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INTRODUCTION 

_______ 
 
 

 Chapter I of this paper is dedicated to some notions of infinitesimal Cayley geometry. 
 I assume that the principles of that geometry are known, as Darboux presented them 
in his Leçons sur la théorie des surfaces.  After specifying the notations (no. 1), I will 
define the curvature (no. 2) and torsion (no. 3) of the Frenet formulas.  The coordinates of 
the summits of a certain tetrahedron that is associated with a point of skew curve enter 
into that generalization at the basic level in the Frenet formulas as the direction cosines of 
the edges of the fundamental triehdron.  I will finally generalize the theorems of 
Meusnier and Euler that relate to the curves that are traced on a surface (1) (no. 6, 7). 
 At the beginning of Chapter II, I will consider two tri-rectangular triangles T1, T in 
ordinary Euclidian space that have the same summit O, and I will define (no. 8) the 
coordinates of T relative to T1.  These coordinates are a special system of parameters that 
are due to O. Rodrigues.  In the following paragraphs (no. 9 to 12), I will investigate the 
effect of substituting one of the trihedra T or T1 for another trihedron T′ or 1T′  that is 

invariably linked to the first one.  I will establish these formulas for coordinate changes 
by a direct calculation; one can likewise derive the formulas for the composition of 
rotations. 
 The geometric interpretation of these formulas (no. 11) will constitute the 
fundamental idea of this paper. 
 I will consider the coordinates of T, relative to T1, as defining a point of a three-
dimensional multiplicity – viz., the image point of the system T1, T.  The trihedron T 
displaces relative to T1 in a continuous fashion, so the image point will describe an image 
figure of the displacement.  It will be a line or a surface according to whether the 
displacement has one or two parameters, respectively. 

                                                
 (1) A more extended generalization was given by Bianchi in the German edition (Teubner) of his 
Leçons de Géométrie différentielle.  
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 The analytical study of the displacement of a solid that has a fixed point O reduces to 
that of the relative displacement of two trihedra with their summits at O.  One of them T 
is invariably coupled with the solid, while the other one T1 is coupled to fixed space.  The 
choice of these two trihedra, and in turn, the image figure of the displacement is possible 
in an infinitude of ways; in general, it involves six arbitrary quantities. 
 The formulas for the change of coordinates lead us to define a fundamental quadric in 
the multiplicity that is swept out by their image points, and to envision that multiplicity as 
a Cayley space. 
 
 The various image figures of the same displacement are deduced from each other by 
motions in that Cayley space. 
 
 The consequences of that proposition will be developed at the end of Chapter II. 
 I will pass very rapidly (no. 13) over the algebraic displacements, in order to begin 
(no. 14 and 16) the infinitesimal study of a one-parameter displacement.  The Cayley 
curvature and torsion of an image curve under a one-parameter displacement will be 
attached to the curvatures of fixed and moving rolling spheres by simple relations.  The 
Cayley curvature, for example, is twice the parameter k that enters into a formula that is 
analogous to that of Savary. 
 Finally (no. 18 to 20), I will apply the study of the curves that are traced on a surface 
in Cayley space to the search for the infinitesimal properties of one-parameter 
displacements that are part of a two-parameter displacement. 
 It is natural to look for a method of classifying those linear total differential equations 
that lead to the use of the moving trihedra of geometry in the preceding theory.  One can 
also generalize that theory by considering other groups of transformations than that of the 
rotations around a fixed point.  Here, I will content myself by pointing out these 
questions, to which I hope to ultimately return. 
 

_______ 
 
 

CHAPTER I. 
 

NOTIONS FROM INFINITESIMAL CAYLEY GEOMETRY (1). 
 

_____ 
 
 

 1.  In a three-dimensional Cayley space, a fundamental – or absolute – quadric serves 
to determine angles and distances.  The equation: 
 
(1)      λ2 + µ2 + ν2 + ρ2 = 0 
 
will represent the absolute in tetrahedral coordinates. 

                                                
 (1) See DARBOUX, Leçons sur la théorie des surfaces, Livre VII, Chap. XIV, t. III.  
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 The homogeneity of the tetrahedral coordinates will be awkward in what follows; we 
will make it disappear by means of the following convention: 
 In the rest of this paper, the coordinates of a point (1) will denote the tetrahedral 
coordinates λ, µ, ν, ρ of the point such that one will have: 
 
(2)      λ2 + µ2 + ν2 + ρ2 = 1. 
 
 One can obviously substitute −λ, −µ, −ν, −ρ for λ, µ, ν, ρ, so the coordinates of real 
points are well-defined. 

 The distance mm′  between two points m and m′ is given as a function of their 
coordinates λ, µ, ν, ρ and λ′, µ′, ν′, ρ′ by the formula: 
 

(3)      cos mm′  = λλ′  + µµ′ + νν′ + ρρ′. 
 
 The linear element of space is given by: 
 
(4)      ds2 =  dλ2 + dµ2 + dν2 + dρ2. 
 
 Let D′, D″ be two lines that have a common point m.  If m′ is the point of D′ that is 
conjugate to m with respect to the absolute, while m″ is the analogous point relative to 

D″, then the angle between D′ and D″ will be equal to the distance m m′ ′′ .   
 
 
 2.  If the linear element of space is known then one can define the length of an arc of 
a curve immediately. 
 Make a choice of origin and a sense of traversal on a curve (C); let s be the arc length 
of that curve that ends at a point m.  The tangent to (C) at m is the line that joins the point 
m to the point m1 whose coordinates are: 
 

(5)    λ1 = 
d

ds

λ
, µ1 = 

d

ds

µ
, ν1 = 

d

ds

ν
, ρ1 = 

d

ds

ρ
. 

