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PART TWO
VIII.

The proposition relating to the invariance propertieshefsystem (10), which was
useful to us in the first part of this work, is susceptibl@ generalization that we shall
now present.

Along with the form:

B¢ =Xy dx + ... +X, dx,,
consider some other forn®;, @2, ..., ©3° that are defined by the equations:
Of = Xfdx+ ... + Xkdx .
Require that the variablesand the variables must satisfy the differential equations:

a,dx+---+g,dx= X di+ X di+---+ X ¢
(1) e, ,
a,dx+--+g,dx= X di+ X df+--+ X dj

XP2dt +---+ XP™dt =0,

X207t +..-+ X7 'dt =0,

which aren + p — 1 in number, and which, consequently, form gheinate system.
One can write these equations in the abbreviated: fo

@) &, —dO, = O5dt +---+ O dt,,
@(‘;*l =0, -, @ﬁp_lz 0,
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upon assuming that the first one is true for all of vhkies that are attributed to the
auxiliary differentialso.

When the system (1) is written in the form (2), eamenediately recognizes that it
expresses some properties that are independent of ange cbéi variables, and
consequently, it will have invariance properties of aystg0) in our Part One.

If one replaces the variablgswith n variablesy; and the form®!; becomes:
O =Y dy+ ... + Y dy,
then the system (1) takes on the form:

bdy+-+ B, dy= Y di++ Y gt
b,dy,+-+ B, dy= Y di+-+ ¥ dj
3)
anﬂd}{ +.o+ f*l dy:O,

YnZP‘ldM +.oo 4 ¥2p_l dy =0,

in which the quantitieby have the significance that was given before.
If one now considers a new for@®:" then the quotient:

2p
4) e—d: Xfpd_x1+...+xn?Pd_X1’
dt, dt, dt,

in whichq indexes any of the variablés ..., t,, will transform into the expression:

Y12p%+...+YnZP%,
d. d,

q

and it will be defined in the same manner, either by medrse old variables and
system (1) or by means of the new ones and systemrn(®kthér words, this quotient will
be an absolute invariant for any change of variablesreder, there is no difficulty in
calculating it. It suffices to eliminate the diffetias dx, dt, from equations (3) and (4),
and one obtains the following result:

To abbreviate, set:
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- © © - e3] _|a - oa, XX
egﬂ ®g+2 ®g+p '

One finds, for example, that:

o, - OF
o3F° _ ot ... OFF

(6) = =t
at, el — o
@([’)-Fl @ﬁp—l

We remark that if one hgs= 1 then the denominator will be replaced with:

A=Y *a;... an.

From this, if one considersn2forms and, for the moment, one denotes the
determinant:
o - O
®n+l ®n+k
d d

A A A

As A, A

by A« then the quotients:

will be absolute invariants. However, one has:

X; e X7 X[ XM
(—1)nAn: T I T
X...oxn X2 X2

n

and it is easy to see that if one replaces the vagablvith other variabley; then each of
the determinants that appear in the right-hand sideatf@quation are reproduced, but
multiplied by the functional determinant:

(X, %,)
oYy, ¥n)

which is the determinant of the substitution. Hfere, A,, and consequentl,-1, ...,
Ay, A is reproduced, but multiplied by the square of theterminant.
As a result, all of the functions:
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@é @§ @3
egﬂ ®g+2 ®g+q

are relative invariantthat one transforms into absolute invariants by dividing by one of
the others — for exampla,
I will not stop to show how one can express allhef functions by simpler means in

terms of the{g‘k’} and to that end, I will content myself by referriognty paper “Sur la

d
théorie algébrique des formes quadratiques, ou se trouvaeésw question analogue.”
However, there is a property that | will establish la¢ tonclusion of this article:
Whenever these invariants contain the f@gtself on both sides, they will be expressed

by:
A:{ed e, .. @Z}
0, Ot - OF

so they will enjoy the property of being reproduced, but multipliea ppgywer ofp when
one replaces the for®y with p ©4, wherep is, moreover, an arbitrary function of the
independent variables.

