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INTRODUCTION

Chapter | of this paper is dedicated to some notions oitedimal Cayley geometry.

| assume that the principles of that geometry are kn@s Darboux presented them
in his Lecons sur la théorie des surfaceéfter specifying the notations (no. 1), I will
define the curvature (no. 2) and torsion (no. 3) of tiemé&t formulas. The coordinates of
the summits of a certain tetrahedron that is assatmith a point of skew curve enter
into that generalization at the basic level in thenét formulas as the direction cosines of
the edges of the fundamental triehdron. | will finajgneralize the theorems of
Meusnier and Euler that relate to the curves that acedron a surfacé)((no. 6, 7).

At the beginning of Chapter Il, | will consider two teetangular triangle$i, T in
ordinary Euclidian space that have the same sur@niand | will define (no. 8) the
coordinates of relative toT;. These coordinates are a special system of paranteérs
are due to O. Rodrigues. In the following paragraphs (no12)td will investigate the
effect of substituting one of the trihedfaor T, for another trihedrom’ or T, that is

invariably linked to the first one. | will establish thédeemulas for coordinate changes
by a direct calculation; one can likewise derive thentdas for the composition of
rotations.

The geometric interpretation of these formulas (dd) will constitute the
fundamental idea of this paper.

I will consider the coordinates df, relative toT;, as defining a point of a three-
dimensional multiplicity — viz., thémage point of the system,Tl. The trihedronT
displaces relative t®; in a continuous fashion, so the image point will desaibémage
figure of the displacement. It will be a line or afaoe according to whether the
displacement has one or two parameters, respectively.

() A more extended generalization was given by Bianchihan German edition (Teubner) of his
Lecons de @métrie différentielle.
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The analytical study of the displacement of a stilat has a fixed poir reduces to
that of the relative displacement of two trihedra viitbir summits aD. One of thenT
is invariably coupled with the solid, while the other danés coupled to fixed space. The
choice of these two trihedra, and in turn, the imageré of the displacement is possible
in an infinitude of ways; in general, it involves six ardny quantities.

The formulas for the change of coordinates lead defioe a fundamental quadric in
the multiplicity that is swept out by their image psirand to envision that multiplicity as
a Cayley space.

The various image figures of the same displacement are deduced frorotleacby
motions in that Cayley space.

The consequences of that proposition will be developtdwand of Chapter Il.

I will pass very rapidly (no. 13) over the algebrdisplacements, in order to begin
(no. 14 and 16) the infinitesimal study of a one-paramdisglacement. The Cayley
curvature and torsion of an image curve under a one-pteamsplacement will be
attached to the curvatures of fixed and moving rolling sshey simple relations. The
Cayley curvature, for example, is twice the paramethiat enters into a formula that is
analogous to that of Savary.

Finally (no. 18 to 20), | will apply the study of the ceisvthat are traced on a surface
in Cayley space to the search for the infinitesimal pitegse of one-parameter
displacements that are part of a two-parameter dsplant.

It is natural to look for a method of classifying thdisear total differential equations
that lead to the use of the moving trihedra of geometryarmptbhceding theory. One can
also generalize that theory by considering other groufrsiagformations than that of the
rotations around a fixed point. Here, | will content eifysby pointing out these
guestions, to which I hope to ultimately return.

CHAPTERII.

NOTIONS FROM INFINITESIMAL CAYLEY GEOMETRY }).

1. In a three-dimensional Cayley space, a fundamentahbsolute— quadric serves
to determine angles and distances. The equation:

(1) NP+ +V+p0=0

will represent the absolute in tetrahedral coordinates.

() SeeDARBOUX, Lecons sur la théorie des surfaceire VII, Chap. XIV, t. Il
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The homogeneity of the tetrahedral coordinates \ilatvykward in what follows; we
will make it disappear by means of the following convemtio

In the rest of this paper, tlmordinates of a poin') will denote the tetrahedral
coordinatest, L, v, p of the point such that one will have:

2) N+ +V+ =1

One can obviously substitutel, —u, —v, —p for A, u, v, p, so the coordinates of real
points are well-defined.

The distancemni between two pointsn and mf is given as a function of their
coordinates!, i, v, pandA’, ', v’, p’by the formula:

(3) cosmm = A"+’ + w'+ pp’.
The linear element of space is given by:
(4) ds = di? + di2 + dV + dA

Let D', D" be two lines that have a common pamt If ' is the point oD’ that is
conjugate tam with respect to the absolute, whil@ is the analogous point relative to

D", then the angle betwe@&i andD" will be equal to the distance ni .

