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FIRST THESIS.

CALCULUS OF TRI-QUATERNIONS

NEW GEOMETRIC ANALYSIS.

INTRODUCTION.

Objective of the memoir: The objective of this memoir is to establish a gedmet
analysis that is true in any reference system.

The procedures that were described in Grassmakusdehnungslehreealized this
objective, although they are capable of being formulated gbaolutely systematic way,
which is a state of affairs that was not reachedumvew.

On the contrary, the calculus of tri-quaternions ctutsts a geometric analysis in the
true sense of the term. It is capable of assimilatiitgle simplifying, all of the methods
of analytic geometry.

It takes place in coordinate axes, but it has need adrigm, which will further
persist in some formulas for elements that are doréo the questions treated, except,
however, in the questions that pertain to differentiabrgetry, where the origin
disappears completely and the analytical apparatus aké bn the greatest possible
simplicity.

It is in the complex numerical systems that considthe quaternions that we have
demanded the realization of our goal, and the solutidhbei provided to us by the
numerical system of the tri-quaternions.

By reason of the specialization of the geometricudain mathematical science, it
seems useful to present the results that have beexvadhip to now very succinctly in
anlntroduction the knowledge of which constitutes the point of depafturéhe present
effort.

This Introductionwill then have the advantage of neatly separating aur ersonal
research from that which was done before us (to our latge).

Complex numerical systemsA complex number is an expression of the form:

XEX1etXo& + ... X 6,
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where e, &, ..., &, are independent complex units, axg X, ..., X, are ordinary
numerical quantities.

The produck” of two of these numbessandx’ will be determined if one knows how
to express the two productse, ande e that are defined by each of the pairs of units
linearly as functions of the original units.

By setting:

X =x6+tX%e+ -+ Xg

A

X'=xg+X gt -+ fe

one can also define the product by expressing each of the parameter<ofis a
function of the products of pairs of parameters froamdx', namely:

I

X = XXt anX Xt a %kt g Xy
X, = A XXt aAL XNt

In the two cases, one finds oneself in the presencé @f — 1) coefficients whose
values define the multiplication in the system congider

One generally reserves the term “complex numesigstems” for the ones for which
the multiplication is an associative operation - tle&e ones for which one always has:

X" (X' X) = (X" X) X,

X, X, X" being three arbitrary complex quantities of the system

From that point onward, the relations that definerthdtiplication will no longer be
arbitrary, and it results from Poincaré’s study of pter numerical systems)(that
every complex numerical system (which is intended enrdstricted sense) withunits
corresponds to a group of transformations witrarameters, or, more precisely, to a pair
of reciprocal parameter groups.

Each complex quantity of the system correspondsttarsformation of the group,
and the complex multiplication represents the commosibf the transformations of the
group.

One can also regard thenumerical quantities that determine the complex qtyaasi
the homogeneouparameters of the transformations of a group, and teewder will be
n-1.

It is in this manner that the numerical system efdhaternions represents the group
of rotations around a point.

Since it is in the complex numerical systems thatshall seek the realization of a
geometric analysis, we will first be led to seek a getoimgroup of transformations such
that some of them are capable of representing the pofirgpace, and then to seek a
complex numerical system in which a set of quantisesapable of representing said
transformation group.

() PoincaréComptes rendyd.884, 2 semester.
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The fundamental group of geometry is the Euclidian group her droup of
displacements without deformation.

It consists of transformations that are capable @fraitterizing the lines in space
(viz., rotations through an angig and others that are capable of characterizing vectors
(viz., translations), but nothing that would serve to reprepoints.

This condition is found to be realized in the disamnbus group that is defined by the
displacement and symmetry transformations.

Indeed, the latter can represent points (viz., symmsetvith respect to the groups)
and planes (viz., symmetries with respect to planes).

However, since the group is not continuous, it does e®mgo be capable of being
represented by a complex numerical system.

There exists a continuous group of point-like transfoionat that include the
preceding ones, which is the group of transformations byilitside — i.e.,
transformations that are each composed of a rotatia &ilwmothety.

Such a transformation can be obtained from the sequeh@ homothety and a
rotation around a line that passes through the centdreohamothety, and in turn, is
characterized by a fixed point (three parameters), a finedthat passes through that
point (two parameters), an angle of rotation, and adtbety coefficient, and thus
depends upon seven parameters.

In general, a transformation by similitude preserves iatpa line, and a plane,
namely, the center of the homothety, the axis oftimta and the plane that passes
through the point and is perpendicular to the line.

One finds three types of symmetry transformations ngmihese transformations:
Symmetry with respect to points, planes, and linesy thre characterized by the
following parameters:

Angle of Coefficient of
rotation  homothety

Symmetry with respect to a point 0 -1
“ line T 1
“ plane 71 -1

We thus find the representation of the principal elemehtgeometry — namely, the
point, plane, and line — in the group of transformationsibylitude by means of the
various symmetries that characterize these elements.

However, the group of transformations by similitude doesseem to be directly
representable by a complex numerical system.

We thus have to look for a complex numerical sydigah includes quantities whose
multiplication will be a representation of the composa of the transformations by
similitude.

It is natural to look for the solution among the nuwcersystems that include the
guaternions, since the latter represents the group oforegaaround a point, which is
included in that of the transformations by similitude.
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Calculus of quaternions: A quaternionis a complex expression of the form:
w+ix +jy +kz

wherew, X, y, z are ordinary numerical quantities (i.e., positivegative, or imaginary),
andi, j, k are special symbols or complex units.
By definition, one sets:

Sqg= w (i.e., the scalar part g},
Vq=ix +jy + kz(vectorial part ofy),
and, in turn:
g=Sq+\Va
One further sets:

Tq= W2+ )3+ P+ Z (tensor ofj).

The addition of the quaternions is defined by the additfahe coefficients of each
unit:
Q+of SWHW +i (x+X) +] (Y +Y) +k(2+2).

The product of two quaternions is a quaternion that onensblbgi proceeding as one
does in algebra and then applying the following rules:

i?=j?=K=-1,
ij==ji=k jk=-ki=i, ki=-ik=j.

One sees that one is not permitted to change the afrthstors in the product of two
guaternions; in other words, the multiplication of quatemsiis not a commutative
operation.

The calculus of quaternions is independent of any ge@msterpretation, and one
can give it several of them, moreover.

The customary use of that calculus will not be in qoashere, but only what was
developed by its founder.

The principle of that geometric analysis consistietihg the expression:

asixt+jy +kz

represent the vector whose components along threengedda coordinate axes axgy, z.
One sees immediately that the symbo|sk represent the vectors of length equal to
one unit that are directed along the coordinate axes,atesgg.
The length ok is represented by:

Ta=s (X +y + 2.

Let:
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asix+jy +kz
L=EIX +)y +kZ
be two vectors.
Upon taking the produatr5, while conforming to the rules that were given above,
one will find:
SOof=- (xX +yy +2z2),
Vpp=i(yZz-zy)+j(zX—-x2Z)+k(xy —yX).

One recalls that one has:
Shp= SPa,
V op = - VIBa.

Let &be the angle between the two directiongr@indf. One has:
Shp=-Ta TS ToséE.
As forV ap, it is a vector that is perpendicularda@and and has a length equal to:
Ta OTBBING.

The direction of this vector is related to the relatiisposition ofa and £ in the same
manner that the vectdris related to the relative dispositioniaind;.

If the directions of, |, k present the customary disposition of coordinate axarsttie
propulsion in the sense &f Oag will be linked to the rotation ofr into £ by a right-
handed helicoidal motion; i.e., inverse to the motiothefcommon corkscrew.

In order to employ the calculus of quaternions in tligse of geometric analysis, it
will suffice to represent each point of space by thdorethat goes from some well-
defined origin to that point. It is useless to take therdinate axes, because any
geometric property can be expressed directly by mearntseofdctors as functions &
andV.

These are the essential principles of the calaflggiaternions. They will suffice for
the purpose that we have proposed.

Rotations around a fixed point: We verify that the numerical system of the
guaternions represents the group of rotations around a fixej @miong others.

Take the equations of a rotation around the origin infohen that was given by
Olinde Rodrigues:

(@2+al+al+al) X =(at+al-aZ-al)x+ 2 (o —aas) y + 2 (a3 + av) Z
(@2+al+al+al) y =2 (@mo + avs) x+ (@ —al +ai-al)y + 2 (as - aom) Z,

(@2+al+ai+al) Z =2 (o —aom) X+ 2 (s + aon) Y + (@} —al —a’+al)z.
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If A, 4, v are the angles that the axis of rotation makes wélctordinate axes, and
28is the angle of rotation, then one will have thiofeing relations:

a, a,

_ a;
\/ 24 0242 ! COSH= \/ 24 0242
a, +a,t+a; a, +a,ta;

2 2 2’
\/al ta,ta,

cosA = , cosy =

aj
2 2 2
\/al ta,ta,

cos@=

The sense of rotation is linked to the positive dioacbf the axis of rotation by a
right-handed torsion.

That is the convention that we shall adopt.

The coefficientan, a1, a», as can be taken to be the homogeneous parameters of the
rotation.

Execute two successive rotations that are representéuebgystems of valuesgy,
m, ar, az) and (ag,a,,0,,a;). The resultant rotation can be represented by arsyst

parametersy, , a, , a,, a, that is determined by the relations:

a, = aoag_alall_aaa'z_aglz’
a, = aoai+ala'()_aﬂ'3+ag'2’
- 0’00"2 +0’10"3+0'20"0—0'g'1,
= aazmagytagitag,

] R
| |

Now, one sees that if one sets:

q =a+io +jo+kas,
q =a,+ia,+ja,+kas,
q =ay+ia+ja,tka,

then one will have the relation:
g =dqg.

Therefore, the multiplication of quaternions represehe composition of rotations
around a fixed point, since a quaternion represents a amtdth homogeneous
parameters).

If one sets:

p =ix +jy +kz
O =iX+jy +kZ

then the formulas of Olinde Rodrigues above will be regmeed by the quaternion
equation:
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p=dpd?,
which can be written, upon multiplying on the rightdy
A a=qp.
VW q=VIgp

which represents the known formulas:

One deduces from this that:

o X +agy’—azz’ S X—mytarz
O'oy +nzZ-aX =dY— M Z+ X,
o Z +0’2X'—0'1Y =dhZ- Xt mYy.

The group of rotations around a point is not the only group a@mggic
transformations that is represented by the system oéuais.

This system also represents the group of projectiveftranations on a line and the
group of special linear transformations around a poirteérptane.

Indeed, these two groups have the same structure gsotine of rotations around a
point.

Displacements without deformation and bi-quaternions. The group of
displacements without deformation in space Ewclidian group— can be represented in
the manner that we have defined by a complex numeriers, namely, thei-
guaternions but not in precisely the same way that the group ofiooistis represented
by the system of quaternions.

A bi-quaternion is a complex quantity of the form:

q+wq,

whereq andq; are quaternions, an@is a new complex unit that commutes with the four
guaternion units and has square zero. One thus has:

a=iw wj=jw ak = ka o = 0.
Bi-quaternions are thus complex quantities with eightgeddent units, which are:
L,k @ wi, wj, wk.

Therefore, this system cannot directly represent thelidtan group, even in
homogeneous parameters, since it consists of six péeesn

However, one can make each transformation of the Eawlgtoup correspond to?
bi-quaternions.

A displacement without deformation can be represdmyetie following equations:

(as+ai+a,+ad) X =2 (@B-mf+ af—afh)
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+(ai+ai-ai-ad)x+2 (m—am) y + 2 (as + ao) Z,

(ag+ai+a,+al) Yy =2 (@fi—afs+ a o — a2 fh)
+2 (o + aoms) X+ (af —al+aZ-ad)y + 2 (as — av) Z

(as+ai+ai+al) Z=2 -+ af-af)

+2 (a1 — Q) X+ 2 (e + avan) y + (@ —al—a’+al)z.
These equations contain eight parameters:

ao, 1, 2, a3!ﬁ)!ﬁ1’ﬁz’ﬁ3'

However, one sees that the transformation doeshastge when one multiplies all of
the parameters by the same number and one adds someiegifmit are proportional to
Qo, 01, 2, a3 1O:

Bo, B, s s

Finally, one can verify that if one successively pem®rtwo displacements that
correspond to two systems of values of the parameters) @nd ¢, 5’), respectively,

then the resulting displacement can be obtained fhensystem of valuesr(;, 5”) by the
following relations:

Ay =00, ~a0,~a Q',=a g,
a=amtag,;—aptag,
G =aa,tagsta g —a gy,
a;=aas-aa,tapitag,
B =aB-apf-aB,~aB+Bg v BarBe B,
B=aB+afy-a fta B+ Ba+Ba,- Loyt Ba,
B=apf+afi—afralB+Ba+Ba B9 +Bq 4
Bi=aBsrafi-af,raf+pas+Bec B +Bg

(1)

Now, one has the development of the relation:

r’=r’r,
wherer represents the bi-quaternion:

Mrimtjm+Kkazs+ w(B+if+ |6+ KE),

andr’, r “represent bi-quaternions that are defined in a manner thiaalisgous to that of
the primed parameters.
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The composition of Euclidian displacements will thus fepresented by the
multiplication of bi-quaternions by making? bi-quaternions correspond to each
displacement that are obtained by multiplying any of thgran expression of the form:

a+ wb,
wherea andb are ordinary quantities.
In order to complete the analogy between the displanés and the rotations, we will
give the equations of the displacement here in thewiong form, which will result very
simply from the calculus of the tri-quaternions ladar

o X'+ 0'3y'— 0’22'—,8120'0X—0'3y+ 0’22+,31,
Yty -aX'-L=my-aztun X+,
a2+ azy'— aly'—&:aoz—azx+ 0’1y+,33.

These equations do not contgin
In order to suppress the indeterminacy of the correspondeeivecen the bi-
guaternions and the displacements, we impose the aondpon the bi-quaternion:

q+ wa,

which represents a displacement, that it must satisfydlation:

whrtap+rteptasn=0,

which one can write as:
qqir+0q1q=0,

in which g and g; represent the quaternions that are conjugatg aodq: — i.e., the
guaternions that are obtained by changing the sign afkitter parts.

Two bi-quaternions that satisfy this condition will ha&eproduct that likewise
satisfies it. In other words, that relation will chetrerize a subgroup.

If the bi-quaterniorg + w q satisfies the preceding relation then it will represe
displacement whose axis has the coordinates:

Poi. Poz. Pos. Pas . Psy . P21
a a, a, B+ 0’0,300'1 B, + aoﬁoaa B+ aoﬁoaa
Vatrazeal Pl atvatval Pl aivaieal

where the angle of rotatiordand the shift along the axig2are given by the relations:

a, By

, n=- .
2 2 2 2 2 2
Jai+ai+a: Jai+ai+a:

According to the system that was presented above, vdoiokists of representing a
geometric element by a transformation such that tiseaene-to-one correspondence, we
represent a line by the bi-quaternion that charactermesotation of an anglearound

cosf=




Combebiac — Calculus of tri-quaternions. 10

that line, in such a way that a straight line is represk as a bi-quaternion by an
expression of the form:

p+wpr,

wherep andp, are vectors that satisfy the condition:

Spp. = 0.

The vectorspand o, represent the set of six coordinates of the line, arnthef
preceding condition is not satisfied then they camdgarded as the coordinates of a
linear complex.

The calculus of bi-quaternions permits one to trelarge number of questions that
relate to displacements and linear complexes with nieabée simplicity.

However, if it constitutes an analytical procedure thaonvenient to line geometry
then, in revenge, it does not permit one to introduce eignibto the calculation that
represent points, and from that standpoint it is veryiofeéo the calculus of quaternions,
which is an absolutely completely analytical systentsilf.

We have seen that we will have the possibility edoiducing symbols that represent
points if we can find a complex numerical system deaitains quantities that are capable
of representing the transformations by similitude.

