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PREFACE.

The present volume defines a sort of complementetolok that | recently published
on the interpretation of wave mechanics by the thebtlgeodouble solution®). | recall,
in more detail, certain questions that seem to me ¢esséate a new examination of the
role of measurement in quantum physics, but developed ora concrete fashion that is
closer to experimental reality than what has been dprte now.

The plan of this book is the following: After recallisgme well-known principles of
wave mechanics in the first chapter, | will presentttieory of measurement that is due
to J. von Neumann in chapters Il and Ill, while presgnsome arguments that were
developed by Einstein and Schrodinger not long ago, and kol that this theory,
despite its elegant character and the perfectly gmisfappearance of its formalism,
nonetheless leads to some consequences that are vewyitdiff accept. The difficulties
that it raises derive, on the one hand, from the fhat, tin accord with presently
dominant ideas, it does not allow for the permanent ilcat@n of corpuscles in space
and, on the other, that it visualizes the processesiadsurement in a very abstract
manner.

After summarizing the fundamental concepts of therthed the double solution in
chapters IV and V, while adding some complementary netibat did not find their
places in my previous treatises, | recall the study efgtocesses of measurement in
chapter VI and VII from a concrete viewpoint. | wilitioduce the essential ideas that
wave trains are always bounded and that we can makevabsas or measurements on
microphysical reality only by the intermediary of ohsde, macroscopic phenomena
that are triggered by the local action of a corpusclporiadding to these fundamental
remarks the idea of the permanent localization of catesisn space such as would result
from the theory of the double solution, | will show tleaie thus obtains a clear image of
the processes of measurement that do not raise tleedgections are the theory of von
Neumann and his heirs.

A last chapter is dedicated to a very rapid examinatid von Neumann’s
thermodynamics and its interpretation with the aidtled ideas that were discussed
previously.

The goal of the present book is, in summation, to d@xkhe reasons by which it
seems to me to re-establish the notion of a permalpeatization of microphysical
corpuscles, and why, once | again became aware of #uatssity, | sought in recent
years to resume the attempt to interpret wave mechidmaits sketched out in 1927.

September 1956

Louis DE BROGLIE

() Bibliography B].
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CHAPTER |

REVIEW OF SOME GENERALITIES ON WAVE MECHANICS
AND MEASUREMENT

1. Some known principles of wave mechanics: The present interpretation that
wave mechanics allows supposes that one can describepasce or a system of
corpuscles in as complete a fashion as possible withdhef a wave functiot¥ that is,
moreover, capable of having several components, as Ditae theory of the electron or
in that of corpuscles with higher spin. The functihis always assumed to be
“normalized” by the formula:

@) Jlwpdr=1.

The evolution of the wave function in the course of ti@overned by a partial
differential equation — viz., the wave equation — which & well-known Schrodinger
equation in the simplest case of a corpuscle withouh $pithe non-relativistic
approximation. It will take on a more complicated fdonparticles with spin (the Dirac
electron, for example), because in these cases itb@dbme, in reality, a system of
partial differential equations that couple the variousmgonents of¥. In a general
fashion, the wave equations, along with the initial dgows and boundary conditions,
will determine the evolution of the functid¥ completely.

If one completely forgets the origins of wave mechaind the physical intuitions
upon which it is founded then most authors will consitter function to be a simple
mathematical instrument that serves to predict thégimtities of the various results of
measurements that are performed in the corpuscle ayghem, since that function (by
chance?) will have the same form as the waves ddic&physics.

Now, here are — briefly summarized — the postulatess dbastitute, in a way, the
“recipes” that permit one to utilize the functigh— which is assumed to be knowtrfor
the calculation of the probabilities of the measurdmahat one can perform on
corpuscular quantities. One assumes that each of thesstigaawill correspond to a
linear, Hermitian operatok whose proper-value equation:

(2) Ag=ag

will permit one to define a continuous or discontinuousefan partially continuous and
partially discontinuous) set of proper valugsind corresponding proper functiop&).
The proper functiong will form a complete system of functions with arthmmormal
basis, in such a way that one can always write:

3) w =] c(a) #(a) da

or, more simply, in the case of a discontinuous spectr
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(4) =204,

upon enumerating the proper values and the proper fundijoas index. Moreover, a
mathematical formalism like the Stieltjes integrall wermit one to combine the two
cases of continuous spectrum and discontinuous spectranugtone formula. The set
of proper values oA define the “spectrum” of that operator.

The fundamental principle that one takes to be #sgshs then the following one: Let
W be the wave function of a corpuscle (or a system), wygaoh one must perform the
measurement of a quantity with the aid of an appropriate device. One will devélbp
in proper functionsg of the corresponding operatdy, and one can assert that the
probability for the measurement to give a value that lyslda an intervadla is | c(a) [
da. In the case of a discontinuous spectrum, one &y, snore simply, that the
probability of the value of given byc| .

The mathematical expectation of the vate- or, if one prefers, the mean value of
the result of the measurement Afthat is performed upon a very large number of
corpuscles that have the same functibr will be:

(5) A:Z|c,|2ai:fw*Awdr.

When these general principles are applied to thasorement of the position of a
corpuscle, that will give the following result: Tlpgobability for the coordinates of a
corpuscle to be found inside the interxal x + dxy - y+dy,z - z+dz-i.e., in
order for the corpuscle to be found in the volureenentdr = dx dy dz will be |W¥ [

dx dy dz An analogous statement will be valid for thehaoility of the presence of the
figurative point of a system in the configuratigrase to which it corresponds.

The statements that relate toW|  (e.g., the principle of interference or its
localization) can be deduced from the general ftismain such a way that, from the
viewpoint of that formalism, the probability of mence W F will be seen to have the
same status as any other probabilicy[f. The set of all possible developmentstbin
the different systems of proper functiogsthat correspond to the various measurable
guantities will thus appear to be entirely equinailEFom the formula standpoint. That
idea, which serves as the basis for the “theortrarisformations,” gives rise to some
elegant mathematical developments, although wel gdhiatuss only its physical
significance.