2. If the linear element of space is known then onededime the length of an arc of
a curve immediately.

Make a choice of origin and a sense of traversal omrve C); let s be the arc length
of that curve that ends at a pomnt The tangent toQ) atm s the line that joins the point
mto the pointmy whose coordinates are:

dA du dv do
5 A= —, == V= —, ==,
®) ds = ds ds A ds

Upon differentiating the two sides of the identity {#@)h respect t, one sees than
andmy are conjugate with respect to the absolute. Wengathe director point of the
tangent at m

Whenm describes @), my will describe a curve). Take a sense of traversal on
(C1) such that the derivativeo / ds of the arc lengtho of (C;) with respect to the arc
lengths of (C) is positive. One will see that the equation:

1 do
(6) —_ = —
sind ds

() The advantages of this particular coordinate systeraxgriained by Darboux in the cited place. Its
use amount to considering the Cayley geometry of a threerdiional space as the geometry on a
hypersphere in a four-dimensional Euclidian space.
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will admit a real rootd that is between 0 and/ 2. (One supposes that the cur@ ic
real). We give that roadthe name ofadius of curvatureand we call the expression 1 /

‘R = cotdthecurvature
In order to verify the preceding assertion, one ésttiblishes the formula:

(7)

(EJZ: > (d?A dy— o’ dA)
ds ds’ ’

where the summation is extended over the six coatioins of lettersl, u, v, p, when
taken two at a time.

One then observes that one can choose the cotedipstem in such a fashion timat
is the point 0, 0, 0, 1, the tangentais A = ;= 0, and the osculating plane at the same
point isA = 0. Upon supposing that the curve is given byresging the coordinates as
functions of one parametgersuch that the value zero correspondsitone will have, in
a neighborhood of that poirt{

U= ﬁ2t2+...’
(8) V:J/lt+V2t2+"',

Yo
=1-ZLt°+...
p 2

where the unwritten terms are of order greater tivan
Formula (7) then gives:

do Y _ i +4p°
©) (dsj oy

for the pointm; one indeed finds a value for skthat is between zero and one.

One easily sees, with the aid of formulas (8) @)dfor example, that there exists an
osculating Cayley circle at a point of the curve C). The radius of the circle will be
equal to the radius of curvature, so its centerbelcalled theenter of curvature

3. Letb be the pole of the osculating plane @) @t m with respect to the absolute.
We say thambis thebinormal and thab is the director point of the binormal. Whem
describes @), b will describe a curveQ@'); we will let o denote the arc length o€ (),
when measured from an arbitrary origin, and poslyivin a sense that will be specified
later on.

One calculateslr / dsin the following fashion: One starts with the egma of the
osculating plane at:

AA +BM +CN +DP =0,
(whereA, M, N, P denote the current coordinates), and one obtaitis,no difficulty:

() We confine our study to the real and analytic curnessarfaces.
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,_ Y.(AdB- BdA?

dre= :
(A2+BZ+C2+D2)2

in which the summation is extended over the pair-w@abinations oA, B, C, D.
In order to transform this expression, one considersleterminant:

A u v p
_|dA dy av do
1 d2 dPu dv dp|
d’A d’u dv d’
and one takes:

A= aAZ . B= oA . c= oA . D= 6% ;
0d“A odwv odwv odp
one will then have:
dA:_a_AZ, aB=-2  4c=-9  4p=-- 6% ,
0d“A odwv odv odp

One transforms the binomia#ssdB—-B dA ... by means of a known identity that relates
to the minors of a determinant, and one then obtains:

AZ

dr?=
(A2+BZ+C2+ D2)2

D> (Adp—pday.

The second factor &, so one gets:

A
A?+B?+ C?+ D?

E:i
ds

The sense of traversal, which remains indetermjnatchosen in such a fashion that
the— sign is necessary, so we set:

A

1 :
(0) A2+BZ+C2+D2

i :E:
T ds

The expression 17 will be called theorsion

4. Letn be the pole of the plamamb with respect to the absolute. The tetrahedron
mmbn that is conjugate with respect to the absolutd lal called thefundamental
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tetrahedron relative to the curved) and at the pointn. We callmnthe principal normal
andn the director point of the principal normal.

