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In the following pages, | propose to discuss, in a geombyricauitive fashion, the
unitary theory of gravitation and electricity that Einsten collaboration with Mayer,
published in 1931 in th8itzungsberichtef the Berlin Academy.

The geometric basis that one may give to the thepgontained in the following
three axioms:

AXIOM A. — Spacetime is a four-dimensional manifdlgin a five-
dimensional space with a Euclidean connectign E

AXIOM B. — The manifoldv, is totally geodesic

AXIOM C. - The geometry that is induced ip b¥ its presence in the interior
of B is Riemanniar{zero torsion.

To these purely geometrical axioms we add various other axtbat permit us to
identify certain geometrical quantities in the spacé wértain physical quantities. The
simplest and most important of them is the one thattiiies the torsion of the spaég
with the electromagnetic field (Axiom D). Another eopermits us to recover the
classical equations of motion of a particle in both avigational and electromagnetic
field. Finally, the field equations include both the inErRiemannian curvature &
and that oEs.

|. — GEOMETRIC BASIS OF THE THEORY.

1. Notion of a space with Euclidean connectior- An n-dimensional space with a
Euclidean connection, which is referred to an arbitxdng, ..., X', is defined by:

1. Thefundamental tensor;g which gives the square of the distance between two
infinitely close pointg; dX dX or the square of the length of a veapK' Y';

2. A system ofn® quantities Fij" that permit us to define what we mean by the
elementary geometric variation (@absolute differentigl of a vector whose origin is

(") French translation by Maurice SOLOVINE in: EINSTERhéorie de la relativitéParis, Hermann,
1933, 73-98.
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subjected to a given infintesimal displacemeitt The contravariant or covariant
components of this differential are:

DX =dX + X1} dx,
and
DX; = dX — Xk dx,
respectively.
Therijk are not arbitrary; they must satisfy the conditioat ttihe length of a moving

vector whose absolute differential is null remaimstant. This translates into the
relations:

90,
@ =3

ax~ ik T rjik = gjmri|r<n + gimrjrlr'
These relations express that the absolute differesftthle tensog; is null.

2. Other than the fundamental tengpr, the space two important tensors, which
embody the intrinsic geometric properties of the space:

1. Thetorsion tensorSy = - S, which is defined by:

i
(2) Slz(:rijk_rjli('
2. Thecurvature tensoRy, , which is defined by:

arlk arik m m
(3) R:?] = GXL _67? + rij rrlv(m =T rr|7(1j .

If one considers an oriented surface element in spdueh is defined, for example,
by a parallelogram that is constructed from two infinitedivectorsdX, o' of a certain
order, then one may associate this element with:

1. A torsion vector, which represents an infinitesimal translation whad€e
components is:

Q= S dxX K.

2. An infinitesimalrotation Q, which is defined by a two-index tensor (Wi =
- Qki)Z
Q=R dx'&".

The space is calleBliemanniarif it has null torsion; the symbollg andly; are then
the well-known Christoffel symbols (of the second arst types). A Riemannian space
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is completely determined by the given of its fundamergabarg;; a space with a
Euclidean connection is completely determined by its fumdaah tensorg; and its

torsion tensoS; .

3. Totally geodesic manifolds— Consider a four-dimensional manifold in a
space with Euclidean connecti&a. We assume, with no loss of generality, t¥atis
defined by the equatiox? = 0, in such a way that the unitary vectdhat is normal to/,
has only one covariant component different from zeamely,vs. We denote the indices
1, 2, 3, 4 by théatin lettersi, |, k, ...

If we consider a curve traced out V2 with the curvilinear abscissg and if we

. : . .Dt
denote the unitary tangent vector to this curvet iyren the absolute derlvathae
<

Dt :
represents theurvature vector. The normal componenvd— of that vector is the
<

-

1 . . . .
normal curvatureE of the curve. It is obtained immediately from thariala:

1 Dt®
R ®ds
5
or, sincet® = ddx =0:
1 o adx" < dx* dx"
RV TV e

The manifold is calledotally geodesidf the normal curvature of any curve that is traced
out in the manifold is null, or, what amounts to taens thing, if any geodesic curve in
V4 is geodesic in the space.