The general postulate that was assumed abovéatioreto the statistical significance
of the | ¢ P will imply, by an argument that | will not reproce, the following
consequence: The same experimental device cantpameto measure two quantitids
and B simultaneously with any precision only if the @sponding operators commute;
i.e., if one ha#®\Bg = BA¢ for any¢. If that were not true — i.e., B¢ # BAg, in general
— then any experimental device that would perm# tm attribute a value t& that is
affected with a certain uncertainty and would lebglind an uncertainty in the value of
B that is greater than the measurementAofvould have to be more precise, and
conversely. The typical example of two quantitigst are not simultaneously
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measurable with precision is provided by any pair of quasititkat are “canonically”
conjugate, in the sense of analytical mechanics, sydbrasxample, the coordinakeof
a corpuscle and the corresponding compopguotf the quantity of motion. In the latter

case, the corresponding operators (whichxaaed _ZLni%) are such thaAB — BA=

%, and in turn, will not commute. One then shows thatuncertainties that exist in
Vil

the values ok andpx will always satisfy the Heisenberg inequalities:

(6) K dpx 2 h,

and, in turn, can never be zero simultaneously.

Moreover, there exist quantities that, without beingnocécally conjugate,
nonetheless, do not commute; for example, the thtangular componentdy, My, Mz
of the moment of the quantity of motion, for which avié find:

h
Mx My—MyMx=—M,, ...
x My YX277iZ

and one will then show that the uncertainties inuvalkelies of two of these components
cannot be zero simultaneously, in general.

One can translate these results into a somewfiatatit language by saying that our
general principle will make the value of any measurablesiphl measurement
correspond to a probability distribution that has thenfof . In the discontinuous case,
the probabilities of the values; will be P, = | ¢ [, and in the continuous case, the
probability density will bea(a) = | ¢ . Since the state of a corpuscle (or a system) is
defined by a certain functio®, the set of measurable physical quantities will cornegpo
to a set of probability distributions that the theqwyesently considers (perhaps
mistakenly, as well will see) to be intervening with @kathe same status for the
corpuscle (or system) in the st&te

One can then define a “dispersion” for every probabdistribution that is equal to
the square root of the mean square of the distance frerméan value. One thus sets
this distribution to be:

@) am) = (a-a)y=+a-a>.

On can then prove that one will have:

®) aA) ofB) > 3| AB- BA

for two quantitiesA andB.

If the operator®\ andB commute then the right-hand side of (8) will be zero, Wwhic
one can interpret by saying that one can get precise vidoethe dispersions will be
zero) of the quantitie& andB by the same measuring device. If the operai@asdB do
not commute then the right-hand side of (8) will givenan-zero lower limit for the
product of the dispersions, in such a way that no measueoperation can provide
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precise values foA andB simultaneously. For two canonically-conjugate quantibeg

will have AB — BA= 21 _and one will find that:
/il

(8 bis) aA) o(B) = %T ,

which will constitute a way of stating the uncertaintiatiens (6) that is more precise.

Before pursuing the study of the consequences of thmat@em, | would like to
insist upon something that is extremely abstract: Theewawction W shall be
considered to be a simple mathematical function ithat complex solution to a partial
differential equation that will have speaking casually the form of an equation of wave
propagation. While casting a pall on the physical conasiaers that guided me in the
beginning of my research and on the ones that wereddnloped by Schrodinger, one
will no longer seek to give any physical picture for te&ationships between the wave
and the corpuscle. We do not even know whether the Waus anything but a
mathematical expression that will permit the caleafabf probabilities, and whether it
will remain somewhat obscured from physical realityn t@e other hand, simultaneously
considering all of the developments of the wivand giving the same status to all of the
probability distributions that one can deduce from is@snewhat strange, since one
knows that each of these distributions will be physicaignificant only after one
performs the corresponding measurement, and that treuree@ent will, as we shall see,
completely modify the initial state of things. Obvioyshne can always say that any
physicist that know& will have the right to appeal to it in order to caltelthe values
of a physical quantity that represent the possible esfih measurement of that quantity
and the corresponding probabilities. However, the pratyadistributions thus obtained
will have only a subjective value, and can take on anctie value only after the
effective performance of the measurement, which imapliee intervention of an
appropriate device. Later on, we will return to thesestjoies, which will remain very
obscure in the formalism that we are presently usingwenshall pursue the study of the
consequences of that formalism.

2. Reduction of the probability packet.— Measurement plays an essential role in
the interpretation of the formalism that was preseatem/e, and which we are presently
assuming, even if it does seem a little mysteriousis What changes the state of our
knowledge of the system under study while giving us newrnmdbion, and as a result,
we are obliged to modify briefly the form of the wa¥ehat represents our knowledge of
the corpuscle (or the system). For example, if tl@sarement is a measurement of
position that is more or less precise then the weaie W that is initially associated with
the corpuscle will be found to be “reduced” to a less-extkmgere train, which can even
be almost point-like if the measurement is precise gsihe region where the probability
of presence ¥ [ is non-zero will have diminished in extent. One thess the term
“reduction of the probability packet” that Heisenberg ntlyegave to that modification
of W. On the contrary, if the measurement consisthefdetermination of one of the
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components of the quantity of motigm then it will be in the space of momenta that
reduction of the probability packet will take place, sitiea will then be the extent of the
values ofpy that effectively appear in the Fourier representatdri¥ that will be
diminished.

The question of the reduction of the probability packdt then pose a difficult
problem in the present interpretation, namely: Is itatt@n of the measuring device that
modifies the waveW or is it the knowledge we acquire from the resultstioé
measurement that implies that modification? | dokmoiw if all of the authors who have
adopted the present probability interpretation are ioracon the answer to that question.

Some of them (and that will probably be the casdfr) will anxious to preserve a
certain character of physical reality for the wak¥eand to say that it is the action of the
measuring apparatus on the wa¥e¢hat provokes the reduction of the probability packet.
Others, who are perhaps being more logical, will say it is the knowledge of the result
of the measurement that necessitates the modificafithe wave, since, while the result
of the measurement is not known to us, it will be tliepredictions of the probabilities
that correspond to the original form @fthat will remain valid in order for us to make
those predictions. However, if one adopts the secomdoopinen the wav&’ will only
be apurely subjectiveepresentation of the probabilities, and cannot bepeesentation
of objective reality to any degree. How then carb&yan equation of wave propagation
and, despite everything, provide us with a statistical reptaton that is probably exact
of phenomena whose physical reality is not in doubt? dhbesstion remains truly
obscure; we shall return to it.

The reduction of the wave trai¥ will give rise to a new situation that is
characterized by a new form W which is a situation that is unpredictable in advance,
since only the probabilities of the various possible megsents can be calculated before
making an effective measurement. We shall have to d&mahether that
unpredictability results from a real indeterminacy, as m@sently assumes, or, on the
contrary, on the value of certain hidden variablesis asiggested by the theory of the
double solution, which is a question that has a closéame$hip with a theory that was
stated by von Neumann in his theory of measurementwe weechanics.