 
 Upon differentiating the two sides of the identity (2) with respect to s, one sees that m 
and m1 are conjugate with respect to the absolute.  We call m1 the director point of the 
tangent at m. 
 When m describes (C), m1 will describe a curve (C1).  Take a sense of traversal on 
(C1) such that the derivative dσ / ds of the arc length σ of (C1) with respect to the arc 
length s of (C) is positive.  One will see that the equation: 
 

(6)      
1

sinδ
 = 

d

ds

σ
 

                                                
 (1) The advantages of this particular coordinate system are explained by Darboux in the cited place.  Its 
use amount to considering the Cayley geometry of a three-dimensional space as the geometry on a 
hypersphere in a four-dimensional Euclidian space. 
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will admit a real root δ that is between 0 and π / 2.  (One supposes that the curve (C) is 
real).  We give that root δ the name of radius of curvature, and we call the expression 1 / 
R = cot δ the curvature. 

 In order to verify the preceding assertion, one first establishes the formula: 
 

(7)     
2

d

ds

σ 
 
 

= 
2 2

2

( )d d d d

ds

λ µ µ λ−∑ , 

 
where the summation is extended over the six combinations of letters λ, µ, ν, ρ, when 
taken two at a time. 
 One then observes that one can choose the coordinate system in such a fashion that m 
is the point 0, 0, 0, 1, the tangent at m is λ = µ = 0, and the osculating plane at the same 
point is λ = 0. Upon supposing that the curve is given by expressing the coordinates as 
functions of one parameter t, such that the value zero corresponds to m, one will have, in 
a neighborhood of that point (1): 

(8)      

2
2

2
1 2

2
21

......................,

,

,

1 ,
2

t

t t

t

λ
µ β
ν γ γ

γρ

=
 = +

= + +

 = − +


⋯

⋯

⋯

 

 
where the unwritten terms are of order greater than two. 
 Formula (7) then gives: 

(9)      
2

d

ds

σ 
 
 

= 
4 2
1

4
1

4γ β
γ
+

 

 
for the point m; one indeed finds a value for sin δ that is between zero and one. 
 One easily sees, with the aid of formulas (8) and (9), for example, that there exists an 
osculating Cayley circle at a point m of the curve (C).  The radius of the circle will be 
equal to the radius of curvature, so its center will be called the center of curvature. 
 
 
 3.  Let b be the pole of the osculating plane to (C) at m with respect to the absolute.  
We say that mb is the binormal, and that b is the director point of the binormal.  When m 
describes (C), b will describe a curve (C ′); we will let σ denote the arc length of (C ′), 
when measured from an arbitrary origin, and positively, in a sense that will be specified 
later on. 
 One calculates dτ / ds in the following fashion: One starts with the equation of the 
osculating plane at m: 

AΛ + BΜ + CΝ + DΡ = 0, 
(where Λ, Μ, Ν, Ρ denote the current coordinates), and one obtains, with no difficulty: 

                                                
 (1) We confine our study to the real and analytic curves and surfaces.  
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dτ 2 = 
2

2 2 2 2 2

( )

( )

AdB B dA

A B C D

−
+ + +

∑ , 

 
in which the summation is extended over the pair-wise combinations of A, B, C, D. 
 In order to transform this expression, one considers the determinant: 
 

∆ = 2 2 2 2

3 3 3 3

d d d d

d d d d

d d d d

λ µ ν ρ
λ µ ν ρ
λ µ ν ρ
λ µ ν ρ

, 

and one takes: 

A = 
2d λ

∂∆
∂

, B = 
2d ν

∂∆
∂

, C = 
2d ν

∂∆
∂

, D = 
2d ρ

∂∆
∂

; 

 
one will then have: 
 

dA = − 
2d λ

∂∆
∂

,     dB = −
2d ν

∂∆
∂

,    dC = −
2d ν

∂∆
∂

,    dD = −
2d ρ

∂∆
∂

. 

 
One transforms the binomials A dB – B dA, … by means of a known identity that relates 
to the minors of a determinant, and one then obtains: 
 

dτ 2 = 
2

2
2 2 2 2 2 ( )

( )
d d

A B C D
λ µ µ λ∆ −

+ + + ∑ . 

 
 The second factor is ds2, so one gets: 
 

d

ds

τ
 = ± 

2 2 2 2A B C D

∆
+ + +

. 

 
 The sense of traversal, which remains indeterminate, is chosen in such a fashion that 
the − sign is necessary, so we set: 
 

(10)    
1

T
 = 

d

ds

τ
= − 

2 2 2 2A B C D

∆
+ + +

. 

 
The expression 1 / T will be called the torsion. 

 
 
 4.  Let n be the pole of the plane mm1b with respect to the absolute.  The tetrahedron 
mm1bn that is conjugate with respect to the absolute will be called the fundamental 
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tetrahedron, relative to the curve (C) and at the point m.  We call mn the principal normal 
and n the director point of the principal normal. 
 In what follows, λ, µ, ν, ρ ; λ1, µ1, ν1, ρ1 ; λ2, µ2, ν2, ρ2 , and λ3, µ3, ν3, ρ3 will denote 
the coordinates of m, m1, n, and b, respectively.  However, one will observe that in the 
formulas that follow one cannot multiply the coordinates of one of these points by – 1 
without suitably modifying the other ones. 
 We shall determine the derivatives of the coordinates with respect to the arc length s 
of the curve (C). 
 Formulas (5) give the derivatives of λ, µ, ν, ρ . 
 The point 1m′  whose coordinates are: 

 

a = 1d

d

λ
σ

, b = 1d

d

µ
σ

, c = 1d

d

ν
σ

, d = 1d

d

ρ
σ

 

 
 
is the director point of the tangent to the curve (C1) located at m1 .  One easily verifies 
that 1m′  is situated on the principal normal mn.  Upon utilizing the two points m, 1m′  on 

that normal in order to determine the director n, and observing that a = 1d

ds

λ
sin δ, …, one 

will verify that one can take (1) λ2 = 1d

ds

λλ + 
 

 tan δ, …  As a result: 

 

(11)  1d

ds

λ
 = 2λ
R

− λ,     1d

ds

µ
 = 2µ
R

− µ,    1d

ds

ν
 = 2ν
R

− ν,    1d

ds

ρ
 = 2ρ
R

− ρ . 

