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The problem of the existence of integrals for a giwstesn ofs total differential
equations irr variables when that system is not completely integrabk not especially
been the object of any research that would extend the mem&iermann “Uebem
simultane Differentialgleichungen der FodnX, dx‘ = 0” that was published in 1885 in
vol. XXX of Schlom. Zeitschrift. Furthermore, he proposed to only look for the
maximum number of independent variables that one musirtakeer for there to exist a
family of integral multiplicities that filled up allfspace. He then found thahen the
coefficients are arbitranthis number is equal to the quotient, up to a unit, by default,
the total number of variables by the numberof equations, augmented by 1. Moreover,
the remainder of that division indicates the numbendépendent variables that one can
take arbitrarily without the problem ceasing to be possiBl|ce then, there have hardly
been any presentations of the proof of the same rasudiisother form that would ever
attain a state of perfect rigor, moreover, and thase lbeen nothing done regarding the
case in which the coefficients of the differentialteys are not arbitrary.

One can arrive at some precise and general resutking into account the bilinear
covariants of the left-hand sides of the equations ofjiven system, whose introduction
by Frobenius and Darboux has proved to be fruitful in theony of just one Pfaff
equation. In summary, if one limits oneself to coesity the given equations therto
employ a geometric language one says that each tangent at a given pAimf an
integral multiplicity M that passes through that point is contained in a certan
dimensional planar multiplicityR) that is associated with that point. However,neo
introduces the bilinear covariants then one finds thabnly is every planar multiplicity
(T) of dimension 1, 2, ..that is tangent to an integral multiplicity contalne (P), but,
in addition, two arbitrary lines of that planar multgitly (T) satisfy certain bilinear
relations with respect to their director parametdfarthermore, if one represents a line
that issues from\ by a point in am—1-dimensional spack thenthe image of a tangent
to M is required to be in a planar multiplicif§d) of R, but also the line that joins the
images of two tangents to the same integral multiplicity M is requio belong to a
certain number of linear complexes that are associated with A.

In summary, one makes each poinbf the space correspond to not only a planar
multiplicity (H), but also a set of linear complexes in that planaltiplicity. It is clear
that the nature of these linear complexes must influgineeexistence and degree of
indeterminacy of the integral multiplicities.
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Upon denoting the set consisting of a pdinand ap-dimensional multiplicity that
passes through that point By and agreeing to say tha} is integral whenever its image
in R is situated entirely inH), and, in addition, contains only lines that belong ® th
linear complexes that belong Ap one sees that the necessary and sufficient comdaio
a multiplicity to be integral is that all of its ekents must be integral.

If one then seeks to make amdimensional integral multiplicity pass through a
known m — 1-dimensional integral multiplicity then one finds thats is possible
whenever an integral elemest, passes through an arbitrary integral elenkgnpt . The
solution is given by a system that is due to Kowalewskyl it is unique if only ongn,
passes through an arbitrdfy-; .

This being the case, one is led to define an integethe following manner:

At least one integral elemekt passes through an arbitrary pofat

At least one integral elemeBt passes through an arbitrary integral elentgnetc.

At least one integral elemelt passes through an arbitrary integral elenignt

Finally, no integral elemert,., passes through an arbitrary integral elentgnt

The integen thus defined can be called tfpenusof the system.

One can infer some precise conclusions from this oextstence of integrals of the
given system. In order to do this, suppose, in a gemenaner, that the integral elements
Ei+1that pass through an arbitrary integral elentgmtepend upon..; parameters. (If the
element is unique, we agree to giie the value zero). Here, then, is a system of
geometric conditions that determine thdimensional integral completely:

Given an arbitrary poinfuo, an arbitrary multiplicity 4, that passes through that

point, an arbitrary multiplicity 4 _  that passes throughy,
multiplicity x4, _, that passes throughy,_, m there exists one and only one integral

., etc., an arbitrary
multiplicity M, that passes througpp that has in common witl,_ a 1-dimensional,
...,resp., multiplicity such that,_ is an i-dimensional multiplicity that is contained in

lur—rn '
Upon interpreting this statement analytically and geong the manner by which
one obtains all of the integral multiplicities oncedaonly once, one proves that the

generah-dimensional integral is determined, and in a unique manner siggtem of:

S arbitrary functions oh arguments,
31_1 13 n _ 1 13

and

upon setting:
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Moreover, these integessare all positive, anthey increase-or, at least, they do not
decrease-from g to s.

Furthermore, one can give a precise definition to thedwaditrary that is found in
these statements.

One thus sees the important role that is playedhbget integers and the simple
manner by which they depend upon the planar multipli¢kyand the system of linear
complexes that we spoke of above.

In particular, if the coefficients of the given edoas are not subject to any
specialization, which is the case that was studied ibynann, then the genumsis the
guotient, up to a unit, afby s+ 1, and if one denotes the remaindeiwtijren one has:

S =S5 S-1=S%-2=... =5 =5,

in such a way that the general integral depends gparbitrary functions of arguments,
s arbitrary functions oh — 1 arguments, etc., asdrbitrary constants. This is the result
that was proved by Biermann, but obviously with much moeeipion.

The differential systems for which the integgris zero enjoy some particularly
interesting properties; one can call theystems of the first kind.

In a general manner, the integration can be simplifisdveral of the numbersare
zero. Ifs, is that one of these zero numbers that has theeshalbex then one has:

SV:SV+]_: :S1 = 0

For these systems, one and only one integral elefepiasses through an arbitrary
integral elementE,.; . Likewise, it suffices to give the multiplicitieso, 4,_, , ...,

4, that we spoke of above in order determinethe integralM, andto see whether

that integral can be converted into that of a system of genul suffices to make an
arbitrary, but well-defined, multiplicitys,_, _, pass throughy,_, , and make a family of

multiplicities 4, that depend upon, = n — v parameters and fill all of space pass

through it. An integral multiplicityM, corresponds to each of them. The locus of these
muliplicities M, when one varies tha — v parameters that they depend upon is the
desired multiplicityr —r, . By definition, one is reduced to a system efr, variables

of genusvy, but whose coefficients depend upor- v arbitrary constants. In the case
where v is equal to 1, this is the Lie-Mayer method for theegration of completely
integrable systems. One can aathetrue genuof the system.

Along a different line of reasoning, there is a caseralthe integration can simplify
further, which is the one wherecharacteristicelement passes through each pa@int
One thus calls an elemel integral when any other element that is formed fipnand
an integral linear element is also integral, or, asaamesay, whek, is associated with
an arbitrary integral linear element. One can then erthat the system of total
differential equations that defines the characteris¢éiments iscompletely integrableln
other words, there exists a family @tdimensional multiplicities that admits the
corresponding characteristic elemdft at each of their points. These multiplicities,
which one callcharacteristic depend upon — p parameters, and one and only one of
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them passes through each arbitrary point of space.théosystems of genuswhere
there exist characteristic elemeis any non-singular characteristic multiplici§, is
generated by characteristic multiplicities that depend uperp parameters, and if two
integral multiplicitiesM, and M have a common point then they have the characteristic

multiplicity that issues from that point in common.

Finally, if one takes the new variables to be the- p parameters that the
characteristics depend upon gmather arbitrary functions then the system can be put
into a form such that it only contains the first p variables. Furthermore, the search for
theser — p variables— in other words, the integration of the characteridtfterential
system- can, in general, be simplified by taking into account esgroperties of the
linear complexes that are associated with the giveemsyst

In particular, if one has a system of the firstdkat genus for whichs; is equal to 1,
which is the case of just one equation, then therealvaysn — v + 1-dimensional
characteristic multiplicities, whene denotes the true genus of the system. Once these
characteristics have been found by operations whose dedesases by two units each
time, one only has to integrate a system-eh+ v— 1 variables and genws- 1.

There likewise exist very simple theorems in the eelseres; is equal to 2, but the
study of these theorems enters into the theory otlkesificationof total differential
systems.

It is hardly necessary to remark that there are lb&kween all of this theory and the
theory of systems of partial differential equationiswill content myself to pointing out
the agreement in form between the results that amedféor the degree of indeterminacy
of the general integral of a Pfaff system and the ometswere found by Delassu$ for
the degree of indeterminacy of the general integral efsiem of partial differential
equations that is in involution. However, whereas Dakgsut the system into a
particular form by differentiating the dependent variabdésthe unknown functions
completely, moreover, here, there is no differebeaveen the two types of variables,
and the origin itself of the numbesss,, ..., s, shows their invariance with regard to any
change of dependent or independent variables.

The first two paragraphs of this memoir introduce irdegtements, along with the
linear complexes that | have already spoke of. $rélts the problem that consists of
making a multiplicityMm:1 pass through an integral multiplicid, . 88 IV and V give
some theorems that one might call arithmetic on tmeg@eand the numbens ands . 8
VI contains the presentation of the Cauchy problem aedlégree of indeterminacy of
the general integral of a system of genus8 VIl is dedicated to the systems of the first
kind and the generalized Lie-Mayer method. Finally, 8 8 occupied with systems
that admit characteristics in the sense that was divénat word above and gives some
indications on the search for these characteristics.

This research can be extended in many directionsaarahe sees, the problem of the
classificationof the differential systems can already start aitfirst preliminary problem
that takes the form ahe search for systems of linear complexes of genuanather
very important question will be the study sihgular integral multiplicities. It is not
difficult to define them, but what will be interestingthe study of the new differential

() “Extension du théoreme de Cauchy aux systemes les plusagend’équations aux dérivees
partielles” Ann. de I'Ec. Norm. (3), t. XIlI, pp. 421-467.
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systems that they define. As for the first clasatfan problem, one can, without too
much difficulty, prove a certain number of interestimegults, but | will not insist upon
them.

Consider a system of total differential equationsvariablesx, xo, ..., % :

w=adx+adxy+---+ adx=0,
@=bdx+hdx+---+ bdx=0,

X =1dx +1,dx,+---+1.dx =0,

(1)

in which the coefficients, b, ..., | are functions of the variables One can regard a
certain numben of the variablex as independent and the nother ones as functions of
them. The system (1) then establishes linear relabehseen the total differentials of
ther — n functions and th@ independent variables, which is collectively equivalerd to
system of (linear) partial differential equations ttieser — n functions must satisfy').
To use a geometric language, one can say that the egud#htain define the — n
dependent variables as functions of theandependent ones representradimensional
multiplicity M, in r-dimensional space, and the system (1) can be regar@éstbiadishing
the conditions that the differentials of the cooat@s x;, ..., X of a point of the
multiplicity must satisfy under an arbitrary displa@nt on that multiplicity. However,
if one remarks that these differentials (or theiiosat which is all that enters in) are
nothing but thedirector parametersof the tangent to the multiplicity under the
displacement considered, one can say that the sydtemxpresses the idea thie
tangents to a multiplicity Mthat passes through an arbitrary point of space satisfy
certain conditions that depend only upon the point considened the form of equations
(1) shows that these tangents are required to be éntairc planar multiplicity ) that is
determined by the point.

To integrate the system (1), where one supposes thatutinder of independent
variables is equal to, is therefore to solve the following problem:

One makes a planar multiplicity®) that passes through any point of space
correspond to that point; determine an n-dimensional multipliciiysith that at each of
its points all of the tangents to that multiplicity are situated inplla@ar multiplicity that
corresponds to that point.

() One knows, moreover, that any system of partial rdifféal equations can be converted into a
system of total differential equations by regarding, iédezl, some of the partial derivatives of the
unknown functions as new dependent variables.

(® As one knows, a planar multiplicity is defined by lineguations; a line is@aedimensional planar
multiplicity.

() Naturally, the dimension of the that multiplicit/the same for all points of space. It is equahto t
difference betweenand the number of equations (1).
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Any multiplicity M, that satisfies that condition will be callediategral multiplicity.
The condition, thus stated, that integral multiplestimust satisfy isidependendof the
dimensiom of these multiplicities.

Call the set that consists of a point and a line plasses through that pointiaear
element. In addition, agree to say that the set that caneisa point of a multiplicity and
a tangent to the multiplicity at that point consetui linear element of that multiplicity.
Finally, call any linear element that satisfies equatil) (wheredx;, dx, ..., dx will be
regarded as the director parameters of the line oflémeesmt) arintegral linear element
We can then state the following proposition:

In order for a multiplicity to be integral, it is necessary and isight that all of its
linear elements be integral.

Along with the linear elements, we shall consider tmes that we call 2, 3,
...dimensional elementsln a general manner, we referth@ set that consists of a point
and a p-dimensional planar multiplicity that passes through that point as a p-domehs
elementand we denote such an element with the general sylBgholWe say that the
elementE, contains the elemei, (p > q) if the two elements are at the same point and
the planar multiplicity of the first one contairfgetentire second planar multiplicity. In
particular, a linear element will be denoted by the syrEbho

We call thep-dimensional elements§, such that all of the linear elements that are
contained in them belong to a multiplicky theelements fof a multiplicity M or, more
briefly, the elements that are formed from lineanents oM. If the multiplicity M is
n-dimensional then it admits 2, 3, .ndimensional elements, but it does not admhit -
dimensional elements. It admits only ardimensional element at each point, which is
the locus of linear elements that contain that point.

Any elementE, of an integral multiplicity obviously enjoys the property that of
containing onlyintegral linear elementshowever, it also satisfies other conditions that
can be established independently of any particular integral multiplicity.

