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 The problem of the existence of integrals for a given system of s total differential 
equations in r variables when that system is not completely integrable has not especially 
been the object of any research that would extend the memoir of Biermann “Ueber n 
simultane Differentialgleichungen der Form ∑ Xµ dxµ = 0” that was published in 1885 in 
vol. XXX of Schlöm. Zeitschrift.  Furthermore, he proposed to only look for the 
maximum number of independent variables that one must take in order for there to exist a 
family of integral multiplicities that filled up all of space.  He then found that when the 
coefficients are arbitrary this number is equal to the quotient, up to a unit, by default, of 
the total number r of variables by the number s of equations, augmented by 1.  Moreover, 
the remainder of that division indicates the number of independent variables that one can 
take arbitrarily without the problem ceasing to be possible.  Since then, there have hardly 
been any presentations of the proof of the same results in another form that would ever 
attain a state of perfect rigor, moreover, and there has been nothing done regarding the 
case in which the coefficients of the differential system are not arbitrary. 
 One can arrive at some precise and general results by taking into account the bilinear 
covariants of the left-hand sides of the equations of the given system, whose introduction 
by Frobenius and Darboux has proved to be fruitful in the theory of just one Pfaff 
equation.  In summary, if one limits oneself to considering the given equations then − to 
employ a geometric language − one says that each tangent at a given point A of an 
integral multiplicity M that passes through that point is contained in a certain r−s-
dimensional planar multiplicity (P) that is associated with that point.  However, if one 
introduces the bilinear covariants then one finds that not only is every planar multiplicity 
(T) of dimension 1, 2, … that is tangent to an integral multiplicity contained in (P), but, 
in addition, two arbitrary lines of that planar multiplicity (T) satisfy certain bilinear 
relations with respect to their director parameters.  Furthermore, if one represents a line 
that issues from A by a point in an r−1-dimensional space R then the image of a tangent 
to M is required to be in a planar multiplicity (H) of R, but also the line that joins the 
images of two tangents to the same integral multiplicity M is required to belong to a 
certain number of linear complexes that are associated with A. 
 In summary, one makes each point A of the space correspond to not only a planar 
multiplicity (H), but also a set of linear complexes in that planar multiplicity.  It is clear 
that the nature of these linear complexes must influence the existence and degree of 
indeterminacy of the integral multiplicities. 
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 Upon denoting the set consisting of a point A and a p-dimensional multiplicity that 
passes through that point by Ep and agreeing to say that Ep is integral whenever its image 
in R is situated entirely in (H), and, in addition, contains only lines that belong to the 
linear complexes that belong to A, one sees that the necessary and sufficient condition for 
a multiplicity to be integral is that all of its elements must be integral. 
 If one then seeks to make an m-dimensional integral multiplicity pass through a 
known m – 1-dimensional integral multiplicity then one finds that this is possible 
whenever an integral element Em passes through an arbitrary integral element Em−1 .  The 
solution is given by a system that is due to Kowalewsky, and it is unique if only one Em 
passes through an arbitrary Em−1 . 
 This being the case, one is led to define an integer n in the following manner: 
 At least one integral element E1 passes through an arbitrary point A. 
 At least one integral element E2 passes through an arbitrary integral element E1, etc. 
 At least one integral element En passes through an arbitrary integral element En−1. 
 Finally, no integral element En+1 passes through an arbitrary integral element En . 
 The integer n thus defined can be called the genus of the system. 
 One can infer some precise conclusions from this on the existence of integrals of the 
given system.  In order to do this, suppose, in a general manner, that the integral elements 
Ei+1 that pass through an arbitrary integral element Ei depend upon r i+1 parameters. (If the 
element is unique, we agree to give r i+1 the value zero).  Here, then, is a system of 
geometric conditions that determine the n-dimensional integral completely: 
 Given an arbitrary point µ0, an arbitrary multiplicity 

1r rµ −  that passes through that 

point, an arbitrary multiplicity 
2r rµ −  that passes through 

1r rµ − , etc., an arbitrary 

multiplicity 
nr rµ −  that passes through 

1nr rµ
−− m there exists one and only one integral 

multiplicity Mn that passes through µ0 that has in common with 
1r rµ −  a 1-dimensional, 

…,resp., multiplicity such that 
2r rµ −  is an i-dimensional multiplicity that is contained in 

nr rµ − . 

 Upon interpreting this statement analytically and specializing the manner by which 
one obtains all of the integral multiplicities once and only once, one proves that the 
general n-dimensional integral is determined, and in a unique manner, by a system of: 
 
 sn arbitrary functions of n arguments, 
 sn−1 “ n – 1 “ 
 ……………………………………… 
 s1 “ 1 “ 
and 
 s arbitrary constants, 
upon setting: 
 sn = rn, 
 sn−1 = rn−1 − rn − 1, 
 ………………….., 
 s1 = r1  – r2  − 1, 
 s = r − r1 − 1. 
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 Moreover, these integers s are all positive, and they increase − or, at least, they do not 
decrease − from sn to s. 
 Furthermore, one can give a precise definition to the word arbitrary that is found in 
these statements. 
 One thus sees the important role that is played by these integers s and the simple 
manner by which they depend upon the planar multiplicity (H) and the system of linear 
complexes that we spoke of above. 
 In particular, if the coefficients of the given equations are not subject to any 
specialization, which is the case that was studied by Biermann, then the genus n is the 
quotient, up to a unit, of r by s + 1, and if one denotes the remainder by σ then one has: 
 

sn = s,  sn−1 = sn−2 = … = s1 = s, 
 

in such a way that the general integral depends upon σ arbitrary functions of n arguments, 
s arbitrary functions of n – 1 arguments, etc., and s arbitrary constants.  This is the result 
that was proved by Biermann, but obviously with much more precision. 
 The differential systems for which the integer sn is zero enjoy some particularly 
interesting properties; one can call them systems of the first kind. 
 In a general manner, the integration can be simplified if several of the numbers s are 
zero.  If sν is that one of these zero numbers that has the smallest index then one has: 
 

sν = sν+1 = … = sn = 0. 
 

For these systems, one and only one integral element En passes through an arbitrary 
integral element Eν+1 .  Likewise, it suffices to give the multiplicities µ0, 

1r rµ − , …, 

1r rν
µ

−− that we spoke of above in order to determine the integral Mn and to see whether 

that integral can be converted into that of a system of genus ν.  It suffices to make an 
arbitrary, but well-defined, multiplicity 

1 1r rν
µ

−− −  pass through 
1r rν

µ
−− , and make a family of 

multiplicities r rν
µ −  that depend upon rν = n – ν parameters and fill all of space pass 

through it.  An integral multiplicity Mν corresponds to each of them.  The locus of these 
muliplicities Mν when one varies the n – ν parameters that they depend upon is the 
desired multiplicity r − rν .  By definition, one is reduced to a system of r − rν variables 
of genus ν, but whose coefficients depend upon n – ν arbitrary constants.  In the case 
where ν is equal to 1, this is the Lie-Mayer method for the integration of completely 
integrable systems.  One can call ν the true genus of the system. 
 Along a different line of reasoning, there is a case where the integration can simplify 
further, which is the one where a characteristic element passes through each point A.  
One thus calls an element Ep integral when any other element that is formed from Ep and 
an integral linear element is also integral, or, as one can say, when Ep is associated with 
an arbitrary integral linear element.  One can then prove that the system of total 
differential equations that defines the characteristic elements is completely integrable.  In 
other words, there exists a family of p-dimensional multiplicities that admits the 
corresponding characteristic element Ep at each of their points.  These multiplicities, 
which one calls characteristic, depend upon r – p parameters, and one and only one of 
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them passes through each arbitrary point of space.  For the systems of genus n where 
there exist characteristic elements Ep, any non-singular characteristic multiplicity Mn is 
generated by characteristic multiplicities that depend upon n – p parameters, and if two 
integral multiplicities Mn and nM ′  have a common point then they have the characteristic 

multiplicity that issues from that point in common. 
 Finally, if one takes the new variables to be the r – p parameters that the 
characteristics depend upon and p other arbitrary functions then the system can be put 
into a form such that it only contains the first r – p variables.  Furthermore, the search for 
these r – p variables − in other words, the integration of the characteristic differential 
system − can, in general, be simplified by taking into account some properties of the 
linear complexes that are associated with the given system. 
 In particular, if one has a system of the first kind of genus n for which s1 is equal to 1, 
which is the case of just one equation, then there are always n – ν + 1-dimensional 
characteristic multiplicities, where n denotes the true genus of the system.  Once these 
characteristics have been found by operations whose order decreases by two units each 
time, one only has to integrate a system of r – n + ν – 1 variables and genus ν – 1. 
 There likewise exist very simple theorems in the case where s1 is equal to 2, but the 
study of these theorems enters into the theory of the classification of total differential 
systems. 
 It is hardly necessary to remark that there are links between all of this theory and the 
theory of systems of partial differential equations.  I will content myself to pointing out 
the agreement in form between the results that are found for the degree of indeterminacy 
of the general integral of a Pfaff system and the ones that were found by Delassus (1) for 
the degree of indeterminacy of the general integral of a system of partial differential 
equations that is in involution.  However, whereas Delassus put the system into a 
particular form by differentiating the dependent variables of the unknown functions 
completely, moreover, here, there is no difference between the two types of variables, 
and the origin itself of the numbers s, s1, …, sn shows their invariance with regard to any 
change of dependent or independent variables. 
 The first two paragraphs of this memoir introduce integral elements, along with the 
linear complexes that I have already spoke of.  § III treats the problem that consists of 
making a multiplicity Mm+1 pass through an integral multiplicity Mm .  §§ IV and V give 
some theorems that one might call arithmetic on the genus n and the numbers r i and si .  § 
VI contains the presentation of the Cauchy problem and the degree of indeterminacy of 
the general integral of a system of genus n.  § VII is dedicated to the systems of the first 
kind and the generalized Lie-Mayer method.  Finally, § VIII is occupied with systems 
that admit characteristics in the sense that was given to that word above and gives some 
indications on the search for these characteristics. 
 This research can be extended in many directions, and, as one sees, the problem of the 
classification of the differential systems can already start with a first preliminary problem 
that takes the form of the search for systems of linear complexes of genus n.  Another 
very important question will be the study of singular integral multiplicities.  It is not 
difficult to define them, but what will be interesting is the study of the new differential 

                                                
 (1) “Extension du théorème de Cauchy aux systèmes les plus généraux d’équations aux dérivées 
partielles” Ann. de l’Éc. Norm. (3), t. XIII, pp. 421-467. 
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systems that they define.  As for the first classification problem, one can, without too 
much difficulty, prove a certain number of interesting results, but I will not insist upon 
them. 

 
 

I. 
 

 Consider a system of total differential equations in r variables x1, x2, …, xr : 
 

(1)    

1 1 2 2

1 1 2 2

1 1 2 2

0,

0,

....................................................,

0,

r r

r r

r r

a dx a dx a dx

b dx b dx b dx

l dx l dx l dx

ω
ϖ

χ

≡ + + + =
 ≡ + + + =


 ≡ + + + =

⋯

⋯

⋯

 

 
in which the coefficients a, b, …, l are functions of the variables x.  One can regard a 
certain number n of the variables x as independent and the r – n other ones as functions of 
them.  The system (1) then establishes linear relations between the total differentials of 
the r – n functions and the n independent variables, which is collectively equivalent to a 
system of (linear) partial differential equations that these r – n functions must satisfy (1).  
To use a geometric language, one can say that the equations that define the r – n 
dependent variables as functions of the n independent ones represent an n-dimensional 
multiplicity Mn in r-dimensional space, and the system (1) can be regarded as establishing 
the conditions that the differentials of the coordinates x1, …, xr of a point of the 
multiplicity must satisfy under an arbitrary displacement on that multiplicity.  However, 
if one remarks that these differentials (or their ratios, which is all that enters in) are 
nothing but the director parameters of the tangent to the multiplicity under the 
displacement considered, one can say that the system (1) expresses the idea that the 
tangents to a multiplicity Mn that passes through an arbitrary point of space satisfy 
certain conditions that depend only upon the point considered, and the form of equations 
(1) shows that these tangents are required to be in a certain planar multiplicity (2) that is 
determined by the point. 
 To integrate the system (1), where one supposes that the number of independent 
variables is equal to n, is therefore to solve the following problem: 
 
 One makes a planar multiplicity (3) that passes through any point of space 
correspond to that point; determine an n-dimensional multiplicity Mn such that at each of 
its points all of the tangents to that multiplicity are situated in the planar multiplicity that 
corresponds to that point. 

                                                
 (1) One knows, moreover, that any system of partial differential equations can be converted into a 
system of total differential equations by regarding, if needed, some of the partial derivatives of the 
unknown functions as new dependent variables. 
 (2) As one knows, a planar multiplicity is defined by linear equations; a line is a one-dimensional planar 
multiplicity.  
 (3) Naturally, the dimension of the that multiplicity is the same for all points of space.  It is equal to the 
difference between r and the number of equations (1). 
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 Any multiplicity Mn that satisfies that condition will be called an integral multiplicity.  
The condition, thus stated, that integral multiplicities must satisfy is independent of the 
dimension n of these multiplicities. 
 Call the set that consists of a point and a line that passes through that point a linear 
element.  In addition, agree to say that the set that consists of a point of a multiplicity and 
a tangent to the multiplicity at that point constitutes a linear element of that multiplicity.  
Finally, call any linear element that satisfies equations (1) (where dx1, dx2, …, dxr will be 
regarded as the director parameters of the line of the element) an integral linear element.  
We can then state the following proposition: 
 
 In order for a multiplicity to be integral, it is necessary and sufficient that all of its 
linear elements be integral. 
 

II. 
 

 Along with the linear elements, we shall consider the ones that we call 2, 3, 
…dimensional elements.  In a general manner, we refer to the set that consists of a point 
and a p-dimensional planar multiplicity that passes through that point as a p-dimensional 
element, and we denote such an element with the general symbol Ep .  We say that the 
element Ep contains the element Eq (p > q) if the two elements are at the same point and 
the planar multiplicity of the first one contains the entire second planar multiplicity.  In 
particular, a linear element will be denoted by the symbol E1 . 
 We call the p-dimensional elements Ep such that all of the linear elements that are 
contained in them belong to a multiplicity M the elements Ep of a multiplicity M, or, more 
briefly, the elements that are formed from linear elements of M.  If the multiplicity M is 
n-dimensional then it admits 2, 3, …, n-dimensional elements, but it does not admit n+1-
dimensional elements.  It admits only one n-dimensional element at each point, which is 
the locus of linear elements that contain that point. 
 Any element Ep of an integral multiplicity obviously enjoys the property that of 
containing only integral linear elements; however, it also satisfies other conditions that 
can be established independently of any particular integral multiplicity. 
 In order to arrive at these conditions, imagine that the coordinates of a point of an 
integral multiplicity Mn are expressed by means of n parameters u, v, …, and consider the 
two displacements on that multiplicity that are obtained, in the first case, by varying only 
the parameter u to the exclusion of the other ones, and in the second case, by varying 
only the parameter v.  Denote the differentials that relate to these two displacements by 
the symbols d and δ.  From (1), we will obviously have: 
 
  ωd ≡ a1 dx1 + a2 dx2 + … + ar dxr = 0, 
  ωδ ≡ a1 δx1 + a2 δx2 + … + ar δxr = 0, 
and as a result: 

ω′ ≡ δωd – dωδ = 0. 
 

 Upon forming this expression and remarking that the symbols d and δ are 
commutable (dδ = δd), and then proceeding analogously for all of the equations of system 
(1), one arrives at the following system: 
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(2)    

,

,

( ) 0,

.................................................................,

( ) 0.

i k
i k k i

i k k i

i k
i k k i

i k k i

a a
dx x dx x

x x

l l
dx x dx x

x x

ω δ δ

χ δ δ

  ∂ ∂′ ≡ − − =  ∂ ∂ 




 ∂ ∂ ′ ≡ − − =  ∂ ∂ 

∑

∑

 

 
 The system (2) is verified by any arbitrary pair of two displacements on the integral 
multiplicity, or further by the set that consists of an arbitrary point of the multiplicity and 
two arbitrary tangents to that point, and in a general manner, by two integral linear 
elements that issue from the same point and belong to the same integral multiplicity. 
 Call an element that is formed from integral elements and is such that any two of them 
satisfy system (2), moreover, a 2, 3, …-dimensional integral element; we then have the 
following proposition: 
 
 All of the 1, 2, 3, …-dimensional elements of an arbitrary integral multiplicity are 
integral elements, and conversely. 
 