Indeed, consider the expressionAoin the form of the determinant:
&, - Ay Xl Xi XT

aln o a'nn Xn X]l-'I o X:
A=|X, - X 0 0 -- 0].

n

xlhﬂ... x:*l O 0 --0

leh xn?h O 0 --0

If one multiplies®q by p then one must replace with pXi and aix with pay +
Xig—p - ng—p in the preceding determinant. After performing this stuigin, add
X X
0p

the f + 1) row, multiplied by- 16— to thek" one, and then(+ 1)" column,
P OX

multiplied by ig—p to thei™ one. We then obtain the old expressionfpwhere any
P 0X

element that is included in the square that is &rfrom the firstn + 1 rows and

columns will have been multiplied hy: The determinan® will thus be multiplied by

pn+1—h
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IX.

We shall apply the preceding propositions, but while idengsig only the most
general forms. In article VII, we saw, moreovertthll of the cases can be converted
almost immediately into the ones that intend to study

First, suppose thatis even and equal tax2 The reduced form can then be written:

O¢=p1dxa + ... +PmdXn;
| will consider only the following two invariants.

The first one is obtained from the fundamental fognd the differential of an
arbitrary functiong; its general expression is:

a, & 8y X
a12 ...... anz XZ
- {Z)d} [ -
¢ &, &, - Q, Xn
0 o
0% 0% 0x,

With Clebsch, we employ the symbd)(in order to denote the quotient:

_1]6,
(8) ¢ _Z{d¢}’

which will be an absolute invariant.
The second invariant that we consider will be thieyahg one:

0
a, - a; £
I
= 0 ,
PRI
0% 0x,
and we set:
_-1[dg
9 @Y= A{dz/l}’

in such a way thatg ¢) will again be an absolute invariant.
If one calculates the two symbol@)( (¢ ¢) with the variables of the reduced form
then one effortlessly obtains, by some combinatafmews and columns:
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=p 9P ip 9P
(@) =p . +et o
090y 090y, 99 0% 09 0y

op, 0%, 0% 0p op, 0% 0x%0R,

(10)

() =

The two symbols that we just defined are particulaesaf the following one, which
plays a fundamental role in the theory of partiffiedential equations when it is applied
to functions of 2n +1 variables, x;, px, and which is defined by the equation:

_0p(0¢p Oy )| oy(op_ 09
(11) [¢¢4_6_pl(a+plaj 6g[6>g+plazj+m

Here, our functions do not depend uorOne thus has:

(Y=g 4.

However, it is clear that one also has:

(12) @) =19 4.

By virtue of this remark, the relations that were esthbt by Clebsch between the

symbols @), (¢ ¢) can all be deduced from one general equation that was fye
Mayer Mathematische Annalem. 1X, pp. 370). Mayer has shown that if one considers

three functionsp, ¢, y of 2m + 1 variableg, x, p« then one has:
(13) L+ WLy a0 + Ly (o o] = %—f”[wx] 2 0+ % 0y
z 0z 07

If one applies this relation to three functions thatndt containz then one deduces the
Jacobi relation:
(14) @)+t +x(@y)=0
between the symbol® ().

If one setsy =z and if one supposes that the functigng/ are independent afthen
one likewise finds that:

(15) @) - W) =@y + (9 V)

These are the two relations that serve as thes Hasithe Clebsch method of
integration.

X.

I will make an application of the preceding resultsh® study of relations between
two different reductions of the same form.
Consider a differential expressi@n , and let:
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p1dx + ... +Pm dXn

be an initial reduced form; | first state that whenem®® can findn functionsXy, ..., Xm
that give rise to an identity of the form:

(16) p]_dX1+...+pdewn:P1dX1+...+Pdern,

the right-hand side of that equality will be a new reduoedh. In order for this to be
true, it will suffice to prove that the functio§, Py are independent, and this is almost
obvious. Because there are one or more relationsebetthe variableX;, Py, once can
express some of these functions in terms of the athes by means of these relations,
and consequently convert:

Og=P1dX; + ... +PndXy

into a normal form that contains less tham functions. One knows that this is
impossible, and one can conclude thamifunctionsX; satisfy equation (16) then the
right-hand side of that equation will certainly be a neduced form oy . In other
words, the functionX;, Pk will be independent.