 
 One determines λ3, µ3, ν3, ρ3 by the relations: 
 

(12)   3

A

λ
 = 3

B

µ
= 3

C

ν
= 3

D

ρ
= 

2 2 2 2A B C D

ε
+ + +

, 

 
where A, B, C, D have the same significance as in no. 3, and where ε is equal to + 1 or to 
– 1, and is chosen in such a fashion that the determinant: 
 

1 1 1 1

2 2 2 2

3 3 3 3

λ µ ν ρ
λ µ ν ρ
λ µ ν ρ
λ µ ν ρ

 

                                                

 (1) One can just as well take λ2 = − 1d

ds
λλ + 

 
 tan δ, … The sign is chosen such that the coordinates of 

our center of curvature are λ2 sin δ + λ cos δ , µ 2 cos δ + µ cos δ,… 
 If one changes the positive sense on the curve (C) by taking s′  = − s, instead of s, then one can substitute 
– λ1 , – µ1 , – ν1 , – ρ1  for λ1 , µ1 , ν1 , ρ1 , but λ2 , µ2 , ν2 , ρ2  do not change. 
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is positive.  Upon calculating its square, one verifies that this determinant has the value 
+1. 
 Formulas (12) and the identities that relate to the minors of a given determinant give: 
 

dλ3 = 
2 2 2 2

3 3 3

d d d
A B C D

µ ν ρ
µ ν ρ

µ ν ρ

−∆
+ + +

; 

one deduces that 3d

ds

λ
 = 2λ
T

.  One then has: 

 

(13)  3d

ds

λ
 = 2λ
T

, 3d

ds

µ
 = 2µ
T

, 3d

ds

ν
 = 2ν
T

, 3d

ds

ρ
 = 2ρ
T

. 

 
 Upon differentiating the identity 2 2 2 2

2 2 2 2λ µ ν ρ+ + +  = 1 with respect to s, along with 

the identities that couple λ2, µ2, ν2, ρ2 to λ, µ, ν, ρ ; λ1, µ1, ν1, ρ1 ; λ3, µ3, ν3, ρ3 , one will 
have four equations that determine dλ2 / ds and the analogous derivatives.  Here is the 
result: 

(14)   

3 32 1 2 1

3 32 1 2 1

, ,

, .

d d

ds ds
d d

ds ds

λ µλ λ µ µ

ν ρν ν ρ ρ

 = − − = − −

 = − − = − −


R T R T

R T R T

 

 
 Formulas (5), (11), (13), and (14) are analogous to the Frenet formulas. 
 
 
 5.  The preceding result permits one to develop the coordinates of a point of the curve 
that is close to the point s = 0 in powers of s, as soon as one knows the functions R and T 

of the variable s.  If one supposes that s = 0 gives the point 0, 0, 0, 1, and that the tangent 
and osculating plane at that point are λ = µ = 0 and µ = 0, respectively, then one will get: 
 

(15)    

2
30

2
0 0

3

0 0

2
30

2
0

2

,
2 6

,
2

1
,

6

1 ;
2

d
s ds

s

s

s s

s

λ

µ

ν

ρ

  
 
  = − +



 = +

 + = − +


 = − +


⋯

⋯

⋯

⋯

R

R R

R T

R

R
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the unwritten terms are of order at least 4; R0, T0, 
0

d

ds
 
 
 

R
 are the values of R, T, and 

d

ds

R
 for s = 0. 

 
 
 6.  Define a surface (S) by expressing the coordinates λ, µ, ν, ρ of a point as functions 
of two variable parameters u and v. 
 Upon denoting the current coordinates by Λ, Μ, Ν, Ρ, the equation of the tangent 
plane at the point λ, µ, ν, ρ will be: 

(16)     
u u u u

v v v v

λ µ ν ρ
λ µ ν ρ

λ µ ν ρ

Λ Μ Ν Ρ

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

 = 0. 

 
 Let A, B, C, D be the coefficients of Λ, Μ, Ν, Ρ in the development of that 

determinant; set: 
A

2 + B2 + C2 + D2 = K 

and 

(17)   l = 
εA
K

, m = 
εB
K

, n = 
εC
K

, r = 
εD
K

; 

 
the determination of the radical is chosen once and for all.  However, we take ε = + 1 or ε 
= − 1, according to the case.  The point is the pole of the tangent plane with respect to the 
absolute, the line that joins the points λ, µ, ν, ρ ; l, m, n, r is the normal to the surface at 
the point in question. 
 If we replace λ, µ, ν, ρ in the linear element (4) of space with the corresponding 
functions of the variables u and v then we will get the linear element of the surface: 
 
(18)    ds2 = E du2 + 2F du dv + G dv2. 
 
 The importance of that expression is well-known. 
 
 
 7.  A curve (C) that is traced on (S) is determined by the expressions for u and v as 
functions of the same parameter; take that parameter to be the arc length s of (C). 
 Upon preserving the recent notations, one will obtain: 
 

λ1 = 
du dv

u ds v ds

λ λ∂ ∂+
∂ ∂

, 
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1d

ds

λ
 = 2λ
R

− λ = 
22 2 2 2

2 2 2

du dv dv d u d v

u v ds ds v ds u ds v ds

λ λ λ λ∂ ∂ ∂ ∂ + + + ∂ ∂ ∂ ∂ ∂ 
, 

 
and analogous formulas.  One then gets: 
 

(19)  
cosθ
R

= 2 2 2 2l m n rλ µ ν ρ+ + +
R

 = 
2 2

1 1 1
2 2

2

2

E du F du dv G dv

E du F du dv G dv

ε + +
+ +K

. 