 In order to simplify the language, we agree to say that two integral linear elements 
that issue from the same point and satisfy the system (2) are associated (1).  A 2, 3, …-
dimensional integral element is then an element that is formed from integral linear 
elements that are pair-wise associated.  From the bilinear form of equations (2), in order 
for an element Ep to be integral it suffices that p independent linear elements (2) of Ep 
should be integral and pair-wise associated.  (Moreover, any element Ep can be defined 
by p independent linear elements that issue from the same point.) 
 The expressions ω′, ϖ′, …, χ′ that are the left-hand sides of equations (2) are called 
the bilinear covariants (3) of the Pfaff expressions ω, ϖ, …, χ .  From the manner itself 
by which they are obtained, and conforming to their name, one sees that they are 
covariants under an arbitrary change of variables. 
 One can give the system (2) a geometric interpretation.  Consider the various integral 
linear elements that issue from a given point A of space, and project them onto an r−1-
dimensional planar multiplicity (P) that does not pass through A, where the point of view 
is the point A itself.  Each element is then defined by the trace of its line on the planar 
multiplicity of projection – i.e., by a point of that multiplicity (P) – and with our 
notations the quantities dx1, dx2, …, dxr are the homogeneous coordinates of that point in 
(P).  Say that the linear element is integral – i.e., that the coordinates of its projection 
satisfy equations (1), so they are contained in a certain planar multiplicity (Q) that is 
situated in (P).  If we now take two integral linear elements that are associated and their 
projections onto (P) then the quantities dxi δxk – δxk dxi are precisely the Plückerian 

                                                
 (1) Two linear elements that are associated with a third one are not necessarily associated with each 
other.  
 (2) One says that p linear elements are independent when they do not belong to the same p−1-
dimensional element.  
 (3) Their introduction into the Pfaff problem is due to Frobenius (“Ueber das Pfaff’sche Problem,” J. de 
Crelle, t. LXXXII, 1877) and Darboux, (“Sur le problème de Pfaff,” Bull. Soc. Math. (2) t. VI (1882). 
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coordinates of the line that joins these two projections.  The first of expressions (2) 
expresses a linear and homogeneous relation between these coordinates – i.e., the idea 
that this line belongs to a certain linear complex – and the same thing is true for the other 
equations (2). 
 In summary, to say that two linear elements that issue from the same point A are 
integral and associated is to say that upon projecting those elements from that point A 
onto an r−1-dimensional planar multiplicity (P) the line that joins the traces of the two 
elements is entirely situated in a certain planar multiplicity (Q) and furthermore, 
simultaneously belongs to a certain number of linear complexes. 
 Moreover, in turn, to say that an element Ep that issues from A is integral is to say 
that the planar multiplicity that is traced from that elements on (P) is situated entirely on 
(Q), and, in addition, that each of the lines of that multiplicity belong to a certain number 
of linear complexes. 
 In summary, each point A of the given system corresponds to a planar multiplicity (Q) 
and a set of linear complexes in that multiplicity (Q) in an arbitrarily chosen σ−1-
dimensional planar multiplicity (P). 
 If one makes a change of variables then the elements that issue from a point A are 
linked homographically with the corresponding elements that issue from the 
corresponding point A′, and the set of linear complexes that corresponds to A is also 
subjected to a simple homographic transformation (1). 
 The important consequence already results from this very simple remark that if two 
systems of total differential equations (in the same number of variables) do not 
correspond to the points of space of the planar multiplicities (Q) and sets of linear 
complexes that are reducible to each other under a homographic transformation then it is 
impossible to reduce one of the two systems to the other one by a change of variables.  In 
a more precise manner, if one denotes the variables of the second system of total 
differential by y1, y2, …, yr , and we denote the systems that are analogous to (1) and (2) 
by (1)′ and (2)′ then one seeks to express the idea that one can pass from the system [(1), 
(2)] to the system [(1)′, (2)′] by a linear transformation that acts on dx1, …, dxr, as well as 
on δx1, …, δxr . 
 Three cases can present themselves:  Either this is not possible for any system of 
values of x and y, and then no change of variables can transform the one of the two given 
systems into the other one, or it will be possible on the condition that certain finite 
relations between the x and y are verified, and then any change of variables that effects 
the desired transformation – if it is possible − must respect these relations, or finally that 
it is possible for any values of x and y, and then one can say nothing about the change of 
variables, if it is possible. 
 Finally, one perceives, without having to insist upon the fact, that the classification of 
systems of total differential equations demands the prior classification of all systems of 
linear complexes, while not regarding two systems of linear complexes as distinct when 
one is reducible to the other by a homographic transformation, i.e., in other words, the 
search for all types of systems of linear complexes. 
                                                
 (1) It is obvious that if one simply changes the plane of projection then one obtains two equivalent 
systems of complexes under a homographic transformation, since they are the projection of each other.  If 
one replaces equations (1) with other ones that form an equivalent system then it is likewise obvious that 
neither (Q) nor the set of linear complexes in (Q) are changed. 
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 In order to apply the preceding to an example, consider the system: 
 

(3)     
0,

0,

dz p dx q dy

dp u dq a dx b dy

ω
ϖ

≡ − − =
 ≡ − − − =

 

 
where the variables are x, y, z, p, q, u, and a and b denote two given functions of these six 
variables.  The integration of this system, when considered as having two independent 
variables x and y, amounts to the integration of one second-order, partial differential 
equation that admits a system of first-order characteristics, and, with the usual notations, 
that equation is obtained by eliminating u from the two relations: 
 

r − us – a = 0, 
s – ut – b = 0. 

 
 Here, the planar multiplicity (Q) is three-dimensional, since the homogeneous 
coordinates of one of its points are defined when one is given dx, dy, dq, du.  We can thus 
locate (Q) in ordinary space.  Here, there are two linear complexes.  Now, a system of 
two linear complexes in space is always reducible to one of the three following ones by a 
homographic transformation: 
(α)      p12 = p24 = 0, 
(β)      p12 = p13 + p24 = 0, 
(γ)      p12 = p13 = 0, 
 
in which the pik are the Plückerian coordinates of the line.  Case (α) gives the set of lines 
that meet two fixed lines that are not situated in the same plane.  Case (β) gives the set of 
tangents to a fixed quadric at the various points of a fixed generator of that quadric.  
Finally, case (γ) gives the set of lines that are situated in a fixed plane, along with the set 
of lines that issue from a fixed point of that plane. 
 Each of these cases corresponds to a type of second-order equation of the indicated 
form.  Case (α) corresponds to equations whose two systems of second-order 
characteristics are distinct.  Case (β) corresponds to equations whose characteristics 
coincide, and is obtained by expressing the idea that the equation: 
 

r + 2us + u2t + 2ϕ (u, x, y, z, p, q) = 0 
 
must admit a double root in u, where the function ϕ is arbitrary.  Finally, case (γ) 
corresponds to those of these latter equations for which the function ϕ satisfies a certain 
second-order partial differential equation, and which were the object of Goursat’s 
research.  Their interest is based in the fact that one can integrate them by means of 
systems of ordinary differential equations, as we will confirm in paragraph VIII. 
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III. 
 

 Having posed these preliminary notions, we shall occupy ourselves with what one can 
call the first Cauchy problem.  The problem to which we thus refer is the following one: 
 
 Given an integral p-dimensional multiplicity Mp of a system of total differential 
equations, pass from Mp to a p+1-dimensional integral multiplicity Mp+1 . 
 
 An obvious remark to make is that if the problem is possible then at least one integral 
element Ep+1 passes through any element Ep of Mp, namely, an element Ep+1 of Mp+1 .  
One thus arrives immediately at a first necessary condition. 
 In order for the Cauchy problem to be possible, one must have that at least one 
integral element Ep+1 must pass through each element Ep of the given integral multiplicity 
Mp . 
 Without investigating whether this condition is sufficient, which it is not, moreover, 
we shall limit ourselves to a special case, which nonetheless presents great generality.  
We shall suppose in the sequel that the given system is such that at least one integral 
element Ep+1 passes through every integral Ep in space.  In other words, we suppose that 
the property that belongs to the elements Ep of Mp belongs to all of the integral elements 
Ep in space. 
 With that hypothesis, the Cauchy problem is always possible.  However, before 
commencing the proof of that proposition, it will be useful to present some geometric 
remarks on the integral elements Ep+1 that contain a given integral element Ep .  If one 
defines the element Ep by means of p linearly independent elements ε(1), ε(2), …, ε(p) then 
one can define an element Ep+1 that contains Ep by means of a new linear element ε that is 
independent of the first p.  We will have the desired element Ep+1 by expressing the idea 
that ε is an integral linear element, and that it is associated with each of the linear 
elements ε(1), ε(2), …, ε(p).  It results from this that the locus of integral elements Ep+1 that 
contain an integral element Ep is a planar element (which is not necessarily integral), 
because if ε and ε′ provide two distinct solutions Ep+1 and 1pE +′  then the p + 2 linear 

elements ε(1), ε(2), …, ε(p), ε, ε′ determine an element Ep+2, and any linear element of Ep+2 
is integral and associated with ε(1), ε(2), …, ε(p); in other words, all of the elements Ep+1 
that are contained in Ep+2 and contain Ep+1 are integral. 
 Analytically, the elements Ep+1 that contain Ep depend upon r – p homogeneous 
parameters (1).  The equations that express the idea that Ep+1 is integral are linear with 
respect to these parameters. 

                                                
 (1) For example, if the equations for Ep are:  
 

P1 = P2 = … = Pr−p = 0, 
 

where the P are linear forms in dx1, …, dxr then the equations of Ep+1 are: 
 

1

1

P

λ
 = 2

2

P

λ
 = … = r p

r p

P

λ
−

−

 . 



Cartan – On the integration of systems of total differential equations.                 11 

 If we suppose that these equations reduce to r – p − s – 1 independent ones for an 
arbitrary Ep , where s is zero or positive, then at least one integral element Ep+1 passes 
through each arbitrary integral element Ep .  If s is zero then one and only one will pass 
through it, and if s is positive then an infinitude of them that depend upon s arbitrary 
constants will pass through it.  In both cases, we say that ∞s of them pass through it.  The 
locus of all these elements is an element Ep+s+1 . 
 It can happen that for some particular integral element Ep there will be a great degree 
of indeterminacy, moreover; we then say that the integral element Ep is singular.  An 
integral multiplicity Mp whose elements Ep are all singular will be called a singular 
integral multiplicity. 
 We now arrive at the solution to the Cauchy problem.  We shall prove the following 
theorem: 
 
 Given a non-singular integral multiplicity Ep , at least one integral multiplicity Mp+1 
passes through that multiplicity.  One and only one passes through it if each non-singular 
integral element Ep belongs to one and only integral element Ep+1 .  There are an 
infinitude of them that depend upon s arbitrary functions of p + 1 arguments if each non-
singular integral element Ep belongs to ∞s integral elements Ep+1 . 
 
 More precisely, take a particular non-singular element of Mp, say, 0

pE .  Let 
0 0
1 2( , ,x x …, 0)rx  be the coordinates of the point from which that element issues.  We 

suppose that the multiplicity Mp is analytic – i.e., that in a neighborhood of the point 
0( )ix , r – p of the x coordinates − say, xp+1, …, xr – are expressed as holomorphic 

functions of x1 − 0
1x , x2 − 0

2x , …, xr − 0
rx .  The r – p equations of the element 0pE  can then 

be solved for dxp+1, …, dxr .  Take a particular integral element 0
1pE +  that passes through 

0
pE .  The r – p – 1 linear equations that define it can be solved for r – p – 1 of the 

differentials dxp+1, …, dxr , say, dxp+2, dxp+3, …, dxr .  If an integral multiplicity Mp+1 
admits the element 0

1pE +  then this signifies that xp+2, …, xr are expressed as holomorphic 

functions of x1, …, xp+1 in a neighborhood of the point considered.  For the sake of 
convenience in what follows, we shall change the notations while preserving x1, x2,…, xp, 
and replace xp+1 with x and the other variables xp+2, …, xr with z1, z2,…, zm  (m = r – p – 
1). 
 With these notations, the equations for the multiplicity Mp are: 
 

(4)     

1 2

1 1 1 2

1 2

( , , , ),

( , , , ),

.................................

( , , , ),

p

p

m m p

x x x x

z x x x

z x x x

ϕ
ϕ

ϕ

=
 =


 =

…

…

…

 

 
and the desired multiplicity Mp+1 can be defined by giving z1, z2,…, zm as holomorphic 
functions of x, x1,…, xp in a neighborhood of x0, 

0
1x , …, 0

px . 
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 Finally, we shall make a change of variables by preserving the variables x, x1,…, xp; 
z1, z2,…, zm and taking the variable x to be the quantity x – ϕ, which obviously changes 
none of the preceding conventions that were made.  This amounts to supposing that ϕ ≡ 0 
and x0 = 0 in formulas (4). 
 To conclude the statement of these preliminary conventions, we suppose that the 
coefficients a, b, …, l of the system (1) are holomorphic in the neighborhood of 

0 0
1 2( , ,x x …, 0 )mz . 

 The desired multiplicity Mp+1 is defined by m functions z1, z2,…, zm of p + 1 variables, 
x, x1,…, xp that are holomorphic in a neighborhood of 0

1(0, ,x …, 0 )px  and required to 

reduce to m functions ϕ1, ϕ2, …, ϕm of x1, x2, …, xp that are given in advance for x = 0. 
 The equations that determine these functions are deduced from equations (1) by 
replacing dz1, …, dzm with their values and identifying them.  However, we shall replace 
the system thus obtained with another system that contains a larger number of equations, 
and which quite simply expresses the idea that the elements Ep+1 of the multiplicity Mp+1 
are integral. 
 In order to do this, we remark that each element Ep+1 of Mp+1 can be defined by p + 1 
independent linear elements, namely, the ones that one obtains by varying just one of the 
independent variables x, x1,…, xp .  These p + 1 elements, which we call ε(1), …, ε(p), are 
defined by: 

(ε)    
1

dx
= 1

0

dx
 = … = 

0
pdx

= 1

1

dz
z

x

∂
∂

= … = m

m

dz
z

x

∂
∂

, 

 

(ε(1))   
0

dx
= 1

1

dx
 = … = 

0
pdx

= 1

1

1

dz
z

x

∂
∂

= … = 

1

m

m

dz
z

x

∂
∂

, 

    ………………………………………….., 
 

(ε(p))   
0

dx
= 1

1

dx
 = … = 

1
pdx

= 1

1

p

dz
z

x

∂
∂

= … = m

m

p

dz
z

x

∂
∂

. 

 
 We divide the equations that express the idea that Ep+1 is integral into two groups: 
The first group expresses the idea that the element Ep that is defined by ε(1), ε(2), …, ε(p) is 
integral.  The second group expresses the idea that ε is integral and associated with ε(1), 
ε(2), …, ε(p). 
 If one of the equations of the system is: 
 

ω ≡ a dx + a1 dx1 + … + ap dxp + b1 dz1 + … + bm dxm = 0 
then we set: 

   Ω ≡ a + b1 1z

x

∂
∂

+ … + bm mz

x

∂
∂

, 
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   Ωi ≡ ai + b1 1

i

z

x

∂
∂

+ … + bm m

i

z

x

∂
∂

 (i = 1, 2, …, p). 