The Heisenberg uncertainty relations show that a dethe¢ permits one to
simultaneously perform various measurements on a corpeeci®t simultaneously tell
us precisely the values of all of the quantities tharatterize the corpuscle. There will
therefore be an incomplete maximum knowledge of thesatijea that is compatible
with the uncertainty relations. Once we have acduings maximum knowledge, we can
construct the wave function that serves to repres@nknowledge immediately after the
measurement, and upon starting with the initial formPofwe can follow its ultimate
evolution in the course of time with the aid of the w@aguation. At any instant, we can
then calculate the probabilities of the results ofiotes measurements that one can
perform at that instant. That will be true up to the patrwhich we know the result of
the new measurements, which will modify the state of knowledge and briefly
interrupt the regular evolution of the wa4# The regular evolution of that wave
between two measurements — which is an evolution thatdd by the wave equation —
is itself determined entirely by the initial form & (and possibly by the boundary
conditions), since the wave equation is of first oiddime. The evolution d¥ between
two measurements will be determined, but not the observaltbnomena, since the
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knowledge of the wave function will give only probabiktier them. If the description
of physical reality by the functiod is acompletedescription — i.e., if there exist no
description that is more complete, for example, byirthreduction of hidden variables —
then physical phenomena will be undetermined.

3. Destruction of phases by measurements. Interferencé probabilities. — The
A measurement will introduce a discontinuity into #welution of the wave function.
The knowledge of iafter the measurement does not allow one to reconstrudothe
that it hadbeforethe measurement.

Consider a large number of corpuscles (or systems)atfeatinitially found in the
same state that is representeddhy Measure a certain quantiyfor each of them that
has proper functiong; and proper valueg; . After these measurements, the proportion
of corpuscles (or systems) for which one will have fothredvarious valueg; for A will

give us the squares of the moduli of the coefficienis the developmeri¥ = Zc,¢i of

the wave functiomeforethe measurement. The knowledgétbfor all of the corpuscles
(or systems) after the measurement will then provideitisthie values of thed |, but in
order to know thes; themselves, we would need to know their arguments, ary] the
relative phases of the componeqt#; of the initial wave function.

It was that remark that led Bohr to emphasize that agsaorement must have the
effect of completely destroying the phases. It is deistruction of the phases by the act
of measurement that brings about what constituteseak limethe evolution o¥. Indeed,

the differences in phase between the components otﬂethelopmenth,@ are of

paramount importance, and any knowledge that relate® tewdtie function that does not
involve knowledge of these phase differences will beicedlg incomplete. The
importance of these phases is clearly manifested tan uke study of interference
phenomena for the probabilities.

Consider two quantitie& andB whose operators do not commute, and which, in turn,
are not simultaneously measurable. The proper values apdrgunctions ofA are o
and ¢, while those oB are 5 and xk . One easily proves that sinéeandB do not
commute, the system of thg cannot coincide with that of thg . Meanwhile, since
the yk define a complete system, eaghcan be expressed with the aid of phen the
form:

9 ¢ = ZSk/Yk ,

in which thesi are elements of a unitary mat$ More than one term in the right-hand

side will appear in this development, since the systeg and that ofyk do not coincide.
Suppose then that the state of the corpuscle (or sybtEng examined is represented by
the wave function:

(10) W=268 =D GSx-



Chapter I. Review of generalities on wave mechanics. 7

If one then measures the quan#tyhen one will find one of the proper values,
where the probability of findingy will be | ¢  a priori. After the measurement, the
corpuscle (or system) will be found in the stgteand in that new state a measurement of
B will lead to the valueS, with the probability |sx . Therefore, the probability of
finding the values for B by first measuringh and therB will be equal to) | ¢ f|s, f.

However, now suppose that we have performed tfesanement oB directly on the
initial state. Then, from the form of the last eegsion in (10), the general principle that
relates to the probabilities of the results of measent will tell us that the probability of

2
2GS,
preceding one, because it will depend upon thegqshém arguments) of the and sy,
while Y |c F|s, fobviously does not. That is what one calls theefiierence of

finding 4 will be equal to . That expression will be entirely different frahe

probabilities.”
We llustrate this with a simple example: Takeoe-dimensional domain with
lengthL. The normalized proper functions of the quantfymotion will be ¢ =

27

— e """ inthat domain. Then, let:

\/E .

be the wave function of the corpuscle in its ihig&ate. If one first measurgsand then
x then the probability of the positior= xo will be:

or simply 1 /L, which will imply the equal probability of all pt®ns on the segment of
lengthL.

However, if, on the contrary, one measures thedinatex in the initial state directly
then the probability of the value = x, will be | W(xo) [, and this will involve the
interference of the plane waves whose superposiithrconstitute thed, a result that is
necessary in order to account for interferenceptice and the diffraction of electrons.
One will then see that the interference of prolizds, whose existence is necessary for
the interpretation of experimental facts, will degeessentially upon phases, whose role
is then seen to be paramount.

The fact that the probability of the valfeof B, when measured directly in the initial

2
2GS

state, will be , and notZlc, Fls. f. can seem, on first glance, to be contrary to
the theorem of composed probabilities, but in tgalihat is not so: The probability
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¢ Fls  f is indeed the one that one must choose when one ffisltes a

determination ofA, and thenB, since it is equal to the sum of the products of the
probilities forfirst getting a valuex, for A times the probability othengetting the value
L for B. The theorem of composed probabilities is then sai@,ifaone envisions the
probabilities from a purely subjective viewpoint then cae say that there is no reason

for the probability> | ¢ F|s, f to be equal to that of directly obtaining the vafi®f B

by a measurement of that quantity in the initial stddewever, if one analyzes that idea
closely then one will see that all of the probabitligtributions that are introduced in the
usual theory (except, without a douB¥ F) will exist in the initial state only subjectively
for the physicist who must make the predictions on thalr®f possible measurements.
These distributions will exist objectively only afteetborresponding measurement has
been performed when one further ignores the result af nieasurement. It is that
situation that will explain, later on, why the schero& the usual probabilistic
interpretation of wave mechanics is not in agreemeitit the usual schema that is
assumed by statisticians.

4. Divergence between the statistical schema of wave meclwsnand the usual
schema of statisticians— In the usual schema of statisticians (which we priéisent by
assuming that one is dealing with continuous variableg) defines a probability density
Px(X) for every random variabl¥ such thajox(x) dx will be the probability foiX to have
a value betweer andx + dx One will likewise defingo(y) for another continuous
random variablé.