 
 In that formula, E1 du2 + 2 F1 du dv + G1 dv2 is the result of substituting: 
 

2 2 2
2 2

2 2du du dv dv
u u v v

λ λ λ∂ ∂ ∂+ +
∂ ∂ ∂ ∂

, … 

 
for Λ, Μ, Ν, Ρ in the determinant (16), and θ is the angle (which is found between 0 and 
π / 2) between the principal normal to (C) and the normal to (S).  One thus chooses ε = + 

1 or ε = − 1, according to whether 
2 2

1 1 12E du F du dv G dv+ +
K

 is positive or negative. 

 One thus sees that all of the curves that are traced on the surface that pass through the 
same point and have the same osculating plane at that point will also have the same 
curvature. 
 Upon denoting the right-hand side of (19) by 1 / R′, one will get: 

 

(20)     
cosθ
R

 = 
1

′R
. 

 
 This result constitutes what we call a generalization of Meusnier’s theorem. 
 One is then reduced to the study of the curvature of normal plane sections. 
 For such a section, cos θ = 1, and λ2, µ2, ν2, ρ2 will be equal to l, m, n, r.  One avoids 
any discussion by considering the center of curvature, instead of the curvature, whose 
expression again contains ε. 
 One knows (no. 4, note) that the coordinates of this point are: 
 

λ cos δ + λ2 sin δ = λ cos δ + l sin δ , … 
Upon taking δ = εϕ and: 
 

l′ = ε l = 
A

K
,  m′ = ε m = 

B

K
, n′ = ε n = 

C

K
, r′ = ε r = 

D

K
, 

 
one will get the coordinates of the center of curvature: 
 
λ cos δ + l′ sin δ , µ cos δ + m′ sin δ , ν cos δ + n′ sin δ , ρ cos δ + r′ sin δ . 
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 The angle ϕ, which is between – π / 2 and + π / 2, is given by: 
 

(21)   cot ϕ = 
2 2

1 1 1
2 2

21

2

E du F du dv G dv

E du F du dv G dv

+ +
+ +K

. 

 
 We say that 1 / [R] = cot ϕ is the algebraic curvature of the normal section that is 

being considered. 
 If one equates the Jacobian of the quadratic forms that appear in the numerator and 
the denominator of formula (21), one will get, in general, two rectangular tangents that 
we call tangents to the lines of curvature.  They determine the normal sections for which 
[R] is a maximum or minimum; let [R1] and [R2] be the corresponding values of [R], 

respectively. 
 Let α denote the angle between the direction du, dv and the tangent that corresponds 
to [R1].  One easily establishes the formula: 

 

(22)    
1

[ ]R
 = 

2 2

1 2

cos sin

[ ] [ ]

α α+
R R

. 

 
 This is a generalization of Euler’s theorem. 
 
 
 

CHAPTER II. 
 

DISPLACEMENT OF A SOLID AROUND A FIXED POINT. 
 

_______ 
 

 8.  First, recall the geometric significance of the parameters that Olinde Rodrigues 
used to define a change of coordinates or a rotation (1). 
 Let T1(O, x1, y1, z1) and T(O, x, y, z) be two tri-rectangular trihedra with the same 
summit.  On the axis of rotation, make T1 coincide with T, choose a direction for OI, and 
set: 
 
α = cos(IO, x) = cos(IO, x1), β = cos(IO, y) = cos(IO, y1), γ = cos(IO, z) = cos(IO, z1). 

 
 Let θ denote the angle of rotation. 
 The numbers: 
 

                                                
 (1) See the notes of DARBOUX: Note V in his Leçons sur la théorie générale des surface and Note I of 
the Leçons de Cinématique of KOENIGS. 
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(1)   λ = α sin 
2

θ
, µ = β sin 

2

θ
, ν = γ sin 

2

θ
, ρ = cos 

2

θ
, 

 
constitutes a system of parameters of Olinde Rodrigues. 
 They satisfy the relation: 
(2)      λ2 + µ2 + ν2 + ρ2 = 1. 
 
 We say that λ, µ, ν, ρ are the coordinates of the trihedron T relative to the trihedron 
T1. 
 It is clear that one can replace θ with 2π + θ, and in turn, λ, µ, ν, ρ with −λ, −µ, −ν, 
−ρ . 
 The coordinates of T1 relative to T are obviously −λ, −µ, −ν, −ρ , or, what amounts to 
the same thing λ, µ, ν, −ρ . 
 Let x, y, z and x1, y1, z1 be the coordinates of the same point M in space relative to T 
and T1, resp.  Darboux (loc. cit.) has established the relations: 
 

(3)     

1 1 1

1 1 1

1 1 1

1 1 1

,

,

,

.

x y z x y z

x y z x y z

x y z x y z

x y z x y z

ρ ν µ ρ ν µ
ν ρ λ ν ρ λ
µ λ ρ µ λ ρ
λ µ ν λ µ ν

− + = + −
 + − = − + +
 − + + = − +
 + + = + +

 

 
 Only three of these relations are independent.  Upon solving them for x, y, z, one 
obtains the formulas of Olinde Rodrigues. 
 
 
 9.  An analogous process will permit us to solve the following problem: 
 Let T, T1, T0 (viz., Ox1 y1 z1, Oxyz, Ox0 y0 z0) be three tri-retangular trihedra with the 
same summit O. 
 
 Knowing the coordinates λ, µ, ν, ρ of T relative to T1 and the coordinates λ0, µ0, ν0, 
ρ0  of T1 relative to T0, find the coordinates Λ, Μ, Ν, Ρ of T relative to T0 . 
 