The search for these systems is considerably faedlithy the following proposition,
which is due to Scheffers)(

Any quaternionic system (i.e., one that includes the system of goagrmhose
unity agrees with that of the system of quaternions is obtained by muagiphe four
quaternionic units bys + 1 units 1, w, @, ..., &, that commute with the former and
themselves define a complex numerical system.

One sees that the system of bi-quaternions indeed eatibfat condition, since the
units 1 andwa define numerical system.

Moreover, there exist only two essentially differbmtary numerical systems. They
are characterized by:

«f =0 and of =1,
respectively.

There thus exist two quaternionic systems with eight uMébereas the first one, as
we have seen, can serve to represent the transionsiaif the Euclidian group, the
second one plays the same role relative to the demlacts with deformation of non-
Euclidian geometry.

It is therefore among the quaternionic systems withertioain eight units that we will
look for the one that realizes the desired conditions.

() SCHEFFERSComplexe-Zahlen Systerfdath. Ann., Bd. XXXIX, 1891).



CHAPTER I

PRINCIPLES OF THE CALCULUS OF TRI-QUATERNIONS.

Complex numerical system of the tri-quaternionsWe have confirmed that the
guaternionic numerical systems with eight units do not inchataplex quantities that
are capable of representing the point-like transformatamnspace that we have called
transformations by similitude.lt is thus in the quaternionic systems with twelve units
that we shall demand the realization of that conalitio

From Scheffers’s theorem that was given aboveh edthese systems is composed
of complex quantities of the form:

q+wq+Uq,

whereq, g, g2 are quaternions and & 4 are units that commute with the quaternionic
units and form a numerical systems among themselves.
One of these systems is characterized by the fallpwiultiplication rules:

(1) W =0, 1= 1, wi=-pw=a

which are rules that allow the units &, i to determine a complex numerical system, as
one can verify directly.

It is this complex numerical system with twelve arib which we give the name of
the system of tri-quaternions

We shall first prove that this system includes quantitiest are capable of
representing the symmetry transformations. That proodsed upon a remark of Study
that was the point of departure for the present study.

We have seen that the symmetry transformations, tegetith the displacements,
form a group that is composed of transformations by sud#i in which the homothety
coefficient is equal to + 1.

Study {) has shown that the composition of the transforenatbf that discontinuous
group is capable of being represented by formulashfiiofluction pp. 8) by means of
the following conventions:

If one intends that the bi-quaternion:
gtwh=mt+rtint)mtkas+tw(G+ift+] L+KkS)

should represent a transformation with a homothetific@nt equal to — 1 then the fixed
point of the transformation must have the coordinates:

B B B

aO aO aO ,

() STUDY, “Parameter-Darstellung der Bewegungen und Umiggui (Math. Ann. Bd. XXXIX,
1891).
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and the rotation (i.e., the direction of its axis ahé tngle of rotation) must be
represented in the usual manner by the quaternion:

0'0+i0'1+j0'2+k0’3.

Under these conditions, formulas (1) of theoductionwill represent the product of
two transformations of the discontinuous group considgremjided that one changes
the signs of the terms on the right-hand sides that contain the parangeiérthe
transformation that acts upon the second one (i.e., the primed parameteis) i
transformation with coefficient 1. Moreover, the result must be considered to be a
transformation with coefficient — 1 if one and only orfi¢hee composed transformations
has coefficient — 1, and is considered to be a displactim any other case.

We translate this rule into formulas.

We distinguish the transformations with coefficientl-by a vertical line that is
placed in front of the bi-quaternions.

Study’s rule gives the following results:

@ +wq)g+wa) =dq+w(dq +q0a),
O +wg)|l@+wq) =|0da+w(dqg +qal
| @ +wq)a+waq) =|[dq+w(gq-dgaql)l,
| @ +wq) | @+ wd) =dg+ w(qq —qd).

Now, that rule can be realized in a purely algebraionaa For that, it will suffice to
represent a transformation with coefficient — 1 byakression:

Hg+ W,

if one subjectgs and wto the rules of multiplication (1) that were giverntlae beginning
of the chapter. Indeed, one will have the followingrfalas in place of the last three of
the formulas above, although they agree with them:

O +wg)(g+wa) =pdq+ow(dq +qa),
Wa +wg )W+ wq) =uqq+ w(g g - qaqy,
g +wq)(ug+wh)= g+ w(gq - g,

Since the quantities of the form:
qQ+w + UG

indeed define a complex numerical system, moreovepriigem that we have posed is

solved.
We subject the tri-quaternions of the form:

MO+ wq,
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which represent transformations with coefficiert, to the condition:

O201+0102=0.

We are in possession of a complex numerical systgimtwelve units that includes
guantities that are capable of representing the varioumeimy transformations, and in
turn, points, planes, and lines.

In the introduction, we already saw that lines apgasented by bi-quaternions of the
form:

p+wpr,

wherep andp, are vectors that satisfy the condition:

Spp=0.

From what was said about the various types of symrmep@nts and planes will be
represented by expressions of the form:

Ha+ W,

where one equates the angle of rotation to zero for paintl tos7 for planes, which
annuls the vectorial part a@f in the former case and the scalar part in the latse.
Moreover, the quaterniorgsandg: must satisfy the condition:

qqr+aq1q=0,

which annuls the scalar part @f in the case of a point and the vectorial part inchse
of a plane, because in the latter case it is neoedsatake the center of the
transformation to be a point at a finite distance.

Therefore, the primordial elements of geometry findl a representation in terms of
tri-quaternions, namely:

A point with coordinate®; / Xo , X2 / Xo , X3 / Xo , by:

UXo+ (i X1 +] X2 + K X).
A plane whose equation is:

LoXo+arXxg+ X+ a3 X3 =0,
by
wh+u(liar+jaz+kas).

A line whose homogeneous coordinates are:

Por. Poo. Pos. Pos. Poa. Prp
al az 0'3 ﬁl ﬁ 2 ﬁ 3
by
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iar+ja+kas+w(i f1+] L2+k[3),

with the condition that:

a6+ axB+asf=0.

We thus find quantities that are capable of representimgspdines, and planes
among the tri-quaternions.

That will suffice to establish the rules of the getine calculus, and it is to the search
for such things that we shall first apply ourselves, whidurning at the end of the
chapter to the proof of the fact that all of the tramsfations by similitude will find their
representation among the tri-quaternions.

Fundamental rules of calculatior- In order to fulfill the condition of making any
consideration of coordinates disappear, we must giveullbe of calculation that were
already posed a form that is independent of the clufiages.

In the calculus of quaternions, that goal is attaibgdthe introduction of the
functionsSandV, by means of which, a quaternion will be decomposed inranenghat
is independent of the choice of axes.

We shall decompose a tri-quaternioin an analogous manner.

In order to do that, it will suffice to write:

r=w+p+wWw +p0)+uW+p0),

=W+ (W + U op) + (UWe + 0+ W),
=w+p+l1,

wherew represents an ordinary quantipy,a plane, antl an expression of the form:

l=puw+p+wpr,

whose geometric significance we must seek.

One first sees thdtcan be put into the form of the sum of a point anda iln an
infinitude of ways.

Some particular cases:

If o= 0 then will represent a point.

If wo, = O thenl will represent a linear complex, which will becombéna in the case
whereSp o = 0.

If one hasp = 0, w, = 0 then the expressidrwill reduce towo, and will represent
both the point at infinity in the direction that indted by, and the line at infinity that is
common to the planes that are perpendicular te i.e., the polar to that point at infinity
with respect to the imaginary circle at infinity. Ouaalculus does not therefore
distinguish between points and lines at infinity, and ¢hax® the elements that we shall
call vectors

Finally, in a general manndhe expression | can be written in the form of the sum of
a point and a line that passes through that point, and in only one manner.
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One can see this geometrically.
This also results from the fact that one can wrikethe form:

| = (uw + wph) + (0+ wor — wP),

whereSis a vector (in the quaternionic sense) that is determingtebimear vectorial
equation:

VpB+w (o—p) =0,
which expresses the idea that the line:
p+w(p—P
must pass through the point:
U+ wf.

Upon solving the equation above fhby the procedures of the calculus of tri-
guaternions, one will find the value gffrom:

(W = p%)B = W0+ W, Vop, — 0 S00; .
With this value of5, the expression fdrwill take on the form:
[ =m+d,

wherem represents a point agla line that passes through the point.

We shall call the set of geometric notions thatrapgesented by such an expression a
linear element.

In summary, a linear element depends upon a point, a segairection and length),
and a coefficient (a mass or tensor).

Finally, we can define the geometric significance ofi-guaternionr by agreeing
that it should represent an ordinary quaniiya linear element and a plan@, which is
a definition that includes the ones that we encounteretbupow and which relate
uniquely to the displacements without deformations and ahes that accompany
symmetry.

Since we have based the geometric significance ofi-guaternionr upon its
decomposition into three parts, |, and p, it results that this decomposition is
independent of the choice of coordinate axes, becauseeftbet of a change of
coordinates on the tri-quaternion is defined only by its géaerggnificance.

We thus set:

w=Gr, | =Lr, p=Pr.

The functionsG, L, P play roles in the calculus of tri-quaternions that amalogous
to the ones that the functioBsandV play in the calculus of quaternions.

They permit us to make any reference system disapgedmo longer appeal to the
rules of multiplication that were given by formuldy 6n page 11.

The only rules that are employed are given by theviolig formulas, which one can
easily verify:
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Gil'=aGlI1, Li"=4I1r, PII"=PII,
0] Glp=0, Llp= Lpl, Plp=-Ppl,
Gpp=Gpp Lpp=-Lpp PO,

to which, one must adjoin the obvious rule that annarg quantity commutes with any
tri-quaternion.

If one does not take this last case into account,evbiee of the factors is a numerical
guantity, the preceding results can be summarized ifotloeving manner:

The functionG admits the inversion of the order of factors, anchisuled when the
factors have different types.

The functionL admits the inversion of the order of factors whenftlwtors are of
different types and changes the sign in the contrasg.c

The functionP behaves in an inverse manner, and is annulled, moresgken the
two factors are planes.

We introduce some notations that will be useful fonuse applications.

Given a linear element:

l=m+d,

whered is a line that passes through the pamive set:
[ =m-d.

One can qualify the linear elemehtsnd| asconjugate.
One sees that one has:

Il =m? —d?—md+dm
=n? —d?> —Gmd- Pmd-Lmd+ Gdm+ Pdm+ Ldm

One verifies directly that the product of a point vathne will have a zero numerical
part; i.e., that one will have:
Gmd=Gdm= 0.
Moreover, one has, by virtue of formulas (1):
Pmd=Pdm
Finally, one has, by virtue of the same formulas:
Lmd=-Ldm,

and one verifies that when the pamis situated on the ling, one will have:

Lmd= 0.
At the end of it all, one thus has:
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Il =mf —d,

wheren? is a positive, ordinary quantity and is a negative, ordinary quantity.
One deduces the expression for the inverse of a lineareat from the preceding
formula:
=t
m” — d?

By analogy with the calculus of quaternions, we ¢edléxpression:

Tr=\JwW+Ill-p°

thetensor of a tri-quaternion,rand denote it byr.

Finally, we very often encounter tri-quaterniona which the planar paRr reduces
to the symbokvof the plane at infinity, multiplied by an ordinary qtignw.

Since it is sometimes advantageous to considdirectly, in that case, we set:

Pr=w,
ie.:
(2) «Pr =Pr = wn.

That notation obviously makes no sense in the case Wheepresents an arbitrary
plane.

Before we will be able to appeal to formulas (I) in agueiand useful way, it will be
necessary for us to determine the significance oftainanumber of simple expressions.

That preliminary interpretation corresponds to the bdistanent of fundamental
formulas in analytic geometry.

What has to be interpreted here is the product of twguéternions.

In truth, the number of results to be addressed ig laege, but this is compensated
by their simplicity.

Moreover, nothing prevents us from having them before oes,eyather than
appealing to memory.

We have deferred the search for the significanceeptoduct of two tri-quaternions
to an appendix.

Here, we shall point out some of the most commoultses

We lety, o wdenote a point, a line, and a plane, respectively,alhatve a tensor
equal to unity.

The expressiofPuw represents the symbab of the plane at infinity, multiplied by
the distance from the point to the planew, taken with a positive or negative sign
according to the region in whighis found, in such a way that the point-like equation of
the planewis:

Puw= 0,

or, if we appeal to the notation that was introducecbmiila (2) in this chapter:
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Puw= 0.

The expressiorLio represents the vector that is perpendicular to theepihat
contains the pointz and the lined, taken with a tensor that is equal to the distanam fro
the point to the line, in such a way that the formula:

Lud=0

expresses the idea that the pams situated on the liné

The equation above represents three ordinary equasionsldis a vector.

If one consider® in it as a fixed line angl as a variable point then these three linear
and homogeneous equationszwill not be independent, sindeud is not an arbitrary
vector. Indeed, it satisfies the condition of beingargular witho.

The equation considered thus represents only two indeperidear, homogeneous
equations, and in turn, the pojptindeed preserves one degree of freedom apart from the
independence of the tensor.

On the contrary, if one takeégo be variable thehudwill be an arbitrary vector, and
the equation will represent three independent, homogehoes:; equations.

These three equations express the ideasdtisat line (and not a complex) and that
the line passes through the pgint

The expressiohdw represents the point of intersection of the krend the planeg
taken with a tensor that equals the sine of the drejl@een the line and the plane.

The formula:

Low=0

expresses the idea that the lds situated in the plan:

That formula represents four ordinary formulas.

If one considers one of the terMandw in it as being variable and the other one as
being constant then it will represent four homogenebsar equations. However, in
any case, these equations will not be independent.

That is because #is constant then the poibhbwwill satisfy the relation:

L Ldow= 0,
and if wis constant then it will satisfy the relation:
POLJdw=0.
Of course, these relations results easily fronrtlkes of calculation (I).
The formula:

TLOw=0

expresses the idea that the point of intersedtimorbecomes a vector — i.e., that the line
Ois parallel to the plana
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Finally, the expressiobhawd — or, more simply¢d — represents the point at infinity in
o.
The expressiohww’ represents the line of intersection of the plamesd @', taken
with a tensor that equals the sine of the angle beteetwo planes.
The formula:
Low’ =0

expresses the idea that the plamesnd @’ coincide.

When considered as an equationan it will give rise to some remarks that are
analogous to the ones that were made already.

The expressiof®do’ represents the symbab of the plane at infinity, multiplied by
the shortest distance between the two lidesd 0" and the sine of the angle between
them.

The formula:

Pdo’'=0

thus expresses the idea that the two lines are situratkd same plane.
Pod’ represents the moment of the two lines.
Let c be a complex with an arbitrary tensor.
The equation il
Pco=0

is the ruled equation of the complex

It is, moreover, the most general form for the Imeguation to which one can subject
the lineo.

If yand)y are two complexes with tensors equal to unity then thessgionPyy” will
represent thenomenbf the two complexes, in such a way that the formula:

Pyy/=0

will express the idea that the two compleye@sd )’ arein involution
The expressiofy? represents thauto-moment- or parameter— of the complexy
and the formula:
Py?=0

expresses the idea thais a special complex, or, according to our terminglagline.
The expressiood’ represents the cosine of the angle defined between #ité/@o

directions of the two linedand d’, with the sign changed.
The formula:

Goo'=0

expresses the orthogonality of the liresnd &'
SinceGdo’ is a linear and homogeneous functiom ot can be written in the form:

Poc,
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and, in fact, one will easily verify that one has:

Gdod' =P o'
The equation i
Gdd'=0

is therefore the equation of the special complex

The expressioaww’ represents the sine of the angle between the plareexl @/,
with the signs changed.

The expressiohyu’ represents the vector fromgito 1, and the formula:

Lup’'=0

expresses the coincidence of the two points.