One then defines a densigfx, y) such thato(x, y) dx dyis the probability of
obtaining values foX andY by the same measurement operation (the statisticitars o
say “by the sameroof’) that are contained in the intervads» x + dxandy - y + dy,
respectively. That definition will seem quite naturadrie adopts a concrete image of the
probability in which “individuals” appear, for each of whidtetquantities< andY will
have a well-defined value, so statistics will be intratlucoy the simultaneous
consideration of a very large number of individuals fdrick X andY have different
values.

Outside ofpx(X), pdy), and p(x, y), statisticians will also consider the probability
density p{(x, y) of Y, when coupled tX, which will correspond to the probability of
obtaining the valug/ of Y when one knows that X has the valyeamd one likewise
defines the probability of, when coupled te, with the aid ofo{” (x, y).

One must now have the following relations, which eaa consider to be obvious,
between the five probability densities that we justrobefi

p@=[px ) dy o, (Y=]p(xy di

(X Y) o(%Y)
oY)’ Px(¥)

(12)

P (X, y) = PO (% y)=
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from which, one will infer that:

(13) ) = [ 657 (% )p, (y) dy, oY) = [ A (% y) oy (%) dx.

Now, the essential fact is that the preceding mehewhich is usually taken for
granted by statisticians, is not applicable to trebability distributions that are
envisioned in the present interpretation of waveclmaics. Indeed, it is, in general,
impossible to define the densip(x, y) for two measurable quantities, since it is, in
general, impossible to simultaneously measure tilaeg of the quantitieX and Y.
Formulas (12) no longer make sense then. Withodoubt, it is always possible to
define the densitiegx(X), oY), P (X y), and p{(x,y), but they will no longer be

related by formulas (12) and (13).

As an example of this, recall the preceding chaéwas examined of two measurable
guantitiesA andB that are not commutative, and rewrite formulasaf® (10) by passing
from the discontinuous case to the continuous cHge will have:

(14) p@)=IsaAxBHdB  xB=Is'(a P Ha)da.
If W is of the form:
(15) W= [c(@)sa,8) dr = [[c(@)Sa, B) x(B) dr
then one will find that:
(16) @ =lc@f,  pB=|[c@sa.p @],

where the second formula expresses the interfer@uebabilities, so:

a7 @ p) =1 FIa Al pP@B) =| e sr.p) o |si@.B),

but here the produciss(f), 0¥ (a, B) , andpa(a), p{” (a, B) have no reason to be equal,

which will indeed show that the non-existence of ttensityo(a, ), which must be
equal to their common value.

Where does this very strange special charactethefstatistical distributions of
modern guantum mechanics come from? The answensség be contained in the
essential role that is played by measurement. eSthe probability distributions of
modern quantum mechanics (with the possible exaepdf some of them) do not
constitute objective probabilities, they can beardgd as all corresponding to a
collection of individuals at the same instant fohnieth the quantities will have well-
defined values. The implicit hypothesis that matkesrelations (12) and (13) “obvious”
for the statistician is not realized here.

It is only after the action of the measuring device of a quanttytifie corpuscle (or
system) that the probability distribution can b@&sidered to be realized objectively. To
speak more precisely, if one imagines that the areasent of a certain quantity is
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performed simultaneously on an infinitude of corpusclessystems) that initially have
the same functio® then it will be only after performing the measuremamiall of these
corpuscles (or systems) that one will really have lecion of individuals that each
possess a precise value of the measured value suchebatvalues will be distributed
according to the law of probability irc) [, and it can be further remarked that the law of
probability in |c. F will thus not be found to be realized objectively byodlection, so
much as for the measured quantity and the ones that commtlte, to the exclusion of
the other ones. If the physicist knows the wave foncin the initial state, when no
measured has been performed, then he can calculatartbasvprobability distributions
that he can subsequently decide to measure. Howevarpé#uwese distributions can be
found to be thus realized, and thus correspond to actiolh, only after performing the
corresponding measurement. The distributions can reveall found to be realized
simultaneously, since one cannot simultaneously meadluoé the quantities, and one
must employ two incompatible measuring devices in order tasoame two non-
commutating quantities.

Certainly, the physicist always has the right towiameously consider the set of
probability distributions before any measurement thatb=mdeduced from the various
developments of the initia, but these probabilities will then have a subjective
character, and are not objective probabilities thatstaigstically realized by the same
collection of individuals. As we have seen, that tvyrevents us from attributing the
properties (12) and (13) which will be obvious for objective distributions thafer to a
collection of individuals with well-defined charactersti— to the probability
distributions of conventional wave mechanics. We thimt it is for the same reason
that the celebrated theorem of von Neumann, which wlediscuss soon, is basically
only a truism, and does not at all prove the impossitulitre-establishing determinism
in wave mechanics by the introduction of hidden variables.



CHAPTER Il
THE THEORY OF MEASUREMENT, ACCORDING TO VON NEUMANN ().

1. Pure case and mixture.— First, recall some considerations regarding the
interference of probabilities. Let there be a veaggé numbet\ of corpuscles (or
systems) that all have the same wave funcHonf A is a measureable physical quantity
with proper valuesx and proper functiong then if one hasV = ch¢k then the

k

measurement ok must lead one to find the valae for | ¢; A systems, the valug for

|c. P N'systems, etc. The mean valuedodiill be >’ |c, [ a, .
k

Now, imagine that instead of havidg systems in the same state, we have[{NV

systems in the staig, | c; P A systems in the stag® , etc. The measurement Afwill

then give us the same statistical results as ifiotimer case. One might then believe that
the two cases are equivalent, but we shall sedhisais not true.
Indeed, consider a measurable physical quaBtithat does not commute with.

The proper functions oB will not coincide with those oA, and if 5 and xk are the
proper values and proper functionsBfresp., then one will hawg :del)(, , In which
|

the development will generally contain several errkirst, imagine the previous case, in
which we hadV systems that were all in the same state:

W= zck¢k: zckdkl/YI -
k Kl
2

The measurement & for all of these systems will then giyé times the value

> cd,

k|

[, and the mean value Bfwill be:

2

B :ijder =Y g8,
k,l

(1) B=Y

with:

qum

¢ = [¢Bg dr.