In order to arrive at these conditions, imagine that coordinates of a point of an
integral multiplicityM,, are expressed by meanshgfarameters, v, ..., and consider the
two displacements on that multiplicity that are aied, in the first case, by varying only
the parameteu to the exclusion of the other ones, and in the secasd, dy varying
only the parameter. Denote the differentials that relate to these tieplacements by
the symbolsl andd. From (1), we will obviously have:

w=adxy+ade+ ... +a dx =0,
W= oK ta o+ ... +ta ok =0,
and as a result:
W = 0wy —daws=0.

Upon forming this expression and remarking that the signidoand o are
commutabl€do = d&d), and then proceeding analogously for all of the egositid system
(1), one arrives at the following system:
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_ 681 GQJ _
W = ——-—=1d J)g—d)@'x =0,

(2) e

. al,
X =3 - -2k (dxdx — dxd x) =0.
k[axk axj PR

The systenf2) is verified by any arbitrary pair of two displacements on the integral
multiplicity, or further by the set that consists of an arbitparint of the multiplicity and
two arbitrary tangents to that point, and in a generahner,by two integral linear
elements that issue from the same point and belong to the same intelgjriaity.

Call an element that fermed from integral elements and is such that any two of them
satisfy systen(2), moreover,a 2, 3, ..-dimensionalntegral element; we then have the
following proposition:

All of thel, 2, 3, ..-dimensional elements of an arbitrary integral multiplicity are
integral elements, and conversely.

In order to simplify the language, we agree to say thatintegral linear elements
that issue from the same point and satisfy the sy&¢rmreassociated?). A 2, 3, ..-
dimensionalintegral element is theran element that is formed from integral linear
elements that are pair-wise associatdetom the bilinear form of equations (2), in order
for an elemenk, to be integral itsufficesthat p independent linear elemenfy 6f Ep
should be integral and pair-wise associated. (Moreasr.elemen€, can be defined
by p independent linear elements that issue from the same)point

The expressions&, o, ..., ¥ that are the left-hand sides of equations (2) areccalle
the bilinear covariants(®) of the Pfaff expressions @, ..., . From the manner itself
by which they are obtained, and conforming to their naome sees that they are
covariants under an arbitrary change of variables.

One can give the system (2) a geometric interpretati@onsider the various integral
linear elements that issue from a given pdindf space, and project them onto rati-
dimensional planar multiplicityR) that does not pass throughwhere the point of view
is the pointA itself. Each element is then defined by tfaee of its line on the planar
multiplicity of projection — i.e., by a point of thatultiplicity (P) — and with our
notations the quantitiedx;, dx, ..., dx are the homogeneous coordinates of that point in
(P). Say that the linear element is integral — i.eat the coordinates of its projection
satisfy equations (1), so they are contained in a ceplinar multiplicity Q) that is
situated in P). If we now take two integral linear elements tha associated and their
projections onto B) then the quantitieslx oxx — o dx are precisely the Plickerian

() Two linear elements that are associated with a thiel are not necessarily associated with each
other.

(® One says thap linear elements aréndependentwhen they do not belong to the samel-
dimensional element.

() Their introduction into the Pfaff problem is due tolenius (“Ueber das Pfaff'sche Problem,” J. de
Crelle, t. LXXXII, 1877) and Darboux, (“Sur le problerde Pfaff,” Bull. Soc. Math. (2) t. VI (1882).
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coordinates of the line that joins these two projectiofiie first of expressions (2)

expresses a linear and homogeneous relation betweencthmsknates — i.e., the idea
that this line belongs to a certain linear complex — &acsame thing is true for the other
equations (2).

In summary,to say that two linear elements that issue from the same poing A ar
integral and associated is to say that upon projecting those elements fropothaA
onto an r1l-dimensional planar multiplicityP) the line that joins the traces of the two
elements is entirely situated in a certain planar multiplidi) and furthermore,
simultaneously belongs to a certain number of linear complexes.

Moreover, in turnfo say that an element,Ehat issues from A is integral is to say
that the planar multiplicity that is traced from that elementg¢R®nis situated entirely on
(Q), and, in addition, that each of the lines of that multiplicity belongdertain number
of linear complexes.

In summary, each poi#t of the given system corresponds to a planar multipl{c)
and a set of linear complexes in that multipliciy) (in an arbitrarily chosero-1-
dimensional planar multiplicityR).

If one makes a change of variables then the elenteatsssue from a poimA are
linked homographically with the corresponding elements tissue from the
corresponding poinf’, andthe set of linear complexes that corresponds to A is also
subjected to a simple homographic transformatin

The important consequence already results from thig sierple remark that if two
systems of total differential equations (in the samenber of variables) do not
correspond to the points of space of the planar mltips (Q) and sets of linear
complexes that are reducible to each other under a hoptogtaansformation then it is
impossible to reduce one of the two systems to the otieeby a change of variables. In
a more precise manner, if one denotes the variablefeofsécond system of total
differential byys, y», ..., ¥r , and we denote the systems that are analogous &md1(R)
by (1) and (2) then one seeks to express the idea that one cafr@asthe system [(1),
(2)] to the system [(1)(2)] by a linear transformation that actsaw, ..., dx, as well as
on oy, ..., K .

Three cases can present themselves: Either thist ipassible for any system of
values ofx andy, and then no change of variables can transformmnbeobthe two given
systems into the other one, or it will be possible lo@ ¢tondition that certain finite
relations between the andy are verified, and then any change of variables thatisff
the desired transformationitt is possible- must respect these relations, or finally that
it is possible for any values @fandy, and then one can say nothing about the change of
variables|f it is possible

Finally, one perceives, without having to insist uponféiog, that the classification of
systems of total differential equations demands the plassification of all systems of
linear complexes, while not regarding two systems of ticeanplexes as distinct when
one is reducible to the other by a homographic transformait®., in other words, the
search for altypesof systems of linear complexes.

() It is obvious that if one simply changes the plangrmjection then one obtains two equivalent
systems of complexes under a homographic transformatiae #iey are thprojectionof each other. If
one replaces equations (1) with other ones that forngaivadent system then it is likewise obvious that
neither Q) nor the set of linear complexes @)(are changed.
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In order to apply the preceding to an example, confiitesystem:

3) _
w=dp-udg- adx bdy0,

{a)s dz- pdx qdy=0,

where the variables arey, z, p, g, u, anda andb denote two given functions of these six
variables. The integration of this system, when amied as having two independent
variablesx andy, amounts to the integration of one second-order, palifierential
equation that admits a system of first-order charsties, and, with the usual notations,
that equation is obtained by eliminatindrom the two relations:

r-us—a=>0,
sS—ut—b=0.

Here, the planar multiplicity @) is three-dimensional, since the homogeneous
coordinates of one of its points are defined when one/éngix, dy, dg, du. We can thus
locate QQ) in ordinary space. Here, there & linear complexes. Now, a system of
two linear complexes in space is always reducible tcobtiee three following ones by a
homographic transformation:

(a) P12 =p24=0,
05) P12 = P13+ P22 =0,
» P12 =p13=0,

in which thepi are the Plickerian coordinates of the line. Ca¥@ies the set of lines
that meet two fixed lines that are not situated in tiheesplane. Casgf) gives the set of
tangents to a fixed quadric at the various points of afggenerator of that quadric.
Finally, case ) gives the set of lines that are situated in a fixedeglalong with the set
of lines that issue from a fixed point of that plane.

Each of these cases corresponds to a type of secondeguation of the indicated
form. Case §) corresponds to equations whose two systems of secded-o
characteristics are distinct. Cas® (orresponds to equations whose characteristics
coincide, and is obtained by expressing the idea that théiegua

r+2us+ut+2¢(u,xy,zp g =0

must admit a double root in, where the functionp is arbitrary. Finally, case §
corresponds to those of these latter equations for wih&lunctiong satisfies a certain
second-order partial differential equation, and which widne object of Goursat’s
research. Their interest is based in the fact ¢im&t can integrate them by means of
systems of ordinary differential equations, as we aaiifirm in paragraph VIII.
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Having posed these preliminary notions, we shall occupy lwasseith what one can
call the first Cauchy problemThe problem to which we thus refer is the following one:

Given an integral p-dimensional multiplicity ,Mbf a system of total differential
equations, pass fromMo a pt1-dimensional integral multiplicity M .

An obvious remark to make is that if the problem is posshen at least onategral
elementEp., passes through any elemdt of M, namely, an elemer,.1 of Mp.s .
One thus arrives immediately at a first necessangition.

In order for the Cauchy problem to be possible, one must have that atoleast
integral element 51 must pass through each elemepbEthe given integral multiplicity
Mp.

Without investigating whether this condition is suffitiewhich it is not, moreover,
we shall limit ourselves to a special case, which nabess presents great generality.
We shall suppose in the sequel that the given system is such tkastabne integral
element k.1 passes through every integral B space. In other words, we suppose that
the property that belongs to the elemdgg®f M, belongs to all of the integral elements
E, in space.

With that hypothesisthe Cauchy problem is always possiblédowever, before
commencing the proof of that proposition, it will beefug to present some geometric
remarks on the integral elemeriis., that contain a given integral elemdsy. If one
defines the elemerfi, by means op linearly independent element?, £, ..., £&” then
one can define an elemdgy., that contain&, by means of a new linear elemerthat is
independent of the firgi. We will have the desired elemesy., by expressing the idea
that £ is anintegral linear element, and that it mssociatedwith each of the linear
elementse™, £2, ..., £, It results from this thathe locus of integral elements.Ethat
contain an integral elementys a planar elemengwhich is not necessarily integral),

because ife and & provide two distinct solutiongp.; and E_,, then thep + 2 linear

elements®, €2, ..., &P £ ¢ determine an elemefi,.,, and any linear element &
is integral and associated witf?, £€2, ..., £”; in other words, all of the elemeriEs.,
that are contained i, and contairk,.; are integral.

Analytically, the element£,., that containE, depend upomr — p homogeneous
parameters’]. The equations that express the idea Hyat is integral ardinear with
respect to these parameters.

() For example, if the equations fBy are:
P=P,= ... =Pr—p: o,

where theP are linear forms imlx, ..., dx then the equations &,., are:

_h_ _Fs

72 e A

~|T

r-p
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If we suppose that these equations reduce-t@ — s— 1 independent ones for an
arbitrary E,, wheres is zero or positive, then at least one integrainelet E,.1 passes
through each arbitrary integral elemé&t. If sis zero then one and only one will pass
through it, and ifs is positive then an infinitude of them that depend up@nbitrary
constants will pass through it. In both cases, we Isatyof of them pass through it. The
locus of all these elements is an elentgnt,; .

It can happen that for some particular integral etgrig there will be a great degree
of indeterminacy, moreover; we then say that thegnatieelementg, is singular. An
integral multiplicity M, whose element&, are all singular will be called singular
integral multiplicity.

We now arrive at the solution to the Cauchy problene 3hall prove the following
theorem:

Given a non-singular integral multiplicity ,E at least one integral multiplicity
passes through that multiplicity. One and only one passes through it iheagingular
integral element F belongs to one and only integral element:E There are an
infinitude of them that depend upon s arbitrary functions eflmarguments if each non-
singular integral element Bbelongs tao® integral elements k; .

More precisely, take a particular non-singular elemehtMp, say,Eg. Let

(X, %,...,X°) be the coordinates of the point from which that elenissies. We
suppose that the multipliciti, is analytic — i.e., that in a neighborhood of the point
(xX°), r — p of the x coordinates- say, Xs+1, ..., X — are expressed as holomorphic

functions ofx; =X, X2 =X;, ..., % —X’. Ther —p equations of the elemett; can then
be solved fordXy.1, ..., d% . Take a particular integral eIemelElﬁ+l that passes through

Eg. Ther — p —1 linear equations that define it can be solvedrferp — 1 of the

differentials dxp+1, ..., dx , say,dxp2, dXs, ..., dX% . If an integral multiplicityMp.1

admits the eIemenEg+l then this signifies thaty., ..., X are expressed as holomorphic

functions ofxs, ..., X+1 In @ neighborhood of the point considered. For the s
convenience in what follows, we shall change the ranatwhile preservingi, xa, ..., Xo,
and replace,+1 with x and the other variableg., ..., X with z;, 2,..., Zn (M=r—p —
1).

With these notations, the equations for the mudigyliM,, are:

X=P(X %0 %),
2 =91(% %reees %)

20 = P X % ),

(4)

and the desired multiplicitil,+1 can be defined by giving, z,..., znas holomorphic

functions ofx, xy,..., X, in a neighborhood 0§, X/, ..., X.
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Finally, we shall make a change of variables by preseth@gariables, Xy, ..., X;
2, o,..., Zn and taking the variabbe to be the quantityx — ¢, which obviously changes
none of the preceding conventions that were made. Thismsito supposing thgt=0
andx’ = 0 in formulas (4).

To conclude the statement of these preliminary corwesitiwe suppose that the
coefficientsa, b, ..., | of the system (1) are holomorphic in the neighborhood of

(4, %1 Zy) -
The desired multiplicityVl,+1 is defined bym functionsz, z,..., z, of p + 1 variables,
X, X1,..., Xp that are holomorphic in a neighborhood @x’,...,x%) and required to

reduce tan functionsgs, @, ..., #m 0f X1, X%, ..., %, that are given in advance for 0.