The expressiofsu’is equal to unity.

The expressiohuw represents the perpendicular that is drawn from thet poon
the planew, taken in the positive sense of the plane.

The expressioRuo represents the plane that is drawn througkerpendicular t@,
where the positive side of the plane is determined bpdiséive sense ak

The expressioRdw represents the plane that is drawn throdglerpendicular tag,
taken with a tensor that is equal to the sine of théedmgfween the line and the positive
direction of the normal to the plane.

We finally point out the following formulas:

Guo=0, Puu’= 0, Pww’= 0.

Inverse of a tri-quaternian- Let:
r=w+l+p
be a tri-quaternion.
In order to know the inverse of it will suffice for us to find a tri-quaternion whose
product withr is an ordinary numerical quantity.
One verifies that this condition is satisfied by thejuaternion:

W+l —p)(w-I+p)(w—I-p).
Indeed, one has, while always setting:

| =m+d,
that
(w+l+p)(w+l=-p)(w-I+p)(w-I-p)

= [Vf+ 2avm+ (I + p)(I —=p)][w2 — 2vm+ (| = p)(| + p)]
=w' +W [(I-p)(I +p) + [ +p)(I —p) — 4]

+2vm(-p(l+p) =@ +p)I =p)m] + (I +p)(I —p)(-pP( +p)
=w + 20 (1 | —p* = 2T

+2w[m(l | —p? + mp—pm+dp+pd) — ( | —p? —pm+ pm—dp —pl) m)]
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+(+p)(-p(-p (+p

and
(w+1+p)(w+I—p)(w—I+p)(w-1I-p)
=w' + 20 (I | —p® - 2m9) + 8wGmLpd
+ (11 —p* + 2aPpm= 2Apd)(l | —p* — 2aPpm+ 2L pd)
= (W +1 1 —p?)? - 4@ m? — 2vTmOTLpd + L2pd)
= (W +11=p?% = 4WTm=TLpd)>.

One thus has the following formula for the inverséheftri-quaterniom:
W +1 1 —p%)? = 4@WTm=TLpd? r "= W+ 1 —p)(w—I +p)(w—I —p).
We point out the simpler special formulas:

(W + m)(w—m) =W —n¥,
(w+ d)(w— d) =w? —d?,
W+ p)(w— p) =w —p’.

One can systematically determine the inverse of guaternion by utilizing the
calculus of quaternions.
Let:

Take the produatr “and write down that this product reduces to a numericattijua
One has:
m’=qq + o, +u(a+ g G +al( o 9 G+ ¢ o+ q].

One must first have:
Vaq +Va g, =0,
Vaa, + Ve g = 0.

Hence, upon adding and subtracting:

V(g +d)(d + q,) =0,
V(@ - q)(d - q;) =0,
and, in turn:
q + 0, =x(q+02),
q -0, =y(q-0),
wherex andy are the usual quantities, andndq, are the quaternions that are conjugate

to g andq. .
Finally, one infers from these last two relatiorstth
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q =aq+bqz,
g, =bg +agz,
by setting:
a=XtY  p=XY
2 2

We have written that the coefficient pfhas zero vector part. We write that this
coefficient itself is zero.

Upon replacing)’ and g, with their values, one finds that:

b(gg+0202) +a(gg2+02q) = 0.

Set:
A=qq +002,
B =092 +02q.
The preceding relation becomes:
Ab+Ba=0.
Take:
a=A, b=-B.

The expressions fa' and ¢, become:

qd = Ag-Baoe,
o =—-Agq+Bq:.

It remains for us to determing by annulling the coefficient odvin the expression
forrr':
(@-0) ¢ + (@ + ;) =0.

Replacey and g, with their values. One gets:

(Q-) ¢ +q (A-B)(q+0q2) =0,
or, upon multiplying on the left by — g, and remarking that:

A-®)([@-92) =T*(@-) =A -B,
one will find that:

¢ =-(@-02) 0 (9 + q2).
One will thus finally have:

rr=Aq-Bg+u(Ag2—-Bqg) —w(q—-02) q: (g +0>2)

= (A —B)(q + 12) —w(q —02) qi (4 +d2)
and
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' =A*-B%
One will verify that if one sets:
r=w+l+p
then one will have:
A=w+I1-p% B =2 WTm—TLpd)

and that the result above is in agreement with thelmatenvas found already.

Transformations by similitude- In order to make the calculus of tri-quaternions into
a geometric analysis, it will suffice for us to confithat it includes quantities that are
capable of representing displacements and displacenteatsare accompanied by
symmetry, namely, the quantities of the form:

q+ wh with qg:+g91q=0
and

M +wq with gg2+029=0.

If r is one of these expressions then the equation gfdim-like transformation that
it represents will be written:

w=rurt,

wherey represents a point, apdis its transform.

There is good reason to demand that there exist otkguaterniong such that the
expressiommr ! represents a point — i.e., such that the equation abpvesents a point-
like transformation of space.

One finds, as a condition for this, that the tri-gmaibnr must be of the form:

r=@A+uA)a+ wa,

where A and A’ are numerical quantities, and the quaternignand g; satisfy the
condition:

qgi+0:1q .

If one puts the tri-quaternion into the fonm+ | + p then the condition will be
written:
2wp—P F=0.

It remains for us to determine the nature of the pdietdransformations that are
represented by tri-quaternions of this form.

In that case, one will have:

wr=w’ +wl + 1P P,
or, upon setting:
l=m+d
one will have:
wr =w? +wm+ wd + md

because one has:
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P12=md+dm=2md
by reason of the fact that:
Lmd= 0.
One can thus write:
wr = (w + m)(w + d),

which is a formula that decomposes the transformatiahis represented byinto two
other ones, one of which is represented by:

w+d,
which is a rotation around the line and the other of which, which is represented by:

W+ m,
has the equation:
(W —1P) p'= (w+m) g (w—m)
or
(W =) g’ = Wop + w (my — pm) —mm
=wAu + 2wlmu — mPm + 2mLny
= W —n) p+ 2w —Tm) Ly,

or furthermore:

W -y = Lmgs.

w+Tm

This is the equation of a homothety transformatiat tias its center at the poimt
and the coefficient:
w—-Tm
w+Tm’

The transformation that is represented logn thus be obtained from the sequence of
a rotation around the lirskand a homothety with respect to the pamihat is situated on
that line. That will be, in turn, a transformationdnilitude.

In summary, one then sees that the point-like tramsftions that are capable of
being represented by tri-quaternions in the mode of repréisentaat we have been
studying are the transformations by similitude.

If one applies the operation:

rat

to a pointm, wherer represents an arbitrary tri-quaternion, then one withioban
expression of the form:

m’+ wy,

wherem’is a point, ang is a numerical quantity.
Moreover, one obtains an expression of the same foymapplying the same
operation to an expression of that form:
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m+ wx,

in such a way that one can consider the system of ttequans as representing the
group of transformations whose equation will be:

m'+ wy=r (m+ wx) r.

The variable element is characterized by a point andremcal quantity.
We do not see the simple geometric significance aethieansformations.

Linear elements- The notion of line element, as we have defined ihdependent
of the calculus of tri-quaternions.

It is interesting in itself, and is capable of givingerto a geometry that is analogous
to line geometry and the geometry of spheres.

We shall sketch out the basic principle of this geoynetiose element is the linear
element.

Let:

l=Uuxo+p+wpn

be a linear element.

It depends upon seven homogeneous coordinates that welantively represent
by:

X0, O P,

or also six ordinary coordinates that are obtained Wiglidg the components gf and o
by Xo .
Linear complexes, when considered to be space elendafisge a variety whose
equation is:
Xo = 0.

In this linear variety, the lines (or special complgxkine a quadric whose equation
is:
Spp=0.

If one considers the homogeneous, linear transforngtion

1= ¢(l)

that preserve the linear variety of linear complexestae quadric of lines in that variety
then these transformations will define a group thataspletely analogous to the
Euclidian group, where the linear elements correspondheéopbints of the point-like
space, the variety of complexes, to the plane at tgfiaind the quadric of lines, to the
imaginary circle at infinity.
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From the work of Sophus Lie")( one knows that such a group will preserve a
guadratic differential expression, which will be:

SHpodo
in the case that we are occupied with.
Moreover, this expression is only the differential mamat that corresponds to the
simultaneous invariant of the group that is presented byanbitrary linear elements,
namely:

Sp-p ) - o),

wherep andp; are (inhomogeneous) coordinates of one of the elemehils, #and o]
are those of the other element.

That invariant is the analogue of the distance betwe® points in the point-like
space.

In order to have an expression for that invariantt téghibits its geometric
significance, replacg, and p; by their values as functions of the vectfrand S’ of the

points of the linear elementsndl, namely:
o=B-VppB pL=p -Vp'B
The expression for the invariant becomes:
Slo-p") (B-F) +SDop" (B - P,
Slo-p" =Vpp')B - ).

The first factor depends upon only the axes of the texmehts, and the second factor
is the vector that takes the pofit to the pointg.

Contrary to what happens for point-like space, theshamg of that invariant will
correspond to real conditions, namely, the orthogonalitthe directions8 - " and p
—-p" —Vppo'

In particular, the invariant will be zero for two lareelements that have the same
point (8= ") or the same direction for their axgs<p’).

Given a linear elemen, £, each given directiop’ will correspond to a plane that
passes through the poiBitand contains the poing® that give rise to linear elements
£’ for which the invariant will be zero.

The normalx to that plane is related to the directjohby the relation:

or

p-p ~Vpo' =a.

Two linear complexes andc’ - i.e., two linear elements that are situated in the
variety:

() S. LIE. Theorie der TransformationsgruppeBection Ill, Teubner, Leipzig.
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X0 =0,

are also an invariant with respect to the group considered.
That invariant, which has the expression:

Spp. + 0 o Pcc

‘/pzp’z TcTd

is themomenif the two complexes.
In point-space, it corresponds to the cosine of theedreflveen the two directions.
The invariant of the two linear elementand|” is expressed simply if one gives
masses equal to unity to the points of these elemesntsf bne supposes that:

Xg = x(') =1.
Indeed, that invariant is then represented by:

P(l" =1y,
wherel " -1 is a linear complex.
P’ -1)>=0,

and expresses the idea that | is a straight line, which must be the case, sincegstirai
lines are the analogues of cyclic points.

A linear element is determined by a linear complex bynwed the use of an element
that is taken to be the origin (which one can simplyose to be a point), just as a point
is determined by a vector under the same conditions.

We shall not further dwell upon the principles of the gewynof linear elements,
which can undoubtedly give rise to some interesting deweénts, notably in their
application to the theory of contact transformations.

In conclusion, we remark that a linear elemleist characterized by a one-parameter
group of similitude transformations, just as a linear cemps characterized by a one-
parameter group of displacements without deformation.

Let i be the center of the similitudé, the axis, 2, the angle of rotation, and lep2
be the logarithm of the homothety coefficient. Frevhat we have seen, the tri-
quaterniorr that represents the transformation can be written:

r = cosdcoshg + dsin dcoshg — 1 sinhg (cos@+ dsin §)
= (coshg — i sinh g)(cos 8+ osin ).

If the transformation is infinitesimal then if oneeglects the second-order
infinitesimals, one will have:
r=1+00-ug.

In this case, the equation of the transformation bell
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m’=m+ 2L(060— up) m.

The infinitesimal transformation, and in turn, the -paeameter group that it
determines, is characterized by the linear element:

m-d

S|



CHAPTER II.

DISPLACEMENTS WITHOUT DEFORMATION.
Parameters and equations of a displacememy reason of the origin of the calculus
of tri-quaternions, it is natural to apply it to the stualy motions of undeformable

systems.
A displacement without deformation is represented biycuaternion:

r=Eq+t+wg=mtintjmtka+t+w(G+rift+)L+k)

that satisfies the conditions:

qdi+aiq=0, P[r*—(Lr)3 =0,
or
O'o,&) + 0'1,31 + 0'2,32 + 0'3,33 =0.
The line that remains invariant under the motion isattie of the complex:
Lreimtjm+kas+w(i fi+] 5 +KG).
The angle of rotation2and the magnitude of the shify 2are given by the formulas:
a, B
tan 6= R : n=- K :
Jai+ai+a’ Jai+ai+a’
Suppose:
Tr =1,

le.:

2 2 2 2 _
az+a’+a;+ai=1,

and letodenote the axis of motion, taken with a tensor thagjisal to 1.
We can then write in the form:

(1) r=cos@d+9osin@+ wdncosfd—wnsin 6.
By reason of the relation:
that expression can be written:
r=(cos@+9dsing(1 +wan).
That formula realizes the decomposition of the disginent into two other ones that

consist of the rotation around the axis and the traoslaiong that axis.
The two factors commute.
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If one takes the product of two similar expressions lthae the same ax&then one
will see that the angles add together, as well astitiies 7.

It then results that if the displacements considignesent the same ratip/ & then
that ratio will be preserved in the product.

One can then realize the displacemehy a continuous helicoidal motion that has
for its axis andy / @for its step.

This helicoidal motion is characterized by the complex

S+l
6

An infinitesimal displacement will correspond to infely small values o& and.
In this case, the expression far becomes, upon neglecting second-order
infinitesimals:

1+00+ won,
or

1 +(5+‘”52j3'
6

The infinitesimal displacement is characterized ly tomplexd + wdn/ 6, and
conversely, any complex characterizes an infinitekthsplacement.
We now examine the expressions for the effectsetitbplacements on points, lines,
and planes.
One will have the three equations:
m=rmr?, d’=rdr?, p’=rprt.

Upon applying the formula that gives the inverse of ajuaternion to the bi-
guaterniorr, one will find:

rt=cosd - Jsin@ — wn(sin@ + dcosé),
which amounts to changing the signé&dnds inr.
Substitute these expressionsif@andr into the equation:
2) m=rmr
Upon performing the calculations, one will find:
(27 m’=m+ 25L dmsirfé+L dmsin 20+ 2wdn T m

Direct one’s attention to the projectiendPd m of the pointm onto the axisd. In
order to do this, decomposein the following manner:
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m=-4d°m=- Pdn-dam.
The preceding formula can then be written:
m=-0Pomcos ¥ +L odmsin 20 + 2wdon T m
or, upon multiplying the tera dmsin 268by - 52 or|:
2P m’=-0PJdm+2wdnT m-(cos B + Jsin 20) Lm.

One easily sees the significance of each term irfahisula.

The first term is the projection af, and in turn ofm’, onto the axis.

The last term is the vector that takes that praecto the pointm, after a rotation
aroundod through an angle of@ since the expression® Lom or LOmo represent the
vector that takes that projection to the pomitself, and the bi-quaternion co®2 Jsin
26, when it is applied as a multiplier to a vector tisaperpendicular t@ makes it turn
around that line through an anglé 2

Finally, the second term on the right-hand side is ubetor that represents the
trajectory that results from the translation aloimg &xis.

The lines and plane give rise to analogous formulast i§lwhy one will have:

(3) d’=rdr?,

or, upon first supposing thatis zero:

€)i d’=d+ 24 & sirf 8+ L& sin 20
If we remark that one has:

d=-0%d=-5(GA + P + L&)
then this will become:

d'=-0GAd -dPdad—- (dcos P-sin D) L 4,
and finally, upon once more appealingo= - 1:
(3)° d’'=-35d - P - (cos Z+ Isin 26) A .

This formula (which represents only the rotation)asyeto interpret.
Indeed, the decomposition @fwvith respect ta gives rise to three terms:

— &G, which is a line whose position coincides wdth
- A, which is a vector that has the same directiod as
— dLAd, which is a complex whose axis meé@nd is perpendicular to it.