() Seebibliography [, [2].
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We then place ourselves in the second case, whehaavie; P\ systems in the state
#1. The measurement @ on the first |c; P systems will give the valug for a
proportion of these systems that is equaldg [f, etc. In total, the value ¢§ of B will

be obtained:
N Y lc Fld,
k
times, and in turn, the mean valueBoWill be:
(2) BZZ|Ck|2|deIZﬁI ZZ|Ck|ZBtEI¢)’
k,l k
with:
¥ = [¢Bg dr.

One then sees that the two cases that we envisem@ecompletely different for any
quantity that does not commute with In the first one there is interference of
probabilities, while in the second one that interfeee is not present. One cannot

therefore consider th& systems as defining a collective system that impmsed of\V/
lc? individual systems that have the valaefor A, etc. Moreover, it is obvious that it
will therefore be entirely legitimate to consideetN systems as defining a collective

system that is composed &f| d; [ systems that have the val@efor B, etc., withd; =
Zdekl , and this second collective system will not calecwith the first one. We can
k

thus not consider the set &fsystems as defining a well-defined collective systsince

that collective system will vary according to theaqtity that is envisioned. We then
recover the idea that we previously brought totliine probabilities that are envisioned
in conventional wave mechanics correspond to auenaipllective system that is realized
in the statél. In order to distinguish the case where the dodiba distribution for a
guantityA has only a subjective value before the measurefmemt the one where that
distribution is realized after the measurement, N@umann said that the former case
constitutes a “pure” case, while the latter onestiutes a “mixture.”

Without making any act of measurement interveme, @an imaging\; systems that
have a wave functio®™, A systems that have a wave functiéff), etc. The set of all
N systems will then define a “mixture” 8f; pure cases that correspondH’, A pure
cases that correspond %, etc. We recover the second case that was stadiéte
beginning of this paragraph by taking = A | ¢ [, ... If we set\; / NV = p; then we will
have a “mixture” that is defined by the set of tstiacal weights”px with z p. = 1.

k

If we setc, = / p, € then we will see that tha = | c F are the statistical weights of

the mixture that is equivalent to the pure cl&eas far as the measurement of A is
concerned However, this mixture is realized only after tmeeasurement that
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transformed the initial pure case into this mixture. Teture that is equivalent to the
pure case¥ for the measurement of a quantBythat does not commute with will
involve statistical weights that are different frore ffreceding ones, and will be realized
only by a measurement that involves a device of a diftetype. That is why one cannot
reduce a pure case to a well-defined mixture.

We have seen that the mean valu ¢f given by formula (1) for the pure cd#e If
one replaces this pure case with a mixture that is ftube realized by the measurement
of A then the mean value & will be given by formula (2). It is easy to specifieth
manner in which the two expressions (1) and (2) diffemmiata (1) can be written:

(3) B=>|c 0g € B

If one assumes that the phasgéi.e., the arguments of th®) are known completely
with equal probabilities for their possible valuégn the mean value of the expression
(3) will be obtained by taking a mean over the ealof theay, which are all assumed to
be equally probable. The terms whére | will give zero, and we will recover the
expression (2). In other words, one passes franptirte casé& to the mixture that is
realized by the measurementAdby assuming that this measurement has made oae los
all knowledge of the phasax . Here, we indeed recover the conclusion that the

measurement ok that is performed on the initial state that isresgnted by = ch¢k
k

will have the effect of completely destroying theape difference that exist between the
componentg of the initial¥.

Finally, we have obtained a neat idea of the tbfiee between a “pure case” that is
defined by a wave functio® and a “mixture” that is defined by a set of puases with
wave functiong¥,, W, ... that are affected with statistical weigpisp,, ...

2. The statistical matrix of J. von Neumann for the pure cas — First, envision a
pure case that is defined by a wave function ofvargform. That function can be
considered to be a vector in a Hilbert space. ¢ilf ¢», ..., ¢, ... IS @ complete,
orthonormal system of basis functions (for example,proper functions of a Hermitian,
linear operato) then theg; can be considered to define a complete systenmitdry

vectors in Hilbert space, and the expressipn= ch¢k will be analogous to the
k

expression of a vector with the aid of its compdseriong orthogonal directions that are
defined by the unitary vectors. One can say thatt are the components 8 in the
basis system of théc . The Hilbert space that we consider will be enptex space, and
the components, will be complex, in general.

Now, let:

W=>cd and x=> dg,
k k

be two vectors in Hilbert space. By definitiongithscalar product isO being the
domain variation of the variables in ti#e



14 The theory of measurement in wave mechanics.

(4) (LIJ[h/):'[DLIJDXdr :zCEd|'[¢kD¢| dr :zCdel (o} :zckmdk ,
and one will have: | | |
©)) W) =Won;

one will indeed then have the generalization of tlessital expression for the scalar
product to complex vectors.

The scalar product of a vect#rwith itself, which is analogous to the square of the
length of an ordinary vector, is called the “norm'tledt vector, and will have the value:

(6) NW) =@, W) = [ |[Wfdr = IcF.

If the vector is normalized then one will have:

N(W) =1 and >|c f=1.

An operator on Hilbert space will correspond taogerator that makes one vector go
to another ongr = AW, which will then define the operation that takédo y, and one

will have:
zd|¢| = A zck¢k ’
| k
S0, upon multiplying bWJ.D and integrating oved, one will get:
(8) d = ZCkJD¢EA¢k dr = zajkck -
k k

The ay, which are elements of the matrix that is generdeA in the system of thé,
will then be the coefficients of the linear transfiation that takes the componentsibf
to those ofy. The conservation of norm would impose the camdithat the matriva
must be unitary.

If W is once again the wave function of a “pure cakehtimagine the operation on
Hilbert space of “projecting onto the vectdr’ let Py be the corresponding operator. It
is obvious thatP; = Py, and that, more generallf) =Py. Since all of the powers &

are identical, one says that this operator is “ipetant.”
Now, let there be a complete system of orthonorpaais functionss, ..., @, ...
We have a development fii:

w=Ycd, with o= [ gWdr and g f=1.
k k
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One can obviously find an infinitude of orthonormal basisesys for which¥ is one of
the basis vectors. In one of these systems, theidung will have a development of the
form:

(9) Ge=d¥ + ..., with d:ij%kdr =c’.

The operatoPy, which is the “projector” ont&, is defined by:
(10) Py ¢« =d¥W = ¢’W

for any g« . The matrix that is generated by the operBtom the basis system @k has
an element with indice®, n:

(12) Po)mn= [ 8PP, A7 = [ g Wdr=cnc,.