The equations that determine these functions are deduaed dguations (1) by
replacingdz, ..., dz, with their values and identifying them. Howewer shall replace
the system thus obtained with another system that contains a larger nunelogiatbns,
and which quite simply expresses the idea that the elemgatsfEhe multiplicity M.,
are integral

In order to do this, we remark that each elenignt of M,.1 can be defined by + 1
independent linear elements, namely, the ones that aam®lby varying just one of the
independent variables xi,..., X, . These + 1 elements, which we caff”, ..., &, are
defined by:

(8 dx_dq 9% _dz__dz
1 0 0 0z 0z,

0x 0x

(é(l)) %:d—xl: :d—:d—zi: :d_Zﬂ
o 1 0 0z 0z,

X 0%

(é(p)) %:d_xl:”_:d_xp:d_zl:_“:d_;n.
0 1 1 0z 0z,

X, X,

We divide the equations that express the ideaBpatis integral into two groups:
The first group expresses the idea that the eleEgthiat is defined by™®, £2, ..., & is
integral. The second group expresses the ideastisaintegral and associated wit?,
&9, &,

If one of the equations of the system is:
w=Eadx+tadx + ... +adx+bidz + ... +bndx, =0
then we set:

Qza+b, %+ . +p, P
ox ox
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Qiza+bh B+ +by P (=12 ...p)
0X, 0X,

With these notations, the equations of the first gragpas is easy to see:

00,
=0, E-Zh-0 (j=12.p)
0 ox; 0%

and those of the second group are, for example:

a0, 2299

(In ax  ox 0 (.j=12.p),

where the ellipses refer to the other equatins 0, ..., y = 0 of the given system. The
symbolof / dx; refers to a derivation with respecto while regardingz, 2z, ..., zZn as
functions of; .

Equations (1) do not contadz; / 0x, ..., 0zn / 0%, while those of the second group are
linear in these quantities. One can, moreover, modéyrttby taking equations (I) into
account.

Now, take the hypotheses that were made into atcodrrom the fact that the
elementE, that is defined by™, £2, ..., £ is integral, the equations thdtmust satisfy
in order for Epq to be integral are compatible. This signifiesttiva order for the
equations to be verified, equatio(iy, when considered as equations that are linear in
0z, /10X, ..., 0zn / 0%, are algebraically compatible More precisely, they reduce o — s
independent linear equations. In particular, thisue, by hypothesis, for the system of
values (0,x’, ..., X2). We suppose, to fix ideas, that with the initialues thesen — s

equations are soluble for:

o oon G
ox ' ox’ ' ox
namely:
0z, _ 07, 0%, ., 0%,
—2=¢ X, Z,—= , , ,
ox { X% ox ' 0x ax
(1) e ———————— :

in which the® are holomorphic in a neighborhood of the initialues of their arguments
(and linear with respect @ys+1 / 0X, ..., 0Zn / 0X).



Cartan — On the integration of systems of total diffeetmiuations. 14

This being the case, instead of preserving the set of egaiéfjand (I1), we preserve
only equations (I), while we nevertheless recall that equations (I) @hg imply
equations (Il) algebraically.

We shall now seek to determine a solution to equationp tfat satisfies the

following conditions: z, ..., zn are holomorphic functions oX, xi, ..., X in a
neighborhood of (0x’, ..., X}), and forx = 0 they reduce tm given functionsgy, ...,
PmOf Xq, ..., %p.

Now, the system (1) is a Kowalewski system. From the work that hasnbgone on
these systems, there exists one and only one soluhan i$ holomorphic in a

neighborhood of (0, ..., x}), and is such thatms1, ..., Zn are arbitrarily given
(holomorphic) functions, and for= 0, z, ..., zy reduce tcs given functions ok, ..., Xp.

This being the case, one can thus take:

Zm-s+1 = fmsr1(X, X1, -y Xp),
Zin = frlX, Xa, .+, Xp),

where the s functions f are subject to only the condition that$d they must reduce to
s given function®m=s:1, ..., §m. Once these s functions have been chosen, the system
(11") will admit one and only one solution that satisfies the stated conditions

One sees, moreover, that one can always arrangentlsuch a manner that tke

azg‘s*l Ve aazm take arbitrarily fixed values for = 0,x = x°; i.e., that the
X X

multiplicity My+1 thus determined will admit any one of the integral elemeptstkat
passes througrEg that one desires.

The original problem is still not solved now, sintésiclear that the desired integral
multiplicities can be found only among the multiplieg that we just determined, thanks
to the theorems of Kowalewski, so it does not reiat these multiplicities will truly be
integral. In other words, it still remains for us to prove thase multiplicities satisfy
equations (1) and (I1). In order to do thvge shall prove that if a multiplicity M that is
determined in the way that we said satisfies equafigrend (I1) for a certain value of x
then it also satisfies them for the infinitely neighboring valued.+

If this is proved, as it is fox = 0, then equations (I) express the idea that the
multiplicity M, thatMy.1 reduces to is integral, which is nothing but the hypothasid,
that equations (1) are assumed to be verified by the multiplicils.,, and in turn,
equations (Il). It will then result that equationsdi)d (1) will be verified for any value
of x.

Now, suppose that equations (1) and (Il) are verifiedafarertain value ok. One
then has, in particular, that for that valuexof

guantities

E—a_Q =0

QZO, Qi:O,
oxX 0%
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However, ifQ is zero then the same is true for its derivadie/ dx; when it is taken
with respect to the variabbe , independently of.x ThereforegQ; / dx is zero for the
value ofx considered. Now, to say th@t andoQ; / 0x are annulled for the valueis to
say thatQ; is annulled for the infinitely close valuxet x. The same thing is true fo€;

/ 0x; and analogous quantities for- X. Thereforegquationgl) are verified for x+ ox.

By hypothesis, the same thing is true for equatiofs @hd as an algebraic consequence
for equations (II), which are equivalent to'Yllupon taking (l) into account. Therefore,
all of equationgl) are verified for x+ .

The theorem is thus proved. We given it the nam@anfchy’s theoremby analogy
with a well-known theorem in the theory of firstder partial differential equations, and
of which it is only a special case.

If we refer to the system (3) as an application twensee that each integral linear
element that issues from a given point, that is ayitmoreover, can be represented by a
point in ordinary space, and that an integral elergegm then represented by a fixed line
that, in the general case, is required to meet two fixed that are not situated in the
same plane. It results from this in an obvious way time and only one two-dimensional
integral element passes through any integral elementgedenly one line that meets
two fixed lines passes through a point in ordinary spad&erefore, one and only one
integral multiplicity M, passes through any non-singular integral multiplidtyy. Here,
the singular linear elements are the ones that presented by the various points of two
fixed lines. The singular integral multiplicitieéd; thus divide into two distinct series;
they are nothing but what one calls ttiearacteristicsin the theory of second-order
equations.

We return to the general case. An integral multigliéil; of system (3) will be
obtained, for example, by takingy, z p, q to be five functions of the same parameter
variable that are required to verify the equation:

dz-pdx-qdy0,
and upon determining by the equation:
pP—-ad-ax —-by =0.

In geometric language, one thus obtains the set inpeesof X, y, 2) that consists of a
curve and a developable that is circumscribed by that camneeCauchy’s theorem shows
thatthe second-order partial differential equation that is equivalent to my&@galways
admits one and only one surface integral in the spadg, gf 2) that passes through an
arbitrarily given curve and is inscribed along that curve by an arbitrajiyen
developable.

V.
Cauchy’'s theorem exhibits the importance of the propdrtth® system (I) from

which each integral elemeitf, belongs to at least one integral elemept; . This
legitimizes the following definition:



Cartan — On the integration of systems of total diffeetmiuations. 16

We say that a system of total differential equations I6BENUS n if the integral
elements with respect to that system satisfy the following it

At least one integral element; [passes through an arbitrary point. At least one
integral element Epasses through an arbitrary integral element &c.

At least one integral elemen} gasses through an arbitrary integral elemept;E

Finally, no integral element & passes through an arbitrary integral element E

More precisely, we suppose that:

" integral elementd; pass through an arbitrary point,

g
00 “ E, “ “ integral E; ,
oo “ En “ “ integral En-1 ,

where some of the numbarsr,, ..., r, can be zero, and we continue torletenote the
number of variables, which amounts to saying that there'agpoints.

We also sometimes say that the systehen considered dsaving i< n independent
variables,is in involution.

A system of genus zero will necessarily imply that:

dxy =dx = ... =dx = 0;
one can omit such systems.

One recognizes the following properties of a system onfigie immediately from the
preceding and from Cauchy’s theorem:

A system of genus n always admits at least one integral multipigithat passes
through an arbitrary point, an integral multiplicity Mpasses through an arbitrary
integral multiplicity, etc., an integral multiplicity Mpasses through an arbitrary integral
multiplicity My .

We agree to say that an integral elem&nis singular if it belongs to at least one
integral elemenE,.; , that an integral elemeBt.; is singular if it belongs to at most”
integral elementg&, , or if the ™ integral elements to which it belongs are all singular
etc., and finally that a point is singular if it belorigsat mosteo" integral elementk;, or

if the «" integral linear elements that issue from it areinfsar.

Since the conditions that a singular integral elenmeast satisfy are conditions of
equality, one neatly sees that one can always, and in anitutfie of ways, find a
sequence of integral elements:

Eo, E1, BEp, ..., En,

whereEp denotes a point such that each element of the seqbelweys to the one that
follows it, and where none of them are singular. Cawe then confirm the existence of
an integral multiplicity that passes through the p&gntnd admits the elemeBg, of an
integral multiplicity M, that passes througi, and admits the elemeid, ..., of an
integral multiplicityM, that passes throudW,-1 and admits the elemeht ; however, by
contrast, one can confirm that no integral multiplicity.Mpasses through Msince the
elementE, does not belong to any integral elemEgnt; .

Therefore,a system of genus n admits no integral multiplicity.;,Mhat passes
through an ordinary integral multiplicity.



Cartan — On the integration of systems of total diffeetmiuations. 17

These propositions show the importance ofgéeusof a system of total differential
equations.

V.

The numbers, ry, 1o, ..., Iy play a big role in the study of the indeterminacy of the
most generah-dimensional integral multiplicity. Also, before beging that study, we
shall prove some remarkable properties of these numbers.

We first prove the following theorem:

Each number in the sequence:
rl rll r21 sy rn,

is greater than the following one by at least one unit.

Indeed, first of all, the linear elements that isseenfa point in space depend upen
1 parameters. Now, not all of these linear elemewtsi@cessarily integral; therefore:

r—-1=r;.

In a general manner, take a non-singular integraleseBy-1 . By hypothesis, that
element belongs te" integral elementg,, at least one of which is not singular. Each
of them can be defined by an (integral) linear elemaattighindependent df,-1, which
gives ug, + 1 linear elements:

£ &, &, ..., &

"

that are independent of each other andEgpf, and we may suppose that the integral
element Ep1, &), for example, is not singular. That element,umt belongs toeo™
integral element&,.1, each of which can be defined by means of a linear elethat is
independent oftp.1, £, but which necessarily depends uggn, & &, &, ..., £ - It is

therefore necessary that one must fipd + 1 such independent elements. One then has:

I’p Z I’p+1 + 1
Q. E.D.
It results from this that each of the numbers:

r,ri+1,r+1, ...r+i1, ...,fr-1+n—-1, r,+n

is equal to at least, since these numbers cannot be increasing, and thef ldstm is
equal to at least.
Here is a second proposition:

r,+r

oo» et integral elements & (p < n — 1) pass through any non-singular integral
element g1 .
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Indeed, take a non-singular integral elentgnt . Let:

&g &, &, ..., E

"

ber, + 1 linear elements that are independent of each atttemdependent d&,-1, and
definer, + 1 independent integral elemeilds. Suppose, to fix ideas, that the element

(Er-1, &), which we denote b>Eg, is non-singular. Finally, suppose that the integral

elementE,. that passes throug‘ﬁg is (Er-1, & &), which is always permissible; Iﬁg+l

be that element. Any integral eleméit, that passes throudf,-1 will be obtained by
appending two linear element’s &' that depend upos &, ..., £ 1o Ep-1. In general,

there will exist just one element that is a linear boration ofg, &' that depends upon
(&, ..., £rp) (because this is also true for the particular elenﬁq). We thus see that

any integral elemert,.: that passes throudgh,-, can be obtained, and in only one way,
by taking a linear elemet that depends upam — 1 parameters; thus, the same thing is
true forE, . Moreover, exactlyo™ integral elementEy.; pass througk, (because this
is true for the particular non-singular elemeﬁfﬁt). Therefore, one finally has th&p+,
depends upon:
rp—=1+rpu

parameters.

The proof persists just the same tfior 1.

We shall prove in the same manner thap € n — 2 thenc
elements [ pass through a non-singular integral elemept; .

We always preserve the same notations. Egtdenote a non-singular integral

Fp= 2T g — 14

"2 integral

element that passes throu@h-i, namely, E,-1, &), let Eg+l denote a non-singular

integral element that passes thrm@] namely, Ep-1, &, &), and finally IetEg+2 denote

an integral element that passes thrm@)l, namely, Ey-1, & &, &). Any integral

elementE,., can then be obtainednd in only one wayby appending a linear elemegit
that depends uporef &, ..., .srp) to E,-1 and making an integral elemeB., pass

through the integral elemeB}, that was thus determined. Indeed, the particular integral

eIementEg+l contains just one integral elemdfy that satisfies that condition, namely,

Eg. Now, the element' depends upon,—» parameters; the same is then trueHgpr.