 
 With these notations, the equations of the first group are, as is easy to see: 
 

(I)    
0, 0 ( , 1,2, , ),

..........................................................................

ji
i

j i

i j p
x x

∂Ω ∂ΩΩ = − = = ∂ ∂



…

 

 
and those of the second group are, for example: 
 

(II)    
0, 0 ( , 1,2, , ),

..........................................................................

i

j

i j p
x x

∂Ω∂Ω Ω = − = = ∂ ∂



…

 

 
where the ellipses refer to the other equations ϖ = 0, …, χ = 0 of the given system.  The 
symbol ∂f / ∂xi refers to a derivation with respect to xi, while regarding z1, z2, …, zm as 
functions of xi . 
 Equations (I) do not contain ∂z1 / ∂x, …, ∂zm / ∂x, while those of the second group are 
linear in these quantities.  One can, moreover, modify them by taking equations (I) into 
account. 
 Now, take the hypotheses that were made into account.  From the fact that the 
element Ep that is defined by ε(1), ε(2), …, ε(p) is integral, the equations that ϕ must satisfy 
in order for Ep+1 to be integral are compatible.  This signifies that in order for the 
equations to be verified, equations (II), when considered as equations that are linear in 
∂z1 / ∂x, …, ∂zm / ∂x, are algebraically compatible.  More precisely, they reduce to m – s 
independent linear equations.  In particular, this is true, by hypothesis, for the system of 
values (0, 0

1x , …, 0 )mx .  We suppose, to fix ideas, that with the initial values these m – s 

equations are soluble for: 

1z

x

∂
∂

, 2z

x

∂
∂

, …, 2mz

x
−∂

∂
, 

namely: 

(II ′)   

11
1 , , , , , , ,

..............................................................,

, , , , ,

k m s m
i k

j

m s m
m s i k

z z zz
x x z

x x x x

z z
x x z

x x

− +

−
−

  ∂ ∂ ∂∂ = Φ   ∂ ∂ ∂ ∂  


∂ ∂  = Φ  ∂ ∂  


…

…

 

 
in which the Φ are holomorphic in a neighborhood of the initial values of their arguments 
(and linear with respect to ∂zm−s+1 / ∂x, …, ∂zm / ∂x). 
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 This being the case, instead of preserving the set of equations (I) and (II), we preserve 
only equations (II′), while we nevertheless recall that equations (I) and (II ′) imply 
equations (II) algebraically. 
 We shall now seek to determine a solution to equations (II′) that satisfies the 
following conditions: z1, …, zm are holomorphic functions of x, x1, …, xp in a 
neighborhood of (0, 0

1x , …, 0 )px , and for x = 0 they reduce to m given functions ϕ1, …, 

ϕm of x1, …, xp . 
 Now, the system (II′) is a Kowalewski system.  From the work that has been done on 
these systems, there exists one and only one solution that is holomorphic in a 
neighborhood of (0, 0

1x , …, 0 )px , and is such that zm−s+1, …, zm are arbitrarily given 

(holomorphic) functions, and for x = 0, z1, …, zm reduce to s given functions of x1, …, xp . 
 
 This being the case, one can thus take: 
 

zm−s+1 = fm−s+1(x, x1, …, xp), 
zm = fm(x, x1, …, xp), 

 
where the s functions f are subject to only the condition that for x = 0 they must reduce to 
s given functions ϕm−s+1, …, ϕm .  Once these s functions have been chosen, the system 
(II ′) will admit one and only one solution that satisfies the stated conditions. 
 
 One sees, moreover, that one can always arrange this in such a manner that the s 

quantities 1m sz

x
− +∂

∂
, …, mz

x

∂
∂

 take arbitrarily fixed values for x = 0, xi = 0
ix ; i.e., that the 

multiplicity Mp+1 thus determined will admit any one of the integral elements Ep+1 that 
passes through 0

pE  that one desires. 

 The original problem is still not solved now, since it is clear that the desired integral 
multiplicities can be found only among the multiplicities that we just determined, thanks 
to the theorems of Kowalewski, so it does not result that these multiplicities will truly be 
integral.  In other words, it still remains for us to prove that these multiplicities satisfy 
equations (I) and (II).  In order to do this, we shall prove that if a multiplicity Mp+1 that is 
determined in the way that we said satisfies equations (I) and (II) for a certain value of x 
then it also satisfies them for the infinitely neighboring value x + δx. 
 If this is proved, as it is for x = 0, then equations (I) express the idea that the 
multiplicity Mp that Mp+1 reduces to is integral, which is nothing but the hypothesis, and 
that equations (II′) are assumed to be verified by the multiplicity Mp+1, and in turn, 
equations (II).  It will then result that equations (I) and (II) will be verified for any value 
of x. 
 Now, suppose that equations (I) and (II) are verified for a certain value of x.  One 
then has, in particular, that for that value of x: 
 

Ω = 0,  Ωi = 0,  i

ix x

∂Ω ∂Ω−
∂ ∂

 = 0. 
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 However, if Ω is zero then the same is true for its derivative ∂Ω / ∂xi when it is taken 
with respect to the variable xi , independently of x.  Therefore, ∂Ωi / ∂x is zero for the 
value of x considered.  Now, to say that Ωi and ∂Ωi / ∂x are annulled for the value x is to 
say that Ωi is annulled for the infinitely close value x + δx.  The same thing is true for ∂Ωi 
/ ∂xj and analogous quantities for x + δx.  Therefore, equations (I) are verified for x + δx.  
By hypothesis, the same thing is true for equations (II′), and as an algebraic consequence 
for equations (II), which are equivalent to (II′), upon taking (I) into account.  Therefore, 
all of equations (I) are verified for x + δx. 
 The theorem is thus proved.  We given it the name of Cauchy’s theorem, by analogy 
with a well-known theorem in the theory of first-order partial differential equations, and 
of which it is only a special case. 
 If we refer to the system (3) as an application then we see that each integral linear 
element that issues from a given point, that is arbitrary moreover, can be represented by a 
point in ordinary space, and that an integral element E2 is then represented by a fixed line 
that, in the general case, is required to meet two fixed lines that are not situated in the 
same plane.  It results from this in an obvious way that one and only one two-dimensional 
integral element passes through any integral element (one and only one line that meets 
two fixed lines passes through a point in ordinary space).  Therefore, one and only one 
integral multiplicity M2 passes through any non-singular integral multiplicity M1 .  Here, 
the singular linear elements are the ones that are represented by the various points of two 
fixed lines.  The singular integral multiplicities M1 thus divide into two distinct series; 
they are nothing but what one calls the characteristics in the theory of second-order 
equations. 
 We return to the general case.  An integral multiplicity M1 of system (3) will be 
obtained, for example, by taking x, y, z, p, q to be five functions of the same parameter 
variable that are required to verify the equation: 
 

dz – p dx – q dy = 0, 
 

and upon determining u by the equation: 
 

p′ − a q′ − ax′ − by′ = 0. 
 

In geometric language, one thus obtains the set in the space of (x, y, z) that consists of a 
curve and a developable that is circumscribed by that curve, and Cauchy’s theorem shows 
that the second-order partial differential equation that is equivalent to system (3) always 
admits one and only one surface integral in the space of (x, y, z) that passes through an 
arbitrarily given curve and is inscribed along that curve by an arbitrarily given 
developable. 
  
 

IV. 
 

 Cauchy’s theorem exhibits the importance of the property of the system (I) from 
which each integral element Ep belongs to at least one integral element Ep+1 .  This 
legitimizes the following definition: 
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 We say that a system of total differential equations is of GENUS n if the integral 
elements with respect to that system satisfy the following conditions: 
 At least one integral element E1 passes through an arbitrary point.  At least one 
integral element E2 passes through an arbitrary integral element E1, etc. 
 At least one integral element En passes through an arbitrary integral element En−1 . 
 Finally, no integral element En+1 passes through an arbitrary integral element En . 
 More precisely, we suppose that: 
 
 1r∞  integral elements E1 pass through an arbitrary point, 
 2r∞  “ E2 “ “ integral E1 , 
 nr∞  “ En “ “ integral En−1 , 
 
where some of the numbers r1, r2, …, rn can be zero, and we continue to let r denote the 
number of variables, which amounts to saying that there are ∞r points. 
 We also sometimes say that the system, when considered as having i ≤ n independent 
variables, is in involution. 
 A system of genus zero will necessarily imply that: 
 

dx1 = dx2 = … = dxr = 0; 
one can omit such systems. 
 One recognizes the following properties of a system of genus n immediately from the 
preceding and from Cauchy’s theorem: 
 A system of genus n always admits at least one integral multiplicity M1 that passes 
through an arbitrary point, an integral multiplicity M1 passes through an arbitrary 
integral multiplicity, etc., an integral multiplicity Mn passes through an arbitrary integral 
multiplicity Mn−1 . 
 We agree to say that an integral element En is singular if it belongs to at least one 
integral element En+1 , that an integral element En−1 is singular if it belongs to at most nr∞  
integral elements En , or if the nr∞  integral elements to which it belongs are all singular, 
etc., and finally that a point is singular if it belongs to at most 1r∞  integral elements E1, or 
if the 1r∞  integral linear elements that issue from it are all singular. 
 Since the conditions that a singular integral element must satisfy are conditions of 
equality, one neatly sees that one can always, and in an infinitude of ways, find a 
sequence of integral elements: 

E0, E1, E2, …, En , 
 
where E0 denotes a point such that each element of the sequence belongs to the one that 
follows it, and where none of them are singular.  One can then confirm the existence of 
an integral multiplicity that passes through the point E0 and admits the element E1, of an 
integral multiplicity M2 that passes through M1 and admits the element E2, …, of an 
integral multiplicity Mn that passes through Mn−1 and admits the element En ; however, by 
contrast, one can confirm that no integral multiplicity Mn+1 passes through Mn, since the 
element En does not belong to any integral element En+1 . 
 Therefore, a system of genus n admits no integral multiplicity Mn+1 that passes 
through an ordinary integral multiplicity. 
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 These propositions show the importance of the genus of a system of total differential 
equations. 
 

V. 
 
 The numbers r, r1, r2, …, rn play a big role in the study of the indeterminacy of the 
most general n-dimensional integral multiplicity.  Also, before beginning that study, we 
shall prove some remarkable properties of these numbers. 
 We first prove the following theorem: 
 
 Each number in the sequence: 

r, r1, r2, …, rn , 
 
is greater than the following one by at least one unit. 
 
 Indeed, first of all, the linear elements that issue from a point in space depend upon r- 
1 parameters.  Now, not all of these linear elements are necessarily integral; therefore: 
 

r – 1 ≥ r1 . 
 

 In a general manner, take a non-singular integral element Ep−1 .  By hypothesis, that 
element belongs to pr∞  integral elements Ep, at least one of which is not singular.  Each 
of them can be defined by an (integral) linear element that is independent of Ep−1, which 
gives us rp + 1 linear elements: 

ε, ε1, ε2, …, 
pr

ε  

 
that are independent of each other and of Ep−1, and we may suppose that the integral 
element (Ep−1, ε), for example, is not singular.  That element, in turn, belongs to 1pr +∞  
integral elements Ep+1, each of which can be defined by means of a linear element that is 
independent of (Ep+1, ε), but which necessarily depends upon Ep−1, ε, ε1, ε2, …, 

pr
ε .  It is 

therefore necessary that one must find rp+1 + 1 such independent elements.  One then has: 
 

rp ≥ rp+1 + 1. 
Q. E. D. 

 It results from this that each of the numbers: 
 

r, r1 + 1, r2 + 1, …, r i + i, …, rn−1 + n − 1, rn + n 
 

is equal to at least n, since these numbers cannot be increasing, and the last of them is 
equal to at least n. 
 Here is a second proposition: 
 

 1 1p pr r ++ −∞  integral elements Ep+1 (p ≤ n – 1) pass through any non-singular integral 
element Ep−1 . 
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 Indeed, take a non-singular integral element Ep−1 .  Let: 
 

ε, ε1, ε2, …, 
pr

ε  

 
be rp + 1 linear elements that are independent of each other and independent of Ep−1, and 
define rp + 1 independent integral elements Ep .  Suppose, to fix ideas, that the element 
(Er−1, ε1), which we denote by 0

pE , is non-singular.  Finally, suppose that the integral 

element Ep+1 that passes through 0pE   is (Er−1, ε, ε1), which is always permissible; let 0 1pE +  

be that element.  Any integral element Ep+1 that passes through Ep−1 will be obtained by 
appending two linear elements ε′, ε″ that depend upon ε, ε1, …, 

pr
ε  to Ep−1 .  In general, 

there will exist just one element that is a linear combination of ε′, ε″ that depends upon 
(ε1, …, 

pr
ε ) (because this is also true for the particular element 0

1pE + ).  We thus see that 

any integral element Ep+1 that passes through Ep−1 can be obtained, and in only one way, 
by taking a linear element ε′ that depends upon rp − 1 parameters; thus, the same thing is 
true for Ep .  Moreover, exactly 1pr +∞  integral elements Ep+1 pass through Ep (because this 
is true for the particular non-singular element 0

pE ).  Therefore, one finally has that Ep+1 

depends upon: 
rp − 1 + rp+1 

parameters. 
 The proof persists just the same for n = 1. 

 We shall prove in the same manner that if p ≤ n – 2 then 1 22 1p p pr r r+ +− + − +∞  integral 
elements Ep+2 pass through a non-singular integral element Ep−1 . 
 We always preserve the same notations.  Let 0

pE  denote a non-singular integral 

element that passes through Ep−1, namely, (Ep−1, ε2), let 0
1pE +  denote a non-singular 

integral element that passes through 0
pE , namely, (Ep−1, ε1, ε2), and finally let 0

2pE +  denote 

an integral element that passes through 0
1pE + , namely, (Ep−1, ε, ε1, ε2).  Any integral 

element Ep+2 can then be obtained, and in only one way, by appending a linear element ε′ 
that depends upon (ε2, ε3, …, 

pr
ε ) to Ep−1 and making an integral element Ep+2 pass 

through the integral element Ep that was thus determined.  Indeed, the particular integral 
element 0

1pE +  contains just one integral element Ep that satisfies that condition, namely, 
0
pE .  Now, the element ε′ depends upon rp−2 parameters; the same is then true for Ep .  

Moreover, 1 2 1p pr r+ ++ −∞  integral elements Ep+2 pass through Ep , which is not singular (since 
0
pE , in particular, is not).  Therefore, the number of parameters that Ep+2 depends upon is 

indeed equal to: 
(rp – 2) + (rp+1 – 1) + rp+2 . 

Q. E. D. 
 
 One sees how the theorem is generalized step-by-step.  In a general manner, if p ≤ n – 
i then integral elements Ep+i pass through a non-singular element Ep−1 that depend upon: 
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(rp – i) + (rp+1 – i – 1) + … (rp+i−1 – 1) + rp+i = rp + … + rp+i  − 
( 1)

2

i i +
 

 
arbitrary constants. 
 Of course, the locus of all these elements is not, in general, a planar element, except 
when i is zero. 
 In particular, an infinitude of integral elements En pass through a non-singular point 
of space that depend upon: 

r1 + r2 + … + rn – 
( 1)

2

n n−
 

 
arbitrary constants.  If n = r then r1 = n – 1, …, rn = 0, and there is just one integral 
element En . 
 Finally, here is one last very important theorem on the sequence of numbers r: 
 
 Each number in the sequence of positive or zero integers: 

 
r − r1 – r, r1 – r2 – 1, …, rn−1 – rn – 1 

 
is equal to at least the following one. 
 
 The fact that the numbers considered are positive or zero results from the first 
theorem that was proved about the sequence: 
 

r, r1, …, rn . 
 
 To prove the stated theorem, consider a non-singular integral element Ep−1 .  It is 
possible to make a non-singular integral element 0

pE  pass through Ep, and then make a 

non-singular integral element 0 1pE +  pass through it, and finally make an integral element 
0

2pE +  pass through the latter.  (We suppose that p ≤ n – 2.)  Let ε, ε1, ε2 be three 

independent linear elements of Ep−1, and define 0
2pE + .  These three elements are thus 

integral, associated with Ep−1 , and associated with each other.  Now, there exist rp + 1 
independent integral linear elements that are associated with Ep−1 .  We can thus denote 
them by: 

ε, ε1, ε2, …, 
pr

ε . 

 
 We seek all of the integral elements Ep+2 that contain Ep−1 .  Each of them will contain 
at least one linear element ε″ that is deduced linearly from: 
 

ε2, ε3, …, 
pr

ε , 
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and, in general, it will contain just one (like 0 2pE + ).  Likewise, it will contain one, and, 

generally only one, linear element ε′ that is deduced linearly from: 
 

ε1, ε2, …, 
pr

ε , 

 
and finally one and only one ε″ that is deduced linearly from: 
 

ε1, ε2, …, 
pr

ε . 

