kC1p + C13, 221
! ( b j ( arn 4RNJ nthit s, (221)
B, = 2%2{(/(,1), (222)
Bs = 42(xk, 1). (223)

Aplanacity requires the vanishing of the quardiflg, As, B;, By, B3 , which leads to
four conditions, due to the relatio®® = 2A; . The demand that no aplanacity
whatsoever be present, with no consideration ferfélhm of the two conjugate surfaces,
leads to the three equations:

0=, 0 =2, 0=99" (224)

The first condition leads to anastigmatism onahks, the second one adds aplanacity
on the axis, and the third one, aplanacity outsideaxis. The still-remaining fourth

equation reads:
2
B = (9) (i_ij, (225)
2)\nr NR

and gives a relationship between the curvaturebeivertices of the object and image
surface, or between the concavities of the objedtimage. Should one desire a planar
image of a planar object then one would need te:hav

B" = 0. (226)

If the four conditions are fulfilled then the edjoa:
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N(Y-yV) =p A (227)

will remain, in which the right-hand side gives thetaliSon. The correctness of the
image requires:
b? = 2NVr B or 0 =B, (228)

according to whetharis finite or infinite.

With that, the desired conditions are found, and indeel@pendently of the manner
of generating the map, under the single assumption hbeatmiap is centered. The
theorems that were found are thus also true, e.g., meres systems of lenses with non-
spherical surfaces.

If the object lies at infinity then one will have:

Xg = 00, k=0, limn x x=b,
and one will get the five conditions:
O:2312—b2D13:D22:D23:4D33+NF, (229)

which can, moreover, be also derived easily from tk@i@t representation that was
given in (107).



XV.
Composition rule for the fourth-order terms. Concluding remarks.

The application of the series development of the reikkdo a system of lenses
assumes that the coefficients are calculated fraand#fining pieces of the individual
refracting surfaces. The path to that is given by tweolacomposition.

Let the mapsdy w), (w w), ( a3) be given for the three spaces, w, s, resp.

If one gives the quantitias h, k, p, q indices that refer to their space and forms theethre
eikonals:

A =E(py, o, P2 G2, B = E(p2, %, ps, 03), C =E(py, Gu, Ps, Gs)
then, from the compostion rule, the first-order padeidivatives of the expression:
C-A-B
must each be set to zero. If two of the three mapsemtered, and the centering axes of
the common space coincide, then the third map will bdsoentered. If we assume only

centered maps then, with the inclusion of the foorter terms, we can define the
equations:

p12+q12:U1, plp2+Q1Q2:U2, p§+q22:u3,
p§+Q22:V11 P2ps+ gz =Ve, p§+q§ =vs,
PP+ =W, PiPstCiGz=We, P+ =ws,

A=au+al+au+id gy
B=byv+bw+hy+tid by (a, =1, 2,3)
C=qW+GW+ GW+i> ¢ ww,
and set:
dA=A;duy; +Adw, +Azdws,
dB=B;dvy +B,dw +Bz;dvs,
dC=C;dw + Co dws + C3 dws .

The differentiation o€ — A —B with respect tq;, p», ps produces the conditions:

0=201(Ci-A) -2 A2 +p3Cs, (230)
O=piA2+2p (As+By) +p3 By, (231)
0=p1Co—p2B2 + 23 (C3 — By), (232)

to which, one must imagine adding three correspandgquations for the derivatives with

respect toq;, o, g3 . If one uses the second equation to elimipatom the first and
third one then one will get:

P1 [4(C1 —A1)(As + By) + Ax Ag] + p3 [2C (As + By) + A2 By] =0,
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p1 [2C5 (Az + By) + Az Ag] + p3 [4(Cs —Bg)(As + B1) + B2 By] = 0.

From this, and the corresponding equationgjfatr follows that:

Ci-A=-_—2H - AB o g BB 9ay
4(A+B) 4(A+B) 4(A+B)

If one sets alp, q in this equal to zero, which leads to the lighthpdnat runs along
the centering axis, then one will get:

3,8, oo B c3—b3:—& (233a)

CL—ag=-— , 2 , .
4(a, + b)) 4(a; +hy) 4(a; +h)

If one writes, for the moment:
A, —a, = dag, By —b, = g, Co—Cy= &y,

and restricts oneself to the terms of lowest otlden it will follow from (233) that:

3,08, , &(93,+3Jh)
2@, +h)  4(athY

_30b+hbda  ab(da+oh) (234)
2(a;+h) 2(a,+ )
2@, +h)  4(a+ QY

oc, =0a -

oc, =

p2, 02 have removed from them by means of (231), for wihtisuffices to set down the

equations:
2 (as+bh)=—praz—pshy, 2p(azs+b)=—quax—qgzby

with the terms of lowest order. This yields:

dv; (8 +1)” = dup (s + br)® = w & + 2w, 8, b+ Wi,

2Up (az + b)) =—wrax—wse by,
2 (az+b)=—wa—wby,

and furthermore, with@ (ag + b)) =—ax b, :

_ Gy L[] G o 4060 s) L
NN RN R e N
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5] .5 |
92} v{[ aj bt bt 93}

2
&a= w{%} b+ w{%% b+

ReaKs

When this is substituted into (234) or:

& = day + %582 +[§j (08, +3dhy),

_G G G G
& = =0b,+—=0a,+2—=2—=(0a,+9dh),
> + + Q( + Q)

d‘;:d)+& +(&j5+5,
3 3 825b2 a, (0a;+oh)

that will give thec,s by splitting up thev. With the abbreviations:
CQ:ia=a, =2

| next pose the two equations:

Caz (@t BBt af)+f(bg s b b) } (235)

C, =a°(ay, +4a, 8+ 4a,3%)+ B*(b,,+ 4bg + 4bg?).