Moreover, ™™ integral element&,.:, pass througl, , which is not singular (since
Eg, in particular, is not). Therefore, the number afgmeters they., depends upon is
indeed equal to:

(rp—2) + €pr1—1) +rps2.
Q. E.D.

One sees how the theorem is generalized step-by-stepgeneral manneif,p <n —
i then integral elementsyk pass through a non-singular element;Ehat depend upon:
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i +1)
2

(rp=0)+(pra—1=1)+ ... Cprica— 1) +rpi =rp+ ... +lpwi —

arbitrary constants.
Of course, the locus of all these elements is nogeneral, a planar element, except
wheni is zero.
In particular, an infinitude of integral elemertts pass through a non-singular point
of space that depend upon:
n(n-1)

ri+ro+ ... +r,
2

arbitrary constants. I =r thenr; =n -1, ...,r, = 0, and there is just one integral
elementE, .
Finally, here is one last very important theorentlensequence of numbets

Each number in the sequence of positive or zero integers:
r-=ry—r, r—ro—1, ...rh1—rp—1
is equal to at least the following one.

The fact that the numbers considered are positive ar msults from the first
theorem that was proved about the sequence:

rry ...,f.

To prove the stated theorem, consider a non-singotagrial elemengy-1 . It is
possible to make a non-singular integral eIerrEEupass througlie,, and then make a

non-singular integral eIemerEg+l pass through it, and finally make an integral element
Eg+2 pass through the latter. (We suppose that n — 2.) Letg &, & be three

independent linear elements Bf-1, and defineE? These three elements are thus

p+2°
integral, associated with,-; , and associated with each other. Now, there exist1
independent integral linear elements that are associatbdwi . We can thus denote
them by:
& &, &, ..., Erp.
We seek all of the integral elemefgs; that contairEy-1. Each of them will contain
at least one linear elemesitthat is deduced linearly from:

&, &3, ..., E

)
"
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and, in general, it will contain just one (Iiktég+2). Likewise, it will contain one, and,
generally only one, linear elemesitthat is deduced linearly from:

&, &, ..., E

and finally one and only ong that is deduced linearly from:

&, &, ..., Erp.
One thus sees that, in general, a desired eleBentwill be definedby the three
linear elements, &, £'. Each of them depends upgn- 2 parameters, which makes:

3(rp—2)

parameters, in all. In order for the element torttegral, it is necessary and sufficient
that these three elements be pair-wise associatexv, &h arbitrary element that is
deduced linearly frorg, &, ..., & _is associated with,.; + 1 other independent elements

of the same form. In other words, in order to expthssidea that an arbitrary element
that is deduced linearly fror, ..., £ and, in turn, depends upap parameters is

associated with a particular element of the samen,fat is necessary that thesg
parameters satisfy, — rp.1 — 1 relations. Upon returning to our three elements, &',
we then see that in order to express the idea thadftem are associateal, most § -
Ip+1 relations between their parameters are necessargh \ghiesat most:

3(I’p - rp+1 - l)
relations, in all. Since there are:

parameters, one sees thae integral elements & that pass through a non-singular
integral element f1 depend upo@t most:

3(I’p - 2) - 3(I’p - I’p+1 - l) = 3rp+1 - 3
parameters.
Now, from a preceding theorem, this number of parametergual to:

Mo+ Ipr1+Ipi2— 3,
so one thus has:
Mo+ Ipr1 +Ipi2— 323 Mp+1 — 3;
l.e..
Mot lp+12 Mps1 — Ipe2.

The proof applies just the samegpiis equal to 1.
One can complete this theorem with the following ndema
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If nis the genus of the system then one has:
rn—l - rn— 12 rn .

Indeed, le€,, be a non-singular integral element. LEt-, &) or E., denote a non-
singular integral element that passes throighand let En-, & &) or E denote a non-
singular integral element that passes throligh. One can findn-; + 2 independent

integral linear elements that are associated Bjth and, likes andé&, are already two of
them; one can denote them by:
& &, &, ..., Ern_l.
Exactly o™ integral element&, pass throughe’ ;. We can thus suppose that they
are all deduced from:

(En2 & &), Ew2s5&), ... En2&¢& )

n+l

Now, take the integral elemerq(z, & &); it also belongs to (at leas®™ integral
elementsE, . One can obtain each of them by means of a lifeareat that is deduced
from:

& &, &, ..., Ern_l

and associated with . Now, if we first take the ones that are deduced from:

& &, ...y €

e

thenthere is onlyg, since otherwise one would have that the elerggibr example, i.e.:
(En—2, ‘91 gll 82)1

will be integral which is contrary to hypothesis, since it passes throhghon-singular
elemenE;’. There thus exist at leastindependent linear elements that can be deduced
from:
E var o & a5
one then necessarily ha: (
f-1—rh—12rg.

The sequence of inequalities:

() The proof does not persist whar= 1. However, the theorem does not cease to be mdet &
pointless to give the proof.
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5) r-ri—1=ri—-rp—12rpq—rn—12r,

results from these various theorems.
The numbers in this sequence play a very big role. \Wetdéhem by:

S SLS, S
by setting:
s=r-n-1,
s=6-r-1
() R S :
1= e 71 -1
S, =1

An interesting special case is the one in which tieeeezero term in the sequence of
S. Suppose thas, (v < n) is the first one that enjoys that property. One wikn
necessarily have, from the inequalities (5):

SV:SV+]_: :S1 = 0

The following considerations permit one to account fos tlesult in another way,
and, at the same time, lead to some new and imporianenies of these systems.

Consider a non-singular integral elemént; . Let E,-1, £ be a non-singular
integral element that issues frdfy.;, whereg denotes an integral linear element that is
independent oE,-; and associated with iteo"* 1+1-dimensional integral elements pass
through that elemeni&(-4, &); i.e., since 1 Is equal ta -1, from the fact thas, = 0, one
can haver, and only r, mutually independent integral linear elements that are
independent off,-1, £ and associated with,-; and&, namely:

&, &, ..., ‘gr,,'

Now, one cannot find more than+ 1 mutually independent integral linear elements that
are independent df,-; and associated with it. Therefoamy integral linear element
that is associated with & is deduced linearly from:

EV_ll ‘91 gll ‘921 ey grv .
It results from this that any two elememtare associated — for exampég,and & ;

because the integral elemeii,§, &) that belongs to at least”™ = o (n + 1)-

dimensional integral elements is associated atitkeast , mutually independent integral

linear elements that are independentEbf4, &), and since there agd least r, of them
that enjoy that property, namely:
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& &, ..., ‘gr,,’
one sees, in particular, th&,(;, &) is associated witls, . One see, moreover, that the
element E,-1, &) belongs to exactlyo”™ (v + 2)-dimensional integral elements. One
thus has:

M2 =1y — 2,

and so on: A¥— 1 +r,)-dimensional element that passes throbgh, namely, E, -1, &,
&, ..., ), belongs to exactlpne = "™ p-dimensional integral element, and finally,

one and only one + r,~dimensional integral element, namelg.4, & &, ..., ), and

no v +r, + 1-dimensional integral element passes through thaieele Finally, it results
from this that all of the integral elements that p#s®ugh E,.; are non-singular
elements.

In summaryijf one has:
Sy =ry—ru1—1=0
then the genus of the system is:
n=v-r,.

One and only one integral element Easses through a non-singular integral element
E,-1 . The locus of integral elements that through; &s the element £ Moreover, one
has the equalities:
ry=rm+1l=ru+2=..=n-v,
which implies that:
SY=S1= ... =S1 =5 =0.

In particular, ifv is equal to 1 then any two integral linear elementsisisae from a
non-singular point are associated. An integral elen®rgimply an element that is
formed from integral linear elements.

To conclude this paragraph, we shall determine the numpers..., r, for a system
of h total differential equations in variables,while supposing that the coefficients are
not subject to any specialization.

One will obviously first have:

rr=r—mh+1).

In a general manner, suppose that the gansgreater thap and that one knows . If
Ep-1 then denotes an arbitrary integral element then ategral linear element that is
associated witlE,-; can be deduced linearly frolB-; andrp + 1 other linear elements:

& &, &, ..., Erp.
We seek to discover how many integral elemdfts pass through the integral

element Ep-1, §. In order to do this, one must append a linear elegeats that can be
deduced from:



Cartan — On the integration of systems of total diffeetmiuations. 24

&, &, ..., E

"

and is associated with Now, that element' depends upor, — 1 parameters, and one
needsh equations to express the fact that the element iciassd withe. If rp — 1= h,
then one has that:

Mp+t1=Tp— 1 —h,

and ifrp — 1 <h then there is np + 1-dimensional integral element. One thus sees that
one passes from the number r to the following one by subtracting,hand repeating
that as many times as possible:

rr=r—mh+1),

r,=r—2h+1),

As a consequence, the gemuis the quotient, up to a unit, pbyh + 1, andr, is equal to
the remainder of the division.
rm=r—h+1) =k

The genus of a system whose coefficients are not specializecei®thergual to the
guotient, up to a unit, of the number of variables by the number ofi@gsi@lus one.

Here, the sequence of numises:
S=S§=...=%-1=h, s =k

In particular, if there is only one equation then theuges the mean of the number of
variables; if there arer2or 2n + 1 variables then it is. In the first case, an integral
multiplicity M,-; belongs to one and only integral multiplich§, . This result is well
known.

VI.

We shall now look for a system of conditions thatermineany integral multiplicity
M, that is required to satisfy these conditions, wimedenotes thgenusof the system of
total differential equations (1).

We first make the obvious remark that all of the restilat were proved up to here
persist if one adjoins a certain numbefioite equations:

)
fo (% %50 %) = 0,
to equations (1).
Indeed, it suffices to append to equations (1) the oné®teaobtains by taking the
total differentials of equations (1and considering only the points in space that satisfy
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equations (1)in the new system that is obtained, which we wiiére¢o by the name of
integral points.

We seek what sort of variations will preserve the gemasthe integers when one
then add<h arbitrary finite equations. In summary, one obtains a new systktotal
differential equations whose integral multiplicitie® ahose integral multiplicities of the
original system that are required to be completelyainatl in the arbitrary multiplicity
m that is represented by equations.(1)t is obvious, first of all, that the numbers
reduced byh units; in other words, there are now or¥y™ points to consider. We
suppose that these points are not all sing@¥ith respect to the original system), since
otherwise the multiplicitys would not be calledarbitrary.

Now, take anon-singularpoint Ep of 1. " integral element&; pass through that
point; i.e., one can find, + 1 independent integral linear elements:

E &, &, ..., E .

n

On the other hand, the elemeant,, which is the locus of all linear elements gfalso
containsr — hindependent linear elements. If one has:

rr+1+r—-h<r

then suppose that, contains no integral linear element, which is the gdrease. The
second system then has genus zero:

r'=r—h, ri—h<o.
If, on the contrary:
ri+1l+r—h>r

thene 4 containsat leastr; + 1 —h integral linear elements. We suppose, and this is
obviously the general case, thet, contains exactly; + 1 —h of them. One will then
have:

r'=r—h, r, =ri—h.

In addition, we suppose that the"™ integral linear elements @&, are not all
singular.

Then, lete be a non-singular integral linear elemengof. «" integral elementk;
of the system (1) pass through i.e., there exisr, + 1 independent integral linear
elements that are associated wdtimamely:

E &, &, ..., ‘gr2+1'

On the other handy 4, containsr —h — 1 independent linear elements along veithlf
one has:
(rz+2)+¢-—h-1)<r,
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r, <h,

thene o, will not, in general, contain the integral elemgnt that is what we suppose. In
that case, one thus has:

r, <h, n =1, r'=r—nh, r, =ri—h.

However, ifr, = h thene , containsat leastr, + 1 independent integral linear elements
that are associated with We suppose, and this is obviously the general caseg that
containsexactlyr, + 1 —h of them; i.e., thato"™ integral elements that are contained in
€+ pass througls. Moreover, we suppose that at least one of thentisingular. One
will then have:

r'=r—h, b, =r1=h, 1, =ro—h, n=2.

One sees how one can proceed and what the propedidsa one supposes for the
multiplicity 4 in order that the line should have the quali&idsitrary. In this case, if #
denotes the last number r that is greater than or equal to h then ivs gecomes equal
to m, and one has:

r'=r—h, b, =ri=h, .., 1 =rm—h

m

It is clear that the conditions that a multiphcitz must satisfy in order to not be
arbitrary are conditions @quality In particular, on any multiplicity one can find anro

singular pointE,, a non-singular integral elemel that issues fronk,, a non-singular
integral elemen€; that issues fronk,, ..., and a non-singular integral elemegit that

issues fromE? ,. However, no integral elemeBn., that belongs to the multiplicity

0
m !

through the integral elemef®’, (i < m) must be exactlyo" ™.