 
 One thus sees that, in general, a desired element Ep+2 will be defined by the three 
linear elements ε, ε′, ε″.  Each of them depends upon rp – 2 parameters, which makes: 
 

3(rp − 2) 
 
parameters, in all.  In order for the element to be integral, it is necessary and sufficient 
that these three elements be pair-wise associated.  Now, an arbitrary element ε that is 
deduced linearly from ε, ε1, …, 

pr
ε is associated with rp+1 + 1 other independent elements 

of the same form.  In other words, in order to express the idea that an arbitrary element 
that is deduced linearly from ε, …, 

pr
ε and, in turn, depends upon rp parameters is 

associated with a particular element of the same form, it is necessary that these rp 
parameters satisfy rp − rp+1 − 1 relations.  Upon returning to our three elements ε, ε′, ε″, 
we then see that in order to express the idea that two of them are associated, at most rp − 
rp+1 relations between their parameters are necessary, which gives at most: 
 

3(rp − rp+1 − 1) 
relations, in all.  Since there are: 

3(rp − 2) 
 

parameters, one sees that the integral elements Ep+2 that pass through a non-singular 
integral element Ep−1 depend upon at most: 
 

3(rp − 2) − 3(rp − rp+1 − 1) = 3 rp+1 − 3 
parameters. 
 Now, from a preceding theorem, this number of parameters is equal to: 
 

rp + rp+1 + rp+2 − 3, 
so one thus has: 

rp + rp+1 + rp+2 − 3 ≥ 3 rp+1 − 3; 
i.e.: 

rp + rp+1 ≥ rp+1 − rp+2 . 
Q. E. D. 

 The proof applies just the same if p is equal to 1. 
 One can complete this theorem with the following remark: 
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 If n is the genus of the system then one has: 
 

rn−1 − rn – 1 ≥ rn . 
 
 Indeed, let En−2 be a non-singular integral element. Let (En−2, ε) or 0

1nE −  denote a non-

singular integral element that passes through En−2 and let (En−2, ε, ε1) or 0
nE  denote a non-

singular integral element that passes through 0
1nE − .  One can find rn−1 + 2 independent 

integral linear elements that are associated with En−2, and, like ε and ε1, are already two of 
them; one can denote them by: 

ε, ε1, ε2, …, 
1nr

ε
−

. 

 
 Exactly nr∞  integral elements En pass through 0

1nE − .  We can thus suppose that they 

are all deduced from: 
 

(En−2, ε, ε1), (En−2, ε, ε2), …, (En−2, ε, 
1nr

ε
+

). 

 
 Now, take the integral element (En−2, ε, ε1); it also belongs to (at least) nr∞  integral 
elements En .  One can obtain each of them by means of a linear element that is deduced 
from: 

ε, ε1, ε2, …, 
1nr

ε
−

 

 
and associated with ε1 .  Now, if we first take the ones that are deduced from: 
 

ε, ε1, …, 
1nr

ε
+

 

 
then there is only ε, since otherwise one would have that the element ε2, for example, i.e.: 
 

(En−2, ε, ε1, ε2), 
 
will be integral, which is contrary to hypothesis, since it passes through the non-singular 
element 0

nE .  There thus exist at least rn independent linear elements that can be deduced 

from: 

2nr
ε + , …, 1nr

ε − ; 

one then necessarily has (1): 
rn−1 – rn – 1 ≥ rn .  

Q. E. D. 
 
 The sequence of inequalities: 
 

                                                
 (1) The proof does not persist when n = 1.  However, the theorem does not cease to be true, and it is 
pointless to give the proof.  
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(5)    r – r1 – 1 ≥ r1 – r2 – 1 ≥ rn−1 – rn – 1 ≥ rn  
 
results from these various theorems. 
 The numbers in this sequence play a very big role.  We denote them by: 
 

s, s1, s2, …, sn 
by setting: 

(6)     

1

1 1 2

1 1

1,

1,

......................,

1,

.
n n n

n n

s r r

s r r

s r r

s r
− −

= − −
 = − −

 = − −


=

 

 
 An interesting special case is the one in which there is a zero term in the sequence of 
s.  Suppose that sν (ν < n) is the first one that enjoys that property.  One will then 
necessarily have, from the inequalities (5): 
 

sν = sν+1 = … = sn = 0. 
 

 The following considerations permit one to account for this result in another way, 
and, at the same time, lead to some new and important properties of these systems. 
 Consider a non-singular integral element Eν−1 .  Let (Eν−1, ε) be a non-singular 
integral element that issues from Eν−1, where ε denotes an integral linear element that is 
independent of Eν−1 and associated with it.  1rν +∞  ν+1-dimensional integral elements pass 
through that element (Eν−1, ε); i.e., since rν+1 is equal to rν−1, from the fact that sν = 0, one 
can have rν and only rν mutually independent integral linear elements that are 
independent of (Eν−1, ε) and associated with Eν−1 and ε, namely: 
 

ε1, ε2, …, rν
ε . 

 
Now, one cannot find more than rν + 1 mutually independent integral linear elements that 
are independent of Eν−1 and associated with it.  Therefore, any integral linear element 
that is associated with Eν−1 is deduced linearly from: 
 

Eν−1, ε, ε1, ε2, …, rν
ε . 

 
 It results from this that any two elements ε are associated – for example, ε1 and ε2 ; 
because the integral element (Eν−1, ε1) that belongs to at least 1rν +∞  = 1rν −∞  (n + 1)-
dimensional integral elements is associated with at least rν mutually independent integral 
linear elements that are independent of (Eν−1, ε1), and since there are at least rν of them 
that enjoy that property, namely: 
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ε, ε2, …, rν
ε , 

 
one sees, in particular, that (Eν−1, ε1) is associated with ε2 .  One see, moreover, that the 
element (Eν−1, ε1) belongs to exactly 1rν +∞  (ν + 2)-dimensional integral elements.  One 
thus has: 

rν+2 = rν – 2, 
 

and so on: A (ν – 1 + rν)-dimensional element that passes through Eν−1, namely, (Eν−1, ε1, 
ε2, …, rν

ε ), belongs to exactly one = r rν ν−∞  ν-dimensional integral element, and finally, 

one and only one ν + rν-dimensional integral element, namely, (Eν−1, ε, ε1, …, rν
ε ), and 

no ν + rν + 1-dimensional integral element passes through that element.  Finally, it results 
from this that all of the integral elements that pass through Eν−1 are non-singular 
elements. 
 
 In summary, if one has: 

sν = rν – rν+1 – 1 = 0 
then the genus of the system is: 

n = ν – rν . 
 

One and only one integral element En passes through a non-singular integral element 
Eν−1 .  The locus of integral elements that through Eν−1 is the element En .  Moreover, one 
has the equalities: 

rν = rν+1 + 1 = rν+2 + 2 = … = n – v, 
which implies that: 

sν = sν+1 = … = sn−1 = sn = 0. 
 

 In particular, if ν is equal to 1 then any two integral linear elements that issue from a 
non-singular point are associated.  An integral element is simply an element that is 
formed from integral linear elements. 
 To conclude this paragraph, we shall determine the numbers r, r1, …, rn for a system 
of h total differential equations in r variables, while supposing that the coefficients are 
not subject to any specialization. 
 One will obviously first have: 

r1 = r – (h + 1). 
 
In a general manner, suppose that the genus n is greater than p and that one knows rp .  If 
Ep−1 then denotes an arbitrary integral element then any integral linear element that is 
associated with Ep−1 can be deduced linearly from Ep−1 and rp + 1 other linear elements: 
 

ε, ε1, ε2, …, 
pr

ε . 

 
 We seek to discover how many integral elements Ep+1 pass through the integral 
element (Ep−1, ε).  In order to do this, one must append a linear element ε′ to ε that can be 
deduced from: 
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ε1, ε2, …, 
pr

ε  

 
and is associated with ε.  Now, that element ε′ depends upon rp – 1 parameters, and one 
needs h equations to express the fact that the element is associated with ε.  If rp – 1 ≥ h, 
then one has that: 

rp+1 = rp – 1 – h, 
 
and if rp – 1 < h then there is no p + 1-dimensional integral element.  One thus sees that 
one passes from the number r to the following one by subtracting h + 1, and repeating 
that as many times as possible: 
 r1 = r – (h + 1), 
 r2 = r – 2(h + 1), 
 ………………. 
 
As a consequence, the genus n is the quotient, up to a unit, of r by h + 1, and rn is equal to 
the remainder of the division. 

rn = r – (h + 1) = k. 
 

 The genus of a system whose coefficients are not specialized is therefore equal to the 
quotient, up to a unit, of the number of variables by the number of equations plus one. 
 
 Here, the sequence of number s is: 
 

s = s1 = … = sn−1 = h,  sn = k. 
 

 In particular, if there is only one equation then the genus is the mean of the number of 
variables; if there are 2n or 2n + 1 variables then it is n.  In the first case, an integral 
multiplicity Mn−1 belongs to one and only integral multiplicity Mn .  This result is well 
known. 
 

VI. 
 

 We shall now look for a system of conditions that determine any integral multiplicity 
Mn that is required to satisfy these conditions, where n denotes the genus of the system of 
total differential equations (1). 
 We first make the obvious remark that all of the results that were proved up to here 
persist if one adjoins a certain number of finite equations: 
 

(1)′      
1 1 2

1 2

( , , , ) 0,

...............................,

( , , , ) 0,

r

h r

f x x x

f x x x

=


 =

…

…

 

to equations (1). 
 Indeed, it suffices to append to equations (1) the ones that one obtains by taking the 
total differentials of equations (1)′ and considering only the points in space that satisfy 
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equations (1)′ in the new system that is obtained, which we will refer to by the name of 
integral points. 
 We seek what sort of variations will preserve the genus and the integers r i when one 
then adds h arbitrary finite equations.  In summary, one obtains a new system of total 
differential equations whose integral multiplicities are those integral multiplicities of the 
original system that are required to be completely contained in the arbitrary multiplicity 
m that is represented by equations (1)′.  It is obvious, first of all, that the number r is 
reduced by h units; in other words, there are now only ∞r−h points to consider.  We 
suppose that these points are not all singular (with respect to the original system), since 
otherwise the multiplicity µ would not be called arbitrary. 
 Now, take a non-singular point E0 of µ.  1r∞  integral elements E1 pass through that 
point; i.e., one can find r1 + 1 independent integral linear elements: 
 

ε, ε1, ε2, …, 
1r

ε . 

 
On the other hand, the element er−h , which is the locus of all linear elements of µ, also 
contains r – h independent linear elements.  If one has: 
 

r1 + 1 + r – h ≤ r 
 
then suppose that er−h contains no integral linear element, which is the general case.  The 
second system then has genus zero: 
 

r′ = r – h, r1 – h < 0. 
 If, on the contrary: 

r1 + 1 + r – h > r 
 
then er−h contains at least r1 + 1 – h integral linear elements. We suppose, and this is 
obviously the general case, that er−h contains exactly r1 + 1 – h of them.  One will then 
have: 

r′ = r – h, 1r ′  = r1 – h. 

 
 In addition, we suppose that the 1r h−∞  integral linear elements of er−h are not all 
singular. 
 Then, let ε be a non-singular integral linear element of er−h .  1r∞  integral elements E2 
of the system (1) pass through ε; i.e., there exist r2 + 1 independent integral linear 
elements that are associated with ε, namely: 
 

ε, ε1, ε2, …, 
2 1rε + . 

 
On the other hand, er−h contains r – h – 1 independent linear elements along with ε.  If 
one has: 

(r2 + 2) + (r – h – 1) ≤ r, 
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i.e.: 
r2 < h, 

 
then er−h will not, in general, contain the integral element E2 ; that is what we suppose.  In 
that case, one thus has: 
 

r2 < h,  n′ = 1,  r′ = r – h, 1r ′  = r1 – h. 

 
However, if r2 ≥ h then er−h contains at least r2 + 1 independent integral linear elements 
that are associated with ε.  We suppose, and this is obviously the general case, that er−h 
contains exactly r2 + 1 – h of them; i.e., that 2r h−∞  integral elements that are contained in 
er−h pass through ε.  Moreover, we suppose that at least one of then is not singular.  One 
will then have: 

r′ = r – h, 1r ′  = r1 – h, 2r ′  = r2 – h, n ≥ 2. 

 
 One sees how one can proceed and what the properties are that one supposes for the 
multiplicity µ in order that the line should have the qualifier arbitrary.  In this case, if rm 
denotes the last number r that is greater than or equal to h then the genus becomes equal 
to m, and one has: 

r′ = r – h, 1r ′  = r1 – h, …, mr ′  = rm – h. 

 
 It is clear that the conditions that a multiplicity µ must satisfy in order to not be 
arbitrary are conditions of equality.  In particular, on any multiplicity one can find a non-
singular point E0, a non-singular integral element 01E  that issues from E0, a non-singular 

integral element 0
2E  that issues from 0

1E , …, and a non-singular integral element 0
mE  that 

issues from 0
1mE − .  However, no integral element Em+1 that belongs to the multiplicity 

passes through 0
mE , and the number of integral elements Ei that belong to µ that pass 

through the integral element 01iE −  (i ≤ m) must be exactly ir h−∞ . 

 This having been established, we shall consider an arbitrary non-singular point µ0 .  
Make an arbitrary r − r1-dimensional multiplicity 

1r rµ −  pass through this point, an 

arbitrary r − r2-dimensional multiplicity 
2r rµ −  pass through 

1r rµ − , etc., and finally, an 

arbitrary r − rn-dimensional multiplicity 
nr rµ −  pass through 

1nr rµ
−−  (1).  Each of these 

                                                
 (1) This is always possible.  Indeed, consider a non-singular integral element 0

1
E  that issues from E0, a 

non-singular integral element (0
1

E , ε1), or  0

2
E , that contains 0

1
E , …, a non-singular integral element (0

1n
E − , 

εn−1), or 0

n
E , that contains 0

1n
E − .  Then, let 

1r r
e −  denote an element that is formed from 0

1
E  and (r − r1 – 1) 

other non-integral linear elements, let 
2r r

e −  denote an element that is formed from 
1r r

e − , e1, and r1 – r2 – 1 

other non-integral linear elements that are not associated with 0

1
E , …, and finally let 

nr r
e −  denote an 

element that is formed from 
1nr r

e
−− , εn−1, and rn−1 – rn – 1 other non-integral linear elements that are not 
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multiplicities corresponds to a certain system of total differential equations.  For the 
multiplicity 

1r rµ − , one has h = r1, in such a way that: 

 
n′ = 1,  r′ = r – r1, 1r ′  = 0. 

 
For 

2r rµ − , one has h = r2, and in turn: 

 
n″ = 2,  r″ = r – r2, 1r ′′  = r1 – r2, 2r ′′= 0, 

and so on. 
 It results from this that the given system admits one and only one integral multiplicity 
M1 that passes through µ0 and is contained in 

1r rµ −  (since the system that gives the 

integral multiplicities that are contained in
1r rµ −  has genus 1 and 1r ′  is zero).  Moreover, 

that multiplicity is not singular, because it admits (see the note) a non-singular linear 
element. 
 Likewise, since the integral multiplicities that are contained in 

2r rµ −  are given by a 

system of genus 2 with 2r ′  = 0 and M1 is a non-singular integral of that system, it results, 

from a theorem of Cauchy, that there exists one and only integral multiplicity M2 that 
passes through M1 and is contained in 

1r rµ − .  Moreover, that multiplicity is not singular. 

 One can continue step-by-step, until one has an integral Mn−1 that is contained in 

1nr rµ
−− .  There then exists one and only one integral Mn that passes through Mn−1 and is 

contained in 
nr rµ − , and that multiplicity is not singular.  Therefore, there finally exists no 

integral multiplicity Mn+1 that passes through Mn . 
 In summary, upon applying Cauchy’s theorem several times, one arrives at the 
following result: 
 
 Given: 
 
 an arbitrary point µ0 , 
 an arbitrary multiplicity 

1r rµ −  that passes through µ0, 

  “ 
2r rµ −  “ 

1r rµ − , 

 ………………………………………………………….., 
  “ 

nr rµ −  “ 
1nr rµ

−− , 

 

there exists one and only one integral multiplicity Mn that passes through µ0 and: 

 has a multiplicity M1 in common with 
1r rµ − , 

                                                                                                                                            
associated with 0

1n
E − .  It suffices to take 

1r r
µ −  to be a multiplicity that admits the element 

1r r
e − , 

2r r
µ −  to be a 

multiplicity that admits the element 
2r r

e − , etc. 
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  “ M2 “ 
2r rµ − , 

 ……………………………………………, 

  “ Mn−1 “ 
1nr rµ

−− , 

 and is contained entirely in 
nr rµ − . 