 Denote the coordinates of the same point M with respect to the three trihedra by x, y, 
z; x1, y1, z1; x0, y0, z0, resp. 
 Write down the system that is analogous to (3) relative to the system T1, T0 : 
 

(4)    

0 1 0 1 0 1 0 0 0 0 0 0

0 1 0 1 0 1 0 0 0 0 0 0

0 1 0 1 0 1 0 0 0 0 0 0

0 1 0 1 0 1 0 0 0 0 0 0

,

,

,

.

x y z x y z

x y z x y z

x y z x y z

x y z x y z

ρ ν µ ρ ν µ
ν ρ λ ν ρ λ
µ λ ρ µ λ ρ
λ µ ν λ µ ν

− + = + −
 + − = − + +
 − + + = − +
 + + = + +
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 If one multiplies both sides of equations (3) by ± λ0, ± µ0, ± ν0, ± ρ0, respectively, and 
adds them, with the signs chosen in such a fashion that the coefficient of x will be ρρ0 – 
λλ0 – µµ0 – νν0, then one will get: 
 
 x (ρρ0 – λλ0 – µµ0 – νν0) + y (−νρ0 – ρν0 + λµ0 – µλ0) + z (µρ0 + λν0 – µµ0 – νλ0) 
(5) 
 = x1(ρρ0 + νν0 + µµ0 – λλ0) + y1(νρ0 – ρν0 − λµ0 – µλ0) + z1(−µρ0 − λν0 + ρµ0 – νλ0). 
 
 If one likewise combines equations (4), in such a way that the coefficient x0 is again 
ρρ0 – λλ0 – µµ0 – νν0 then one will get: 
 
 x1(ρρ0 + νν0 + µµ0 – λλ0) + y1(− ρν0 + νρ0 − µλ0 – λµ0) + z1(ρµ0 − νλ0 − µρ0 – λµ0) 
 (6) 
 = x0 (ρρ0 – λλ0 – µµ0 – νν0) + y0 (ρν0 + νρ0 + µλ0 – λµ0) + z0 (−ρµ0 + νλ0 – µρ0 – λν0). 
 
 The terms in x1, y1, z1 will be the same in equations (5) and (6), which permits one to 
eliminate these variables.  Upon making y and y0, and then z and z0 , in turn, play the role 
of x and x0 in the preceding combinations, one will obtain three equations that no longer 
contain x1, y1, z1 .  These equations can be written: 
 

(7)    
0 0 0

0 0 0

0 0 0

,

,

,

x y z x y z

x y z x y z

x y z x y z

Ρ − Ν + Μ = Ρ + Ν − Μ
 Ν + Ρ − Λ = −Ν + Ρ + Λ
 −Μ + Λ + Ρ = Μ − Λ + Ρ

 

if one sets: 

(8)     

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

,

,

,

.

ρλ λρ µν νµ
ρµ µρ νλ λν
ρν νρ λµ µλ
ρρ λλ µµ νν

Λ = + − +
 Μ = + − +
 Ν = + − +
 Ρ = − − −

 

 One has, moreover: 
Λ2 + Μ2 + Ν2 + Ρ2 = 1. 

 
Formulas (8) thus give the required coordinates. 
 
 
 10.  Consider T to be moving with respect to T1; in other words, regard λ, µ, ν, ρ as 
variables that are coupled by only the relation (2). 
 One then sees that the replacement of the trihedron T with a trihedron T′ that is 
invariably coupled to T translates analytically into the formulas: 
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(9)     

,

,

,

,

r l m n

r m n l

r n l m

r l m n

λ λ ρ ν µ
µ µ ρ ν µ
ν ν ρ ν λ
ρ ρ λ µ ν

′ = + − +
 ′ = + − +
 ′ = + − +
 ′ = − − −

 

 
where λ′, µ′, ν′, ρ′ are the coordinates of T′ relative to T1, and the constants l, m, n, r 
denote the coordinates of T′ relative to T. 
 Likewise, the replacement of the trihedron T1 with a trihedron 1T′  that is invariably 

coupled to T1 translates into the linear substitution: 
 

(10)    

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

,

,

,

,

r l m n

r m n l

r n l m

r l m n

λ λ ρ ν µ
µ µ ρ ν µ
ν ν ρ ν λ
ρ ρ λ µ ν

′ = + + −
 ′ = + + −
 ′ = + + −
 ′ = − − −

 

 
where the variables 1λ′ , 1µ′ , 1ν ′ , 1ρ′  and the constants l1, m1, n1, r1 denote the coordinates 

of T relative to 1T′  and those of T1 relative to 1T′ , respectively. 

 One recognizes in this the linear substitutions whose composition will give the most 
general linear substitution that transforms the form λ2 + µ2 + ν2 + ρ2 into itself (1). 
 
 
 11.  Let λ, µ, ν, ρ be the coordinates of a trihedron T relative to a trihedron T1 .  
Consider the point P in the same three-dimensional space whose tetrahedral coordinates 
are λ, µ, ν, ρ.  We say that the point P is the image of the system (T1, T). 
 Replace the trihedra T1, T with the trihedra 1T′  and T′ such that the first one is 

invariably linked to T1 and the second one to T.  The point P′ that is the image of the 
system ( 1T′ , T′ ) is deduced from the point P by a homographic transformation that leaves 

the quadric: 
(11)     λ2 + µ2 + ν2 + ρ2 = 0 
invariant. 
 Conversely, such a homographic transformation will correspond to a change of 
trihedra of the preceding nature. 
 
 If one takes the quadric (11) to be the absolute in the space E then the preceding 
transformations will be the ones that preserve the angles and distances in the Cayley 
space thus defined; in other words, they will be the displacements in that Cayley space. 
 
 Two points P, P′ have one and only one invariant relative to the group of Cayley 
displacements, namely, the distance between them.  It is easy to interpret this. 