Therefore, AxionB translates analytically into the relations:

0] s+l =0 (Axiom B),

that thel" symbols for Emust satisfy at any point of spacetime V

4. Induced connection in a manifoldV, of Es. — The fact that the manifold,
(whose equation i° = 0), is embedded in a spaBg with a Euclidean connection
permits us to introduce aimduced connectionn V4. This Euclidean connection is
defined by:

1. The fundamental tensgy (i, j = 1, 2, 3, 4) which has the same components as the
fundamental tensor of the ambient space at each doifat.o

2. A system of symbofs1k that satisfy the condition that the absolute
differentialDX of a vectorX of V, be the tangential component of the absolute
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differential DX of the same vector, as calculated with the Euclidsamection of the
ambient space. From this, it results that for any veaft¥, one has:

DX, =DX, =dX; - X, [dx" = X, [pdx" =dX, - X*T,,,dx";

there is no reason to include the texthlis, dX' in the last expression of this triple
equality, since the vectot belongs to V, its X° component is null. It then results that

the symbols of the induced connecﬁ@nare the same as those of the connection in the
ambient space. _
One may now go further by assuming, with no loss ofgdity, that the linex' =

const. (=1, 2, 3, 4) are normal td, at every point oV,. Under these conditions, one
has:

05=0

at every point o¥/s; moreover, thg' of the induced connection are equal toghef the
connection of the ambient space, and, as a resudt, symbols of the induced
connectiorf;© are the same as those of the Euclidean connection of the ambient space

Finally, we add that the contravariant components@iitary normal vector must
all be zero except for.

5. AxiomC now translates into relations that express thatriluced connection on
V4 has zero torsion, namely:

(I r-ry =0 (Axiom C),

It does not necessarily result from this that the ambient sgaeRiemannianand this
is what permits us to introduce the electromagnetid fieb geometric form.
We add that, from (I), the equations:

gis =0, vV =v =0,
give:
Mg + 5= 0,
so:
(4) My, =—g%r}® or Vg =-vl}°

Finally, since the absolute differentlaV of a unitary vector is normal to that vector, i.e.,
has a null fifth component, one h&x (

ov,
(5) —+V°T, =0, — -y, [ =0.

XI

(® With no loss of generality, it is possible to assunawh= 1, and, as a resutt = 1; however, this
will not simplify the calculations appreciably.
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— THE ELECTROMAGNETIC FIELD AND THE MOTION
OF A CHARGED PARTICLE.

6. From Axioms B and C, which translate into formulas ¢y gll), the torsion
vector ofEs that is associated with a surface element for theesipaeV, is normal toVy;
it is in this torsion vector that we shall look fietelectromagnetic field.

AXIOM D. — The electromagnetic field at an arbitrary point of spacetimeh¥s
components=;, that are defined by the quantitigs°S} that define the mean of the

torsion tensor, as measured on the normal 1o V
Relations (1) and (2) then give:

(i rP=VF, Tl =W%F =F

i (Axiom D).

Axiom D may be stated in a more intuitive manner by wcEngg what one may call the
generalized flux of the magnetic field through a surfseenent of spacetime, namely:

” Fdxdx’

in which the (non-indicated) summation is performed @aers of the indices 1, 2, 3, 4.
This flux is equal to the normal component of trsion vector that is associated with
the surface element being considenagimnely:

[Jvs(ry =TP)dxX dx’ .

The integral, , which has a natural intrinsic diigance, may be called the flux of the
magnetic field, since, in special relativity, whens taken over a surface element in
space &t constant timg it gives:

” H,dydz+ H dzdx+ H ,dxdy,

if we agree to set:
F23 = Hj, Fz1 =H,, Fi2 =H,.

On the contrary, thEi4 define the electric field.

7. Motion of charged particle.— We shall arrive at the equations of motion of
particle in a field of gravitation and electriciby stating with the following axiom:

AXIOM E. — The space vector whose tangential component alangepfesents the
energy-momentum of a particle, and whose normalpooent \/ has the charge of this
particle for its measure, remains equipollent &elf when the particle is placed in a field
of gravitation and electricity.
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Lett be the unitary vector that is tangent to the trajgadd the particle in spacetime
V4; moreover, letry be therest massf the particle an@, its charge. The space vector
under consideration in the statement of Axiom E is:

met + ev.
One must therefore have:
dmpt + dev + myDt + eDv = 0.

Now, since the manifold/, is totally geodesic, the two vectod and Dv are both
perpendicular tot andv. The preceding equation may be decomposed into three
equations, namely:

dmy=0, de=0, myDt +eDv = 0.