Moreover, no integral multiplicity Mn+1 passes through the multiplicity Mn (
1). 

 The problem that consists of finding Mn from the stated conditions will be called the 
Cauchy problem.  The general integral will be the set of integral multiplicities Mn that 
can be obtained by the preceding process. 
 We shall now seek to formulate the Cauchy problem in an analytical manner, or 
rather, by appealing to the preceding statement of that problem we shall determine the 
general integral Mn by a set of analytical conditions that exhibit its degree of 
indeterminancy.  In order to do this, we start from a non-singular point E0, let ε1 denote a 
non-singular integral element issues from that point, let (ε1, ε2) denote a non-singular 
integral element E2 that passes through ε1, …, and let (En−1, εn) denote a non-singular 
integral element En that passes through En−1, in such a way that: 
 

ε1, ε2, …, εn 
 
are n independent integral linear elements that are all associated with each other. 
 The element En can be defined by a system (Σ) of r – n independent linear equations 
in dx1, dx2, …, dxr .  We suppose that the indices are chosen in such a manner that these 
equations are soluble for dxn+1, …, dxr .  The element En−1, in turn, will be defined by the 
system (Σ), to which, one must adjoin a linear equation in dx1, dx2, …, dxn .  Suppose that 
it is soluble for dxn, namely: 
  
(En−1)    dxn = αn,1 dx1 + … + αn,n−2 dxn−2 + αn,n−1 dxn−1 . 

 
Likewise, one will get En−2 by adjoining an equation to the preceding equations that is 
linear in dx1, …, dxn−1 and soluble for dxn−1, for example, namely: 
 
(En−2)   dxn−1 = αn−1,1 dx1 + … + αn−1,n−2 dxn−2 , 
 
and so on, until one gets the element E1 that one obtains by adjoining an equation to the 
equations that define E2 that is linear in dx1, dx2 and soluble for dx2, for example, namely: 
 
(E1)    dx2 = α2,1 dx1 . 

                                                
 (1) The statement persists if the genus is greater than n, but then the last part must be suppressed, from 
the fact that no integral multiplicity Mn+1 passes through Mn .  
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 Now, let denote (P0) denote the planar multiplicity that is the locus of the integral 
linear elements that pass through the point E0 .  It obviously contains En and is (r1 + 1)-
dimensional.  It is thus defined by r – r1 – 1 = s linear equations that are soluble for s of 
the differentials dxn+1 , …, dxr . We call these s differentials: 
 

dz1,  dz2, …, dzs . 
 

Moreover, we remark that these s equations are nothing but the given equations (1) 
themselves.  Now, let (P1) denote the planar multiplicity that is the locus of the integral 
linear elements that are associated with E1; it is obviously contained in (P0) and contains 
En .  Moreover, it is r2 + 2-dimensional.  It is thus defined by r − r2 – 2 = s + s1 equations, 
among which, one finds the s equations of (P0).  One thus obtains it by adjoining to these 
s equations, s1 other ones that are soluble for s1 and some differentials other than dz1, …, 
dzs ; dx1, …, dxn .  Upon changing the notation, let: 
 

(1)
1dz , (1)

2dz , …, 
1

(1)
sdz  

 
be these differentials.  Likewise, the planar multiplicity (P2) that is the locus of integral 
linear elements that are associated with E2 is obtained by adjoining to the s + s1 equations 
of (P1), s2 other ones that are soluble for: 
 

(2)
1dz , (2)

2dz , …, 
2

(2)
sdz , 

 
in which the z(2) are s2 variables other than x1, …, xn, the z and the z(1), and so on.  The 
planar multiplicity (Pn−1) that is the locus of integral linear elements that are associated 
with En−1 will introduce sn−1 variables: 
 

( 1)
1

nz − , …, 
1

( 1)

n

n
sz

−

− , 

 
and finally, the element En will be defined by the equations that define (Pn−1) and r – s – 
s1 − … −  sn−1 = rn = sn new equations that are soluble with respect to sn variables other 
than x1, …, xn, the z, z(1), …, z(n−1), and that we call: 
 

( )
1

nz , ( )
2
nz , …, ( )

n

n
sz . 

 
 Finally, we can summarize the equations that define (P0), (P1), …, (Pn−1), En , En−1 , 
…, E1 in the following table: 
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(1) (2) ( )
0

1 (1) (2) ( )

1
( 1) ( )

1

2

( )

,1 1 ,2 2 , 1

( ) : [ , , , , ],
( )

[ , , , ],

( ) ..............................,
( )

[ , ],( )
( )

[ ],

n

n

n
n n n

n

n

n

n n n n n n

P dz dz dz dz dx
P

dz dz dz dx

P
E

dz dz dxE
E

dz dx

dx dx dx dxα α α

−
−

−
−

− −

   =
   = 


 
  = 
 
 =

= + + +

…

…

⋯ 1

1 1,1 1 1, 2 2

2 2,1 1

,

,

....................................................,

.

n n n n ndx dx dx

dx dx

α α

α

− − − − −

 
 
 
 
  
 
 
 
 
 

= +

=

⋯

 

 
 The first row expresses the idea that each of the differentials dz1, dz2,…, dzs is 
expressed as a linear combination of the differentials (1)

1dz , …, dxn . 

 Having made these conventions, we make the following transformation of 
coordinates: Without changing the variables z, z(1), …, z(n−1), we take the new variables: 
 
   1x′  = x1, 

   2x′  = x2 – α21 x1, 

   3x′  = x3 – α31 x1 − α32 x2, 

   …………………………, 
   nx′  = xn – αn1 x1 − αn2 x2 − … − αn, n−2 xn-1 . 

 
In other words, we suppose that the coefficients αij are all zero. 
 Finally (once that coordinate transformation is performed), we denote the coordinates 
of the point E0 by: 
 

a1, …, an ; c1, …, cs ; 
(1)
1c , …, 

1

(1)
sc ; …, ( )

1
nc , …, ( )

n

n
sc . 

 
 We remark that in the last case any integral multiplicity Mn that admits the element En 
can be defined by r – n equations that are soluble for z, z(1), …, z(n) (from the form itself 
of the equations for En).  The same will be true for any integral multiplicity Mn that 
admits a sufficiently close element of En .  One can thus take x1, x2, …, xn to be the 
independent variables of these multiplicities. 
 This being the case, in order to be sure of obtaining arbitrary multiplicities 

1r rµ − , 

2r rµ − , …, we seek to make an element 
1r re −  that admits one and only one integral linear 

element E1 pass through E0 , i.e., to cut the element (P0) along E1 , and to make an 
element 

2r re −  that admits just one two-dimensional integral element that issues from E1 − 

namely, E2 − pass through 
1r re − , i.e., cut the element (P1) along E2, etc., and make an 
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element 
nr re −  that that admits just one n-dimensional integral element that issues from 

En−1 − namely, En − pass through 
1nr re

−− , i.e., cut the element (Pn−1) along En .  Any 

multiplicity 
ir rµ −  that admits the element 

ir re −  , or a sufficiently close element, will 

obviously satisfy the conditions that were imposed upon arbitrary multiplicities.  Now, it 
is indeed easy to find elements 

nr re − , 
1nr re

−− , …, 
1r re −  that enjoy the properties that we just 

stated.  It suffices to take 
nr re −  to be the system: 

 
 dz(n)  = [dx], 

 
and one takes 

1nr re
−−  to be the system that is obtained by adjoining to the preceding 

equations, the following ones: 
 dz(n−1) = [dz(n), dx], 
 dxn = 0, 
 
and one takes 

2nr re
−−  to be the system that is obtained by adjoining to the preceding 

equations, the equations: 
 dz(n−2) = [dz(n−1), dz(n), dx], 
 dxn−1 = 0, 
 
and so on.  The brackets in the right-hand sides denote the same linear combinations as in 
the equations that define (P0), (P1), …, (Pn−1), En . 
 This being the case, we are justified in defining 

nr rµ −  by the equations: 

 

(An)     

( ) ( )
1 1 1 2

( ) ( )
1 2

( , , , ),

.....................................,

( , , , ),
n n

n n
n

n n
s s n

z x x x

z x x x

ϕ

ϕ

 =


 =

…

…

 

 
defining 

1nr rµ
−−  by the preceding equations and the following ones: 

 

(An−1)    

1 1

( 1) ( 1)
1 1 1 2 1

( 1) ( 1)
1 2 1

( , , , ),

.............................................,

( , , , ),
n n

n n
n

n n
s s n

z x x x

z x x x

ϕ

ϕ
− −

− −
−

− −
−

 =


 =

…

…

 

 
(Bn)     xn = an , 
 
and so on, until 

1r rµ −  is defined by the equations that were already written, and: 
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(A1)    

1 1

(1) (1)
1 1 1

(1) (1)
1

( ),

......................,

( ),s s

z x

z x

ϕ

ϕ

 =


 =

 

 
(B2)     x2 = a2 , 
 
and finally the point µ is defined by all of the equations that were already written, along 
with: 

(A0)     

1 1

2 2

,

,

...........,

,s s

z

z

z

ϕ
ϕ

ϕ

=
 =


 =

 

 
(B1)     x1 = a1 . 
 
 In these formulas, the quantities ϕ1, ϕ2, …, ϕs are some arbitrary constants that are 
sufficiently close to c1, c2, …, cs .  As for the functions ϕ(1), ϕ(2), …, ϕ(n), they are 
arbitrary functions that are holomorphic in a neighborhood of: 
 

x1 = a1,  x2 = a2,  …, xn = an , 
 
and are such that for this system of values these functions and their first-order partial 
derivatives take values that are sufficiently close to certain fixed values. 
 With these hypotheses, there will exist one and only one integral multiplicity Mn that 
passes through µ0 and has a one-dimensional multiplicity in common with 

1r rµ − , a two-

dimensional multiplicity in common with 
2r rµ − , etc., an n  − 1-dimensional multiplicity in 

common with 
1nr rµ

−− , and finally, it is completely contained in 
nr rµ − .  On the other hand, 

that multiplicity is defined by: 
r – n = sn + sn−1 + … + s 

 
functions z(n), z(n−1), …, z of the independent variables x1, x2, …, xn .  To say that Mn is 
contained in 

nr rµ −  is to say that the first sn functions ( )
1

nz , …, ( )

n

n
sz  are equal to the given 

functions ( )
1

nϕ , …, ( )

n

n
sϕ .  On the other hand, if Mn has an n – 1-dimensional multiplicity 

in common with 
1nr rµ

−−  then this multiplicity can be obtained by setting xn = an in the 

expressions for the functions z, z(1), …; it is then necessary that the sn−1 functions ( 1)
1

nz − , 

…, 
1

( 1)

n

n
sz

−

−  must reduce to the given functions ( 1)
1

nϕ − , …, 
1

( 1)

n

n
sϕ

−

−  for xn = an , and so on. 

 It results from this that in the indicated limits, system (1), when considered as 
defining z1, …, ( )

n

n
sz  as functions of x1, …, xn, admits one and only one solution for which 

the unknown functions are holomorphic in a neighborhood of x1 = a1, …, xn = an , and 
such that the sn functions z(n) satisfy: 
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 ( )
1

nz  is identical to the arbitrary function ( )
1 1( , , )n

nx xϕ … , 

 …………………………………………………...……., 
 ( )

n

n
sz  “ ( )

1( , , )
n

n
s nx xϕ … , 

 
and for xn = an the sn−1 functions z(n−1) reduce as follows: 
 
 ( 1)

1
nz −  reduces to the arbitrary function ( 1)

1 1( , , )n
nx xϕ −

… , 

 …………………………………………………………., 
 

1

( 1)

n

n
sz

−

−  “ 
1

( 1)
1( , , )

n

n
s nx xϕ

−

−
… , 

 
and so on, so for x2 = a2, …, xn = an the s1 functions z(1) reduced as follows: 
 
 (1)

1z  reduces to the arbitrary function (1)
1 1( )xϕ , 

 …………………………………………………, 
 

1

(1)
sz  “ 

1

(1)
1( )s xϕ , 

 
and finally, for x1 = a1, …, xn = an the s functions z reduce as follows: 
 
 z1 reduces to the arbitrary constant ϕ1 , 
 
 …………………………………………, 
 zs “ ϕs . 
 
 On the other hand, it is indeed clear that any integral multiplicity Mn that admits an 
element that is close to the particular element En, or (ε1, …, εn), as previously defined, 
can be obtained by the preceding process, since the functions and constants ϕ are 
perfectly determined, and in a unique manner. 
 One can thus say that any integral multiplicity Mn that admits an n-dimensional 
integral element that is sufficiently close to a given non-singular integral element is 
completely defined by a set of: 
 
 sn arbitrary functions of n arguments x1, x2, …, xn , 
 sn−1 “ n – 1 “ x1, x2, …, xn−1 , 
 …………………………………………………………, 
 s1 “ 1 “ x1, 
 s arbitrary constants, 
 
under the single condition that for certain given values of the independent variables, the 
arbitrary elements take values that are sufficiently close to certain fixed constants, as 
well as their first-order derivatives. 
 It is in this sense that one can say that the general integral Mn depends upon s 
arbitrary constants, s1 arbitrary functions of one argument, etc., and sn arbitrary functions 
of n arguments. 
 One can say that the numbers of the sequence: 
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(S)     s, s1, s2, …, sn  
 
measure the indeterminacy of the general integral Mn .  The geometric origin of these 
numbers shows that the measure of the indeterminacy does not change if one performs an 
arbitrary change of variables, because this amounts to performing a simple homographic 
transformation on the integral elements that issue from a point, which obviously changes 
none of the values of the numbers r, and in turn, the numbers s. 
 Moreover, recall the property of the sequence (S) that is expressed by the inequalities: 
 

s ≥ s1 ≥ s2 ≥ … ≥ sn−1 ≥ sn , 
 

and finally the values of r in terms of the s: 
 
 rn = sn , 
 rn−1 = sn + sn−1 + 1, 
 rn−2 = sn + sn−1 + sn−2 + 1, 
 r1 = sn + sn−1 + … + s1 + n − 1, 
 r = sn + sn−1 + … + s + n. 
 
 As a particular case, if we take a system of h total differential equations in r variables 
with arbitrary coefficients then we have seen that the genus n is equal to the quotient, up 
to a unit, of r by h + 1, and upon denoting the remainder by k, one has: 
 

s = s1 = … = sn−1 = h,  sn = k. 
 

 One thus has the following theorem: 
 
 The general integral Mn of a system of h total differential equations in r variables 
whose coefficients are arbitrary functions, and where n denotes the quotient, up to a unit, 
of r by h + 1, and k denotes the remainder, depends upon: 
 
 k arbitrary functions of n arguments, 
 h “ n – 1  “ , 
 h “ n − 2 “ , 
 ………………………………………, 
 h “ 1 “ , 
  
and h arbitrary constants. 
 
 This is, with much more precision, the result that was proved by Biermann.  One can 
add that there is no n + 1-dimensional integral, in general. 
 If h is equal to 1 and r is even, and consequently equal to 2n, then there is no arbitrary 
function of n arguments.  If r is odd, and consequently equal to 2n + 1, then there is an 
arbitrary function of n arguments. 
 We return to the general case.  The stated results persist, even if the genus is greater 
than n, with the condition that one take sn to be the value rn and the other si equal to the 
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values r i − r i+1 – 1.  It suffices that the given system, when considered as having n 
independent variables, should be in involution.  However, if the genus is greater than n 
then sn can be greater than sn−1 . 
 The preceding results simplify if sn is zero.  The general integral then depends upon 
only arbitrary functions of at most n – 1 arguments. 
 The analytic search for the integral Mn amounts to the integration of n successive 
Kowalewski systems.  The first one gives the s functions of x1 to which the z1, z2, …, zs 
reduce when one makes: 

x2 = a2 , …, xn = an . 
 