Thus, the matriPy that is attached to the pure case being considered isseggrevith
the aid of the coefficient of the development¥fin the basis system that is being
utilized. One has thus defined what von Neumann calledsthgéstical matrix” that is
attached to the pure cask formula (11) makes it obvious that this matrix is He:fami.

The statistical matrix possesses two fundamental prepe

1. Itstrace is equal to 1. Indeed:

(12) TrPy = D (R))=2.6,C, = 1.

2. ltis idempotent. Indeed, one will have:

(13) (Pj)mn = zCanCp D:pda =Cm CnD = (Pw)mn,

and thus, in terms of matriceR; = Py, and by recurrenceR) = Py.

Now, letA be a quantity in the system being consideredhdi are functions of an
arbitrary orthonormal basis (which are no longeyper functions ofA, here) then we
have seen that the mean valué\afill be:

(14) A=>clq AP,
k,l

where the A” are the elements of the matrix that is generayethé operatoA in the
system of thegy, andcy is the component P along ¢¢«. One can also write:



16 The theory of measurement in wave mechanics.
(15) A= (R) AP =Tr(Py A) = Tr(A Ry).
kI

Therefore, the knowledge of the statistical matvikk provide us with a simple means of
calculating A.

The statistical matrix of a pure case is frequentlled an “elementary statistical
matrix” (Einzelmatriy, in contrast to the more general statistical esrthat we shall
encounter later on while studying mixtures of pcases.

An elementary statistical matrix can be easilyiptd diagonal form. In order to this,
it will suffice to take the basis system to be stegn where th& considered is one of the
basis functions; for examplé, =Y. The elementary statistical matrix will then take
form:

1000---

0000--
0000-|
oooo-

(16)

All of the terms will be zero, except for the fidiagonal term, which is equal to 1; this
results from (11) easily. The trace of the stimagtmatrix will be an invariant under
changes of basis functions, and in turn, a knovap@nty of unitary transformations; it
must then be equal to 1, as the table (16) shdwss table will also permit one to verify
immediately that the statistical matrix is idempate

3. The statistical matrix for a mixture of pure cases— We shall now consider a
mixture of pure cases. We have already definedh suanixture by consideringy/

systems, of which\p; are in the stat®’™®, A, are in the state®, ..., with " p, = 1.
k

However, we can also introduce the idea of mixforgust one system. Indeed, it can
happen that we are ignorant of the exact form efwhve function of a system, and that

we know only that it has a probabilips of being in the stat#’™), a probabilityp, of
being in the stat®’®, etc., a probability, of being in the staté/®™, with > p, = 1. The
k

state of our knowledge about the system is theresepted by a mixture of pure cases
with the statistical weightsx .
Each of the pure cases in the mixture has an elamestatistical matrix¥ ,, . We

attribute a Hermitian statistical matrix:

(17) P=2 PPy,

k=1

with
(18) Pm = > pG¥ g’
k=1
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to it, where the statistical weighpg are positive numbers between 0 and 1 whose sum is
equal to 1. The! are the components of the varidd in the system with basig,
..., ®n . The statistical matrix (17) thus appears to be a supiio of elementary
statistical matrices.

As an example, suppose that one has taken the basisofisnto be the proper
functions that relate to positiodq — d'), whered is the singular Dirac function. The
formula:

(19) W®q, 1) = [W¥(q,1)d(a-d) dd

will then show that thec® are equalW®(q, t), and that one will find that the
components of the statistical matrix are:

(20) P, q) = Y P ()WOd)

k=1

This is Dirac’s statistical matrix.
The mean value of a measurable quamitf the system will be:

(21) A=Y P A,

where Ew) is the mean value that will have when the system is in the pure stif&.
From (15), we will then get:

(22) A=Y pY (R A, = Z[Z PP Aj .

I

The formula will therefore be the same as it istfer pure case.
The statistical matrix of a mixture, like that afoure case, will always have a trace
that is equal to 1, because:

(23) TPP=S P, =YY pcd =Y p W f = 1.
m k=1

m k=1 m

By contrast, while the matrix of a pure case W8agfs idempotent, the same thing is
not true for the statistical matrix of a mixturkndeed, one can prove that any idempotent
statistical matrix is elementary. In order to éatf one assumes that = P, and one
writes P in diagonal form, which is always possible.pilis thei™ diagonal element d?
then the relatio®® = P will demand that one must hay# =pi, and they will then be
equal to 0 or 1. The equation Pr= 1 that is satisfied by all statistical matrize then
show that one of thg is different from 0, and therefore equal to 1.e Bystem will then
have a uniqu& that agrees with one of the basis functions tedtices to its diagonal
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form. Therefore, the necessary and sufficient ¢@mrdfor a statistical matrix to be an
idempotent is that it be elementary.

Now, consider the non-elementary statistical maifia mixture. If thap®, @@,
W" that define the pure cases that appear in the mixturerdtegonal (which can
happen only in exceptional cases) then one can take theenthe lfirstn basis function

of an orthonormal system. One will then ha{g = dm , sinceW™® will reduce togy and

Pwm will be zero forl # m, while thePy will be equal topk for k< n and zero fok > n.
The statistical matrix will then take the followingadonal form:

pp 0 00 -
0p,0O0 -
oooao-.-.
0 00p, |
O 00O0--
oooao-.-.

(24)

However, this is the one exceptional case. In gert@eafunctionsb®, ..., W will not
be orthogonal. One can nonetheless reduce the nRatoxdiagonal form, even in this
case, but the diagonal elemergs will no longer be equal tpy, ..., pn, 0, O, ... Since

the matrixP is Hermitian, thep, will be real numbers. Moreover, since Hr= 1, one
will have z p. = 1. We shall show that thg, cannot be negative. In order to do that,
k

if & are the components of a vecibm Hilbert space then consider the scalar product of
= with P=. One will then have

n n 2
(25) E P =D &Y PP, = Y p |, W)
m,n k=1 k=1
for its value.
Since the square of a modulus asfortiori, positive or zero, we will see that the
scalar product (25) is necessarily positive or zeMow, if we putP into its diagonal
form then that scalar product will have the follogiexpression:

(26) E P = p|él

which must bex 0, and for anye. Therefore, thep,, must all be positive or zero. Since
their sum is equal to 1, one will haves®’ < 1. One infers from that that’ — p/> > 0,
so for any arbitrary vectat in Hilbert space:

(27) EOP-PY3) =Y (p,- P&, 20
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4. Irreducibility of the pure case.— We now come to a theorem that plays a major
role in the proof by which von Neumann wanted to establgh impossibility of
explaining the present probabilistic character of wavehaeics with the aid of hidden
variables.