This having been established, we shall consider an aybmon-singular poinisp .
Make an arbitraryr — ri-dimensional multiplicity . pass through this point, an

passes througlt_, and the number of integral elememlsthat belong tqu that pass

arbitraryr — ro-dimensional multiplicity 4 pass throughy,_ , etc., and finally, an

- !

arbitrary r — rp-dimensional multiplicity . pass throughy, _ (). Each of these

() This is always possible. Indeed, consider a non-kingntegral eIemenEf that issues fronk,, a
non-singular integral elemenE(, &), or E,, that containsE/, ..., a non-singular integral elemeri(,
&-1), or E7, that containsE,, . Then, lete_ denote an element that is formed frah and ¢ —ry — 1)
other non-integral linear elements, ha;j[rz denote an element that is formed frceml, e, andry —ro—1
other non-integral linear elements that are not st with E, ..., and finally let g denote an

element that is formed frone &-1, andr,4 —r, — 1 other non-integral linear elements that are not

— i)
Th-1
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multiplicities corresponds to a certain system ofltdifferential equations. For the
multiplicity ¢, _ , one ha® =ry, in such a way that:

n =1, r'=r—ry, r, =0.
For 4,_, one ha® =r,, and in turn:

n" =2, r"=r—ry, k =ri—ry 1,=0,
and so on.
It results from this that the given system admite and only one integral multiplicity
M, that passes througly and is contained iy, (since the system that gives the
integral multiplicities that are contained/n, has genus 1 and is zero). Moreover,

that multiplicity is not singular, because it admised€the note) a non-singular linear
element.
Likewise, since the integral multiplicities that arentained ing,_ are given by a

system of genus 2 with, = 0 andM; is a non-singular integral of that system, it result

from a theorem of Cauchy, that there exists one ang intégral multiplicity M, that
passes throughl; and is contained ip;_, . Moreover, that multiplicity is not singular.

One can continue step-by-step, until one has an intdfjralthat is contained in
4, .- There then exists one and only one inteytathat passes throug¥l,-, and is

contained ing,_, , and that multiplicity is not singular. Therefotieere finally exists no

integral multiplicityM,.1 that passes throudW, .
In summary, upon applying Cauchy’'s theorem several times, arives at the
following result:

Given:

an arbitrary pointip ,
an arbitrary multiplicity 4, _, that passes througj,

1 ﬂr_rl ,

there exists one and only one integral multiplicitytibht passes througly and:

has a multiplicity M in common withu,

- !

associated WitrE_ . It suffices to takey, to be a multiplicity that admits the elemest , 4

r-

. to be a

multiplicity that admits the elemem_ , etc.

-, !
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and is contained entirely i, _, .

Moreover, no integral multiplicity I passes through the multiplicityNJ).

The problem that consists of findiy, from the stated conditions will be called the
Cauchy problem Thegeneral integralwill be the set of integral multiplicities!, that
can be obtained by the preceding process.

We shall now seek to formulate the Cauchy problem iraalytical manner or
rather, by appealing to the preceding statement of that pmobke shall determine the
general integralM, by a set of analytical conditions that exhibit its degree of
indeterminancy.In order to do this, we start from a non-singulanpBs, let &, denote a
non-singular integral element issues from that pdait (s, &) denote a non-singular
integral elemenk; that passes througfi, ..., and let E,-1, &) denote a non-singular
integral elemenkE, that passes throudh-1, in such a way that:

gll ‘921 ey gn
aren independent integral linear elements that are all &gsdowith each other.

The elemenE, can be defined by a syste) (of r — n independent linear equations
in dx, dx, ..., dx% . We suppose that the indices are chosen in such aenidan these
equations are soluble fdt.1, ..., d% . The elemenE,, in turn, will be defined by the
system k), to which, one must adjoin a linear equationbiny dx, ..., d%, . Suppose that
it is soluble fordx,, namely:

(En-2) X = Oh1 OX + ... + G2 DX + -1 O%0-1

Likewise, one will getE,» by adjoining an equation to the preceding equations that is
linear indx, ..., dx,-1 and soluble fodx,-;, for example, namely:

(En-2) d%-1 = Gn-110X% + ... + Gn-1p2 QX2

and so on, until one gets the elemEnthat one obtains by adjoining an equation to the
equations that defing; that is linear irdx;, dx, and soluble fodx,, for example, namely:

(El) dx = a1 dx; .

() The statement persists if the genugrisater than nbut then the last part must be suppressed, from
the fact that no integral multiplicityl,..; passes throughl,, .
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Now, let denoteHRp) denote the planar multiplicity that is the locustloé integral
linear elements that pass through the p&pt It obviously containg, and is 1 + 1)-
dimensional. It is thus defined by r1 — 1 =s linear equations that are soluble foof
the differentialgdx,.1 , ..., dx . We call thesas differentials:

dz, dz, . dz .

Moreover, we remark that theseequations are nothing but the given equations (1)
themselves. Now, lefP{) denote the planar multiplicity that is the locustlod integral
linear elements that are associated \Eithit is obviously contained inPg) and contains
E.. Moreover, it ig, + 2-dimensional. It is thus defined by r, — 2 =s + 5, equations,
among which, one finds tleequations offy). One thus obtains it by adjoining to these
s equationss; other ones that are soluble farand some differentials other thda, ...,

dz; dx, ...,dx%, . Upon changing the notation, let:

A2, dz2", ..., dz

be these differentials. Likewise, the planar nplitity (P,) that is the locus of integral
linear elements that are associated \Eitlis obtained by adjoining to tlset s, equations
of (P1), s, other ones that are soluble for:

deZ), dz;z), - déZ),

in which theZ? ares, variables other thaxy, ..., X,, thez and theZ”, and so on. The
planar multiplicity Pn-1) that is the locus of integral linear elements #r& associated
with En-1 will introduces,-1 variables:

and finally, the elemeri, will be defined by the equations that defiig-() andr —s —
S — ... = Sv1 =y =% new equations that are soluble with respe, teariables other
thanxy, ..., X, thez, 2%, ..., 2", and that we call:

M Q)
2", 3", ...z,

Finally, we can summarize the equations that defgg (P1), ..., (Pn-1), En, En1,
..., E1 in the following table:
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®) (R): dz =[d#, d?,..., d?, dx
! dz% =[dZ?,..., d¥’, dk
P )Y e, ,
(E,) (Fra)

E dZ™ =[ d#", d
€,

dZ” =[dy,
d)ﬂw = an,ld)i+an,2 dxz+"'+an,rr1d)$rl’

dXW—l = an—l,ldxf ta, 1n- 2d)$1— 2

The first row expresses the idea that each of therdiftialsdz, dz,..., dz is
expressed as a linear combination of the differentds, ..., dx, .

Having made these conventions, we make the following ftoanation of
coordinates: Without changing the variatteg?, ..., 2", we take the new variables:

Xl = X1,

X, = X2 — Q21 X1,

X; = X3 — Q31 X1 — Q32 %o,

X =Xn—0m X1~ G2 X2 = ... — On n-2X%n1 -

In other words, we suppose that the coefficiegtare all zero.
Finally (once that coordinate transformation is pered), we denote the coordinates
of the pointEg by:

ai, .., ; C,..C:;q”.., oy ., oV, ...

We remark that in the last case any integral muttiglM, that admits the elemeht,
can be defined by— n equations that are soluble forzZ?, ..., Z” (from the form itself
of the equations foE,). The same will be true for any integral multiphciv, that
admits a sufficiently close element Bf . One can thus take, X, ..., X, to be the
independent variables of these multiplicities.

This being the case, in order to be sure of obtaiaigrary multiplicities 4, _

U, ---» We seek to make an elememnt that admits one and only one integral linear

elementE; pass througtk , i.e., tocut the elemen{P,) along & , and to make an
elemente,_, that admits just one two-dimensional integral elemieatt issues frork; -

namely,E, — pass throughe,_ , i.e., cut the elemen{P,) along B, etc., and make an
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elemente_, that that admits just one-dimensional integral element that issues from
En-1 — namely,E, — pass throughe,_, , i.e., cut the elemen{P,,) along E . Any
multiplicity 4, that admits the elemers,_ , or a sufficiently close elementyill

obviously satisfy the conditions that were imposed wgrbitrary multiplicities. Now, it
is indeed easy to find elemerds, , §_ , ..., §_ that enjoy the properties that we just

stated. It suffices to takg_, to be the system:
d2V  =[dx],

and one takes,_, ~to be the system that is obtained by adjoining to ptfexeding
equations, the following ones:
dZ"™®

[dZ™, d¥,
dx, 0,

and one takes,_, =~ to be the system that is obtained by adjoining to ptfexeding
eqguations, the equations:
din—Z)

[dZ™™Y, dZ", dx,
d%n-1 0,

and so on. The brackets in the right-hand sides démeteame linear combinations as in
the equations that defin@d), (Py), ..., (Pn-1), En .
This being the case, we are justified in definpag by the equations:

Z" = 4" (X %reeer %),
(A) e,

defining y,_, by the preceding equations and the following ones:

2" =X %rees %),

(Anc)) e ,
TP =P (K % Ky),
(Bn) Xn = @n,

and so on, unti,_ is defined by the equations that were alreadytevrjtand:



Cartan — On the integration of systems of total diffeetmiuations. 32

2 =40(x)
A) e
zV = pP(x),
(B2) X2 =@y,

and finally the poinj is defined by all of the equations that were alyearitten, along
with:

z=¢,
9 T

Z,= ¢s,’
(B1) X =ay .

In these formulaghe quantitiesps, ¢», ..., ¢s are some arbitrary constants that are
sufficiently close to (¢ Cp, ..., Cs. As for the functionsp?, ¢@, ..., ¢, they are
arbitrary functions that are holomorphic in a nefgrhood of:

X1 = ay, X2 = ay, Xn =an,

and are such that for this system of values thesetibns and their first-order partial
derivatives take values that are sufficiently cltseertain fixed values.

With these hypotheses, there will exist one arlgt one integral multiplicityM, that
passes througho and has a one-dimensional multiplicity in commoithwy,_, , a two-
dimensional multiplicity in common with,__, etc., am - 1-dimensional multiplicity in
common with,_, , and finally, it is completely contained j_ . On the other hand,

that multiplicity is defined by:
r-N=s,+S1+... +s

functionsz”, 2", ..., z of the independent variableg X, ..., X, . To say thaM, is
contained iny,_, is to say that the firs, functions Z”, ..., " are equal to the given
functions ¢, ..., ¢{” . On the other hand, M, has am — 1-dimensional multiplicity
in common withz_.~ then this multiplicity can be obtained by settikg= a, in the
expressions for the functiomsZ”, ...; it is then necessary that the; functions Z",
.., 2" must reduce to the given functiog§'™, ..., " for x, =a, , and so on.

It results from this thain the indicated limits, systerfl), when considered as
defining z, ..., zg‘) as functions of x ..., X,, admits one and only one solution for which

the unknown functions are holomorphic in a neighibod of x = a;, ..., X, = a,, and
such that thesfunctions ¥ satisfy:
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Z™ is identical to the arbitrary functiog ™ (x,,..., X,),

and for x, = a, the $-; functions £ reduce as follows:

Z" reduces to the arbitrary functiog{"(x,,...,x,),

(n-1) “ (n-1)
Z, Be, (Ko X)),
and so on, so forxe ay, ..., X, = a, the s functions & reduced as follows:

z" reduces to the arbitrary functiong”(x,),

and finally, for x = a,, ..., X, = a, the s functions z reduce as follows:

z reduces to the arbitrary constarmt, ,

On the other hand, it is indeed clear thay integral multiplicity M that admits an
element that is close to the particular elemeptd (&, ..., &), as previously defined,
can be obtained by the preceding process, since the functions and corngstards
perfectly determined, and in a unique manner.

One can thus say thatny integral multiplicity M that admits an n-dimensional
integral element that is sufficiently close to a given non-singulagrat element is
completely defined by a set of:

S, arbitrary functions of n argumentsi, X, ..., X,
S1_l “ n - 1 : Xll X21 ey Xn—l ]

S arbitrary constants

under the single condition that for certain given values of the independeablestithe
arbitrary elements take values that are sufficiently close ttaicefixed constants, as
well as their first-order derivatives.

It is in this sense that one can say that the gkemaegral M,, depends upors
arbitrary constants arbitrary functions of one argument, etc., andrbitrary functions
of n arguments.

One can say thalhe numbers of the sequence:
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) S SLS .0 S

measure the indeterminacy of the general integral. MThe geometric origin of these
numbers shows th#he measure of the indeterminacy does not change if one performs an
arbitrary change of variablesecause this amounts to performing a simple homographic
transformation on the integral elements that issu@ fagooint, which obviously changes
none of the values of the numbersand in turn, the numbess

Moreover, recall the property of the sequerdH{at is expressed by the inequalities:

S2§292...2512%,
and finally the values afin terms of thes:

h =%,

M-1 =S+ S + 1,

2 =S +S-1+S2+1,

M =S$K+Sa+...+s5+n-1,
r =S t+S-1t ... +S+nN.

As a particular case, if we take a systerh tdtal differential equations invariables

with arbitrary coefficients then we have seen thatgbnus is equal to the quotient, up
to a unit, ofr byh + 1, and upon denoting the remaindekbgne has:

S=8=...=%1=h, S =k
One thus has the following theorem:
The general integral Mof a system of h total differential equations in r variables
whose coefficients are arbitrary functions, and where n denotes themuaop to a unit,

of r by h+ 1,and k denotes the remainder, depends upon:

k arbitrary functions of n arguments

h “ n-1 *
h “ n-2 “
h “ 1

and h arbitrary constants.

This is, with much more precision, the result thas weoved by BiermannOne can
add that there is no #t 1-dimensional integral, in general.

If his equal to 1 andis even, and consequently equal to then there is no arbitrary
function ofn arguments. If is odd, and consequently equal to21, then there is an
arbitrary function oh arguments.

We return to the general case. The stated resulissperen if the genus is greater
than n with the condition that one talsgto be the value, and the othes equal to the
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valuesr; — ri;1 — 1. It suffices that the given system, when considered as having n
independent variables, should be in involutioddowever, if the genus is greater than
thens, can begreater than g .