It is a system of ordinary differential equations that one obtains by replacing the z(1) with 
the ϕ(1)(x1), the z(2) with the ϕ(2)(x1, a2), …, and the z(n) with the ϕ(n)(x1, a2, …, an) in the 
equations of the given system. 
 The second Kowalewski system gives the s + s1 functions of x1, x2 to which the z1, …, 
zs ,  reduce (1)

1z , …, 
1

(1)
sz  when one makes: 

 
x3 = a3 , …, xn = an , 

 
where these functions reduce to known functions of x1 for x2 = a2 , and so on.  The last 
system gives the s + s1 + … + sn−1 functions of x1, x2, …, xn−1 that z1, …, 

1

( 1)

n

n
sz

−

−  reduces to 

when one makes: 
xn = an , 

 
where these functions reduce to known functions of x1, …, xn−2 for xn−1 = an−1. 
 In order to clarify all of the preceding results by means of a very simple example, 
take the system that is formed from the single equation: 
 
(1)      dz – p dx – q dy = 0, 
 
where x, y, z, p, q are five variables.  Here, there is one equation that expresses the idea 
that two integral linear elements are associated.  It is: 
 
(2)     dx δp – dp δx + dy δq – dq δy = 0. 
 
Here, r = 5 and r1 = 3.  As for r2, the equations that define the integral linear elements 
that are associated with a given integral linear element (δx, δy, p δx + q δy, δp, δq) are 
two independent ones in number, namely: 
 

dz – p dx – q dy = 0, 
δp dx + δq dy – δx dp − δy dq = 0; 

 
As a result, r2 = 1.  One thus has: 
 

s = 1,  s1 = 1,  s2 = 1. 
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 A non-singular point E0 is, for example: 
 

x = y = z = p = q = 0. 
 

An integral element E2 that passes through this point is, for example: 
 
(E2)     dz = dp = dq = 0, 
 
and a non-singular integral element E1 that is contained in E2 is, for example: 
 
(E1)     dz = dp = dq = dy = 0. 
 
 Here, the element (P0) is given by (1), where one makes p = q = 0: 
 
(P0)      dz = 0, 
so from (2), the element (P1) is given by: 
(P1)      dz = dp = 0. 
 
 There thus exists one and only one integral that if formed from three functions z, p, q 
of x and y that are holomorphic in a neighborhood of x = y = 0, and are such that: 
 
 q is identical to f(x, y), 
 p reduces to ϕ(x) for y = 0, 
 z reduces to c for x = y = 0, 
 
where c is a very small constant, f and ϕ are arbitrary functions that are holomorphic in a 
neighborhood of x = 0, y = 0, and take on very small values for x = y = 0, along with their 
first-order derivatives. 
 Here, there are two Kowalewski systems.  The first one gives a function z of x that 
reduces to c for x = 0 when p = ϕ(x) and q = f(x, 0).  It is obviously given by: 
 

dz

dx
= p = ϕ(x), 

so: 

z = c + 
0

( )
r

x dxϕ∫ . 

 
 The second Kowalewski system gives the functions p and z of x, y that reduce to ϕ(x) 

and c + 
0

( )
r

x dxϕ∫ , respectively, when one makes q = f(x, y).  This system is [see the 

formulas (II) of paragraph IV]: 
 

 
f

y

∂
∂

 − f(x, y) = 0, 
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p f

y x

∂ ∂−
∂ ∂

 = 0, 

and give: 

 z = c + 
0

( )
x

x dxϕ∫  + 
0

( , )
y

f x y dy∫ , 

 

 p = ϕ(x) + 
0

y f
dy

x

∂
∂∫

, 

 
 q = f(x, y). 
 
 We shall conclude this paragraph by giving some definitions.  In the sequence: 
 

s, s1, …, sn , 
 

which measures the indeterminacy of the general integral Mn of a system (1) of genus n, 
the first number s is nothing but the number of independent equations in dx1, …, dxr in 
that system (1); i.e., upon preserving the notations of § 1, it is the degree of the principal 
minor of the matrix: 

(∆)      
1 2

1 2

r

r

a a a

b b b

⋯

⋯

⋯ ⋯ ⋯ ⋯

. 

 
 The following number s1 gets a special name: One calls it the character (1) of the 
system.  We remark that s + s1 is nothing but the number of independent equations that 
express the idea that a linear element (dx1, …, dxr) is integral and associated with an 
arbitrary integral linear element (δx1, …, δxr).  Now, upon setting: 
 

aik =  i k

k i

a a

x x

∂ ∂−
∂ ∂

, …, l ik =  i k

k i

l l

x x

∂ ∂−
∂ ∂

, 

these equations become: 
 

(1)    
1 1 2 2

1 1 2 2

0,

.............................................,

0,

r r

r r

a dx a dx a dx

l dx l dx l dx

+ + + =


 + + + =

…

…

 

 

                                                
 (1) This terminology is due, I believe, to H. von WEBER, “Zur Invariantentheorie der Systeme 
Pfaff’scher Gleichungen,” Leipz. Ber. (1898), 207-229. 
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(2)    

1 1

1 1

0,

......................................................,

0.

i i ri i r
i i

i i ri i r
i i

a x dx a x dx

l x dx l x dx

δ δ

δ δ

 + + =



 + + =


∑ ∑

∑ ∑

⋯

⋯

 

 
 Therefore, if one considers the matrix: 
 

(∆1)   

1 2

1 2

1 2

1 2

r

r

r i r i ri i

r i r i ri i

a a a

l l l

a x a x a x

l x l x l x

δ δ δ

δ δ δ

∑ ∑ ∑

∑ ∑ ∑

⋯

⋯ ⋯ ⋯ ⋯

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯

, 

 
where δx1 , …, δxr are arbitrary, but uniquely required to verify the equations: 
 
 a1 δx1 + … + ar δxr = 0, 
 ………………………., 
 l1 δx1 + … + lr δxr = 0, 
 
then the character s1 of the system is the difference between the degree of the principal 
minor of the matrix (∆1) and the degree of the principal minor of the matrix (∆). 
 One can give the other numbers s2, s3, …, the names of the 2nd, 3rd, … character of 
the system (1).  They are calculated from the degrees of the principal minors, like s and 
s1.  However, instead of saying that a system of genus n has the number sn for its nth 
character, we say that the system is of the (sn + 1)th kind.  A system of the first kind is 
thus a system for which sn = 0.  It enjoys the property that one and only one integral 
multiplicity Mn passes through an integral multiplicity Mn−1 . 
 
 

VII. 
 

 In this paragraph, we shall occupy ourselves with systems of the first kind for which 
the (n – 1)th character sn−1 is zero.  Suppose, in a general manner, that sn is the first 
number that is zero in the sequence: 
 

s, s1, s2, …, sn, 
 
where ν is less than n.  In § V, we saw some properties of these systems, which we recall: 
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 One and only one integral element En passes through a non-singular integral element 
Eν−1 .  That element En is the locus of all integral elements that pass through Eν−1 , and 
none of these elements is singular. 
 
 One has, moreover: 
 

rn = 0,  rn−1 = 1, rn−2 = 2, …, rν = n – ν, rn−2 ≤ n – n – 2. 
 

 As a corollary to the property of the integral elements that pass through a non-
singular integral element Eν−1 , we shall prove the following theorem: 
 
 One and only one integral multiplicity Mn passes through a non-singular integral 
multiplicity Mν−1 . 
 
 In order to prove this, we make an arbitrary multiplicity r rν

µ −  pass through Mν−1 , 

which is always possible, since the integral multiplicity Mν−1 is not singular.  In 
particular, if Eν−1 is a non-singular integral element of Mν−1 then the multiplicity r rν

µ −  

will admit one and only one integral element Eν that passes through Eν−1 .  This being the 
case, let Mn be an arbitrary integral multiplicity that passes through Eν−1 .  On the other 
hand, since the sum of the dimensions of Mn and r rν

µ −  is: 

 
r + n – rν = r + n, 

 
these two multiplicities have a multiplicity in common that is at least ν-dimensional, and 
that multiplicity is necessarily integral.  However, since r rν

µ −  does not admit a ν + 1-

dimensional integral element that passes through Eν−1, the integral multiplicity that is 
common to Mn and r rν

µ −  is exactly v-dimensional, namely Mν . 

 This being the case, we known that one and only one ν-dimensional integral 
multiplicity that is required to be contained in the arbitrary multiplicity r rν

µ −  passes 

through a non-singular integral multiplicity Mν−1 .  Therefore, the multiplicity Mν is 
determined in a unique manner when one is given r rν

µ − .  In other words, if two n-

dimensional integral multiplicities Mn and nM ′  pass through Mν−1 then these two 

multiplicities cut r rν
µ − along the same multiplicity Mν , and that is true for any r rν

µ −  that 

passes through Mν−1 . 
 It results from this that the two multiplicities Mn and nM ′  are identical, because if A is 

an arbitrary point of the first one then one can always make a multiplicity r rν
µ −  pass 

through A and Mν−1 .  That multiplicity corresponds to an integral multiplicity Mν that is 
situated on Mn and then passes through A.  However, it is also situated on nM ′ .  

Therefore, the point A belongs nM ′ , and the two multiplicities coincide. 
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 In a more precise and rigorous manner, make an arbitrary multiplicity 1r rν
µ − −  pass 

through Mν−1 ; i.e., one that does not admit any integral element that passes through Eν−1 
other than Eν−1 itself, which is always possible.  Then make a family of multiplicities 

r rν
µ −  that depend upon rν = n – ν parameters and fill up all of space (1) pass through that 

well-defined multiplicity 1r rν
µ − − .  These multiplicities are all arbitrary, because they 

obviously have just one integral element Eν that passes through Eν−1, and we know that 
any integral element that passes through Eν−1 is non-singular. Each of them thus contains 
one and only one integral multiplicity Mν that passes through Mν−1, and all of these 
multiplicities Mν belong to an arbitrary integral multiplicity Mν that passes through Mν−1 .  
One can add that Mn is the locus of these multiplicities Mν  when the n – ν parameters 
that they depend upon are varied, because each of them is contained in Mn, and, on the 
other hand, one of the multiplicities r rν

µ −  (that fills up all of space) passes through an 

arbitrary point of Mn , and, as a result, the corresponding multiplicity Mν .  As a result, Mν 
is determined in a unique manner. 
 We summarize the results that we just obtained in the following manner: 
 
 One and only one integral multiplicity Mn passes through a non-singular integral 
multiplicity Mν−1 .  In order to obtain it, one makes an arbitrary multiplicity 1r rν

µ − −  pass 

through Mν−1 , and then makes a family of multiplicities r rν
µ −  that depend upon rν = n – ν 

parameters and fill up all of space pass through the latter multiplicity.  For each of these 
multiplicities r rν

µ − , one determines the integral multiplicity Mν that passes through Mν−1, 

and which is contained entirely in r rν
µ − .  The geometric locus of these multiplicities Mν 

when one varies the n – ν parameters upon which they depend, is the desired integral 
multiplicity Mν . 
  
 Moreover, that multiplicity Mν is the integral of a system of total differential 
equations in r – rν variables of genus ν, although its coefficients depend upon n – v 
parameters. 
 
 One deduces the following theorem from this, which refers to the Cauchy problem, 
properly speaking: 
 
 Let one be given a system of total differential equations of genus n for which the 
character sν is zero (ν < n).  If one is then given an arbitrary point µ0 , an arbitrary 

                                                
 (1) If: 

f1 = f2 = … = 
1r

f
ν +  = 0 

are the equations of 
1r rν

µ − −  then it obviously suffices to take: 

 

f1 – t1 1r
f

ν +  = f2 – t2 1r
f

ν +  = … = 
1r r r

f t f
ν ν ν +−  = 0. 
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multiplicity 
1r rµ −  that passes through that point, etc., an arbitrary multiplicity 1r rν

µ − −  that 

passes through 2r rν
µ − − , then there exists one and only one integral multiplicity Mn that 

passes through µ0 and has a 1-dimensional multiplicity in common with 
1r rµ − , etc., and a 

ν – 1-dimensional multiplicity in common with 1r rν
µ − − .  In order to obtain it, one makes 

an arbitrary multiplicity 1r rν
µ − −  pass through 

1r rν
µ

−−  and a family of multiplicities r rν
µ −  

that depend upon rν = n – v parameters and fill up all of space pass through the latter.  
Each of the multiplicities contain one and only integral multiplicity Mν that passes 
through µ0 and has a 1-dimensional multiplicity in common with 

1r rµ − , etc., and finally, a 

v – 1-dimensional multiplicity in common with 
1r rν

µ
−− .  The geometric locus of these 

multiplicities Mν when one varies the n – ν parameters that they depend upon is the 
desired integral multiplicity Mn . 
 
 Indeed, it suffices to remark that the ν – 1-dimensional integral multiplicity that is 
situated on 

1r rν
µ

−− is the same for Mn and for all the Mν .  One then only needs to apply the 

preceding theorem to that v − 1-dimensional integral multiplicity. 
 The last theorem shows that the Cauchy problem for the given system of genus n is 
converted into the Cauchy problem for a new system of genus v; however, the coefficients 
of this new system depend upon n – v parameters.  The numbers s, s1, s2, …, sn have the 
same values for the two systems, moreover. 
 We say that the integer v is the true genus of the system. 
 We shall now interpret the preceding results analytically.  We keep the notations of § 
VI.  Here, a simplification presents itself, due to the fact that sn, sn−1, …, sν are zero.  As a 
result, there are no variables z(n), z(n−1), …, z(ν). 
 The multiplicity 

1r rν
µ

−−  is defined by: 

 

(Aν−1)   

( 1) ( 1)
1 1 1 2 1

( 1) ( 1)
1 1 1 2 1

( , , , ),

..............................................,

( , , , ),s s

z x x x

z x x x
ν ν

ν ν
ν

ν ν
ν

ϕ

ϕ

− −
−

− −
− − −

 =


 =

…

…

 

 
(Bν)  xn = an,  xn−1 = an−1, …, xν = aν . 
 
 The multiplicity 

2r rν
µ

−−  is defined by the preceding equations, and in addition: 

 

(Aν−2)   

( 2) ( 2)
1 1 1 2 2

( 2) ( 2)
2 2 1 2 2

( , , , ),

..............................................,

( , , , ),s s

z x x x

z x x x
ν ν

ν ν
ν

ν ν
ν

ϕ

ϕ

− −
−

− −
− − −

 =


 =

…

…

 

 
(Bν−1)    xν−1 = aν−1 , 
 
and so on, as in the general case. 
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 We can now take the multiplicity 1r rν
µ − −  to be the one that is defined by the n – ν + 1 

= rν + 1 equations (Bν): 
 

xn = an,  xn−1 = an−1, …, xν = aν , 
 
and the multiplicities r rν

µ −  to be the ones that are defined by: 

 

( )r rν
µ −    

1 1 1

2 2 2

( ),

( ),

.......................................,

( ).n n n

x a t x a

x a t x a

x a t x a

ν ν ν ν

ν ν ν ν

ν ν ν

+ +

+ +

−

− = −
 − = −


 − = −

 

 
 
 The preceding results that were stated in a geometric manner can now be expressed in 
the following manner: 
 
 The given system admits one and only one integral for which z1, …, 

1

( 1)
sz
ν

ν
−

−  are 

functions of x1, x2, …, xn that are holomorphic in a neighborhood of: 
 

x1 = a1,   x2 = a2,  …,  xn  = an, 
 
and reduce as follows: 

1 1

( 1) ( 1)
1 1 1 2 1

( 1) ( 1)
1 2 1

( , , , ) ,

.............................................................. ...............................

" ( , , , )s s

for

z reduces to the arbitrary function x x x x a

x

z x x x
ν ν

ν ν
ν ν ν

ν ν
ν

ϕ

ϕ
− −

− −
−

− −
−

 =





…

…

1 1

................,

,n n

a

x a

ν ν+ +=

=

 

2 2

( 2) ( 2)
1 1 1 2 1

1 1

( 2) ( 2)
1 2 1

" ( , , , )
,

.............................................................. ...............................
................,

" ( , , , )
.s s

n n

for
z x x x

x a

z x x x
x aν ν

ν ν
ν

ν ν

ν ν
ν

ϕ

ϕ
− −

− −
−

− −

− −
−


=



 =

…

…

 

………………………………………………………………………………., 
 

1 1

(1) (1)
1 1 1

2 2(1) (1)
1

" ( )

.............................................................. .............
, , ,

" ( ) n n
s s

z x
for

x a x a
z x

ϕ

ϕ



 = =


…
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1 1

1 1

.............................................................. .....
, , ,

" n n
s s

z reduces to the arbitrary constant
for

x a x a
z

ϕ

ϕ



 = =


…

 

 
respectively. 
 