Combebiac — Calculus of tri-quaternions. 32

The line and the vector that is directed al@hgemain invariant during the motion,
and the rotation acts uniquely upon the complek &, as indicated in formula (3)
If 7is not zero then one must add the expression:

2L 3d’ 7

to the right-hand sides of formulas{@&nd (3.
Finally, one likewise has:

(4) p'=rpr?,
(4)? p’=p+ 20PJpsin 260+ PJdpsin 26+ 2wLIpn.
As in the preceding cases, one will find:
(4)° p’=-JLJp— (cos B+ Jsin 26) SPAp + PwIpn.

The formulas:
p=-90°p=-JLIp- dPIp

represent the decomposition of the planato two planes that pass through the point of
intersection ofd andp. The one- namely,— d Lo p — is perpendicular t@, while the
other one;- 0P p, passes througihand the intersection @fwith — dLop.

The plane component that is perpendiculad times not move under a rotation b§ 2
aroundd, and the other one takes on a new position that issepted by:

— (cos B+ osin 26) OPIP.

As for the last term of (4)- namely, Pw J pn - it represents the effect of the
translation on the plane

These formulas simplify considerably in the case dahéinitesimal displacement.

If one supposes th&and are infinitely small in formulas (2)(3), (4)* then if one
neglects second-order infinitesimals and sets:

c=2(060+ won)
they will then become:
m =m+ Lcm
(5) d'=d+ Lcd,
p'= p+ Pcp

Therefore, the infinitesimal transformations in theoup of displacements are
characterized by linear complexes.

One can remark that we have extended the meaningtganeérally attributed to the
termlinear complex.
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Whereas it usually refers to the set or variety nédi whose coordinates satisfy a
linear equation, we shall make it refer to the geometttion that is characterized by that
variety, while thus avoiding the introduction of new tersuch ascrew torsor, motor,
dyname

In truth, these terms have a significance that addsntition of tensor to the
geometric notion of complex.

If that reason is sufficient to create new terhentone must give special names to the
points that are affected with masses and the plan¢satbaaffected with numerical
coefficients.

It seems to us that the possibility — which is purelpnai, moreover — of ambiguity
does not justify the use of very different terms to demmtions that are almost identical.

As we have already seen, we have thus simply refféaoehese diverse geometric
elements that are affected with numerical coeffis@spoints plans lines complexes

The wordline will just as well refer to the bounded, directed segnibat is the
support as the special complex that it determines.

Indeed, it does not seem more natural to employ diffet@ms for the lines and
special complex that would change the name of the pd@oerding to whether one
considered it a set of points, a set of lines or aapE&ament.

Return to the infinitesimal displacement that is espnted by equations (5).

The first of these equations shows that the displanem’— m at each poinm is
represented by a vectbtcm We confirm that this vectdccm is perpendicular to the
polar plane of the poinh with respect to the complex

The finite displacements present an analogous property.

Indeed, take the equation {®) the form:

m’'=-(1+ 2awon) Pom— (cos H+ osin 26) d_dm.

We remark that:
m=-dPan-4adadm,
S0 one has:
m+ ni

=-(1+adn) Pom- %(1+cos F+Jsin 26 Addm.

FormL Elyﬁzm , Where one sets:
y=Lr =0sin @+ wdn cosé.

If we remark that in the development of the produnﬂ]yﬁzm, o0 sin @ gives a

result only with the term il dm, and o cos 6, with the term indPdm, then one will find
that:

I_ym+rﬁ

=—awoncosgP dn- 1L Msin (1 + cos F+ osin 26) A.dn
=-cos@[adndPan+ ; cosd(cos Y- 1 +Isin 26) dam|.
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On the other hand, calculate —m:

m’ -m =-2windPam- (cos -1 +Jsin 26) A dn

2 m+ ni
= L )
cosd . 2

One then sees that the directmh—m of the chord that is determined by the pomts
. . m+ni . o
andm’is related to the mldpomtz— of that chord in the same manner as a point is
related to the direction of its displacement undeménitesimal displacement. In other

words, that chord is perpendicular to the plane polarﬁ%ﬂwith respect to the

complexy.
The preceding relation can be found much more simpbtdaying with formula (2).
That formula can be written:
m’r =rm.
Taker in the form:
W+ y+ why .
The preceding formula becomes:

wm’+ m’y+ cwonvim’=wm+ ym + wnm,
and, upon taking the linear element of the two sides:

(6) wm’—Lym’=wm+ Lym,
or
w(m’—m) =L Oy(m+m’),

which is a formula that agrees with the one that hesady found.
Replacew and ywith their values in formula (6):

& { cosém — Lom sind - won Tm cod

=cosédm+ Lomsind + wdon Tmcog

This is the translation of the formulas on page 9tirtquaternions.

Various decompositions of a displacemenihe calculus of tri-quaternions permits
one to decompose a displacement into rotations aroundxeg) one of which is given.

Let r be a bi-quaternion that represents a displacement -# isatisfies the usual
conditions:

Qo +019=0 or POP-(Lr?=0.

A rotation around a lind is represented by a bi-quaternion of the form:
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w+d,

in which, w is an ordinary numerical quantity.
Suppose thatandd are given, and attempt to writen the form:

r=n(w+d),
wheren represents a rotation.
One has:
n=r w+d)™
or

(W —d?) n=r(w-d).

Since the bi-quaternionsandw — d satisfy both of the usual conditions, the same
will be true for their product, and it will suffice torie thatn represents a rotation,
which is expressed by:

Pn=0 or wPr—Prd = 0,
SO

With this value, one will have an expressionridhat satisfies the imposed condition.
In the case where:
Pr=0,

i.e., if the displacement is a rotation then in orfderthe solution of the problem to be
possible, it is necessary that:

Prd=0 or POr™=0,

which is a relation that expresses the idea thatust meet the axis of rotation or be
parallel to it, becauder is a line in this case.

It results from the possibility of decomposing the disptaent into two rotations, one
of whose axes is given, that the displacement afiead can be obtained by a simple
rotation, because formula (3) on page 31 will be written:

W -d)d’'=nw+d)dw-gdn™*
= (W —d® ndn?,
or
d’=ndn,

One can also decompose a displacement intorewversals— i.e., two rotations
through an angle of 2 In other words, one can decompose a bi-quatemitrat
represents a displacement into a product of two lines.

Set:

r=dd’.
One has:
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dr=d?*d’,

Since the right-hand side is a line, we will get tiy@ation for the locus od by
writing that the left-hand side also represents a line.

Set:

r=w+y+ wn .
One has:
dr =wd + Gdy+ Pdy+ Ldy+ cwwd.
One must first have:
Gdg=0, Pdg=0;

i.e., thatd belongs to the complex and is rectangular with the axis of that complex.
From a known property of complexes, the lshevill thus belong to the congruence of
lines that meet the axis pfand are perpendicular to that axis.

With these conditions, the bi-quaternidnwill represent a complex. In order for it
to represent a line, it will be necessary that one:have

Pdr)>=0 or  P(wd+dy+ wmd)®=0,
Pl(w+ conn)®d ® + (d)) + 2w + convy) d* P = 0,
> 2ww, d? —d?Py? =0,
which is a condition that is always satisfied, beeahe relation:
2ww, —Py? =0

is the condition that must realize in order for it to represent a displacgme
The lined’is determined by the formula:

d?d’=dr = (w+ wm) d +dy
This is also a line that meets the axigzahd is perpendicular to it.
In order to determine the relative position of thedideandd’, suppose that their
tensors are equal to unity, and take the bi-quatemiarthe form (1) that was given at
the beginning of this chapter. One will have:

Gdd’ = cosé, Pdd'=-nsing,

or, upon letting@ denote the angle between the two lines, and legimtenote the
shortest distance between them:

— cosé’'= cosé, esin@’=nsing,
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which are relations that express the ideas that the foren an angle between them that
equalsw— dand have a distance between them that is equaldofurthermore, that one
passes from the ax&’ of the first reversal to the ax@sof the second one by a positive
rotation through an anglaround the axis afand a translation that is likewise positive
with the valuesn along that axis. (Recall tha& is the half-angle of rotation of the
displacement, ands is its half-shift.)

One can also obtain a rotation by means of two playigaametry transformations, as
the formula:

P2 p1 = cos@+ osin 8

shows.

One obtains a translation if the two planes are |e#ral

P2 =pP1 + ww, p2p1=-1+cwnp: .

Nonetheless, we shall not go further into the geaoiteory of displacements, since
this chapter and the ones that follow have no other tidgethan that of giving some idea
of the analytical simplicity that the calculus of-dquaternions introduces into some
classical questions.

Continuous motion of a solid body We shall apply the calculus of tri-quaternions to
the study of the motion of an undeformable systemarcturse of time, by following the
customary order of exposition, but while going through it Imonore rapidly, as one will
notice, thanks to the simplicity and lucidity of teemulas.

Upon denoting the derivation with respect to time hyiene, one will have, from
formulas (5) of the present chapter:

(7) m’=Lcm, d’=Lcd, p’=Lcp,

wherec is a linear complex that one can call th&antaneous complex¢ the motion.
The expression for the acceleration of the paiing obviously:

(8) m”=Lc’'m+Lcm’=Lc’'m+ L [TLcm.

One can replacewith its axisoin the second term.
Indeed, one can set:

C=0+ won,
where/ is a numerical quantity. One will get:

LtLem=L OO0+ awdn) L (0 + awdrp) m
=L Ldm + 7L Owddm + 7L 0L awdm + AL Ckodl adm.

The second and fourth terms will be zero, becausprtbgiuct of a vector (e.gL,dm
or Lawdm) by an expression that contains the factavill be zero.
The third term is likewise zero, because it can bé&ewri
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L adTm= nTmLad? = 0.

One thus has the following expression for the acagdera
(8)°™ m”=Lc’m+Ldam.

One knows that the vectdr O0d.om can be expressed as the derivative of a point
function, which is the square of the length of the vetidn, as long as we take the
tensor ofmto equal unity, at the same time.

Let H be that function om. Upon appealing to the quaternionic operation that is
defined by the formula:

one can write the second term on the right-hand di(®) as:
L XLdm = [OH.

Formulas (8) or (8™ lead naturally to Coriolis’s theorem.

Letv be the velocity that represents the relative vejaxf the pointm with respect to
an undeformable system whose motion bder its instantaneous complex. One will
have:

m’=Lcm+v,
SO
m”=Lc’m+Lcm’+v’=Lc’'m+L [ELcm+ Lev+ V-

The first two terms collectively represent the d@ion J. of the point of the
undeformable system that coincides with the poiat the instant considered.

Express/’as a function of the relative acceleratihof the pointm.

The vectorv + v’ dt represents the relative velocity in space of the pwirat the
epocht + dt, and consequently represents what the vectod, dt becomes due to the
effect of the infinitesimal displacement Ic#t i.e., that one has:

v+vdt=v+J dt+Lc(v+J di dt,
S0, upon neglecting the second-order infinitesimals:
v'=J +Lcv

If ddenotes the axis of rotation of the undeformable system the formula that gives
the expression fam’ becomes:

M =Je+J +2Acv=Je+J + L.
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That formula expresses Coriolis’s theorem.
An important problem in the kinematics of undeformasystems consists of the
following question:

Given the expression for the instantaneous complex as a function oflétasmine
the position of the system at a given instant.

Without wanting to go into the question of the integranf the differential equation
that presents itself, we shall look for that differ@inéquation, whose form is remarkably
simple.

The position of the undeformable system will be deteechiby the bi-quaternion
that represents the displacement that takes the symtemone arbitrarily-chosen fixed
position to its present position.

We seek the differential equation that the bi-quaternieitl satisfy.

We first remark that by virtue of the relation that mostsatisfied by bi-quaternions
that represent displacements without deformation, togi&ierniorr will have the form:

Py

r=w+ y+ — =w+ y+ wx,
2w

wherew andx are numerical quantities, apds a complex.
If my represents the initial position of a pamthen one will have:

m=rmyr?
SO
m=r'mr*+rmo(r?),

upon representing the derivative with respect toetiby the putting a prime on the
symbol of the function.
We seek the expression for'j’. One has:
mt=1,
o)
rrt+r @y =0,
and upon multiplying on the left by
ry =-rrrt
If one substitutes this in the expressionrfothen one will find that:

m'=r’'mert—rmerr/r

and if one replacesy, with its expression as a functionrof
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m=r'rm-mr’r?
then one will have:

W =G r'rt=w+y+wx)(W-—gwx)
=wWwW -Gy +wy —w’' y+wxy—wx y — Py y+ w(wx +xw’).

The planar part:
w(wWxX +xw’)-Pyy

is the derivative of the expression:
awwx— 3Py’
which is always zero, by hypothesis.
One thus has:
Prirt=0,
and the expression fon’ becomes:

m'=Lr’'r*On-mLrrt=2L O r/r* On
a formula that shows that the instantaneous comgleotonc has the expression:
(9) c=2Lrr

One can further simplify this formula by subjectingo the condition that it must
have a tensor that equals unity. That condition igemn:

W -G y=1,
SO
ww' -Gy =0
or
Grri=o.
One can then write:
(10) c=2r'r™

This is the differential equation thamust satisfy.

It has the form of a differential equation whose sofutwill require only a
guadrature.

However, it is easy to assure oneself that, in sedlie right-hand side 2 r* is not
an exact differential.

Upon putting equation (10) into the form:

(10)°s 2r'=cr,

one sees that if one knows eight solutions to thatonry, ry, ..., rg then the general
solution can be written:

r=XAr,
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where the coefficientgy represent eight integration constants that are sutgetwo
relations that result from the condition thahust satisfy:

P(r> —L%r) = 0, T?r=1.

Moreover, if these two relations are satisfied byae oft then that will be true for
any other value.
Letr be a solution to equation (10). The general solutionbaill

r1=rro,

whererg is an arbitrary, constant bi-quaternion that satighestwo condition that are
satisfied byr.
Indeed, one has:
r=r'ro,
rl—l = I.O—lr —1,
o)

it =21t =c

If the constant is constant then the motion will be a uniform helicbigiation, and
a solution to (10) will be:

r = cosé@+ osin @+ won cos@— ) sin 6,

whered is a fixed line, andy and @ are proportional to time and are determined by the
relation:
c=20(0'+an’).

It can be convenient to generalize the definitiorogétithm by setting:

d
—logr =0(6'+ ),
at g ( an’)

logr =0(8'+ an’) t,
or further:

r = ecf(e’+ wy’)t — ectlz,

in such a way that for the extremely simple case lmckvc is constant, the general
solution to equation (10) will take the form:

r ZGCt/ZFQ,

whererg is the bi-quaternion with tensor one that representsligmacement that takes
the solid body to an arbitrarily-chosen position frthra one that it occupied at the epoch
t=0.

We finally remark that the formula:
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ecF(H’Jr wn) - f (@+awn)lm

results from:

eJﬂ/Z — 5

In place of the instantaneous complex of motippne can give the complex that
coincides withc after the displacement In other words, one can give the position of the
instantaneous complex with respect to the moving system.

The differential equation presents a form that isl@ous to the one that was
obtained already. Indeed, one has:

ci=rter=27’

If the axis ofc has a constant direction in space — i.eqfis constant — then the
same thing will be true foec; , because upon referring to the developed expression for
rt, one will see that one has:

wr'rt=cor,

The properties that are represented by the formulasatbasuccessively encountered
in this chapter are all well-known. The proof of theseperties by the calculus of tri-
guaternions has no other objective than that of exhibitingphieude of that calculus for
being used as an analytical procedure.

We must mention here that in the questions thaterétathe motion of undeformable
systems, certain formulas that involve only bi-quatergi@xpressions have already been
given in a form that is very close to our own by soauthors that have treated the
calculus of bi-quaterniong)(

Equilibrium and dynamics of solid bodies.One must attend to the fundamental
equation of equilibrium and dynamics of an undeformableybaghich present
themselves in a particularly simple form.

We first establish the condition for equilibrium o$ygstem of forces that is applied to
a solid body.

We represent the forces by expressions that have usedento represent lines.