The preceding results simplify ¢ is zero. The general integral then depends upon
only arbitrary functions of at most— 1 arguments.

The analytic search for the integidl, amounts to the integration of successive
Kowalewski systems. The first one gives geinctions ofx; to which thez, z, ..., z
reduce when one makes:

Xo=ay, veey Xn=2an .

It is a system of ordinary differential equations tha¢ obtains by replacing tlz&’ with
the g (xy), theZ? with the ¢P(x1, ay), ..., and the” with the g™ (xy, ay, ..., @) in the
equations of the given system.

The second Kowalewski system gives $ies; functions ofx;, x, to which thez, ...,

z, reducez”, ..., z” when one makes:

X3 =ag, ey Xn = an,

where these functions reduce to known functiong, dbr xo = a, , and so on. The last
system gives the+s; + ... + 51 functions ofx, Xz, ..., X1 thatz, ..., 2" reduces to

when one makes:
Xn =an,

where these functions reduce to known functiong,of.., X, for X,-1 = an-1.
In order to clarify all of the preceding results by meahs very simple example,
take the system that is formed from the single equation

(1) dz—p dx —q dy O,

wherex, Y, z, p, q are five variables. Here, there is one equationdkjtesses the idea
that two integral linear elements are associates. It

(2) dxp—-dp x+dyag—dqgdy =0.

Here,r = 5 andr; = 3. As forry, the equations that define the integral linear elements

that are associated with a given integral linear efer(ex, oy, p X + q Jdy, P, &) are
two independent ones in number, namely:

dz-pdx—-qdy0,
op dx+ &g dy— ox dp— oy dq=0;

As a resulty, = 1. One thus has:
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A non-singular poinky is, for example:
X=y=z=p=q=0.
An integral elemenk; that passes through this point is, for example:
(E2) dz=dp=dq=0,
and a non-singular integral eleméntthat is contained i&; is, for example:
(Ey) dz=dp=dg=dy=0.

Here, the elemenPy) is given by (1), where one makes g = O:

(Po) dz=0,
so from (2), the elemenP{) is given by:
(P1) dz=dp=0.

There thus exists one and only one integral thatméal from three functions p, q
of x andy that are holomorphic in a neighborhoodefy = 0, and are such that:

g is identical td(x, y),
p reduces t@(x) fory =0,
zreduces t@ for x=y = 0,

wherec is a very small constarftand ¢ are arbitrary functions that are holomorphic in a
neighborhood ox = 0,y = 0, and take on very small values %ox y = 0, along with their
first-order derivatives.

Here, there are two Kowalewski systems. The &rs¢ gives a functioz of x that
reduces ta for x = 0 whenp = ¢(x) andqg =f(x, 0). It is obviously given by:

dz_
ax p = 9(x),

s0:
z=c+ .[Or P(X) dx.

The second Kowalewski system gives the functipaadz of x, y that reduce t@(x)
andc + I; @(x) dx, respectively, when one makgs= f(x, y). This system isseethe
formulas (1) of paragraph 1V]:

It y) =0,
oy
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op of _

ody ox

and give:
z:c+ﬁ¢unm+Lﬁ1xwdy

y Of

p=¢0) + [/ —dy.

0

q="f(x y).
We shall conclude this paragraph by giving some definitibmshe sequence:

Sa Sla ey S11

which measures the indeterminacy of the general intdfyralf a system (1) of genus
the first numbess is nothing but the number of independent equatiortsin..., dx in
that system (1); i.e., upon preserving the notations ofitSislthe degree of the principal
minor of the matrix:

(8) b bR

The following numbers; gets a special name: One calls it tharacter(®) of the
system. We remark that+ s; is nothing but the number of independent equations that
express the idea that a linear elemeah,(..., dx) is integral and associated with an
arbitrary integral linear elemend, ..., o). Now, upon setting:

_ O0a 03 _ o a,
alk_ T/ sy Ilk_ T T
0x,  0x
these equations become:

adx+adx+...+ adx=0,
(1) s ,
ldx +Ldx,+...+ 1 dx =0,

() This terminology is due, | believe, to H. von WEBERur Invariantentheorie der Systeme
Pfaff'scher Gleichungen,” Leipz. Ber. (1898), 207-229.
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D 0% dx++> g0 xdx=0,

(2) e,
2 loxdx oo+ 3] oxdx =0.

Therefore, if one considers the matrix:

a a, - a
) I, l, el |

230X D & 0X ) qoX

D% Y 1,0% - Yl OX
wheredx; , ..., & are arbitrary, but uniquely required to verify gguations:

i+ ...+, X =0,

then the character;f the system is the difference between the degree of the principal
minor of the matriXA;) and the degree of the principal minor of the magfix

One can give the other numbesss;, ..., the names of the"! 3 ... characterof
the system (1). They are calculated from the degod the principal minors, likeand
s;. However,instead of saying that a system of genus n has the number iss ri"
character, we say that the system is of (daer 1)" kind. A system of the first kind is
thus a system for whick, = 0. It enjoys the property thane and only onéntegral
multiplicity M, passes through an integral multiplicitly; .

VII.
In this paragraph, we shall occupy ourselves wytstems of the first kind for which
the @ — 1)" characters,; is zero. Suppose, in a general manner, shas the first

number that is zero in the sequence:

S S, & ey Shy

wherevis less tham. In 8 V, we saw some properties of these systermgh we recall:
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One and only one integral elementasses through a non-singular integral element
E,-1 . That element Eis the locus of all integral elements that pass through Eand
none of these elements is singular.

One has, moreover:
=0, r-1=1, M- = 2, r,=n-yv, h=<n-n-2.

As a corollary to the property of the integral elersetitat pass through a non-
singular integral elemei,-1, we shall prove the following theorem:

One and only one integral multiplicity /Mpasses through a non-singular integral
multiplicity M, .

In order to prove this, we make an arbitrary multiptici,_, pass througiM, ,

which is always possible, since the integral multiplickl,-; is not singular. In
particular, ifE,-1 is a non-singular integral element M{-, then the multiplicity z,

will admit one and only one integral elemé&ntthat passes throudh,-1. This being the
case, letM,, be an arbitrary integral multiplicity that passetighE,-;. On the other
hand, since the sum of the dimensionMgfand 1, _, is:

r+n-ry,=r +n,

these two multiplicities have a multiplicity in comm¢hat isat leastv-dimensional, and
that multiplicity is necessarily integral. Howeveince 4, does not admit & + 1-

dimensional integral element that passes thrdagh the integral multiplicity that is
common toM, and ,_,  is exactly vdimensional, namel, .

This being the case, we known thahe and only onev-dimensional integral
multiplicity that is required to be contained in théiaary multiplicity 4 _. passes

through a non-singular integral multiplicityl,-, . Therefore, the multiplicity Mis
determined in a unique manner when one is giyen . In other wordsjf two n-

dimensional integral multiplicites Mand M/ pass through M then these two
multiplicities cut,_, along the same multiplicity M and that is true for anys,_ ~ that

passes through M; .
It results from this that the two multipliciti®é4, and M| are identical, becauseAfis

an arbitrary point of the first one then one can atvenake a multiplicitys,_, — pass

throughA andM,—; . That multiplicity corresponds to an integral multpy M, that is
situated onM, and then passes through However, it is also situated oM, .

Therefore, the poird belongsM |, and the two multiplicities coincide.
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In a more precise and rigorous manner, make an arbitnatyplicity £ _ _, pass

throughM,-1 ; i.e., one that does not admit any integral elemuaatt passes throudh,-;
other thanE,-; itself, which is always possible. Then make a famiymultiplicities
4, that depend upon =n —v parameters aniill up all of space(’) pass through that

well-defined multiplicity 4,_, ;. These multiplicities are alirbitrary, because they

obviously have just one integral eleméntthat passes throudgh-1, and we know that
any integral element that passes throkgh is non-singular. Each of them thus contains
one and only one integral multiplicityl, that passes througM,;, and all of these
multiplicities M, belong to an arbitrary integral multiplicityl, that passes throud,-; .
One can add tha¥l, is the locus of these multiplicities,Mwhen the n - parameters
that they depend upon are varidgecause each of them is contained/in and, on the
other hand, one of the multiplicities,_, (that fills up all of space) passes through an

arbitrary point oM, , and, as a result, the corresponding multiplistty. As a resultM,
is determined in a unique manner.
We summarize the results that we just obtainedarfdltowing manner:

One and only one integral multiplicity /Mpasses through a non-singular integral
multiplicity M,-1 . In order to obtain it, one makes an arbitrary multiplicity_ _, pass

through M-1, and then makes a family of multiplicitigs, - that depend uponFn —v
parameters and fill up all of space pass through the latter multipli¢ty. each of these
multiplicities £ _. , one determines the integral multiplicity, that passes through M,
and which is contained entirely ip,_ . The geometric locus of these multiplicities M

when one varies the n »parameters upon which they depend, is the desired integral
multiplicity M, .

Moreover, that multiplicity M, is the integral of a system of total differential
equations in r — y variables of genus, although its coefficients depend upon n — v
parameters.

One deduces the following theorem from this, which retierthe Cauchy problem,
properly speaking:

Let one be given a system of total differential equations of genuswhichn the
character s is zero(v < n). If one is then given an arbitrary poipg , an arbitrary

A If:
fl=f2=...=f =0

I+l

are the equations Qf,_rv_1 then it obviously suffices to take:

fl—tl f'v’fl =f2—t2 f'v’fl = .= f'v _tfv frv+1 =0.
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multiplicity 4, that passes through that point, etc., an arbitrary multipligity, _, that
passes throughy,_, _,, then there exists one and only one integral multiplicitytiht
passes througpp and has a dimensional multiplicity in common with,_, , etc., and a
v — 1-dimensional multiplicity in common with,_, _,. In order to obtain it, one makes
an arbitrary multiplicity 4 _ _, pass throughy,_, ~and a family of multiplicities,

that depend upon,r= n — v parameters and fill up all of space pass through the latter.
Each of the multiplicities contain one and only integral multiplicity tlat passes
through o and has a 1-dimensional multiplicity in common with, , etc., and finally, a

v — ldimensional multiplicity in common witpy,_, . The geometric locus of these

multiplicities M, when one varies the n v parameters that they depend upon is the
desired integral multiplicity M.

Indeed, it suffices to remark that tiee— 1-dimensional integral multiplicity that is
situated ony,_, is the same foM, and for all theV, . One then only needs to apply the

preceding theorem to that- 1-dimensional integral multiplicity.

The last theorem shows théie Cauchy problem for the given system of genus n is
converted into the Cauchy problem for a new system of genus v; hptheveoefficients
of this new system depend upon n — v parameféine numbers, s, $, ..., S, have the
same values for the two systems, moreover.

We say that the integeris thetrue genusf the system.

We shall now interpret the preceding results analyyicalVe keep the notations of §
VI. Here, a simplification presents itself, due te tact that,, s,-1, ..., Sy are zero. As a
result, there are no variabl#8, 2", ..., 2.

The multiplicity 4, _, is defined by:

(V 1) —

=YX Xoreeer %0),
(A e, ,

2D =gV D(%, Xy %20),

(BY) Xn = 8, Xn-1 = 8n-1, ey XyTay.

The multiplicity 4,_,  is defined by the preceding equations, and intefdi

2" = 9P (X %oy X o)
(A2 e, ,

20 =0 (X Xees %),
(Bv—l) Xp-1 =ap-1,

and so on, as in the general case.
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We can now take the multiplicity, _. _, to be the one that is defined by the v + 1
=r,+ 1 equationsRg)):
Xn:an, Xn—l:an—l, ey XV:aV1
and the multiplicities/,_, to be the ones that are defined by:
X~ &n= W% —3),
X2 " &2 = tz(X/ - 5},),

X —a =t.,(x-a)

(4 -,)

The preceding results that were stated in a geomeamnen can now be expressed in
the following manner:

The given system admits one and only one integral for which..z z;”_:” are
functions of x Xy, ..., X, that are holomorphic in a neighborhood of:

X1 = ay, X2 = ay, Xn = ap,

and reduce as follows:

for
z"Preduces to the arbitrary functiop’ ™ ( , X ,X.., , ¥ Y
........................................................................................ X, =a,.,
zy Y " DK Xgreeer %)) | e,
X, = a,
for
(v-2) ¢(V_2)(X1, X., , X/_l)
- ' i X, =8,
(v-2) ¢(V_2)(X1, Xz’ , X}_ ) ................
e v ox=a,
(0} " @)
4 ¢ (%) for
..................................................................... x=a..x=a.
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z, reduces to the arbitrary constant ¢,

respectively.

In order to obtain these functions, in the equations of the given diffdregsitem, one
replaces:
X|/+1 Wlth av+1+ tl(XV_av),

XV+2 Wlth av+2 + tZ(XV —aV),

where one regards the t as constants. The new system that isedbtiaén admits one
and only one integral for whichy,z..., z;”_:” are functions of % X, ..., X, that are

holomorphic in a neighborhood of:
Xl:al1 X2:a21 neey XV:aV1
and reduce as follows:

2P 10 BV (X, X, o Xer)  fOT X =a,
Z'™® 10 ¢ (%, %, oy Xd)  fOr Xpq =@, X = ay,

2’ to ¢ (x) for x=ap, .., x,=a,,
Z to on for xx=a, ...,Xy,=ay,

i=1,2,...54:;]=1,2,...82:;k=1,2,....5;h=1, 2, ....9).