In what follows A, i, v, p; A1, th, Vi, o1 ; A2, b, Vo, 02, @aNdAs, L, Vs, o3 Will denote
the coordinates ah, m;, n, andb, respectively. However, one will observe that in the
formulas that follow one cannot multiply the coordesmof one of these points by — 1

without suitably modifying the other ones.
We shall determine the derivatives of the coordinates negpect to the arc lenggh

of the curve C).
Formulas (5) give the derivatives &fu, v, p.
The pointm| whose coordinates are:

aoOh pidw v dp

do’ do’ do do

is the director point of the tangent to the cur@e) (ocated atmy . One easily verifies
that m is situated on the principal normah Upon utilizing the two pointen, m on

. . . . A .
that normal in order to determine the direatpand observing that = %sm o, ..., 0ne
S

will verify that one can take’\ A, = ()l +%j tang ... As aresult:
S

(11) %:i—j %:&_

Vo, o _p_,
ds R ' ds R ’ '

A
" ds R ds R
One determineds, /5, V3, p3by the relations:

& &
D JA?+B?+C?+ D?

(12)

whereA, B, C, D have the same significance as in no. 3, and wherequal to + 1 or to
— 1, and is chosen in such a fashion that the determinant:

A uv p
Al :ul I/1 101
A My Vo P,
A M3 Vs Py

() One can just as well takk = - (}l +%j tan g, ... The sign is chosen such that the coordinates of

our center of curvature arg sind+ A coso, (,c0sSo+ [ COSJ,...
If one changes the positive sense on the c@yéy takings” = - s, instead of, then one can substitute

— Ay, =, —w, —p for Ay, pa, vi, o1, butd,, 16, v, o, do not change.
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is positive. Upon calculating its square, one verifieg this determinant has the value
+1.
Formulas (12) and the identities that relate to theonmsiof a given determinant give:

A H VvV p
s = -
dAs N B O D du dv do|;
/'13 V3 p3
one deduces the\(gf3 = % One then has:

(13) — =

Upon differentiating the identityl” + 1 +v>+ p> = 1 with respect t®, along with

the identities that coupl&, (b, Vo, 02 1O A, 1, v, p; A1, th, Vi, o1 As, I3, V3, P53, one will
have four equations that determicié, / ds and the analogous derivatives. Here is the
result:

dAZ Al_A3 %:—&—&

(14) ds R T ds R 7T
dv, __vi_ Vs dp,__pi_ps
ds R T ds R T

Formulas (5), (11), (13), and (14) are analogous to theeFfermulas.

5. The preceding result permits one to develop the cooedirtdta point of the curve
that is close to the poist= 0 in powers 0§, as soon as one knows the functighand7Z

of the variables. If one supposes that= 0 gives the point 0, 0, 0, 1, and that the tangent
and osculating plane at that point dre i/ = 0 andu = 0, respectively, then one will get:

()
s’ ds Joa, ..

3

s
(15) HT R,

+...
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the unwritten terms are of order at leastRg; 7o, (Z—Rj are the values oR, 7, and
S 0

d—R fors=0.
ds

6. Define a surfaceSj by expressing the coordinatés, v, p of a point as functions
of two variable parametetsandv.

Upon denoting the current coordinates/kyM, N, P, the equation of the tangent
plane at the poin, x4, v, p will be:

AN M N P

A u v p
(16) 94 0 v 0P| =g

ou Jdu Ou du

0A du ov dp

ov AV v AV

Let A, B, C, D be the coefficients of\, M, N, P in the development of that
determinant; set:
A2+ B +P+D*=K
and

(17) | = A m= <8 n=£C _ €D

K NN AN

the determination of the radical is chosen once andlf. However, we take=+ 1 org
= -1, according to the case. The point is the poleefahgent plane with respect to the
absolute, the line that joins the poidisy, v, o ; I, m, n, r is the normal to the surface at
the point in question.

If we replaceA, 4, v, pin the linear element (4) of space with the correspand
functions of the variables andv then we will get the linear element of the surface:

(18) ds’ = E df + 2F du dv+ G dV/.

The importance of that expression is well-known.

7. A curve C) that is traced ony is determined by the expressions @oandv as
functions of the same parameter; take that paranwetes the arc lengthof (C).
Upon preserving the recent notations, one will obtain:

_ 94 du oA dv
ouds odvds

1
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d/]l A - A= _62/] %ﬂ/-{-ﬂ(i\lgz +%iu+ﬂi\

duovdsds %\ dg o uds o v @
and analogous formulas. One then gets:

cosd _ I, +mu,+nv,+1p, _ & EdU+2FRdudw Gd¥

19 = .
(19) R R JK Ed# +2F dudw Gd¥

In that formulaE; dif + 2 F; du dv+ G, dV# is the result of substituting:

2 2 2
9242+ 24 quaw 2 a9, ...
ou ouodv oV

for A, M, N, Pin the determinant (16), ardlis the angle (which is found between 0 and

71/ 2) between the principal normal t6)(and the normal to§. One thus chooses= +
1 ore= - 1, according to whethe2dY +2Fdudv G dv
JK

One thus sees that all of the curves that aredraa the surface that pass through the
same point and have the same osculating planeaatptiint will also have the same
curvature.