The first two provide the conservation theorems errest mass and charg} (As

. : i ax' .
for the third, when one remarks that the contravar@mhponents' of t ared—, it
<

-

provides the four equations:

dx® dx"
ds ds

dx'
ds

dx"

j+e\/5r;hg—0,

T

o
or, accounting for (l11):

(V) m{d 0;

dx' ., dx* dx" dx
e teR ——=
ds ds ds ds

these are the classical equations.
8. If we assume, as in special relativity, that:
d =d—d¥ —dy*—dZ, (x'=x, ¥=y,X=z X =1),
and if we set:
F23 = Hj, Fz1 =H,, Fi2 =H,,
Fa1 = E, Fa2 = Ey, Faz=E,

then equations (IV) become, upon remarking that the massthe ordinary sense of the

word, is equal tcmO%:

() In their memoir, Einstein and Mayer considered thetar that had components Wnthat were equal
to the unitary vectot, and a normal component equal to the rftiche constancy of this ratio, which is

derived from the hypothesis that this vector remainspetjait to itself, seems to be interpreted, due to its
significance, as the statement that this ratio hasahe valudor all electrons.
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d m%( = e(-HAdy + Hydz +Edt),
dy _
d ma = e(—Hxdz + HAdx + E,dt),
dz
dm = ¢ Edx + Eydy + Ed2).

The generalized flux of the magnetic field in this casherefore:

j j H ,dydz+ H, dxdy — Rdxdt — Edydt— Edzdt.

Il. — THE SPATIAL RIEMANNIAN CURVATURE OF THE FIELD.

9. At every point of spacetimé,, and for every surface element\éf at this point
there is reason to consider th&insic Riemannian curvature & that is defined by the
classical componen®®¥;,, and the Riemannian curvature of the ambient spacevhich

we represent by the componeRgS .
From (3), one has:
leri = R:(h + rij5r5kh - riﬁ rFI:J' '
or, on account of (l11):
(6) R,Ir(w = R:(h +F, I:hk —Fi, ij;
from this, upon contracting the indickandh, one deduces:
(7) ﬁj :Rj_Fithk or R'=R'-FFX;

and then, by another contraction: _
(8) R=R—FpnF™

Similarly, upon accounting for (3) and (lll), one has:

re 2 Q06F) _wF.)

n o 0 +Vg(F,"T & —F T + TSR —T&F").

mh

If we take (5) into account, a simple calculatioveg ():

(9) V5ﬁ5kjh = ij;k - Fhk;j :

() Along with Einstein, we designate the covariant defregthat exists on the manifol, by a semi-
colon.
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From this one deduces, upon contracting over the indicasjh:

(10) V°Ry; = F,“x and V'R’ =F*x.

]

10. In order to prepare the field equations, we shall introtheguantities:
R: = §j _%gijﬁ_%gij Fhthk
k
(11) =R ~39;R-FF" +39,F"F
Rs*i :V5R5i = Fik?k-

The quantities satisfy the following identities:

(12) {R*k;k - I:im R;m = % I:hk(l:ih;k + I:hk;i + I:ki;h)

R;k;k = O

The last identity of (12) is easily verified. Aerfthe first, one may prove it by first
remarking that, from the classical Bianchi ideati{ione has:

(Rk%gikR);k = 0

What then remains is:
Ri*k;k = I:imF km;k -F I(mFim;k +% FY"F
=+ FimR;m +%ka(F

kmi

- Fim;k + Fik;m) 1

kmi

which is precisely the formula we are trying toyao

IV. — THE FIELD EQUATIONS.
11. We will obtain the field equations after we intragéutwo new axioms:

AXIOM F. — The generalized flux of the magnetic field throtig two-dimensional
boundary of a three-dimensional region of spacetsnaull.

Since the generalized flux of the magnetic fielﬁ[Ej dx'dx’' , this axiom translates into

the relations:
(V) Fizk + Fii + Fij = 0,

(first group of Maxwell equations).
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AXIOM G. — The matter tensof; (energy-momentunand the electricity tensorsT
(charge and current densjtare represented U?,] andR;,, up to a constant factor.

This gives the equations:

(V1) Rj — 4 iR — FiFj + gj F™Frc = Tj,
(vi) F =Tsi,

in which theT; andTs in the right-hand sides have tpaysicalsignificance that was
described in the statement. The right-hand sidesudrenrvacuo.

In order to have the proportionality factor be a tams we put ourselves in the
special relativistic context. Equations (VII) have ie-hand sides:

_OH, OH, o,
dy 0z ot
_O0H, aHz_aEy
0z ox ot
_aHy 6HX_6Ez
ox dy ot
_0E, OE, o,
ox oy 0z

The last quantity is equal to the charge density multpbg 477 the others give the
current densities,, iy, i, up to the same factor.