                                                
 (1) See KLEIN’s signature course: Nicht Euklidische Geometrie, Bd. II, pp. 119 and 120. 
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 In order to do this, consider two trihedra T, T′ whose coordinates relative to the same 
initial trihedron T1 are λ, µ, ν, ρ ; λ′, µ′, ν′, ρ′.  Let P, P′ refer to the image points of (T1, 
T), (T1, T′ ).  Observe that the coordinates of T1 relative to T are −λ, −µ, −ν, ρ ; the 
formulas (8), (1), and (I.3) (1) show that the Cayley distance PP′ represents one-half the 
angle of rotation that makes T coincide with T′. 
 
 
 12.  Let Σ be a solid (2) that has a fixed point O.  The usual analytical representation 
of a continuous displacement of Σ relative to the fixed space Σ1 consists of choosing two 
trihedra T1, T such that the former is invariably coupled to Σ1 and the latter to Σ, and to 
consider the coordinates of T relative to T1 as functions of one or two parameters. 
 The point P that is the image of the system (T1, T) will describe a curve (C) or a 
surface (S) according to whether the displacement has one or two parameters, resp.  We 
say that the figure – whether a curve or surface – is the image of the displacement of Σ. 
 However, the choice of trihedra T1 and T is possible in an infinitude of ways.  There 
will then be an infinitude of image figures that have the same displacement. 
 From the foregoing, one can say: 
 
 The same displacement of Σ relative to Σ1 has an image that is any of the figures – 
viz., curves or surfaces – that are deduced from a given figure by a Cayley displacement 
(3). 
 
 We shall often utilize the arbitrariness in the choice of image figure of the 
displacement in order to give that figure a simple position relative to the reference 
tetrahedron.  At the same time, we shall obtain a convenient analytic representation of the 
displacement. 
 
 
 13.  We apply this to some examples of algebraic displacements. 
 All of the lines in Cayley space are equal to the line: 
 
(12)     λ = µ = 0. 
 
 A point of the lines (12) is the image of a system (T1, T) of trihedra that has the axis 
Oz1 in common.  It then results that an arbitrary line is the image of a continuous 
rotation around a fixed axis. 
 A Cayley plane is equal to the plane ρ = 0.  Two trihedra that define a system whose 
image is a point of that plane will be deducible from each other by a reversal.  An 
arbitrary plane will then be the image of a two-parameter displacement that one can 
define in the following fashion: The various positions that are occupied by the moving 

                                                
 (1) We are thus referring to a formula in Chapter I.  
 (2) The word solid is employed here in order to facilitate one’s intuition of the displacement of two 
superposed Euclidian space.  
 (3) To abbreviate, we say that these figures are mutually equal.  
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solid Σ are deduced from a fixed solid Σ1 by reversals around lines that pass through the 
fixed point O. 
 One can likewise say that the various positions of S are deduced from each other by 
rotations around the axes that pass through O and are situated in the same plane. 
 A plane curve in Cayley space is equal to a curve in the plane ρ = 0.  Let: 
 

(13)     
0,

( , , ) 0,

ρ
ϕ λ µ ν

=
 =

 

 
be the equations of such a curve.  That curve is the image of the displacement of a 
trihedron T relative to a trihedron T1 .  However, since ρ = 0, the systems (T, T1), (T1, T) 
will have the same image point, and the displacement of T1 relative to T will again have 
the curve (13) for its image. 
 One thus arrives at the following result: 
 
 A plane curve in Cayley space is the image of a one-parameter displacement where 
the fixed and moving rolling cones are equal; the rolling takes place in such a way that 
two homologous generators of these equal cones will agree in the course of displacement. 
 
 Moreover, the equation: 
(14)     ϕ(x1, y1, z1) = 0 
 
represents a cone (the coordinates axes are the edges of T1).  The various positions of T 
are deduced from T1 by reversals around the generators of the cone.  The combination of 
two infinitely close reversals gives the infinitely small rotation that permits one to pass 
from one position of the moving trihedron to an infinitely close one.  This shows that the 
fixed rolling cone is supplementary to the cone (14). 
 When the preceding results are applied to Cayley circles, that would show that these 
lines are the images of displacements where the rolling cones are equal to cones of 
revolution. 
 It is easy to multiply the examples.  The study of the algebraic displacements around 
a fixed point would be assuredly interesting.  However, that would leave the scope that 
we have defined here.  We shall not pursue that topic, and we go on to the infinitesimal 
properties of one-parameter displacements. 
 
 
 14.  Let (C) be a curve in Cayley space, and let m and m′ be two points of that curve.  
(C) is the image of the one-parameter displacement of a trihedron T relative to a trihedron 
T1 .  Let (Γ) denote that displacement, and let t and t′ be the positions of T that correspond 
to m and m′. 
 There exists a rotation around a fixed axis that makes a moving trihedron pass 
through the positions t and t′.  The displacement of the second trihedron relative to T1 will 
obviously have the line mm′ for its image. 
 Suppose that m′ is infinitely close to m. 
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 The differential of the Cayley arc length of the curve (C) is interpreted from the 

viewpoint of the displacement (Γ) by recalling that the Cayley distance mm′  is one-half 
the angle of the rotation that makes t coincide with t′. 
 We see, in turn, that the tangent at a point m of the curve (C) is the image of the 
rotation that is tangent to the displacement (Γ) for the position t of the moving trihedron. 
 Two curves (C), (C′ ) that have a common point m will be the images of two 
displacements (Γ), (Γ′) that are referred to the same fixed trihedron T1, and in each of 
them the moving trihedron will coincide with a trihedron t. 
 In order to interpret the angle between (C) and (C ′) at the point m, it will suffice to 
confine oneself to the case where (C) and (C ′) are lines.  Upon supposing that the 
coordinates of m are 0, 0, 0, 1, and succeeding in determining the lines by their traces on 
the plane ρ = 0, one will see that: 
 
 The Cayley angle between two curves at a point m is equal to the angle between the 
rotational axes that are tangent to the corresponding displacements (for the position t of 
the moving trihedron that corresponds to m). 
 