Upon denoting the right-hand side of (19) byR'/one will get:

IS positive or negative.

R R

This result constitutes what we catheneralization of Meusnier’s theorem

One is then reduced to the study of the curvattirmrmal plane sections.

For such a section, cégs= 1, andA,, (&, V2, 0, Will be equal td, m, n, r. One avoids
any discussion by considering the center of cureatinstead of the curvature, whose
expression again contaigs

One knows (no. 4, note) that the coordinates iefgbint are:

Acoso+ A, sino=Acosd+1singd, ...
Upon takingd = ¢ and:

one will get the coordinates of the center of ctuxe

Acoso+1’sind, MCcoso+m’sind, wvcoso+n’sind, pcosdo+r’sind.
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The anglep, which is between A/ 2 and +77/ 2, is given by:

1 EdU+2Fdudw Gd¥

(21) o = E G+ 2F dudv GdY

We say that 1 /] = cot ¢ is thealgebraic curvatureof the normal section that is

being considered.

If one equates the Jacobian of the quadratic formsaghatar in the numerator and
the denominator of formula (21), one will get, in genemaf rectangular tangents that
we calltangents to the lines of curvatur@hey determine the normal sections for which

[R] is a maximum or minimum; letR,] and [R,] be the corresponding values &]|

respectively.
Let a denote the angle between the directiondv and the tangent that corresponds

to [R1]. One easily establishes the formula:

1 _ cosza+ sifa

[Rl  [R] [R]

(22)

This is ageneralization of Euler's theorem.

CHAPTERIII.

DISPLACEMENT OF A SOLID AROUND A FIXED POINT.

8. First, recall the geometric significance of thergmeters that Olinde Rodrigues
used to define a change of coordinates or a rotétjo

Let T1(O, x1, y1, z) and T(O, X, vy, 2) be two tri-rectangular trihedra with the same
summit. On the axis of rotation, maKecoincide withT, choose a direction f@dI, and
set:

a = cos(O, x) = cos(O, x1), B=cos(0,y) =cos(O, y1), y=-cos(O, 2) = cos(O, z).

Let &denote the angle of rotation.
The numbers:

() Seethe notes of DARBOUX: Note V in hisecons sur la théorie générale des surfand Note | of
theLecgons de Cinématique KOENIGS.



Cotton — Applications of Cayley geometry to the geoinstudy of rigid motions. 11

. 0 . g .8 g
1 A=asin—, =fAsin—, v=ysin—, = COoS—,
(1) > H B 5 ysin=. p >

constitutes a system of parameters of Olinde Rodrigues.
They satisfy the relation:

2) NP+ +V+p=1.

We say thatd, y, v, pare thecoordinates of the trihedrom relative to the trihedron
T,

It is clear that one can repla@avith 277+ 6, and in turnA, y, v, pwith —A, =y, —v,
_p .
The coordinates df; relative toT are obviously-A, —i, —v, —p, or, what amounts to
the same thind, i, v, —p.

Letx, y, zandx,, yi1, z1 be the coordinates of the same pdihin space relative té
andTy, resp. Darbouxdc. cit) has established the relations:

PX=VY+HUZ=PpX+V Y=l T
VX+py-Az=VXx+py+Az
~HUX+AY+pZ=pX-A Y+ P T
AX+UY+VZ=AX+ U +V 2

3)

Only three of these relations are independent. Uptuingothem forx, y, z, one
obtains the formulas of Olinde Rodrigues.

9. An analogous process will permit us to solve the faligwproblem:
Let T, Ty, To (viz., Ox y1 z1, Oxyz Oxo Yo 20) be three tri-retangular trinedra with the
same summiO.

Knowing the coordinates, i, v, p of T relative to Tandthe coordinatesly, o, Vo,
Po of Ty relative to T, find the coordinateg\, M, N, Pof T relative to §.

Denote the coordinates of the same pMnutvith respect to the three trinedra Xy,

Z X1, Y1, Z1; Xo, Yo, 2o, I€SP.
Write down the system that is analogous to (3) relatiie systenty, To :

PoX VoY1t UoZi= P XtV o Yo~ H o2

VXt 0oY1 = A0Zi =V o Xot P Y5t A 02y
~HoX t AYit PoZi= UoXo= Ao Yot P o7

AKX+ oYy TV 2= AgXot U o YotV oZ

(4)
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If one multiplies both sides of equations (3)4yo, £ 1o, = W, £ o, respectively, and
adds them, with the signs chosen in such a fashionhaataefficient ok will be oo —
Ao — Uil — v, then one will get:

X (PP — Ado — o — Vo) +Y (=Vpo — pVo + Atlo — tiAo) + Z (oo + AVo — Lo — VAo)
(5)
=X1(000 + Vo + iy — AAo) + Y1(Voo — pVo — Al — fiAo) + z(=Lpo — AVo + plio — VAo).

