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PREFACE. 

_____ 

 
 The present volume defines a sort of complement to the book that I recently published 
on the interpretation of wave mechanics by the theory of the double solution (1).  I recall, 
in more detail, certain questions that seem to me to necessitate a new examination of the 
role of measurement in quantum physics, but developed in a more concrete fashion that is 
closer to experimental reality than what has been done up to now. 
 The plan of this book is the following: After recalling some well-known principles of 
wave mechanics in the first chapter, I will present the theory of measurement that is due 
to J. von Neumann in chapters II and III, while presenting some arguments that were 
developed by Einstein and Schrödinger not long ago, and I will show that this theory, 
despite its elegant character and the perfectly satisfying appearance of its formalism, 
nonetheless leads to some consequences that are very difficult to accept.  The difficulties 
that it raises derive, on the one hand, from the fact that, in accord with presently 
dominant ideas, it does not allow for the permanent localization of corpuscles in space 
and, on the other, that it visualizes the processes of measurement in a very abstract 
manner. 
 After summarizing the fundamental concepts of the theory of the double solution in 
chapters IV and V, while adding some complementary notions that did not find their 
places in my previous treatises, I recall the study of the processes of measurement in 
chapter VI and VII from a concrete viewpoint.  I will introduce the essential ideas that 
wave trains are always bounded and that we can make observations or measurements on 
microphysical reality only by the intermediary of observable, macroscopic phenomena 
that are triggered by the local action of a corpuscle.  Upon adding to these fundamental 
remarks the idea of the permanent localization of corpuscles in space such as would result 
from the theory of the double solution, I will show that one thus obtains a clear image of 
the processes of measurement that do not raise the same objections are the theory of von 
Neumann and his heirs. 
 A last chapter is dedicated to a very rapid examination of von Neumann’s 
thermodynamics and its interpretation with the aid of the ideas that were discussed 
previously. 
 The goal of the present book is, in summation, to exhibit the reasons by which it 
seems to me to re-establish the notion of a permanent localization of microphysical 
corpuscles, and why, once I again became aware of that necessity, I sought in recent 
years to resume the attempt to interpret wave mechanics that I sketched out in 1927. 
 
  September 1956 
 
  Louis DE BROGLIE 
 

___________ 

                                                
 (1) Bibliography [3].  



TABLE OF CONTENTS  
______ 

 
 

 Page 
 
PREFACE…………………………………………………………………………     i 
 
TABLE OF CONTENTS………………………………………………………….    ii 
 

Chapter I. 

Review of some generalities on wave mechanics and measurement. 
 

§ 1. Some known principles of wave mechanics…………………………………     1 
§ 2. Reduction of the probability packet…………………………………………     4 
§ 3. Destruction of phases by measurement.  Interference of probabilities……..     6 
§ 4. Divergence between the statistical schema of wave mechanics and the usual 
 schema of statisticians……………………………………………………….     8 
 

Chapter II. 

The theory of measurement, according to von Neumann. 

 
§ 1. Pure case and mixture……………………………………………………….   11 
§ 2. The statistical matrix of J. von Neumann for the pure case…………………   13 
§ 3. The statistical matrix for a mixture of pure cases…..……………………….   16 
§ 4. Irreducibility of the pure case……………………………………………….   19 
§ 5. The statistical laws of wave mechanics will be impossible to interpret by the 
 introduction of hidden variables……………………………………………..   20 
§ 6. Critique of the preceding conclusion………………………………………..   23 
 

Chapter III. 

The theory of measurement, according to von Neumann (cont.). 

 
§ 1. Generalities on measurement………………………………………………..   24 
§ 2. The statistics of two interacting systems, according to von Neumann…...….   25 
§ 3. The measurement of a quantity in the von Neumann formalism……………   28 
§ 4. Less-admissible consequences of the theory of measurement in the present 
 interpretation of wave mechanics……………………………………………   29 
 
 
 
 
 



Table of Contents. iii 

Chapter IV. 

Causal interpretation of wave mechanics (theory of the double solution). 
 

  Page 
 

§ 1. Ideas at the basis for the theory of the double solution…………………..…..  33 
§ 2. Another way of expressing the guidance formula, and some generalizations   36 
§ 3. Proof of the guidance formula……………………………………………….  39 
§ 4. Introduction of nonlinearity and the form of the wave function u…………..  41 
§ 5. Illustration of the hypotheses made on u by an example……………………  43 
§ 6. The relationship between u and Ψ…………………………………………..  45 
 

CHAPTER V. 

Some complementary notions to the theory of the double solution and guidance. 

 
§ 1. Existence of singular solution in the exterior problem……………………….  48 
§ 2. The Rayleigh-Sommerfeld formula…………………………………………..  49 
§ 3. Construction of the function u with the aid of the Rayleigh-Sommerfeld 
 formula in the case of stationary states……………………………………….  51 
§ 4. Interpretation of the statistical significance of | Ψ |2 in the stationary states…  54 
§ 5. Two theorems from the theory of the double-solution-pilot wave……………  56 
§ 6. Some words about the wave mechanics of systems in configuration space….  60 
 

CHAPTER VI. 

Position of the causal interpretation in regard the problem of  
measurement in microphysics. 

 
§ 1. The special role played by the position of the corpuscle…………………….  62 
§ 2. Any measuring device will involve a separation of wave trains in space……  64 
§ 3. Recovering the usual schema of statisticians………………………………...  67 
§ 4. Interpretation of the uncertainty relations…………………………………….  71 
 

CHAPTER VII. 

Measurement of quantities by the interaction of two corpuscles. 

 
§ 1. The inconvenience of the measurement that was envisioned previously for  
 an isolated corpuscle…………………………………….…………………...  74 
§ 2. Interpretation of measurements of the second kind by the usual theory……..  77 
§ 3. Interpretation by the theory of the double solution…………………………..  78 
§ 4. Case of a measurement process involving the interaction of two corpuscles 
 whose singular regions (1)

kR  are not spatially disjoint………………………..  81 

§5. The idea of directly.  Examination of a remark by Einstein………………….  83 
§ 6. Conclusions.  Pure case and mixture…………………………………………  85 



iv The theory of measurement in wave mechanics 

CHAPTER VIII. 

Glimpse of von Neumann’s thermodynamics. 

 Page 
 
§ 1. Introduction to von Neumann’s formalism in thermodynamics…………..  86 
§ 2. Reversible and irreversible evolution……………………………………….  90 
§ 3. How the theory of the double solution must interpret the irreversibility that 
 results from measurement processes………………………………………..  91 
 

APPENDIX. 

Study of the passage from classical mechanics to wave mechanics 
  in a particular example……………………………………………  93 

 

BIBLIOGRAPHY………………………………………………………………….  97 

 

________ 

 

 

 

 
 
 



 

CHAPTER I 

REVIEW OF SOME GENERALITIES ON WAVE MECHANICS  

AND MEASUREMENT 

__________ 

 

 1.  Some known principles of wave mechanics. – The present interpretation that 
wave mechanics allows supposes that one can describe a corpuscle or a system of 
corpuscles in as complete a fashion as possible with the aid of a wave function Ψ that is, 
moreover, capable of having several components, as in the Dirac theory of the electron or 
in that of corpuscles with higher spin.  The function Ψ is always assumed to be 
“normalized” by the formula: 

(1)      ∫ | Ψ |2 dτ = 1. 
 
 The evolution of the wave function in the course of time is governed by a partial 
differential equation – viz., the wave equation – which is the well-known Schrödinger 
equation in the simplest case of a corpuscle without spin in the non-relativistic 
approximation.  It will take on a more complicated form for particles with spin (the Dirac 
electron, for example), because in these cases it will become, in reality, a system of 
partial differential equations that couple the various components of Ψ.  In a general 
fashion, the wave equations, along with the initial conditions and boundary conditions, 
will determine the evolution of the function Ψ completely. 
 If one completely forgets the origins of wave mechanics and the physical intuitions 
upon which it is founded then most authors will consider the function Ψ to be a simple 
mathematical instrument that serves to predict the probabilities of the various results of 
measurements that are performed in the corpuscle or the system, since that function (by 
chance?) will have the same form as the waves of classical physics. 
 Now, here are – briefly summarized – the postulates that constitute, in a way, the 
“recipes” that permit one to utilize the function Ψ − which is assumed to be known − for 
the calculation of the probabilities of the measurements that one can perform on 
corpuscular quantities.  One assumes that each of these quantities will correspond to a 
linear, Hermitian operator A whose proper-value equation: 
 
(2)      Aϕ = αϕ 
 
will permit one to define a continuous or discontinuous (or even partially continuous and 
partially discontinuous) set of proper values α and corresponding proper functions ϕ(α).  
The proper functions ϕ will form a complete system of functions with an orthonormal 
basis, in such a way that one can always write: 
 

(3)       Ψ = ∫ c(α) ϕ(α) dα, 
 
or, more simply, in the case of a discontinuous spectrum: 
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(4)      Ψ = i i
i

cϕ∑ , 

 
upon enumerating the proper values and the proper functions by an index.  Moreover, a 
mathematical formalism like the Stieltjes integral will permit one to combine the two 
cases of continuous spectrum and discontinuous spectrum into just one formula.  The set 
of proper values of A define the “spectrum” of that operator. 
 The fundamental principle that one takes to be the basis is then the following one: Let 
Ψ be the wave function of a corpuscle (or a system), upon which one must perform the 
measurement of a quantity A, with the aid of an appropriate device.  One will develop Ψ 
in proper functions ϕ of the corresponding operator A, and one can assert that the 
probability for the measurement to give a value that belongs to an interval dα is | c(α) |2 
dα.  In the case of a discontinuous spectrum, one will say, more simply, that the 
probability of the value of given by | ci |

2. 
 The mathematical expectation of the value αi – or, if one prefers, the mean value of 
the result of the measurement of A that is performed upon a very large number of 
corpuscles that have the same function Ψ – will be: 
 

(5)     A = 2| |i i
i

c α∑ = ∫ Ψ* A Ψ dτ. 

 
 When these general principles are applied to the measurement of the position of a 
corpuscle, that will give the following result: The probability for the coordinates of a 
corpuscle to be found inside the interval x → x + dx, y → y + dy, z → z + dz – i.e., in 
order for the corpuscle to be found in the volume element dτ = dx dy dz – will be  | Ψ |2 
dx dy dz.  An analogous statement will be valid for the probability of the presence of the 
figurative point of a system in the configuration space to which it corresponds. 
 The statements that relate to | Ψ |2 (e.g., the principle of interference or its 
localization) can be deduced from the general formalism in such a way that, from the 
viewpoint of that formalism, the probability of presence | Ψ |2 will be seen to have the 
same status as any other probability | ci |

2.  The set of all possible developments of Ψ in 
the different systems of proper functions ϕi that correspond to the various measurable 
quantities will thus appear to be entirely equivalent from the formula standpoint.  That 
idea, which serves as the basis for the “theory of transformations,” gives rise to some 
elegant mathematical developments, although we shall discuss only its physical 
significance. 
 The general postulate that was assumed above in relation to the statistical significance 
of the | ci |2 will imply, by an argument that I will not reproduce, the following 
consequence: The same experimental device can permit one to measure two quantities A 
and B simultaneously with any precision only if the corresponding operators commute; 
i.e., if one has ABϕ = BAϕ for any ϕ.  If that were not true – i.e., if ABϕ ≠ BAϕ, in general 
– then any experimental device that would permit one to attribute a value to A that is 
affected with a certain uncertainty and would leave behind an uncertainty in the value of 
B that is greater than the measurement of A would have to be more precise, and 
conversely.  The typical example of two quantities that are not simultaneously 
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measurable with precision is provided by any pair of quantities that are “canonically” 
conjugate, in the sense of analytical mechanics, such as, for example, the coordinate x of 
a corpuscle and the corresponding component px of the quantity of motion.  In the latter 

case, the corresponding operators (which are x and  −
2

h

i xπ
∂
∂

) are such that AB – BA = 

2

h

iπ
, and in turn, will not commute.  One then shows that the uncertainties that exist in 

the values of x and px will always satisfy the Heisenberg inequalities: 
 
(6)       δx δpx ≥ h, 
 
 and, in turn, can never be zero simultaneously. 
 Moreover, there exist quantities that, without being canonically conjugate, 
nonetheless, do not commute; for example, the three rectangular components MX, MY, MZ 
of the moment of the quantity of motion, for which one will find: 
 

MX MY – MY MX = 
2 Z

h
M

iπ
, … 

 
and one will then show that the uncertainties in the values of two of these components 
cannot be zero simultaneously, in general. 
 One can translate these results into a somewhat different language by saying that our 
general principle will make the value of any measurable physical measurement 
correspond to a probability distribution that has the form of Ψ.  In the discontinuous case, 
the probabilities of the values αi will be Pi = | ci |2, and in the continuous case, the 
probability density will be ρ(α) = | ci |

2.  Since the state of a corpuscle (or a system) is 
defined by a certain function Ψ, the set of measurable physical quantities will correspond 
to a set of probability distributions that the theory presently considers (perhaps 
mistakenly, as well will see) to be intervening with exactly the same status for the 
corpuscle (or system) in the state Ψ. 
 One can then define a “dispersion” for every probability distribution that is equal to 
the square root of the mean square of the distance from the mean value.  One thus sets 
this distribution to be: 

(7)     σ(A) = 2( )α α− = 2 2α α− . 

 
 On can then prove that one will have: 
 

(8)      σ(A) σ(B) ≥ 1
2 AB BA−  

for two quantities A and B. 
 If the operators A and B commute then the right-hand side of (8) will be zero, which 
one can interpret by saying that one can get precise values (so the dispersions will be 
zero) of the quantities A and B by the same measuring device.  If the operators A and B do 
not commute then the right-hand side of (8) will give a non-zero lower limit for the 
product of the dispersions, in such a way that no measurement operation can provide 
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precise values for A and B simultaneously.  For two canonically-conjugate quantities, one 

will have AB – BA = 
2

h

iπ
, and one will find that: 

 

(8 bis)     σ(A) σ(B) = 
4

h

π
, 

 
which will constitute a way of stating the uncertainty relations (6) that is more precise. 
 Before pursuing the study of the consequences of this formalism, I would like to 
insist upon something that is extremely abstract:  The wave function Ψ shall be 
considered to be a simple mathematical function that is a complex solution to a partial 
differential equation that will have − speaking casually − the form of an equation of wave 
propagation.  While casting a pall on the physical considerations that guided me in the 
beginning of my research and on the ones that were then developed by Schrödinger, one 
will no longer seek to give any physical picture for the relationships between the wave 
and the corpuscle.  We do not even know whether the wave Ψ is anything but a 
mathematical expression that will permit the calculation of probabilities, and whether it 
will remain somewhat obscured from physical reality.  On the other hand, simultaneously 
considering all of the developments of the wave Ψ and giving the same status to all of the 
probability distributions that one can deduce from it is somewhat strange, since one 
knows that each of these distributions will be physically significant only after one 
performs the corresponding measurement, and that the measurement will, as we shall see, 
completely modify the initial state of things.  Obviously, one can always say that any 
physicist that knows Ψ will have the right to appeal to it in order to calculate the values 
of a physical quantity that represent the possible results of a measurement of that quantity 
and the corresponding probabilities.  However, the probability distributions thus obtained 
will have only a subjective value, and can take on an objective value only after the 
effective performance of the measurement, which implies the intervention of an 
appropriate device.  Later on, we will return to these questions, which will remain very 
obscure in the formalism that we are presently using, and we shall pursue the study of the 
consequences of that formalism. 
 
 
 2.  Reduction of the probability packet. – Measurement plays an essential role in 
the interpretation of the formalism that was presented above, and which we are presently 
assuming, even if it does seem a little mysterious.  It is what changes the state of our 
knowledge of the system under study while giving us new information, and as a result, 
we are obliged to modify briefly the form of the wave Ψ that represents our knowledge of 
the corpuscle (or the system).  For example, if the measurement is a measurement of 
position that is more or less precise then the wave train Ψ that is initially associated with 
the corpuscle will be found to be “reduced” to a less-extended wave train, which can even 
be almost point-like if the measurement is precise, since the region where the probability 
of presence | Ψ |2 is non-zero will have diminished in extent.  One thus gets the term 
“reduction of the probability packet” that Heisenberg recently gave to that modification 
of Ψ.  On the contrary, if the measurement consists of the determination of one of the 
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components of the quantity of motion px then it will be in the space of momenta that 
reduction of the probability packet will take place, since that will then be the extent of the 
values of px that effectively appear in the Fourier representation of Ψ that will be 
diminished. 
 The question of the reduction of the probability packet will then pose a difficult 
problem in the present interpretation, namely: Is it the action of the measuring device that 
modifies the wave Ψ or is it the knowledge we acquire from the results of the 
measurement that implies that modification?  I do not know if all of the authors who have 
adopted the present probability interpretation are in accord on the answer to that question. 
 Some of them (and that will probably be the case for Bohr) will anxious to preserve a 
certain character of physical reality for the wave Ψ, and to say that it is the action of the 
measuring apparatus on the wave Ψ that provokes the reduction of the probability packet.  
Others, who are perhaps being more logical, will say that it is the knowledge of the result 
of the measurement that necessitates the modification of the wave, since, while the result 
of the measurement is not known to us, it will be the old predictions of the probabilities 
that correspond to the original form of Ψ that will remain valid in order for us to make 
those predictions.  However, if one adopts the second opinion then the wave Ψ will only 
be a purely subjective representation of the probabilities, and cannot be a representation 
of objective reality to any degree.  How then can it obey an equation of wave propagation 
and, despite everything, provide us with a statistical representation that is probably exact 
of phenomena whose physical reality is not in doubt?  This question remains truly 
obscure; we shall return to it. 
 The reduction of the wave train Ψ will give rise to a new situation that is 
characterized by a new form of Ψ, which is a situation that is unpredictable in advance, 
since only the probabilities of the various possible measurements can be calculated before 
making an effective measurement.  We shall have to demand whether that 
unpredictability results from a real indeterminacy, as one presently assumes, or, on the 
contrary, on the value of certain hidden variables, as is suggested by the theory of the 
double solution, which is a question that has a close relationship with a theory that was 
stated by von Neumann in his theory of measurement in wave mechanics. 
 The Heisenberg uncertainty relations show that a device that permits one to 
simultaneously perform various measurements on a corpuscle cannot simultaneously tell 
us precisely the values of all of the quantities that characterize the corpuscle.  There will 
therefore be an incomplete maximum knowledge of these quantities that is compatible 
with the uncertainty relations.  Once we have acquired this maximum knowledge, we can 
construct the wave function that serves to represent our knowledge immediately after the 
measurement, and upon starting with the initial form of Ψ, we can follow its ultimate 
evolution in the course of time with the aid of the wave equation.  At any instant, we can 
then calculate the probabilities of the results of various measurements that one can 
perform at that instant.  That will be true up to the point at which we know the result of 
the new measurements, which will modify the state of our knowledge and briefly 
interrupt the regular evolution of the wave Ψ.  The regular evolution of that wave 
between two measurements – which is an evolution that is ruled by the wave equation – 
is itself determined entirely by the initial form of Ψ (and possibly by the boundary 
conditions), since the wave equation is of first order in time.  The evolution of Ψ between 
two measurements will be determined, but not the observable phenomena, since the 
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knowledge of the wave function will give only probabilities for them.  If the description 
of physical reality by the function Ψ is a complete description – i.e., if there exist no 
description that is more complete, for example, by the introduction of hidden variables – 
then physical phenomena will be undetermined. 
 
 
 3.  Destruction of phases by measurements.  Interference of probabilities. – The 
A measurement will introduce a discontinuity into the evolution of the wave function.  
The knowledge of it after the measurement does not allow one to reconstruct the form 
that it had before the measurement. 
 Consider a large number of corpuscles (or systems) that are initially found in the 
same state that is represented by Ψ.  Measure a certain quantity A for each of them that 
has proper functions ϕj and proper values αj .  After these measurements, the proportion 
of corpuscles (or systems) for which one will have found the various values αi for A will 
give us the squares of the moduli of the coefficients ci in the development Ψ = i i

i

cϕ∑ of 

the wave function before the measurement.  The knowledge of Ψ for all of the corpuscles 
(or systems) after the measurement will then provide us with the values of the | ci |, but in 
order to know the ci themselves, we would need to know their arguments, and thus, the 
relative phases of the components ci ϕi of the initial wave function. 
 It was that remark that led Bohr to emphasize that any measurement must have the 
effect of completely destroying the phases.  It is this destruction of the phases by the act 
of measurement that brings about what constitutes a break in the evolution of Ψ.  Indeed, 
the differences in phase between the components of the development i i

i

cϕ∑  are of 

paramount importance, and any knowledge that relates to the wave function that does not 
involve knowledge of these phase differences will be radically incomplete.  The 
importance of these phases is clearly manifested to us in the study of interference 
phenomena for the probabilities. 
 Consider two quantities A and B whose operators do not commute, and which, in turn, 
are not simultaneously measurable.  The proper values and proper functions of A are αi 
and ϕi, while those of B are βk and χk .  One easily proves that since A and B do not 
commute, the system of the ϕi cannot coincide with that of the χk .  Meanwhile, since 
the χk  define a complete system, each ϕi can be expressed with the aid of the χk in the 
form: 
(9)      ϕi = ik k

k

s χ∑ , 

 
in which the sik are elements of a unitary matrix S.  More than one term in the right-hand 

side will appear in this development, since the system of ϕi and that of χk do not coincide.  
Suppose then that the state of the corpuscle (or system) being examined is represented by 
the wave function: 
(10)     Ψ = i i

i

cϕ∑  = 
,

i ik k
i k

c s χ∑ . 
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 If one then measures the quantity A then one will find one of the proper values αi , 
where the probability of finding αj will be | cj |

2 a priori.  After the measurement, the 
corpuscle (or system) will be found in the state ϕj, and in that new state a measurement of 
B will lead to the value βk with the probability | sik |2.  Therefore, the probability of 
finding the value βk for B by first measuring A and then B will be equal to 2 2| | | |i ik

i

c s∑ . 

 However, now suppose that we have performed the measurement of B directly on the 
initial state.  Then, from the form of the last expression in (10), the general principle that 
relates to the probabilities of the results of measurement will tell us that the probability of 

finding βk will be equal to 
2

i ik
i

c s∑ .  That expression will be entirely different from the 

preceding one, because it will depend upon the phases (or arguments) of the ci and sik, 
while 2 2| | | |i ik

i

c s∑ obviously does not.  That is what one calls the “interference of 

probabilities.” 
 We illustrate this with a simple example:  Take a one-dimensional domain with 
length L.  The normalized proper functions of the quantity of motion will be ϕi = 

21 i
i
p x

he
L

π−
 in that domain.  Then, let: 

(11)    Ψ = 
2

i
i
p x

i h

i

c
e

L

π−

∑   2| | 1i
i

c
 = 
 
∑  

 
be the wave function of the corpuscle in its initial state.  If one first measures p, and then 
x then the probability of the position x = x0 will be: 
 

0

22
2 1

| |
i

i
p x

h
i

i

c e
L

π−

∑ , 

 
or simply 1 / L, which will imply the equal probability of all positions on the segment of 
length L. 
 However, if, on the contrary, one measures the coordinate x in the initial state directly 
then the probability of the value x = x0 will be | Ψ(x0) |2, and this will involve the 
interference of the plane waves whose superposition will constitute the Ψ, a result that is 
necessary in order to account for interference in optics and the diffraction of electrons.  
One will then see that the interference of probabilities, whose existence is necessary for 
the interpretation of experimental facts, will depend essentially upon phases, whose role 
is then seen to be paramount. 
 The fact that the probability of the value βk of B, when measured directly in the initial 

state, will be 
2

i ik
i

c s∑ , and not 2 2| | | |i ik
i

c s∑ , can seem, on first glance, to be contrary to 

the theorem of composed probabilities, but in reality, that is not so: The probability 
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2 2| | | |i ik
i

c s∑  is indeed the one that one must choose when one first makes a 

determination of A, and then B, since it is equal to the sum of the products of the 
probilities for first getting a value αi for A times the probability of then getting the value 
βk for B.  The theorem of composed probabilities is then safe, and if one envisions the 
probabilities from a purely subjective viewpoint then one can say that there is no reason 
for the probability 2 2| | | |i ik

i

c s∑  to be equal to that of directly obtaining the value βk of B 

by a measurement of that quantity in the initial state.  However, if one analyzes that idea 
closely then one will see that all of the probability distributions that are introduced in the 
usual theory (except, without a doubt, | Ψ |2) will exist in the initial state only subjectively 
for the physicist who must make the predictions on the result of possible measurements.  
These distributions will exist objectively only after the corresponding measurement has 
been performed when one further ignores the result of that measurement.  It is that 
situation that will explain, later on, why the schema of the usual probabilistic 
interpretation of wave mechanics is not in agreement with the usual schema that is 
assumed by statisticians.  
 
 
 4.  Divergence between the statistical schema of wave mechanics and the usual 
schema of statisticians. – In the usual schema of statisticians (which we will present by 
assuming that one is dealing with continuous variables), one defines a probability density 
ρX(x) for every random variable X such that ρX(x) dx will be the probability for X to have 
a value between x and x + dx.  One will likewise define ρY(y) for another continuous 
random variable Y. 
 One then defines a density ρ(x, y) such that ρ(x, y) dx dy is the probability of 
obtaining values for X and Y by the same measurement operation (the statisticians often 
say “by the same proof”) that are contained in the intervals x → x + dx and y → y + dy, 
respectively.  That definition will seem quite natural if one adopts a concrete image of the 
probability in which “individuals” appear, for each of which the quantities X and Y will 
have a well-defined value, so statistics will be introduced by the simultaneous 
consideration of a very large number of individuals for which X and Y have different 
values. 
 Outside of ρX(x), ρY(y), and ρ(x, y), statisticians will also consider the probability 
density ( ) ( , )X

Y x yρ of Y, when coupled to X, which will correspond to the probability of 

obtaining the value y of Y when one knows that X has the value x, and one likewise 
defines the probability of X, when coupled to Y, with the aid of ( ) ( , )Y

X x yρ . 

 One must now have the following relations, which one can consider to be obvious, 
between the five probability densities that we just defined: 
 

(12)  
( ) ( )

( ) ( , ) , ( ) ( , ) ,

( , ) ( , )
( , ) , ( , ) ,

( ) ( )

X Y

Y X
X Y

Y X

x x y dy y x y dx

x y x y
x y x y

y x

ρ ρ ρ ρ

ρ ρρ ρ
ρ ρ

 = =



= =


∫ ∫
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from which, one will infer that: 
 

(13)  ρX(x) = ( ) ( , ) ( )Y
X Yx y y dyρ ρ∫ ,  ρY(y) = ( ) ( , ) ( )X

Y Xx y x dxρ ρ∫ . 

 
 Now, the essential fact is that the preceding schema, which is usually taken for 
granted by statisticians, is not applicable to the probability distributions that are 
envisioned in the present interpretation of wave mechanics.  Indeed, it is, in general, 
impossible to define the density ρ(x, y) for two measurable quantities, since it is, in 
general, impossible to simultaneously measure the values of the quantities X and Y.  
Formulas (12) no longer make sense then.  Without a doubt, it is always possible to 
define the densities ρX(x), ρY(y), ( ) ( , )Y

X x yρ , and ( ) ( , )X
Y x yρ , but they will no longer be 

related by formulas (12) and (13). 
 As an example of this, recall the preceding case that was examined of two measurable 
quantities A and B that are not commutative, and rewrite formulas (9) and (10) by passing 
from the discontinuous case to the continuous case.  We will have: 
 
(14)  ϕ(α) = ∫ s(α, β) χ(β) dβ, χ(β) = ∫ s−1(α, β) ϕ(α) dα . 
 
 If Ψ is of the form: 
 

(15)   Ψ = ( ) ( , )c s dα α β α∫  = ( ) ( , ) ( )c s dα α β χ β α∫∫  

then one will find that: 

(16)   ρA(α) = | c(α) |2,  ρB(β) = 
2

( ) ( , )c s dα α β α∫ , 

 
where the second formula expresses the interference of probabilities, so: 
 

(17) ( ) ( , )A
Bρ α β  = | c(α) |2 | s(α, β) |2,     ( ) ( , )B

Aρ α β  = 
2 21( ) ( , ) ( , )c s d sγ γ β γ α β−

∫ , 

 
but here the products ρB(β), ( ) ( , )B

Aρ α β , and ρA(α), ( ) ( , )A
Bρ α β  have no reason to be equal, 

which will indeed show that the non-existence of the density ρ(α, β), which must be 
equal to their common value. 
 Where does this very strange special character of the statistical distributions of 
modern quantum mechanics come from?  The answer seems to be contained in the 
essential role that is played by measurement.  Since the probability distributions of 
modern quantum mechanics (with the possible exception of some of them) do not 
constitute objective probabilities, they can be regarded as all corresponding to a 
collection of individuals at the same instant for which the quantities will have well-
defined values.  The implicit hypothesis that makes the relations (12) and (13) “obvious” 
for the statistician is not realized here. 
 It is only after the action of the measuring device of a quantity for the corpuscle (or 
system) that the probability distribution can be considered to be realized objectively.  To 
speak more precisely, if one imagines that the measurement of a certain quantity is 
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performed simultaneously on an infinitude of corpuscles (or systems) that initially have 
the same function Ψ then it will be only after performing the measurement on all of these 
corpuscles (or systems) that one will really have a collection of individuals that each 
possess a precise value of the measured value such that these values will be distributed 
according to the law of probability in | ck |

2, and it can be further remarked that the law of 
probability in | ck |

2 will thus not be found to be realized objectively by a collection, so 
much as for the measured quantity and the ones that commute with it, to the exclusion of 
the other ones.  If the physicist knows the wave function in the initial state, when no 
measured has been performed, then he can calculate the various probability distributions 
that he can subsequently decide to measure.  However, each of these distributions can be 
found to be thus realized, and thus correspond to a collection, only after performing the 
corresponding measurement.  The distributions can never be all found to be realized 
simultaneously, since one cannot simultaneously measure all of the quantities, and one 
must employ two incompatible measuring devices in order to measure two non-
commutating quantities. 
 Certainly, the physicist always has the right to simultaneously consider the set of 
probability distributions before any measurement that can be deduced from the various 
developments of the initial Ψ, but these probabilities will then have a subjective 
character, and are not objective probabilities that are statistically realized by the same 
collection of individuals.  As we have seen, that is what prevents us from attributing the 
properties (12) and (13) − which will be obvious for objective distributions that refer to a 
collection of individuals with well-defined characteristics − to the probability 
distributions of conventional wave mechanics.  We think that it is for the same reason 
that the celebrated theorem of von Neumann, which we will discuss soon, is basically 
only a truism, and does not at all prove the impossibility of re-establishing determinism 
in wave mechanics by the introduction of hidden variables. 
 