Having said this, the two symbolg)( (¢ ¢), being absolute invariants, preserve the
same value when one forms them by consideging/ to be either functions of;, P or
functions ofx;, px.

One will thus have:

5¢

a7 Z p, ap, aP
2%5_4"_6_4"% :2%5_4"_%0_4"
dp 0x 0p Ox “—OPaX 0XoP

Applying these general equations to the functignd, itself, we effortlessly obtain the
following equations:

(18)
(RX)=L (PX)=0,(XX)=0,(PP)=0

{ (R)=R, (X)=0,
We can thus state the following proposition:

If m functions Xof the2m variables x p« satisfy a differential identity of the form:
PidX;+ ... +PhdXy = p]_dX]_ + ... +pdem

then the2m functions X P are independent and satisfy the relations:

(P) =P, X)) =0,
PiX)=1, @EFX)=0, KX)=0, EP)=0
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The first two equations express the idea thas a homogeneous function of degree
one andX; is a homogeneous function of degree 0 in the varighlesThis is exhibited
by thefinite equations that were given by Clebsch, which allow onpais from one
normal form to another. | shall not elaborate upos phint, as it is well-known.

I will now establish a fundamental proposition that iiade the most felicitous use
of in his theory of groupdf one has k independent functions X;, ..., X that satisfy the
equations:

(X) =0, ®KiX) =0
then it will be possible to find a normal form that include the k fansti
PidXy + ... +PcdXc + Pir1 dXr1+ P dX = P1 dx + ... +Pm dXn .

I will commence by proving this proposition in the caseere one has just one
functionX; . Then, I will determine a functid?y by the two equations:

(19) P) =Py, (P1 Xy = 1.

It is easy to see that these equations are not incdiepat
The first one shows us that one will have:

P P
P.=p ¢(X1,...,Xm’_2,...,_mj,
1 1 pl pl

and if we recall that by virtue of the equation:
(X) =0

that X; satisfies, that function is homogeneous of degre® wéh respect to the variables
pi then we recognize with no difficulty that the equation

(P]_ Xl) =1
reduces to a relation between the derivativeg ahd the variables, p; / p1 that they
depend upon. Therefore, it is always possible, and in antirtfe of ways, to determine
a functionP; that satisfies the two equations (19). It will sufficetake an integral of
one linear equation in2— 1 independent variables.
Therefore, suppose that is determinate. Consider the form:
Ug :p]_dX1+ +pmdxm_ P, dX .
We shall see that it belongs to the type:
(20) Py dX; + ... +PydXy,

which proves the proposition that we have in mind.



Darboux — On the Pfaff problem (cont.). 9

In order to do this, | write the system of Pfaff diéntial equations that relate to the
form©y . One has:

g —dUs= d)l Xm—dpl XK+ ... +dP; Xy —dX; Py,

which allows us to construct the desired differential aqoatin the following form:

_0R X
dx ——Xd 9%, dP=-pP-—"t) d
ap, x1+6|q ?09 1
(21) 0P, aX
dp 1d><1+—1 dpP=2 d( p- p—lj
ox 0x an

| will prove that theserf equations can be verified without settihg 0 and that two
of them are consequences of the other ones. Unteothe unknown variableb<;, dP;
that the differentialslx, dp will be determined as functions of, and attempdetermine
dXi, dP; by substituting the values dk, dpk into the developed expressions &, dP;:

dX, = z‘”;l dx +Z % > dp,

dPy = zazdx +Z 1dp

we thus obtain the two equations:

[(P1 X1) — 1] @P. + A Py dt) = A dff(Py) — P4,
[( P]_ Xl) - 1] Xm =Adt (Xl),

which are verified identically. Therefore, equago(21) can be verified without one
having to setA = 0. They admit a second-order indeterminacy, emasequently the
form Uq belongs to the type (20), as we will establish.