The important theorem in question is stated as follows

It is impossible to represent a pure case in the form of a mjxu@so:A pure case
is never reducible to a superposition of pure cases.

He thus established the intrinsic special characteregbdne cases.
Indeed, if this theorem were not true then it wouldehtoy be possible at least, in
some cases — to obtain a relation of the form:

(28) P=2>aQ,

in which, P and Q; are elementary statistical matricesi.e., idempotent Hermitian
matrices with trace 1 — and tlmge are positive numbers such thEt:ai =1. Now, one

will then have:

(29) P* =2a/Q*+ > 304, (QQ +Q Q).

=Y’ + Y 1aa[Q+Q-(Q- Q1.
:z{aﬁmza&qz—zm (Q-Q)°,
=>aQ" -y aa(Q-Q).

i>]

because) @, =1 —ai . One will therefore have:

j#

(30) PP-P=Ya(Q-Q)-Y.qa (Q- Q).

i>j

However,P* =P andQ? =Q, so:

(31) Y.aa,(Q-Q)=0,
i>]

and since all of thex are positive:

(32) Q-Q)y°=0.

Now, the square of a Hermitian matrix can be zemty af the matrix itself is zero.
Indeed, ifA is a Hermitian matrix then the elements®fwill be:
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2N _ _ 0
@)= 2.8 8 = 2.8 & ,
| |

and if the &); are zero then one must also hg¥d a, | = 0, which will demand tha

=0, and in turn, thaA = 0.
SinceQ — Q is a Hermitian matrix then the condition (32) withply thatQ = Q; .
All of the Q; will be the same, and one will have:

P:Za’iq =Q, since Zai =1.

P will not be truly a sum of elementary statisticadtnces then, which is contrary to
hypothesis.

It is therefore indeed proved that the pure cases wréutible and can never be
reduced to a mixture of pure cases. The pure cases ofenleanics will thus possess
the following two properties:

1. They will be represented by elementary (i.e., idepmptstatistical matrices,
while any mixture will have a matrix that is not elemtay (i.e., not idempotent).

2. There will be no way of reducing a mixture to a p@sec

5. The statistical laws of quantum mechanics will be impstble to interpret by
the introduction of hidden variables. — In classical physics, any time one must
introduce probabilities in place of rigorous laws one alivays assume that there exists
determinism in the phenomena, but that this determirssiwo complicated or too subtle
for us to be able to follow it in detail, since the olbable manifestations are of a
statistical character and, for that reason, thelybeilexpressed by probabilities. The laws
of probability and the element of chance that theynseeintroduce will not be the proof
of a true contingency, but the result of our incapaatfotiow a determinism that is too
fine-grained or too complicated. That is the definitidrcloance that one finds in the
writings of all thinkers who predated the development afvev mechanics, and in
particular, in the works of Henri Poincaré.

The best-known example of such a pseudo-statistiealry in physics is the kinetic
theory of gases. There, one will assume that theonm®of the gas molecules, as well as
their mutual collisions, are governed by the rigorous lain3assical mechanics, in such
a way that there will be a subordinate determinisidowever, the molecules are
sufficiently numerous that their motions will be semplicated that we cannot actually
follow this elementary determinism in all of its detailMoreover, the molecular motions
complete elude our senses, and we can only predict theoscapic effects of these
motions, such as pressure, temperature, local fluctuatérdensity or energy, the
Brownian agitation of a visible granule due to its irregwollisions with molecules, etc.
Since these macroscopic phenomena will result from emormous number of
complicated, elementary phenomena, we seem to Istraoting a statistical theory that
will involve only probabilities, but that introduction oli@nce is only apparent, and, for
example, the disorganized motions of a granule in isMBran agitation will seem to us
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to be ruled by a rigorous determinism if we know how ticudate all of the molecular
motions of the ambient gas and their collisions whghgranule.

Since that elimination of chance, to the profit ofua@dinate determinism, has
succeeded in classical physics, one might attempt todinte it into quantum physics.
We have found the laws of probability in wave mechan{€an we not assume that this
results from our ignorance of some hidden determinisni?oné succeeds in this
enterprise then one will have once more eliminated endehism and maintained the
classical concept of chance. On the contrary, if tmks then one must abandon
determinism and assume an absolute contingency of micricphyshenomena. To
employ the language of von Neumann: In the latter eesee mechanics will be a “truly
statistical’ theory. Now, von Neumann thought thatcbeld resolve the question by
proving a theorem, from which, he thought that he could dedie impossibility of
deducing the laws of probability in wave mechanics fromesbitiden determinism.

In order to establish its proof, von Neumann startel thi¢ following remarks:

To assume a subordinate determinism is to assumexisience of variables whose
exact values we ignore (viz., hidden parameters), ssicfomexample, the positions and
velocities of the molecules of a gas and the probadslitif then introducing them as a
result of our ignorance of these hidden parameters. deterministic theory with hidden
parameters, the real state of a gas, for exampletirely determined at each instant. All
of the molecules of the gas will have well-defined poss and velocities, and if we
know all of these parameters then we can represerstabe of the gas by a point in the
extension-in-phase. However, we ignore the exdoevaf the hidden parameters, and in
order to represent the global statistical picture, Wwiscall that is accessible to our sense,
we envision a “mixture” of elementary states with camently-chosen statistical
weights. The elementary states will define a mixttivat will correspond to well-
determined values of all the quantities. They will thee be indecomposable and also
“dispersionless,” because any quanfityhat has a well-defined value will be equal to its

mean value, and the dispersion= \/E—(R)Z will be zero, as well as all of the

differencesA" - (A)", moreover.

In other words, any deterministic statistical theoryhwhidden parameters will
introduce a collective system of individuals, for which quantities that characterize
them will have well-determined values, and will be, in fexempt from dispersion. The
dispersions will appear for the collective system oatyan ensemble. Under these
conditions, the probability distributions that are dafor the collective system must
satisfy the usual schema of statisticians that we kawdied previously. Now, we know
that this is not the case for the probability disttitas of conventional wave mechanics,
and that one already believes that one is authorizedetiuce that wave mechanics
cannot be interpreted by a deterministic theory with éndparameters.

Von Neumann recovered this result by the following pa#hstarted with the remark
that a statistical theory can reduce to a determingsthema with hidden parameters only
if the probability distributions that appear in that tiyea@an all be reduced to
indecomposable mixtures of elementary states with nordispe He then proved that
this is not the case for the distributions that are ssowéd in wave mechanics by
appealing to the following theorem:
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The states that one encounters in wave mechanics are never dispsssionle

In other words, one cannot hawf = (A)® for any measurable quantity in any
realizable state.