If one likewise combines equations (4), in such a wayttie@toefficientx, is again
PPo — Ao — il — Vo then one will get:

X1(0p0 + Vo + Ul — AAo) + Yi(= plo + Voo — piho — Atb) + (0t — VAo — Lo — ALo)
(6)
= %o (000 — Ao — tio — VVo) + Yo (PVo + Vo + o — ALh) + 2o (Pt + VAo — Lo — AVp).

The terms inxy, yi1, z2 will be the same in equations (5) and (6), which permitstone
eliminate these variables. Upon makingndyo, and therz andz, , in turn, play the role
of x andxo in the preceding combinations, one will obtain three egus that no longer
containxy, y1, z1 . These equations can be written:

Px-Ny+Mz=Px+Ny—-M g,
(7) NX+Py-Az=-Nx+Py+A Z,
-Mx+Ay+Pz=M x-Ay+P g,
if one sets:
N=phy+Apy = 1V, +VH,,
M = o, + o, —VA,+ AV,
N = pv, +Vp, — AU, + LA,
P=00,-AA,— i, —vv,.

(8)

One has, moreover:
AN2+M?>+N?+P*=1.

Formulas (8) thus give the required coordinates.

10. ConsiderT to be moving with respect th; in other words, regard, 4, v, p as
variables that are coupled by only the relation (2).

One then sees that the replacement of the trine@irauith a trihedronT’ that is
invariably coupled t@ translates analytically into the formulas:
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A'=rA+lp-mv+ny,

M =ru+mp-nv+lyu,
V'=rv+np-lv+maA,

9)
p=rp=-lA-mu-nv,

whereA’, i, v', p” are the coordinates @t relative toT;, and the constantsm, n, r
denote the coordinates Gfrelative toT.
Likewise, the replacement of the trihedronwith a trihedronT,’ that is invariably

coupled tor; translates into the linear substitution:

A =rA+lp+my -ny,
M= +mp+ iy =y,
v, =ry+npo+lv-mA,
p=rp=lA-m p-ny,

(10)

where the variabled, , 14, v,, p, and the constants, my, n, r; denote the coordinates

of T relative toT,” and those of; relative toT,, respectively.

One recognizes in this the linear substitutions whose csitipowill give the most
general linear substitution that transforms the fdfm /# + 1/ + ¢ into itself {).

11. Let A, 4, v, p be the coordinates of a trihedrdnrelative to a trinedrof; .
Consider the poinP in the same three-dimensional space whose tetrahednalicates
are/, i, v, p. We say that thpoint Pis theimage of the syste(i, T).

Replace the trihedrd;, T with the trihedraT, and T’ such that the first one is

invariably linked toT; and the second one T The pointP’ that is the image of the
system {I,, T) is deduced from the poiftby a homographic transformation that leaves

the quadric:
(11) NP+ i+ VP +0=0
invariant.
Conversely, such a homographic transformation will espond to a change of
trihedra of the preceding nature.

If one takes the quadrifll) to be the absolute in the space E then the preceding
transformations will be the ones that preserve the angles and distantks Cayley
space thus defined; in other words, they will be the displacemethiztiGayley space.

Two pointsP, P” have one and only one invariant relative to the group ofeyayl
displacements, namely, the distance between theis.edsy to interpret this.

() SeeKLEIN's signature courseNlicht Euklidische Geometti@&d. Il, pp. 119 and 120.
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In order to do this, consider two trihedraT “whose coordinates relative to the same
initial trihedronTy areA, i, v, p; A, i1, v, p’. LetP, P’refer to the image points 0Ty
T), (T, T”). Observe that the coordinatesTafrelative toT are-A, —i, —v, p; the

formulas (8), (1), and (1.3} show thathe Cayley distanc®P represents one-half the
angle of rotation that makes T coincide with T

12. LetX be a solid?) that has a fixed poir®. The usual analytical representation
of a continuous displacement bfrelative to the fixed spacg consists of choosing two
trihedraTy, T such that the former is invariably coupled3pand the latter t&, and to
consider the coordinates dfrelative toT; as functions of one or two parameters.

The pointP that is the image of the systeif,(T) will describe a curve@) or a
surface § according to whether the displacement has onevomptarameters, resp. We
say that the figure — whether a curve or surface — isrthgeof the displacement &.