12. The identities, (12), give the following relations betwebke matter tensor and
the electricity tensor:

(Vi {Ti “%-RT =0

T« =0,

in which the latter expresses the theorem of thesexation of electricity. In the
continuum, these relations are equivalent to equmest(l\VV) that gave us the motion of a
particle, combined with the theorems of the cornstanf the rest mass and the charge of
that particle.

13. In order to see this equivalence as neatly as lplessve place ourselves in the
ideal case of diffuse matter without pressurewdfconsider a three-dimensional volume
element of spacetime, then the matter and thergeiegthat are contained in this element
may be assimilated into a particle whose stateefgesented by a five-dimensional
vector. The covariant componeiftg s of that vector are given, up to a factor af f#y
the formulas:
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M, =4/-g(T dx'dx’dx’ = T 'dx*dx’dx*
- T2dx°dx'dx* —T.dx‘dx’dx*),
M, =4/-g(Tldx'dx’dx’ - T dx*dx’dx*
-TZdxdx'dx* - T dx'dx*dx*).

Here, we are dealing with some vectorial diffe@ntorms that are the covariant
components of an infinitesimal vector that is attdctee a three-dimensional spacetime
element.

Therefore consider a four-dimensional domdn of spacetime, and the three-
dimensional boundary;, of that domain. A vectdi is thus attached to every element of
the boundary.Equations(VIII) express that the geometric sum of all of these vectors is

null.
In full rigor, in a non-euclidean space one may noakp® the geometric sum of

vectors that do not have the same origin. Howeft/gheidomainD is infinitesimal, and
if Ais a point that is interior t® then one may parallel transport any vector that is

attached to a poirt¥l of the boundaryF to A by displacing its origin, for example, along

the geodesic that joins the poMtto the pointA. Since the vectors now have the same
origin one may add them, atitk principal part of the geometric sum does not depend on
the chosen point.A

Each component of the geometric sum is given by aetiitegral taken over the

boundaryF, which may, from the generalized Stokes’s formulatraasformed into a
guadruple integral taken ov@p. If one denotes the exterior derivative of one & th
formsM; by’ - i.e., the quantity under thH” sign when one transforms the triple

integral that was taken ovéf into a quadruple integral taken ov@r— then one proves

that the covariant components of the desired geonsetnicare the quadruple differential
forms:

M -r dx"n, -r2dx"M,,
My -redx"m, -rodx"m..
One therefore finds:
-J-9(T¥, —F T)dxdxdxdx’,
—Ve = g( TS, - F T )dxdxédxdx’.

The first four of these quantities are null, frame ffirst identities of (VIII); as for the last,

it is also null, by virtue of the last identity f111), and the remark that the suf,“ Ty =

F™ T, is null because of the antisymmetryF8t, combined with the symmetry ..
The theorem is thus provedlhe geometric sum of the vectors of the siiacthat

represent the states of the elements of the boutfaf the domairD is null.
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14. We shall now show that if Axiom F is not in contretein with Axiom D then
the preceding theorem is a necessary consequence of Axionmd2ed, consider the

domainD an a particle whose worldline traverses the domappase, to simplify, that it
entersD at a pointM on the boundary, and that it leaves at a poiit . From Axiom

D, the five-dimensional vectors that represent thee sihithe particle at these two points
are equipollent to each other, but when considered as agaxhed to two points of the
oriented boundaryf, they must be regarded as having a null geometric sum. Biace

vectorsl that are attached to the different points/fhave a null geometric sum
pairwise, their total geometric sum must be null. E.Q.

There is thus an equivalence between the equations of motion of aeptnétiare
provided by AxionD, and the field equations that are provided by AxiénasmdF.

15. We may add an interesting remark that says nothing riewe last identity of
(1) shows that the integrgﬁj_[vsl'l5 iIs null when taken over the three-dimensional

boundary of a four-dimensional domain in spacetime. mFeo theorem of classical
analysis, it results that this triply-extended intégnger an arbitrary three-dimensional
region is equal to a certain doubly-extended integral theetwo-dimensional boundary
of this region. This double integral is the following:

j j J- 9 (FZdxXdx3 + F*idxdx’
+ FY2dx3dx¥ + FHdx@dx + F4ddxt + Fdxdx);

indeed, when transformed into a triple integral, it gives:
[[]V-g (F*dXdXax - F<didxdx...).

The double integral is thgeneralized flux of the electric fielavhen this flux is taken
over the boundary of a three-dimensional region éqgal to the quantity of electricity
that is contained in that region.