 
 15.  We shall seek the elements that correspond to the Cayley curvature and torsion of 
the image (C) under a displacement (Γ). 
 We first determine the fixed and moving rolling cones.  The displacement (Γ) and the 
curve (C) are determined by expressing the coordinates λ, µ, ν, ρ of the moving trihedron 
T(O, x, y, z) relative to a trihedron T1(O, x1, y1, z1) as functions of one parameter u.  The 
instantaneous axis of rotation is obtained with the aid for formulas (8) (1).  One then finds 
that the director parameters (relative to Oxyz) of that axis are: 
 

(15)   

,

,

.

d d d d

du du du du
d d d d

du du du du
d d d d

du du du du

λ ρ µ νξ ρ λ ν µ

µ ρ ν λη ρ µ λ ν

ν ρ µ µζ ρ ν λ λ

 = − + −

 = − + −

 = − + −


 

 
The preceding formulas take on a more elegant form if one utilizes the relations: 
 

λ2 + µ2 + ν2 + ρ2 = 1, 
 

d d d d

du du du du

λ µ ν ρλ µ ν ρ+ + +  = 0. 

Indeed, one finds that: 

ξ 2 + η2 + ζ 2 = 
2

2

ds

du
, 

                                                
 (1) See Note V in Darboux’s the Leçons sur la théorie des surfaces, t. IV. 
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where s is the Cayley arc length of (C), and in turn: 
 
 The direction cosines relative to Oxyz of one of the directions that one can choose on 
the tangent rotational axis are given by: 
 

(16)   
1 1 1 1

1 1 1 1

1 1 1 1

,

,

,

P

Q

R

ρλ λρ νµ µν
ρµ µρ λν νλ
ρν νρ µλ λµ

= − + −
 = − + −
 = − + −

 

 

where, as in no. 2, λ1, µ1, ν1, ρ1 denote the derivatives 
d

ds

λ
, 

d

ds

µ
, 

d

ds

ν
, 

d

ds

ρ
. 

 Formulas (15) and (16) indeed determine the moving rolling cone. 
 In order to find the fixed rolling cone, one looks for P1, Q1, R1, which are the 
direction cosines of the preceding direction relative to Ox1 y1 z1 .  To that effect, one 
employs the relations (16) and the formulas of Olinde Rodrigues.  One can also utilize the 
inverse displacement.  Here is the result: 
 

(17)   
1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

,

,

.

P

Q

R

ρλ λρ νµ µλ
ρµ µρ λν νλ
ρν νρ µλ λµ

= − − +
 = − − +
 = − − +

 

 
 
 16.  We now suppose that the coordinates λ, µ, ν, ρ are given as functions of the arc 
length s of (C), which is taken to be the parameter in the series (I.15), and that the point 
in whose neighborhood one studies (C) will correspond to s = 0. 
 In this case, formulas (16) and (17) will give: 
 

(18)   

20

0 0

2

0 0

2

2
0

,
2

1
1 ,

2

1 ,
2

d

s ds
P s

s
Q

s
R

  
 
  = − +




  = − +  
 


 = − +




⋯

⋯

⋯

R

R R

R T

R
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(19)   

20
1

0 0

2

1
0 0

2

1 2
0

,
2

1
1 ,

2

1 ,
2

d

s ds
P s

s
Q

s
R

  
 
  = − +




  = − +  
 


 = − +




⋯

⋯

⋯

R

R R

R T

R

 

 
in which the unwritten terms will be of order higher than two. 
 When s varies, the point whose coordinates relative to Oxyz are P, Q, R will describe 
a curve that traced on a sphere of radius equal to unity that has the origin for its center.  
That curve is the moving rolling sphere; one likewise defines the fixed rolling sphere. 
 For s = 0, the moving trihedron will coincide with the fixed trihedron, and the two 
preceding curves will be tangent to the point A = (0, 0, 1). 
 Let Oωf , Oωm be the axes of the osculating circles at A to the fixed and moving 
rolling spheres, and let rf , rm denote the angles AOωf , AOωm , when measured positively 
in the sense of Oz1 to Oy1 .  One easily gets the equations for these axes, and in turn, the 
formulas: 

(20)    
0

0

0
0

1
cot 1 ,

1
cot 1 ,

f

m

r

r

  
= +  

  


  = − 
 

R
T

R
T

 

 
will give the curvatures of the rolling spheres as functions of the Cayley curvature and 
torsion; the problem that was posed at the beginning of no. 15 is thus resolved. 
 Formulas (20) give: 
(21)    2R0 = cot rf – cot rm . 

 
 One sees that 2R0 is the constant 1 / k that figures in the formula that is analogous to 

Savary’s formulas relative to the displacements of plane figure (1) for the displacements 
considered. 
 
 
 17.  By means of formulas (16) and (I.11), one easily finds that: 
 

dP

ds
 = 

1

R
(ρλ2 – λρ2 + νµ2 – µν2), 

 

                                                
 (1) See KOENIGS, Leçons de Cinématique, pp. 190.  
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and analogous expressions for dQ / ds, dR / ds. 
 One will observe that these expressions do not change: 
 1. If one multiples λ, µ, ν, ρ by – 1 (from the remark in no. 4, one must then also 
multiply λ2, µ2, ν2, ρ2  by −1). 

 2. If one takes s′ = − s everywhere, instead of s (see no. 4, note).  R2 dP

ds
, R2 dQ

ds
, 

R
2 dR

ds
 enjoy the same property. 

 We call the point B whose coordinates relative to t are R2 dP

ds
, R2 dQ

ds
, R2 dR

ds
 the 

point that is associated with the position t of the moving trihedron under the displacement 
(Γ). 
 This point is determined unambiguously as long as (Γ) and t are known; one can 
define it geometrically in the following fashion: It is situated in the plane that is common 
to the two rolling cones on the perpendicular to the tangent rotational axis that is drawn 
through the summit O of these cones at a distance from the summit OB = R = 1 / 2k.  