However, the choice of trinedila andT is possible in an infinitude of ways. There
will then be an infinitude of image figures that havesame displacement.

From the foregoing, one can say:

The same displacement Dfrelative toZ; has an image that is any of the figures —
viz., curves or surfaces — that are deduced frogivan figure by a Cayley displacement

).

We shall often utilize the arbitrariness in the choae image figure of the
displacement in order to give that figure a simple pasitielative to the reference
tetrahedron. At the same time, we shall obtainreveoient analytic representation of the
displacement.

13. We apply this to some examples of algebraic displantame
All of the lines in Cayley space are equal to the line:

(12) A=u=0.

A point of the lines (12) is the image of a systdm 1) of trihedra that has the axis
Oz in common. It then results than arbitrary line is the image of a continuous
rotation around a fixed axis.

A Cayleyplaneis equal to the plane= 0. Two trihedra that define a system whose
image is a point of that plane will be deducible fromheather by a reversal. An
arbitrary plane will then be the image of a two-paramedisplacement that one can
define in the following fashionThe various positions that are occupied by the nwvi

() We are thus referring to a formula in Chapter |.

() The wordsolid is employed here in order to facilitate one’s intuitifinthe displacement of two
superposed Euclidian space.

() To abbreviate, we say that these figures are myteqiial.
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solid Z are deduced from a fixed sold by reversals around lines that pass through the
fixed point O.

One can likewise say that the various positions afesdeduced from each other by
rotations around the axes that pass through O and are situated in the same plane.

A plane curvein Cayley space is equal to a curve in the pjared. Let:

(13) { p=0.
$(A, u,v)=0,

be the equations of such a curve. That curve is thgeinod the displacement of a
trihedronT relative to a trihedroit; . However, since = 0, the systemsT( T1), (T, T)
will have the same image point, and the displacemii celative toT will again have
the curve (13) for its image.

One thus arrives at the following result:

A plane curve in Cayley space is the image of a one-parameter displaicesmere
the fixed and moving rolling cones are equal; the rolling takes place inasughy that
two homologous generators of these equal cones will agree in the couiselatement.

Moreover, the equation:
(14) $(X1, Y1, 2) =0

represents a cone (the coordinates axes are the edggs The various positions af
are deduced fronh; by reversals around the generators of the cone. Tinbioation of
two infinitely close reversals gives the infinitelgnall rotation that permits one to pass
from one position of the moving trihedron to an infinitelgse one. This shows thiie
fixed rolling cone is supplementary to the c¢h4).

When the preceding results are applie€ayley circlesthat would show that these
lines are the images of displacements where the roflonges are equal to cones of
revolution.

It is easy to multiply the examples. The studyhaf algebraic displacements around
a fixed point would be assuredly interesting. Howevet, Wrwauld leave the scope that
we have defined here. We shall not pursue that topicyanglo on to the infinitesimal
properties of one-parameter displacements.

14. Let (C) be a curve in Cayley space, andrteandm’ be two points of that curve.
(C) is the image of the one-parameter displacementrifedronT relative to a trihedron
T, . Let () denote that displacement, andtlanhdt’ be the positions of that correspond
to mandnn.

There exists a rotation around a fixed axis that makeswanm trihedron pass
through the positionsandt’. The displacement of the second trihedron relaovi will
obviously have the linenni for its image.

Suppose that is infinitely close tam.
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The differential of the Cayley arc length of the varC) is interpreted from the

viewpoint of the displacemenE) by recalling that the Cayley distancem is one-half
the angle of the rotation that makesoincide witht'.

We see, in turn, thahe tangent at a point m of the cur{@) is the image of the
rotation that is tangent to the displacem@nyfor the position t of the moving trihedron

Two curves C), (C’) that have a common poimh will be the images of two
displacementsrl{), (') that are referred to the same fixed trihedifg@nand in each of
them the moving trihedron will coincide with a trihediton

In order to interpret the angle betwe€l) &nd C ') at the pointm, it will suffice to
confine oneself to the case whe@) (@nd C ') are lines. Upon supposing that the
coordinates omare 0, 0, 0, 1, and succeeding in determining the lines bytthees on
the planeo = 0, one will see that:

The Cayley angle between two curves at a point equsl to the angle between the
rotational axes that are tangent to the correspogdilisplacements (for the position t of
the moving trihedron that corresponds td. m