It remains for us to prove in a general mannet ifthene hask independent function
X1, ..., Xk that satisfy the equations:

(Xn) =0, *®n Xv) =0

then it will be possible to find a normal form thibey belong to. Since we have proved
the theorem for a function, it will suffice to pmwhat if it is true fok — 1 functionsX;,

., Xk-1 then it will be true for another functiohunder the condition that this functidh
must satisfy the equations:

(22) V) =0, vVXx)=0

and that it is not coupled to the latter functitaysany relation and is independent of the
variables.
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Let:
Py dX; + ... +P dXeq + PdXe+ ... + P, dX,

be one of the normal forms that tke- 1 functionsXy, ..., Xk-1 enter into. If one
expresse¥ by means of variables§, P« then by virtue of the invariance properties of the
symbols @), (¢ ¢) equations (22) become:

(23) PV Yoo Yo LNy,
oR, oF, oR 0B
The functionV is therefore independent &%, ..., Pw1, but it is not necessarily
independent ofXj, ..., Xk-1. For the moment, make these latter variables casstan

Since, by hypothesis, the function does not depend solely upon them, it remains
variable, and since it satisfies the first of equatk2®), one sees, from the proposition
that was proved to begin with, that one can convert:

P dXc+ ... +PmdXy

into the normal form:
RdV+ R, dX,, + ... + BdX,

which will containV. However, one has regard&d ..., Xk-1 as constants; if one lets
them be variables then the preceding expression wdligenented with terms X, ...,
dX«-1 and one will have, consequently:

RodXc+ ... +PndX,=RdV+ B, dX,  + ..+ P.dX

+A dX FA A + L F A AXe-g .
Therefore, the original normal form:

PpdXs + ... +Pxq dXq + PedXc+ ... + P dX,
will be changed into the following one:
(Pr+A)dXy + ... + Pr1 + Act) dXeq + BdV+ B dX,, + ... + P.dX,
which indeed contains thefunctions:
X1, ooy X1, 'V,
the theorem is thus proved in general.

In summation, we can state the following proposition:

Whenever one has independent functiops. X X of the variables ix p« that are
homogeneous of degree zero in the variables@ satisfy, in addition, the equations:

(XaXp =0,
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it will be possible to appen@m — r other functions to them that give rise to the
differential identity:
P1 dxg + ... +XndXn =P dX; + ... + P, dX, .

The case where r = m is not excluded. The function®Xwill all be homogeneous
in the variables g where the former are of degréeand the latter are of degrele They
will have They will have an arbitrary form with respect to thealalas X.

By a simple change of notation, this important theorgives rise to another
fundamental proposition that we shall present.
One can give a new form to the identity:

(24) pldx1+...+mdm:P1dX1+...+Pmdm.
Set:
=g %="2
=poPn.
R=RQ, X, =~ } Pm= £

It will become:
dZ—Q]_ Xm . Qm—l erH = ,O(dZ—ql Xm —vo.. =" (Om1 de_]_).

Consider a functio® of the variablex;, p; that is homogeneous and of degrem
the variableg; . It takes the form:

¢ :pﬁ f(ql, vory Om-1, X1y ooy X1, Z),
and one will have:

% = ﬂ_li % = pﬂi a¢ p
op, = dg = Ox  "OX oz " az
09 _ of }

— ==l q——---— - -

Pt oq, LN

If we likewise calculate the derivatives of anotheiction ¢; that is of degreg with
respect to the variablggs and one substitutes all of these derivatives in the sly(ghg,)
then one will have:

wm:mwwm—wmpdi aﬂ,

T
0z #a Loz

in which [f f;] denotes the expression:

of |of _of | of|of of
S el I Paui® T
6q1 6)(l az| aq g|ox 0z
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For example, suppose that one is dealing with homogefigoctsons of degree zero.
One will haveu = 14 = 0, so:

(25) @oy=L1H01

m

If one now likewise operates with the variabde€);, Xy, and one applies the second
equation in (17) then one will have:

[f ], _Lf£],
P P,

in which the letterg, Z that are used as indices indicate the systemrathlas in which
one forms the bracket. We can therefore write:

(26) Ffilz.=p[ff]z.