 

_________ 
 

 



 

CHAPTER II. 

THE THEORY OF MEASUREMENT, ACCORDING TO VON NEUMANN  (1). 

_________ 

 
 
 

 1.  Pure case and mixture. – First, recall some considerations regarding the 
interference of probabilities.  Let there be a very large number N of corpuscles (or 

systems) that all have the same wave function Ψ.  If A is a measureable physical quantity 
with proper values αk and proper functions ϕk then if one has Ψ = k k

k

c ϕ∑  then the 

measurement of A must lead one to find the value α1 for | c1 |
2
N systems, the value α2 for 

| c2 |
2
 N

 systems, etc.  The mean value of A will be 
2

| |k k
k

c α∑ . 

 Now, imagine that instead of having N systems in the same state, we have | c1 |
2
N 

systems in the state ϕ1, | c2 |
2
 N

 systems in the state ϕ2 , etc.  The measurement of A will 

then give us the same statistical results as in the former case.  One might then believe that 
the two cases are equivalent, but we shall see that this is not true. 
 Indeed, consider a measurable physical quantity B that does not commute with A.  
The proper functions of B will not coincide with those of A, and if βk and χk are the 
proper values and proper functions of B, resp., then one will have ϕk = kl l

l

d χ∑ , in which 

the development will generally contain several terms.  First, imagine the previous case, in 
which we had N systems that were all in the same state: 

 
Ψ = k k

k

c ϕ∑ = 
,

k kl l
k l

c d χ∑ . 

The measurement of B for all of these systems will then give N
2

,
k kl

k l

c d∑ times the value 

βl, and the mean value of B will be: 
 

(1)    B = 
2

k kl l
l k

c d β∑ ∑  = B dτ∗Ψ Ψ∫  = ( )

,
k l kl

k l

c c Bϕ∗∑ , 

with: 
( )
klB ϕ  = k lB dϕ ϕ τ∗

∫ . 

 

                                                
 (1) See bibliography [1], [2]. 
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 We then place ourselves in the second case, where we had | c1 |
2
N systems in the state 

ϕ1.  The measurement of A on the first | c1 |
2
N systems will give the value βl for a 

proportion of these systems that is equal to | dkl |
2, etc.  In total, the value of βl of B will 

be obtained: 
N 

2 2| | | |k kl
k

c d∑  

 
times, and in turn, the mean value of B will be: 
 
(2)     B = 2 2

,

| | | |k kl l
k l

c d β∑  = 2 ( )| |k kl
k

c B ϕ∑ , 

with: 
( )
klB ϕ  = k lB dϕ ϕ τ∗

∫ . 

 
 One then sees that the two cases that we envisioned are completely different for any 
quantity that does not commute with A.  In the first one there is interference of 
probabilities, while in the second one that interference is not present.  One cannot 
therefore consider the N systems as defining a collective system that is composed of N 

|c1|
2 individual systems that have the value α1 for A, etc.  Moreover, it is obvious that it 

will therefore be entirely legitimate to consider the N systems as defining a collective 

system that is composed of N | d1 |
2 systems that have the value β1 for B, etc., with d1 = 

1k k
k

c d∑ , and this second collective system will not coincide with the first one.  We can 

thus not consider the set of N systems as defining a well-defined collective system, since 

that collective system will vary according to the quantity that is envisioned.  We then 
recover the idea that we previously brought to light: The probabilities that are envisioned 
in conventional wave mechanics correspond to a unique collective system that is realized 
in the state Ψ.  In order to distinguish the case where the probability distribution for a 
quantity A has only a subjective value before the measurement from the one where that 
distribution is realized after the measurement, von Neumann said that the former case 
constitutes a “pure” case, while the latter one constitutes a “mixture.” 
 Without making any act of measurement intervene, one can imagine N1 systems that 

have a wave function Ψ(1), N2 systems that have a wave function Ψ(1), etc.  The set of all 

N systems will then define a “mixture” of N1 pure cases that correspond to Ψ(1), N2 pure 

cases that correspond to Ψ(2), etc.  We recover the second case that was studied at the 
beginning of this paragraph by taking N1 = N | c1 |

2, …  If we set Ni / N = pi then we will 

have a “mixture” that is defined by the set of “statistical weights” pk with k
k

p∑ = 1. 

 If we set ck = ki
kp eα  then we will see that the pk = | ck |

2 are the statistical weights of 

the mixture that is equivalent to the pure case Ψ, as far as the measurement of A is 
concerned.  However, this mixture is realized only after the measurement that 
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transformed the initial pure case into this mixture.  The mixture that is equivalent to the 
pure case Ψ for the measurement of a quantity B that does not commute with A will 
involve statistical weights that are different from the preceding ones, and will be realized 
only by a measurement that involves a device of a different type.  That is why one cannot 
reduce a pure case to a well-defined mixture. 
 We have seen that the mean value of B is given by formula (1) for the pure case Ψ.  If 
one replaces this pure case with a mixture that is found to be realized by the measurement 
of A then the mean value of B will be given by formula (2).  It is easy to specify the 
manner in which the two expressions (1) and (2) differ.  Formula (1) can be written: 
 
(3)     B = ( ) ( )

,

| | | | l ki
k l kl

k l

c c e Bα α ϕ−⋅∑ . 

 
 If one assumes that the phases αk (i.e., the arguments of the αk) are known completely 
with equal probabilities for their possible values then the mean value of the expression 
(3) will be obtained by taking a mean over the values of the αk, which are all assumed to 
be equally probable.  The terms where k ≠ l will give zero, and we will recover the 
expression (2).  In other words, one passes from the pure case Ψ to the mixture that is 
realized by the measurement of A by assuming that this measurement has made one lose 
all knowledge of the phases αk .  Here, we indeed recover the conclusion that the 
measurement of A that is performed on the initial state that is represented by Ψ = k k

k

c ϕ∑  

will have the effect of completely destroying the phase difference that exist between the 
components ϕk of the initial Ψ. 
 Finally, we have obtained a neat idea of the difference between a “pure case” that is 
defined by a wave function Ψ and a “mixture” that is defined by a set of pure cases with 
wave functions Ψ1, Ψ2, … that are affected with statistical weights p1, p2, … 
 
 
 2.  The statistical matrix of J. von Neumann for the pure case. – First, envision a 
pure case that is defined by a wave function of a given form.  That function can be 
considered to be a vector in a Hilbert space.  If ϕ1, ϕ2, …, ϕn, … is a complete, 
orthonormal system of basis functions (for example, the proper functions of a Hermitian, 
linear operator A) then the ϕi can be considered to define a complete system of unitary 
vectors in Hilbert space, and the expression Ψ = k k

k

c ϕ∑  will be analogous to the 

expression of a vector with the aid of its components along orthogonal directions that are 
defined by the unitary vectors.  One can say that the ck are the components of Ψ in the 
basis system of the ϕk .  The Hilbert space that we consider will be a complex space, and 
the components ck will be complex, in general. 
 Now, let: 

Ψ = k k
k

c ϕ∑  and χ = k k
k

d ϕ∑  

 
be two vectors in Hilbert space.  By definition, their scalar product is (D being the 
domain variation of the variables in the ϕ): 
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(4)   (Ψ ⋅⋅⋅⋅ χ) = 
D

dχ τ∗Ψ∫  = 
,

k l k l
k l

c d dϕ ϕ τ∗ ∗∑ ∫  = 
,

k l kl
k l

c d δ∗∑  = 
,

k k
k l

c d∗∑ , 

and one will have: 
(5)      (χ ⋅⋅⋅⋅ Ψ) = (Ψ ⋅⋅⋅⋅ χ)*; 
 
one will indeed then have the generalization of the classical expression for the scalar 
product to complex vectors. 
 The scalar product of a vector Ψ with itself, which is analogous to the square of the 
length of an ordinary vector, is called the “norm” of that vector, and will have the value: 
 

(6)     N(Ψ) = (Ψ, Ψ) = 2| |
D

dτΨ∫  = 2| |k
k

c∑ . 

 
If the vector is normalized then one will have: 
 

N(Ψ) = 1 and 2| |k
k

c∑ = 1. 

 
 An operator on Hilbert space will correspond to an operator that makes one vector go 
to another one χ = AΨ, which will then define the operation that takes Ψ to χ, and one 
will have: 

l l
l

d ϕ∑  = A k k
k

c ϕ∑ , 

 
so, upon multiplying by jϕ∗  and integrating over D, one will get: 

 

(8)     dj = k k kD
k

c A dϕ ϕ τ∗∑ ∫  = jk k
k

a c∑ . 

 
The ajk, which are elements of the matrix that is generated by A in the system of the ϕk, 
will then be the coefficients of the linear transformation that takes the components of Ψ 
to those of χ.  The conservation of norm would impose the condition that the matrix a 
must be unitary. 
 If Ψ is once again the wave function of a “pure case” then imagine the operation on 
Hilbert space of “projecting onto the vector Ψ;” let PΨ be the corresponding operator.  It 
is obvious that 2PΨ  = PΨ, and that, more generally, nPΨ  = PΨ.  Since all of the powers of P 

are identical, one says that this operator is “idempotent.” 
 Now, let there be a complete system of orthonormal basis functions ϕ1, …, ϕn, …  
We have a development for Ψ: 
 

Ψ = k k
k

c ϕ∑ ,  with ck = kD
dϕ τ∗Ψ∫  and 2| |k

k

c∑ = 1. 
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One can obviously find an infinitude of orthonormal basis systems for which Ψ is one of 
the basis vectors.  In one of these systems, the function ϕk will have a development of the 
form: 

(9)    ϕk = dΨ + …,  with d = kD
dϕ τ∗Ψ∫  = kc∗ . 

 
The operator PΨ, which is the “projector” onto Ψ, is defined by: 
 
(10)     PΨ ϕk = dΨ = kc∗ Ψ 

 
for any ϕk .  The matrix that is generated by the operator PΨ in the basis system of ϕk has 
an element with indices m, n: 
 

(11)  (PΨ)mn = m nD
P dϕ ϕ τ∗

Ψ∫  = n mD
c dϕ τ∗ ∗ Ψ∫ = cm nc∗ . 

 
Thus, the matrix PΨ that is attached to the pure case being considered is expressed with 
the aid of the coefficient of the development of Ψ in the basis system that is being 
utilized.  One has thus defined what von Neumann called the “statistical matrix” that is 
attached to the pure case Ψ; formula (11) makes it obvious that this matrix is Hermitian. 
 The statistical matrix possesses two fundamental properties: 
 
 1. Its trace is equal to 1.  Indeed: 
 
(12)    Tr PΨ = ( )nn

n

PΨ∑ = n n
n

c c∗∑ = 1. 

 
 2. It is idempotent.  Indeed, one will have: 
 
(13)   2( )mnPΨ  = m p p n

p

c c c c∗ ∗⋅∑  = cm nc∗  = (PΨ)mn , 

 
and thus, in terms of matrices, 2PΨ  = PΨ, and by recurrence, nPΨ  = PΨ. 
 
 Now, let A be a quantity in the system being considered.  If the ϕk are functions of an 
arbitrary orthonormal basis (which are no longer proper functions of A, here) then we 
have seen that the mean value of A will be: 
 
(14)     A  = ( )

,
k l kl

k l

c c Aϕ∗∑ , 

 
where the ( )

klA ϕ  are the elements of the matrix that is generated by the operator A in the 

system of the ϕk , and ck is the component of Ψ along  ϕk .  One can also write: 
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(15)   A  = ( )

,

( )lk kl
k l

P Aϕ
Ψ∑  = Tr(PΨ A) = Tr(A PΨ). 

 
Therefore, the knowledge of the statistical matrix will provide us with a simple means of 
calculating A . 
 The statistical matrix of a pure case is frequently called an “elementary statistical 
matrix” (Einzelmatrix), in contrast to the more general statistical matrices that we shall 
encounter later on while studying mixtures of pure cases. 
 An elementary statistical matrix can be easily put into diagonal form.  In order to this, 
it will suffice to take the basis system to be a system where the Ψ considered is one of the 
basis functions; for example, ϕ1 = Ψ.  The elementary statistical matrix will then take the 
form: 

(16)     

1 0 0 0

0 0 0 0

0 0 0 0

⋅ ⋅ ⋅ ⋅

⋯

⋯

⋯

⋯

. 

 
All of the terms will be zero, except for the first diagonal term, which is equal to 1; this 
results from (11) easily.  The trace of the statistical matrix will be an invariant under 
changes of basis functions, and in turn, a known property of unitary transformations; it 
must then be equal to 1, as the table (16) shows.  This table will also permit one to verify 
immediately that the statistical matrix is idempotent. 
 
 
 3.  The statistical matrix for a mixture of pure cases. – We shall now consider a 
mixture of pure cases.  We have already defined such a mixture by considering N 

systems, of which, Np1 are in the state Ψ(1), Np2 are in the state Ψ(2), …, with k
k

p∑ = 1.  

However, we can also introduce the idea of mixture for just one system.  Indeed, it can 
happen that we are ignorant of the exact form of the wave function of a system, and that 
we know only that it has a probability p1 of being in the state Ψ(1), a probability p2 of 
being in the state Ψ(2), etc., a probability pn of being in the state Ψ(n), with k

k

p∑ = 1.  The 

state of our knowledge about the system is then represented by a mixture of pure cases 
with the statistical weights pk . 
 Each of the pure cases in the mixture has an elementary statistical matrix ( )kP

Ψ .  We 

attribute a Hermitian statistical matrix: 
 

(17)     P = ( )

1

k

n

k
k

p P
Ψ

=
∑ , 

with 

(18)     P(m) = ( ) ( )

1

n
k k

k l m
k

p c c
=
∑  
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to it, where the statistical weights pk are positive numbers between 0 and 1 whose sum is 
equal to 1.  The ( )k

mc  are the components of the various Ψ(k) in the system with basis ϕ1, 

…, ϕn .  The statistical matrix (17) thus appears to be a superposition of elementary 
statistical matrices. 
 As an example, suppose that one has taken the basis functions to be the proper 
functions that relate to position δ(q − q′), where δ is the singular Dirac function.  The 
formula: 

(19)    Ψ(k)(q, t) = ( ) ( , ) ( )k q t q q dqδ′ ′ ′Ψ −∫  

 
will then show that the ( )k

ic  are equal Ψ(k)(q′, t), and that one will find that the 

components of the statistical matrix are: 
 

(20)    P(q′, q″) = ( ) ( )

1

( ) ( )
n

k k
k

k

p q q∗

=

′ ′′Ψ Ψ∑ . 

 
This is Dirac’s statistical matrix. 
 The mean value of a measurable quantity A of the system will be: 
 

(21)     A  = ( )

1

k

n

k
k

p A
Ψ

=
∑ , 

 
where ( )kA

Ψ
 is the mean value that A will have when the system is in the pure state Ψ(k).  

From (15), we will then get: 
 

(22)   A  = ( )

1

( )k

n

k jj
k j

p P A
Ψ

=
∑ ∑  = ( )

1
k

n

k
k j jj

p P A
Ψ

=

 
 
 

∑ ∑ . 

 
The formula will therefore be the same as it is for the pure case. 
 The statistical matrix of a mixture, like that of a pure case, will always have a trace 
that is equal to 1, because: 
 

(23)   Tr P = mm
m

P∑ = ( ) ( )

1

n
k k

k m m
m k

p c c ∗

=
∑∑  = ( ) 2

1

| |
n

k
k m

k m

p c
=
∑ ∑  = 1. 

 
 By contrast, while the matrix of a pure case is always idempotent, the same thing is 
not true for the statistical matrix of a mixture.  Indeed, one can prove that any idempotent 
statistical matrix is elementary.  In order to do that, one assumes that P2 = P, and one 
writes P in diagonal form, which is always possible.  If pi is the i th diagonal element of P 
then the relation P2 = P will demand that one must have 2ip  = pi , and the pi will then be 

equal to 0 or 1.  The equation Tr P = 1 that is satisfied by all statistical matrices will then 
show that one of the pi is different from 0, and therefore equal to 1.  The system will then 
have a unique Ψ that agrees with one of the basis functions that reduces P to its diagonal 
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form.  Therefore, the necessary and sufficient condition for a statistical matrix to be an 
idempotent is that it be elementary. 
 Now, consider the non-elementary statistical matrix of a mixture.  If the Ψ(1), Ψ(2), …, 
Ψ(n) that define the pure cases that appear in the mixture are orthogonal (which can 
happen only in exceptional cases) then one can take them to be the first n basis function 
of an orthonormal system.  One will then have ( )k

mc  = δkm , since Ψ(k) will reduce to ϕk and 

P(m) will be zero for l ≠ m, while the Pkk will be equal to pk for k ≤ n and zero for k > n.  
The statistical matrix will then take the following diagonal form: 
 

(24)    

1

2

0 0 0

0 0 0

0 0 0

0 0 0 0
n

p

p

p

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋯

⋯

⋯

⋯

⋯

⋯

. 

 
However, this is the one exceptional case.  In general, the functions Ψ(1), …, Ψ(n) will not 
be orthogonal.  One can nonetheless reduce the matrix P to diagonal form, even in this 
case, but the diagonal elements kp′  will no longer be equal to p1, …, pn, 0, 0, …  Since 

the matrix P is Hermitian, the kp′  will be real numbers.  Moreover, since Tr P = 1, one 

will have k
k

p′∑  = 1.  We shall show that the kp′  cannot be negative.  In order to do that, 

if ξk are the components of a vector Ξ in Hilbert space then consider the scalar product of 
Ξ with PΞ.  One will then have 
 

(25)   (Ξ, PΞ) = ( ) ( )

, 1

n
k k

m k m n n
m n k

p c cξ ξ∗ ∗

=
∑ ∑  = 

2( )

1

( , )
n

k
k

k

p
=

Ξ Ψ∑  

for its value. 
 Since the square of a modulus is, a fortiori, positive or zero, we will see that the 
scalar product (25) is necessarily positive or zero.  Now, if we put P into its diagonal 
form then that scalar product will have the following expression: 
 

(26)    (Ξ, PΞ) = 
2

m m
m

p ξ′∑ , 

 
which must be ≥ 0, and for any Ξ.  Therefore, the mp′  must all be positive or zero.  Since 

their sum is equal to 1, one will have 0 ≤ mp′ ≤ 1.  One infers from that that mp′ − 2
mp′  ≥ 0, 

so for any arbitrary vector Ξ in Hilbert space: 
 

(27)   (Ξ ⋅⋅⋅⋅ (P – P2) Ξ) = 
22( )m m m

m

p p ξ′ ′−∑  ≥ 0. 
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 4.  Irreducibility of the pure case. – We now come to a theorem that plays a major 
role in the proof by which von Neumann wanted to establish the impossibility of 
explaining the present probabilistic character of wave mechanics with the aid of hidden 
variables. 
 The important theorem in question is stated as follows: 
 
 It is impossible to represent a pure case in the form of a mixture, or also: A pure case 
is never reducible to a superposition of pure cases. 
 
 He thus established the intrinsic special character of the pure cases. 
 Indeed, if this theorem were not true then it would have to be possible − at least, in 
some cases – to obtain a relation of the form: 
 
(28)     P = i i

i

Qα∑ , 

 
in which, P and Qi are elementary statistical matrices − i.e., idempotent Hermitian 
matrices with trace 1 – and the αi are positive numbers such that i

i

α∑ = 1.  Now, one 

will then have: 
(29) P2 = 2 2 1

2 ( )i i i j i j j i
i i j

Q Q Q Q Qα α α
≠

+ +∑ ∑ , 

   = 2 2 2 2 21
2 [ ( ) ]i i i j i j i j

i i j

Q Q Q Q Qα α α
≠

+ + − −∑ ∑ , 

   = 2 2 2( )i i j i i j i j
i j i i j

Q Q Qα α α α α
≠ >

 
+ − − 

 
∑ ∑ ∑ , 

   = 2 2( )i i i j i j
i i j

Q Q Qα α α
>

− −∑ ∑ , 

 
because i

j i

α
≠
∑ = 1 – αi .  One will therefore have: 

 
(30)   P2 – P = 2 2( ) ( )i i i i j i j

i i j

Q Q Q Qα α α
>

− − −∑ ∑ . 

 
However, P2 = P and 2

iQ  = Qi , so: 

(31)     2( )i j i j
i j

Q Qα α
>

−∑ = 0, 

and since all of the αi are positive: 
(32)     (Qi – Qj)

2 = 0. 
 
Now, the square of a Hermitian matrix can be zero only if the matrix itself is zero.  
Indeed, if A is a Hermitian matrix then the elements of A2 will be: 
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(a2)ik = il lk
l

a a∑ = il kl
l

a a∗∑ , 

 

and if the (a2)ii are zero then one must also have 
2

il
i

a∑ = 0, which will demand that ail  

= 0, and in turn, that A = 0. 
 Since Qi – Qj is a Hermitian matrix then the condition (32) will imply that Qi = Qj .  
All of the Qi will be the same, and one will have: 
 

P = i i
i

Qα∑  = Qi , since i
i

α∑  = 1. 

 
P will not be truly a sum of elementary statistical matrices then, which is contrary to 
hypothesis. 
 It is therefore indeed proved that the pure cases are irreducible and can never be 
reduced to a mixture of pure cases.  The pure cases of wave mechanics will thus possess 
the following two properties: 
 1. They will be represented by elementary (i.e., idempotent) statistical matrices, 
while any mixture will have a matrix that is not elementary (i.e., not idempotent). 
 2. There will be no way of reducing a mixture to a pure case. 
 
 
 5.  The statistical laws of quantum mechanics will be impossible to interpret by 
the introduction of hidden variables. – In classical physics, any time one must 
introduce probabilities in place of rigorous laws one will always assume that there exists 
determinism in the phenomena, but that this determinism is too complicated or too subtle 
for us to be able to follow it in detail, since the observable manifestations are of a 
statistical character and, for that reason, they will be expressed by probabilities.  The laws 
of probability and the element of chance that they seem to introduce will not be the proof 
of a true contingency, but the result of our incapacity to follow a determinism that is too 
fine-grained or too complicated.  That is the definition of chance that one finds in the 
writings of all thinkers who predated the development of wave mechanics, and in 
particular, in the works of Henri Poincaré. 
 The best-known example of such a pseudo-statistical theory in physics is the kinetic 
theory of gases.  There, one will assume that the motions of the gas molecules, as well as 
their mutual collisions, are governed by the rigorous laws of classical mechanics, in such 
a way that there will be a subordinate determinism.  However, the molecules are 
sufficiently numerous that their motions will be so complicated that we cannot actually 
follow this elementary determinism in all of its details.  Moreover, the molecular motions 
complete elude our senses, and we can only predict the macroscopic effects of these 
motions, such as pressure, temperature, local fluctuations of density or energy, the 
Brownian agitation of a visible granule due to its irregular collisions with molecules, etc.  
Since these macroscopic phenomena will result from an enormous number of 
complicated, elementary phenomena, we seem to be constructing a statistical theory that 
will involve only probabilities, but that introduction of chance is only apparent, and, for 
example, the disorganized motions of a granule in its Brownian agitation will seem to us 
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to be ruled by a rigorous determinism if we know how to calculate all of the molecular 
motions of the ambient gas and their collisions with the granule. 
 Since that elimination of chance, to the profit of a subordinate determinism, has 
succeeded in classical physics, one might attempt to introduce it into quantum physics.  
We have found the laws of probability in wave mechanics.  Can we not assume that this 
results from our ignorance of some hidden determinism?  If one succeeds in this 
enterprise then one will have once more eliminated indeterminism and maintained the 
classical concept of chance.  On the contrary, if one fails then one must abandon 
determinism and assume an absolute contingency of microphysical phenomena.  To 
employ the language of von Neumann: In the latter case, wave mechanics will be a “truly 
statistical” theory.  Now, von Neumann thought that he could resolve the question by 
proving a theorem, from which, he thought that he could deduce the impossibility of 
deducing the laws of probability in wave mechanics from some hidden determinism. 
 In order to establish its proof, von Neumann started with the following remarks: 
 To assume a subordinate determinism is to assume the existence of variables whose 
exact values we ignore (viz., hidden parameters), such as, for example, the positions and 
velocities of the molecules of a gas and the probabilities of then introducing them as a 
result of our ignorance of these hidden parameters.  In a deterministic theory with hidden 
parameters, the real state of a gas, for example, is entirely determined at each instant.  All 
of the molecules of the gas will have well-defined positions and velocities, and if we 
know all of these parameters then we can represent the state of the gas by a point in the 
extension-in-phase.  However, we ignore the exact value of the hidden parameters, and in 
order to represent the global statistical picture, which is all that is accessible to our sense, 
we envision a “mixture” of elementary states with conveniently-chosen statistical 
weights.  The elementary states will define a mixture that will correspond to well-
determined values of all the quantities.  They will therefore be indecomposable and also 
“dispersionless,” because any quantity A that has a well-defined value will be equal to its 

mean value, and the dispersion σ = 2 2( )A A−  will be zero, as well as all of the 

differences ( )n nA A− , moreover. 
 In other words, any deterministic statistical theory with hidden parameters will 
introduce a collective system of individuals, for which all quantities that characterize 
them will have well-determined values, and will be, in turn, exempt from dispersion.  The 
dispersions will appear for the collective system only as an ensemble.  Under these 
conditions, the probability distributions that are valid for the collective system must 
satisfy the usual schema of statisticians that we have studied previously.  Now, we know 
that this is not the case for the probability distributions of conventional wave mechanics, 
and that one already believes that one is authorized to deduce that wave mechanics 
cannot be interpreted by a deterministic theory with hidden parameters. 
 Von Neumann recovered this result by the following path: He started with the remark 
that a statistical theory can reduce to a deterministic schema with hidden parameters only 
if the probability distributions that appear in that theory can all be reduced to 
indecomposable mixtures of elementary states with no dispersion.  He then proved that 
this is not the case for the distributions that are envisioned in wave mechanics by 
appealing to the following theorem: 
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 The states that one encounters in wave mechanics are never dispersionless. 
 

 In other words, one cannot have 2A  = 2( )A  for any measurable quantity in any 
realizable state. 
 In reality, von Neumann’s proof − which is beautiful, but somewhat cumbersome – 
tells us nothing new.  Since one knows the uncertainty relations in the form σ(x) σ(px) ≥ h 
4π, one already knows that no quantity can be dispersionless for the probability 
distributions of conventional wave mechanics. 
 However, follow von Neumann’s argument: We have seen that any state (where it is a 
pure state or a mixture) is characterized by a Hermitian statistical matrix with a trace that 
is equal to 1, such that the mean value of any quantity in this state will be given by the 
formula (15).  Therefore, in order to a state to be dispersionless, it will be necessary that 
one have: 
(33)     Tr (PA)2 = [Tr(PA)]  2 
for any quantity A. 
 Now, let ϕ1, ϕ2, …, ϕi, … be a complete system of orthonormal basis functions.  
Consider the operator on Hilbert space that projects any vector in that space onto the 
vector ϕi .  That projector is a Hermitian linear operator 

i
Pϕ , and we can take A = 

i
Pϕ .  If 

the state were dispersionless then one would have, in particular: 
 
(34)     2Tr( )

i
PPϕ  = 2[Tr( )]

i
PPϕ . 

 
However, since one has 2

i
Pϕ  = 

i
Pϕ , one will get: 

 
(35)     Tr( )

i
PPϕ  = 2[Tr( )]

i
PPϕ . 

Now: 

(36)    Tr( )
i

PPϕ  = ( )
i kk

k

PPϕ∑ = 
ik kD

k

PP dϕϕ ϕ τ∗∑∫ , 

 
and since 

i kPϕ ϕ  = δik ϕi , one will finally get: 

 

(37)   Tr( )
i

PPϕ  = k i ikD
k

P dϕ ϕ τ δ∗∑∫  = i iD
P dϕ ϕ τ∗

∫ = Pii . 