A virtual displacement of a solid body will be chaeaied by a compleg with an
infinitely-small tensor, and the virtual work of therd¢e will have the expression:

-POLcuy=-POuLuc=-POf t#c—f uPuc).
Since the line§u andPuc are concurrent, one will have:
POulLuc=0,
and the work that is done by the fofasill finally have the expression:

- Pcf.

() MacAULAY, Octonions London, Clay and Sons, 1899. — BUCKHEIM, “Mémoire ses |
biguaternions{American Journal, 1885).
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The virtual work that is done by all of the forces thas the value:

-PcY.,

and the condition for that work to be zero, for anig written:

> f=0.

The condition for the equivalence of two system®afes is obviously:

Df=Df

A system of forces that is applied to a solid bodthiss characterized by what we
have called @omplex.

The equation of motion for a solid body is obtained byting the equivalence
between the external forces and the system of sagrtigat represent the acceleration of
each point, multiplied by its mass, in both magnitud direction.

One easily sees that this segment (or line) carbsidered to be the derivative with
respect to time of a segmemthat passes through the point considered and reprekents t
guantity of motion of that point, in such a way tha equation of motion will be:

de _
Za-zf
or

d _
o e=> f.

The complexX. f, which we shall denote b}, can be called thenotor complexand
the complexX. e, thequantity of motiorof the solid body.

It remains for us to express that quantity of motipnas a function of the
instantaneous complex

The quantity of motiom is composed of a line (or segment) that passes thriegh t
center of gravity and represents the quantity of motiotramslation and a vector that
represents the moment that results from the quanbitiestion with respect to the center
of gravity.

One easily expresses these two terms as functfofgsand one has:

n=a(e),

where® is a homogeneous, linear functionathat depends upon the mass of the solid
body, the position of its center of gravity, and thathe central ellipsoid of inertia.
One has:
n'=®(e) +P'(e).



Combebiac — Calculus of tri-quaternions. 44

We now seek the expression ().
Apply the infinitesimal displacement 1é&idt to the transformation:

c’'=d(c).
It becomes:
¢ - Leg dt =d(cy) —P(L £¢y) dt,

or, upon neglecting the higher-order infinitesimals:
¢ =d(cy) + [L CED(cy) - DL £6y)] dt.
One then sees that one will have:

P'(c)=L edP(c) - P(L €0
and
P'(e) =L £D(¢).
One will then have:
n'=d'(g +L ed(e),

and if one takes the unknown to be the bi-quaternwith tensor one that represents the
displacement that takes the solid body from an arbytrehosen fixed position to its
position at the epodhithen the equations of motion can be written:

(11) 2'rl=g D +Ledd =2,

where the operatap is a function of.
One can also take the auxiliary variable toshanstead ofg, and the equations of
motion can then take the form:

2r'rt=07Y(py), n'=Yf=A

However,® is not expressed very simply as a functiom,oéxcept in some special
cases (a body of revolution, for example).

In order to avoid that difficulty, one is then led tdroduce elements into the
equations whose positions are determined with respect solidebody.

If one letsg; andA; denote complexes that will be made to coincide wiimdA by
the displacementthen the equations of motion can be written:

(12) 27 =g, D, (£) + La Di(&) = A1,

in which ®; represents the function thétwill become under the displacement
The second of these equations is the extension toase of a free solid body of
Euler’s equations that relate to a solid body that isesibp turning around a fixed point.
One will easily find the known integrals in the intdgeacases.
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In the case of a completely free body, the decompasdf the motion along the
center of gravity removes any interest in the intefeentof the calculus of tri-
guaternions. However, it does not seem to be withoomesutility for the study of the
motion of a solid body that is subject to geometriesta@ints.



CHAPTER III.

LINEAR COMPLEXES.

Equation of a complex. Various decompositiené linear complex is defined lay
set of lines whose coordinates satisfy a scalar linear equation.
The most general expression for a scalar quantity itha homogeneous linear
function of a line:
d=p+wn
is obviously:
Pyd,
whereyis an expression of the form:
y=a+ wp

The equation of a complex is then:
Pyd=0,

in such a way that a linear complex is characterizednbgxpression of the form above,
up to an arbitrary factor.
If one has:
Py?=0

then ywill represent a special complex, which one has nsore#o distinguish from the
line that it determines in a uniqgue manner. It is fot tkason that we have considered
the line to be a special case of a complex.

The expressiory represents a system of segments, if one bringsentsor into
consideration.

The various modes of decomposition of a system of eatgnas they are used in
mechanics, are explained very simply by means of tri-quiates.

That is why one will have, upon letting @, andd denote a point, plane, and line
with a tensor that is equal to unity, respectively:

y= y=uPuy+uLuy=uPuy+Lyy,
y=—-afy=-wPwy- wlL wy,
y=-90%y==0Gdy- (P dy +L J)).

These decompositions are generally employed when one leakibit the properties of a
complex with respect to a point, a plane, or a line.

The formulas above are easy to interpret.

The first one represents the decompositiopiofo a liney P 1 ythat passes through
M and a vectoL yuthat represents the moment of the system of setgmeti respect to
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the pointm, or even the velocity of a poiptin motion whose instantaneous situation will
be represented by

The second formula represents the decompositigniritb two lines, one of which,
namely,—w Lw y— is perpendicular t, and the other of which namely,-@wLw y- is
situated in that plane.

The third formula decomposgsanto the linedand a complex that is not generally a
line.

There is some interest in determining the decompositigninto two lines, one of
which coincides withd in position. In order to do that, set:

d=x0+vyy
and write that the right-hand side represents a line:
Pd?=0 or  XPoy+yPy2=0.

This equation determines the raxid y, and one will have an infinitude of solutions
for d that differ only by their tensors.

One can observe that this decomposition of a comptextwo lines, one of which is
given, permits us to reduce the infinitesimal displacgroé a line, which is given by the
second of formulas (5) on page 32, to a rotation.

Two lines are calledonjugate with respect to a complewbgen one can choose their
tensors in such a manner that one has:

() y=d+d’.

Any line o that belongs to the complexand meets a linel will also meet its
conjugated’, since one will have:
PA’'=PJdy— Pad = 0.

Conversely, any line that meets two conjugates will lgetorthe complex.

Any planep that is parallel to two conjugate lindsandd’ will be parallel to the axis
of the complex, because one has:

P hay=P bad + P pad’= 0,
which is a formula that expresses the idea that #@eplcontains the vectawy— i.e., it
is parallel to the axis gt

Any line d that belongs to the complex will coincide with it®njugate, and
conversely, because one will have:

d’=dPy* - 2yPyd = dPy?

as the expression for the conjugdte
Now, bring the tensors into consideration.
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Formula (1) then represents the determination of selsysf segments in terms of
two segments.
One has:
Py?=Pd? + 2Pd d’+ Pd’? = 2Pdd".

One thus has the theorem:

The volume of the tetrahedron that is determined by the two sedoyewtsch one
can represent a system of segments is independent of the choicpaif tiesegments.

Letd, d"andd;, d; be two pairs of equivalent segments:
d+d =di+d.

If three of the lines belong to a complgx i.e., if one has:

Pyd =0, Pyd’=0, Pyd; =0,

then the fourth line will likewise belong to it. Nowne can find three linearly-
independent complexes that have three lines in commonfotité line will also belong
to these complexes, and in turn, to the ruled serieshégthave in common.

Focal point and focal plane- We look for the locus of lined that belong to a
complexyand pass through a poiat
A line that passes throughwill have the form:

d=Luam,

in which cowill represent an arbitrary plane.
One must have:

Pyd=0,

Pyd=PyL yw=P y(uw-Puw) =P Qyuw=P(Lyu o).

One thus has:
P(LyuOm) =0,

which is a formula that expresses the idea that deegb contains the vectdr)y, and in
turn, that the linad, which is perpendicular to the plame is likewise perpendicular to
that vector — i.e., its locus is the plane that padsesighy and is perpendicular to the
direction ofL yu .

The latter plane will be called thecal planeof the pointg.

We likewise seek the locus of the lirthat belong to a planand the compley

Any line that is situated in the plamewill have the form:
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d=Lap,
in whichp is an arbitrary plane. One must have:

POyLaop=0,
or
Py(wp — Gwp) =P ywp=PLL pwip=0.

The last formula expresses the idea that the gdamed in turn, the lind, will pass
through the poinLyem That point is called thical pointof the planew.

The most natural means of determining the locus ofitks of a complex that pass
through a given point or are situated in a given planeistsnsf the decomposition that
was mentioned already of the complex into the pairiane.

For example, in the case of the plane, one has:

y=-w’y=-wlLwy-wPay
or
(2) y=f+do,

wheref andd, represent lines (which are obviously conjugate), one oftwhiciz.,f — is
perpendicular tavand passes through the polinby, and the other of which — vizdy —
is situated on the plane.

The linesd of the complex that belong to the plasmare determined by the equation:

P(@{+dy)d=0,
or
Pfd=0,

which is a formula that expresses the idea that thellinghe planerwmeets the liné —
I.e., it passes through the polrdoy.

The linedy is the locus of points in the plamesuch that the focal planes pass through
the linef — i.e., they are perpendicular to that plame

Since that linedy is the intersection of the plare and the plandPwy, which is
parallel to the axis of; it will be parallel to the projection of that axistoro.

The lined, is called thecharacteristicof the planew, when one considers the fact
that it is, indeed, the characteristic of that plane utitke infinitesimal displacement that
is represents by the complgx

It is easy to confirm that the projections onto pi@ne @ of two conjugate straight
lines will cut at a point of the characteristic odtiplane.

Indeed, led andd’be two conjugate lines such that one has:

g=d+d-

The planar projections afandd’onto ware:
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Pwd, Pwd’,
respectively.
On the other hand, sinéés perpendicular tag one will have:

P wf =0,
and in turn:
Pod+Pwd =Pwg=Pw(f +dy) =Pwd,,

which is a formula that shows that the three pldtwes, Pwd’, andPw dy, which are
perpendicular t@g pass through the same straight line, and in turn, tbgtrojections of
d andd’cut ondp .

The linesf andd, constitute a pair of mutually-perpendicular conjugate lines.

Lines that are rectangular with their conjugatesWe seek the locus of lines that
present the property of being rectangular with their cobgsga
Letd be one of these lines, and dte its conjugate.
One must have:
Gdd'= 0.
The equation for the locus is thus:

G (dPy*-2yPyd) =0,
or
(3) d?Py?-2Gd yP yd=0,

which is the equation of a second-degree complex.

We now seek the locus of the lines that belong to ¢batplex and pass through a
point L.

Decompose the complgswith respect to the point.

y=u?y=uPuy+ulLuy
=uPuy+Lypy,

where u Puy represents a line that passes through the poirgnd Ly represents a
vector.
We set:

L yu=wd, UPU Y=,
whered; andd, represent lines that pass through the paint
We will thus have:
y= d + wd; .
For a lined that passes through the pointone will have:

Pyd=Gdd, Gyd=Gdd,
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in such a way that equation (3) becomes:
(4) FGdd,-GhdGdd=0

for the linesd that pass through the poipt which is the equation of a second-degree
cone that has the line andd, among its generators, and whose cyclic sections are
perpendicular to these lines, because the common ¢erseod the cone (4) and the cone
of isotropic lines:
=0
are situated in the planes:
Gdd=0, Gd&kd=0,

which contain the lined that are perpendicular th andd,, respectively.

On each of the generators of the cone (4), therésexipointm whose focal plane is
perpendicular to that generator. We seek the locusesétpoints.

Since the focal plane of any pomtis perpendicular to the vector:

L ym,
one must have:
Lym=xLum,

which is a formula that expresses the idea that thesveg/m has the same direction as
the vectorL p# m that is determined by the two poingsand m, while x denotes a
numerical quantity.

The equation of the locus of the pomwill then be:

5) Ldm+wh, Tm=xLum

which is a homogeneous, linear vectorial equatiom ithat determines a position of
for each value of the variabie

However, since we know one surface that is the lo¢ibe pointam, it will suffice
to determine another one from it.

Perform the operation:

P
on the two sides of equation (5).
One gets:

PEk()dzlem:X PEdzL,um
=xPOum
=X P[P & xOm
==xPmp

upon setting:
Phuyu=p:.

Upon likewise performing the operation:

P M,
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and setting:
Pdu=p,
one will get:
PhLdm+d Tm=-xPmap.

Finally, upon eliminatingx from the two equations thus obtained, one will get the
equation of the locus:

PO [p: P Owdy hT m—p (P L b m+ d? Tm)] =0
or
(6) POn[piGdchT m+p, (PQudi L dom= d? Tm)] =0,

which is a homogeneous, second-degree equatiomtimat represents a second-degree
surface.

In the following chapter, we shall confirm that theans of determining the elements
of a second-degree surface is represented by such an aquatio

However, the form of equation (6) directly exhibits tketilinear generators of the
surface. They are determined by the equations:

Pmp =xPmp, XGad,Tm=—P[Pmd dp Cm+ dTm
and
GhdTm=yPmp, yPmp=—P[Pud dpOn+ d? Tm,

wherex andy are variable numerical quantities.

One recognizes that this is a hyperbolic paraboloidithathe plangs, andPu d; d,
for its director planes; the latter is the plane tkatetermined by the concurrent lirshs
andd; .

Among the generators of one of the systems, one fir@tersection of the planes
p. andp, — i.e., the perpendicular that goes through the gointthe planePu/ d; d, .

We now seek the locus of the lingshat belong to the complex (3) and are situated
in a planew.

Decompose the complex with respect to the ptane

y=- v y=—wLoy-wPwy=f+dy.
For any lined that is situated in the plarg one has:
Pdd, =0, Gdf=0,
and, in turn:
Pdy=Pdf, Gdy=Gdd .
One has, moreover:
Py?=2Pfd.

For the lines in the plans, equation (3) then becomes:
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(7) d?’Pfdh-GddPdf=0,

which is the tangential equation of a conic.

This conic is obviously a parabola that has the fodaheflinef for its focus and the
line dy for the tangent to the summit, because, on the and,requation (7) is satisfied
by:

d = do,

and, on the other hand, the isotropic lines:

which satisfy the equation (7), are determined by the edqusatio
Gda, = 0, Pdf = 0;

i.e., they are either perpendiculardioor they meet the link

We once more seek a locus of lines that belong to thdrafimcomplex (3).

In order to do this, at each poiptof a given lined, consider the linel whose
direction isLyit—i.e., it is perpendicular to the focal planguof

The ruled series that is described by the dinehen the poing is displaced along the
line dis represented by some very simple equations.

Decompose the complgswith respect to the liné— i.e., set:

y=0+20,

by taking o to have a convenient tensor and while lettdigdenote the line that is
conjugate ta with respect to the complex.
The equations of the ruled series that is describebldog the following ones:

(8) Pod =0, GJdd=0, PO I=0.

The first one expresses the idea that thedimeeetsd, and the second one, the idea
that it is rectangular witld. The third one is verified in the following manner, which
will likewise serve to establish the first two, if thare not obvious.

Upon lettingw denote the plane that is determined by the difend the poinm that
is situated on the ling one will have:

d=wlL @i,
SO
P(LoM)=P(LdwLwd =P (L M’sza) -P (L &0’ wP wd).

The two terms in this expression are zero; indeedjrdteone can be written:

P(L&IY=PY°=0,
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and the second one:
PO o0wPwd) =P (0’PowPwid) =P [d (PO wPw )] =0,

because the expression:
L(PO" wPw )

represents a line in the plaRer d, and in turn, it must meeX
Equations (8) express the idea that thedihelongs to the three linear complexes:

o w0, and L&

The line d, which remains parallel to the same plane, describds/perbolic
paraboloid.

When the line®andd’ are rectangular — i.e., when the lidbelongs to the quadratic
complex (3) — the expressidudd’ will represent the common perpendiculardtand 07,
and in turn, the line will generate the plane that is drawn throdgind perpendicular to
0.

