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In the following pages, I propose to discuss, in a geometrically intuitive fashion, the 
unitary theory of gravitation and electricity that Einstein, in collaboration with Mayer, 
published in 1931 in the Sitzungsberichte of the Berlin Academy (1). 
 The geometric basis that one may give to the theory is contained in the following 
three axioms: 
 
 AXIOM A. – Spacetime is a four-dimensional manifold V4 in a five- 

dimensional space with a Euclidean connection E5. 
 

AXIOM B. – The manifold V4 is totally geodesic. 
 
AXIOM C. -  The geometry that is induced in V4 by its presence in the interior 
  of E5 is Riemannian (zero torsion). 

 
To these purely geometrical axioms we add various other axioms that permit us to 
identify certain geometrical quantities in the space with certain physical quantities.  The 
simplest and most important of them is the one that identifies the torsion of the space E5 
with the electromagnetic field (Axiom D).  Another one permits us to recover the 
classical equations of motion of a particle in both a gravitational and electromagnetic 
field.  Finally, the field equations include both the internal Riemannian curvature of V4 
and that of E5. 
 
 

I.  – GEOMETRIC BASIS OF THE THEORY. 
 
 
 1.  Notion of a space with Euclidean connection. – An n-dimensional space with a 
Euclidean connection, which is referred to an arbitrary x1, x2, …, xn, is defined by: 
 
 1.  The fundamental tensor gij , which gives the square of the distance between two 
infinitely close points gij dxi dxj or the square of the length of a vector gij X

i Yj; 
 
 2.  A system of n3 quantities k

ijΓ  that permit us to define what we mean by the 

elementary geometric variation (or absolute differential) of a vector whose origin is 

                                                
 (1) French translation by Maurice SOLOVINE in: EINSTEIN: Théorie de la relativité, Paris, Hermann, 
1933, 73-98. 
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subjected to a given infintesimal displacement dxi.  The contravariant or covariant 
components of this differential are: 
 

DXi = dXi + Xk i
khΓ dxh, 

and 
DXi = dXi − Xk

k
ihΓ dxh, 

respectively. 
 The k

ijΓ are not arbitrary; they must satisfy the condition that the length of a moving 

vector whose absolute differential is null remains constant.  This translates into the 
relations: 

(1)    m
jkim

m
ikjmjikijkk

ij gg
x

g
Γ+Γ=Γ+Γ=

∂
∂

. 

 
These relations express that the absolute differential of the tensor gij is null. 
 
 2.  Other than the fundamental tensor gij , the space two important tensors, which 
embody the intrinsic geometric properties of the space: 
 
 1.  The torsion tensor k

ijS = − k
jiS , which is defined by: 

 
(2)    k

ijS = k
ijΓ − k

jiΓ . 

 
 2.  The curvature tensor k

ijhR , which is defined by: 

 

(3)   k
mj

m
ih

k
mh

m
ijj

k
ih

h

k
ijk

ijh
xx

R ΓΓ−ΓΓ+
∂
Γ∂

−
∂
Γ∂

= . 

 
 If one considers an oriented surface element in space, which is defined, for example, 
by a parallelogram that is constructed from two infinitesimal vectors dxi, δxi of a certain 
order, then one may associate this element with: 
 
 1.  A torsion vector, which represents an infinitesimal translation whose kth 
components is: 

Ωk = k
ijS dxi δxj. 

 
 2.  An infinitesimal rotation Ωi

k, which is defined by a two-index tensor (with Ωik = 
− Ωki): 

hjk
ijh

k
i xdxR δ=Ω . 

 
 The space is called Riemannian if it has null torsion; the symbolsk

ijΓ and Γikj are then 

the well-known Christoffel symbols (of the second and first types).  A Riemannian space 



THE UNITARY THEORY OF EINSTEIN-MAYER 3 

is completely determined by the given of its fundamental tensor gij; a space with a 
Euclidean connection is completely determined by its fundamental tensor gij and its 
torsion tensor k

ijS . 

 
 3.  Totally geodesic manifolds. – Consider a four-dimensional manifold V4 in a 
space with Euclidean connection E5.  We assume, with no loss of generality, that V4 is 
defined by the equation x5 = 0, in such a way that the unitary vector v that is normal to V4 
has only one covariant component different from zero, namely, v5.  We denote the indices 
1, 2, 3, 4 by the Latin letters i, j, k, … 
 If we consider a curve traced out in V4 with the curvilinear abscissa s, and if we 

denote the unitary tangent vector to this curve by t then the absolute derivative
ds

Dt
 

represents the curvature vector.  The normal component 
ds

Dt
v  of that vector is the 

normal curvature 
R

1
 of the curve.  It is obtained immediately from the formula: 

R

1
= 

ds

Dt
v

5

5 , 

or, since t5 =
ds

dx5

= 0: 

R

1
= 

ds

dx

ds

dx
v

ds

dx
tv

hk
s
kh

h
s
kh

k Γ=Γ 55 . 