 
 This trace must be equal to its square, so either Pii = 1 or Pii = 0, and this must be true 
for any index i, because we can reason the same way with all of the 

i
Pϕ .  However, one 

can assume that certain Pii will be equal to 1 and others, to 0, and in order to satisfy the 
relation ii

i

P∑  = 1, one must then have all of the Pii are zero, except for one of them.  

However, the latter hypothesis can be rejected because we can vary the orthonormal basis 
system in Hilbert space in a continuous fashion by an operation that corresponds to a 
rotation of the axes in that function space.  We can then make each of the original axes 
coincide successively with the other axes, and by a continuous operation.  Each of the Pii  



Chapter II.  The theory of measurement, according to von Neumann. 23 

must vary in a continuous fashion in the course of that operation, and since they can take 
only the values 0 or 1, they must keep their initial values.  Therefore, either the Pii will all 
be equal to 1 or they will all be equal to 0.  Now, neither of these two hypotheses is 
compatible with ii

i

P∑  = 1,, because ii
i

P∑  will be infinite in one case and zero in the 

other. 
 Finally, there can exist no acceptable statistical matrix P that corresponds to an 
absence of dispersion for all of the quantities, and von Neumann concluded from this that 
it will be impossible to account for the probability distributions of wave mechanics by a 
hidden determinism. 
 
 
 6.  Critique of the preceding conclusion. – After having reflected upon this for 
some time, I now think that von Neumann’s proof does not carry the weight that is 
attributed to it.  It indeed shows that the probability distributions of conventional wave 
mechanics are never completely dispersionless, so they cannot, in turn, correspond to any 
collection of individuals with well-determined properties.  However, we have already 
confirmed that, and that result is, moreover, contained in the uncertainty relations. 
 As for deducing the impossibility of interpreting wave mechanics by a deterministic 
schema of hidden variables, that is another matter.  We have already said that the 
probability distributions in | ck |2 are generally realized only after performing the 
corresponding measurement.  Since the measuring devices for the various magnitudes are 
generally incompatible, one will have no reason, a priori, to expect that all of the 
probability distributions in | ck |

2 will correspond to the same collective system, and in 
fact, they do not.  However, nothing prevents one from imagining that by introducing 
hidden variables, one can define probability distributions, which are also hidden, that will 
correspond to a unique collective system in the initial state, before performing any 
measurement, and will permit one to obtain a deterministic schema.  These probability 
distributions that exist in the initial state before any measurement will remain hidden, 
because, in general, performing the measurement of the quantity A, while acting on the 
system under study, will make that initial probability distribution disappear and will 
make the one that one habitually considers appear.  We will confirm that this perfectly-
admissible hypothesis is the one that corresponds to the causal interpretation of wave 
mechanics with the aid of the ideas of the double solution – or pilot-wave – and we will 
study them in detail later on.  In the final analysis, von Neumann’s celebrated theorem 
seems to me to not have the significance that has been attributed to it, and does not seem 
to me to constitute an insurmountable obstacle to the edification of a deterministic 
interpretation of wave mechanics that introduces hidden variables. 
 
 

________ 
 

  
 
 
 



 

CHAPTER III 

THE THEORY OF MEASUREMENT, ACCORDING TO VON NEUMANN (CONT.). 

______________ 

 

 1. Generalities on measurement. – As we have seen, measurement plays an 
essential role in quantum physics.  Indeed, its role in microphysics is completely different 
from its role in classical macroscopic physics.  In classical physics, a measurement, at 
least, when it is performed with suitable precautions, is a simple “verification” that 
specifies our knowledge of objective reality without disturbing it appreciably.  Since real 
elementary states are assumed to be determined perfectly, any ignorance on our part will 
translate into probabilities that pertain to a mixture with convenient statistical weights for 
the various elementary states, and measurements will be considered to be capable of 
diminishing our ignorance, or even suppressing it, by making a perfectly-determined 
elementary state known to us (for example, a corpuscle with exact values for the 
quantities of position and quantity of motion that characterize it). 
 The probability distributions that present themselves in classical physics will 
therefore always have the character of a mixture of elementary states in which all of the 
quantities have well-defined values (i.e., collective systems that consist of individual 
entities whose characteristics all have well-defined values).  A measurement is then 
assumed to make us aware of the real value of a quantity that exists objectively before the 
measurement, and if that measurement is indeed performed, without modifying it 
appreciably. 
 Everything is completely different in quantum theory.  There, the maximum 
knowledge that we can have about a system will be realized when we can consider it to 
be a pure case – i.e., to attribute a well-defined function Ψ to it.  In that state of maximum 
knowledge, it will be impossible for us to specify the value of any of the quantities in the 
system, since no experimental device can give us all of them at once.  The pure case Ψ 
corresponds to probability distributions (that will be, in principle, realized only after 
performing the corresponding measurement) that will involve non-zero dispersions for 
certain quantities.  If a new measurement is performed then that can give us only give us, 
at best, a new pure case that also involves non-zero dispersions for certain quantities.  It 
will augment our knowledge of some quantities, but only in such a fashion that our 
optimum knowledge of the state of the system will always remain represented by a pure 
case that has dispersions.  Moreover, the measurement augments nothing concerning our 
knowledge of the state of the system prior to the measurement, because it will create an 
entirely new state by its action on the system. 
 I think that these are the results of quantum physics that a definitive character, but, 
contrary to what one assumes, they do not at all imply the impossibility of maintaining 
the classical idea of individual entities − i.e., corpuscles − for which all quantities have 
well-defined values.  As we will see, one can imagine that there exists a unique collective 
system in any pure case that will give probability distributions for all of the quantities and 
will satisfy all of the usual rules of statistics [with the existence of ρ(x, y, z)], except that 
these probability distributions will not, in general, be the ones that one ordinarily 
envisions in wave mechanics, because each of them will be realized only after performing 
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the corresponding measurement.  The distributions that we will introduce cannot be 
exhibited, since in order to create them, one must perform measurements, and any 
measurement, by the action that it exerts on the objects that it affects, will generally 
change the probability distributions. Finally, it is precisely the new role that is played by 
measurement in microphysics that will permit us to imagine probability distributions that 
remain hidden with no contradictions.  We will return to that question. 
 We again make an important remark, to which we will also have to return.  A 
measuring device that involves individual microphysical entities will necessarily involve 
the appearance of an observable macroscopic phenomenon that is triggered by a 
microphysical individual entity.  This must be true, since the measurement can only result 
from an observation that is made by the physicist.  Therefore, in a Wilson chamber, the 
observation of a corpuscular trajectory, which can permit one to either localize or 
evaluate its energy or quantity of motion, will result from a phenomenon of 
macroscopically-observable condensation droplets that is triggered by the ionizing action 
of the corpuscle in motion.  The same thing will be true for a photographic record, where 
the elementary action of a corpuscle (e.g., photon or charged particle) will trigger a 
macroscopically-observable chemical phenomenon.  That very important remark will 
ultimately serve to reconstruct the theory of measurement on a new basis. 
 
 
 2. The statistics of two interacting systems, according to von Neumann. – Recall 
von Neumann’s analysis, and consider two corpuscles or two systems of corpuscles that 
are involved in a measurement.  Von Neumann said that the former is the “system under 
study” and the latter is the “measuring apparatus.”  We will have to critique these terms, 
but for now, we shall let that pass. 
 Let uk(x) be an orthonormal set of proper functions for the former system and let vρ(y) 
be the analogous set for the latter one.  When the systems are isolated from each other (in 
the initial state), their wave functions ΨI and ΨII will evolve separately according to the 
corresponding wave equation, and one can set: 
 
(1)    ΨI = ( ) ( )k k

k

c t u x∑ , ΨII = ( ) ( )
k

d t v xρ ρ∑ . 

 
Since system I is obviously in a pure case, it will remain in a pure case.  The total system, 

whose Hamiltonian H is then the sum of Hamiltonians H1 + H2 of the two systems, will 

have the wave function: 

 
(2)  Ψ(x, y, t) = ΨI(x, t) ΨII(y, y) = 

,

( ) ( ) ( ) ( )k k
k

c t d t u x v yρ ρ
ρ
∑ . 

 
It will represent a pure case of the system that will persist as long as the interaction has 
not yet commenced. 
 When the interaction does commence, one must add an interaction term Hi to the 
terms H1 + H2 in the global Hamiltonian that will depend upon the coordinates, x and y, 
of the two systems in a form that is not simply additive.  The wave function of the global 
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system will then cease to be the product of a uk(x) with a vρ(y), but since the products 
uk(x) vρ(y) will continue to define a complete and orthonormal basis system for the set of 
variables x and y, one can write: 
 
(3)    Ψ(x, y, t) = 

,

( ) ( ) ( )k k
k

C t u x v yρ ρ
ρ
∑ , 

 
but the Ckρ are no longer of the form ck dρ .  Since we will always have a wave function Ψ 
for the total system that evolves according to the wave equation, the total state of the 
system will always remain a pure case.  The corresponding statistical matrix will then be 
given by: 
(4)     Pkρ,lσ = k lC Cρ σ

∗ . 

 
Here, we remark that it takes two indices to represent a state of the global system.  We 
now direct our attention to system I, and envision a certain quantity A in that system such 
that the corresponding matrix is defined by: 
 

(5)    Akl = ( ) ( )k lD
u x Au x dx∗

∫ . 

 
 The mean value of A during the interaction is: 
 

(6)   A  = 
D

A dτ∗Ψ Ψ∫  = 
, , ,

k l k lD D
k l

C C u Au dx v v dyρ σ ρ σ
ρ σ

∗ ∗ ∗∑ ∫ ∫  = 
, ,

k l kl
k l

C C Aρ ρ
ρ

∗∑ . 

 
Now, the statistical matrix of system I during the interaction must be such that: 
 
(7)      A  = Tr(PI A), 
which leads one to write: 
(8)      (PI)lk = l kC Cρ ρ

ρ

∗∑ . 

 
One will likewise find that the statistical matrix of system II is: 
 
(9)      (PII)σρ = k k

k

C Cσ ρ
∗∑ . 

 
 The statistical matrix P of the total system is Hermitian, has a trace that is equal to 1, 
and is idempotent, as one easily verifies from (4) by taking into account the orthonormal 
character of the products uk(x) vρ(y); it is therefore an elementary statistical matrix.  The 
same thing is not true for the matrices PI and PII, which permit one to calculate the mean 
value of the quantities for one or the other system.  They are indeed Hermitian matrices 
with trace 1, but they are not idempotent.  Therefore, the statistics of systems I and II, 
when considered separately, are no longer those of pure cases, but mixtures. 
 In order to specify the composition of these mixtures, recall formula (3).  For a given 
value of the index ρ, we will have a sum of terms of the form: 
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vρ(y) ( )k
k

C tρ∑ uk(x),  with 
2

,
k

k

C ρ
ρ
∑  = 1 

 
in the development (3).  One can then say that for a given value of ρ (i.e., for a certain 
state of system II), system I will have a probability that is proportional to | Ckρ |

2 of being 

found in the state k.  The absolute value of that probability will be equal to 
2( )

kC ρ  if one 

sets: 

(10)     ( )
kC ρ  = 

2| |

k

l
l

C

C

ρ

ρ∑
, 

 

in such a fashion that one has 
2( )

k
k

C ρ∑ = 1. 

 One can then write: 
(11)     (PI)kl = ( ) ( )

k lp C Cρ ρ
ρ

ρ

∗∑ , 

with: 

(12)     pρ = 
2

l
l

C ρ∑ , 

and one will likewise find that: 
(13)     (PII)ρσ = ( ) ( )k k

k
k

p C Cρ σ
∗∑ , 

with: 

(14)   ( )
kC ρ  = 

2| |

k

k

C

C

ρ

σ
σ
∑

,  pk = 
2

kC σ
σ
∑ . 

 
The matrices PI and PII thus indeed appear to be defining mixtures with statistical weights 
pρ and pk, respectively. 
 Therefore, whereas the total system will remain in a pure case, despite the interaction, 
each of the two partial systems, which are considered to be isolated, will be transformed 
into a mixture by the interaction, and von Neumann added: “Whereas our knowledge of 
the global system will remain a maximum, that of the two component systems will cease 
to be a maximum.  Since each partial system can be considered to be found in a pure case 
that we are ignoring, the mixture will represent that ignorance.  A simple verification can 
then suffice to eliminate that ignorance by making the effectively-realized pure case 
known.” 
 By studying the forms of the statistical matrices PI and PII, one confirms that for each 
system the mixture is determined by the states of the other system.  This is what 
translates − for example, in formula (11) – into the fact that the sum in the right-hand side 
involves an index ρ that relates to the second system.  It is by verifying the state of the 
second system (i.e., the value of ρ, when effectively realized) that we can say what the 
pure case is that we can attribute to the first one.  However − and this is a point of 
paramount importance that is not sufficiently emphasized in von Neumann’s theory – in 
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order to verify the state of the second system, it is necessary that it must trigger a 
macroscopic phenomenon that we can observe directly.  This is a point that will seem 
clearer when we return to the question in a more physical manner. 
 
 
 3. The measurement of a quantity in the von Neumann formalism. – We just 
studied the interaction of two systems, but in order for that interaction to be able to 
provide the measurement of a quantity in the first system, the result of the interaction 
must be of a special type.  In other words, not just any kind of interaction can serve to 
measure a quantity in the first system.  Indeed, we have seen that by macroscopically 
verifying the state of the second system after the measurement, one can deduce only that 
the first one will be found in a certain pure case.  However, since a physical quantity does 
not generally have a precise value in a pure case, we will therefore not generally obtain a 
measurement of the quantity that we are interested in. 
 Let A be the physical quantity in the first system that we desire to measure.  Take the 
proper functions of A to be the basis functions of the first system.  In order for the 
interaction with the second system to serve as a measurement of A, it is necessary that 
there exist a magnitude B of the second system such that if vρ(y) are the proper functions 
of B then the Ψ of the total system after the interaction will have the form: 
 
(15)     Ψ = 

,

( ) ( )k k
k

C u x v yρ ρ
ρ
∑ , 

with Ckρ = Ck δkρ ; i.e., one will have: 
(16)     Ψ = ( ) ( )k k k

k

C u x v y∑ . 

 
 One can then establish a bijective correspondence between the v and the u, or, if one 
prefers to say this in another way, between the observable phenomena that are triggered 
by the second system and the value of A for the first one.  We shall ultimately return to 
this point in detail in a manner that will make things much clearer. 
 Calculate PI when (16) is realized.  We will have: 
 

(17)    ( )
kC ρ  = 

2

k

l
l

C

C

ρ

ρ∑
 = k kC

C
ρ

ρ

δ
 

and 

(18)    pρ = 
2

l
l

C ρ∑  = 
2

l l
l

Cρδ∑ = | Cρ |
2, 

so: 

(19)  (PI)kl = ( ) ( )
k lp C Cρ ρ

ρ
ρ

∗∑  = k k
k l

C C
p

C Cρ ρ ρ
ρ ρ ρ

δ δ
∗

∑  = δkl pk = δkl | Ck |
2, 

 
so PI is a diagonal matrix whose diagonal terms are the | Ck |

2.  One easily sees that the 
same thing will be true for PII, which is identical to PI . 
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 One will then have a mixture of states that each correspond to one value of αk and one 
value of βk, which is a one-to-one correspondence, and in which the probability of the 
pair of values αk, βk will be | Ck |

2.  The verification of the value βk of B by an observable 
phenomenon that is triggered by the second system will then permit us to attribute the 
value αk to A; it is therefore truly a “measurement.”  The verification that we just 
supposed resulted from a macroscopic phenomenon that one could observe or record that 
makes our knowledge of A more precise by showing us that it will be the value of A that 
is effectively realized in the mixture that is produced by the interaction. 
 We now examine the conditions under which the hypothesis that we made on the 
form (16) of Ψ can be found to be satisfied.  Suppose that before the measurement system 
II is in the state v0(y) and system I is in the state uk(x).  The wave function of the global 
system in the initial state will then be: 
 
(20)    Ψ(x, y) = v0(y) uk(x). 
 
The hypothesis that was made on the final form of Ψ will be realized if, for any proper 
function uk(x) that is realized at the origin, one has: 
 
(21)    Ψ(x, y) = uk(x) vk(y) 
 
at the end of the process of interaction, where vk(y) is a proper function of the quantity B 
that corresponds bijectively to uk(x).  Indeed, due to the linear character of the wave 
equation, if the initial state, instead of being represented by (20), is represented by the 
superposition: 
(22)    Ψ(x, y) = 0( ) ( )k k

k

C v y u x∑  

 
so at the end of the interaction the wave function will indeed have the form (16) and the 
measurement of A will be impossible. 
 In the presentation of the theory of measurement according to von Neumann that we 
just made, we avoided saying, as one generally does in the usual presentations, that 
system II is a measuring apparatus and that quantity B is, for example, the position of a 
needle.  Indeed, system II must be a microscopic system at the atomic level, like system I, 
and its role is to trigger an observable macroscopic phenomenon in a measuring device.  
No measurement can be made by making a corpuscle act in a microscopic body directly. 
 Moreover, in our opinion, von Neumann’s theory presents an exaggeratedly abstract 
character, like many of the present theories of quantum physics, moreover.  It does not 
sufficiently specify the physical conditions of the process of measurement and the 
necessity of triggering an observable macroscopic phenomenon in this process.  It 
contains a pure formalism, so it gives us no precise physical image of the manner by 
which a measurement process can take us from a pure case to a mixture. 
 
 
 4. Less-admissible consequences of the theory of measurement in the present 
interpretation of wave mechanics. –  As von Neumann said, the evolution of the wave 
Ψ continually unwinds during the measurement, such that the global system will remain 
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in a pure case, while the state of each of the partial systems will be a well-defined 
mixture.  There is a break in the continuity of that evolution, with the creation of a new 
situation, when the observer who is verifying the state of system II can attribute a wave 
function to system I that corresponds to a well-defined value of the quantity A.  In this 
manner of looking at things, it is therefore the “perception of the observer” that, upon 
verifying the state of system II, permits one to reduce the mixture that relates to the state 
of the system studied that would result from the interaction to one of these terms. 
 It is indeed obvious that one’s knowledge of a quantity that is being measured will 
result from the observer becoming aware of the result of the measurement.  However, this 
seems to imply that one can give the wave Ψ only a subjective significance with the 
present interpretation of wave mechanics, so von Neumann and his commentators have 
arrived at some concepts that are truly difficult to accept.  I would like to give a summary 
of them following the presentation that was recently given by London and Bauer (1). 
 Consider three partial systems: the object under study (x), the measuring apparatus 
(y), and the observer (z), which collectively define a unique global system.  Describe the 
global system with the aid of the wave function: 
 
(23)    Ψ(x, y, z) = ( ) ( ) ( )k k k k

k

c u x v y w z∑ . 

 
 For the global system, we have a pure case that persists during the measurement, and 
for the partial systems, we have a mixture.  The wave function (23) will give a maximum 
knowledge of the global system without one knowing the state of the object being studied 
(x) precisely. 
 However, the observer has another viewpoint because for him it is only the object (x) 
and the measuring apparatus (y) that belong to the external objective world.  As far as 
that is concerned, he is in a very different situation because he possesses the awareness or 
faculty of introspection that permits him to know his state directly.  It is by virtue of that 
immediate knowledge that he claims the right (?) to create his proper objectivity by 
cutting the chain of statistical coordinations that are expressed by Ψ, and by verifying 
that: “I am in the state wk, so the measuring apparatus is in the state vk, and in turn, the 
object is in the state uk ,” a verification that implies the attribution of a well-defined value 
to the quantity A; i.e., a measurement of that quantity. 
 Such is the presentation of London and Bauer, who add that: “It is therefore not a 
mysterious interaction between the measuring apparatus and the object that produces the 
appearance of a new Ψ for the system.  It is only the awareness of a ‘Me’ that separates it 
from the old function Ψ(x, y, z) and constitutes a new objectivity by virtue of his 
conscious observation by henceforth attributing a new wave function uk(x).” 
 I cited the phrase, “this ‘Me’ that separates the wave function,” even though I do not 
understand it very well, which seems to me to be much more mysterious than an 
interaction between the object and the measuring apparatus would be.  One understands 
why Schrödinger said, with an ironic twist: “The theory of the wave Ψ is becoming a 
psychological theory.”  It serves no great purpose to add that these considerations only 
support the opinion of Bohr, who said that in quantum physics one cannot draw an exact 

                                                
 (1) See bibliography [2].  
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boundary between the objective and the subjective, because that statement is itself hardly 
comprehensible and explains nothing.  The more that you think about it, the more you get 
the impression that all of that interpretation should be recast upon a different basis. 
 We continue our study of the London-Bauer pamphlet.  The authors remark that their 
ideas will raise one difficulty: If objective reality is created only by an act of perception 
on the part of the observer then does that reality not vary from one observer to another?  
Now, it is certain that this is not true, because otherwise no collective science – i.e., a 
science that is common to everyone – would be possible.  However, we are told, one 
must remark that the verification that permits the measurement is a macroscopic 
verification that does not modify the state of thing that is being observed.  Nothing, in 
turn, will prevent another observer from making the same statement, and it is a fact of 
experience that all observers will make the same verification, up to errors in observation.  
We add that it is this fact that permits one to abstract from the personality of the observer 
and to create a science that has an objective character.  In summation, in the mixture that 
results from the interaction of the measurement, there is one and only one possibility that 
it will prove to be realized for all all observers. 
 That explanation seems insufficient to us, because it amounts to confirming the fact 
that one would like to explain.  The existence of a science that is common to everyone 
seems to us quite difficult to comprehend in a theory that would like to describe 
everything with the aid of a function Ψ that has a subjective character, since it is a 
function that will depend upon what happens in the perception of the observer.  The 
undeniable agreement between the observations that are made by different observers 
seems to us to be comprehensible only if one does not assume the existence of an 
objective reality, and if one does assume its existence then that objective reality must be 
capable of being described by something other than the subjective function Ψ that the 
present orthodox interpretation of wave mechanics condemns us to envision uniquely. 
 The present interpretation of wave mechanics thus seems to be lost in the 
contradictions, because one does now know what exact meaning one is to attribute to the 
wave Ψ.  Logically, one is led to attribute the meaning to it of a simple representation of 
a purely subjective probability that capable of reducing the probability packet when the 
user receives new information.  However, it can then no longer account for the existence 
of a science that is common to everyone and an objective reality that is independent of 
the observer.  Moreover, there exist some arguments for attributing an objective reality to 
the wave Ψ.  Therefore, suppose that an observer has knowledge of the state Ψ of a 
corpuscle (or a system) and that he calculates the probabilities of the result of a 
measurement that he is to perform with that wave function.  If, before he performs the 
projected measurement, another observer makes a measurement of the corpuscle without 
the knowledge of the first one then generally the statistical predictions of the first 
observer will be found to be false.  Therefore, it is the action of the measuring device, and 
not the perception of the observer, that modifies Ψ, and that would seem to impose a 
certain character of objective reality on the wave function.  Bohr always seemed to have 
recognized this character, but his very subtle thinking is often quite obscure.  In reality, 
almost all authors that have presented the current interpretation of wave mechanics have 
alternatively passed from the idea of a function Ψ that is a simple subjective 
representation of probability to the idea of a wave that preserves a certain character of 
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reality, and it is only with the aid of this unconscious subterfuge that they can avoid the 
all-too-flagrant contradictions. 
 As for the corpuscle, one further knows even less of its exact nature, and one confines 
oneself to saying: “In quantum microphysics, a corpuscle is endowed with not just 
quantities of determinate values, but also with a set of potential distributions that refer to 
each measurable quantity, which are distributions that can each come into play only when 
the corresponding measurement has been made,” and this does not give one a very clear 
idea of what a corpuscle can be. 
 We shall now examine whether one cannot arrive at a better comprehension of what 
happens in the process of measurement by adopting a causal and objective interpretation 
of wave mechanics that seems clearer. 
 
 

_________ 
 



 

CHAPTER IV  

CAUSAL INTERPRETATION OF WAVE MECHANICS 
(THEORY OF THE DOUBLE SOLUTION) 

 
_________ 

 
 
 

 1. Ideas at the basis for the theory of the double solution. – I would like to 
rapidly summarize the bases for the interpretation of wave mechanics by the theory of the 
“double solution” that I sketched out in 1927, and which I have returned to developing 
for some years now, as a result of a paper by David Bohm, in collaboration with J. P. 
Vigier.  I made a summary of that theory in a book that appeared recently, to which one 
can refer (1). 
 At the beginning of my work on wave mechanics, my initial idea was to preserve the 
idea of a physical reality that was independent of the observer, and to seek, as one always 
does in classical physics, a clear representation of physical processes in the context of 
space and time.  I was thus led to seek a synthetic viewpoint of the duality between waves 
and particles that would be compatible with the ideas that I introduced (Mécanique 
ondulatoire, 1923-1924), and which was confirmed in a remarkable fashion (e.g., the 
work of Schrödinger in 1926, the discovery of the diffraction of electrons in 1927).  
Following a current of ideas that was manifested in the work of Mie and Einstein, I 
sought to represent the corpuscle as a sort of local accident – i.e., a singularity – within an 
extended wave phenomenon.  That led me to represent physical reality, not by the 
continuous solutions Ψ of the wave equation that were considered exclusively by 
Schrödinger and his school, but by other solutions of that equation that I will denote by u, 
in order to distinguish them from the regular solutions Ψ, and which involve a 
singularity.  Upon reflection, I immediately saw a great advantage to that concept of a 
corpuscle being “incorporated” into an extended wave field, and consequently 
consolidated with the global motion of that field.  It seems to me to permit one to 
comprehend that the corpuscle is localized and that its motion can nonetheless be 
influenced by presence of obstacles that are at distant from its trajectory, which must 
necessarily be interpreted, by preserving the idea of a localized corpuscle, as the 
existence of interference phenomena and diffraction. 
 Nevertheless, it seems to me that the probabilistic interpretation of the regular wave 
Ψ, which originated in the work of Born, and was confirmed by its success, must be 
preserved.  Whereas the wave u will be the true description of the structure of physical 
unity, the wave Ψ will be a fictitious wave with a subjective character that is capable of 
providing us with exact statistical information about the position and motion of the 
corpuscle.  However, in order for it to be able to fulfill that role, it is further necessary 
that it be related to the wave u in some fashion. 
 My first researches into wave mechanics led me to attribute a particular importance to 
the “phase” of the wave that one associates with a corpuscle.  It is essentially the 

                                                
 (1) Bibliography [3].  See Vigier’s thesis [4], as well. 
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agreement between phases of the corpuscle, which is considered to be a sort of clock, and 
the surrounding wave that led me to write the fundamental formulas of wave mechanics 
(w = hv; λ = h / p).  It is therefore the frequency and wavelength − which are elements 
that are contained in the phase − that therefore establish a bridge between the propagation 
of the wave and the motion of the corpuscle.  That led me to write the wave function that 
is usually envisioned in the form: 

(1)      Ψ = 
2 i

ha e
π ϕ

, 
 
in which a and ϕ are real, and to attribute a profound physical significance to the phase ϕ 
(which will coincide with the Jacobi function S in the geometrical optics approximation).  
On the contrary, the amplitude a, which is continuous, does not seem to me to have any 
objective significance, but only a statistical significance. 
 Among the probabilities that are envisioned by the probabilistic interpretation of 
wave mechanics that is already assumed in this epoch, the probability of presence | Ψ |2 = 
a2 seems to me to have a sort of priority, because, in my way of looking at things, it will 
correspond to the possibility that the corpuscle is at a a given point, independently of any 
measurement process.  The other probabilities, such as | c(p) |2 for the value p of the 
quantity of motion [where | c(p) |2 is the Fourier coefficient that corresponds to p in the 
development of Ψ in monochromatic plane waves], must have a less immediate sense, 
from my viewpoint.  They will be valid only after the action of a measuring device for the 
quantity envisioned on the real wave u, into which a corpuscle has been incorporated, 
when one does not know the result of that measurement, moreover. 
 Endowed with these general ideas, I have assumed the principle to which I gave the 
name of “the principle of the double solution”: 
 
 Any regular solution of the type (1) of the wave equation of wave mechanics must 
correspond to a singular solution of the type: 
 

(2)      u = 
2 i

hf e
π ϕ

 
 
that has the same phase ϕ as the solution (1), but with an amplitude f that presents a 
point-like singularity that is generally mobile. 
 