Finally, here is how one specifies the sense of OB: Upon displacing the fixed trihedron in 
such a manner as to bring Ox1 to OB and Oz1 to an arbitrarily-chosen direction OA on the 
tangential axis of rotation, it is necessary that the angles rm = AOωm, r f = AOωf , when 
evaluated algebraically as in no. 16, give a positive value for the difference cot rf – cot rm. 
 
 
 18.  We shall now interpret the infinitesimal properties of surfaces. 
 Let (S) be a surface, let (C) be a curve that is traced on that surface, and let m be a 
point of that curve. 
 The surface (S) is the image of a two-parameter displacement (Σ); the curve (C) is the 
image of a one-parameter displacement (Γ) that is incorporated into the preceding one, 
such that all of the positions that are occupied by the moving trihedron in the course of 
the second displacement can be obtained by means of the first one.  Finally, m will 
correspond to a position t of the moving trihedron. 
 The tangent to (C) at m will be the image of the tangent rotation to (Γ) for the position 
t of the moving trihedron.  Let OA be the axis of that rotation.  Since (C) always varies 
upon passing through m, the preceding tangent will describe a plane.  One knows (no. 
13), that under these conditions the axis OA of the tangent rotation will describe a plane 
(that passes through O), which we call the plane of tangent rotations relative to t and (Σ). 
 
 
 19.  The second-order infinitesimal properties (1) are summarized in formulas (I.19) 
and (I.22).  In order to interpret them, consider the surface (S) and the displacement (Σ) 
that are determined by expressing the coordinates λ, µ, ν, ρ as functions of two 
parameters u, v; suppose that the point m in the neighborhood of which one studies the 
surface is 0, 0, 0, 1, that the tangent plane at that point is ν = 0, and that the tangents to 

                                                
 (1) See no. 7.  
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the lines of curvature are λ = ν = 0 and µ = ν = 0.  One can then take l′ = m′ = r′ = 0, n′ = 
1. 
 The instantaneous plane of rotation relative to (Σ) and t (that corresponds to m) is z = 
0. 
 The tangent at m to a curve (C) that is traced on (Σ) is situated in the plane ν = 0.  The 
director point of that tangent will be situated in the same plane and in the polar plane to m 
with respect to the absolute; therefore, ν1 = ρ1 = 0.  Since 2 2 2 2

1 1 1 1λ µ ν ρ+ + + = 1, one can 

set: 
λ1 = cos α, µ1 = sin α. 

 
 Analogous considerations show that ρ2 = 0, and that: 
 

λ2 cos α + µ2 sin α. = 0. 
 Set: 

λ2 = − sin α sin ϕ, µ2 = cos α sin ϕ, ν2 = cos ϕ. 
 
 The preceding elements suffice to determine the curvature of (C) and m.  We denote it 
by 1 / Rα,ϕ , and suppress the last index when ϕ = 0.  The osculating plane to (C) at m is 

then normal to (S). 
 Let OAα denote the tangent axis of rotation of (Γ) for the position t of the moving 
trihedron; that axis will depend upon only α or the value of du / dv that corresponds to 
the tangent to (C) at m. 
 One first has: 
(22)     cos θ = ε cos ϕ. 
 
 Now look for the point Bα,ϕ  that is associated with (Γ) and t (no. 17).  It will have the 
coordinates: 
 

− Rα,ϕ  sin α sin ϕ, Rα,ϕ  cos α sin ϕ, Rα,ϕ  cos ϕ 

relative to t. 
 The plane that is perpendicular to OBα,ϕ  at Bα,ϕ will intersect Oz at a point Bα where z 

has the value ,

cos
α ϕ

ϕ
R

.  However, if only ϕ varies then du / dv will be constant, and 

formulas (I.20) and (22) will show that: 
 

,

cos
α ϕ

ϕ
R

 = ε Rα = [Rα], 

 
while always denoting the algebraic curvature of the normal plane section to (S) that 
corresponds to du / dv by 1 / [Rα]. 

 One thus has the following result: 
 Consider a two-parameter displacement (Σ) and a particular position of the moving 
trihedron.  Let (Γ) be a one-parameter displacement that is incorporated into the 
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preceding one, and that makes the moving trihedron pass through the position t, such that 
the tangent axis of rotation that corresponds to t is a given straight line OAα (that is 
situated in the tangent plane of rotation that corresponds to (Σ) and t). 
 The fixed and moving rolling cones that correspond to (Γ) will touch along OAα when 
the moving trihedron occupies the position t.  Their common tangent plane OAα Bαβ will 
vary along the displacement (Γ) considered.  The point Bαβ that is associated with (Γ) and 
t is the projection onto that tangent plane of a fixed point Bα that is situated on the normal 
OI to the instantaneous plane of rotation that corresponds to (Σ) and t. 
 The foregoing was the translation of the generalized Meusnier theorem into the 
language of the geometry of displacements. 
 
 
 20.  We now remark that the rotations that correspond to the tangents to the lines of 
curvature at m (λ = ν = 0 and µ = ν = 0) will have Oy and Ox for their axes, precisely.  
The angle α of the preceding number can thus be considered to be identical with the 
angle α of no. 7.  Therefore: 
 The law of variation of the point Bα on the perpendicular to the instantaneous plane of 
rotation when the plane OBα Aα turns around that perpendicular will be identical to that of 
the center of curvature of a normal plane section to a surface in ordinary Euclidian space 
when the plane of the section turns around a well-defined normal. 
 One can observe that, by definition, when α and ϕ vary, Bα,ϕ will describe a surface 
that is the locus of the centers of curvature relative to a given point of the curves that are 
traced on a surface in Euclidian space. 
 
 

__________ 
 

 
 
 
 
 

 