 
The manifold is called totally geodesic if the normal curvature of any curve that is traced 
out in the manifold is null, or, what amounts to the same thing, if any geodesic curve in 
V4 is geodesic in the space. 
 Therefore, Axiom B translates analytically into the relations: 
 
(I)    s

ijΓ + s
jiΓ  = 0  (Axiom B), 

 
that the Γ symbols for E5 must satisfy at any point of spacetime V4. 
 
 4.  Induced connection in a manifold V4 of E5. – The fact that the manifold V4 
(whose equation is x5 = 0), is embedded in a space E5 with a Euclidean connection 
permits us to introduce an induced connection in V4.  This Euclidean connection is 
defined by: 
 
 1.  The fundamental tensor gij (i, j = 1, 2, 3, 4) which has the same components as the 
fundamental tensor of the ambient space at each point of V4 . 
 
 2.  A system of symbolsijkΓ  that satisfy the condition that the absolute 

differential XD  of a vector X of V4 be the tangential component of the absolute 
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differential DX of the same vector, as calculated with the Euclidean connection of the 
ambient space.  From this, it results that for any vector of V4 one has: 
 

h
ikh

k
i

h
ih

hk
ihkiii dxXdXdxXdxXdXDXXD Γ−=Γ−Γ−== 5

5 ; 

 
there is no reason to include the term X5 Γi5h dxh in the last expression of this triple 
equality, since the vector X belongs to V4, its X5 component is null.  It then results that 
the symbols of the induced connectionijkΓ  are the same as those of the connection in the 

ambient space. 
 One may now go further by assuming, with no loss of generality, that the lines xi = 
const. (i = 1, 2, 3, 4) are normal to V4 at every point of V4.  Under these conditions, one 
has: 

gi5 = 0 
 
at every point of V4; moreover, the ijg of the induced connection are equal to the gij of the 
connection of the ambient space, and, as a result, the symbols of the induced 
connection k

ijΓ   are the same as those of the Euclidean connection of the ambient space. 

 Finally, we add that the contravariant components of the unitary normal vector v must 
all be zero except for v5. 
 
 5.  Axiom C now translates into relations that express that the induced connection on 
V4 has zero torsion, namely: 
(II)    k

ijΓ − k
jiΓ  = 0  (Axiom C), 

 
It does not necessarily result from this that the ambient space E5,is Riemannian, and this 
is what permits us to introduce the electromagnetic field in a geometric form. 
 We add that, from (I), the equations: 
 

gi5 = 0,  vi = vi = 0, 
give: 

Γi5j + Γ5ij = 0, 
so: 
(4)   555

5
i
j

i
j g Γ−=Γ   or 5

55
5 i

j
i
j vv Γ−=Γ . 

 
Finally, since the absolute differential Dv of a unitary vector is normal to that vector, i.e., 
has a null fifth component, one has (2): 
 

(5)   05
5

5
5

=Γ+
∂
∂

ii
v

x

v
, 05

55
5 =Γ−

∂
∂

ii
v

x

v
. 

 
 

                                                
 (2) With no loss of generality, it is possible to assume that v5 = 1, and, as a result v5 = 1; however, this 
will not simplify the calculations appreciably. 
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I.  – THE ELECTROMAGNETIC FIELD AND THE MOTION 
OF A CHARGED PARTICLE.  

 
 
 6.  From Axioms B and C, which translate into formulas (I) and (II), the torsion 
vector of E5 that is associated with a surface element for the spacetime V4 is normal to V4; 
it is in this torsion vector that we shall look for the electromagnetic field. 
 
AXIOM D. – The electromagnetic field at an arbitrary point of spacetime V4 has 
components Fij, that are defined by the quantities 55

2
1

ijSv  that define the mean of the 

torsion tensor, as measured on the normal to V4. 
 
 Relations (1) and (2) then give: 
 

(III)   ijij Fv55 =Γ , i
jj

ii
j FvFv 555 ==Γ  (Axiom D). 