If one replaces the n — v parameters t upon which the functions thus foperdde
with:

t, = Xa1 ™ &g

l )
X ~8
tn_vz;ah
!

then one obtains the desired integral of the oagsystem

In summary, one sees thhthe general integral Mof a system in involution (i.e., of
genus greater than or equal to n) depends upontraryi functions of v -1 arguments,
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but not upon arbitrary functions of v arguments, then one converts itshseéocthat of
the integral M of a system of genus n, and consequently, into a problem in v independent
variables. However, the coefficients of the new system dejpendh — v parameters.

Indeed, it suffices to remark that sifdg does not depend upon arbitrary functions of
n arguments, one necessarily has 0, and in turn, the genus of the system is exactly

In particular, if the general integril, of a system in involution depends upon only
arbitrary constantsthen one has = 1; thecharacter s of the system is zero, and the
system is completely integrable. One converts theckefar its integral to that of a
system of genus 1, i.e., to a system of ordinary @iffeal equations. The method
reduces to that of Lie-Mayer for the integration of completely iatgdgrsystem.If the
systems of the system are solubledar, dz, ..., dz then since the other differentials are
dxq, dx, ..., dX,, one replaces:

X2 With ax + to(X —ay),

Xn With an + th-1(X1 — &),

and one seeks the integral of the new system in ordey, By ..., z; to reduce to reduce
to given arbitrary constantg:, ¢@,, ..., #s for x; = a; . One then replacets with

%4784 i the functions thus obtained.
AC Y
As an example, we take the simplest one possiblesugh a manner that we
nonetheless do not have a completely integrable systéenchoose:

V=2, n=3, S =1, s=1,
so:
r3=0, r,=1, ry=3, r=>5.
The following equation corresponds to this case:
X OXg — X4 X5 dXo — (X2 X4 + X3 + X1 Xs) dXs = 0.
We shall not carry out the verification, and we sksatiply apply the generalized Lie-
Mayer method in order to find the general integral of dgsation. One easily sees that
the point:
Xy =0, X2 =0, x3 =0, X5 =0
is not singular, and that the linear elemEnthat issues from this point:
dxy =dxe=dx=dx=0
is integral. Here,Rp) has the equation:
(PO) dX1 =0;

as for Py), one easily finds:
(P1) dx =dxs =0,
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and one confirms that the elemétis integral. Moreovelt; is not singular.

Here, one can thus take the variables that are deno®dByxs, X2, X, in the general
theory to bex, X3, X4, X2, X5 , respectively.

There will then be one and only one integral such that

x3 reduces tof(xs) for x, =0,x4=1,
X1 . Cc for X, =0,x4=1,x4=0.

In order to obtain it, it will suffice to replace:
Xs—1 with tx
in the equation, which gives:

(txe+1)dx — (txe + 1) Xs dxe — (1 X5 + X + X3 + X1 Xs) dX = O.

One can first look for the functioq of x5 that reduces to for xs = 0 when one makes
x3 =f(xs), X2 = 0. That function is given by:

d—xl = f(X5) + X1 X5,
dx
from which, one infers that:

%= odftr 5[ e {1y dx= glx)

One must then look for two functioms andx; of Xz, Xs that reduce té(xs) and @(xs)
for x, = 0. They are given by:

0% _
X, X
L o140 XXX

The last one gives:
Xs + X1 X6 = (t X0 + 1)[f(x5)+cé‘52’2+ LA I dgﬁ

and the first one gives:
Xa =X X+ CE%2+ x €27 €4 { g dx

Upon replacingx, + 1 withx, in the first formula, one obtains the general gnéd
which can be further written:

X1 — X2 X5 = F(Xs),
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X3 + X1 X5 = X4 F'(Xs),
upon setting:

F(xs) = ce®/? + /2 OXS €42 { ¥ dx.

VIII.

In this last paragraph, we shall occupy ourselves wittaicesystems for which the
Kowalewski system that determines the integral mudityl Mp.1 that passes through a
given integral multiplicityM, presents certain simple properties that make the atiegr
easy. Upon preserving the notations of § Ill, this sysgeni we limit ourselves to the
case whergy.1 = 0, solved for:

0z, 0z, 0z,
ox  ox = oox

where the right-hand sides depend upon the variables aficstrerder derivatives of the
unknown functiong with respect to the independent variabdgsc, ..., X, other tharx.

If one solves the Cauchy problem for a first-order phdifferential equation in one
unknown function then, by a change of independent variables,is reduced to a
Kowalewski system preciselput in which the right-hand sides do not depend upon the
derivativesdz / dxc . In summary, one is then reduced to a system ofangldifferential
equations.

We seek to find in which case this fact will be produced. Uetting, as we did in 8
1, g &Y, &2, ..., €’ denote the + 1 linear elements:

(&) dx _dx _ _dx_dz _  dz,
10 0 0z oz,

ox ox

[é(l)] %:d_xl:”_:d_:d_zi: d_zﬂ
0 1 0 0z 0%’

% 0%,

[£7] dx _dx _ _dx_dz _ dg
T

X, 0x,

the Kowalewski equations express the idea thaelments is integral and associated
with the element E[£Y, €2, ..., €], under the single condition that the elemept E
should be integral.

This being the case, suppose that the Kowalewgkat@ns do not depend updn /
O, i.e., on &Y, €2 &P collectively. The values dfz / dx, ..., 0zn / dx that are
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determined provide an integral linear elemetttat depends uniquely upon the point that
it issues from,and which is associated with all of the linear elemengstiat pass
through that pointbecause an arbitrary elemdftcan always be linearly deduced from
eand an element of the ford?, €2, ..., £”).

In summary,an integral linear element passes through each point that enjoys the
property of being associated with an arbitrary integral linear element idsates from
the same point.

That linear element is necessar#lingular, because it belongs te"
element$,; we say that it isharacteristic.

In generalan integral element fFthat issues from a non-singular point of space is
called characteristicif it is associated with an arbitrary integral linear elemehat
issues from the same point.

All of the linear elements that are contained irharacteristic elemeri, (h > 1) are
themselves characteristic, and the locus of charatelmsear elements is necessarily a
characteristic planar element that is the largeatattteristic element that issues from the
point.

In order to obtain the characteristic linear elemahtt issue from a given non-
singular point analytically, we let:

 integral

XK, Ko, ..., O
denote the coordinates of such an element, and let:
dx;, dxo, dx.

denote the coordinates of a variable integral linear elertat issues from the same
point. In order to determine tld& , one will have the equations:

aox+...+aox =0,

l,ox +...+I, ox. =0,
da,dxdx+..+> g dxd x=0,

Dlydx ox +...+ > | dxdx =0,

where the notations are the same as in'§ | Kloreover, these equations can be true for
any:
dx;, dx, ..., dx,

() We have set simply:
- o _a,
ox,  0x ox  0x
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with the single condition that these quantities mwesify equations (1), which argin
number:

adx+...+a dx=0,

()
[, dx +...+1 dx =0.

As a result, the equationdx, ..., dx:

Yag oK dx + ... +ai & dx =0,

must be a consequence of equations (1). In other walldsf the minors with s 1
columns in the matrix:

a1 a2 P a_

(A) . o
1 2 r

Da, 0% D a,0x - Y aodx

must be zero The same is true if one replaces the last rovhigirhatrix with thes — 1
analogous rows that are deduced from the dast1 equations (1), which gives the
matrices B), ..., (L).

By definition, the equations that determine the characteristic linear elements are of
two kinds: first, one has the s equations:

aox+..+30x =0,
(I

[,Ox, +...+]. ox. =0,

which express the idea that the element is integral. Then, ortbéhaguations that are
obtained by annulling all of the minors in the matri¢a} ..., (L) with s+ 1 columns:

® |
D3, 0% - > 8 dx
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L) L1
lei 5Xi eri 5)§

If at leastr of these equations are independent then there exisicthastic linear
elements, and these equations determine their locyshedargest characteristic element
that issues from the point.

If the given system is completely integrable then tarbitrary integral linear
elements are associated, and as a result, the equafitre characteristic elements must
reduce to equations’{l The principal minors of the matrice%)( ..., (L) are of degres,
if one takes (9 into account.

Now, here are some simple fundamental propertidseotharacteristic elements:

If one is given a characteristic elemeny then anynon-singulanntegral element
must contain F, since otherwise, in effect, the smallest elembat is contained irfe,
andE, would be at least + 1-dimensional, and it would necessarily be integradest,
andE, are associated. Since the integral elerBgrielongs to an integral elemes. 4,
it would then be singular. Of coursedenotes the genus of the given system.

If a characteristic element passes through any singular point in spacethe given
differential system is of the first kind his is because if we letbe a characteristic linear
element then any non-singular integral elent&nivill contain &, so there certainly exist
certain integral elements,-; that do not contaii, and naturally, among these integral
elements there are ones that are not singljlatet E,-1 be one of them.o" integral
elementsE, pass througlk,-1, and at least one of them is not singular; i.ecofitainse.

If r, is equal to at least 1 then there will be at least iotegral elemenE, other than
(En-1, &), namely, En-1, £). However, the elemenE{,, & &) will then be integral, and
the non-singular elemen€{i, & will belong to anothem + 1-dimensional integral
element, which is impossible. One must then haverthet zerq i.e., that the given
differential system is of the first kindThere are thus systems of the first kind for which
characteristic elements can exist.

In the same way, one sees tifidhere exists a characteristic integral elemepttiien
the true genus of the system is at most n+1p because there certainly exists a non-
singular integral elemeri,, that has no point in common witf . Any non-singular
integral elemenE, that passes throudt, must contairg, . It is therefore determined
uniquely, and one can denote it 84§, Ep). If Eqnp belongs to another integral element
En then the elementg(-, Ey) will be integral and at least + 1-dimensional. On the
other hand, it will containE,-p, Ep), which will be, in turn, singular. Thereforg;
belongs to just one integral elemént Finally, as a result, the true genus of the system
is at mosin—p + 1.

One can add thatt there exists a non-singular integral element;Ehat contains k
then the true genus is at most n,-bpcause there always exists an integral eleBepnt

() Otherwise, and non-singular integral elem&nt, would be subject to a condition efjuality,
namely, that it contais.
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that is contained ifE,-1 and has no element in common wih . If ann-dimensional

integral element passing through-,+ containsg, then it also containg,-1, and as a
result, it is completely determined and unique, since tresmgular integral element
En-1 belongs to just one-dimensional integral elemef, , which is itself non-singular.
Now, if another integral elemeri, passes through,- then the elementE, ,Ep) will

be at leash + 1-dimensional and integral. On the other hand, ltoemtain €n-p-1, Ep) —
i.e., En1 — which is impossible, because no integral element ighanhore thann-
dimensional passes throughi1 . Therefore, just one-dimensional integral element
passes througB, -1 . Finally, the true genus of the system is theredbmosin — p

The following property falls out of these propertiasd é will suffice for us to state
it, since the proof appears to be obvious:

If a p-dimensional characteristic element passes through each non-singularopoint
space for a differential system of genus n then all of the non-singulegranht
multiplicities M, that pass through a non-singular point have a p-dimensional element
that issues from that point in common, and conversely

We shall now see the role that the existence of ctexistic elements plays in the
determination of non-singulardimensional integral multiplicities.

First, suppose that there exists a charactetisigar element. That linear element
then makes any point of space correspond to a certalithat passes through that
point. As one knows, there exists a family of curves,(one-dimensional multiplicities)
such that each of their points are tangent to the Dinthat corresponds to that point.
These curves depend uposa 1 parameters, and one and only one of them passes through
each non-singular point of space. We call tlodnaracteristic curvesthey are obviously
integral curves.

This being the case, consider a non-singular integraipicity M, . Each of its
non-singular points admits a non-singular integral elé¢rBgnhat, in turn, contains the
characteristic elemertthat issues from that point. In other words, at eddats points,
the multiplicity M,, is tangent to the lin® that corresponds to that point. There thus
exists a family of curves oM, that are tangent to the corresponding [nat each of its
points. These curves depend uponl parameters, and one and only one of them passes
through each non-singular point bf, . However, it is obvious that these curves are
characteristic curves.One therefore arrives at the following result:

Any non-singular integral multiplicity Mis generated by a family of characteristic
curves that depend upon-nl parameters. One and only one of these curves passes
through each non-singular point of ;M If two non-singular multiplicities Mhave a
non-singular point in common then they have the entire characteristic tavéssues
from that point in common

It results from this thaf one is given a non-singular integral multiplicity,Mthat is
not generated by characteristic curves then one will have the altewidtiplicity M, that
passes through M by making the characteristic curve that issues from each point, of M
pass through that point.
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One thus has the solution to the Cauchy problem vien is not generated by
characteristic curves.

We shall now prove these results analytically, whwdhpermit us to neatly see what
the integration problem reduces to when one knows thadesistic curves.

In the case where we have placed ourselves, thaatbastic curves are given by a
system ofr — 1 total differential equations. They are the equatibas Wwere previously
found that determine the characteristic elementissaes from point of space. Let:

y1 =Cq, y2 =Gy, ceer - Y1 =G

ber — 1 independent first integral of these equations; thégrméne the characteristic
curves. Make a change of variables by taking the neiablas to bey, y», ..., yr-1, and
anr™ quantityy; that depends upon the first- 1 of them. With these new variables, the
system of integral linear elements and the associmtear lelements does not change. As
a result, the system of total differential equatiohat tdetermines the characteristic
elements remains the same. It is therefore:

dyl :dyz = ... :dyr_l =0.