The normals along to the ruled surface (8) likewise form a ruled series bas the
equation:

Pod=0, God =0, PJ’d=0.



CHAPTER IV.

SECOND-DEGREE SURFACES.

New notations— As a final example of the use of the calculus of @uatins in the
name of geometric analysis, we apply it to the procdarhe fundamental properties of
guadrics.

Before doing that, it is necessary to complex theubas by means of some new
notations, as well as to present the first principteds a theory of projective
transformations in terms of tri-quaternions.

The calculus of tri-quaternions presents a serious g#mint does not provide the
means to represent certain simple projective propemiglout the aid of a reference
system).

That is why we do not have the expression that repiesee line that joins two given
points or the plane that passes through a given line and point

All the same, it is remarkable that if we take thenplto be the element then we will
immediately obtain the representation of Grassmanxtsrier products, namely: The
line that is common to the two planpsandp’ is represented blypp’, the point that is
common to the plangsg p’, p” by L Opp’p” and the volume of the tetrahedron that is
formed by the planegs p’, p”, p”, by tPop'p”p”

It does not seem that the calculus of tri-quaternip@gnits one to resolve the
difficulty that presents itself in the expression le¢ inalogous properties that relate to a
point in a satisfying manner.

We thus content ourselves by introducing a notation whthtat least present the
advantage of simplifying the notation.

We represent the line that joins the pomtandm’ byV Om, m”and the focal plane
to the pointm with respect to the complexby Sk, m. Even better, if we set:

m= % + wp, m’'= ux, +wp’, c=a+wp

then we will define the functiong andS by the formulas:
(1) { Vimm=xp0' - 30+wlop,
S m= u( 8+ @pB)+w @Bp.

Upon applying the functiong andSto the vectorsyo and ', in particular, one will
get:
V Owp, ap’= wl pp’,
SO, ap’= wG pp".

One sees that the functioBsindV permit us to express the properties of vectors as in
the calculus of tri-quaternions, while we cannot do thamegns of the functionG, L,
andP, since the product of two vectors is zero.
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We can subject the functiotf®andV to the tri-quaternion calculus by establishing
some properties that are based upon the defining formulas (1)
We cite the following formulas, which one can easéyify:
Sk, m=Sn,c, VIm m’=-V[In,m,

G L[ESk, m=0, L @Sk, m = 1P¢ On, P [ESk, m =Sk, Lcm,

GIBk min =0, LB, mOn=V0On Lcm PS5 mOn=0,

G OmVIOm m’ =0, L CmVOm, m’ =0, P OmVIOm, m’=- Sm, Lmnv,
The equation im:
LEp=m
is solved by the formula:
1P =Sk, m

Finally, in order to simplify the notation, we set:
SOn m,m”=SOV On, m’), m”=SCm(VOm’'m”).

In summation, the functionS andV, for which one establishes the preliminaries of
some formulas, can be introduced in the calculus liketionsG, L, P themselves, and
thus fill in the aforementioned gap.

In order to fill another gap, we shall present a medrepplying the calculus of tri-
guaternions to plane geometry.

One can likewise establish a complex calculus that appieectilinear geometry in
the following manner:

Leti be a line whose tensor is equal to unity.

Represent each point of that line by the plane thatvmrthrough that point and
perpendicular to the line — i.e., by an expression ofdha:

M1+ WX,
wherex is the abscissa of that point with respect to atpuoithat is taken to be the origin.
If one adds to these quantities, the ones that orénslity means of the units 1 and
a then one will obtain quantities of the form:
r=w+gi+wx+wiy=Gr+Pr+Lr,
which constitutes a complex numerical system.
The expression:

Lr = wiy

depends upon just one scalar quantity. It will often bergdgaous to set:
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Lr =iy or wlLr=Lr.

The complex numerical system can be especially ugefile determination of the
intersection of a given line with a give surface.

We have seen that a complex in space can be decompdtes@certo a plane into two
lines, one of which is situated in the plane, and ther @athehich is perpendicular to that
plane.

Since we can represent the points of a plane byrtée that are drawn through these
points perpendicular to the plane, we see that thefse@mplexes in space suffices to
represent the points and lines in the plane.

If one adds the complex quantities that are obtaineddans of the units 1 ardto
these quantities then one will obtain a bi-quaternionigegc

r=w+c+ww,

in such a way that plane geometry possesses a compiearisal calculus, just like the
geometry of space.

Take an origin that is situated in the plane and tleetangular coordinate axes, two
of which are situated in the plane, and the third of whigterpendicular to them. We
write r in the form:

r=w+ix +jy +kz+ w(ix; +jy1 +ka) + ww .

We decompose this bi-quaternion into four others:

The numerical part: Grorw

The term inw Pr or com,

The part of the complekr or c that represents a line that is perpendicular to the
plane, which we denote byr:

Mr =Kk z+ w(iXy +]y1).

Finally, the part of the complexthat represents a line in the plane, which we denote
by Dr:
Dr=ix+]jy+wkz .

The rules in this planar calculation are representethéyfollowing formulas, in
which d, d’ represent lines in the plane, amdn’ represent lines perpendicular to the
plane — i.e., points in the plane:

Gnn=Grn Mnh=- Mhn Dnn= 0, Prrr O,
(2) Gnd=0, Mnd= 0, Dnd=- Ddn Pnd Pd
Gdd = Gdd Mdd=- Md d Ddd= 0, Pdd= 0.

We remark that this calculus includes that of equanaies.
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It has the same properties relative to plane geontdiay the calculus of tri-
guaternions has relative to the geometry of space, whertinctionM plays the role of
the functionL, and the functio, that of the functior.

The two calculations also present the same gaps.

A remarkable property of these two calculi consisttheir capacity to pass from the
calculus of tri-quaternions to that of bi-quaternions,tinedato a given plane, when that
might be necessary.

For example, one can always find the bi-quaternionic emjuatithe plane section of
a surface that is represented by an equation in tri-quaterni®©ne encounters some
examples of this in the study of certain geometric taimgs. The procedure is general.

It is not less simple to obtain the bi-quaternionic eiqnadf the projection into a
given plane of a curve that is represented by two equaiiotri-quaternions.

The passage from geometry in space to plane geometrseid bpon the formulas:

n=am or m=-awn,

wherem represents a point of the plaae andn, the perpendicular to that plane, and in
turn, the point itself in the system of calculattbat relates to the plane.
In order to find the equation of the projection onanpkuof the intersection curve of
two surfaces:
F(m) =0, F’(m) =0,
one sets:
m=-wn+ Wwwx,

in whichx is a numerical quantity, an@ @ x represents the vector that is determined by

the pointm and its projection zn onto the planeu.
One will have the desired equatiomiby eliminatingx from the two equations:

F(-wn+ wwx) =0, F'(-wn+wwx) =0.

Projective transformations- In order to begin the theory of second-degree surfaces,
it is necessary to establish some notions and fosriul relate to the application of the
complex calculus to the projective transformationspace.

That is the objective of this paragraph. Moreovers¢hproperties are interesting in
their own right.

A projective transformation of space can be preseanttddee forms:

1. A homogeneous, linear transformation:

m’= ¢(m),

wherem andm’are points, representdhiamographic transformation.

2. A homogeneous, linear transformation:

p’= gu(m),
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wherem s a point angb’is a plane, representslaalistic projective transformation
3. Finally, a homogeneous, linear transformation:
c’'=®d(0),

wherec andc’ are complexes, represent a projective transformatmm bne space to
another, on the condition that it leave invariantgbeadratic equation:

PE=0
of the variety that is formed by the lines in the egriof complexes.

We shall say a few words about each of these homogenénear function®, ¢,

@, notably, on the manner by which one can realize theerses — i.e., how one can
solve the equations above far and ¢ without appealing to the ordinary systems of
equations that represent them.

The inversion of a function of the first kind isdted by a method that was modeled
on the one that was presented by Hamilton for the stverof homogeneous, linear,
vectorial functions, and which is based upon the existenan identity relation that
these functions must satisfy.

In the case of point-like functions, the relatiorofsdegree four — i.e., one will have
identically:

¢ (m) + A ¢(m) +B ¢%(m) + C g(m) + Dm =0,

whereA, B, C, D are numerical coefficients that one can determineatsulatingg?, ¢°,
9°.

Upon replacings(m) with m’in the identity relation, it will become
P¥m)+A g (m)+Bg(M)+Cm +Dm=0

which is a formula that gives the expressionrfoas a function o’ - i.e., it solves the
problem of inverting the functiog.

Moreover, the theory of systems of homogeneous, liagaations or matrices was
developed from that viewpoint, notably by Sylvestgr (

We complete it by establishing a notion that will befuisto us, namely, that of
conjugate transformations.

Hamilton used the ternfunction conjugateto a homogeneous, linear, vectorial
function ¢ to mean another functiog” of the same type, such thatgfand p” are two
arbitrary vectors then one will always have the refati

Sp () =So Ly’ (0).
The definition is reciprocal.

One can observe that this property is metric.

() SYLVESTER,Comptes rendyd.884.
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On the contrary, the property by which we shall defirettansformation conjugate
to a homographic transformation is projective.

Let:
X =ax +by +cz +dt,
y =a'x +b’y +c’z +d't,
Z=a’x+b"”y +c”z +d"t,
tl :alllx+bllly+clllz +dlllt

be a system of equations, where the variables are oatediof points, and which we
represent by:

m’= g(m).
Let p an arbitrary plane with coordinatesv, w, n. One can write:
ux’+vy’+wz’+nt'=(@u+a’v+a’w+a”n x+ (bu+b’'v+..)y+ ..,
which is a relation that can be written in tri-quaiens:
P Cp ¢(m) =P 0p’(p) m,
upon lettingg’ denote the planar, homogeneous, linear function:

!

+a/V +a”W+a”'l’l,

u =au
V. =bu +b’v +b”wW+b”n,
W =cu +c’v +c”w +b”n,
n =du +d’v +d”w+a”n.

We callg’the functionconjugateto ¢.
The definition is, moreover, reciprocal.

Consider three points;, mp, mg, and the plane that passes through these three points:

p =S, mp, ms.
The three points:
m =g(my), m, =¢(my), m =g(my)

likewise determine a plane:

p’=S0Om, m, nj,
which is a homogeneous, linear function of the plane
P’= YPp).
One obviously has:
Pmp'=APmp

whereA is a numerical quantity, or:
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POn'Yp)=Pp¢'(m)=P¢[(¢g(m)=APmp
we=2A and A¢gt=y.

and, in turn:

One has an expression for the function that is imvierg with this.
That is all that we shall say about homographic toanstions.
Let:

(3) p’= (M)
be a dualistic transformation.
We shall refer to theonjugateof the functiong; when we mean the functiagf(m)

that is characterized by the identity relation:
P Oy g1(m) =P Omg;(m,) .
If @1 is expressed in the following form, which is obviously gaher
(M) =p Ppm+ p, Ppm+ p, Ppsm+ p, Ppm,
then one will have:
(m)=pP o m+p P p, m+psP p;m+ pP p,m,
by virtue of the identity:

POmg(m=Pmp Pppm+Pmp, Ppm+Pmp,Ppm+Pmp, Ppum,
=PmpP pm+PmpPp, m+PmpP p,m+ PmpP p,m,
=Pm g;(m).

Since the functiong; and ¢, have the same type, they can be identical to ede,ot

and in that case, we will say that the funct#ans auto-conjugate.

One will define the transformation conjugate to a duelistansformation that
transforms a plane to a point in an analogous manner.

The conjugate of the sum of two functions is the s@ithar conjugates.

It then results thag, + @, is auto-conjugate.

One has:
¢1+¢i ¢1_¢'1
= + .
=" 2
identically.
+ I
One thus decomposes a functign into an auto-conjugate functio 12¢1 and

another function@ that presents a special character.
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Indeed,¢1 — ¢, is composed of pairs of terms of the form:

PPRMpPpnN

which is an expression that represents the plane teagp#hrough the intersection of the
planesp; and p; and the pointn. Indeed, one has the formula:

pPpM pPHn=SOpp,m
Each pair of terms of this sort will give a similaduction, and one will finally have:
$(m) - ¢, (M) =Sk, m,

wherec is the complex that is the sum of all the lihgs; p, .

The equation:
p’=SCtm,

is the general form of the dualistic transformatioret tihake any point correspond to a
plane that contains it.
The decomposition that we just realized is that eb6th {):

u=ax+hby+cz+dt,
_ b+d c+d d+ d b- a e a d a
—ax+ y+ z+ t+ y+ z+ 1,
2 2 2 2 2 2

v=a'x+b’'y+c’'z+d't,
_b+d c+Hd d+8 _ 4a-b_ e b & b
= z+ t+
2 2 2 2 2

X+by+

w=a”’x+b”y+c”z+d"t,

_c+d c+ld o, d+¢ d-b_b-tc O C
= X+ y+Cz+ t+ xt+ Y+ !
2 2 2 2 2 2
n:allIX+bllly+CIIIZ+dlllt,
_d+d X+d+b y+d+df o4 't d- dX+ B- (:Iy+ (o d:.
2 2 2 2 2 2

From the analytical viewpoint, this decomposition is #malogue of the Helmholtz
decomposition for homogeneous, linear vectorial functiddewever, whereas the latter
decomposition is simply metric — i.e., it is invarianthwespect to the displacements
without deformation in spacethe decomposition that just presented is projective.

() CLEBSCH,Vorlesungen iiber Geometyikk Band.
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One cannot apply the procedure that is based upon thenegistd an identity
relation to the solution of equation (3) fon because the iteration of a dualistic
transformation has no meaning.

Consider three pointsy, My, Mg, and the plane that passes through these three points:

p=Sm,nm,Ns.

The three pointey, m,, mg correspond to three planes:

P = @1 (M), P, = @1 (M), P; = @1 (M).

Let their common point be:

m’=Lpp, B,
which is obviously a homogeneous, linear functiop:of
m’= ¢a(p).

If a pointm is situated in a plane then the plang@’that corresponds tm will pass
through the point’that corresponds fo— i.e., one will have:

Pmp'=APmp
identically, wherel is a numerical quantity, or:
P Oa(p) g(m) =AP mp

PLmg,[¢(P] =APmp

and, in turn:

or finally, since one is dealing with an identity relatio
Qi =A;

i.e., ¢n is the inverse ofp;, up to a factor, and in turn, the functign that is conjugate

to ¢ is the inverse of; .
Knowing A andy; , ¢;* will be given by the formula:

Ag =y

In order to obtaing, it suffices to apply the functiog; at four arbitrarily-chosen
pointsmy, m, Mg, My that are not, however, coplanar:

P = @1 (M), P, = @1 (M), P; = @1 (M), P, = @1 (My).
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One forms the four points:

m=Lppp, MmM=Lppp MmM=Lppp MmM=Lpp .
One obtains the expression i by the formula:

P Oy ST, ms, My Oy (p) = My P Oy p + M, P O p+ mP Cng p + i, P O p.
One finally has:

P Oy SO, mg, my Oy (p) =my P Op,, p, @, p+meP Op; p, B p
+mgP Op, p, B, p+myP Op; p, B, p.

One choosesy, Ny, mg, My in such a manner as to simplify the calculations gare
to the given functio; .
As for the value ofd, one sees that upon replacipgwith ¢:(my) = p; in the

preceding identity, one must have:

P Oy SO, mg, my Oy ¢, (M) = my P Op, p, B, p.
Thus:
__PHBRA
PmSUm, m m

The numbeM is a projective invariant of the transformatign. It is the determinant
of the coefficients of that transformation.