 
Axiom D may be stated in a more intuitive manner by considering what one may call the 
generalized flux of the magnetic field through a surface element of spacetime, namely: 
 

∫∫
ji

ij dxdxF , 

 
in which the (non-indicated) summation is performed over pairs of the indices 1, 2, 3, 4.  
This flux is equal to the normal component of the torsion vector that is associated with 
the surface element being considered, namely: 
 

∫∫ Γ−Γ ji
ijij dxdxv )( 55

5 . 

 
The integral, , which has a natural intrinsic significance, may be called the flux of the 
magnetic field, since, in special relativity, when it is taken over a surface element in 
space (at constant time), it gives: 
 

∫∫ ++ dxdyHdzdxHdydzH zyx , 

if we agree to set: 
F23 = Hx, F31 = Hy, F12 = Hz . 

 
On the contrary, the Fi4 define the electric field. 
 
 7.  Motion of charged particle. – We shall arrive at the equations of motion of 
particle in a field of gravitation and electricity by stating with the following axiom: 
 
  AXIOM E. – The space vector whose tangential component along V4 represents the 
energy-momentum of a particle, and whose normal component V4 has the charge of this 
particle for its measure, remains equipollent to itself when the particle is placed in a field 
of gravitation and electricity. 
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 Let t be the unitary vector that is tangent to the trajectory of the particle in spacetime 
V4; moreover, let m0 be the rest mass of the particle and e, its charge.  The space vector 
under consideration in the statement of Axiom E is: 
 

m0t + ev. 
One must therefore have: 

dm0t + dev + m0 Dt + eDv = 0. 
 
Now, since the manifold V4 is totally geodesic, the two vectors Dt and Dv are both 
perpendicular to t and v.  The preceding equation may be decomposed into three 
equations, namely: 

dm0 = 0, de = 0,  m0 Dt + eDv = 0. 
 
 The first two provide the conservation theorems for the rest mass and charge (3).  As 

for the third, when one remarks that the contravariant components ti of t are
ds

dxi

, it 

provides the four equations: 
 

05
5

0 =Γ+







Γ+

ds

dx
ev

ds

dx

ds

dx

ds

dx
dm

h
i
h

hk
i
kh

i

, 

 
or, accounting for (III): 

(IV)    00 =+







Γ+

ds

dx
eF

ds

dx

ds

dx

ds

dx
dm

h
i

h

hk
i
kh

i

; 

 
these are the classical equations. 
 
 8.  If we assume, as in special relativity, that: 
 

ds2 = dt2 – dx2 – dy2 – dz2, (x1 = x, x2 = y, x3 = z, x4 = t), 
 
and if we set: 
   F23 = Hx, F31 = Hy, F12 = Hz, 
   F41 = Ex, F42 = Ey, F43 = Ez, 
 
then equations (IV) become, upon remarking that the mass m, in the ordinary sense of the 

word, is equal to 
ds

dt
m0 : 

                                                
 (3) In their memoir, Einstein and Mayer considered the vector that had components on V4 that were equal 

to the unitary vector t, and a normal component equal to the ratiom
e ; the constancy of this ratio, which is 

derived from the hypothesis that this vector remains equipollent to itself, seems to be interpreted, due to its 
significance, as the statement that this ratio has the same value for all electrons. 
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   








dt

dx
md  = e(−Hzdy + Hydz + Exdt), 

   








dt

dy
md  = e(−Hxdz + Hzdx + Eydt), 

   








dt

dz
md  = e(−Hydx + Hxdy + Ezdt), 

        dm  = e(  Ezdx + Eydy + Ezdz). 
 
The generalized flux of the magnetic field in this case is therefore: 
 

∫∫ dydzH x + Hy dxdy – Ex dxdt – Ey dydt– Ez dzdt. 

 
 

II.  – THE SPATIAL RIEMANNIAN CURVATURE OF THE FIELD. 
 
 9.  At every point of spacetime V4, and for every surface element of V4 at this point 
there is reason to consider the intrinsic Riemannian curvature of V4 that is defined by the 
classical components Ri

k
jh, and the Riemannian curvature of the ambient space E5, which 

we represent by the components jh
kR5 . 

 From (3), one has: 
k
jih

k
hij

k
ijh

k
ijh RR 5

5
5

5 ΓΓ−ΓΓ+= , 

or, on account of (III): 

(6)    k
jih

k
hij

k
ijh

k
ijh FFFFRR −+= ; 

 
from this, upon contracting the indices k and h, one deduces: 
 

(7)  k
hikijij FFRR −=  or jk

ik
j

i
j

i FFRR −= ; 

 
and then, by another contraction: 
(8)     R = R – Fhk F

hk. 
 