If we apply this equation to all of the functiafisX;, Qx then we can conclude:

[XiZ=0, XiXJ=0, [QQ]=0,
[ZQ]+p0Q=0, [QX]=p.

Upon changing the notations, one thus has theviwilp proposition:
Consider2m + 1functions ZX;, Pk that satisfy the differential identity:
(27) dZ—P]_ Xm— veo = Pnm de =p (dZ—pl Xm — . = Pm dX”n),

these functions are necessarily independent. In addition, they shagilations:

[Z X]=0, [ % X]=0,
(28) [RX1=p [PX]=0, [ PR =0,
[Z X]]+pR =0.

Conversely, whenever one has k independent functions Z,,Xx-1 whose brackets are
all zero one can append to them some other functions such that the id2n}iig
satisfied.

It is essential to append the following relatid@sequations (28), which one gets by
applying Mayer’s formula to three of the functiafysx;, Px:
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0Z
[pZ] = p* - P
z
oX.
(29) [pXi]= _,06—',
z
oP
[PPR] = e -
z

These formulas, which one can prove directly, nigstombined with equations (28) if
one would like to have the equivalent of relati¢h8) that relates to the functions that
satisfy identity (16).

We again point out a particular case of the priagegroposition:One can satisfy
equation(27) by taking Z arbitrarily, and then p must satisfy just the fifsequations
(29).

XI.
Now, suppose that is odd and equal ton2+ 1. The determinark = > a;1 ... @n

will be zero; however, if we confine ourselves be general case then none of the first-
order minors will be zero. As for the invaridtwhich is defined by:

&, 8y Xl

A, ~t Qp Xz

(30) R = { @d} o ,
_@d

A an X,

=X, - =X, 0

it will not be zero, s®y belongs to the indeterminate type, and its reddoed can be
written:

dz—p1dx — ... = Pm dXn .

We consider the following two invariants:
The symbol §) will defined by the formula:

9
a, a ox,
gl |
(31) R2(¢)2:{ }: g,
_d¢ a, a,, 6Xn
_9¢  _9¢
0%, 0x,

and the symbolg ¢, by the relation:
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o, d
(32) R[4 ¢l = {@‘* _ dz}

From the properties of skew-symmetric determinantafaliese invariants are rational.
If one calculates with the reduced form then one fimdl:

R* =1,
(33) ()2 = (‘Z—fj ,
S )
We take:
#=22.

When one takes squares roots in formula (31), it wificuto choose the sign on the
right-hand side in such a manner that the absoluteianta@) reduces t@¢ / 0z when

one calculates with the reduced form.
The invariantR belongs to the class that we considered at the eadiole VIII, and

it is easy to recognize that it will be reproduced, buttiplied by J"*, when one
multiples the form®y by an arbitrary functiom. Therefore, 0 ©q4 belongs to the most
general type for any. In particular, consider a normal form f&; . We have the
following theorem:

No matter what functiop of the variables z,;xp« one chooses, it is possible to find
functions Z, X Pk that satisfy the identity:

dZ-PidX;—... = PndXn=0dz—pdx; — ... — pm dXn)
that we already considered.

The expressions (33) allow us to develop a method ajratien that is similar to the
one that Clebsch employed in the case of an even nuofibariables. Here, | will
utilize only their invariance properties in order to studyher the relations between the
various reduced forms.

XII.

| first say that whenever one has:

@d:dZ—Pldxl— —Pmdxn,
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the variableZ, X;, Px being independent. This proposition is proved as in theegieg
case.
Now, consider two different reduced forms that give tasthe identity:

(34) dz—pldxl—...—pmdxﬂ:dZ—Pldxl—...—Pmdxn,

and remark that upon applying the invariance propertieheosymbols §), [¢ ¢] one
will have:

99 _0¢
(35) 0z 9Z’
(o], =[oW] ,

When the first equation is appliedZothat will give us:

and consequently:
Z=2z+I1,

wherell depends upon only the variablespc . The same equation, when applied to the
functionsX;, Px, shows us thahey are independent of f one then replaces with its
value in the identity (34) then it becomes:

(36) dr :PldX1+...+Pmd)(,n—p1dx1—....—pmd>qn,

and z is eliminated completely.