If we apply the indicated calculation to the gedorm of ¢, that was given at the
beginning of this paragraph then we will find:

Plhppr PR ARET(D
(4) =L, p;p, PPR RO+ WRRRPPRRP
+Lp,pp, PPRABY WRpRR PPPP'S

If Ais zero then the solution will be illusory.
In that caseg:(m) will satisfy a homogeneous, linear relation:

P Oy, ¢1(m) = 0.
One will deduce from this that:
P M ¢,(m;) =0,
or, sincem s arbitrary:
¢.(my) = 0.
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The functiong; also has a zero determinant, and there exists ampg@such that one

has:
$1(mo) =0, P O g(m) = 0.

@1 makes a planp’that passes throughy, correspond to each pointin space, and

the same plane will correspond to all points that &wated on the same line that passes
throughmy, as is shown by the formula:

g1(m + xmy) = gi(M) + X1 (M) =go(M) .

In order for the given equation (3) to have a solutios, mecessary that one have:
POm, p=0.

Once this condition is satisfied, will correspond to all of the points of a line that
passes throughy , in such a way that it will suffice to consider wheappens in an
arbitrarily-chosen planerthat does not contain eithep or ny,. The functiong, makes
a point in that plane correspond to a line in that pland,one is thus led to the study of a
dualistic transformation in the plane.

In order to do this, it will suffice to consider thection:

L O gu(m),

in place ofg;(m), while supposing than belongs to the plang; and one will have to
solve the equation:
L Cko¢i(m) =L Ckop’

in the planew, which one can easily put into the form:
Xx(n) =d-.

The solution of this equation of plane geometry is ageby a procedure that is
modeled up on the one that we just discussed for space.
Upon calling the solution thus obtained, the general solution to equation (3) will
be written:
m+XMm,

in whichx is an arbitrary numerical quantity.

Therefore, in this casp, will be a function of the lin& Oy, m, properly speaking.
Effectively, one can write:

¢l(m)E piG51VD’Q» mt 9 Gz52 \DFEJ h ’ip ®3 i m
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wherep, p,, p, are three planes that pass throughand wherel, &, J are lines that
pass through the pointy, and if one sets:

V On, m=d and ¢u(m) = 6(d),
the equation:
6(d) =p’

will generally have a solution ihif p’ passes throughy, .

Whether one employs the auxiliary plane or consigéts be a function ofl, one
will be dealing with ternary linear functions, and aran achieve their inversion by a
procedure that is identical to the one that we just pteddor quaternary functions.

The solution can again become illusory, and it isrdleat in that case the plangs
will pass through the same line, and can be considereel fionbtions of the planes that
pass through the same line, which will coincide with fire one if the functiong; is
auto-conjugate.

In summary, one can achieve the solution to equatiom @)y case, along with the
reduction to its simplest form.

We have determined a functigh that is linked to the functiog, and transforms a
plane into a point.

One can likewise determine the transformation trekes a line:

d=VIOn, m
that connects two arbitrary points in space correspoaddther line:
d=Lp R
that is common to the plangs, p;:
P = @u(my), P, = @1(My).

We are also led to say a few words about the tramstaons of third type.

Upon formingL Opi(my) @1(np), one will obtain a function 0¥y, nmp, and one will
thus have a transformation that makes a line correqpoaaother one or even a complex
to another one:

(5) c’'=d(c).

One will obtain a similar function by starting wahhomographic transformation.

The function® presents the property of preserving the quadratic varietly ih
composed of the lines — i.e., that one will have tlaios:

Pc’2=)1P ¢&

Upon introducing the notion of conjugate function, asdidefor the other functions
that were encountered already, by means of the nelatio
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P [ ®(c;) =P [T; 9'(c),
we see that the preceding condition can be written:

P Qd'(c) —Ad] = 0
or
O D=

The condition for the transformatioPl to preserve the quadric of the lines — i.e., to
determine a projective transformation — is thus @iab must be numerical quantity.

That property will permit us to easily achieve the isian of the functiorb.

We can thus assume that we know how to achieve tlesion of homogeneous,
linear functions of the point, plane, and line that gise to projective transformations in
terms of tri-quaternions.

That knowledge is indispensable if one is to begin ttleory of second-degree
surfaces, in which we likewise use the notion of a comgyghomogeneous, linear
function.

Second-degree surfaces.Some doubts might persist regarding the efficacy of the
use of the calculus of tri-quaternions in geometric aslyf we do not show that it lends
itself very naturally to the establishment of some eletary properties of quadrics.

The general form of a homogeneous second-degree equatios obviously:

(6) P ¢(m) =0,

where g(m) represents a homogeneous, linear, planar functiom @fhich is a function
that one can assume to be auto-conjugate, by reasonigétiiy:

P On SCE, m=0.

A quadric is thus determined in a unique manner by an auto-cosjingethogeneous,
linear functiong.
The plangp(my) is then the polar of the point with respect to the quadric.
Indeed, letm be a point in that plane. Any point of the line thatgahe pointsn and
mp will be of the form:
My +X M

and the values of that correspond to the points of intersection of ime with the
surface are given by the equation:

POmo+xm ¢ (mo+xm =0,
or

x* P T g(m) + 2x P T ¢(my) + P Oy ¢(m) = 0.

The condition for the points of intersection toHamonically separated with and
My is that the values of must be equal and of opposite sign, which gives:
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P [ ¢(mo) = 0,

which indeed expresses the idea that the locus of themasnthe plangp(my).
If the pointmy is situated on the surface then the plafmey) will be the tangent plane
to that point. Indeed, upon differentiating equation (6¢, loes that:

P g(dm) + P Cm g(m) = 0,
or
2P [Hm ¢(m) = 0,

which is a formula that expresses the idea that the poivectordmis indeed situated in
the planeg(m) — i.e., thatp(m) is the tangent plane at
Set:

gm=p or m=g(p.

Upon substituting this expression fon into equation (6), one will obtain the
tangential equation of the quadric:

PO ¢ (p) = 0,

which can be written, upon introducing the functigip) of the preceding paragraph:

(7) PIby(p)=0.

One can also obtain the condition for a line to &egeént to the quadric in an
analogous form.

Upon recalling the functio® of the preceding paragraph, that condition will be
written:
(8) P ®d(c) =0,

where one can obviously assume tkatis auto-conjugate — i.e., that it satisfies the
condition:
(9) D= A
One must add the condition:
PF=0
to equation (8).

However, without adding that condition, equation (8) iseff to determine the
guadric, just as equations (1) or (7) do. That equationth@) defines the set of
complexes that are auto-conjugate with respect to thdrigua

In the case where the projective invariahtis zero, according to the preceding
paragraph, one will have identities of the form:

PO ¢(m) = 0, $(mg) =0,

in whichmy is a well-defined point in space.
The surface is then a cone whose summit is the pgint
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The inverse functio@ *(p) will then make sense only if the plapegasses through
the pointmy , and in that case, it will have an infinitude of detieations of the fornm +
XNy.

As for the function:

m’= ¢Ap)
that is obtained by taking:
p = SOy, My, Mg, m’=L Op(my) @(my) @(ms),
it will take the form:
¥p) =mo P Oy p,

in which the tensor afy is assumed to be chosen conveniently.
The tangential equation (7) thus presents itself indhm bf a square that is equal to
zero:

(P Oy p)* = 0.

The tangent planes to the cone are determined by twatiGmgjanamely, the
tangential equation at the pomg :

POnpp=0

and the tangential equation to an arbitrary quadric thasdibed in the cone. The latter
equation will be obtained by starting with a point-like gguaof the form:

P O ¢(m) + [P On )% = 0,

in whichpp is an arbitrary plane that does not pass through theé mpein
The function® also presents some peculiarities in the case thateveccupied with.
One can put it into the form:

d(c)=AaPIc+BoLPI,c+C P,

in which d,, &, d; are three conveniently-chosen lines that pass thrth&gpointm,, and
A, B, C are numerical coefficients.
In reality, ®(c) depends upon only the plag&in, c, because one has:

TmPdc=POwd Sy, C, TmIP &c=POwd Sy, C,
Tm[P &c=POwd Sy, C,
and in turn:

TmOP(C)=APOwd SO, c+B &P Owd, STy, ¢+ C & P Owos ST, C.
If one confines oneself to considering lines then oné se¢ that the functio®

makes any lin@l in space correspond to a line that passes throygind depends upon
only the planes [, d.
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Equation (8) becomes:

A[PDAC*+B[PO%c*+C[P % c]*=0,
or
A [P Ok, S O, ¢]? + B [P Dk SO, €] + C [P Ceds S O, €] = 0.

If one considers only lines then this equation will irtdespresent the set of lines that
are tangent to the cone, because it expresses thithadehbe linesl and®(d) are situated
in the same plane, namefy[, d.

Upon setting:

SO, d=p,
the equation above becomes:

A [P Oty p]? + B [P Oy p] + C [P ks p]® = 0,

which, along with the equation:
P Ohyp =0,

represents the tangent planes to the cone.

One will treat all of the degenerate cases in afogoas manner.

Now, determine the section of a quadric by a plane

We have presented a bi-quaternionic calculus that prettentame properties with
respect to plane geometry that the calculus of tri-qnimies does with respect to the
geometry of space.

One can thus represent a conic that is situated iaree pf by an equation of the
form:

Pngz(n) =0,

wheren represents the line that is perpendicular to the piatieat is drawn through a
point of that plane, and.(n) is a line in the planeou that is a homogeneous, linear
function ofn.

We shall now determine an equation of the form aboaerdpresents the section of
the quadric (1) by the plare

Let m be a point of that section, and letbe the line that is drawn through and
perpendicular to the plarie One has:

m=—am=-wlLom-wPwm
= wn.

Equation (6) thus becomes:

P Owong (wn) =0
for the points of the plang or:

PlChw¢ (wn) =0.
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The expressiow ¢ (cwn) represents the intersection of the plan@n) and the plane
ag, and in turn, will be a line in the latter plane. sithe desired functiog.(n).

The reduction ofp,(n) to a canonical form can always be achieved by exhibiting
either an auto-polar triangle, a center and axesashptotes, the focal points, etc., of
that function, and doing this by means that are sirtoldhe ones that we pointed out for
surfaces.

We shall now determine the equation of the cone thatrdamscribed in a quadric
and has its summit at a given pom.

This cone is a quadric that passes through the interseamstithe quadric (6) and the
polar planeg(mp). Its equation then has the form:

x P mg(m) + [P mg(mp)]° = 0
or
P O [x g(m) + @(mv) P m@(mp)] = 0.

X g(m) + ¢(mo) P m ()

The function:

must have a zero invariat However, since we already know the summytof the
cone, it will suffice to write:

X ¢(mo) + g(mg) P my ¢(mg) = 0,

which is a condition that is satisfied by:

x=-P m ¢(my),
thanks to the factop(my).
The homogeneous, linear function relative to the eaté¢hen be:

¢(m) P m ¢(mo) — ¢(mo) P m$(1m).

We shall now determine the points of intersection givan line d with the quadric
(6).

That determination can be done in several ways. Wesehibe one that utilizes the
calculus that we presented in the first paragraph ottfapter, and which plays the same
role with respect to rectilinear geometry that thecwak of bi-quaternions does with
respect to plane geometry.

Represent each poim of the line d by the plane that is drawn through that point
perpendicular t@). In order to determine the points of intersectio@@ifith the quadric
(1), we shall seek an equation of the form:

P p#s(p) =0,

whereg@s(p) represents a plane perpendiculadtnd is a homogeneous, linear function
of p.
For any poinin of the lined, one will have:
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m=-3°m=-JLJIm-3PJm
= d)
The equation of the quadric (6) can thus be written:

PMp¢(p)=0 or PDBOLpp(p)=0

for any pointdp of the lined.
Decompose the plang(Jdp) into a plane perpendicular ® and another one that
passes through that line:

¢ (D) =-3°¢(d) ==L 5@ (&) - P 54 ().

The second term will give rise to a zero term in pheceding equation, because if
one denotes it by’ thenLpp’will represent a line in the plapg - i.e., a line that meets
o.

The equation ip will thus become:

P[oLIpIL ¢ (D) =0,
wOL [ ALIP () =0,

or

or finally:

L b L 36 (&) = 0.

The desired functios (p) is then:

9s(p) =L 59 ().

The expressiohog(dp) represents the point of intersection of the brend the polar
plane ¢ (dp) of the pointdp, in such a way thaps (p) represents the plane through that
point of intersection that is perpendicular to the bne

The second-degree equation:

L p#s(p) = 0
will give two values fomp.

These two values will coincide if there exists a planthat is perpendicular td for
which one has:

$5() =0 or L dp(do) =0,

which is a relation that expresses the idea that dmeeg(Jdpo) that is polar to the point
dpo With respect to the quadric contains the knhe

Finally, if the equation is satisfied identically thite lineowill be completely on the
surface; i.e., if one has:

$s@=0 or Ldp(p) =0,
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which is a relation that concisely expresses the ttat the line conjugate to with
respect to the quadric agree wdh

We shall now determine the second-degree cones thathpasgh the intersection of
the two given quadrics.

If ¢ and ¢, represent the linear functions that correspond to twargusathen the
linear function that corresponds to a quadric that passesgh the intersection of the
latter two will have the form

X@+yo,

in whichx andy are numerical coefficients.

One can determine the rakdy in such a manner that the function represents a cone.
One will thus have four values far/ y. Letmy be the summit of one of the cones thus
obtained. One will have:

x ¢ (mo) +y ¢ 1(mo) = 0.

If the pointny is situated on the quadrgc— i.e., if one has:

Pm ¢ (mp) =0,
then it will result that:

Pm ¢, (mp) =0;

i.e., that it is likewise situated on the quadfic.

The tangent planes toy, ¢(mp), and¢@ 1(mp) coincide in position, and in turn, the two
qguadrics will be tangent.

If one choosep:, p2, ps, P4 to be four planes that determine an auto-polar tedrahe

then one can put the functigthat relates to one quadric into the form:
pm=ApPpm+BpPpm+CpPpm+DpPpm
One can also put the equation for the quadric into thewwlg form, which exhibits
the rectilinear generators:
POnpPmp-PmgPmp=0,
which is an equation that can be written:

Pm(@Pmp-pPmpg)=0.

The expression in parentheses does not representoaccenjiigate function.
The function that is conjugate to it has the expressio

prPmp-pPmpg.
The sum of these two functions is auto-conjugate, andbeaitlentified with any

function ¢ that is auto-conjugate relative to the quadric considarpdp a numerical
factor.
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If the functiong is given in an arbitrary form then one will obtatetrectilinear
generators by choosinqg and p; to be two tangent planes and determirppgnd p, by
means of the identity:

pPmp+pPmp- p,Pmg- g Pmf= g(m).

Up to now, we have envisioned the properties of quadrics itiement only
projective notions — namely, intersection, contact,land anharmonic ratio.

We have sufficiently shown that from this viewpoihe tcalculus of tri-quaternions
presents no obstacle to following analytic geometry-biestep.

In concluding, we shall say some words about the pregenfiquadrics that involve
the plane at infinity and indeed metric properties — ite2,ones that depend upon the
imaginary circle at infinity.

The first ones are coupled to the notions of asymptotselc and conjugate
direction, which are the elements that we shall @etermine.

The asymptotic directions are given by the interseatiothe quadric with the plane
at infinity w

If prepresents a vector — i.e., a point at infinity — tien) will represent the polar
plane to that pointw @(0) will represent a vectorial function gf and upon setting:

w@(P) = $1(0),

the equationsfor the asymptotic directions will be tipgagion:

SOp (o) = 0.

The center of the quadrgis determined by:

(10) oM = w

which is an equation that one knows can be solved the ipreceding paragraph.

The pointmy thus obtained can reduce to a vector — i.e., it can gditaty. That is
the case for paraboloids.

When the projective invariavk of ¢ is zero there will exist a poimty such that one
has:

$(mo) =0,

and since this pointy is the pole of any plane in space, it can be consideréa the
pole of the plane at infinity, in particular. The sedas a cone with sumnmty, .