15. We shall seek the elements that correspond to theeytvature and torsion of
the image C) under a displacemenft),

We first determine the fixed and moving rolling cone$ie @isplacement{ and the
curve C) are determined by expressing the coordindtes v, p of the moving trihedron
T(O, X, y, 2) relative to a trinedroit1(O, X, Y1, 1) as functions of one parameter The
instantaneous axis of rotation is obtained with the @iddrmulas (8) ]() One then finds
that the director parameters (relativeOey2 of that axis are:

dA do du 0 )
—p—-AL+vL—-pyu—,
¢ 'Odu du du a du
dl-ﬂ%-{-Ai-vﬂ,
du du du du
dv_,dp,  du_, du
du du du du

(15) n=p

{=p

The preceding formulas take on a more elegant foomefutilizes the relations:
NP+ iF+V+p =1,

dA du v do
A—+u—+y—+p—=0
du 'udu du P du

Indeed, one finds that:
@
du?’

E2uif+(P=

() SeeNote V in Darboux’s théecons sur la théorie des surfacedV.
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wheres is the Cayley arc length of}, and in turn:

The direction cosines relative to Oxyz of one of the directlmtsohe can choose on
the tangent rotational axis are given by:

P= ,0/]1 _/]:01 TV~ Y,
(16) Q=ph — Hp, +Av,—VA,
R=pv,-vo, + A, - Au,

where, as in no. 2, t4, 11, o1 denote the derivativegi, d_,u % %
ds ds ds ds
Formulas (15) and (16) indeed determine the moving rolling.con
In order to find the fixed rolling cone, one looks 1, Qi, R;, which are the
direction cosines of the preceding direction relativeOte y; zz . To that effect, one
employs the relations (16) and the formulas of Olinddrigoes. One can also utilize the
inverse displacement. Here is the result:

R :p/]l_/]pl_vﬂ1+ﬂ/]1’
(17) Q = oty = Hp, = Av,+VA,
R :pvl_vpl_ﬂ/]1+/]ﬂ1'

16. We now suppose that the coordinadeg, v, p are given as functions of the arc
lengths of (C), which is taken to be the parameter in the seri@§)(land that the point
in whose neighborhood one studi€3 (ill correspond te = 0.

In this case, formulas (16) and (17) will give:

o)
p=_S ds 02y

R, 2R,
(18) 0="% [i_ j+
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e
— ds 0Z+...

(19) Q=S i_}...,

in which the unwritten terms will be of order highkan two.

Whens varies, the point whose coordinates relativOxyzareP, Q, R will describe
a curve that traced on a sphere of radius equal to thatyhas the origin for its center.
That curve is thenoving rolling spherepne likewise defines tHexed rolling sphere

For s = 0, the moving trihedron will coincide with the fixed &dron, and the two
preceding curves will be tangent to the pdint (O, O, 1).

Let Ow , Oan be the axes of the osculating circlesAato the fixed and moving
rolling spheres, and let, r,, denote the anglesOaw , AOw,, when measured positively
in the sense dDz to Oy, . One easily gets the equations for these axesnaman, the
formulas:

cotr, = R{Ti+ 1} ,
0

(20) .
cotr,, = 720[?— 1} ,

0

will give the curvatures of the rolling spheres as functions ofCidwdey curvature and
torsion; the problem that was posed at the beginning of no. bbissresolved.
Formulas (20) give:

(21) ZRo = cotrg — cotry, .

One sees thati, is the constant 1K that figures in the formula that is analogous to

Savary’s formulas relative to the displacementslang figure ¥) for the displacements
considered.

17. By means of formulas (16) and (I.11), one easily finds tha

dP 1
= = (DA = A0 + Vi — ),
4 R(,Oz P2+ Vi — [Vs)

() SeeKOENIGS,Lecons de Cinématiqupp. 190.
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and analogous expressions @/ ds dR/ds
One will observe that these expressions do not change:
1. If one multiplest, y, v, p by — 1 (from the remark in no. 4, one must then also
multiply A, L&, V2, o by -1).
,dP __,dQ

2. If one takes = - s everywhere, instead af(seeno. 4, note). R < X s

Rzg enjoy the same property.

We call the poinB whose coordinates relative tcareR2¥, Rz%, Rzi—R the
S S S
point that is associated with the position t of the moving trihedron undelighicement
().
This point is determined unambiguously as long@safndt are known; one can
define it geometrically in the following fashion: It isumated in the plane that is common

to the two rolling cones on the perpendicular to timgeat rotational axis that is drawn
through the summiO of these cones at a distance from the sun@Bit="R = 1/ k.
Finally, here is how one specifies the sens@BfUpon displacing the fixed trihedron in
such a manner as to bridix to OB andOz to an arbitrarily-chosen directiddA on the
tangential axis of rotation, it is necessary thatahglesrn, = AOawh, ri = AOaw , when
evaluated algebraically as in no. 16, give a positiveeviduthe difference cat — cotrp,.