The equations of the transformed system must theréfetde verified fordy; = ...
=dy-1 = 0. As aresult, one can put this system into tha:fo

dy, +h,,,dy,, ...+ b, ,dy =0,
(D e
dy, + By 4, dy,, +...+ by, dy, =0,

in which theb depend upows, Yo, ..., ¥i-1 . Now, write down that the integral element:

% = = dyr_l = dyr
o 0 1

is associated with any other integral elemest, (..., dy). One will first have:

Mgy o s
dy

r r

dy_, =0,

with the single condition that thdy must satisfy (1) i.e., one must have:

ob, _  _ob,, _
o, oy,

In other words, one will finally have thatl of the coefficients of b are independent;af y



Cartan — On the integration of systems of total diffeetmiuations. 52

The transformed system can thus be put into a form such that theresamodairace
of the r— 1variables:

yl, y21 sy yr—l

in either the coefficients or the differentials.

One then indeed sees that the number of variables bas@#uced by one unit. In
order to find the multiplicitie, of the original system, it will suffice to find thetegral
multiplicities M,-; of the new systemThe genus of the new system is diminished by one
unit, but the degree of indeterminacy does not chaexgept that the new system can no
longer be of the first kind.

Therefore, whenever one has to integrate the differential equations of the
characteristics, one is reduced to a new differential systemonghless variable, while
the genus has also been subjected to a reduction by oneQmethas:

s =5, S =S, s Sy TS,
n=n-1,
r=r-1, h=ri—-1, .., r_,=ra-1

Now, pass on to the case wherecharacteristic element Bhat is at least two-
dimensional passes through each point of spddee linear equations X, ..., dx that
determineE, then consist of — p independent ones. One can believe that these equations
do not determine a completely integral differential eystin generabut this is not true.

The differential system that we call tloharacteristicdifferential system is always
completely integrable.

In order to account for this, it suffices to chooseréiqdar linear element in eadh,

i.e., it suffices to appeng — 1 arbitrary, but well-defined, linear equations to the
characteristic differential system. One thus hagstées ofr — 1 independent equations
that is, in turn, completely integrable, and where ete |

yl, y21 sy yr—l

denote a system aof— 1 independent first integrals. As we just saw, by angé of
variables, the equations of the system no longer depend wpo..., -1 . The
characteristic differential system then changes irggséem of — p equationsput in r—
1 variables One argues with them as one did with the originssountil one has
reduced the variables to no more tharp in number, namely:

(equations missing from the original)
It is then clear that the characteristic diffef@ngystem is nothing but:

dz =dz=...=dz,=0.
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Therefore,the characteristic differential system is completely integrahte one
can, by a change of variables, put the given system into a form suctstbaéfficients
and differentials no longer depend upon the r — p first integrals of the chaséicte
system

One further sees th#tere exists a family of p-dimensional multiplicities that admit
the characteristic element,Eat each of their points; one calls thecharacteristic
multiplicities. They depend upon r — p parameters, and one and only one of them passes
through each non-singular point of space

Any non-singular integral multiplicity Mis generated by a family of characteristic
multiplicities that depend upon n — p parameters. One and only one of these
multiplicities passes through any non-singular point of M If two non-singular n-
dimensional integral multiplicities have a non-singular point in common thenhtney
the characteristic multiplicity that issues from that point in common.

If a non-singular integral multiplicitil,, does not have any curve in common with
the characteristic multiplicity that issues from eadhts points then in order to get the
unique integral multiplicityM, that passes througi,, , it will suffice to make the
characteristic multiplicity that issues from eachrpaif M, pass through that point.

Finally, the general determination of the integral, Bimounts to the integration of a
new differential system whose genus is reduced by p units, assvidle number of
variables, but which has the same degree of indeterminacy as the gtem sy

In order to see this last point, it suffices to redadt the true genus of the given
system is at most—p + 1. As a result, one has:

S$=%1= ... =Sp =0
One then has:
n=n-p,
S;_p :S1—p1 ey %{ :Sl1 g:Sl
M-p =S =Tnp— P, b =r—p, r=r—p

However, one must not forget that the reduction ofribis system assumes the prior
determination of the characteristic multiplicitiesThe generalized Lie-Mayer method
permits one to convert to a system of genusp + 1 (instead oh — p) with no prior
integration However, this system depends upon the particular Cauobjepr that one
must solve.

Finally, we remark that if the number of variables ia ¢fiven differential system can
be reduced bp units by a suitable change of variables then the ctearstic differential
system is necessarily composed of at mesp independent equations. One thus has the
following theorem, which was stated for the first timea slightly different form by von
Weber {), and which is itself a generalization of a theorgr&robenius for systems with
just one equation:

The minimum number of variables that one can make the coefficients and the
differentials of a given system depend upon by a change of variables istedbal

*) Loc. cit.
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number of linearly independent equations in its characteristic differesyislem. The
integration of that characteristic system gives these variables.

Finally, to conclude the subject, we shall prove thetemt® of characteristic
elementsn the differential systems of the first kind whose charastequal to one.

Take a differential system of genugor which one has=1. The numbers, s;, ...,
cannot excees, — i.e., the unit — then, and one will have, to fix ideas:

$ =9 =..=5-1=1, S,=...=%,=0.

v is the true genus (which can be equai)to
This being the case, consider a non-singular p&irand the set of integral linear
elements that issue from that point; they form ameintE ,,. In the sequel, we shall

speak only of the elements that are situatedEjn,; i.e., of the elements that are

composed of integral linear elements. (One has, merggw 1 =n+v—1.)

Take an integral elemeB, and a linear elememtthat is not contained iB, . The
locus of (integral) linear elements that are assediatith¢ is an element of dimension
+ 1 -5 =r1. That element thus cuks along an elemeri,—; (of dimensiom +r; —r;
+1=n-1). Allof the linear elements that are containedn are then associated with
E, andg i.e., with the elemert.1 : (En, §).

Now, take a linear element that is not contained i&.,.1 . The locus of linear
elements that are associated wsthis, moreover, am;-dimensional element that cuts
Hn-1 along an at least — 2-dimensional elemert,—,, and all of the linear elements of
H.-> are associated witk,.; and ¢; i.e., with the elemenE,:, : (En+1, £€). One can
continue in this way step-by-step. One will have an elgfd,-; whose linear elements
are all associated with an elemé&nts, and so on, until one finally arrives at an element
H.-v+1 whose elements are all associated with an elelgent , i.e., anE In other

n+l”
words, there exists an eleméti,.; whose linear elements are all linear and associated
with anarbitrary integral linear element. That eleméht..1 is thereforecharacteristic

It results from this thathe given differential system of genus n, true genus v, and
character 1 admits n — v+ 1-dimensional characteristic multiplicities. After the
determination of these characteristics, it will then be convertedad system of genus-v
1.

This result applies to just one Pfaff equation (providedliths of the first kind). One
thus recovers the characteristic multiplicities &k tsystems of first-order partial
differential equations in just one unknown function.

In particular,if the general integral of a differential system depends upon just one
arbitrary function of one argument (and arbitrary constants) then its integraeduces
to that of the completely integrable characteristic system and toathat system of
ordinary differential equationg).

() Beudon has proved this result for a system of partitgrdntial equations in one unknown function.
In a series of notes and memoirs, he was occupied \aitiapdifferential equations of this nature that
admitted characteristic multiplicities in the sensehefterm that was given in this paper. In particidee
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If the general integral of a system of the first kitgpends upon an arbitrary function
of 1, 2, ...,v— 1 arguments (and arbitrary constants), wherel is equal to at least 2,
then one can prové)(that the system can, with no integration, be put ihe following
form: First, a system of — 1 completely integrable equations. Thes" @quation that
can be put into the form:
dZ—pl dyg—-...- Pv-1 dx-1=0

by the suitable integration that leads to the charatitedigferential system.

The problem of integrating the characteristic differential systemat, indeed, an
arbitrary problem of integrating a completely integrable system of tdiff¢rential
equations. In order to account for this, imagine that one hasdoa first integray,, and
consider the multiplicity; = C in space, wher€ is an arbitrary constant.

Then consider, the elemelBt1: dy; = 0 at an arbitrary poird of that multiplicity.
The characteristic elemeh, that issues frond is necessarily contained in the element
E-1. However, if one seeks the integral linear elemehts._; then one can, in certain
cases, find that they are not containedBg in such a way that one obtains a
characteristic elemertf, that contain€, (q > p), but which is not characteristic for any
sort of elemenk,_; . In other words, the characteristic differentigtem of the given
system, when one makgs= C, dy; = 0, can contain more than one equation less than the
original characteristic system. One seeks a firsgiatly, of this new system, and so on.
One arrives at a certain number of first integyalss, ..., ¥n, iIn such a manner that upon
makingy,» = Ci, ..., ¥» = Gy the differential system thus obtained verifies allitsf
characteristic equations.

It is clear that the equations of the given systamall be put into the form:

aldy1+ ... Han dyh: 0,

and one perceives that by a convenient choice of ihearly independent equations that
define the system, those of the coefficiemtsthat are mutually independent and
independent of thg define the various integrals of theof the characteristic differential
system.

This is, moreover, also the way that one can procébdjwst one Pfaff equation. To
fix ideas, take one equation in four variables with arbjitcaefficients. If one represents
a linear element by a point in three-dimensional spadben the integral linear elements
are represented by points of a certain pld)er( that space, and the images of the two
associated integral linear elements are such thalindehat is their join belongs to a
certain linear complex. Now, in ordinary space, lihes of a linear complex that are
situated in a planeP} all pass through a fixed poi# of the plane. The poim is
therefore the image of a characteristic linear elemenhhe characteristic differential
system thus admits three independent first integralae @en seeks g, which will
determine a plane&Q) in the spac&s; . The integral linear elements that satdyy = O
have points that belong to botR)(and Q) for their images irR;; i.e., the points of the
line of intersection) of these two planes. Now, howeviwp arbitrary points of that

“Sur les systemes d’équations aux derivées partielles emehhractéristiques dépendent d’un nombre fini
de constantes arbitraires,” Annales de I'Ecole Nornsalpplement tXI11 (1896), 3-51.
() In particular seevon WEBER oc. cit.



Cartan — On the integration of systems of total diffeetmiuations. 56

line are associatedn such a way that one has a second charactatifgcential system
that is formed from just one equation [the equatiorhefline D) in the plane@)]. Let
y2 be a first integral. Then:

dyl = dyz =0

are, if one wishes, the equations of the liDg (The equation of the planB)( which is
nothing but the given Pfaff equation, is then of thenfor

dy, —ysdyr = 0,

and ys is the desired third first integral, because it is obviche the characteristic
equations, when put into its new form, can only be:

dyl = dyz = dy3 =0.

To take another example, consider the case of two eqaati six variables. In the
general case, the genus of the system is equal tezi—g—l-. One can represent a linear

element by a point in five-dimensional spaRe. The images of the integral linear
elements are then situated in a three-dimensional dpacnd the lines that join two
associated points in that space belong to two linemptaxes. In 8 Il, we saw that three
cases can present themselves. We take the lashomkich the lines of the complex are
lines that pass through a fixed pofbf Rz, and in addition, the lines that are situated in
a certain planeR) that passes through Here, there is therefore a characteristic elémen
whose image is.

The characteristic differential system will adrinite independent first integrals. One
first looks for ay;. Upon replacing; with C, one will define a spadg; in Rs that will
cutRs along the planed). The images of the integral linear elemerRjrare situated in
this plane Q), which naturally passes through and the lines that join two associated
points in this plane(@) are the lines that issue frofn Here, there is, moreover, just one
characteristic linear element. The new charactersststem is defined by four equations
that define the poimM\ in Ry . Lety, a first integral of this new system. It defines acgpa
R; in Ry that cuts Q) along a line D) that passes through however, all of the points of

(D) are then associated with each other. The new dleaistic system is thus composed
of the two equations that defineDj in R,. One will only have to look for two

independent first integrajg andy, of that system.

One will thus have to look for four integrals using operet of order 5, 4, 2, 1,
respectively.

In reality, one can further simplify this integratiafter the first integration and limit
oneself to three integrals that are given by operatdmsder 5, 3, 1, resp. However, in
order to do this, one must enter into the considmradf certain covariant equations,
which leaves the scope of this memoir.

There is one case in which the integration simplifless the one where the first
integraly; gives a spac&, that contains the pland?); i.e., the case whertne three
equations that defin@) admit an integrable combinationin this case, the images of the
integral linear elements of the new system are thetpoif ), andthese points are all
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associated with each otheifhe new characteristic system is composeavoequations
that define P) in Ry . Upon integrating them, one will have two firsteigralsy, andys,
and the equations o) in Rs are then:

dyl = dyz = dy3 =0.

The two equations that define the sp#&gethat is the locus of the images of the
integral linear elements that pass through i.e., the given equations — are of the form:

dy, —ysdy; =0,
dys —ys dyr = 0;

y4 andys are two first integrals other tham, y», ys . Here, one has@nonical formfor
the system in this same situation.

The operations that one must perform in this particaéeme are of order 3, 2, 1,
because it suffices, in summary, to integrate theetlequations that define the plaR, (
since the three equations are found to form a completiggriable system.