The pointmy can itself be at infinity, and the plawag which is the right-hand side of
equation (10), will then contain the pomg . In the preceding paragraph, we saw that in
this case equation (10) will have an infinitude of solutithas are represented by points
that are situated on a line that passes through therpgattinfinity. That is the case for
cylinders.
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The notion of conjugate directions results from thiaplanes polar to the points at
infinity.

Any vector p corresponds to a polar plag€o) that obviously passes through the
center of the quadric. This polar plane can also be dkésdhe plane that is diametral
to the chords parallel to the directipn

Indeed, letm be the midpoint of one of these chords. Any point af thord will
have the form:

m+ X p.

The two intersection points of the chord with the quadvill be given by the
equation:
POMm+x0) ¢ (m+xp) =0,
or
(12) x* P Tp ¢(p) + 2x P 0m ¢(p) + P T ¢(m) = 0.

Upon writing that this equation has roots that are equabbogdposite signs, one will
have:
P [ ¢(p) = 0,

which expresses the idea that the desired locus isstirtiie plangs(p).
One will likewise deduce the equation for asymptotic tines:

P Oo ¢(p) =0, which is equivalent to So, we(p) =0

from equation (11).
We finally write down that equation (11) has equal roots:

[P m@(0)]° —P p ¢(0) P mg(m) = 0.

When one regardsto be a variable, this equation will represent the tloes of the
cone that the quadric circumscribes and has its sunhimit a

On the contrary, if one takesto be the variable then that equation will be thahef
cylinder that circumscribes the quadric and has its gesrerparallel tqo.

One can also seek the locus of the centers of tladigdegections.

Let m be the center of the section of the surface by aegiz— i.e., the pole of the
line at infinity cuw of the planeowith respect to the conic of intersection.

One sees that the polar of a pomin the planer with respect to that conic is:

L @ g(m).
One must then have:
L @ @(m) = xaum,

which is a formula that expresses the idea that theepta and ¢(m) are parallel, and in
turn, that the locus of the centarcoincides with the locus of the pole of the plame
The metric properties of quadrics are established by gmadoprcedures.
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The axial directions are obtained from the conditlat they must be normal to their
conjugate directions.

The cyclic sections are obtained as planes thatthessgh the common generators
of a cone that is asymptotic to the surface and the abrs®tropic lines with the same
summit.

Let p be a line that passes through an arbitrary fixed point.

The asymptotic cone has an equation of the form:

P o ¢i(p) =0,
whereg;(p) is a vector.
The isotropic cone with the same summit has the exuati

£ =0.

The linear function that relates to a second-ordee dbat has the same summit as
the preceding one and passes through their lines ofaoters will have the form:

X (o) =Y p.

Upon annulling the determinant of that function, one halve three values for/y,
each of which will correspond to a pair of directionghwieal or imaginary cyclic
sections.

As for the focal points — i.e., the points such tlm tone that circumscribes the
surface and has one of these points for its sumrbitasgent to the cone with the same
summit that is composed of isotropic directions — orleobitain them by writing that the
cone:

POo [¢1(0) P my ¢(mo) — w @(mo) P o p(mo)] = 0

is bitangent to the cone:

£ =0.

One will then obtain two equationsnm that will determine the focal lines.

We shall not go further into that study, so for usiit suffice to present the principal
procedures by which the calculus of tri-quaternions can sutestior analytic geometry
in its initial questions.

The very elementary character of the questionsviba¢ treated has the advantage of
not initially requiring a presentation, which would beauwnidably long, of the means by
which there is reason to endow this calculus in ordengke it satisfy all of the demands
of analysis.

In a general fashion, these means are common tomafile& calculi.

In these calculi, infinitesimal analysis notably take a very special aspect that was
inspired by the remarkable work of Grassmann.

We likewise point out the necessity of establishin@peoty of the elimination of a
complex quantity from several equations, and even fjash one complex equation,
notably, insofar as linear equations are concerned, wkipse are indeed numerous.




APPENDIX.

GEOMETRICAL SIGNIFICANCE OF THE PRODUCT
OF TWO TRI-QUATERNIONS

Product of two linear elements.

| =ux+p+wpo,
I"=px+ p+t wp;,

"= x,%+ Sop' + Vpo' + w[ Vpp, + p,0) + ¥o,— %01
+ (X0 + X,0) + wSHpp, + pO) -
One thus has:
Gll "= x,% + Sop',
LIl =V po' + wV oo, + p,0) + %0, =~ %07 ,
PIl” = 11(x,0"+ %,0) + wSpp;, + p0) .

L 01" — One sees thdtll * represents a complex whose axis is perpendicutaatmf
| andl’, becaus&/pp’, which gives the direction of the axis, is perpendictdao ando’.

L O0%= 0. — If one takek = | thenL Ol will be annulled.
L Onm - If the two factors are points:

m=ux +wp,
m = ux, + wp,

then one will have:
me=%&—&m=&x{%—%)

This is the vector that takes the pairitto the pointm, multiplied by the masses of
the two points.

L Oyy - If the two factors are complexes:

y =p twpor,
y=p+wp
then one will have:
Lyy =Vpp' +wV (pp,+pp0),

which is a complex whose axis is rectangular to tHay@and )/, and which is in
involution with that of the two complexes. One notal®yifies that one will have:
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POyLyy =POKyy-Gyy-Pyy)=P0/ y
=PGy*+Ly*+POA) y =0.

It results from this that y y’ satisfies the four important relations:

GlyLyy=0, Gy'Lyy=0,
POyLyy =0, PO/Lyy=0.

Ldd’— If the two factors are lines — i.e., if one makeshypothesis that:
S0 =0, Spp =0,

in the preceding case — then the product will be a compl@sevhxis is the common
perpendicular to the two lines, and whose parameteruforrmoment) will be equal to
the distance between the two lines, multiplied by titarmgent of their angle.

In order to see this, letj, k be three lines that form a tri-rectangular trihedrdiake
i to be one of the lines, and suppose khatthe common perpendicular to the two lines —
i.e., that the second line meétand is parallel to the plane that is determined é&yd;.
This line will have an expression of the form:

i cos@+]jsin @+ we(j cosfd—isinb),

in which @is the angle between the two lines, ans the distance between them.

We give the two lines tensors that equal unity. Indeedlisuffice to multiply this
result by the tensors of the factors.

One will have:

LO[i cos@+]sin@+ we( cosfd—ising] =ksinf(1 +wecotb),

which is indeed the stated result.

The tensor of the complex is ¢ it will be zero when the two lines are paralleldan
in that case, the complex will reduce to a vector:

wk ecosé,

which will itself be zero if the two lines coincide.

If d andd”are rectangular thendd’ will reduce to a line.

Return to the product of two complexes and set:

y =0 +w o n,
y =0+won,

in whichdand o’ are the axes of the complexes. One will have:

Ly =LAd0"+ wL d0'(n+n’).
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This complex has the same axid@®’ - i.e., it has the common perpendicular to the
axes of the two factorngand )/ as its axis.
We finally remark that one has:

Ly?=0, Ld?>=0.

Ldm- Set:
d=k, m=uy+ wp,

Ldm= wV kp.

This is the vector that is perpendicular to the plha¢ is determined by the point and
the line, which is taken to have a length that is etpuiie distance from the point to the
line.

If d represents an axis of rotation in position and magnitieleLtdm will represent
the velocity of the pointm in magnitude and direction, while the tensor of that {pisin
assumed to be equal to unity.

Lym— Set:
y=0+ won.
One will have:
Lym=LIPm+ wonTm

If Tm= 1 thenLym will represent the velocity of the point in the state of motion
that is characterized by the compleat the instant considered.
We seek the geometric condition that is expressed by:

LIlI'=0.
Set:
"= pux,+ak

The expression fdrll “will become:

LIl'=aVpk+w@Vo k+ X 0).
One must then have:
Vpk=0, aVok+xp =0.

The first condition gives:
p=xk
in whichx is an ordinary quantity.
The second condition can be realized only by:

P =0,

after excluding the case in which one will have both:
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ie.,1’=0.
One thus has:
| =ux+xk

i.e., the points of the linear elements will coincidé&ng with their axes, although the
mass and the length can be different for both elements

If one of the elements is a line — i.e., if its paswzero — then the other element must
have its point on that line and its axis directed aldwag line. In particular, if one of the
factors is a poinin, and the other one is a lidghen the relation:

Ldm=0,

will express the idea that the point is situated on lile, which conforms to the
significance that we have found fodm moreover.

Pl "= From the expression that we found ligr one will have:
Pl =1(%,0"+ %,0) + WS po, + p,0) .

This is a plane perpendicular to the resultant oftwWeeaxesp/ X, andp’/ %, of the

two linear elements.
If that result is zero — i.e., if the axes defineoaple — then the plane will be pushed
off to infinity, and it will be zero if one has:

S(oo,+pp) =0
or
S(x00, = %p,0) = SLp(%0,~ %0,) = 0.

This relation expresses the idea that:
AP
X %
is perpendicular t@.
A figure will easily show that it is necessary tha pointd andl’are situated in the
same plane perpendicular o
The other case where the plaPié’is pushed to infinity is the one whexgand x;

are zero — i.e., where the two factors are complgeesl ).

P Oy - In this case, one will have:
Py = wS(po, + pp) =~ wT yT ym,

in whicht is the moment of the two complexes.
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Pdd’ - If the complexes are lines then, as one kn@Wayill be equal to the product

of their distances with the sine of the angle betwteem.
The relations:
POy=0, Pdd'=0

express the ideas that the compleg@sdg’are in involution, and that the lindsandd’
meet them, respectively.

Py? — One has:
Py’=-2wSpp .

This is the product of the square of the tensoly@ind the parameter (or auto-
moment) of that complex bg

Pd? = 0 — The condition:
Py?=0
expresses the idea thais a line.

Pmd— If one of the factors is a point and the other one is a liethen one will
have:

P Ond= ux,0" +wSpp; .
This is a plane that is perpendicular to the dintbat passes through the pommt

Pmy— This is the plane through the pomthat is perpendicular to the axis jof

Pl 2 — One has:
12= ¢+ 0 + 200 U p+ WS P ).
Thus:
Gl %= X+ o,
PI?=2(K tp+ wSpp).

Pl % represents the plane perpendicular to the directidntledt passes through the
point ofl.
The condition:

demands that one must have:
X =0 or p=0;

i.e., thatl must be a point or a line.
We remark that the tensors of the point and thedinecan be expressed as functions
of Gl 2 and T1)? (which one will generally write a64). One will have, moreover:

2

TI2= (¢ +p%)2-4x2p? = X -p
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=T13.
Gll "= One has:
Gll"=x,%+ Sop'.

We point out only the three formulas:
Gmd= 0, Gmn'=TmTm, Gdd’=-TdTd cos@, d”).

The vanishing o&zdd’ will express the idea that the two linéandd’are rectangular
to each other.

Product of two planes.

Let:
p =HUp + W,
P =up + ww
Gpp’, Lpp’ — One has:

pp’=TpTp’[-cos p,p’) +dsin (o, p’)],
Gpp'=-TpTp’cos @, p’),
Lpp’ =TpTp'osin (p, p’),

where J is the line of intersection of the two planesandp’and @, p’) is the angle
between them — i.e., the angle that is determined édsitive rotation around that
makes the positive edge ptoincide with the positive edge pf

The sense of positive rotation around a directedidirggven by the conventions that
were already made, in such a way that if one arb§rahboses a positive sense of the
line of intersection then it will result that sm@’) will have a sign that changes with the
chosen sense @I However, the produad sinf, p) is well-defined in magnitude and
direction. lIts direction is, in summary, the onatthives a positive value to ).

Product of a linear element and a plane.

Let:

l=ux+p+wpon,
p=ua+ ww.
One has:

lp=uSpa+xa+wwp+Voa)+uVpa+wSo a—wxWw.

Glp = 0 — One thus has:
Glp=0,
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Lip=uSpa+xa+wwp+V o a).

LIp — The axis of that linear elementxisa, and consequently, it is perpendicular to
the plangp. Suppose that the plapgasses through the origin — i.e., that one has:

w=0.

The coefficient ofwreduces td/ o1 a, which is a vector that is situated in the plane
p, in such a way that the pointlolp is likewise situated in that plane.

Lmp— If | reduces to a poimh then one will have:
Lmp=x a+ wV o1 q,

which is a line that is perpendicular to the plgnand passes through the pomt
because one will verify directly that one has:

LOnLmp=0.
Ldp— If | reduces to a lind then one will have:
Ldp=pudpa+wwp+V o a).

One can suppose that the lidend the plang both pass through the origin — i.e.,
that one has:
w =0, o =0.

The preceding expression becomes:
USpa,

and one sees that if one abstracts from the tenbatsare always multipliers in the
product therl.dp will be the point of intersection of the line ane thlane, which is taken
to have a negative mass and the sine of the angle®etile line and the plane form its
absolute value.

If the line is parallel to the plane then one wilVaa

Spa=0,
and the expression fdudp will become:
wwp+Vpoa).
Like a, o is rectangular witlp, soVpia is of the formxp, andLdp is a vector whose
direction is contained in the plape As for its length, one sees geometrically thas it

equal to the distance from the line to the plane, ifanays abstracts from the tensors of
the factors.
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Lyp — This is the focal point of the plapeavith respect to the complgx(seepp. 49).

The relation:
Ldp=0

obviously expresses the idea that the ¢ing situated in the plan

Plp — One has:
Plp=uVpa+ w(Sp a—XWw).

This is a plane that is perpendicular to the pfaaad parallel to the axis of
Pdp- If| reduces to a lind — i.e., ifxo = 0 — then one will have:
Pdp=uVpa+ wSp ,
and one can verify that:

L dPdp= 0;

i.e., thatPdpis the plane througththat is perpendicular to the plape Its tensor is equal
to the cosine of the angle between the line and tme pia such a way that:

Pdp=0
expresses the idea that the lthis perpendicular tp.
Pmp- If | reduces to a poimh = 1/ X + ¢gor then one will have:
Pmp=w(So a—XWw).

Suppose that the point is the origin. One will hav®mp= - wX, w, where —w is
the product off p with the distance from the pointto the plang.



(1)

FUNDAMENTAL FORMULAS OF THE CALCULUS.

GIl'=GIl, LI'=-If, PlI'=PII',
Glp=0, Llp= Lpl, Plp=-Ppl,
Gpp=Gpp Lpp=-Lpp Ppp0.

GEOMETRIC SIGNIFICANCE OF THE PRODUCT OF TWO TRI-QUA TERNIONS

If the tensors are assumed to be equal to unity then:

Guu
Guo
Gdoo’
Guw
Gow
Gow’

Ly

Luo

Loo’

Luw

Low

Laow’

Puu’=0,

M andu’will represent points
oando’ “ lines,
wandw’ “ planes.

cosine of the angle between the two lines, wighdign changed,

cosine of the angle between the two planes, thihsign changed,
vector fromu’to 4,

vector that is perpendicular to the plane that costdie point and
the line, with the tensor equal to the distance frieepoint to the
line,

complex whose axis is the common perpendicular, drubev
auto-moment is the product of the shortest distattethe
cotangent of the angle,

perpendicular to the plargthat goes througph

point of intersection of the line and the planehvaittensor that
equals the sine of the angle between the linelanglane,

line of intersection, with a tensor that equalsdingle of the
angle,



Puo

Pao’

Puw

Pow

Pow’ = 0.
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plane througtm and perpendicular ta,

symbol of the plane at infinitgg; multiplied by the shortest
distance and the sine of the angle between thértes)

symbol of the plane at infinity, multiplied by thestéince fromu/to
a, and taken with the positive or negative sign, accgrtin
whether the poing is situated on the edge of the positive face or
the negative face of the plame

plane through the line perpendicular to the plane, e/berssor
equals the sine of the angle between the linelangddsitive
direction of the normal to the plane,
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