 In the period of time when I wrote my book on the double solution, which was in the 
Spring of 1927, one knew the Schrödinger wave equation: 
 

(3)     ∆Ψ – 
2

2

8 m

h

π
VΨ = 

4 im

h t

π ∂Ψ
∂

 

 
that corresponds to the motion of a corpuscle of mass m in a field that is derived from a 
potential function V(x, y, z, t), which is supposed to be known.  Today, one must consider 
equation (3) as valid only in the Newtonian approximation for the corpuscles of spin 0.  
Some time after Schrödinger’s first papers, it became apparent that there must be an 
equation that generalized equation (3) when one accounted for the corrections of 
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relativity.  This new equation, which one habitually calls the “Klein-Gordon equation,” 
and which constitutes the relativistic wave equation for particles of spin 0, is written: 
 

(4)   
2

2 2 2 2 2
02 2

, ,

4 4 4
[ ( )]x

x y z

i i
V A m c V A

c t h c x h

π ε π ε π ε∂Ψ ∂ΨΨ − − + − − Ψ
∂ ∂∑□ = 0, 

 
where m0 is the proper mass of the particle, ε is its electric charge, c is the velocity of 
light in vacuo, and A is the scalar and vector potential whose derivative is the 
electromagnetic field to which the corpuscle is subjected. 
 Since equation (4) is the most general one, and it contains equation (3) as a 
degenerate form in the non-relativistic approximation, it will be equation (4) that I will 
use as the basis for my reasoning.  In the case of the absence of a field, one will then 
have: 

(5)      
2

2 2
02

4
m c

h

πΨ + Ψ□  = 0, 

 
and the simplest solution to this equation when one confines oneself to continuous waves 
will be the monochromatic plane wave: 
 

(6)      Ψ = 
2

( )
i

Wt pz
ha e
π −

, 
 
with a constant and W2 / c2 = 2 2

0m c  + p2.  W is the energy of the corpuscle in motion with 

the velocity v = βc, so W = 
2

0

21

m c

β−
, and p is its quantity of motion p = 0

21

m

β−
v

, where 

the direction of motion is taken to be the z-axis. 
 Now, I easily found that the Klein-Gordon equation also admits the moving singular 
solution: 

(7)    u(x, y, z, t) = 
2

( )

2
2 2

2

const.

( )
1

i
Wt pz

he
z ct

x y

π

β

−

−+ +
−

, 

which will take the form: 
 

(8)   u(x0, y0, z0, t0) = 
2

0 0
2

0

const. i
m c t

he
r

π

 (r0 = 2 2 2
0 0 0x y z+ + ) 

when v = 0. 
 The solution (7) has the same phase as the solution (6), but its amplitude will present 
a point-like singularity at the point x = y = 0, z = vt that displaces with the velocity v in 
the direction of wave propagation, which provides a clear image of the motion of the 
corpuscle.  In this particular case, one will thus obtain what one seeks exactly, and the 
constant value of the wave amplitude Ψ will appear to simply have the following 
significance: If one ignores the position of the corpuscle-singularity then one must 
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consider all of the parallel trajectories and all of the possible positions of the corpuscle at 
any instant t to be equally probable. 
 Encouraged by this first success, I then considered the general case of equation (4), 
with potentials V and A that are given continuous functions of x, y, z, t, and in 1927 I 
proved the following remarkable result: 
 
 1. If there exist two solutions Ψ and u of equation (4), one of which has a continuous 
amplitude, while the other one has an amplitude that involves a point-like moving 
singularity that has the same phase ϕ [which must say that they can be written in the 
forms (1) and (2)] then the singularity of u will displace in space with an instantaneous 
velocity v that is defined by the formula: 

(9)     v(x, y, z, t) = − c2 
grad

c

V
t

εϕ

ϕ ε

+

∂ −
∂

A
. 

 
This is the “guidance formula,” which will give simply: 
 

(10)     v = − 
1

m
 grad ϕ, 

 
when one can neglect the relativistic corrections and suppose that the magnetic field is 
zero (i.e., one sets ∂ϕ / ∂t – eV ~ m0c

2 and A = 0), which is a form that will correspond to 
the Schrödinger equation (3).  If propagation takes place in the geometrical optics 
approximation, moreover, then one can set ϕ ~ S, where S is the Jacobi function, and (10) 
will then be nothing but the classical formula mv = − grad S of Hamilton-Jacobi theory. 
 
 2. The motion of the corpuscle is the same as if it were subjected, moreover, to a 
classical force that is derived from the potentials V and A and a “quantum” force that is 
equal to – grad Q, where Q is a “quantum potential” that is ignored in classical theories, 
and which is written simply as: 

(11)    Q = − 
2

28

h f

m fπ
 ∆
 
 

 = − 
2

28

h a

m aπ
∆ 
 
 

 

 
in the non-relativistic approximation of equation (3), where the quantities in the 
parentheses are calculated at the point where one finds the corpuscle at the instant t and 
the equality of the two expressions (11) for Q automatically follows from the hypothesis 
that the two waves Ψ and u have the same phase ϕ. 
 The guidance formula and the definition of the quantum potential will permit one to 
give a Lagrangian form to the dynamics of the corpuscle that is incorporated into its wave 
as a singularity. 
 
 
 2. Another manner of expressing the guidance formula, and some 
generalizations. – The guidance formula gives a mathematical form to the fact that 
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because the corpuscle is integrated into the wave it will be analogous to a clock that 
displaces while remaining in phase with the wave.  From this viewpoint, it is the 
crowning achievement of my initial considerations on waves and corpuscles in wave 
mechanics.  However, one can give it another form that will permit a greater 
generalization. 
 All of the forms of wave mechanics that are currently known will permit one to 
construct a hydrodynamical image that is associated with the propagation of a wave; i.e., 
to define a fictitious fluid whose density ρ and flux density ρv are given at each point and 
each instant by functions that are bilinear in the wave function and its complex-conjugate 
function. 
 Therefore, in the case of the Schrödinger equation (3), the fictitious fluid and its 
motion will be given by formulas that were originally used by Madelung: 
 
(12)   ρ = ΨΨ* = | Ψ |2, ρv = − (Ψ* grad Ψ – Ψ grad Ψ*), 
 
where Ψ* is the complex-conjugate quantity to Ψ.  Thanks to (1), one can also write: 
 

(13)    ρ = a2,  v = − 
1

m
grad ϕ . 

 
One sees from the expression for v that the guidance formula can be expressed by saying 
that the corpuscle follows one of the streamlines. 
 In the case of the Klein-Gordon equation (4), the fictitious fluid will be defined by: 
 

(14)  

( )

2 2
0 0

0 0

1 1
,

4

1
grad grad ,

4

h
V

i m c t t m c

h

im m c

ρ
π

ρ
π

∗
∗ ∗

∗ ∗ ∗

  ∂Ψ ∂Ψ= Ψ − Ψ − Ψ Ψ  ∂ ∂  

 = − Ψ Ψ − Ψ Ψ − Ψ Ψ


v A

 

 
or, thanks to (1): 
 

(15)  ρ = 2 2
2 2

0 0

1
a Va

m c t m c

ϕ ε∂ −
∂

,  ρv = − 2 2
2 2

0 0

1
grad a a

m c m c

εϕ − A , 

so: 

(16)     v = − c2 
grad 

c

V
t

εϕ

ϕ ε

+

∂ −
∂

A
. 

 
 We thus recover the guidance formula for the Klein-Gordon equation; the corpuscle 
then follows a streamline.  We also see, moreover, that the hypothesis that is expressed 
by (1) and (2), according to which Ψ and u have the same phase ϕ, amounts to supposing 
that the streamlines are the same for two waves, or if one prefers, that the velocity vector 
field v(x, y, z, t) is the same for both of them. 
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 In that form, the relationship that is established between the two waves u and Ψ can 
be generalized to the equations of particles with non-zero spin.  Therefore, in order for 
the particles with spin h / 4π − such as electrons − the wave Ψ will have four components 
Ψk that obey four simultaneous partial differential equations (viz., the Dirac equations): 
 

(17)  
2

h
V

i t
ε

π
∂ − ∂ 

 Ψk =  
3

0 4
1 2 j j

j j

h
A m c

i x c

ε α α
π=

  ∂ − +   ∂   
∑ Ψk , 

 
with k = 1, 2, 3, 4.  The matrices α1, α2, α3, α4 are matrices with four rows and four 
columns, which are such that: 
(18)     αi αj + αj αi = 2 δij I, 
 
where I is the unit matrix.  The fictitious fluid is then defined by: 
 

(19)  ρ = 
4

2

1

| |k
k=

Ψ∑ ,  ρvj = − c 
4

1
k k k

k

α∗

=
Ψ Ψ∑   (j = 1, 2, 3), 

 
so one will have the following components for the fluid velocity: 
 

(20)   vj = − c 

4

1
4

1

k j k
k

k k
k
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=

∗

=

Ψ Ψ

Ψ Ψ

∑

∑
 = − c

4

1
4

1

k j k
k

k k
k

u u

u u
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=

∗

=

∑

∑
. 

 
 In the theory of the double solution, it is this velocity that one agrees to attribute to 
the corpuscle-singularity in such a way that (20) will constitute the guidance formula in 
the Dirac theory (where one can no longer introduce a unique phase ϕ for the four 
components of the wave, in general).  Here, one must replace the postulate on the phases 
ϕ with the one that of the velocity field v must be common to Ψ and u, which will justify 
the equality of the two expressions (20) for vj . 
 For particles with spin greater than h / 4π (e.g., photons, α-particles, gravitons, etc.), 
one will have wave functions with more than four components that will always obey a 
system of simultaneous partial differential equations.  However, one can always define 
the density ρ and the flux ρv of a fictitious fluid by means of bilinear formulas that 
analogous to (14) and (19) and obtain the corresponding guidance formula by assuming 
that the corpuscle-singularity of the wave u will always follow one of the streamlines that 
are common to the waves Ψ and u. 
 Now, it is a fundamental fact that for all of the wave equations that one has to 
consider the fictitious fluid will be conservative and obey the equation of continuity: 
 

(21)     
t

ρ∂
∂

+ div(ρv) = 0, 
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which is a consequence of the wave equations.  It is equation (21) that will permit one to 
take the density ρ to be the probability of presence and to “normalize” Ψ (which is a 

simple representation of probability) by the formula 
D

dρ τ∫  = 1.  In the case of the 

Schrödinger equation, one will thus obtain 2| |
D

dτΨ∫  = 1 as the normalization formula, 

and one must take | Ψ |2 = a2 to be the probability of presence.  We shall see that it is by 
starting with equation (21) that one can obtain the proof of the guidance formula in all 
cases. 
 
 
 3. Proof of the guidance formula. – We commence by remarking that if one 
assumes that any regular solution Ψ of the wave equation will correspond to a solution u 
with a moving singularity that has the same streamlines then the two densities ρ(u) and 
ρ(Ψ) will obey the same continuity equation, since the vector field v will be the same in 
the two cases, but, whereas ρ(Ψ) is everywhere regular, ρ(u) must present a point-like 
singularity that is mobile, in general. 
 A first manner of obtaining the guidance formula, which is basically equivalent to the 
one that we gave in 1937 (1), consists of writing the equation of continuity for ρ(u) in the 
form: 

(22)    
t

∂
∂

ρ(u) + v grad ρ(u) + ρ(u) div v = 0; 

hence, after dividing by ρ(u): 

(23)    
t

∂
∂

log ρ(u) + v grad log ρ(u) = − div v. 

 
 If u, and in turn, ρ(u) takes on very high values in a small region (which is obviously 
around the singularity) then log ρ(u) and its derivatives will have very high values there.  
For a given v, the right-hand side of (23) will then be negligible compared to the first 
one, and upon letting D / Dt denote the total derivative with respect to time along the 
streamline (D / Dt = ∂ / ∂t + v ⋅⋅⋅⋅ grad), one will have: 
 

(24)     
D

Dt
log ρ(u) = 0. 

 
Therefore, log ρ(u), and in turn, ρ(u) will remain constant when one follows a streamline 
with the velocity v.  Thus, while there will be convergence and divergence of the 
streamlines for moderate values of ρ, in general (i.e., for div v ≠ 0), and in turn, ρ will not 
preserve a constant value when one displaces along a streamline with the velocity v, the 
same thing will no longer be true when ρ takes on extremely high values.  The locally-
elevated values of the density displace along streamlines with the velocity v without 
dispersing or damping out.  One then sees that the singularity of ρ(u) will follow one of 
the streamlines that are, by hypothesis, common to u and Ψ with a corresponding velocity 
v, which will give us the general form of the guidance formula. 
                                                
 (1) One will it in [3], pp. 101, et seq.  
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 Another method of obtaining the guidance formula consists of integrating the 
continuity equation, when it is written in the form: 
 

(25)   X Y Zv v v
t x y z

ρ ρ ρ ρ∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂

+ ρ div v = 0, 

 
by the well-known method. 
 One knows that the integration of such a linear, first-order partial differential equation 
can be reduced to the integration of a system of differential equations: 
 

(26)    
x

dx

v
 = 

y

dy

v
 = 

z

dz

v
 = dt = −

div 

dρ
ρ v

, 

 
where vx, vy, vz are functions of x, y, z, t that are assumed to be known.  The integration of 
the first three differential equations (26) will give integrals of the form: 
 
(27)  f1(x, y, z, t) = λ,  f2(x, y, z, t) = µ, f3(x, y, z, t) = ν. 
 
When λ, µ, ν have constant values, these formulas will define a world streamline in 

space-time; i.e., a world-line, at each point of which 
dx

dt
, 

dy

dt
, 

dz

dt
 will be equal to their 

values vx, vy, vz at that point, respectively.  This world streamline will, at the same time, 
represent the trajectory and the motion of the molecules of the fictitious fluid. 
 Equations (27) permit one to express x, y, z, t as functions of λ, µ, ν, t, and in turn, to 
express div v in the form F(λ, µ, ν, t).  In order to obtain the integration of the partial 
differential equations, it will then suffice to write the fourth differential equation (26) in 
the form: 

(28)     dt = − 
( , , , )

d

F t

ρ
λ µ ν ρ

, 

 
and then integrate this with λ, µ, ν constant, which will give: 
 

(29)     ρ = 
( , , , )

t
F t dt

e
λ µ ν−∫  Φ(λ, µ, ν), 

 
where the integration in the exponent of the exponential must be performed over t with  
λ, µ, ν  constant, and where Φ is an arbitrary function.  Since the continuity equation is, 
by hypothesis, valid for both Ψ and u with the same values of vx, vy, vz, one will have: 
 

(30)    
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 Since ρ(Ψ) is regular, the two factors in its expression must be regular.  In the 
expression for ρ(u), the first factor is the same as the one in the expression for ρ(Ψ), so it 
must be regular.  The singularity of ρ(u) must then be provided by Φ2 .  It will then result 
that Φ2 must have a singularity for a certain value of λ, µ, ν, namely, λ = λ0, µ = µ0, ν = 
ν0, which translates into the existence of a point-like singularity of u that occupies a 
position x0, y0, z0 at the instant t.  However, that singularity will then be found along the 
world streamline that is defined by the values of λ0, µ0, ν0, of λ, µ, ν.  In other words, 
ρ(u), and in turn, u will present a point-like singularity in space at any instant t, and the 
motion of that singularity in the course of time will be represented in space-time by the 
world streamline that is defined by λ = λ0, µ = µ0, andν = ν0 . 
 When the singularity occupies the position x, y, z at the instant t it will then be 
animated with a velocity v(x, y, z, t).  This is, once more, the guidance theorem in its most 
general form, and we can state our result by saying: If two solutions of the wave 
equations of wave mechanics are such that one of them is regular and the other one has a 
moving, point-like singularity and they admit the same streamlines then the singularity of 
the second solution will follow one of these streamlines. 
 It is important to remark that our proof will be further valid if the solution u, instead 
of presenting a true mathematical singularity, involves only a very small region, which is 
generally moving, in which it attains very high values, while the regular solution Ψ that it 
couples to involves no such analogous accident.  The expressions (30) then show that the 
existence of that “singular region” must translate into a particular form of Φ2 that must 
present very high values when λ, µ, ν have values that are close to certain values of 
λ0, µ0, ν0 .  However, this will further signify that the motion of the very small region 
where u takes on very large values in the course of time will be represented in space-time 
by a very fine world-tube, whose axis is defined by λ = λ0, µ = µ0,ν = ν0 . 
 In the general form that we just gave it, the theory of guidance permits one to better 
perceive the agreement between the wave u and the wave Ψ.  These waves must have the 
same streamlines, so the wave Ψ will just as well represent the wave u, which is the set of 
possible motions for the corpuscle, but it will lack an essential element, which is the 
corpuscle itself that describes one of the streamlines.  This is why, according to this 
viewpoint, if the wave Ψ can give can give an exact statistical image of the motion of the 
corpuscle then it cannot constitute a complete description of physical reality.  Here, we 
come back to an opinion that Einstein has always maintained. 
 
 
 4. Introduction of nonlinearity and the form of the wave function u. – When I 
reprised the study of the double solution some years ago, with the active collaboration of 
Vigier, we were both immediately struck with the deep analogy that it presented with 
Einstein’s ideas on the coupling between corpuscles and fields, as well as those of Mie in 
his nonlinear theory of electromagnetism.  In the theory of the double solution, as in the 
thinking of Einstein and Mie, the desired goal is to incorporate the corpuscle in the field 
in the form of a very small region where the field takes on very high values (which might 
or might not involve a true mathematical singularity).  However, in the theory of the 
double solution, the field that one seeks to incorporate the corpuscle in will no longer be 
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the electromagnetic field or the gravitational field, but the quantum wave field u, which 
must give an objective representation of the structure of the corpuscle. 
 Having arrived at this viewpoint, we now perceive the necessity of introducing a new 
idea. 
 Indeed, when one assumes linear equations of evolution for a field u, even when one 
introduces source terms that are independent of the field, as in Lorentz’s theory, one 
cannot comprehend how a corpuscle can have a motion that is determined by the 
evolution of the field; this is a point upon which Einstein often insisted.  In order to 
escape this difficulty, it will be necessary to suppose that the field equations are 
nonlinear.  The idea of nonlinearity, which is new in wave mechanics, has nonetheless 
been introduced in recent years by some authors − notably, by Heisenberg – but in the 
context of ideas that are very different from ours. 
 Meanwhile, what we said before leads us think that if the wave equation u is 
nonlinear then the nonlinear terms that appear in it must be important only in small 
singular regions where the values of u are very high, which are the very small regions 
that constitute a corpuscle.  Outside of that very small region, the nonlinear terms must be 
very small, and the equation of propagation of u must become approximately linear and 
coincide with the usual equation of propagation that is assumed for the wave Ψ, which 
brings us back to the hypothesis that we assumed previously, namely, that u and Ψ must 
obey the same equation. 
 Upon digging further into that idea, Vigier and myself eventually perceived that in 
order to be able to account for the success of the usual calculations of the phenomena of 
interference and diffraction, and also the success of the usual calculations of the proper 
values of the energies that correspond to the stationary states of quantized systems, it will 
be necessary to specify the form of the wave u by the following hypothesis: In the 
singular region where the equation for u is very approximately linear, u must have the 
form: 
(31)     u = u0 + v, 
 
where u0 is a solution of the linear equation with a point-like singularity at the center of 
the singular region, and v is a regular solution of the same equation.  We shall specify 
how the form of the two terms in the expression (31) will follow.  The term u0 must be 
extremely small with respect to v outside of the immediate neighborhood of the singular 
region; that hypothesis will have great importance.  The function u0 will increase 
extremely rapidly when one approaches the singular region and it will become infinite at 
the center of that region if one can prolong to it; i.e., if the linear equation remains valid 
in the interior of the singular region.  As for v, it will be a regular solution of the linear 
equation that must – at least, in general – coincide with the usual form that is assumed for 
the wave Ψ in the problem considered, up to a constant factor.  Later on, we shall show 
that the set of hypotheses that we just posed can be found to be realized. 
 Therefore, externally, the solution u0 of the linear equation seems to be a sort of very 
fine pointer that is implanted in a wave v that has the same form as the wave Ψ.  Now, 
from the theory of guidance, the pointer function u0 must displace along one of the 
streamlines of the wave v.  However, if the wave equation u is everywhere linear and 
coincides everywhere with the usual equation of wave mechanics then the solution u0 and 
v will be totally independent; there will be no reason for them to admit the same 
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streamlines, and the displacement of the pointer u0 will be determined by the streamlines 
of v.  Things are completely different if the equation for u is not linear in the singular 
region or the nonlinear terms are important by reason of the large values of u0 .  In that 
region, the terms u0 and v will be linked to each other by the nonlinearity.  In other 
words, the nonlinear equation in u will admit one solution u and the decomposition (31) 
will be valid only approximately in the region that is external to the singular regions; this 
will appear very clearly in an example that I would like to give shortly. 
 Moreover, the very localized nonlinearity of the wave equation u appears to be 
essential if one is to understand the meaning of the guidance theorem.  The proof that we 
gave of this theorem by starting with the linear equation was based upon the hypothesis 
that the regular solution v (or Ψ) and the regular solution u = u0 + v have the same 
streamlines.  Now, that hypothesis is entirely arbitrary in the context of an everywhere-
linear theory.  It will cease to be true if there exists a local nonlinearity in the small, 
singular region, because then the nonlinearity, although quite localized, is, in a sense, the 
“cement” that unites the solutions u0 and v (1). 
 We shall now give an example that illustrates all of these considerations in a very 
useful way. 
 
 
 5. Illustration of the hypotheses made on u by an example. – Consider the simple 
case of a corpuscle with spin 0 that is at rest in a Galilean system, with the center of its 
singular region taken to be the origin of the coordinates, and suppose arbitrarily that the 
wave equation for u is the nonlinear equation: 
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with k0 = 
2

h

π
m0 c.  When equated to zero, the left-hand side of (32) will give us the 

Klein-Gordon equation.  The nonlinear right-hand side has a form in u2u* that was 
already envisioned by the authors who recently sought to introduce nonlinearity into 
wave mechanics.  It will contain a function of the distance r from the origin that we have 
chosen arbitrarily and two constants C and a, the first of which is a numerical constant, 
and the second of which is a very small length that defines a “radius,” in some sense, of a 
corpuscle with spherical symmetry.  Later on, we shall set ε = Ca, by definition. 
 As one must have u = f 0ik cte , where is f a function of only r, one will find the 
following equation for f: 

                                                
 (1) We remark that the guidance theorem can be expressed by saying that in space-time the very high 
values of the wave function u are contained in the interior of a very thin world-tube whose walls are 
defined by streamlines of the “external” wave v (viz., the regular part of the wave u).  When one states the 
guidance formula in that form, its lineage with the manner by which Georges Darmois and André 
Lichnérowicz stated the geodesic principle in general relativity becomes obvious (see, for example, 
LICHNÉROWICZ, Théories relativistes de la gravitation et de l’Électromagnétisme, Masson, 1955, book 
I, chap. III). 
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which is an equation that will admit the solution: 
 
(34)     f = C ea / r. 
 
That solution will take on very high values in the neighborhood of the origin (i.e., for r 
≪  a), and it will even have a singularity at r = 0. 
 Here, can assume that the region that is external to the singular region is defined by r 
≫  a.  One then sees that f will take on the approximate form: 

(55)    f = C + 
r

ε
  (ε = C a) 

 
in the external region thus defined. 

 This is explained by the easily-verified fact that 
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negligible with respect to the left-hand side if r ≫  a.  In the external region, the 
nonlinear equation (33) will reduce reasonably to the linear equation ∆f = 0, so it is 
natural to find that f will take on the approximate form of a spherically-symmetric 
solution to that equation. 
 In the singular region that surrounds the origin, where r is of order a or less than a, 
the two sides of the nonlinear equation will become of the same order of magnitude, and 
one must take f to be the rigorous expression (34). 
 Now, if the linear equation ∆f = 0 is valid everywhere then its general spherically-
symmetric solution will be: 

(36)     f = A + 
B

r
, 

 
where A and B will have arbitrary constant values.  In the external region where the wave 
equation for u reduces reasonably to the Klein-Gordon equation, we have found the 
approximate form (35) for f, which coincides quite well with the general form (36), but 
with special well-defined values for A and B − namely, A = C and B = e = Ca − and one 
indeed sees that these special values are imposed by the nonlinearity of the wave equation 
for u in the very small singular region that surrounds the origin. 
 Moreover, the approximate solution (35) will have the form u0 + v, where u0 will have 

a singularity and v will be a regular function.  Furthermore, since one has 0u

v
 = 

Cr

ε
= 

a

r
 

here, one also sees that u0 becomes much smaller than v as one gets more distant from the 
singular region.  We have thus recovered the decomposition u = u0 + v in the external 
region with all of the characteristics that we have wished for. 
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 One can, moreover, note that u is found to be the sum of the singular solution 
2
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 that I already envisioned in 1927 for a corpuscle at rest that obeys the Klein-

Gordon equation in the absence of a field (1) and a regular solution 
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that will take 
on the form of the classical monochromatic plane wave that was envisioned in the early 
years of wave mechanics when it is referred to a reference system in which the corpuscle 
has a uniform, rectilinear motion.  In that reference system, the form of u will thus be, 
from (7): 
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outside the moving singular region.  All of this overlaps quite well. 
 We add a further remark: The solution (14) presents a singularity at r = 0.  If, in 
accord with an opinion that is frequently expressed by Einstein, one considers it to be 
desirable to avoid any mathematical singularity in the representation of the corpuscle that 
is incorporated in the field then one will need only to take the nonlinear equation of u to 
be, in place of equation (32), the one that one obtains by replacing the variable r with the 
variable ρ = r + α, where a is a positive length that is very small with respect to a (0 ≤ α 
≪a).  Thanks to that artifice, one can transform the solution (34) into: 
 

(38)     f = C ea / ρ = 
a

rC e α+ , 
 
in such a way that f will possess a very high, but finite, value for r = 0.  The modification 
that was introduced will obviously make sense only in the center of the singular region, 
where r ≪a will become of order α.  It results easily from this that the values that we 
deduced from equation (32) will still remain valid. 
 Naturally, we have no reason to think that equation (32), with its right-hand side 
chosen arbitrarily, will be the true nonlinear wave equation for a corpuscle u of spin 0.  
However, it has the advantage of offering us a simple example of the manner by which a 
very localized nonlinearity in the equation for the wave field u can fuse together the two 
terms in the expression u = u0 + v that is valid in the exterior of the singular region and 
which completely determines the value of the coefficients C and ε that figure in u0 and v. 
 
 
 6. The relationship between u and Ψ. – We shall now seek to specify the 
relationship between the function v and the function Ψ that is utilized in wave mechanics.  
Since the function u has an objective physical reality that is independent of the 
knowledge of the observer in the theory of the double solution, the function v that is a 
part of u and which practically agrees with u when one gets distant from the singular 

                                                
 (1) See equation (8), above.  
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region (because u0 ≪  v then) will also have an objective reality.  In particular, v must 
have a perfectly-determined amplitude that is not at the disposition of the user and cannot 
be normalized at his discretion.  However, the observer can mentally construct a function 
Ψ that must be, in principle, everywhere proportional to v, but with a coefficient of 
proportionality C that the user, who is free to give it any value that he desires, can choose 
in such a fashion that the function Ψ will be normalized.  That function will then be a 
mental construct with a subjective character that will uniquely play the role of permitting 
one to calculate certain probabilities, but they must be constructed by the user, to the 
extent that his information on the form of the function v is exact, with the aid of the 
relation: 
(39)     Ψ = C v. 
 
It is because the function Ψ was constructed by starting with v that it will have an 
objective reality that will permit an exact statistical evaluation of the probabilities, 
despite its subjective character (1). 
 If the function v occupies several disjoint regions in physical space, and the corpuscle 
is found in one of them, then the user can, according to the state of his knowledge of the 
position of the corpuscle, choose the constant C in a different fashion for each of the 
regions in question, and one can easily see how that will permit one to interpret the 
reduction of the probability packet. 
 Along the same lines, it is interesting to reflect upon the idea of a “pilot-wave” that I 
introduced in 1927, and which was reprised in some recent papers, notably in those of 
David Bohm.  I remarked in 1927 that since, according to the guidance formula, the 
corpuscle must follow one of the streamlines of the wave Ψ, one can adopt the following 
viewpoint: Consider only the wave Ψ of conventional wave mechanics and arbitrarily 
add the notion of a corpuscle that displaces along one of the streamlines of the wave that 
will be found to be guided by the wave Ψ, which will permit one to give it the name of 
pilot-wave.  However, I then consider – and I consider it more than ever today – the 
theory of the double solution that incorporates the corpuscle in the wave as being much 
more profound.  Moreover, the wave Ψ of conventional wave mechanics has, without a 
doubt, a subjective character, since it changes with our information, and one cannot 
assume that the “guidance” of the corpuscle by something subjective would be real. 
 The question will be clarified if one distinguishes v from Ψ.  The wave u involves a 
very localized accident that is represented by u0, so everything happens as if that accident 
(i.e., the corpuscle) were guided in its motion by the wave v by following one of its 
streamlines.  In reality, with the concepts that were discussed above, this will be true, 
since u0 and v define a unique ensemble, namely, the wave function u (which is equal to 
u0 + v outside of the singular region), in which u0 and v are fused together by the 
nonlinearity in the singular region.  However, one can, by abstracting from these 

                                                
 (1) On the subject of the formula Ψ(x, y, z, t) = c v(x, y, z, t), one can remark, with Jean-Louis 
Destouches, that despite the equality of the two sides of that equation, the significance of the letters x, y, z 
is not the same on the right and the left.  In v, they denote the current variables of space, while in Ψ they 
represent the coordinates of the corpuscle.  In the case of one corpuscle in a given field, which is the only 
one that we have studied here, that remark, which is exact, can seem to be a little subtle.  It will take on all 
of its validity when one studies the interpretation of wave mechanics for systems of corpuscles in 
configuration space by the theory of the double solution. 
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profound reasons, consider the corpuscle to be piloted by the wave v.  Here, there is no 
longer any paradox, because the wave v has a physical reality, and consequently, the 
corpuscle can be guided by it.  However, since the wave Ψ must be, in principle, chosen 
to be proportional to v and have, in turn, the same streamlines, one will get the 
impression that the corpuscle is guided by the wave Ψ, which is paradoxical.  We can 
then appeal to the image of a corpuscle that is guided by a regular wave such that it will 
follow one of its streamlines, but with the condition that we remember that the regular 
wave is the wave v, and that the corpuscle is not an object that is arbitrarily superimposed 
on that wave, but constitutes a unique reality with it, namely, the wave u in the singular 
region. 
 We also think that the distinction that was just made precise between the wave Ψ and 
the wave v will permit one to understand why for the last thirty years or so theoreticians 
seem to have constantly oscillated more or less consciously between the idea of a wave 
with an objective character and that of a simple wave function that is an abstract 
representation of probabilities. 
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CHAPTER V 

SOME COMPLEMENTARY NOTIONS TO THE THEORY OF THE DOUBLE 
SOLUTION AND GUIDANCE. 