In order to obtain these functions, in the equations of the given differential system, one 
replaces: 
 xν+1 with aν+1 +    t1(xν – aν), 
 
 xν+2 with aν+2 +    t2(xν – aν), 
 ……………………………, 
 xn with    an + tn−v(xν – aν), 
 
where one regards the t as constants.  The new system that is obtained then admits one 
and only one integral for which z1, …, 

1

( 1)
sz
ν

ν
−

−  are functions of x1, x2, …, xn that are 

holomorphic in a neighborhood of: 
 

x1 = a1 , x2 = a2 , …, xν = aν , 
 
and reduce as follows: 
 
 ( 1)

iz
ν −  to ( 1)

i
νϕ − (x1, x2, …, xν−1) for xν = aν , 

 ( 2)
jz ν −  to ( 2)

j
νϕ − (x1, x2, …, xν−2) for xν−1 = aν−1 , xν = aν , 

 ……. … ……………………… …. ……………………, 
 (1)

kz  to (1)
kϕ (x1) for x1 = a1 , …, xν = aν , 

 zh to ϕh for x1 = a1 , …, xν = aν , 
 
(i = 1, 2, …, sν−1 ; j = 1, 2, …, sν−2 ; k = 1, 2, …, s1 ; h = 1, 2, …, s). 
 
 If one replaces the n – v parameters t upon which the functions thus found depend 
with: 

t1 = 1 1x a

x a
ν ν

ν ν

+ +−
−

, 

……………….., 

tn−v = n nx a

x aν ν

−
−

 

 
then one obtains the desired integral of the original system. 
 
 In summary, one sees that if the general integral Mn of a system in involution (i.e., of 
genus greater than or equal to n) depends upon arbitrary functions of v – 1 arguments, 
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but not upon arbitrary functions of v arguments, then one converts its search into that of 
the integral Mv of a system of genus n, and consequently, into a problem in v independent 
variables.  However, the coefficients of the new system depend upon n – v parameters. 
 Indeed, it suffices to remark that since Mn does not depend upon arbitrary functions of 
n arguments, one necessarily has rn = 0, and in turn, the genus of the system is exactly n. 
 In particular, if the general integral Mn of a system in involution depends upon only 
arbitrary constants then one has v = 1; the character s1 of the system is zero, and the 
system is completely integrable.  One converts the search for its integral to that of a 
system of genus 1, i.e., to a system of ordinary differential equations.  The method 
reduces to that of Lie-Mayer for the integration of completely integrable system.  If the 
systems of the system are soluble for dz1, dz2, …, dzs then since the other differentials are 
dx1, dx2, …, dxn, one replaces: 
 
 x2 with a2 +    t2(x1 – a1), 
 .. … …………………., 
 xn with an + tn−1(x1 – a1), 
 
and one seeks the integral of the new system in order for z1, z2, …, zs to reduce to reduce 
to given arbitrary constants ϕ1, ϕ2, …, ϕs  for x1 = a1 .  One then replaces ti with 

1 1

1 1

i ix a

x a
+ +−

−
 in the functions thus obtained. 

 As an example, we take the simplest one possible, in such a manner that we 
nonetheless do not have a completely integrable system.  We choose: 
 

v = 2,  n = 3,  s1 = 1,  s = 1, 
so: 

r3 = 0,  r2 = 1,  r1 = 3,  r = 5. 
 
 The following equation corresponds to this case: 
 

x4 dx1 – x4 x5 dx2 – (x2 x4 + x3 + x1 x5) dx5 = 0. 
 

We shall not carry out the verification, and we shall simply apply the generalized Lie-
Mayer method in order to find the general integral of this equation.  One easily sees that 
the point: 

x1 = 0,  x2 = 0,  x3 = 0,  x5 = 0 
 
is not singular, and that the linear element E1 that issues from this point: 
 

dx1 = dx2 = dx3 = dx4 = 0 
 

is integral.  Here, (P0) has the equation: 
 
(P0)     dx1 = 0; 
as for (P1), one easily finds: 
(P1)     dx1 = dx3 = 0, 
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and one confirms that the element E3 is integral.  Moreover, E1 is not singular. 
 Here, one can thus take the variables that are denoted by z, z(1), x3, x2, x1 in the general 
theory to be x1, x3, x4, x2, x5 , respectively. 
 There will then be one and only one integral such that: 
 
 x3 reduces to f(x5)  for x2 = 0, x4 = 1, 
 x1 “ c for x2 = 0, x4 = 1, x4 = 0. 
 
 In order to obtain it, it will suffice to replace: 
 

x4 – 1 with t x2 
in the equation, which gives: 

(t x2 + 1) dx1 − (t x2 + 1) x5 dx2 – ( 2
2t x  + x2 + x3 + x1 x5) dx5 = 0. 

 
 One can first look for the function x1 of x5 that reduces to c for x5 = 0 when one makes 
x3 = f(x5), x2 = 0.  That function is given by: 
 

1

5

dx

dx
 = f(x5) + x1 x5 , 

from which, one infers that: 
 

x1 = 
2 2 25
5 5 5/ 2 / 2 / 2

5 50
( )

xx x xce e e f x dx−+ ∫  = ϕ(x5). 

 
 One must then look for two functions x3 and x1 of x2, x5 that reduce to f(x5) and ϕ(x5) 
for x2 = 0.  They are given by: 
 

 1

2

x

x

∂
∂

 = x5 , 

 1 = 1 + 3 1 5

2 2 1

x x x

x t x

+∂
∂ +

. 

 
 The last one gives: 
 

x3 + x1 x5 = (t x2 + 1) 
2 2 25
5 5 5/ 2 / 2 / 2

5 5 5 50
( ) ( )

xx x xf x ce x e e f x dx− + +
  ∫ , 

 
and the first one gives: 

x3 = x2 x5 + 
2 2 25
5 5 5/ 2 / 2 /2

5 5 50
( )

xx x xce x e e f x dx−+ ∫ . 

 
 Upon replacing tx2 + 1 with x4 in the first formula, one obtains the general integral, 
which can be further written: 
 
 x1 − x2 x5 = F(x5), 
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 x3 + x1 x5 = x4 F′(x5), 
upon setting: 

F(x5) = 
2 2 25
5 5 5/ 2 / 2 / 2

5 50
( )

xx x xce e e f x dx−+ ∫ . 

 
 

VIII. 
 

 In this last paragraph, we shall occupy ourselves with certain systems for which the 
Kowalewski system that determines the integral multiplicity Mp+1 that passes through a 
given integral multiplicity Mp presents certain simple properties that make the integration 
easy.  Upon preserving the notations of § III, this system is, if we limit ourselves to the 
case where sp+1 = 0, solved for: 

1z

x

∂
∂

, 2z

x

∂
∂

, …, mz

x

∂
∂

, 

 
where the right-hand sides depend upon the variables and the first-order derivatives of the 
unknown functions z with respect to the independent variables x1, x2, …, xp other than x. 
 If one solves the Cauchy problem for a first-order partial differential equation in one 
unknown function then, by a change of independent variables, one is reduced to a 
Kowalewski system precisely, but in which the right-hand sides do not depend upon the 
derivatives ∂zi / ∂xk .  In summary, one is then reduced to a system of ordinary differential 
equations. 
 We seek to find in which case this fact will be produced.  Upon letting, as we did in § 
III, ε, ε(1), ε(2), …, ε(p) denote the p + 1 linear elements: 
 

(ε)    
1

dx
 = 1

0

dx
 = … = 

0
pdx

= 1

1

dz
z

x

∂
∂

= … m

m

dz
z

x

∂
∂

, 

 

[ε(1)]   
0

dx
 = 1

1

dx
 = … = 

0
pdx

= 1

1

1

dz
z

x

∂
∂

= … 

1

m

m

dz
z

x

∂
∂

, 

    …………………………………………., 
 

[ε(p)]   
0

dx
 = 1

0

dx
 = … = 

1
pdx

= 1

1

p

dz
z

x

∂
∂

= … m

m

p

dz
z

x

∂
∂

, 

 
the Kowalewski equations express the idea that the element ε is integral and associated 
with the element Ep [ε(1), ε(2), …, ε(p)], under the single condition that the element Ep 
should be integral. 
 This being the case, suppose that the Kowalewski equations do not depend upon ∂zi / 
∂xk , i.e., on  ε(1), ε(2), …, ε(p), collectively.  The values of ∂z1 / ∂x , …, ∂zm / ∂x that are 
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determined provide an integral linear element ε that depends uniquely upon the point that 
it issues from, and which is associated with all of the linear elements Ep that pass 
through that point, because an arbitrary element Ep can always be linearly deduced from 
e and an element of the form [ε(1), ε(2), …, ε(p)]. 
 In summary, an integral linear element passes through each point that enjoys the 
property of being associated with an arbitrary integral linear element that issues from 
the same point. 
 That linear element is necessarily singular, because it belongs to 1 1r −∞  integral 
elements E2; we say that it is characteristic. 
 In general, an integral element Ep that issues from a non-singular point of space is 
called characteristic if it is associated with an arbitrary integral linear element that 
issues from the same point. 
 All of the linear elements that are contained in a characteristic element Eh (h > 1) are 
themselves characteristic, and the locus of characteristic linear elements is necessarily a 
characteristic planar element that is the largest characteristic element that issues from the 
point. 
 In order to obtain the characteristic linear elements that issue from a given non-
singular point analytically, we let: 
 

δx1, δx2, …, δxr 
 
denote the coordinates of such an element, and let: 
 

dx1, dx2, …, dxr 
 
denote the coordinates of a variable integral linear element that issues from the same 
point.  In order to determine the δxi , one will have the equations: 
 

    

1 1

1 1

1 1

1 1

0,

....................................,

0,

0,

..........................................................,

0,

r r

r r

i i ri i r

i i ri i r

a x a x

l x l x

a dx x a dx x

l dx x l dx x

δ δ

δ δ
δ δ

δ δ

+ + =


 + + =
 + + =

 + + =

∑ ∑

∑ ∑

…

…

…

…

 

 
where the notations are the same as in § I (1).  Moreover, these equations can be true for 
any: 

dx1, dx2, …, dxr , 
 

                                                
 (1) We have set simply:  

aik = i k

k i

a a

x x

∂ ∂−
∂ ∂

,     …, lik = i k

k i

l l

x x

∂ ∂−
∂ ∂

. 
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with the single condition that these quantities must verify equations (1), which are s in 
number: 

(1)    
1 1

1 1

0,

..................................,

0.

r r

r r

a dx a dx

l dx l dx

+ + =


 + + =

…

…

 

 
 As a result, the equation in dx1, …, dxr : 
 

∑ a1i δxi dx1 + … + ari δxi dxr = 0, 
 

must be a consequence of equations (1).  In other words, all of the minors with s + 1 
columns in the matrix: 
 

(A)   

1 2

1 2

1 2

r

r

i i i i ri i

a a a

l l l

a x a x a xδ δ δ∑ ∑ ∑

⋯

⋯ ⋯ ⋯ ⋯

⋯

⋯

 

 
must be zero.  The same is true if one replaces the last row in this matrix with the s – 1 
analogous rows that are deduced from the last s – 1 equations (1), which gives the 
matrices (B), …, (L). 
 By definition, the equations that determine the characteristic linear elements are of 
two kinds: first, one has the s equations: 
 

(1′)     
1 1

1 1

0,

..................................,

0,

r r

r r

a x a x

l x l x

δ δ

δ δ

+ + =


 + + =

…

…

 

 
which express the idea that the element is integral.  Then, one has the equations that are 
obtained by annulling all of the minors in the matrices (A), …, (L) with s+ 1 columns: 
 

(A)     

1

1

1

r

r

i i ri i

a a

l l

a x a xδ δ∑ ∑

⋯

⋯ ⋯ ⋯

⋯

⋯

, 

 
     ……………….………….., 
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(L)     

1

1

1

r

r

i i ri i

a a

l l

l x l xδ δ∑ ∑

⋯

⋯ ⋯ ⋯

⋯

⋯

. 

 
 If at least r of these equations are independent then there exist characteristic linear 
elements, and these equations determine their locus; i.e., the largest characteristic element 
that issues from the point. 
 If the given system is completely integrable then two arbitrary integral linear 
elements are associated, and as a result, the equations of the characteristic elements must 
reduce to equations (1′).  The principal minors of the matrices (A), …, (L) are of degree s, 
if one takes (1′) into account. 
 Now, here are some simple fundamental properties of the characteristic elements: 
 If one is given a characteristic element Ep then any non-singular integral element En 
must contain Ep, since otherwise, in effect, the smallest element that is contained in En 
and Ep would be at least n + 1-dimensional, and it would necessarily be integral since En 
and Ep are associated.  Since the integral element En belongs to an integral element En+1, 
it would then be singular.  Of course, n denotes the genus of the given system. 
 If a characteristic element passes through any singular point in space then the given 
differential system is of the first kind.  This is because if we let ε be a characteristic linear 
element then any non-singular integral element En will contain ε, so there certainly exist 
certain integral elements En−1 that do not contain ε, and naturally, among these integral 
elements there are ones that are not singular (1); let En−1  be one of them.  nr∞  integral 
elements En pass through En−1, and at least one of them is not singular; i.e., it contains ε.  
If rn is equal to at least 1 then there will be at least one integral element En other than 
(En−1, ε), namely, (En−1, ε′).  However, the element (En−1, ε, ε′) will then be integral, and 
the non-singular element (En−1, ε) will belong to another n + 1-dimensional integral 
element, which is impossible.  One must then have that rn is zero; i.e., that the given 
differential system is of the first kind.  There are thus systems of the first kind for which 
characteristic elements can exist. 
 In the same way, one sees that if there exists a characteristic integral element Ep then 
the true genus of the system is at most n – p + 1, because there certainly exists a non-
singular integral element En−p that has no point in common with Ep .  Any non-singular 
integral element En that passes through En−p must contain Ep .  It is therefore determined 
uniquely, and one can denote it by (En−p, Ep).  If En−p belongs to another integral element 
En then the element (En−p, Ep) will be integral and at least n + 1-dimensional.  On the 
other hand, it will contain (En−p, Ep), which will be, in turn, singular.  Therefore, En−p 
belongs to just one integral element En .  Finally, as a result, the true genus of the system 
is at most n – p + 1. 
 One can add that if there exists a non-singular integral element En−1 that contains Ep 
then the true genus is at most n – p, because there always exists an integral element En−p−1 

                                                
 (1) Otherwise, and non-singular integral element En−1 would be subject to a condition of equality, 
namely, that it contain ε.  
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that is contained in En−1 and has no element in common with Ep .  If an n-dimensional 
integral element passing through En−p−1 contains Ep then it also contains En−1, and as a 
result, it is completely determined and unique, since the non-singular integral element 
En−1 belongs to just one n-dimensional integral element En , which is itself non-singular.  
Now, if another integral element nE′  passes through En−p−1 then the element (nE′ ,Ep) will 

be at least n + 1-dimensional and integral.  On the other hand, it will contain (En−p−1, Ep) – 
i.e., En−1 − which is impossible, because no integral element that is more than n-
dimensional passes through En−1 .  Therefore, just one n-dimensional integral element 
passes through En−p−1 .  Finally, the true genus of the system is therefore at most n – p. 
 The following property falls out of these properties, and it will suffice for us to state 
it, since the proof appears to be obvious: 
 
 If a p-dimensional characteristic element passes through each non-singular point of 
space for a differential system of genus n then all of the non-singular integral 
multiplicities Mn that pass through a non-singular point have a p-dimensional element 
that issues from that point in common, and conversely. 
 
 We shall now see the role that the existence of characteristic elements plays in the 
determination of non-singular n-dimensional integral multiplicities. 
 First, suppose that there exists a characteristic linear element.  That linear element 
then makes any point of space correspond to a certain line D that passes through that 
point.  As one knows, there exists a family of curves (i.e., one-dimensional multiplicities) 
such that each of their points are tangent to the line D that corresponds to that point.  
These curves depend upon r – 1 parameters, and one and only one of them passes through 
each non-singular point of space.  We call them characteristic curves; they are obviously 
integral curves. 
 This being the case, consider a non-singular integral multiplicity Mn .  Each of its 
non-singular points admits a non-singular integral element En that, in turn, contains the 
characteristic element ε that issues from that point.  In other words, at each of its points, 
the multiplicity Mn is tangent to the line D that corresponds to that point.  There thus 
exists a family of curves on Mn that are tangent to the corresponding line D at each of its 
points.  These curves depend upon n – 1 parameters, and one and only one of them passes 
through each non-singular point of Mn .  However, it is obvious that these curves are 
characteristic curves.  One therefore arrives at the following result: 
 
 Any non-singular integral multiplicity Mn is generated by a family of characteristic 
curves that depend upon n − 1 parameters.  One and only one of these curves passes 
through each non-singular point of Mn .  If two non-singular multiplicities Mn have a 
non-singular point in common then they have the entire characteristic curve that issues 
from that point in common. 
 