Similarly, upon accounting for (3) and (III), one has: 
 

)(
)()(

5
5

5
55

55
5

k
jh

k
hj

k
mj

m
h

k
mh

m
jj

k
h

h

k
jk

jh FFFFv
x

Fv

x

Fv
R Γ−Γ+Γ−Γ+

∂
∂

−
∂

∂
= . 

 
If we take (5) into account, a simple calculation gives (4): 
 

(9)    j
k

hk
k

jjh
k FFRv ;;5

5 −= . 

                                                
 (4) Along with Einstein, we designate the covariant derivative that exists on the manifold V4 by a semi-
colon. 
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From this one deduces, upon contracting over the indices, k and h: 
 

(10)   k
k

jj FRv ;5
5 =   and k

jkj FRv ;5
5 = . 

 
 
 10.  In order to prepare the field equations, we shall introduce the quantities: 
 

(11)  








==
+−−=

−−=

.;5
5*

5

4
1

2
1

4
1

2
1*

k
k

iii

hk
hk

ij
k

jikijij

hk
hk

ijijijij

FRvR

FFgFFRgR

FFgRgRR

 

 
The quantities satisfy the following identities: 
 

(12)  






≡
++≡−

.0

)(

;
*
5

;;;2
1*

5;
*

k
k

hkiihkkih
hkm

imk
k

i

R

FFFFRFR
 

 
The last identity of (12) is easily verified.  As for the first, one may prove it by first 
remarking that, from the classical Bianchi identities, one has: 
 

( ) 0;2
1 =k

k
i

k
i RgR . 

What then remains is: 
 
  ikm

km
kim

km
k

km
imk

k
i FFFFFFR ;2

1
;;;

* +−=  

   = )( ;;;2
1*

5 mikkimikm
kmm

im FFFFRF +−++ , 

 
which is precisely the formula we are trying to prove. 
 
 

IV.  – THE FIELD EQUATIONS.  
 
 11.  We will obtain the field equations after we introduce two new axioms: 
 
 AXIOM F. – The generalized flux of the magnetic field through the two-dimensional 
boundary of a three-dimensional region of spacetime is null. 
 

Since the generalized flux of the magnetic field is∫∫
ji

ij dxdxF , this axiom translates into 

the relations: 
(V)     Fij;k + Fjk;i + Fik;j = 0, 
 
(first group of Maxwell equations). 
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 AXIOM G. – The matter tensor Tij (energy-momentum) and the electricity tensor T5i 
(charge and current density) are represented by*

ijR and *
5iR , up to a constant factor. 

 
 This gives the equations: 
 
(VI)   Rij – 2

1 gijR – Fik Fj
k + gij F

hk Fhk = Tij, 

(VII)    Fi
k
;k = T5i , 

 
in which the Tij and T5i in the right-hand sides have the physical significance that was 
described in the statement.  The right-hand sides are null in vacuo. 
 In order to have the proportionality factor be a constant, we put ourselves in the 
special relativistic context.  Equations (VII) have the left-hand sides: 
 

t

E

z

H

y

H xyz

∂
∂

−
∂

∂
+

∂
∂

− , 

t

E

x

H

z

H yzx

∂
∂

−
∂

∂
+

∂
∂

− , 

t

E

y

H

x

H
zxy

∂
∂

−
∂

∂
+

∂
∂

− , 

z

E

y

E

x

E zyx

∂
∂

−
∂

∂
−

∂
∂

− . 

 
The last quantity is equal to the charge density multiplied by 4π; the others give the 
current densities ix, iy, iz , up to the same factor. 
 
 
 12.  The identities, (12), give the following relations between the matter tensor and 
the electricity tensor: 

(VIII)    




=
=−

,0

,0

;5

5;

k
k

k
ikk

k
i

T

TFT
 

 
in which the latter expresses the theorem of the conservation of electricity.  In the 
continuum, these relations are equivalent to equations (IV) that gave us the motion of a 
particle, combined with the theorems of the constancy of the rest mass and the charge of 
that particle. 
 