 
________ 

 
 

 1. Existence of singular solutions in the exterior problem. – We shall call the 
study of the solutions u to the wave equation in the region that is external to the singular 
region the exterior problem, when that equation agrees – at least, in the first 
approximation – with the linear equation of propagation that was envisioned for the 
corpuscle that is considered by conventional wave mechanics, and when it admits an 
approximate solution of the form u0 + v. 
 In 1927, I employed the Klein-Gordon equation exclusively, along with its degenerate 
form, the Schrödinger equation, and I did not distinguish v from Ψ.  I would now like to 
prove that each solution Ψ in conventional wave mechanics will already correspond to a 
solution u0 with a moving singularity that will have the same phase as Ψ.  In the case of 
the absence of a field, I found the solution that was pointed out previously (1); however, 
that is just one very special case, and I have not seen how one could establish the 
existence of the function u0 in a general fashion. 
 Today, when the theory of the double solution has taken on a more precise and 
coherent form, the study of the existence of singular solutions to the exterior problem and 
the coupling with the regular solutions continues to be interesting in its own right.  Some 
notable progress in that direction was recently made in the thesis of Francis Fer.  In that 
paper, the author considered a type of partial differential equation that contained the 
Klein-Gordon equation as a special case.  Utilizing the general methods of integration for 
partial differential equations, he proved the existence of solutions with singularities that 
are expressed by formulas of the same type as retarded potentials.  By studying the 
agreement between these singular solutions and the regular solutions, Fer was led to 
recover the same motion for the singularity that was predicted by the guidance formula.  
The work of Fer thus seems to make an important contribution to the establishment of 
singular solutions to the exterior problem in the theory of the double solution. 
 Naturally, that exterior problem, which is analogous to the one that is posed in 
general relativity when one studies the field outside of a very thin world-tube that is filled 
with matter, will correspond to an incomplete viewpoint if one assumes that the true 
equation that is satisfied by u is nonlinear and that the decomposition u = u0 + v is only an 
approximate expression that is valid only in the external region. 
 Without being able to give a general proof of the existence of u0 in the exterior 
problem, I would like to insist on a method that seems to permit one to effectively 
construct the function u of the exterior problem in the case of stationary states. 
 
 

                                                
 (1) Chap. IV, form. (7) and (8).  
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 2. The Rayleigh-Sommerfeld formula. – There is something curious about the 
method that we shall present, namely, the fact that it has point of departure in the 
assertion of a fact that seems to constitute a very important difficulty for the theory of the 
double solution. 
 That difficulty originates in the theory of Green functions for wave equations, which 
is discussed in many books (1), and which is intimately linked to the general theory of 
linear integral equations. 
 Consider a wave function u that obeys a wave equation such that if u is a 
monochromatic solution – i.e., it depends upon time only through a factor eikct – then it 
will take the form: 
(1)     ∆u + [k2 – F(x, y, z)] u = 0. 
 
We know that this is the case for the Schrödinger equation, for example, and that k2 will 
then be proportional to the energy E of the corpuscle. 
 Envision a domain D in physical space that is connected and finite-dimensional.  The 
stationary waves that can be based in the domain D are defined to be monochromatic 
wave solutions of (1) that are annulled on the boundary of the domain D.  If, as in 
conventional wave mechanics, one confines oneself to the consideration of regular 
solutions Ψ of equation (1) then one will prove that the stationary wave exists only if the 
constant k has one of the values in a sequence k1, …, kn, …, whose set forms the spectrum 
of “proper values” of the problem considered.  In wave mechanics, as one knows, the 
proper values define the quantized energies of the corpuscle in the domain D.  The wave 
functions Ψn that are regular and zero on the boundary, and that correspond to them will 
be the “proper functions.” 
 However, one can also envision solutions to equation (1) that will be zero on the 
boundary of the domain D, but which will present a point-like singularity at a point Q in 
that domain.  These solutions are the “Green functions” of equation (1) for the domain D 
and the “source” point Q.  These Green functions G(M, Q) thus depend upon the current 
point M and the source point Q.  One restricts them by the following two conditions: 
 
 1. They are zero on the boundary of the domain D. 
 2. The function G(M, Q) has a point-like singularity at the point Q such that when M 

tends to Q, it will increase like 
1

MQ
= 

1

r
. 

 
 Now, the general theory of linear integral equations will give us the following 
theorem on the subject of the existence of Green functions: 
 
 The Green function G(M, Q) will always exist when the constant k has a value that 
does not coincide with any of the proper values k1, k2, … If k does coincide with one of 
the proper values kn then the Green function G(M, Q) will exist only in the very special 
case in which the corresponding proper function Ψn(M) is zero at the point Q. 
 

                                                
 (1) In particular, see the bibliography [5] and [6]. 
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 One can prove this result by effectively constructing the Green function with the aid 
of a formula that was once given by Lord Rayleigh and then used frequently by 
Sommerfeld. 
 In order to prove it, we start with the remark that by reason of the point-like 
singularity in 1 / r that the Green function must present at the point Q, one must write the 
equation that is satisfied by u = G(M, Q) in the form: 
 
(2)     ∆u + [k2 – F(x, y, z)] u = ε δ(M – Q), 
 
where one has introduced a source term into the right-hand side that involves a numerical 
coefficient ε that is analogous to an electric charge whose value is arbitrary and the 
singular Dirac function δ(M – Q).  Equation (1) will then be satisfied by u everywhere 
except for the point Q, where it will have a singularity in 1 / r. 
 Now, one can develop δ(M – Q) in proper functions Ψi(M) in the form: 
 
(3)     δ(M – Q) = ( )i i

i

c MΨ∑ , 

with 

(4)    ci = ( ) ( )iM Q M dδ τ∗− Ψ∫  = ( )i Q∗Ψ , 

hence: 
(5)     δ(M – Q) = ( ) ( )i i

i

Q M∗Ψ Ψ∑ . 

 
If we likewise develop u = G(M, Q) in the form: 
 
(6)      u = ( )i i

i

d MΨ∑  

then we must have: 
(7)    [∆ + k2 – F(x, y, z)] ( )i i

i

d MΨ∑  = ε ( ) ( )i i
i

Q M∗Ψ Ψ∑ , 

 
and since Ψi(M) is the solution of equation (1) with k = ki , this will become: 
 
(8)     2 2( ) ( )i i i

i

k k d M− Ψ∑  = ε ( ) ( )i i
i
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from which, one will infer: 
 

(9)      di = 
2 2
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since the Ψi form a complete system. 
 By substituting this in (6), one will obtain the Rayleigh-Sommerfeld formula: 
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(10)    u(M) = G(M, Q) = 
2 2

( ) ( )i i

i i

Q M

k k

ε ∗Ψ Ψ
−∑ . 

 
 It is appropriate to remark that the series that appears in the right-hand side of (10) is 
not absolutely convergent.  Despite that defect, it can be used safely in general, as 
Sommerfeld has shown. 
 One easily recovers the results that are provided by the theory of linear integral 
equations from formula (10).  Indeed, if the constant k does not coincide with any of the 
ki then formula (10) will give the Green function whose existence is thus found to be 
proved.  On the contrary, if k coincides with one of the ki then the term in the sum (10) 
that has the index n will infinite, and the formula will not give an acceptable Green 
function, except for the very special case where Ψn(Q) is zero.  We will thus indeed 
recover the results that were stated above. 
 Now, upon reflection, these results first appear to be disastrous for the theory of the 
double solution.  Indeed, in that theory, it obviously seems that one must make a function 
u = G(M, Q) that is zero on the boundary of D correspond to the stationary state that is 
usually represented by the function Ψn(Q) and to the value kn, and like Ψn, that function 
will also present a point-like singularity at the point Q where the corpuscle is found and 
correspond to the value kn of the constant k.  However, it is precisely that Green function 
that will not exist, or at least, it will exist only if the corpuscle is found at a point Q such 
that Ψn(Q) = 0.  Unfortunately, by virtue of the statistical significance of | Ψ |2, which is 
certainly exact, the corpuscle will then have a zero probability of being found at Q.  The 
contradiction is flagrant, and seems to constitute a redoubtable objection again the theory 
of the double solution. 
 Nevertheless, we shall see that when we look at things more closely the Rayleigh-
Sommerfeld formula, far from constituting an objection against the existence of the wave 
u in the stationary case, will, on the contrary, provide the means to construct it. 
 
 
 3. Construction of the function u with the aid of the Rayleigh-Sommerfeld 
formula in the case of stationary states. – We shall start with the following remark: 
Since u = u0 + v is assumed to be zero on the boundary of the domain D, the function v 
must not be rigorously zero on that boundary, but equal to – u0 .  Upon discarding the 
extremely improbable case where Q is situated so close to the boundary of D that the very 
small singular region that surrounds Q will touch that boundary, the values – u0 that v 
must present on the boundary will be extremely small everywhere, but they will 
nonetheless not be rigorously zero.  As a result, v cannot be considered to be exactly 
proportional to the proper function Ψn that is usually calculated.  Therefore, v must be a 
solution to the linear wave equation that corresponds to a value of k that is extremely 
close to kn, but not exactly equal to kn . 
 We are thus led to think that the function u that corresponds to the stationary state 
with index n must be equal to the Green function G(M, Q) that corresponds to a value of 
k that is slightly different from kn .  That Green function will then exist, and it must be 
given by the Rayleigh-Sommerfeld formula! 
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 In order to examine the form of that function u, we write formula (10) by isolating the 
term with the index n and denoting the difference k – kn by δkn , which, to abbreviate, I 
will call the “frequency shift.” One can then write, very approximately: 
 

(11)   n(M, Q) = 
2 2

( ) ( ) ( ) ( )

2
i i n n

i n i n n

Q M Q M

k k k k

ε ε
δ

∗ ∗

≠

Ψ Ψ Ψ Ψ+
−∑ . 

 
 Let ( )n M′Ψ  be a function then that is a solution of the wave equation for k = kn + δkn, 

where δkn corresponds to a very small shift in frequency whose value we will determine 
later on.  Since the function n′Ψ  is very close to the proper function Ψn, we will set: 

 
( )n M′Ψ  = Ψn(M) + δΨn(M), 

 
in which δΨn is the very small variation of Ψn that will result when kn varies by δkn (

1).  
One will then have: 
 

(13)  u(M, Q) = 
2 2

( ) ( ) ( ) ( ) ( ) ( )

2 2
i i n n n n

i n i n n n n

Q M Q M Q M

k k k k k k

ε ε δ ε
δ δ

∗ ∗ ∗

≠

′Ψ Ψ Ψ Ψ Ψ Ψ− +
−∑ . 

 
We are then assured of having obtained a solution of the exterior problem that is zero on 
the boundary of D and presents a point-like singularity in r−1 at the point Q, since we 
have only to apply the Rayleigh-Sommerfeld formula for a value of k that is different 
from all of the ki . 
 Since the function ( )n M′Ψ  is regular, the singularity can affect only the first two 

terms in the right-hand side of (12).  Therefore, if we set: 
 

(13)  
0 2 2

( ) ( ) ( ) ( )
( , )

2

( )
( ) ( ) ( ),
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i i i i
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n n
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k k k k

Q
v M M C M

k k

ε ε δ
δ

ε
δ

∗ ∗

≠

∗

 Ψ Ψ Ψ Ψ= − −


Ψ ′ ′= Ψ = Ψ


∑
 

with 

(14)     C = 
( )

2
i

n n

Q

k k

ε
δ

∗Ψ
, 

 
then we will have finally converted the function u into the form u = u0 + v, where u0 and v 
are solutions of the linear equation, u0 has a point-like singularity at Q, and v is regular.  
                                                

 (1) 
n
′Ψ  is equal to Ψn + n

n
k

∂Ψ

∂
 δkn .  Upon neglecting the terms in 2

n
kδ , one will see that 

n
′Ψ  is 

asolution (which is non-zero on the boundary of D) of the equation [∆ – F + (k + δkn)
2] 

n
′Ψ  = 0 by taking 

into account the equation [∆ – F + 2

n
k ] Ψn = 0 and its derivative with respect to kn . 
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Moreover, we see that v is of the form nC ′Ψ  ≈ CΨn ; i.e., it is very reasonably 

proportional to the function Ψn , which is the proper function that is considered in 
conventional wave mechanics. 
 If the ratio ε / C is considered to be well-defined then we will obtain an expression for 
the value of the frequency shift δkn that is determined entirely by the position of the 
singularity: 

(15)     δkn = 
( )

2
n

n

Q

C k

ε ∗Ψ
. 

 
However, in the exterior problem, where one considers only the linear wave equation, the 
value of ε / C will be arbitrary.  Indeed, ε is introduced into the right-hand side of (2) 
artificially with a well-defined value.  As for C, that constant has no value imposed upon 
it a priori.  Therefore, formula (15) will not provide us with a well-defined value for δkn . 
 We previously saw that the viewpoint that is adopted in the exterior problem, where 
one implicitly considers the linear equation (1), with a zero right-hand side, to be valid 
everywhere except for a point Q, is insufficient.  We must assume that in the immediate 
neighborhood of Q there will exist a very small singular region where equation (1) is no 
longer valid, and where one must take into account a nonlinear right-hand side.  Now, as 
I showed in an example in the preceding chapter (§ 5), the localized nonlinearity in the 
singular region can suffice to impose perfectly-determined values on ε, C, and ε / C.  It 
results from this that this localized nonlinearity must permit one to obtain a perfectly-
determined and extremely small value of the frequency shift δkn from formula (15). 
 Here, it is appropriate to make a remark that can be important.  If the preceding 
theory is exact, since the frequency k of the “true” wave u will differ very slightly from 
kn, then the usual method of calculating the quantized energies in wave mechanics that 
deduces these energies from the proper values of the Schrödinger equation will be tainted 
with a very slight inexactitude.  However, in the present state of the theory of the double 
solution, we can always suppose that the ratio ε / C is very small so there will be no 
observable effect, even in the most precise spectroscopic measurements. 
 I have, moreover, given (1) the complete calculation of the function u in the case of a 
corpuscle at rest at the center of a spherical enclosure and showed that it can be 
represented by the Rayleigh-Sommerfeld formula.  The calculation is rendered very easy 
by the fact that the proper functions and the Green function will then have very simple 

forms 
sin cos

viz., and , resp.nk r kr

r r
 
 
 

.  Andre Rot just made (2) an analogous calculation 

in the more general case of a corpuscle that occupies an arbitrary position in a spherical 
enclosure, and then extended it to the case of any finite domain D when there is 
separation of the variable, and even in certain cases of infinite domains. 
 Be that as it may, it seems that, at least in the case of finite domains, and while 
ignoring the examination of certain questions of convergence, the Rayleigh-Sommerfeld 
formula, which seems to constitute a grave difficulty for the theory of the double 

                                                
 (1) See [3], pp. 226-230.  
 (2) C. R. Acad. Sc. 243 (1956), pp. 483 and 1281.  
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solution, provides, on the contrary, a method for constructing a wave function u in the 
exterior domain that possesses all of the requisite properties. 
 
 
 4. Interpretation of the statistical significance of | Ψ |2 in the stationary states. – 
We shall now study a problem that was often considered as providing a strong objection 
against the guidance formula. 
 In all of the attempts at a causal interpretation of wave mechanics, one must demand 
to know how one can justify the fact that for quite some time it has been well-established 
that the square of the modulus of the wave function Ψ gives that probability of presence 
of the corpuscle at each point and each instant.  Bohm and Vigier (1) made an important 
contribution to the solution of that problem by showing that if the motion of the corpuscle 
that is defined by the “guidance formula” is constantly subject to small random 
perturbations then the probability of presence in | Ψ |2 must be established very rapidly.  
These small random perturbations play the same role as “molecular chaos” does in 
Boltzmann’s statistical mechanics.  To what can these incessant small random 
perturbations be due?  To interactions with other systems that come close (i.e., 
collisions), to feeble fluctuations of the boundary conditions that are imposed upon the 
wave, perhaps even, as Vigier suggested, to interactions with a turbulent and 
uncoordinated wave field that fills up what we call “the vacuum.” 
 From a general viewpoint, one can remark that in any theory that imposes a well-
defined law of motion upon a corpuscle, it will be necessary to introduce a random 
element in order to obtain statistical mechanics (e.g., Boltzmann’s molecular chaos in 
classical mechanics, Bohm and Vigier’s hypothesis of perturbation in the casual 
interpretation of wave mechanics).  However, the statistical result that the introduction of 
that random element permits one to justify will be, in some way, already contained in the 
equations of motion that one starts with, which will allow one to predict that result a 
priori .  Therefore, in the context of the old mechanics of Newton and Einstein, one can 
prove Liouville’s theorem, which asserts the conservation in the course of time of the 
domain in the extension-in-phase that is occupied by the representative points in that 
abstract space of a cloud of corpuscles that displaces in space according to the laws of 
dynamics.  That theorem makes it probable a priori that the fundamental statistical 
principle in classical or relativistic statistical mechanics must be the equal probability of 
elements that are equal in the extension-in-phase.  However, the rigorous proof of that 
proposition, which is the objective of ergodic theories, always seems to demand the more 
or less explicit introduction of a random element that is analogous to Boltzmann’s 
molecular chaos. 
 Similarly, in the theories of the double solutions or the pilot wave (the distinction 
between the two is unimportant here), the role that is played in the old mechanics by 

Liouville’s theorem belongs to the continuity equation div 0
t

ρ ρ∂ + = ∂ 
v  that is valid for 

the fictitious fluid that is associated with the propagation of the regular wave.  That 
equation makes it probable a priori that in the new dynamics that arises from the 

                                                
 (1) D. BOHM, Phys. Rev. 85 (1952), pp. 166 and 180; D. BOHM and J. P. VIGIER, Phys. Rev. 96 
(1954), 208. 
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guidance formula, the quantity ρ dv (where ρ = | Ψ |2 for the Schrödinger equation) will 
be the probability for the corpuscle to be present in the volume element dv of physical 
space at the instant t.  However, here again, that assertion cannot be truly justified by an 
argument that is analogous to that of Bohm and Vigier, namely, that one can introduce a 
random element in the form of incessant, small perturbations that we spoke of above. 
 No matter what the physical origin of these perturbations, we can represent them in 
the following manner: Suppose that, abstracting from these perturbations, the regular 
wave that is associated with a corpuscle (either the wave Ψ or the wave v, if one assumes 

that they are proportional) is of the form a
2 i

he
π ϕ

 with a and ϕ real.  The motion of the 
corpuscle that is incorporated into that “unperturbed” wave will be defined by the 
guidance formula, which will be written: 
 

(15 bis)    v = − 
1

m
 grad ϕ, 

 
upon confining oneself to the simple case of the Schrödinger equation. 
 Introduce small perturbations: Although they are very numerous during each unit of 
our macroscopic time (for example, per second), we will assume that they are very long 
with respect to their duration.  During one of these perturbations, the wave will take the 

form (a + ε)
2

( )
i

he
π ϕ η+

, where ε and η are small perturbations of the amplitude and phase, 
respectively.  By reason of the random character of the perturbations, it is natural to 
assume that the mean values in time ε  and η  will be zero.  During the duration of the 
perturbation, the velocity of the corpuscle will become the sum of the unperturbed 

velocity that is given by (15 bis) and the additional velocity v = − 
1

m
 grad η.  Although 

the mean value of v is zero, these additional velocities will make the corpuscle move 
from its initial, unperturbed trajectory to another unperturbed trajectory, and then to a 
third, etc.  Finally, although the duration of each of these perturbations is, by hypothesis, 
much shorter than that of the interval during which the corpuscle describes an 
unperturbed trajectory, the enormous number of perturbations that the latter is subject to 
will have the effect that after a length of time that is very short on our scale, the 
probability of presence | Ψ |2 = a2 will be found to be realized; this seems to prove the 
argument of Bohm and Vigier.  Moreover, if one only goes to first order then since ε  = 
0, that probability will also be found to be equal to the mean value of the square of the 

perturbed amplitude 2( )a ε+ . 
 We now arrive at the application of the guidance formula to the stationary states, 
which is an application that seems to lead to a great difficulty at first.  Consider a 
stationary state of a quantized system; for example, an electron in the hydrogen atom.  In 

general, the corresponding wave function will be of the form a(x, y, z) 
2

n
i
E t

he
π

, in which 
En is the quantized value of the energy, and a is a real function of the variables x, y, z.  
Formula (15) then tells us that the electron must remain at rest at an arbitrary, but well-
defined, point in the atom.  That would correspond to the fact that the quantum force – 
grad Q, which is derived from the quantum potential Q, can then equilibrate the 
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electrostatic force.  In other cases, one can find that the electron is animated with a simple 
periodic motion.  Therefore, for the electron in the hydrogen atom, when the wave 

function is of the form Ψ = F(r, θ) eimα 
2

n
i
E t

he
π

, where r, θ are the polar coordinates 
around the kernel, since the phase is then a linear function of the longitude angle α, the 
electron must, from formula (15), describe a “parallel” around the polar axis with a 
uniform velocity.  In all cases where the electron is either at rest or animated with a very 
simple periodic motion, one cannot at all see how the probability of presence | Ψ |2 can be 
realized.  This objection seems to be grave. 
 However, one now introduces small random perturbations that are brief and spaced-
out from each other and begins to imagine the case where the electron of the hydrogen 
atom has a uniform, circular motion for its unperturbed motion.  One can easily see that 
the length of the circular trajectory must be of order 10−8 to 10−9 cm, and the velocity of 
the electron, of order 109 cm/s.  One then assumes, by way of example, that it produces a 
million brief perturbations per second, in the mean.  Nevertheless, the corpuscle will have 
enough time to describe a million orbits around its unperturbed trajectory in each time 
interval between two consecutive perturbations, in the mean.  That example shows that 
the corpuscle can be considered to be almost constantly animated with the unperturbed 
motion that is defined by formula (15), although it will change its circular trajectory a 
million times per second.  This permits us to understand how, despite the circular form of 
the unperturbed trajectories, one can expect to find the electron at any point of the atom 
with the probability | Ψ |2. 
 In the case where the electron remains at rest at a point of the atom in its unperturbed 
state, one can say that the unperturbed motion will reduce to a state of rest.  However, if 
we always assume that it produces a million perturbations per second, in the mean, then 
the electron will be propelled from one position to another a million times per second, in 
the mean, and after a second, it will have occupied a million different positions in the 
atom, and that will be true despite the fact that it remains at rest, in the mean, in each of 
these positions during a length of time that is very long with respect to the period of its 

wave (which, being always close to 
2

0

h

m c
, will be of order 10−20 s).  Here again, we 

arrive at an understanding of how one can realize the probability of presence with | Ψ |2, 
even though the corpuscle remains almost constantly at rest, thanks to the continual 
jittering of the corpuscle that is due to perturbations. 
 
 
 5. Two theorems in the theory of the double solution-pilot wave. – We shall now 
prove two interesting theorems in the causal interpretation of wave mechanics that one 
can state in the language of the theory of the pilot wave, which will be equivalent to the 
theory of the double solution, here.  These theorems have been known to us for quite 
some time.  Moreover, they have been given by other authors, notably by Herbert Franke. 
 
 a. Theorem on the expression for the kinetic energy. – In conventional wave 
mechanics, one considers the wave function Ψ to be an indecomposable, complex 
quantity in which one does not make the modulus and the argument enter separately.  
One takes the Hamiltonian operator be: 
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(16)    H = 
1

2m
P2 + V  

2
2

24

h
P

π
 

= − ∆ 
 

, 

 
where the operator P2 / 2m corresponds to the kinetic energy T of the classical theory.  
The mean value of the total energy E in the state Ψ is then: 
 

(17)    E  = 
2

28D

h
V d

m
τ

π
∗  

Ψ − ∆ + Ψ 
 

∫ , 

in the usual formalism. 

 In the theory of the double solution-pilot wave, one writes Ψ = a 
2 i

he
π ϕ

, and makes the 
amplitude a and the phase ϕ play distinct roles.  By substituting this into the wave 
equations, one obtains the generalized Jacobi equation: 
 

(18)    
t

ϕ∂
∂

 ≡ E = 
1

2m
(grad ϕ)2 + V + Q, 

with 

(19)     Q = − 
2

28

h a

m aπ
∆

. 

 
 Moreover, one also obtains the continuity equation: 
 

(20)    
t

∂
∂

(a2) + div 
2

grad 
a

m
ϕ 

− 
 

 = 0. 

 
 Since, from the guidance formula (15), the kinetic energy of the corpuscle has the 

well-defined value T = 
1

2m
(grad ϕ)2, one sees that the total energy E is the sum of the 

kinetic energy, the classical potential energy V, and the quantum potential energy Q.  
Since the probability of presence density is | Ψ |2, one is led to write: 
 

(21)    E  = 21
grad

2D
V Q

m
ϕ + + 

 
∫ a2 dτ . 

 
Now, by taking equation (20) into account, one easily finds that: 
 

(22)    − 
2

28

h

mπ
∆Ψ  = 

1

2m
(grad ϕ)2 − 

2

28

h a

m aπ
∆

. 

 
Upon substituting (22) into (17), and upon comparing that with (21), one will see that: 
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 1. The usual expression (17) for E  will coincide with the expression (21) that is 
given by the theory of the double solution-pilot wave. 
 

 2. In the expression (21) for E , the term − 
2

28

h

mπ
∆  in the usual expression (17) 

does not correspond to the kinetic energy T that is defined by the guidance formula, but 
to the sum of that kinetic energy and the quantum potential.  If that potential does not 
figure explicitly in formula (17) then that will be because it is contained in the term 

1

2m
P2 that the usual theory considers as corresponding to the kinetic energy, but which 

we interpret differently here. 
 
 This theorem is important for the exact comparison of the usual theory with the causal 
interpretation and the guidance formula. 
 
 b. Virial theorem. – In classical statistical mechanics, one proves a theorem that is 
known by the name of the “virial theorem,” which is a theorem that notably plays a role 
in the kinetic theory of gases.  I shall first recall the classical proof of that theorem.  The 
motion of a corpuscle with a quantity of motion that equals p in a force field that is 
derived from a potential V is: 

(23)     
d

dt

p
 = − grad V. 

From this, one deduces that: 
 

(24)   
d

dt
(r ⋅⋅⋅⋅ p) = p ⋅⋅⋅⋅ v + r  ⋅⋅⋅⋅ d

dt

p
 = 2T – r ⋅⋅⋅⋅ grad V, 

 
where r  is the radius vector that defines the position of the corpuscle.  One then sees that 
for a periodic motion the left-hand side of equation (24) must be zero in the temporal 
mean, so one will get: 

(25)    2 grad T V− ⋅r  = 0 
 

for such a motion.  The quantity grad V⋅r  is called the “virial of the forces,” and formula 
(25) expresses the classical virial theorem. 
 This theorem can be transposed into conventional wave mechanics.  In order to do 
that, we introduce the following definitions: 
 

(26)    

2

( grad )
2

( grad ) ,

1
.

2 2

D

D

D

h
N V d
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R V d
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T d
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
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
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 It is obvious that R represents the mean value of the virial, here.  Starting with the 
Schrödinger equation and performing some integrations by parts, one then proves that 
one will have: 

(27)     
dN

dt
= 2T  + R. 

 

If the wave is stationary 
2

~
i
Et

he
π 

Ψ 
 

 then the left-hand side of (27) will be zero, and 

what remains is: 
(28)     2T  + R = 0, 
 
which is obviously the transposition of the classical virial theorem into conventional 
wave mechanics. 
 We shall interpret formula (28) by taking the viewpoint of the causal interpretation. 
 Upon taking theorem a into account and introducing the quantum potential Q = − 

2

28

h a

m aπ
∆

 and its mean value 2

D
Qa dτ∫ , we rewrite formula (28) in the form: 

 
(29)      2 2T Q′ +  + R = 0, 
 

where T′  is the “true” kinetic energy 
1

2m
(grad ϕ)2, here, which corresponds to the 

guidance formula.  Now, in the theory of the double solution-pilot wave, the virial 
theorem must obviously be written in the form: 
 
(30)     2T′+ R′ + R = 0, 
where 

(31)     R′ = − 2

D
Qa dτ∫ = 2Q  

 
is the mean value of the virial of the quantum force, which one obviously must add to the 
mean value R of the virial of the classical force here. 
 In order to prove (31), it will suffice to show that: 
 

(32)     R′ = 2 2( grad )
D

Q a dτ⋅∫ r , 

namely: 

(33)    2
D

a a dτ∆∫  = − 2grad
D

a
a d

a
τ∆ ⋅ 

 
∫ r . 