 It results from this that if one is given a non-singular integral multiplicity Mn−1 that is 
not generated by characteristic curves then one will have the integral multiplicity Mn that 
passes through Mn−1 by making the characteristic curve that issues from each point of Mn 
pass through that point. 
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 One thus has the solution to the Cauchy problem when Mn−1 is not generated by 
characteristic curves. 
 We shall now prove these results analytically, which will permit us to neatly see what 
the integration problem reduces to when one knows the characteristic curves. 
 In the case where we have placed ourselves, the characteristic curves are given by a 
system of r − 1 total differential equations.  They are the equations that were previously 
found that determine the characteristic element that issues from point of space.  Let: 
 

y1 = C1, y2 = C2, …, yr−1 = Cr−1 
 

be r – 1 independent first integral of these equations; they determine the characteristic 
curves.  Make a change of variables by taking the new variables to be y1, y2, …, yr−1, and 
an rth quantity yr that depends upon the first r – 1 of them.  With these new variables, the 
system of integral linear elements and the associated linear elements does not change.  As 
a result, the system of total differential equations that determines the characteristic 
elements remains the same.  It is therefore: 
 

dy1 = dy2 = … = dyr−1 = 0. 
 

 The equations of the transformed system must therefore first be verified for dy1 = … 
= dyr−1 = 0.  As a result, one can put this system into the form: 
 

(1)1   
1 1, 1 1 1, 1 1

, 1 1 , 1 1

0,

......................................................,

0,

s s r r

s s s s s r r

dy b dy b dy

dy b dy b dy

+ + − −

+ + − −

 + + + =


 + + + =

…

…

 

 
in which the b depend upon y1, y2, …, yr−1 .  Now, write down that the integral element: 
 

1

0

dy
 = … = 1

0
rdy −  = 

1
rdy

 

 
is associated with any other integral element (dy1, …, dyr).  One will first have: 
 

1, 1 1, 1
1 1

s r
s r

r r

b b
dy dy

y y
+ −

+ −

∂ ∂
+ +

∂ ∂
…  = 0, 

 
with the single condition that the dy must satisfy (1)1; i.e., one must have: 
 

1, 1s

r

b

y
+∂

∂
 = … = 1, 1r

r

b

y
−∂

∂
 = 0. 

 
In other words, one will finally have that all of the coefficients of b are independent of yr . 
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 The transformed system can thus be put into a form such that there remains no trace 
of the r – 1 variables: 

y1, y2, …, yr−1 
 

in either the coefficients or the differentials. 
 One then indeed sees that the number of variables has been reduced by one unit.  In 
order to find the multiplicities Mn of the original system, it will suffice to find the integral 
multiplicities Mn−1 of the new system.  The genus of the new system is diminished by one 
unit, but the degree of indeterminacy does not change, except that the new system can no 
longer be of the first kind. 
 Therefore, whenever one has to integrate the differential equations of the 
characteristics, one is reduced to a new differential system with one less variable, while 
the genus has also been subjected to a reduction by one unit.  One has: 
 

s′ = s,  1s′  = s1, …, 1ns −′  = sn−1 , 

 
n′ = n – 1, 

 
r′ = r – 1, 1r ′  = r1 – 1, …, 1nr −′  = rn−1 – 1. 

 
 Now, pass on to the case where a characteristic element Ep that is at least two-
dimensional passes through each point of space.  The linear equations in dx1, …, dxr that 
determine Ep then consist of r – p independent ones.  One can believe that these equations 
do not determine a completely integral differential system, in general, but this is not true.  
The differential system that we call the characteristic differential system is always 
completely integrable. 
 In order to account for this, it suffices to choose a particular linear element in each Ep; 
i.e., it suffices to append p – 1 arbitrary, but well-defined, linear equations to the 
characteristic differential system.  One thus has a system of r – 1 independent equations 
that is, in turn, completely integrable, and where we let: 
 

y1, y2, …, yr−1 
 
denote a system of r – 1 independent first integrals.  As we just saw, by a change of 
variables, the equations of the system no longer depend upon y1, …, yr−1 .  The 
characteristic differential system then changes into a system of r − p equations, but in r − 
1 variables.  One argues with them as one did with the original ones until one has 
reduced the variables to no more than r – p in number, namely: 
 

(equations missing from the original) 
 
 It is then clear that the characteristic differential system is nothing but: 
 

dz1 = dz2 = … = dzr−p = 0. 
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 Therefore, the characteristic differential system is completely integrable, and one 
can, by a change of variables, put the given system into a form such that its coefficients 
and differentials no longer depend upon the r – p first integrals of the characteristic 
system. 
 One further sees that there exists a family of p-dimensional multiplicities that admit 
the characteristic element Ep at each of their points; one calls them characteristic 
multiplicities.  They depend upon r – p parameters, and one and only one of them passes 
through each non-singular point of space. 
 Any non-singular integral multiplicity Mn is generated by a family of characteristic 
multiplicities that depend upon n – p parameters.  One and only one of these 
multiplicities passes through any non-singular point of Mn .  If two non-singular n-
dimensional integral multiplicities have a non-singular point in common then they have 
the characteristic multiplicity that issues from that point in common. 
 If a non-singular integral multiplicity Mn−p does not have any curve in common with 
the characteristic multiplicity that issues from each of its points then in order to get the 
unique integral multiplicity Mn that passes through Mn−p , it will suffice to make the 
characteristic multiplicity that issues from each point of Mn−p pass through that point. 
 Finally, the general determination of the integral Mn amounts to the integration of a 
new differential system whose genus is reduced by p units, as well as the number of 
variables, but which has the same degree of indeterminacy as the given system. 
 In order to see this last point, it suffices to recall that the true genus of the given 
system is at most n – p + 1.  As a result, one has: 
 

sn = sn−1 = … = sn−p+1 = 0. 
 One then has: 

n′ = n – p, 

n ps −′  = sn−p , …, 1s′  = s1 , s′ = s, 

n pr −′  = sn−p = rn−p − p,  …, 1r ′  = r1 – p, r′ = r – p. 

 
 However, one must not forget that the reduction of this new system assumes the prior 
determination of the characteristic multiplicities.  The generalized Lie-Mayer method 
permits one to convert to a system of genus n – p + 1 (instead of n – p) with no prior 
integration.  However, this system depends upon the particular Cauchy problem that one 
must solve. 
 Finally, we remark that if the number of variables in the given differential system can 
be reduced by p units by a suitable change of variables then the characteristic differential 
system is necessarily composed of at most r – p independent equations.  One thus has the 
following theorem, which was stated for the first time in a slightly different form by von 
Weber (1), and which is itself a generalization of a theorem of Frobenius for systems with 
just one equation: 
 
 The minimum number of variables that one can make the coefficients and the 
differentials of a given system depend upon by a change of variables is equal to the 

                                                
 (1) Loc. cit.  
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number of linearly independent equations in its characteristic differential system.  The 
integration of that characteristic system gives these variables. 
 
 Finally, to conclude the subject, we shall prove the existence of characteristic 
elements in the differential systems of the first kind whose character is equal to one. 
 Take a differential system of genus n for which one has s = 1.  The numbers s2, s3, …, 
cannot exceed s1 – i.e., the unit – then, and one will have, to fix ideas: 
 

s1 = s2 = … = sv−1 = 1,   sv = … = sn = 0. 
 

v is the true genus (which can be equal to n). 
 This being the case, consider a non-singular point E0 and the set of integral linear 
elements that issue from that point; they form an element 

1 1rE + .  In the sequel, we shall 

speak only of the elements that are situated in 
1 1rE + ; i.e., of the elements that are 

composed of integral linear elements.  (One has, moreover, r1 + 1 = n + v – 1.) 
 Take an integral element En and a linear element ε that is not contained in En .  The 
locus of (integral) linear elements that are associated with ε is an element of dimension r1 
+ 1 – s1 = r1 .  That element thus cuts En along an element Hn−1 (of dimension n + r1 – r1 
+ 1 = n – 1).  All of the linear elements that are contained in Hn−1 are then associated with 
En and ε; i.e., with the element En+1 : (En, ε). 
 Now, take a linear element ε′ that is not contained in En+1 .  The locus of linear 
elements that are associated with ε′ is, moreover, an r1-dimensional element that cuts 
Hn−1 along an at least n − 2-dimensional element Hn−2, and all of the linear elements of 
Hn−2 are associated with En+1 and ε′; i.e., with the element En+2 : (En+1, ε′).  One can 
continue in this way step-by-step.  One will have an element Hn−3 whose linear elements 
are all associated with an element En+3 , and so on, until one finally arrives at an element 
Hn−v+1 whose elements are all associated with an element En+v−1 , i.e., an 

1 1rE + .  In other 

words, there exists an element Hn−v+1 whose linear elements are all linear and associated 
with an arbitrary integral linear element.  That element Hn−v+1 is therefore characteristic. 
 It results from this that the given differential system of genus n, true genus v, and 
character 1 admits n – v + 1-dimensional characteristic multiplicities.  After the 
determination of these characteristics, it will then be converted into a system of genus v – 
1. 
 This result applies to just one Pfaff equation (provided that it is of the first kind).  One 
thus recovers the characteristic multiplicities of the systems of first-order partial 
differential equations in just one unknown function. 
 In particular, if the general integral of a differential system depends upon just one 
arbitrary function of one argument (and arbitrary constants) then its integration reduces 
to that of the completely integrable characteristic system and to that of a system of 
ordinary differential equations (1). 

                                                
 (1) Beudon has proved this result for a system of partial differential equations in one unknown function.  
In a series of notes and memoirs, he was occupied with partial differential equations of this nature that 
admitted characteristic multiplicities in the sense of the term that was given in this paper.  In particular, see, 
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 If the general integral of a system of the first kind depends upon an arbitrary function 
of 1, 2, …, v – 1 arguments (and arbitrary constants), where v – 1 is equal to at least 2, 
then one can prove (1) that the system can, with no integration, be put into the following 
form: First, a system of s – 1 completely integrable equations.  Then, a sth equation that 
can be put into the form: 

dz – p1 dx1 − … − pv−1 dxv−1 = 0 
 

by the suitable integration that leads to the characteristic differential system. 
 The problem of integrating the characteristic differential system is not, indeed, an 
arbitrary problem of integrating a completely integrable system of total differential 
equations.  In order to account for this, imagine that one has found a first integral y1, and 
consider the multiplicity y1 = C in space, where C is an arbitrary constant. 
 Then consider, the element Er−1: dy1 = 0 at an arbitrary point A of that multiplicity.  
The characteristic element Ep that issues from A is necessarily contained in the element 
Er−1.  However, if one seeks the integral linear elements of Er−1 then one can, in certain 
cases, find that they are not contained in Ep, in such a way that one obtains a 
characteristic element Eq that contains Ep (q > p), but which is not characteristic for any 
sort of element Er−1 .  In other words, the characteristic differential system of the given 
system, when one makes y1 = C, dy1 = 0, can contain more than one equation less than the 
original characteristic system.  One seeks a first integral y2 of this new system, and so on.  
One arrives at a certain number of first integrals y1, y2, …, yh, in such a manner that upon 
making y1 = C1, …, yh = Ch the differential system thus obtained verifies all of its 
characteristic equations. 
 It is clear that the equations of the given system can all be put into the form: 
 

α1 dy1 + … + αh dyh = 0, 
 
and one perceives that by a convenient choice of the s linearly independent equations that 
define the system, those of the coefficients α that are mutually independent and 
independent of the y define the various integrals of the y of the characteristic differential 
system. 
 This is, moreover, also the way that one can proceed with just one Pfaff equation.  To 
fix ideas, take one equation in four variables with arbitrary coefficients.  If one represents 
a linear element by a point in three-dimensional space R3 then the integral linear elements 
are represented by points of a certain plane (P) in that space, and the images of the two 
associated integral linear elements are such that the line that is their join belongs to a 
certain linear complex.  Now, in ordinary space, the lines of a linear complex that are 
situated in a plane (P) all pass through a fixed point A of the plane.  The point A is 
therefore the image of a characteristic linear element.  The characteristic differential 
system thus admits three independent first integrals.  One then seeks a y1, which will 
determine a plane (Q) in the space R3 .  The integral linear elements that satisfy dy1 = 0 
have points that belong to both (P) and (Q) for their images in R3; i.e., the points of the 
line of intersection (D) of these two planes.  Now, however, two arbitrary points of that 
                                                                                                                                            
“Sur les systèmes d’équations aux dérivées partielles dont les charactéristiques dépendent d’un nombre fini 
de constantes arbitraires,” Annales de l’École Normale, supplement to XIII (1896), 3-51. 
 (1) In particular, see von WEBER, loc. cit.  
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line are associated, in such a way that one has a second characteristic differential system 
that is formed from just one equation [the equation of the line (D) in the plane (Q)].  Let 
y2 be a first integral.  Then: 

dy1 = dy2 = 0 
 

are, if one wishes, the equations of the line (D).  The equation of the plane (P), which is 
nothing but the given Pfaff equation, is then of the form: 
 

dy2 – y3 dy1 = 0, 
 
and y3 is the desired third first integral, because it is obvious that the characteristic 
equations, when put into its new form, can only be: 
 

dy1 = dy2 = dy3 = 0. 
 
 To take another example, consider the case of two equations in six variables.  In the 

general case, the genus of the system is equal to 2 = 
6

2 1+
.  One can represent a linear 

element by a point in five-dimensional space R5 .  The images of the integral linear 
elements are then situated in a three-dimensional space R3, and the lines that join two 
associated points in that space belong to two linear complexes.  In § II, we saw that three 
cases can present themselves.  We take the last one, in which the lines of the complex are 
lines that pass through a fixed point A of R3, and in addition, the lines that are situated in 
a certain plane (P) that passes through A.  Here, there is therefore a characteristic element 
whose image is A. 
 The characteristic differential system will admit five independent first integrals.  One 
first looks for a y1.  Upon replacing y1 with C, one will define a space R4 in R5 that will 
cut R3 along the plane (Q).  The images of the integral linear element in R4 are situated in 
this plane (Q), which naturally passes through A, and the lines that join two associated 
points in this plane (Q) are the lines that issue from A.  Here, there is, moreover, just one 
characteristic linear element.  The new characteristic system is defined by four equations 
that define the point A in R4 .  Let y2 a first integral of this new system.  It defines a space 

3R′  in R4 that cuts (Q) along a line (D) that passes through A; however, all of the points of 

(D) are then associated with each other.  The new characteristic system is thus composed 
of the two equations that define (D) in 3R′ .  One will only have to look for two 

independent first integrals y3 and y4 of that system. 
 One will thus have to look for four integrals using operations of order 5, 4, 2, 1, 
respectively. 
 In reality, one can further simplify this integration after the first integration and limit 
oneself to three integrals that are given by operations of order 5, 3, 1, resp.  However, in 
order to do this, one must enter into the consideration of certain covariant equations, 
which leaves the scope of this memoir. 
 There is one case in which the integration simplifies: It is the one where the first 
integral y1 gives a space R4 that contains the plane (P); i.e., the case where the three 
equations that define (P) admit an integrable combination.  In this case, the images of the 
integral linear elements of the new system are the points of (P), and these points are all 
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associated with each other.  The new characteristic system is composed of two equations 
that define (P) in R4 .  Upon integrating them, one will have two first integrals y2 and y3, 
and the equations of (P) in R5 are then: 
 

dy1 = dy2 = dy3 = 0. 
 

 The two equations that define the space R2 that is the locus of the images of the 
integral linear elements that pass through (P) – i.e., the given equations – are of the form: 
 

dy2 – y4 dy1 = 0, 
dy3 – y5 dy1 = 0; 

 
y4 and y5 are two first integrals other than y1, y2, y3 .  Here, one has a canonical form for 
the system in this same situation. 
 The operations that one must perform in this particular case are of order 3, 2, 1, 
because it suffices, in summary, to integrate the three equations that define the plane (P), 
since the three equations are found to form a completely integrable system. 
 
 

___________ 
 

  
 

 