 
 13.  In order to see this equivalence as neatly as possible, we place ourselves in the 
ideal case of diffuse matter without pressure.  If we consider a three-dimensional volume 
element of spacetime, then the matter and the electricity that are contained in this element 
may be assimilated into a particle whose state is represented by a five-dimensional 
vector.  The covariant components Πi, Π5 of that vector are given, up to a factor of 4π, by 
the formulas: 
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43213214( dxdxdxTdxdxdxTg iii −−=Π  

)42134132 dxdxdxTdxdxdxT ii −− , 
4321

5
3214

55 ( dxdxdxTdxdxdxTg −−=Π  

)4213
5

4132
5 dxdxdxTdxdxdxT −− . 

 
 Here, we are dealing with some vectorial differential forms that are the covariant 
components of an infinitesimal vector that is attached to a three-dimensional spacetime 
element. 
 Therefore consider a four-dimensional domain D of spacetime, and the three-

dimensional boundary, F, of that domain.  A vector ΠΠΠΠ is thus attached to every element of 
the boundary.  Equations (VIII) express that the geometric sum of all of these vectors is 
null. 
 In full rigor, in a non-euclidean space one may not speak of the geometric sum of 
vectors that do not have the same origin.  However, if the domain D is infinitesimal, and 

if A is a point that is interior to D then one may parallel transport any vector that is 

attached to a point M of the boundary F to A by displacing its origin, for example, along 

the geodesic that joins the point M to the point A.  Since the vectors now have the same 
origin one may add them, and the principal part of the geometric sum does not depend on 
the chosen point A. 
 Each component of the geometric sum is given by a triple integral taken over the 
boundary F, which may, from the generalized Stokes’s formula, be transformed into a 

quadruple integral taken over D.  If one denotes the exterior derivative of one of the 

forms ΠΠΠΠi byΠΠΠΠ′  − i.e., the quantity under the ∫∫ ∫∫ sign when one transforms the triple 

integral that was taken over F into a quadruple integral taken over D − then one proves 

that the covariant components of the desired geometric sum are the quadruple differential 
forms: 

5
5 ΠΓ−ΠΓ−Π′ h
ihk

hk
ihi dxdx , 

5
5
555 ΠΓ−ΠΓ−Π′ h
hk

hk
h dxdx . 

One therefore finds: 
4321

5; )( dxdxdxdxTFTg k
ikk

k
i −−− , 

4321
;5

5 )( dxdxdxdxTFTgv h
k

k
hk

k −−− . 

 
The first four of these quantities are null, from the first identities of (VIII); as for the last, 
it is also null, by virtue of the last identity of (VIII), and the remark that the sum, Fh

k Th
k = 

Fhk Tkh, is null because of the antisymmetry of Fkh, combined with the symmetry of Tkh . 
 The theorem is thus proved: The geometric sum of the vectors of the space E5 that 
represent the states of the elements of the boundary F of the domain D is null. 
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 14.  We shall now show that if Axiom F is not in contradiction with Axiom D then 
the preceding theorem is a necessary consequence of Axiom D.  Indeed, consider the 
domain D an a particle whose worldline traverses the domain; suppose, to simplify, that it 

enters D at a point M on the boundary F, and that it leaves at a pointM ′ .  From Axiom 

D, the five-dimensional vectors that represent the state of the particle at these two points 
are equipollent to each other, but when considered as being attached to two points of the 
oriented boundary, F, they must be regarded as having a null geometric sum.  Since the 

vectors ΠΠΠΠ that are attached to the different points of F have a null geometric sum 

pairwise, their total geometric sum must be null.    Q.E.D. 
 
 There is thus an equivalence between the equations of motion of a particle that are 
provided by Axiom D, and the field equations that are provided by Axioms E and F. 
 
 
 15.  We may add an interesting remark that says nothing new.  The last identity of 

(III) shows that the integral∫∫∫ 5
5ΠΠΠΠv  is null when taken over the three-dimensional 

boundary of a four-dimensional domain in spacetime.  From a theorem of classical 
analysis, it results that this triply-extended integral over an arbitrary three-dimensional 
region is equal to a certain doubly-extended integral over the two-dimensional boundary 
of this region.  This double integral is the following: 
 

∫∫ − g (F23dx1dx2 + F31dx2dx4 

  + F12dx3dx4 + F14dx2dx3 + F24dx3dx1 + F34dx1dx2); 
 
indeed, when transformed into a triple integral, it gives: 
 

 ∫∫ ∫ − g (F4k
;k dx1dx2dx3 – F1k

;k dx2dx3dx4…). 

 
The double integral is the generalized flux of the electric field; when this flux is taken 
over the boundary of a three-dimensional region it is equal to the quantity of electricity 
that is contained in that region. 
 

_______ 
 
 