 
 Now, one easily verifies that: 
 

(34) − 2grad
D

a
a d

a
τ∆ ⋅ 

 
∫ r  = 2 2(3  grad )

D

a
a a d

a
τ∆ + ⋅∫ r  
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  = (3 2  grad )
D

a a a a dτ∆ + ∆ ⋅∫ r  

  = 2 
D

a a dτ∆∫ , 

 
because one easily sees, by a sequence of integrations by parts, that: 
 

(36)   2 grad 
D

a a dτ∆ ⋅∫ r  = − 
D

a a dτ∆∫ . 

 
The virial theorem in the form (30) is thus proved. 
 
 
 6. Some words about the wave mechanics of systems in configuration space. – 
One knows that in those beautiful papers in 1926, in order to construct the wave 
mechanics of systems of corpuscles in such a fashion that it admits the classical 
Hamilton-Jacobi theory as its geometrical optics approximation, Schrödinger was led to 
associate the motion of a system with the propagation of a wave in configuration space 
that was defined by the set of the 3N coordinates of the N corpuscles that constituted the 
system.  He wrote the equation of propagation in configuration space in the form: 
 

(36)    
2

2
1

1 8N

k
k k

V
m h

π
=

∆ Ψ − Ψ∑  = 
4 i

h t

π ∂Ψ
∂

, 

 
where mk is the mass of the kth corpuscle, whose coordinates are xk, yk, zk, and ∆k = 

2 2 2

2 2 2
k k kx y z

∂ ∂ ∂+ +
∂ ∂ ∂

.  The potential V corresponds to both the interactions that can be exerted 

on the system from the exterior, if it is not isolated, and to the interactions between the 
corpuscles of the system.  In that case where N = 1, one comes back to the equation that 
is valid for just one corpuscle in a given external field. 
 By thus putting the propagation of the wave Ψ of a system in configuration space and 
that of the wave Ψ of a corpuscle in physical space on the same basis, one eliminates any 
character of physical reality from the wave Ψ, because the propagation of a wave in 
abstract configuration space can only be purely fictitious.  Even in the case of one 
corpuscle, if one considers the wave equation of that corpuscle to be a special case of 
equation (36) for N = 1 then one will obtain an equation of propagation in the 
configuration space of the corpuscle that is defined by its coordinates x, y, z, and not an 
equation of propagation in the physical space that is defined by the spatial variables x, y, 
z.  The wave must then be a purely abstract quantity. 
 Naturally, in the era when I sought to preserve the character of objective reality for 
the wave of wave mechanics, I could not assume that viewpoint.  For me, any real 
phenomenon can be described in framework of space and time.  It seems inadmissible to 
me that one can treat the problem of N corpuscles in interaction only by considering a 
type of wave propagation that is obviously fictitious in an entirely abstract configuration 
space.  To my eyes, it must be possible to pose, and even to solve, that problem by 
considering the propagation in the physical space of N waves u with singularities that 
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mutually influence each other.  One must then be able to prove that the statistical result of 
these interactions is provided by the consideration of Schrödinger’s wave Ψ in 
configuration space, where since the wave Ψ is only a representation of a probability, it 
can have only an abstract character.  In short, it will be only a statistical representation of 
the correlations that are established between the positions of the singularities of the wave 
u under the influence of their interactions. 
 Conforming to this program, one must seek to represent a system of N corpuscles as 
being composed of N trains of waves u that each carry a singular region and evolve in 
physical space in the course of time, such that the propagation of each of the wave trains 
is influenced by the actions that are exerted on them by the singular regions of the other 
wave trains.  In my paper in 1927, I already made a first attempt to justify this by 
directing my attention to the role of the wave Ψ in configuration space.  In these latter 
years, I have reprised my work along those lines, and I have presented it in my recent 
book (1).  Certainly, one cannot say that a clear and rigorous proof has been obtained up 
to now, but I have reason to think that one will be obtained.  In the present presentation, I 
also assume that when the traces of the waves u that correspond to various corpuscles 
interact – for example, in a measuring device – the statistical correlations that are 
established between the positions of the corpuscles by the theory of the wave Ψ in 
configuration space will be exact.  This hypothesis will permit us to obtain the results that 
we desire without having to treat the problem of the motion of each wave train u during 
the period of interaction. 
 We shall now return to the problem of measurement, while nonetheless assuming the 
viewpoint of the theory of the double solution and subjecting it to a more detailed 
analysis than one has habitually done up to now. 
 
 
 

________ 
 

 

                                                
 (1) See [3], chap. XII, and also C. R. Acad. Sc., 244 (1957), 529.  



 

CHAPTER VI. 
 

POSITION OF THE CAUSAL INTERPRETATION IN REGARD TO 
MEASUREMENTS IN MICROPHYSICS. 

________ 
 
 
 

 1.  The special role played by the position of the corpuscle. – The theory of the 
double solution re-establishes a description of phenomena in the context of space and 
time.  It is therefore inclined to give a special role to the measurement of position.  This 
seems natural, moreover, if one remarks that all observations are necessarily carried out 
in the context of physical space. 
 If one contemplates the manner in which one can perform the determination of the 
position of a corpuscle then one will be led to the following assertions: First, since the 
corpuscle is not directly observable, its presence can be detected only by way of some 
local macroscopic effect that it will provoke, and the same thing will be true for any 
microphysical system.  That is why a photon that arrives at the sensitive coating of a 
photographic plate will produce a photoelectric effect, and the emitted photo-electron will 
trigger a cascade of chemical phenomena by ionization effects that translate into a local 
reduction of the silver bromide, and a local darkening of the sensitized plate that will be 
visible after photographic developing.  Likewise, an electric corpuscle that penetrates a 
Wilson chamber will trigger condensation vapor droplets by an ionization effect that will 
leave a trace in the chamber, and a series of consecutive analogous actions will then 
provoke the appearance of a filament of vapor droplets that roughly sketch out the 
trajectory of the corpuscle. 
 Upon pondering that, it seems that any observable phenomenon that is provoked by 
corpuscles at the atomic level will be detectable in only that way.  There will always be 
the local action of a corpuscle that finally triggers an observable macroscopic 
phenomenon at the origin of the observation.  This is an essential point that was not 
sufficiently brought to light in von Neumann’s analysis and the comments that he made.  
By contrast, in that analysis, one makes the measuring device, and similarly the indicator 
of the measuring device, play a role that seems exaggerated to us.  In reality, the 
measuring device and its indicator can play only a secondary role in the measurement of 
macroscopic phenomena that are triggered by the local action of the corpuscle: For 
example, a galvanometer can serve to measure the current discharge that is provoked by 
the arrival of a corpuscle in a scintillation counter, but it is the triggering of the discharge 
that is the essential thing and not its measurement by the galvanometer.  The role of the 
measuring instrument appears to us to be much less important than one frequently hears 
that it is, and there are even cases in which one can ignore it completely (for example, in 
the direct visual observation of a photographic plate). 
 In the usual interpretation, one very often considers that one measures the position of 
a corpuscle by making it pass through a hole that is pierced in a screen that is open for a 
very short period of time.  One will then have a determination of the position of the 
corpuscle that will be as exact as one desires.  However, independently of the fact that 
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one never performs such a measurement of the position of a corpuscle in practice, one 
must remark that there would have to be, in turn, some macroscopic phenomenon that 
was triggered by the corpuscle when it traversed the screen; otherwise, one would 
observe nothing.  One can perform the experiment in the following fashion: Receive the 
wave train that contains the corpuscle on a pierced screen that has an infinitude of very 
close holes (e.g., a sieve) and place a photographic plate behind that screen. 
 

 

Incident 
wave train Sieve 

Photographic 
plate  

 
Figure 1. 

 
 The observation of a local darkening of the photographic plate will permit one to say 
that the corpuscle has passed through the hole that is situated in front of that darkening.  
The determination of the position, thus performed, will always be imprecise, since the 
dimensions of the black spot on the photographic plate will have a macroscopic order of 
magnitude (if that spot is observable), and in turn, will be much larger than the 
dimensions of the corpuscle.  Nevertheless, one will arrive at a considerable improvement 
in the precision of the position of the corpuscle, since the dimensions of a hole in the 
sieve will be much smaller than the transverse dimensions of the incident wave train. 
 We arrive at the general idea, which is too often unknown, that if one cannot 
determine the position of a corpuscle in a very precise fashion then, meanwhile, any 
observation or measurement that relates to a microscopic corpuscle will always amount to 
observing a very localized macroscopic phenomenon that is triggered by the action of the 
corpuscle. 
 Contrary to what is said in the very abstract theory of representations in the usual 
wave mechanics, the position of a corpuscle will thus play a role that is completely 
different from that of the other measurable magnitudes.  We repeat that this is quite 
natural since any observation is performed in the context of physical space.  By 
disregarding that fact, the theory of representation tends to put the space of momenta (px, 
py, pz) and physical space (x, y, z) on exactly the same footing, but that is too much of an 
abstraction: The physicist, his laboratory, and his instruments are in physical space, and 
the space of mometa exists only in the mind of the theoretician. 
 Since the theory of the double solution deals with more concrete ideas and establishes 
the privileged role that is incontestably played by experiments in physical space, it is not 
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surprising that it must lead us to attribute a special role to the probability distribution that 
relates to the position (| Ψ |2, in the case of the Schrödinger equation).  Indeed, it will 
teach us that this probability distribution corresponds to a collective property that one 
must associate with the initial state before the measurement.  On the contrary, the 
probability distribution that the usual formalism attributes to a quantity that is not 
simultaneously measurable with the position is not generally realized in the initial state: It 
will correspond to a collective property that is associated with the state that will exist 
after the action of a device on the corpuscle that permits one to measure the quantity that 
is imagined. 
 
 
 2.  Any measuring device will involve a separation of wave trains in space. – We 
shall now insist upon another circumstance that has also been ignored in the theory of 
measurement up to now. 
 We first place ourselves in the case where one must measure a quantity that relates to 
a corpuscle without making another corpuscle intervene.  One must then employ a 
macroscopic device whose action on the propagation of the wave, into which the 
corpuscle is incorporated, will finally have the effect of spatially separating the wave 
trains that each correspond to a given value of the measurement.  That conclusion is the 
immediate consequence of the fact that was brought to light in the last paragraph that any 
observation of a corpuscle will always consist of its localization.  In order for the 
localization of a corpuscle after the action of a measuring device to permit us to say what 
the value of that quantity is at that moment, it is necessary that one have a one-to-one 
correspondence between the localization of the corpuscle and the value of the quantity 
that is being measured, and that is what will demand the separation of the wave trains in 
space after the measurement. 
 The device that we imagined above (Fig. 1) for the measurement of position satisfies 
that condition, since it has the effect of isolating the wave trains with very small lateral 
dimensions, which permits one to measure (somewhat imprecisely) the coordinates of the 
corpuscle in the plane of the screen, thanks to the very localized darkening that is 
triggered in the photographic plate that is placed behind the sieve. 
 Now, imagine the measurement of the quantity of motion, the knowledge of which 
will provide us with the energy.  In order to measure the quantity of motion of a photon 
(and therefore, its energy, frequency, and “color”), one passes the incident sheaf through 
a device like a prism or grating that spatially separates the various wave trains that 
correspond to different frequencies by bending them into different directions.  When the 
incident wave train is not monochromatic, the device will realize a true spectral 
decomposition by spatially isolating the various Fourier components of the incident 
wave.  However, the same separation would obtained if the device successively received 
monochromatic wave trains that had different frequencies, because each of them will be 
bent into the direction that corresponds to its frequency.  Since the wave trains can be 
superposed at the exact point when they leave the device, the localization of the photon in 
that region by the observation of a macroscopic phenomenon that it triggers will not 
permit one to attribute a well-defined frequency to it.  One also ordinarily places a lens 
behind the prism or grating that will separate the various monochromatic sheaves and 
make them converge onto some small separated regions in its focal plane, where they will 



Chapter VI.  Position of the causal interpretation. 65 

each give a colored image of the source.  If an observable macroscopic phenomenon (for 
example, the local darkening of a photographic plate) is triggered by the arrival of a 
photon in one of these regions then one can attribute a well-defined frequency to it.  The 
initial sheaf is therefore divided by the action of the device (e.g., grating + lens) into a 
series of wave portions that will strike the photographic plate in spatially-disjoint regions, 
and it is that spatial separation that will permit one to measure the frequency, and in turn, 
the quantity of motion, of the photon.  The fact that we just reasoned with a photon has 
no particular importance, because we know today that any corpuscle can give us 
phenomena of optical type, and we can construct devices for electrons, for example, that 
are analogous to a prism or a lens.  There is therefore no essential difference between the 
photon and the other corpuscles in the problem that we are examining. 
 More generally, we can analyze this kind of measurement in the following fashion: 
Suppose that we would like to measure a quantity A that relates to a corpuscle.  If the 
initial wave train R0 is represented by the wave function: 
 
(1)      Ψ = k k

k

c ϕ∑ , 

 
where ϕk is the proper function of A that corresponds to the proper value αk , then we will 
send that wave train into a device D (grating + lens, in the case that was studied above) 
that separates the components ck ϕk in such a way that upon leaving the device D, each of 
them will occupy a region Rk that is spatially separated from the regions that are occupied 
by the other ones. 
 If we then observe (with the aid of a photographic record, or some other one) a 
macroscopic phenomenon that is triggered by the corpuscle in the region Rj then we can 
say that the quantity A of that corpuscle will have the value αj after the action of the 
device, and we will have thus performed a measurement of A.  The formalism of wave 
mechanics tells us that the value αj will have the probability | cj |

2 ; i.e., if we perform the 
same measurement experiment a great number of times with the wave trains represented 
by the same wave function (1) then the proportion of cases in which we will obtain the 
value αj will be given by | cj |

2. 
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Figure 2. 
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 In the usual interpretation, where one adds nothing to the concept of the wave Ψ, 
there will be no localization of the incident corpuscle in R0, nor will there be any in the 
regions R1, R2, … after the action of the device D.  It will be only at the moment when an 
observable phenomenon is produced in Rj that the corpuscle will be briefly localized in 
that region.  In the von Neumann-London-Bauer theory, one must even say that it is the 
awareness of the macroscopic phenomenon by the observer that localizes the corpuscle in 
Rj .  However, that seems truly unacceptable!  It seems obvious that the macroscopic 
phenomenon will be produced, even if the observer has his eyes closed, in such a way 
that the awareness of the observer should have nothing to do with that. 
 What is equally incomprehensible in the present explanation is how it happens that 
the triggering of an observable macroscopic phenomenon in Rj will instantly prevent the 
corpuscle from manifesting itself in any other region Rk .  Something even more 
surprising is that the various Rk can be found to be very distant from Rj at the moment of 
localization of the corpuscle. 
 It was, in short, that very difficulty that Einstein pointed out, in a somewhat different 
form, to the Solvay Council in 1927, and which has never been neatly eliminated.  
Einstein said: “Consider a planar screen that is pierced by a hole upon which a train of 
waves Ψ falls normally.” 
 “Behind the screen, if the hole is very small then the wave will take the form of a 
spherical wave whose center will be the hole.  Then place a hemispherical film F behind 
the screen.  If the corpuscle is manifested by a point A of F then that will be interpreted 
very easily if the corpuscle has followed a well-defined trajectory (such as the one that is 
represented by the dashed line in Fig. 3) that takes it to A.  However, if the corpuscle is 
not localized then it will be spread out into the potential state in all of the hemispherical 
wave that is behind the screen.  How can the fact that it is manifested at A instantaneously 
prevent it from manifesting itself at any other point B of the film, which is a point that 
can be at a great distance from A?” 

 

A 

F 

B 

 
Figure 3. 

  
 One see that this objection is indeed the same as the one that we presented above, 
because Einstein’s device is a measuring device for the position of the corpuscle.  
Moreover, one will be led from this device to the one that we envisioned previously (Fig. 
1) by supposing that the hemispherical film is placed immediately behind a likewise 
hemispherical screen that is pierced by an infinitude of holes. 
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 One can object to Einstein’s argument by saying that the corpuscle does not manifest 
its presence at the point A, but in a very small region around A.  However, since the 
surface of that region is very small with respect to that of the hemisphere F, Einstein’s 
objection remains valid. 
 Return to Figure 2.  One will encounter difficulties that will seem insurmountable if 
one does not want to assume that the corpuscle is localized, but everything will be clear if 
one establishes the localization of the corpuscle as the theory of the double solution does.  
Indeed, the corpuscle must then have a position in the initial wave train.  Moreover, we 
cannot know that position, because in order to measure it, we will be obliged to employ a 
device that completely perturbs the initial wave train.  However, we assume that this 
position exists, and that the probability for the corpuscle to be found at the point M0 of 
the wave train at the initial instant t0 will be given by | Ψ(M0, t0) |

2.  (One will refer to 
paragraph 4 of the last chapter for the justification of the latter hypothesis.)  From the 
guidance theorem, the corpuscle that starts at the initial position M0 at the instant t0 must 
follow the streamline that passes through M0 .  The motion that results for it is generally 
very complicated: It is rectilinear and uniform only before the action of the device when 
the wave train is reasonably monochromatic.  However, we know that after the passage 
through the device that separates the wave trains R1, R2, …, the motion of the corpuscle 
will finally lead to one of the wave trains Rk , and the probability for it to be in Rj is 
obviously: 

2| |
R

dτΨ∫  = 2 2| | | |
j

j jR
c dϕ τ∫  = | cj |

2, 

 
since ϕj is normalized (1) and zero outside of Rj .  If the corpuscle triggers an observable 
macroscopic phenomenon in Rj then that will be because it has arrived in Rj and the 
magnitude A will have the value αj . 
 Obviously, it is necessary that the observer must confirm the triggering of the 
macroscopic phenomenon in order for him to become aware of the fact that A has the 
value αj when the corpuscle is in Rj .  However, this fact is independent of the awareness 
of the observer, and everything will become clear again. 
 
 
 3.  Recovering the usual schema of statisticians. – We shall now show that the 
ideas of the theory of the double solution (which one can apply here in the simple form of 
a pilot wave) will immediately lead to an organization of the issues that are concerned 
with the question of the probability distribution. 
 We shall envision the case in which the quantity that one must measure is the quantity 
of motion p.  We suppose that the Schrödinger equation is valid, and we write: 
 
(2)      ρ(r) = | Ψ(r) |2 
 
for the probability density of the position r .  We then set: 
 

                                                
 (1) In the development (1), the ϕk are, in reality, proper differentials that represent the wave group.  
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(3)    Ψ = 2 /i ha e π ϕ  = ∫ c(p) Ψ(p, r) dp = ( )k
k

b Ψ∑ pp  

in the initial state (1). 
 In the initial state, if the corpuscle is at a point r  then, from the guidance formula, it 
will have a quantity of motion that is: 
 
(4)      p = mv = − grad ϕ(r). 
 
Before the measurement of P, one will have: 
 
(5)    ρR(r) = | Ψ(r) |2, ( , )ρ R

P p r  = δ(p + grad ϕ) 
 
for the two random variables R and P in the initial state, where the second formula 
signifies that if one knows that value of r , and therefore ϕ(r), then p will have the value 
that is given by the guidance formula.  One will further have: 
 
(6)     ρ(r , p) = | Ψ(r) |2 δ(p + grad ϕ), 
and one will verify that: 
 

(7)   ∫ ρ(p, r) dp = | Ψ(r) |2 = ρR(r), (dp = dpx dpy dpz). 
 
 One will likewise have: 
(8)      ρP(p) = 2| ( ) |i

i

Ψ∑ r , 

 
where the r i correspond to the positions of the corpuscle for which grad ϕ has the value p 
in question, and one will verify that (dr  = dx dy dz): 
 

(9)   ∫ ρ(r , p) dr  = | Ψ(r) |2 δ(p + grad ϕ) dr  = 2| ( ) |i
i

Ψ∑ r = ρP(p). 

 
 In order to complete the statistical schema of the classical type that relates to the 
initial state, one must further define ( , )ρ P

R p r , which one does by setting: 
 

(10)   ( , )ρ P
R p r = 

( , )

( )

ρ
ρP

r p
p

 = 
2

2

| ( ) | ( grad )

| ( ) | ( grad )d

δ ϕ
δ ϕ

Ψ +
Ψ +∫

r p

r p r
. 

 
 Finally, if one considers all of the possible positions r  of the corpuscle in the initial 
wave train and the corresponding values of p that are given by the guidance formula then 
one will have defined a collection of individual entities that have well-defined positions 

                                                
 (1) In order for the measurement of p that separates wave trains in space to be performed, it is necessary 
that the pk must define a discontinuous sequence.  Nevertheless, one can employ the integral by considering 
it to act on proper differentials. 
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and momenta, for which one will have a statistical schema of the classical type that will 
correspond to the following table: 
 

(I)  

2 2

2

2
( ) ( )

2

( ) | ( ) | , ( ) | ( ) | ,

( , ) | ( ) | ( grad ),

| ( ) | ( grad )
( , ) ( grad ), ( , ) ,

| ( ) | ( grad )

i
i

r

d

ρ ρ

ρ δ ϕ
δ ϕρ δ ϕ ρ

δ ϕ


 = Ψ = Ψ

 = Ψ +
 Ψ + = + =
 Ψ +

∑

∫

R P

R P
P R

r r p

r p r p

r p
r p p r p

r p r

 

 
with the likewise classical relations: 
 

(I′)    
( ) ( )

( , ) ( ), ( , ) ( ),

( , ) ( , )
( , ) , ( , ) .

( ) ( )

d dρ ρ ρ ρ

ρ ρρ ρ
ρ ρ

 = =



= =


∫ ∫P R

R P
P R

R R

r p r p r p p r

r p r p
r p r p

r p

 

 
 However, we can insist upon an important point:  Except for ρR(r), the probability 
distributions that we just defined will be “hidden,” in the sense that we cannot determine 
them experimentally.  Indeed, except for ρR(r) = | Ψ(r) |2, which we can determine 
directly with the aid of the screen-sieve device in Fig.1, we cannot determine the values 
of p without making a measurement of that quantity, a measurement that will change the 
wave state completely by destroying the superposition of 

k
Ψp and the original collection 

that it is associated with, since that measurement will involve a spatial separation of the 
components 

k
Ψp in the development (3).  We have thus indeed defined a collection with 

the aid of table (I), but it will be a hidden collection. 
 Now, study the situation after a measurement of p.  The measuring device has 
partitioned the initial wave into trains of partial waves that each correspond to one of the 
components 

k
Ψp .  We have seen above that we will then have ρP(pk) = | ck |

2, which will 

be written: 
(11)     ρP(p) = | c(p) |2, 
 
in continuous notation, and we will also have: 
 

(12)    ρR(r) = ∫ | c(p) |2  | Ψ(p, r) |2 dp 
and 
(13)    ρ(r , p) = | c(p) |2  | Ψ(p, r) |2. 
 
Since the proper function Ψ(p, r) is normalized (1), one will verify immediately that: 
 
(14)  ∫ ρ(r , p) dp = ρR(r),  ∫ ρ(r , p) dr  = ρP(p). 

                                                
 (1) See note pp. 89.  
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Since the probabilities are linked, we will find that: 
 

(15)  ( ) ( , )ρ R
P r p = | Ψ(p, r) |2,  ( ) ( , )ρ P

R p r = ( )dδ ′ ′−∫
pR

r r r , 

 
in which, Rp is the region where the wave will reduce to its component p. 
 The last formula (15) expresses the idea that for a known p, if the point r  is in Rp then 
one will have ( )ρ P

R  = 1, and that if r  is not in Rp then one will have ( )ρ P
R  = 0, and this is 

nothing but the mathematical expression of the fact that if the corpuscle manifests its 
presence in Rp (e.g., by triggering an observable phenomenon in it) then one must 
attribute the value p to the quantity of motion.  That is precisely why the separation of 
wave trains will permit the measurement of the quantity of motion. 
 Briefly: After the measurement, upon considering an infinitude of corpuscles that are 
divided between the trains Rp according to the proportions | c(p) |2 and then divided in the 
interior of each wave train Rp according to the density | Ψ(p, r) |2, we will obtain a 
collection that is composed of individual entities that have perfectly-determined positions 
and quantities of motion, which is a collection that will correspond to the following 
statistical schema of classical type: 
 

(II)   

2 2 2

2 2

( ) 2 ( )

( ) | ( ) | | ( ) | , ( ) | ( ) | ,

( , ) | ( ) | | ( , ) | ,
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c d c

c

d

ρ ρ

ρ

ρ ρ δ
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
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 ′ ′= Ψ = −

∫

∫
p

R P

R P
P R R

r p r p p p

r p p p r

r p p r r p r r r

 

 
and the following classical relations will exist between these quantities: 
 

(II ′)   
( ) ( )

( , ) ( ), ( , ) ( ),

( , ) ( , )
( , ) , ( , ) .

( ) ( )

d dρ ρ ρ ρ

ρ ρρ ρ
ρ ρ
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


= =


∫ ∫P R
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r p

 

 
The relations (II′) are verified immediately, except for the penultimate one, which is 
written: 

(16)  | c(p) |2 | Ψ(p, r) |2 = 2 2| ( ) | | ( , ) | ( )c d dδ′ ′ ′ ′ ′Ψ −∫ ∫
pR

p p r p r r r . 

 
Here is how one proves this: The last integral in (16) will be equal to 1 if the point r is in 
Rp, and then the quantity of motion will be equal to p;  it will be zero if r  is not in Rp .  It 
will then result that the right-hand side of (16) reduces to | c(p) |2 | Ψ(p, r) |2,  where p 
will have the value that corresponds to the known position r , in such a way that equation 
(16) will indeed be verified. 
 We remark that, neither of the two probability distributions ρR(r) and ρP(p) will be 
“hidden” for the collection after the measurement.  This will result from the fact that, on 
the one hand, the distribution ρR(r) that relates to the position is, as we know, always 
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verifiable by a statistical experiment (for example, with the aid of the screen-sieve 
device), and that on the other hand, the distribution ρP(p) will result from the same action 
of the device that permits one to measure p.  By contrast, the probability distribution that 
corresponds to a quantity in the final collection that is not simultaneously measurable 
with either the position or the quantity of motion will have a perfectly-determined value, 
but it will remain “hidden,” since the measurement of that quantity will destroy the 
collection.  One then sees that in the theory of the double solution-pilot wave, any state 
will correspond to a well-defined collection, but there will always exist quantities whose 
probability distribution is hidden, because their measurement would destroy the 
collection (1). 
 It would now be very interesting to compare the probability distributions (I) and (II) 
that correspond to the collection that is realized before the measurement of p and the 
collection that is realized after the measurement of p, respectively. 
 First of all, the comparison of ρR(r) in (I) and in (II) will show us that we recover all 
of the usual formulas for the interference of probabilities. 
 On the other hand, the distribution ρR(r) = | Ψ |2 in (I) and ρP(p) = | cp |

2 in (II) are 
both the ones that are considered in the usual probabilistic formalism.  However, here one 
will neatly see that they refer to the various collections that are realized, one of them, 
before the measurement, and the other one, after the measurement.  That is the reason 
why these probability distributions cannot verify the usual schema of statisticians, which 
assumes the existence of a unique collection. 
  One now sees very neatly the flaw that vitiates the proof of the celebrated theorem of 
von Neumann.  His argument shows that is it indeed impossible, even by introducing 
hidden variables, to construct a collection that simultaneously corresponds to the 
probability distributions | Ψ |2 and | cp |

2 that are habitually envisioned for the conjugate 
canonical quantities of “position” and “quantity of motion.”  However, it does not prove 
that one cannot construct the collections (by partially-hidden probability distributions) 
that are of the usual type and which correspond to the initial state before the measurement 
and the final state after the measurement, respectively, by introducing hidden variables.  
The usual probabilities that are considered will figure in these collections, but not in the 
same collection.  We just constructed the collection in question in detail in the case of the 
measurement of p, and we now indeed perceive that von Neumann’s theorem does not 
have the weight that one usually attributes to it. 
 