The other equations can then be summarized asviall®ne lets the symboFga, A, L)
denote the bi-quadratic form:

2F (@,A,u)= 2% (@ A° + a pu+ au®)
+ A(@, A7 + a A+ ay )
+ 12 (8 A+ ag A+ ag )
=a A +2a A U+ (2a,+ a ) u’+ 2a,dut+ ay’,

(236)

whose close relationship to the bi-quadratic exgpoes?l is conspicuous, while the

derivatives ofF with respect tol andy can be related t; and?(, . With this symbol,
one then gets the equation:

F(c, A, ) =F(a, A, au+ BA) + F(b, au + A, L) (237)

betweena, b, c. This formula can be referred to as the rule tfeg composition of
aberrations along the axis.

If one is dealing with a centered system of lertbes the centering axes of the
individual maps will coincide along a single linend one can likewise make the base
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planes of the individual spaces coincide. For the egidin of formulas (235) and (236),
the eikonal for an individual refraction must then be @ped. If:

A=a W +aly+UgUs+ 1) a,U,U,

is the eikonal for the refraction on a sphere ofusadand vertex abscissabetween two
media with the indices; , n; then the development of the expressions that arecotet
from (167) gives:

P n’ _rnn D T n? 938

e 2n2_nl, * nz_ni, % 2o 2n2_nl, ( )
_ (nn) _r nn(rf-nn+ ) 5

- T meny (239)

r(nny)® A-w@* r(nA*- nz:uz)zl
4 (Mm-n) 4 n-n

Fla, A 1) = §<rw —nut)+ (240)

If one assumes the eikonal:

B:b1V1+b2V2+b3V3+%Zb V Vﬂ

af “a

in the same way for a second spherical surface wittexebscissd, radiuss, and
indicesny, n;z then the composition of (233a), (235), and (236) will give elikonal for
the lens that is defined by the two surfaces.

It is not necessary to carry out these developmemntdurther here, since they must
lead to known relationships in their main points, andesimeoreover, the content of the
last section was sufficient to prove that the ordirteegtment of the so-called spherical
aberration includes, for the most part, theorems @ahatcompletely independent of the
special manner of generating the ray maps that aredssadi Thus, e.g., the formulas
that were derived above for aplanacity, image concavity tle correctness of the image
were linked to just the one condition that the eikamagjuestion had to be centered.

If we wish to summarize the essential content ofiougstigation, in hindsight, then
we could state the following things:

In the theory of optical instruments (this word is takerthe ordinary, restricted
sense) one actually deals with ray-wise maps of twoesp each other. The properties
of this type of maps subdivide into two classes, accgrairvhether the map is or is not
independent of the special manner in which it was generaldee former class of
properties owes its essence to geometry, and indeedetgdbometry. The contemporary
customary derivation on the basis of optical assumganries with it the restriction that
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is unnecessary for the proof to know whether the puretyngéric properties are also
valid for maps that are never actually realized by tbetiti () media that are of interest
to us. One will then first set foot in the realm nfe optics when one treats properties
that depend essentially upon the manner of generatingapetmwhich belongs, above
all, the study of achromatism, which did not come undesideration in the present
investigation for exactly that reason.

All of the various optical instruments have one and/ ame property in common,
namely, the validity of MALUS’s theorem, which waspeassed in purely geometric
form for the present purposes; its validity leadsht éxistence of the mapping functions
that are referred to &skonals. The properties of a map are completely determined by its
associated eikonal. From this, one may establish taicedistinction. Namely, the
eikonal includes, in addition to the light path coordinated the indices of the spaces
being mapped to each other, a certain parameter that deppodsthe way that the
eikonal came about. If the eikonal is defined by requiringace properties — e.g., it
must be the solution of a system of equations of camditt then, in essence, the
parameter will play the role of a constant that oney miake arbitrary or ascribe any
value to, and the main thrust of the discussion wiltl l&a geometric properties. By
comparison, if the eikonal arises from the considenatf a particular optical system
then the parameter that appears will depend upon the indfidee terminal media, as
well as on the wave function of the light; the distos must then treat the eikonal as a
function of not only the ray coordinates, but alsogheameter, and also correspondingly
lead to the true optical properties of the map.

The benefits that the introduction of the eikonahdsiwith it are initially of a purely
formal nature when one takes the position that the Bakeassumptions for any
individual question are neatly separated. Nonethelesscamgo beyond this when one
sees that it is now possible to treat problem statesrtbiat do not truly have a merely
theoretical significance, for which the methods ofesedevelopment scarcely allow one
to define a mathematical Ansatz; it clears the fastnobstacle in the path, if one prefers
to say it that way.

() [D.H.D.:i.e., refracting]