Conversely, for any equality of the form (36), aran return to the equality (34) by
replacingl with Z —z These two equalities must therefore be consilaseabsolutely
equivalent.

Apply the second of formulas (35) to the functi@n, P« ; we will have:

(X, X)=0, (RR)=0, (X P)=0, (P X)=1
(37) (X)= Rttt Ry

LA L
(R)= P+t Ry

We are thus led to the following proposition:
If 2m + 1functions X, Pk, I of the variablesx pc satisfy an equations of the form:

(38) dr :PldX1+...+Pmd)<{n—p1dx1—...—pmdxﬂ
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then the functions;X P are independent, and when they are combined with the function
I they satisfy relationg37).

I will now conclude by proving that if independent functionX, ..., X; of the
variablesx , px satisfy the equations:

(XaXp =0

then one can append functions to them that allow oatisfy equation (38), or what
amounts to the same thing, as we have preveguation (34).
The proof is similar to the one that we developedticlarX, so I will content myself
by pointing that out.
First, consider the case of just one funct’¢rand determine a functioR; of the
variablesx; , px by the equation:
(P X)) = 1;

it is easy to see that if one considers the form:

Ug :dZ—pl dxg — ... ~ Pm dxy, + P dXg
then the Pfaff equations that relate to this form arel srmmarized in the single
equation:

de —dUJZ 0

are indeterminate. Moreover, as a result of the poesef the differentiatiz Uy can
only belong to the indeterminate type. One will thus necégdave:

Ug=dZ-PdXo— ... = Py dXy,
and consequently:
dZ—p]_ Xm— vor ~ Pm den:dZ—Pl Xm— el T Pmdxn,
or furthermore:
dil =P dX; + ...+Pmd)§n—p1dx1— ...—pdewn.

The theorem is therefore proved in the case of jstfonction.

When there are several of them, it will sufficerépeat, almost word-for-word, the
proof of article X. We shall dispense with that reprdidunc

We have now made known the three propositions offiderelate to the identities:

p_l_dX]_—...—pdewn =P1dX1—...—Pde,m
,O(dZ—p]_dX]_— —pmdxﬂ) =dZ—P1dX1— ...—Pmd)Qn,
pldX]_—...—pdewn =P dXy— ... = PndX, +d.

Since they have numerous applications, we would likprowve then by the most
elementary process. The only proposition that we haveowed from the theory of
partial differential equations is the following oy first-order equation admits at least
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one solution. Moreover, this proposition is likewise proved by argutséhat are given
in article VII.
We remark that the proposition in article X namely, that one can satisfy the
equation:
,O(dZ—pl dX]_— oo~ Pm dX”n) :dZ—P]_ Xm— veo. = Pm d)ﬂ«n

by takingZ to be an arbitrary function — provides a means of lttgcthe theory of
partial differential equations to the solution of thafPproblem that is different from the
one in article VII.
That is because fif:
Z=0

is the equation to be integrated then one can proposmvert the differential expression
in anodd number of variables:

dz—pi1dxa — ... — Pm dXn,
to the form:

%(dZ—Pldxl—...—Pmdxn),

and once that problem is solved, the equations:
X]_:C]_, ...,Xm:Cm

will give a complete integral to the proposed otetruth, this method seems less direct
than the one in article VII, and it seems thatuigments the difficulty in the problem,
since it leads to the solution, not only of the aepn:

Z=0,
but also of:
Z=C.

However, as one knows, it is easy to introduce mastamt into a partial differential
equation. For example, one replagewith x; + C, zwith z+ C or z +Cy % , and upon
solving with respect to that constant one can nthkeobjection that we just pointed out
disappear.