 
 4.  Interpretation of the uncertainty relations. – In the usual interpretation, the fact 
that the probability distributions for a coordinate x and the conjugate momentum px will 
correspond to “dispersions” σ(x) and σ(px), such that: 
 

(17)     σ(x)σ(px) 
4

h

π
≥ , 

 

                                                
 (1) One must remark that each region Rp will be occupied by a “wave group” that is representable by a 
proper differential and will correspond, not to a completely exact value of p, but to extremely close values 
of p, in such a way that the uncertainty relations will remain valid for each wave group Rp. 
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which will permit one to write the qualitative relation: 
 
(18)     δx δpx  ≥ h, 
 
where δx and δpx are the uncertainties in the values of x and px, must be interpreted by 
saying that the uncertainties in the values of x can never be both zero at the same time.  
However, from that prudent assertion, one generally proceeds to a much more audacious 
assertion.  One assumes that quantities such as δx and δpx do not represent simple 
experimental uncertainties in the values of these quantities that result from the conditions 
themselves that relate to the measurements of microphysics, but that they correspond to 
true indeterminacies that will always affect a part of the quantities that relate to a 
corpuscle.  In that manner of looking at things, which seems to have been assumed 
implicitly by the authors, one is then obliged to consider the corpuscle as being 
statistically divided between the various states, which will produce an image of the 
corpuscle that is much less intelligible. 
 On the contrary, with the theory of the double solution, in which the probability 
distributions ρX(x) and ( )

xP xpρ  refer to different states, the interpretation of the 

uncertainty relations will no longer be the same.  In each state, the corpuscle will have a 
position in the wave that is well-defined and a quantity of motion that is likewise well-
defined as a function of position by the guidance.  All of the quantities that relate to the 
corpuscle that are all expressed with the aid of the coordinates of the corpuscle and 
therefore the corresponding Lagrange momenta will also have well-defined values at 
each instant.  However, these values cannot all be known simultaneously.  Indeed, with 
the exception of position and the quantities that are measurable at the same time as 
position, the action of the device that will be necessary to measure a quantity A will have 
the effect of sending that corpuscle into one or the other of the wave trains that finally 
correspond to a given value of A in a perfectly-well-defined manner, in such a way that 
there will be an a priori uncertainty in the result of the measurement of A that provides 
the uncertainty in the (hidden) position of the corpuscle in the initial wave train, which is 
an uncertainty that corresponds to the probability distribution | Ψ |2.  The dispersion σ(px) 
of the possible final values of px after the measurement will be related to the dispersion of 
the possible initial  values of the position by the relation (17), and one can say, in that 
sense, that the position and quantity of motion of a corpuscle will always be affected with 
uncertainties δx and δpx such that the relation (18) is verified. 
 However, from our standpoint, these are only uncertainties in the possible results of 
two incompatible measurements (viz., the measurement of position and the measurement 
of the quantity of motion) that demand different measuring devices.  They are not both 
real indeterminacies in the position and quantity of motion of a corpuscle at each instant.  
These indeterminacies (at least, for quantities other than position) are produced by the 
action of the measuring device on the wave phenomena to which the corpuscle in 
incorporated (i.e., the wave v, not the wave Ψ, although the two are proportional).  Since 
the coupling of the corpuscle to its wave involves Planck’s constant essentially (whose 
true physical significance will remain mysterious), one can remain in agreement with 
Bohr, who said that the Heisenberg uncertainties are an inevitable consequence of the 
quantum of action, by the intermediary of the reaction of the wave propagation on the 



Chapter VI.  Position of the causal interpretation. 73 

motion of the corpuscle, but he reiterated that there does not result a true indeterminacy 
in the position and quantity of motion of the corpuscle in a necessary fashion. 
 The Heisenberg uncertainties will keep all of their value in the theory of the double 
solution, but they must be interpreted with more prudence than one ordinarily invests. 
 Moreover, some analogous considerations are applicable to the notion of 
complementarity.  In the theory of the double solution, one can, if one so desires, 
preserve it, but on the condition that one indeed limits its scope.  It will signify only that 
the same measurement operation cannot simultaneously provide the values of quantities 
that describe the wavelike aspect (such as the components of the quantity of motion) and 
quantities that describe the corpuscular aspect (such as the coordinates of the corpuscle).  
However, one cannot conclude from this that these non-simultaneously measurable 
quantities do not have a perfectly-well-defined value at each instant.  Thus limited, the 
notion of complementarity will not raise any essential difficulties.  It will no longer have 
the much less intelligible significance that one generally attributes to it, and as a result of 
which, what we call a “corpuscle” will be a protean entity that is capable of alternately 
taking on a wave-like aspect and a granular aspect, as a result of processes that will defy 
any rational representation. 
 
 

___________ 
 



 

CHAPTER VII. 

MEASUREMENT OF QUANTITIES BY THE INTERACTION  
OF TWO CORPUSCLES. 

_________ 

 

 
 1. The inconvenience of the measurement that was envisioned previously for 
just one corpuscle. – Much earlier, we envisioned the measurement of a quantity A that 
is effected by sending the wave train that carries the corpuscle to a measuring device that 
is capable of chopping the initial wave train into spatially-separated wave trains that each 
correspond to a well-defined value of the quantity A; i.e., of materially producing the 
spectral decomposition that relates to A. 
 However, this measuring process has an inconvenient aspect to it.  When the 
corpuscle has triggered an observable macroscopic phenomenon in the region Rj (which 
is indispensible if one is to measure anything), the observation can attribute the value αj 
to the quantity A.  However, it is probable that when the observer has obtained the value 
for A, it will not be exact.  Indeed, the triggering of the observable macroscopic 
phenomena will, in general, cause a reaction in the motion of the corpuscle, and the 
quantity A will, in turn, no longer have the same value αj that it had before the triggering. 
 It is therefore preferable to proceed in a different manner, and to perform the 
measurement by appealing to an interaction between the corpuscle “under study” and 
another corpuscle that we call the “indicator” corpuscle.  Whereas the measuring 
processes that were studied in the preceding chapter can be called “measurements of the 
first kind,” the ones that we shall study can be called “measurements of the second kind.”  
Let 1 denote the corpuscle under study and let 2 denote the indicator corpuscle.  To begin 
with, the two corpuscles − which are, moreover, interacting – are attached to wave trains 
that occupy regions (1)

0R  and (2)
0R  that are separated in space and are represented by wave 

functions (1)
0 1( , )tΨ r  and (2)

0 1( , )tΨ r , resp.  The wave function of the system in 

configuration space will then be: 
 
(1)     Ψ0(r1, r2, t) = (1) (2)

0 1 0 2( , ) ( , )t tΨ Ψr r . 

 
 Following von Neumann, we assume that in order for a process to serve as a 
measurement of a quantity A that relates to the corpuscle under study, it will be necessary 
for the final wave Ψ to be of the form: 
 
(2)      Ψ = 1 2( ) ( )k k k

k

c ϕ χ∑ r r , 

 
where the ϕk are proper functions of the quantity A of the corpuscle under study that 
correspond to the proper values αk, and the χk are proper functions of the indicator 
corpuscle that relate to a quantity B for that corpuscle that has proper values βk .  
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Therefore, after the action of the measuring device, the values of A and B will be 
“correlated,” so the value αk of A will correspond to the value βk of B. 
 However, that will not suffice.  One must further have that after the end of the 
measuring interaction, the functions χk(r2) must correspond to wave portions that are 
spatially-separated, and consequently occupy disjoint regions (2)

kR  in space.  If the 

indicator corpuscle triggers an observable macroscopic phenomenon in the region (2)
jR  

then we can assert that its quantity B will have the value βj , and as a result, the quantity 
A of the corpuscle under study will have the value αj that is correlated with βj .  The 
probability for us to find that A = αj will be, moreover, equal to | cj |

2. 
 One sees the advantage of that measurement of the second kind over the measurement 
of the first kind.  The triggering of observable macroscopic phenomena by the indicator 
corpuscle can perturb the motion of that corpuscle and, in turn, make its quantity B no 
longer have the value βj .  However, since the two corpuscles are entirely independent 
and separated in space at the end of the interaction, the triggering of the observable 
phenomena in (2)

jR  can have no influence on the corpuscle under study, and one can state 

with certainty that the quantity A of the corpuscle under study has the value αj after one 
has confirmed the observable phenomenon. 
 Moreover, here, as with the measurement of the first kind, it is not necessary to 
introduce the coordinates of the “measuring apparatus” into our analysis, whose role can 
only be that of permitting us to observe the observable macroscopic phenomenon with 
precision. 
 We remark that in order to make a measurement of A, it is not necessary that the 
functions 1( )kϕ r must correspond to spatially-separated regions (2)

kR  in the final state.  

What will be indispensible is that the regions (2)
kR  must be disjoint.  However, for more 

clarity, we shall first suppose that the regions (2)
kR  are separated, while we shall return 

later on to the case in which that hypothesis is not realized.  We will then have the 
following schema: 

 

Region 
of 

Interaction 
I 

(1)
0R  

(2)
0R  

(1)
0Ψ  

(2)
0Ψ  

(2)
jR  

χj 

χk 
 

ϕj 

ϕk 
(1)
kR  

(1)
jR  

(2)
kR  

 
Figure 4. 
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 Before the interaction, the two wave trains (1)
0R  and (2)

0R  are separated and 

independent.  They then approach each other and enter into interaction in region I.  After 
the interaction, the wave function in configuration space will, by hypothesis, have the 
form (2), so the various functions ϕk will likewise correspond to spatially-separated wave 
trains (1)

kR  in physical space, and the various functions χk will likewise correspond to 

spatially-separated wave trains (2)
kR  in physical space.  The statistical correlations that are 

established by the interaction between the presences of the two corpuscles in the different 
regions R in physical space and translate into the form (2) of the wave function will then 
tell us that if an observable, macroscopic phenomenon is triggered in the region (2)

jR  by 

the indicator corpuscle then the corpuscle under study will be necessarily found in (1)
jR  

with A = αj . 
 We shall specify an example of this measuring process in order to show that it indeed 
corresponds to experimental conditions that are often realized.  Suppose that we initially 
have two corpuscles whose energies and quantities of motion have known values.  The 
two wave trains (1)

0R  and (2)
0R  will be in interaction (e.g., collision) in a neighborhood of 

a point O, which we will take to be the origin of the coordinates.  After the interaction, 
the correlated wave trains (1)

jR  and (2)
jR  will be distant from the point O in directions that 

are defined by the angles ϕ1 and ϕ2 with respect to an axis Ox that is contained in the 
symmetry plane of the phenomenon. 

 

D 

y 

x 

ϕ1 

ϕ2 

(1)
0R  

(1)
jR  

(2)
0R  

O (2)
jR  

 
Figure 5. 

 
    All of the phenomena are produced in the symmetry plane xOy, so one knows that the 
correlation between (1)

jR  and (2)
jR  will be expressed by three conservation relations for 

the energy and the two x and y components of the quantity of motion.  We thus have three 
relations in the final state between the angles ϕ1 and ϕ2 , and the magnitudes p1 and p2 of 
the quantities of motion.  If the corpuscle 2 then arrives at a device D (for example, a 
scintillation counter) where it produces an observable, macroscopic phenomenon then 
one can determine the angle ϕ2 , and one will obtain p1 and ϕ1 by eliminating p2 from the 
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three conservation equations, ; i.e., one will have measured the magnitude and direction 
of the final quantity of motion of the first corpuscle, and that measurement will obviously 
exert no effect on the corpuscle 1 under study, since that corpuscle can be found to be 
very distant from the device D at the moment when it produces the observable 
macroscopic phenomenon in it. 
 
 
 2. Interpretation of the measurement of the second kind by the usual theory. – 
How are we to interpret the measurement of the second kind in the current wave 
mechanics, where the corpuscle is not localized in the wave Ψ? 
 The interpretation that conforms to the von Neumann-London-Bauer theory of 
measurement consists in saying: It is the observer’s perception of the macroscopic 
phenomenon that is triggered in (2)

jR  that will localize the corpuscle 1 in (1)
jR  that was 

hitherto divided statistically between all of the wave trains (1)
kR .  Such an interpretation 

seems inadmissible: Something that happens in the perception of an observer cannot 
provoke a physical effect at a distance. 
 Suppose that there are two observers in the region (2)

jR , one of whom has his eyes 

open, and is thus aware of the observable macroscopic phenomenon, while the other one 
has his eyes closed, so he is not aware.  Does the awareness of the first observer provoke 
the localization of the corpuscle 1 in (1)

jR , or does the unawareness of the second observer 

prevent that localization?  The question remains unanswered, because it is absurd.  
However, one thing seems certain: The observer who has his eyes open, after having 
confirmed that a macroscopic phenomenon has been triggered by the corpuscle 2, will 
replace the wave function Ψ = 1 2( ) ( )k k k

k

c ϕ χ∑ r r  with the new wave function Ψ = 

ϕk(r1)χk(r2), and that “reduction of the probability packet” will permit him to then make 
exact statistical predictions.  Therefore, what really matters is not the knowledge of the 
observer, but the physical fact that the triggering of the observable phenomenon 
constitutes. 
 An interpretation that might appear to be more reasonable will then consist of saying:  
It is the observable, macroscopic phenomenon that is provoked by the corpuscle 2 in (2)

jR  

that briefly localizes the corpuscle 1 under study in the correlated region (1)
jR .  In reality, 

that interpretation is no more admissible than the previous one.  The observable 
phenomenon that is manifested in (2)

jR  can in no way localize the corpuscle 1 in (1)
jR , and 

that will be all the more the case when the regions (1)
jR and (2)

jR  are extremely distant 

from each other at the moment when that phenomenon is produced.  For such a 
localization to be produced briefly at no particular distance by the phenomenon that is 
observed in (2)

jR  would be inconceivable.  While discussing that objection, Schrödinger 

wrote: “That would be magic!” and indeed that would be magic. 
 In the final analysis, it thus seems clear that in a theory where corpuscles are not 
localized in their waves, no reasonable interpretation can be given for correlations that 
are represented by the wave Ψ in configuration space and which permit measurements.  
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We shall see that the theory of the double solution will provide a clear and intelligent 
interpretation for measurements of the second kind by establishing the position of the 
corpuscle in the wave. 
 
 
 3. Interpretation by the theory of the double solution. – Return to Fig. 4.  In the 
theory of the double solution, we must suppose that the regions (1)

0R  and (2)
0R  are initially 

occupied by the singular regions of the waves u of each of the two corpuscles, 
respectively.  Upon arriving in I, the two wave trains will begin to integrate; i.e., the 
propagation of each of them will depend upon the action that they exert upon each other.  
As I pointed out at the end of chapter V, I will assume (while hoping that this hypothesis 
can be justified rigorously in the theory of the double solution) that the Schrödinger wave 
Ψ in configuration space of two corpuscles will permit one to represent precisely the 
correlations between the possible positions of the corpuscle in the course of time and at 
the end of the interaction.  That will be a reason for why the wave Ψ in configuration 
space, although obviously fictitious and representing no real evolution of the 
phenomenon in physical space, still gives a statistically exact view of the possible results 
of the interaction. 
 We are thus led to think that after the end of the interaction the wave u of corpuscle 1 
will have been chopped into a series of wave trains (1)

0R , …, (1)
kR , … that are spatially-

separated, and that, similarly, the wave u of the corpuscle 2 will have been chopped into a 
series of wave trains (2)

1R , …, (2)
kR , … that are likewise disjoint.  Moreover, since the 

statistical correlations that are represented by the final form (2) of the wave Ψ are 
supposed to be exact, if the singular region that constitutes corpuscle 2 finally arrives in 

(2)
jR  then the one that constitutes corpuscle 1 will arrive in (1)

jR , and the probability of 

that eventuality will be given by | cj |
2. 

 In other words, in the theory of the double solution the two corpuscles-singular 
regions will have trajectories that are determined entirely by their initial positions in the 
wave trains (1)

0R  and (2)
0R , which are trajectories that will necessarily lead them to occupy 

two well-defined positions in the two “correlated” wave trains (1)
0R  and (2)

0R  in the final 

state.  Therefore, according to a wish that was often expressed by Einstein, the 
description of the interaction by the wave Ψ in configuration space will remain an exact 
theory, but it will not be a complete description, which would be the theory that 
establishes the localization of corpuscles and the determinism in their motion. 
 Here, the interpretation of the measure of the second kind becomes quite clear and 
can be expressed in several ways.  If an observable, macroscopic phenomenon is 
triggered by corpuscle 2 in the region (2)

jR  then that will be, quite simply, because that 

corpuscle is effectively found to be in that region, and then the corpuscle 1 under study 
will necessarily be found in the correlated region (1)

jR , which will permit us to attribute 

the value αj to the quantity A with some confidence.  Here, there is no inadmissible 
instantaneous action-at-a-distance in the observed phenomena.  We are relieved to see 
that: “There is no longer any magic!” 
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 As for the perception of the observable phenomenon by the observer that permits one 
to attribute the value αj to A, it is only the perception of an external objective reality, and 
it will thus recover the completely reasonable meaning that it has in classical physics. 
 We would like to insist a little bit on the manner by which the question of the 
relationship between the wave u and Ψ should present itself here.  In the regions (1)

0R  and 
(2)
0R , the wave u of each corpuscle will have the form u = u0 + v outside of a very small 

singular region, where v ≫  u0 is a regular wave.  The wave u will have a perfectly-
defined amplitude, since it has objective reality, but the physicist will have the right to 
define a fictitious wave function Ψ by setting Ψ = Cv and choosing the constant C in such 
a manner that Ψ will be normalized.  One will then define the individual functions Ψ in 

(1)
0R  and (2)

0R  for the two corpuscles in the initial state, and then one will construct the 

wave function in configuration space by taking the product of the two individual wave 
functions. 
 In the final state, after the end of the interaction, the wave u of the corpuscle 1 will 
have been chopped in physical space into wave trains (1)

1u , …, (1)
ku , … that occupy 

spatially-disjoint regions (1)
1R , …, (1)

kR , …, while the wave u of corpuscle 2 will likewise 

have been chopped into wave trains (2)
1u , …, (2)

ku , … that occupy spatially-disjoint 

regions (2)
1R , …, (2)

kR , … in physical space.  However, corpuscle 1 will only be found in 

one of the regions (1)
kR .  The part u0 of u will exist in only that region, and u will reduce 

to v in the other regions R(1).  An analogous situation will be realized for the second 
corpuscle.  However, the wave function (2) must represent the statistical correlations in 
the final state exactly, so the two corpuscles will certainly be found in the two correlated 
wave trains.  When the observer confirms the triggering of an observable, macroscopic 
phenomenon in (2)

jR  by the indicator corpuscle, he will say that the corpuscle under study 

is in (1)
jR , and he must then construct a new individual wave function for corpuscle 1 by 

setting Ψ = (1)
jCv , where (1)

jv  is the function v for corpuscle 1 in (1)
jR  and C is chosen in 

such a fashion that Ψ will be normalized in (1)
jR .  This is the rupture of the statistical 

correlations that von Neumann spoke of, and there is also reduction of the probability 
packet, since the wave Ψ of corpuscle 1, instead of being divided between all of the 
regions (1)

jR , is briefly reduced to no longer occupying that (1)
jR . 

 Here, the reduction of the probability packet takes on a very clear significance.  It 
signifies simply that the observer, having acquired information about physical reality, 
consequently modifies the function Ψ that serves to represent the probability of the 
observable phenomenon.  However, the information that is acquired by the observer 
cannot modify the physical reality itself that is described by the wave u.  The distinction 
between objective and subjective is thus established in a completely clear and satisfying 
fashion. 
 We remark that if the “subjective” function Ψ can provide exact statistical predictions 
then that will be because the user must construct it to be proportional to the wave u (or 
rather, to its part that is “exterior” to the singular region, by abstracting from that singular 
region) in the region where one knows that the corpuscle can be found.  An open-eyed 
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observer who has confirmed the triggering of the observable, macroscopic phenomenon 
in the region (2)

jR  will employ the function Ψ = (1)
jCv  for the corpuscle under study, and 

can make exact statistical predictions with it.  The closed-eyed observer, who will 
observe nothing, will utilize a function Ψ for corpuscle 1 that will remain proportional to 

(1)
kv  in each region (1)

kR , and he will make inexact statistical predictions with it, since he 

assumes that corpuscle 1 can be found in regions (1)
kR  other than (1)

jR , which is not true. 

 One then sees that if the subjective wave Ψ can be of service then that will be due to 
the fact that it is constructed by the user as a function of his knowledge of a certain 
exterior, physical reality.  It is, moreover, obvious that a subjective wave function can be 
constructed arbitrarily, and that it will then be incomprehensible that it will lead to exact 
predictions.  In other words, a purely subjective interpretation of the wave Ψ is 
impossible; it is only necessary that there be some objective reality behind it.  Now, the 
wave Ψ, which undergoes the reduction of the probability packet, cannot itself have 
objective reality, but it can be a reflection of the user’s knowledge of objective reality. 
 We add that in the case of the measurement by interaction of two corpuscles, as we 
did in the case of the measurement of the first kind with just one corpuscle that traverses 
a device, one can construct collective systems that correspond to the initial and final 
states and represent the concepts of localization and motion of the corpuscles in the 
theory of the double solution.  As in the preceding chapter, one will recover the 
probability distributions that are usually envisioned, but they will belong to different 
collective systems, with the consequences that this implies.  One will also recover the 
interference of probabilities and the interpretation of the Heisenberg relations as 
representing, not an indeterminacy in the position and motion of corpuscles, but the 
uncertainties that are introduced by the intervention of the wave nature of corpuscles in 
any measurement process. 
 We further point out a difficult, but important, question that is posed when one 
applies the concepts of the double solution to the problem that we just studied.  When the 
observer has observed the phenomenon that is produced in (2)

jR , he will know that the 

corpuscle or singular region of the wave u(1) is found in (2)
jR , and he will reconstruct his 

wave Ψ(1) as a consequence, in order to make ulterior statistical predictions.  However, 
the fragments of the wave u(1) that go into regions (1)

kR  other than (1)
jR  must persist, since, 

having objective reality, they cannot depend upon the information of the observer.  They 
will constitute pieces of the wave u(1) of the corpuscle under study that do not contain the 
singular region.  What do these fragments of the wave u with no singular region become 
then, and how, on the other hand, does the wave fragment u(1) that arrives in (1)

jR  and 

carries the singular region evolve, which is a wave fragment whose exterior part v(1) was 
weakened with respect to what it was in the initial state by chopping up the wave u(1)?  
These questions pertain to a type of difficult question that the theory of the double 
solution is forced to address.  However, it is probable that if it succeeds in answering 
them, then that will be by making nonlinear phenomena intervene essentially, and in 
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particular, of transitory states that have representation in the present linear theory (1).  
However, I would not like to insist here upon a problem that is, moreover, difficult to 
undertake today. 
 Finally, note that the analysis that we just made of the measuring process by the 
interaction of two corpuscles can be, it seems to me, transposed into the study of two 
systems of corpuscles with no difficulty.  The complications that one might encounter 
will be only complications of notation, while the general ideas will remain the same. 
 
 
 4. Case of a measurement process involving the interaction of two corpuscles, 
whose singular regions (1)

kR  are not spatially disjoint. – We have already remarked that 

since the function Ψ in configuration space is assumed to have the form (2) after the end 
of the interaction of the two corpuscles, it will suffice that the wave trains χk(r) of the 
indicator corpuscle are spatially-separated in order for the triggering of the observable, 
macroscopic phenomena in (2)

jR  to permit us to attribute the value αj to the quantity A 

without the (1)
kR  being spatially separated. 

 It is easy to give a concrete example:  Let there be a hydrogen atom whose peripheral 
electron will play the role of the corpuscle under study.  The wave of that electron will 
occupy a region of the atom that we will represent by a spherical region R(1).  Another 
corpuscle that plays the role of indicator then passes in the neighborhood of the atom, and 
during that passage, it will interact with the atomic electron.  The wave train of that 
indicator corpuscle will be initially contained in a region (1)

0R  in space.  At the end of that 

interaction, the wave function Ψ in configuration space of the two corpuscles will take 
the form (2), by hypothesis, and the χk now correspond to spatially-disjoint regions (2)

kR , 

while the ϕk will always correspond to the same region R(1). 
 In its initial state, the atomic electron has a wave function of the form (1)

0Ψ  = 
0 ( )k k

k

c ϕ∑ r , where the ϕk are the proper functions of a certain quantity A, which might be 

energy, for example.  When one has noted an observable, macroscopic phenomenon that 
is triggered by the indicator corpuscle in (2)

jR , one can attribute the value αj to A and take 

Ψ(1) to be equal to ϕj in that final state. 
 Here, one recovers the same considerations as in the preceding case that was studied.  
There can be no question of saying, as one does in the present interpretation, that it is the 
perception of the observable phenomenon by the observer or the triggering of observable 
phenomena that makes the atom pass briefly from its initial state to its final state; this will 
always be magical.  The perception of the observer has nothing to do with this case, and 

(2)
jR  can be very distant from R(1), so an instantaneous influence of the phenomenon that 

is triggered on anything that happens in R(1) would be inconceivable. 
 One can illustrate this by a striking example, which is not described in the same 
fashion as the preceding one in the present state of our formalism, but which is 

                                                
 (1) I have touched upon these questions in the last chapter of my recent book [3].   See the very 
interesting recent book by Jean-Louis Destouches [7], as well. 
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completely analogous to it physically, namely, the example of the emission of a photon 
by an atom (a hydrogen atom, for example).  If the quantity A is the energy of the atomic 
electron then the αk = Ek and the ϕk will be the corresponding proper values and proper 
functions, respectively.  We assume that the atom is initially in a quantized state of 
energy Ek and that, in turn, its wave function is (1)

0Ψ  = ϕk .  If it passes through a quantum 

transition from that initial state to the quantized state of energy El then there will be 
emission of a photon of frequency v = (Ek – El) / h.  Collect the emitted photon at a 
distance in a mesh + lens device that will, as we have seen, permit one to attribute a well-
defined frequency to it by making it produce an observable effect – for example, the 
darkening of a photographic plate at a point.  From the observation of that phenomenon, 
the observer can deduce that the atom has passed from the initial state (1)

0Ψ  = ϕk to the 

final state Ψ(1) = ϕj . 
 Now, nothing prevents one from supposing that the atom is on the star Sirius and that 
the observer is in Paris.  Is it admissible that the perception by a Parisian observer of a 
local darkening on photographic plate will change the state of an atom on Sirius?  Is it 
admissible that the physical triggering of this darkening produced that effect?  Obviously 
no, in both cases, and the argument is, just the same, very striking here. 

 

(2)
0R  

R1 

(2)
lR  

(2)
kR  

(2)
jR  

 
Figure 6. 

 
 We now refer to Fig. 6, and demand to know how one can interpret the measurement 
of A in this case using the ideas of the double solution.  That will lead us to a new 
concept.  Since the function Ψ, when it is well-constructed, must always be proportional 
to v, one must have (1)

0v  ~ 0
k k

k

c ϕ∑  in the initial state of the atom, and one must have v(1) ~ 

ϕj in the final state – viz., when the indicator corpuscle arrives in the region (0)
lR .  

Therefore, according to the concept of the double solution, the atomic electron must have 
a motion in the initial state that conforms to the guidance formula, which is a very 
complicated motion that has the same phase as the wave (1)

0v  that is defined by the 

superposition of the ϕk .  However, after the end of the interaction, one must have a 
motion that is in phase with the single component ϕj , since one will then have v(1)  = ϕj .  
One can then say that during the interaction the motion of the atomic electron 
progressively “switched” from “unhooking” from the initial superposition of the ϕk to 
finally “hooking onto” the single component ϕj ,  and that is precisely because the atomic 
electron is finally found to be hooked to v(1)  = ϕj , while correlatively the indicator 
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corpuscle is found in (2)
jR , where there is a possibility of measuring the quantity A whose 

proper value αj corresponds to ϕj . 
 Here then, the corpuscle being studied can be finally found to be hooked to just one 
of the original components of its wave v as a result of the interaction, all while remaining 
localized in the same region R(1) as in the beginning, but it is essential for the 
measurement of A that the regions (2)

kR  that relate to the indicator corpuscle be spatially-

separated in such a fashion that the triggering of an observable, macroscopic 
phenomenon will permit one to say that it is the wave v(1) ~ ϕj to which the corpuscle 
under study will finally remain hooked.  Naturally, the same thing is not true in the case 
of a measurement of the first kind, where one performs the measurement by making the 
corpuscle that is incorporated into its wave pass into a device − such as a mesh + lens − 
that will isolate the ϕk into spatially-disjoint wave trains.  In that case, the corpuscle is, in 
some way, both the corpuscle under study and the indicator corpuscle, and that is the 
reason why the separation of the wave trains ϕk will then be necessary.  However, that 
will no longer be true for a measurement of the second kind. 
 