18. We shall now interpret the infinitesimal propertiésurfaces.

Let (S be a surface, lefQ) be a curve that is traced on that surface, anthle¢ a
point of that curve.

The surface9) is the image of a two-parameter displacem&htthe curve C) is the
image of a one-parameter displaceméntthat isincorporatedinto the preceding one,
such that all of the positions that are occupied by theingarihedron in the course of
the second displacement can be obtained by means dirgsh@ne. Finally,m will
correspond to a positidrof the moving trihedron.

The tangent to&) atm will be the image of the tangent rotation [Q for the position
t of the moving trihedron. Ld&DA be the axis of that rotation. Sindg) (always varies
upon passing througim, the preceding tangent will describe a plane. One krows
13), that under these conditions the @& of the tangent rotation will describe a plane
(that passes throudD), which we call thglane of tangent rotation®lative tot and g).

19. The second-order infinitesimal propertiés dre summarized in formulas (1.19)
and (1.22). In order to interpret them, consider theasarfS and the displacemenk)
that are determined by expressing the coordindteg, v, p as functions of two
parameters, v; suppose that the point in the neighborhood of which one studies the
surface is 0, 0, 0, 1, that the tangent plane at that goint 0, and that the tangents to

() Seeno. 7.
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the lines of curvature atk=v=0andu=v=0. One canthentake=m =r'=0,n" =
1.

The instantaneous plane of rotation relativeXpandt (that corresponds t) is z=
0.

The tangent anto a curve €) that is traced o] is situated in the plane= 0. The
director point of that tangent will be situated in Hagne plane and in the polar planeno
with respect to the absolute; therefove= o1 = 0. SinceA + u>+v/>+ p?= 1, one can
set:

AL =cosa, (4=Ssina.

Analogous considerations show tlmat= 0, and that:

Axcosa+ psina. = 0.
Set:
A2 =-sinasing, (b= cosasing, V, = COS4.

The preceding elements suffice to determine the curvaff® andm. We denote it
by 1 /R4, and suppress the last index wigen 0. The osculating plane t€)atm is
then normal t09).

Let OA, denote the tangent axis of rotation b) for the positiont of the moving
trihedron; that axis will depend upon ordyor the value oflu / dv that corresponds to

the tangent toQ) atm.
One first has:

(22) COsf= £C0S4.

Now look for the poinB, 4 that is associated witli{ andt (no. 17). It will have the
coordinates:

- Ragp Sinasing, Rgy COSASINg, Ragp COSP
relative tot.
The plane that is perpendicular@,s atBg4 will intersectOzat a pointB, wherez

R

has the valueLs’;. However, if only¢ varies thendu / dv will be constant, and
co

formulas (1.20) and (22) will show that:

Rasg =eRa=[Rd
COS¢_ a — als

while always denoting the algebraic curvature & tiormal plane section t®)(that
corresponds tdu/dvby 1/ [R,].

One thus has the following result:
Consider a two-parameter displacemeijt §nd a particular position of the moving
trihedron. Let [) be a one-parameter displacement that is incotpdranto the



Cotton — Applications of Cayley geometry to the geoinstudy of rigid motions. 21

preceding one, and that makes the moving trihedron pass thitmugbsitiont, such that
the tangent axis of rotation that corresponds t® a given straight lin®©A, (that is
situated in the tangent plane of rotation that corresptun@y andt).

The fixed and moving rolling cones that correspond jonfll touch alongOA, when
the moving trihedron occupies the posittonTheir common tangent plai@A, B,z will
vary along the displacemerit)(considered.The point Bsthat is associated wit(i') and
t is the projection onto that tangent plane of a fixed poyth@t is situated on the normal
Ol to the instantaneous plane of rotation that correspn@3 andt.

The foregoing was the translation of the generalig#slisnier theorem into the
language of the geometry of displacements.

20. We now remark that the rotations that correspondddahgents to the lines of
curvature aim (A = v = 0 andy = v = 0) will haveOy andOx for their axes, precisely.
The anglea of the preceding number can thus be considered to becalewith the
anglea of no. 7. Therefore:

The law of variation of the poif8, on the perpendicular to the instantaneous plane of
rotation when the plan®B, A, turns around that perpendicular will be identical td tdia
the center of curvature of a normal plane sectiongorface in ordinary Euclidian space
when the plane of the section turns around a well-défoemal.

One can observe that, by definition, whemand ¢ vary, B, 4 will describe a surface
that is the locus of the centers of curvature reldtive given point of the curves that are
traced on a surface in Euclidian space.