 
 5. The idea of directing.  Examination of a remark by Einstein. – While always 
remaining in the case that was envisioned in the last paragraph, and maintaining the 
viewpoint of the causal interpretation, we can make the preceding more precise in the 
following fashion: Starting with the initial position of the two singular regions in R(1) and 

(2)
0R , the interaction evolves in an entirely determinate manner in such a way that in the 

course of the interaction, the corpuscle under study is progressively directed by the 
motion that the guidance law imposes upon it to its final state, where it is found to be 
implanted in the wave v = ϕj, while the indicator corpuscle is progressively directed to its 
final state in the same way, where it is implanted on the wave v = χj that is localized in 

(2)
jR .  The same interpretation will be valid, mutatis mutandis, in the case that was 

previously studied where the regions (1)
kR  were disjoint.  One will then arrive at the 

general idea that for each corpuscle, the streamlines will be animated with a sort of 
wiggling that is a result of the interaction, and that the corpuscle, which is obliged to 
constantly follow one of the wiggling streamlines by the guidance law, is therefore 
progressively directed towards the final state that it will possess at the end of the 
interaction. 
 In light of these ideas, it is interesting to examine a point in the present formalism of 
wave mechanics that Einstein touched upon many times, and which seemed to him to 
appear particularly difficult to interpret by a causal theory. 
 Consider a corpuscle whose initial state corresponds to the function Ψ = cjϕj, in 
which | cj | = 1 and ϕj is one of the proper functions of a quantity A.  If A is energy then 
we can represent the initial state by a wave train R0 that corresponds to the energy Ej = αj 
(mathematically, by a proper differential of the continuous spectrum of energy that 
corresponds to the central frequency vj = Ej / h).  If the corpuscle is subjected to a very 
weak perturbing field of limited duration then its wave Ψ will become Ψ = k k

k

c ϕ∑  after 

the end of the perturbation, and since it is very weak, one will have a final value for | cj | 
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that is very slightly less than 1 and extremely small values for the | ck | when k ≠ j.  If the 
corpuscle then passes into a device D the sends the ϕk into spectrally-disjoint regions Rk 
(such as the mesh-lens device, in the case where A is energy) then the corpuscle will have 
a probability that is close to 1 of being manifested in the regions Rk with k ≠ j.  Since the 
αk can have very different values, one will finally see that the very slight perturbation 
will make very small probabilities appear for the state of the corpuscle to be subjected to 
large changes.  Einstein considered that one will thus obtain a statistical description that 
is certainly exact from the standpoint of what takes place, but that it will be, without a 
doubt, very difficult to substitute a causal description for the individual phenomena for it, 
which is a description that will nonetheless be necessary in order to avoid unacceptable 
paradoxes. 
 Recall this problem from the viewpoint of the theory of the double solution.  Consider 
a wave train R0 that carries a corpuscle.  The corpuscle occupies a certain position in this 
wave train.  It is implanted in a wave v ~ ϕj that has objective reality and fills up the 
region R0.  We suppose that the wave train is a group of waves that is almost 
monochromatic with energy Ej, and whose streamlines are parallel lines.  The wave trains 
will be directed towards a device D that permits the measurement of energy by separating 
the wave trains that correspond to the different values of energy.  If the wave train does 
not traverse any perturbing field between its initial position R0 and its arrival at D then 
the corpuscle that follows one of the streamlines will arrive at the region D by a uniform, 
rectilinear motion, and then the action of the device D will impose a more complicated 
motion upon it that will result in a wave train with energy Ej leaving the device.  
However, if the wave train traverses a region in which a small perturbing field reigns 
before arriving at D then the wave v will become proportional to k k

k

c ϕ∑  with cj = 1 – ε 

and all of the other ck very small.  In the wave train, thus modified, the streamlines that 
correspond to the guidance formula will be animated with a sort of very small trembling 
with respect to the rectilinear form that they will preserve in the absence of perturbation.  
It will then result from this that, according to the position in the wave train, the corpuscle 
will be sent after traversing the device D either towards the wave train Rj (this will be, by 
far, the most probable case) or towards the one of the wave trains Rk that corresponds to 
an energy Ek ≠ Ej , but this will be a very rare case.  We are sure that this will so because 
we know that there will be an infinitude of corpuscles in R0 that are distributed with the 
density | ϕj |2, so the motion along these streamlines that is imposed by the guidance 
formula will finally lead to a proportion that is equal to | ck |

2 in the region Rk .  Since the 
corpuscle will have an energy that is equal to Ek in the region Rk, one can say: The 
direction that is imposed upon the corpuscle by the necessity that it must always follow a 
streamline will, when one ignores its initial position in R0, give it a probability that is 
almost equal to 1 of having preserved the initial value Ej of its energy at the end of the 
measuring process, but it will also give it a very small probability of finally possessing an 
energy Ek that is very different from Ej .  One finds a picture that clearly represents the 
situation that Einstein touched upon in regard to the usual formalism of wave mechanics. 
 Nevertheless, if one would like to study the basis for the idea of directing that was 
sketched above then one will have to study the question of the conservation of energy in 
the theory of the double solution, as well as the analogous problems that we alluded to at 
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the end of paragraph 3.  We will not undertake that study here, since it would be 
premature, moreover. 
 
 
 6. Conclusions.  Pure case and mixture. – The study of measurement that we just 
carried out in chapter VI and VII shows us that one can envision measurement in 
microphysics as having a concrete aspect, which is, moreover, obvious, and does not 
require the overly-abstract formalism that one habitually assigns to it.  It is essential to 
account for the fact that all of the information that we obtain about microphysical reality 
is triggered by the local action of a corpuscle.  It is likewise essential to remark that the 
wave into which a corpuscle is incorporated is always extended over a bounded region of 
space.  It exists only as bounded wave trains, so unbounded monochromatic plane waves 
in space and time are abstractions, as well as stationary waves that extend to infinity, 
moreover.  As Schrödinger has quite rightly remarked, it is just that bounded character of 
wave trains that permits one to speak of the beginning and ending of an interaction.  It is 
what permits one to construct devices that have the effect of spatially separating the wave 
trains that each correspond to a well-defined value of a quantity A, and thus, to perform 
measurements at the microphysical level.  It then seems that this concrete conception of 
measurement is compatible with a permanent localization and a well-defined motion of 
the corpuscle, and the arguments of Einstein and Schrödinger, with all of their weight, 
show clearly that it is necessary that the corpuscle be localized with the wave if one is to 
avoid certain truly inadmissible consequences of the present interpretation. 
 To our way of looking at things, the distinction between the pure case and the 
mixture, which was quite rightly introduced by von Neumann, takes on a concrete 
significance that does not appear in the exact, but overly-abstract, formalism that was 
discussed in chapters II and III. 
 One has a “pure case” when the wave v (viz., the exterior part of the wave u) of a 
corpuscle is formed by a superposition of interfering components, and the corpuscle 
follows one of the streamlines that results from that superposition.  On the contrary, one 
has a “mixture” when the various components of the initial wave v cease to interfere at 
the end of the interaction, either by a sequence of spatial separations of the wave trains or 
by a sequence of directing phenomena, in the sense of that we gave that word in the last 
paragraphs.  The corpuscle is then found to be hooked to just one of these components, 
and until we know that, our ignorance will be represented by a mixture. 
 It is upon assuming that viewpoint – namely, carefully distinguishing the objective 
wave u from the subjective and predictive wave Ψ, and thus establishing a clear 
distinction between objective and subjective – that the formalism of von Neumann’s 
theory seems to us to have been included and interpreted. 
 We shall, moreover, arrive at an analogous conclusion in the last chapter, which will 
be concerned with von Neumann’s thermodynamics. 
 
 

_______ 
 

  



 

CHAPTER VIII.  

GLIMPSE OF VON NEUMANN’S THERMODYNAMICS. 

______ 

 
 

 1. Introduction to von Neumann’s formalism in thermodynamics. – First recall 
some points regarding classical statistical thermodynamics.  Boltzmann established the 
celebrated relation: 
(1)      S = k log P 
 
between the entropy of a physical system and the probability of the state of that system, 
where k – viz., Boltzmann’s constant – has the value 1.37 × 10−16 in C.G.S. units and the 
absolute temperature scale.  The relation (1) has been confirmed by an immense volume 
of verifications that were deduced from its consequences. 
 If we consider a set of N systems that are distributed into a certain number of states, 
in the classical sense of the word, in such a way that there will be ni states in the state i 

with i
i

n N
 = 
 

∑  then one will easily find that the probability of that distribution will be: 

 

(2)      P = 
1 2

!

! !

N

n n ⋯
. 

 
Since N and the ni are assumed to be large, Stirling’s formula permits one to set, very 
approximately, N! = NN e−N and ni! = i in n

in e− , and one easily gets: 

 
(3)    log P = log N! − log !i

i

n∑  ≈ N log N − logi i
i

n n∑ . 

 
 Set pi = ni / N, where pi is the statistical weight of the state i in the distribution.  Since 

i
i

p∑  = 1, we will have: 

 
(4)   log P = − N i

i

p∑  log pi + N log N – N i
i

p∑ log N = − N i
i

p∑ log pi . 

 
As a result, from formula (1): 
(5)      S = − kN i

i

p∑  log pi , 

 
which is a classical formula from statistical thermodynamics. 
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 If we would like to now construct quantum thermodynamics then we must modify the 
definition of entropy by replacing the classical concept of the state of a system with a 
wave function. 
 Recall the algorithms of chapter II.  When the various states of N systems that we are 
considering are defined by wave functions ϕ1, …, ϕi, … that define a complete, 
orthonormal system of basis functions (for example, the proper functions of a measurable 
quantity), one can convert von Neumann’s statistical matrix P into its diagonal form by 
taking the ϕi to be basis functions; one will then have: 
 

(6)     Pkl = pk δkl  1k
k

p
 = 
 
∑ . 

 
Moreover, the matrix log P, whose elements are (log P)kl = δkl log pk , will also have a 
diagonal form.  It is then natural to convert the Boltzmann formula by defining the 
entropy upon starting with the statistical matrix P and setting: 
 
(7)      S = − kN Tr(P log P), 
 
 
because that expression, which has a value that is independent of the chosen system of 
basis functions, by reason of the invariance of the trace, will be expressed by: 
 
(8)      S = − kN logk k

k

p p∑  

 
in the basis system where the matrices P and log P are diagonal, in such a way that we 
come back to the old formula (5). 
 We shall seek to determine the maximum entropy when one supposes that one has 
been given the number of systems N and the value E of their total energy. 
 First, recall the calculation of that maximum in classical statistical thermodynamics.  
One can write δ log P = 0, with the conditions δN = 0 and δE = 0, which leads us to 
introduce the Lagrange multipliers α and β, and to write: 
 
(9)      δ(log P – αN – βE) = 0. 
Namely, from (4): 
(10)    − N i

i

pδ∑ [log pi + 1 + α + βEi] = 0 

 
for any variation of pi such that i

i

p∑  remains equal to 1 

because i i i i
i i

E E n N E pδ δ δ = = 
 

∑ ∑ .  One deduces from this that: 

 
(11)     pi = e−α – βE. 
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This is the classical Boltzmann-Gibbs law, which can also be written: 
 

(12)     pi = 
i

k

E

E

k

e

e

β

β

−

−∑
, 

 
when one takes the condition i

i

p∑  = 1 into account.  If one compares this expression 

with the one in the theory of perfect gases then one can see that β = 1 / kT, where T is the 
absolute temperature of a set of N systems, which is assumed to be well-defined; for 
example, by contact with a thermostat. 
 One then easily finds that entropy of the most probable distribution (which is almost 
always realized) will be: 
 

(13)  S = − kN logi i
i

p p∑  = kN 
1

log

i

i

i

E

kT
E i

ikT
E

i kT

i

E e
e

kT
e

−

−

−

 
 
 +
 
 
 

∑
∑

∑
. 

 

 Set Z = 
iE

kT

i

e
−

∑ ; this is Planck’s “state sum.”  We have: 

 

(14)    

log
log ,

log
,

log

Z
S kN Z

Z
E N

F E TS kNT Z

β
β

β

  ∂= −  ∂ 
 ∂ = − ∂
 = − = −



 

 
as expressions for entropy, energy, and free energy. 
 In von Neumann’s quantum thermodynamics, the calculations are completely parallel 
to the preceding one.  One must express the idea that the entropy (7) is a maximum under 
the conditions: 
(15)   Tr P = 1, E = NE – N Tr(PH) = const., 
 
where H is the Hamiltonian matrix of any of the N systems.  One must then write: 
 
(16)  log 0,kk kk

k

P Pδ =∑  with 0,kk
k

Pδ =∑  
,

0,kl lk
k l

P Hδ =∑  

 
so, upon introducing Lagrange multipliers α and β: 
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(17)   
,

logkk kk kk kl lk
k k k l

P P P P Hδ αδ βδ+ +∑ ∑ ∑  = 0, 

 
which one can also write: 
 
(18)   [log 1 ]kk kk kk kl lk

k k l

P P H P Hδ α β β δ
≠

+ + + +∑ ∑  = 0, 

 
which is a relation that must be verified for any value of δPkk .  It is then necessary that 
the system must be in an energy proper state (Hkl = 0 for k ≠ l) and that: 
 
(19)     Pkk = kkHe α β− − , 
 
 
moreover, with kkH

k

e e βα −− ∑  = 1, since kk
k

P∑  = 1.  Thus, upon setting Z(β) = Tr e−βH, 

one will get: 

(20)     P = 
Tr

H

H

e

e

β

β

−

−  = 
( )

He

Z

β

β

−

. 

 
 As in the classical theory, one proves that β = 1 / kT, and one finds for the most 

probable state (while taking into account the fact that 
logZ

β
∂

∂
 = 

1 Z

Z β
∂
∂

 = − 
1

Z
Tr H e−βH): 

 

(21)  

( ) Tr 
Tr[ ( log )] log

( )

log
log ,

log
Tr( ) ,

log .

H
Hk N He

S e H Z kN Z
Z Z

Z
kN Z

Z
E N PH N

F E TS kNT Z

β
β ββ

β

β
β

β

−
−  

= + = +  
 

  ∂
 = −  ∂ 
 ∂ = = −
 ∂
 = − = −

 

 
 One thus recovers formulas (14) of classical statistical thermodynamics, but with a 
different definition of Z.  Formula (20) teaches us that the statistical weight of the 

quantum state Ψk with energy Ek = Hkk in the mixture will be 
k

k

E

E

k

e

e

β

β

−

−∑
, which indeed 

brings us back to the canonical Boltzmann-Gibbs law. 
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 2. Reversible and irreversible evolution. – The preceding considerations led von 
Neumann to distinguish the two types of evolution at the microphysical scale − namely, 
reversible and irreversible evolutions − that would result from the measurement. 
 The reversible evolution of a system or a set of systems is represented by an entirely 
determinate evolution of the wave function of the system or all of the wave functions of 
the systems of the set.  If one is dealing with a pure case, and if Ψ(0) is the initial form of 
the wave function then that evolution will follow the equation: 
 

(22)    
2

h

i tπ
∂Ψ
∂

 = H Ψ, 

 
where H is the Hamiltonian operator of the system, which will be independent of time if 
the system is isolated.  One will then have: 
 

(23)    Ψ(t) = 
2 i

iH
he
π

 Ψ(0), 
 
 

with 
2 i

iH
he
π

 = 
1 2

! !

n

n

i
tH

n n

π 
 
 

∑ .  The pure initial case will then remain a pure case.  The 

operator 
2 i

iH
he
π

 has 
2 i

iH
he
π−

 for its adjoint, as one will easily verify, in such a way that its 
inverse will coincide with its adjoint.  It is then a unitary operator that preserves the 
traces of matrices, so the entropy S of a set of N systems in the state Ψ, which is equal to 
– kN Tr(P log P), will thus remain invariant in the course of the evolution – viz., the 
process will be reversible. 
 Now, consider, no longer a pure case, but a mixture of pure cases.  Each of the 
functions Ψ(k)(t) of the pure cases will evolve according to the wave equation (22), where 
H is the Hamiltonian operator of each of the identical systems that are considered.  Each 
of these evolutions is entirely determinate, and therefore represented by: 
 

(24)    Ψ(k)(t) = 
2 i

iH
he
π

Ψ(k)(0) ; 
 
 
i.e., by a unitary transformation of Ψ(k)(0).  The evolution of the statistical matrix will 
then be given by: 
(25)     P(t) = ( )k kp P t∑ , 

or by: 
(26)    (P(t))lm = ( ) ( )( ) ( )k k

k l mp c t c t∗∑ , 

 
if Ψ(k)(t) = ( ) ( )k

l l
l

c t ϕ∑ . 
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 The trace of P, which is equal to 
2( ) ( )k

k l
k l

p c t∑ ∑ , is preserved by the unitary 

transformation (25) of the Ψ(k), which preserves the norm of Ψ(k); i.e., 
2( ) ( )k

l
l

c t∑ .  

Therefore, here again, the entropy S of the mixture will remain invariant, just as it does in 
the pure case. 
 According to von Neumann, the irreversible transformations will correspond to 
processes that are not subject to determinism that will be produced at the moment of the 
measurement interactions.  The interaction of the system or corpuscle 1 under study by a 
measuring apparatus 2 (or, in our presentation of things, by an indicator corpuscle 2) will 
correspond to a determinate and reversible evolution of the global system 1 + 2 up to the 
point at which there is a macroscopic confirmation of the individual state of the system 2 
by the observer that would interrupt that evolution by a process that is neither reversible 
nor even causal, in the present interpretation. 
 If the initial state of system 1 is a pure case then all of the pi will be zero, except for 
just one, which is equal to 1.  The entropy S of the system will then be zero, and it will 
remain so as long as the system is isolated and evolves reversibly.  If the interaction that 
follows the measurement with the system 2 then transforms the state of system 1 into a 
mixture then all of the pk become less than 1, and the entropy of system 1 will obviously 
become positive. 
 The measurement process is therefore irreversible and is accompanied by an increase 
of entropy.  The chain of reversible evolution is broken, and one can no longer 
reassemble the state that preceded the measurement from the one followed it by any 
means. 
 Von Neumann also showed, by a very long argument, that if the initial state is already 
a mixture then any measurement that effectively modifies that mixture will have the 
effect of increasing entropy. 
 Von Neumann’s conclusion is that any measurement will increase entropy, and will 
in turn have an irreversible character.  That irreversibility is obviously linked to the 
destruction of phase differences by the measurement that was already pointed out and to 
the impossibility of reassembling the state that existed before the measurement from the 
state that exists after the measurement, which results from it. 
 
 
 3. How the theory of the double solution must interpret the irreversibility that 
results from measurement processes. – Since the increase of entropy that is provoked 
by a measurement process is linked to irreversibility, what is the origin of that 
irreversibility, when it cannot result from indeterminism in a causal theory?  It seems that 
in the context of the ideas that we have discussed, that irreversibility must be interpreted 
in the following fashion: After the measurement, either the initial wave u will have been 
fragmented into spatially-separated portions Rk , and the corpuscle will be finally found 
in one of these wave trains, or the corpuscle that unhooked form the initial wave u is 
finally hooked onto one of the component ϕj by a process like “directing.”  In one case, 
as in the other one, there will no longer be any interference between the components ϕk 
and v after the measurement, and the phase difference between these components will no 
longer intervene.  If one assumes that viewpoint then it will clearly appear that von 
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Neumann’s increase in entropy after the measurement is not at all linked to the perception 
of the result of the measurement by the observer, but to the objective fact that the 
corpuscle will, as a result of the action of the measuring device, be finally found to be 
hooked to just one component ϕk in the superposition that constitutes the initial pure case. 
 Our ideas regarding the relationship between the wave u and the wave Ψ permit us to 
make this more precise.  In order to represent the probability state after the measurement, 
physicists will be led to construct the function Ψk that corresponds to the “hooking” of 
the corpuscle to each of the components ϕk of the initial wave.  If the result of the 
measurement is not known then in order to represent the probability state, one must 
envision a “mixture” of the set of Ψk with statistical weights pk = | ck |

2 that are equal to 
the squares of the moduli of the coefficient of the ϕk in the original wave.  However, once 
the observation of an observable, macroscopic phenomenon has permitted us to know the 
result of the measuring process, it can no longer preserve that one Ψk, which will again 
constitute a pure case.  The phase relations between the ϕk will then disappear, and one 
can no longer reassemble the initial Ψ from the final Ψ.  That is why in von Neumann’s 
theory, which involves the subjective wave function Ψ exclusively, the increase in 
entropy by the measurement will correspond to a loss of “information” about the phase 
differences when we pass from the initial pure case to the mixture that represents the 
probability state after the measurement when one does not known the result.  That 
concept is in accord with the well-known idea in cybernetics that information 
corresponds to entropy, with the opposite sign (i.e., negentropy), in such a way that a 
diminishing of information is the same thing as an increase in entropy (cf., Shannon, 
Léon Brillouin). 
 Despite the great interest in the links that can be made between information and 
entropy (with the sign changed), it seems certain that the entropy of a physical system 
corresponds to an objective situation, and cannot be defined by starting with the 
information (which can be more or less exact) of observers.  The increase of entropy that 
is provoked by the measurement must, in our opinion, be attached, not to the fact that the 
observer is aware of the result of the measurement, but to an objective process that 
provokes the cessation of the interference between the components of the initial wave v.  
In the theory of the double solution, where the evolution of the wave u is determined 
completely, the phases of the components ϕk of v keep a well-defined value after the end 
of the measurement process, but since the corpuscle is no longer hooked to one of the 
components ϕj , and any observation that provides us with knowledge of microphysical 
phenomena will imply the localized action of a corpuscle, there is no longer any 
possibility of knowing the phases of the other components besides ϕj after the 
measurement. 
 It will be very interesting to analyze the interpretation of the increase in entropy that 
is provoked by a measurement in detail using the theory of the double solution.  Such an 
analysis will probably permit the best understanding of the true meaning of von 
Neumann’s thermodynamics. 
 
 

________ 
 



 

APPENDIX 

STUDY OF THE PASSAGE FROM CLASSICAL MECHANICS 
TO WAVE MECHANICS IN A PARTICULAR EXAMPLE. 

 
___________ 

 
 

 In this Appendix, we shall study an important precise experimental case that shows 
quite well how the passage from classical mechanics to wave mechanics is introduced in 
the present interpretation. 
 We envision an “electron gun” that is basically defined by an incandescent plate P 
that emits electrons, which is followed by a grille G that carries an electrostatic potential 
that is much higher than that of the plate. 
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Π 

dσ 
M 

 
Figure 7. 

 
 A flux of electrons leaves the mouth E of the electron gun with roughly the same 
energy W and forms a parallel sheaf.  In wave mechanics, this sheaf will be associated 
with a wave train that has a cross section that is equal to that of the mouth E and can be 
roughly assimilated into a piece of a monochromatic plane wave with a frequency v = W / 
h and wave length λ = h / p. 
 In the region R, the electrons pass through an electrostatic field that is created by 
human means, and which, in turn, will vary only slightly from the scale of the wave 
length (which is of order at most 10−8 cm).  We know that it will then result that wave 
that is associated with one of the electrons will propagate according to the laws of 
geometrical optics, which will permit us to define ray-trajectories in a classical fashion.  
After traversing the static field, the electrons arrive at a photographic plate Π, where their 
arrivals will be inscribed by successive local actions. 
 We shall then assume that we have a “mesh” T at our disposal, which we can possibly 
place at the mouth of the electron gun.  This mesh is pierced with equal holes that are 
extremely close and distributed regularly over its surface, where the diameter of the holes 
is so small that they seem almost point-like to us, but also sufficiently large that they are 
bigger than the wave length λ. 
 We shall analyze the production of the phenomena that are observed on the 
photographic plate in the case where there is no mesh and then in the case where the 
mesh is placed on the mouth by successively adopting the viewpoint of classical 
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mechanics, then the interpretation of wave mechanics by the double solution, and finally 
that of the usual interpretation of wave mechanics.  That study will be very instructive. 
 
 
 1. Viewpoint of classical mechanics. 
 
 a. The mesh is not in place. – A trajectory will possibly pass through each point of 
the mouth of the electron gun that will be normal to the plane of that mouth.  In the 
region R, the static field will curve the trajectories, which will have the effect of 
increasing their density in certain regions and rarefying it in other regions.  It will then 
result that the relative of number of trajectories that traverse equal areas dσ in the plane 
Π will vary from one point of that plane to another, so there will be variations in the 
photographic impression on the plate.  In Hamilton-Jacobi theory, the trajectories will be 
rays of the propagation of a fictitious wave in the geometrical optics approximation, and 
it will then result that the density of the trajectories that pierce an area dσ of the plane Π 
around a point M must vary proportionally to the square of the amplitude a(M) of the 
Hamilton-Jacobi wave at the point M, if one nonetheless assumes the very natural 
hypothesis that all of the trajectories that leave the mouth of the electron gun are equally 
probable.  Indeed, experiment shows that the variations in the photographic impressions 
will be proportional to a2(M) at the different points M of the plate. 
 
 b.  The mesh is in place. – Certain electronic trajectories will be stopped by the solid 
parts of the mesh, while other ones will pass through the holes in it.  Since these holes are 
very close and uniformly distributed over the surface of the mesh, we will have a very 
dense set of bundles of electronic trajectories that escape from the holes of the mesh.  
Each of these bundles can be considered to a bundle of rays of the Hamilton-Jacobi wave.  
It will further result that the density of the trajectories that pierce the plane Π of the plate 
will be, in the mean, proportional to a2(M), and as a result, the same thing will be true for 
the photographic impression.  There is therefore no essential difference between case a 
and case b, as far as the interpretation of the distribution of electron impacts on the 
photographic plate Π is concerned. 
 
 
 2. Viewpoint of the interpretation of wave mechanics by the theory of the 
double solution. 
 
 a. The mesh is not in place. – In the theory of the double solution, the electron is a 
very localized accident in the structure of the objective wave u, which is assumed to be 
everywhere proportional the wave Ψ before that accident.  Each electron that escapes 
from the electron gun will thus be incorporated into a wave train v whose transverse 
dimensions are macroscopic, since they are equal to the dimensions of the mouth.  
However, the electron has a position and a well-defined trajectory at the wave front, and 
since that trajectory is defined by the guidance formula, and the common phase of the 

waves v and Ψ is equal to the Jacobi function, one will see (since v = − 
1

m
grad S) that the 

possible trajectories of the electron will again coincide with the rays of the Hamilton-
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Jacobi wave.  Therefore, although the electron is no longer conceived as an isolated 
material point here, but as a local accident that is incorporated into a wave, the electron 
trajectories will be the same as in classical mechanics, and the interpretation of the 
variations in the photographic impressions on the surface of the plate Π will remain the 
same as it was in 1.a. 
 
 b. The mesh is in place. – Here, when an electron leaves the gun, we must say that a 
small wave train v carries the electron through one of the holes in the mesh.  Since these 
holes have dimensions that are very small at our scale, but very large with respect to the 
wave length, we can consider the wave train that leaves one of the holes as coinciding 
with a small piece of the Hamilton-Jacobi wave, and since the holes on the surface of the 
mesh are very numerous and regularly distributed, the guidance formula will further 
show us that the electron trajectories will coincide, as in 1, with a very dense set of 
bundles of rays of the Hamilton-Jacobi wave.  The interpretation of the distribution of the 
photographic impressions on the plate Π will thus once more be exactly the same as it 
was in 1.b. 
 
 
 3. Viewpoint of the usual interpretation of wave mechanics. 
 
 a. The mesh is in place. – Contrary to what we did in paragraphs 1 and 2, we shall 
commence with the case in which the mesh is in place.  Indeed, it is by studying that case 
that we shall bring about the agreement between classical mechanics and wave 
mechanics, according to a method that is frequently discussed in the usual treatments. 
 If the mesh involves only one hole then the wave Ψ of an electron once it leaves the 
gun will be reduced to a small wave train whose transverse dimensions will be negligible 
at our scale.  This small wave train will slide along one of the ray-trajectories of the 
Hamilton-Jacobi theory.  The usual interpretation will then tell us that the electron is 
localized in the wave train, which is distributed statistically over all of its extent.  
However, since the wave train is roughly point-like at our scale, everything happens 
practically as if the electron were a material point that describes one of the trajectories 
that were predicted by classical mechanics.  That is why we can bring about agreement 
between classical mechanics and wave mechanics in the case where the propagation of 
the wave conforms to geometrical optics, and the trajectory is defined approximately at 
our scale by the hole that is pierced in the mesh that covers the mouth of the gun.  
However, this agreement will conceal a great difference in principle, since in the usual 
interpretation of wave mechanics the corpuscle is no longer rigorously localized in the 
wave train.  The trajectory is no longer defined rigorously, but only a very fine bundle of 
Hamilton-Jacobi rays-trajectories that constitutes a sort of very thin tube in which the 
corpuscle is present without being localized and which, at our scale, appears to be a line 
with no thickness; it is a sort of “pseudo-trajectory.” 
 Now, pass to the case in which the mesh is pierced with a very large number of small 
holes that are distributed regularly over its surface.  When the electron leaves the gun, its 
wave Ψ will be composed of a very large number of small separated wave trains that will 
define a very dense sheaf of pseudo-trajectories.  It is easy to account for the fact that the 
distribution on the photographic plate of the intersections of the pseudo-trajectories with 
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the plane Π will always be given by the function a2(M).  With the usual interpretation, the 
electron will not describe any of these pseudo-trajectories; it will be statistically 
distributed with an equal probability over every set of these pseudo-trajectories.  This 
concept is somewhat strange.  What is more, at the moment when the local photographic 
impression is produced, the electron chooses one of these possible pseudo-trajectories, in 
some way, in order to be localized at the point where it pierces the plane Π.  Despite the 
strangeness of this concept, it nonetheless permits one to understand the origin of the 
distribution in a2(M) of photographic impressions on the plate better.  Indeed, that 
distribution comes from the distribution of intersections of the pseudo-trajectories with 
the plane Π. 
 
 b. The mesh is not in place. – This is the most interesting case.  When the electron 
escapes from the gun, it is then associated with a wave train Ψ whose transverse section 
has macroscopic dimensions, namely, those of the mouth.  The usual interpretation of 
wave mechanics tells us that the electron will be statistically spread over all of the 
volume of macroscopic dimensions that is occupied by the wave train.  There is thus no 
longer any question of defining the trajectories, nor even the pseudo-trajectories.  Once 
again, we are led to say that at the moment when the electron produces a photographic 
impression at a point of Π, will briefly choose the very small region where it is localized, 
a conclusion that, as Einstein has often emphasized, is in contradiction with the validity 
of the usual notions of space and time, even at the macroscopic scale.  Moreover, in order 
for there to be agreement with experiment, we are always obliged to assume that the 
distribution of photographic localizations on the plate Π is given by the function a2(M), 
but here that assertion cannot be justified at all by considering the intersection of the 
trajectories or pseudo-trajectories with the photographic plate, since there are neither 
trajectories nor pseudo-trajectories, now; it must then be a purely arbitrary postulate. 
 
 
 Conclusions. – From this detailed analysis of the experimental device that was 
studied, one can infer the following conclusions: Perhaps it does not prove the falsehood 
of the present interpretation of wave mechanics, but it at least shows, without a doubt, 
that the law of distribution of the corpuscular localizations in a2 = | Ψ |2 has a perfectly-
intelligible origin in the interpretation of wave mechanics by the double solution, as it 
does in classical mechanics, while it takes on the aspect of an entirely arbitrary postulate 
in the present interpretation, and despite everything, this injects a certain element of 
doubt into the validity of that present interpretation. 
 
 
 

_________ 
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