In reality, von Neumann’s proef which is beautiful, but somewhat cumbersome —
tells us nothing new. Since one knows the uncertagityions in the forno(x) o(px) = h
47 one already knows that no quantity can be dispeessnfor the probability
distributions of conventional wave mechanics.

However, follow von Neumann’s argument: We have skanhany state (where it is a
pure state or a mixture) is characterized by a Hernmiatistical matrix with a trace that
is equal to 1, such that the mean value of any quantityisnstate will be given by the
formula (15). Therefore, in order to a state to Ispelisionless, it will be necessary that
one have:

(33) Tr PA? = [Tr(PA)] ?
for any quantityA.
Now, let ¢1, @, ..., @i, ... be a complete system of orthonormal basis fanst

Consider the operator on Hilbert space that projectsvantor in that space onto the
vectorgi . That projector is a Hermitian linear operaiyr, and we can taka = P, . If

the state were dispersionless then one would haveyiicylar:

(34) Tr(PP?) = [Tr(PR,)]%.

However, since one hai?%2 = Py, , one will get:

(35) Tr(PP,) =[Tr(PP,)]*.
Now:
(36) Tr(PP,) = Y (PP, )y = ZJD¢EPP¢i¢k dr,

and sinceP, ¢, = d ¢i , one will finally get:
(37) TH(PR,) = X[ #Pg dr g, = J‘D¢iup¢i dr=Pp; .
k

This trace must be equal to its square, so eiherl orP; = 0, and this must be true
for any indexi, because we can reason the same way with alleoPth However, one

can assume that certdy will be equal to 1 and others, to 0, and in ordesatisfy the
relation ZP“ = 1, one must then have all of tRg are zero, except for one of them.

However, the latter hypothesis can be rejectedusecae can vary the orthonormal basis
system in Hilbert space in a continuous fashiorahyoperation that corresponds to a
rotation of the axes in that function space. We tteen make each of the original axes
coincide successively with the other axes, and byrdinuous operation. Each of thg
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must vary in a continuous fashion in the course of thatatipe, and since they can take
only the values 0 or 1, they must keep their initial valuBiserefore, either thig; will all
be equal to 1 or they will all be equal to 0. Now, neithkthese two hypotheses is

compatible wichPii =1, becauseZPﬁ will be infinite in one case and zero in the

other.

Finally, there can exist no acceptable statistical ima&rthat corresponds to an
absence of dispersion for all of the quantities, andNemmann concluded from this that
it will be impossible to account for the probabilitysttibutions of wave mechanics by a
hidden determinism.

6. Ciritique of the preceding conclusion— After having reflected upon this for
some time, | now think that von Neumann’s proof does natydhe weight that is
attributed to it. It indeed shows that the probabiliistributions of conventional wave
mechanics are never completely dispersionless, socdyot, in turn, correspond to any
collection of individuals with well-determined propertieslowever, we have already
confirmed that, and that result is, moreover, contaiméde uncertainty relations.

As for deducing the impossibility of interpreting wave meuts by a deterministic
schema of hidden variables, that is another matter. h#e already said that the
probability distributions in |cc  are generally realized onlgfter performing the
corresponding measurement. Since the measuring devicie fearious magnitudes are
generally incompatible, one will have no reasanpriori, to expect that all of the
probability distributions in ¢ [ will correspond to the same collective system, and i
fact, they do not. However, nothing prevents one frongimiag that by introducing
hidden variables, one can define probability distributisisch are also hidderthat will
correspond to a unique collective system in the initialestbefore performing any
measurement, and will permit one to obtain a deternenggthema. These probability
distributions that exist in the initial state before angasurement will remain hidden,
because, in general, performing the measurement of theitguanwhile acting on the
system under study, will make that initial probabilitytdiition disappear and will
make the one that one habitually considers appear. Weaonmfirm that this perfectly-
admissible hypothesis is the one that correspondeeacausal interpretation of wave
mechanics with the aid of the ideas of the double soldtion pilot-wave — and we will
study them in detail later on. In the final analyssn Neumann’s celebrated theorem
seems to me to not have the significance that has dtégbuted to it, and does not seem
to me to constitute an insurmountable obstacle to thigcatn of a deterministic
interpretation of wave mechanics that introduces hiddaables.



CHAPTER Il
THE THEORY OF MEASUREMENT, ACCORDING TO VON NEUMANKCONT).

1. Generalities on measurement— As we have seen, measurement plays an
essential role in quantum physics. Indeed, its roleianaphysics is completely different
from its role in classical macroscopic physics. lasslcal physics, a measurement, at
least, when it is performed with suitable precautionsa isimple “verification” that
specifies our knowledge of objective reality without distoghit appreciably. Since real
elementary states are assumed to be determined peréagtlignorance on our part will
translate into probabilities that pertain to a mixtwigh convenient statistical weights for
the various elementary states, and measurements evilobsidered to be capable of
diminishing our ignorance, or even suppressing it, by makimgréectly-determined
elementary state known to us (for example, a corpustle exact values for the
guantities of position and quantity of motion that chimaze it).

The probability distributions that present themselvesclassical physics will
therefore always have the character of a mixturdeyhentary states in which all of the
guantities have well-defined values (i.e., collectivetems that consist of individual
entities whose characteristics all have well-definethles. A measurement is then
assumed to make us aware of the real value of a qutrttgxists objectively before the
measurement, and if that measurement is indeed performéthutv modifying it
appreciably.

Everything is completely different in quantum theory. hefle, the maximum
knowledge that we can have about a system will bézeghivhen we can consider it to
be a pure case — i.e., to attribute a well-defined fun&¥ido it. In that state of maximum
knowledge, it will be impossible for us to specify the vadi@ny of the quantities in the
system, since no experimental device can give us dliesh at once. The pure cd$e
corresponds to probability distributions (that will bae, principle, realized only after
performing the corresponding measurement) that will involee-zero dispersions for
certain quantities. If a new measurement is perforined that can give us only give us,
at best, a new pure case that also involves non-zsperdions for certain quantities. It
will augment our knowledge of some quantities, but onlyuch a fashion that our
optimum knowledge of the state of the system willagig/remain represented by a pure
case that has dispersions. Moreover, the measurexugntents nothing concerning our
knowledge of the state of the system prior to the measemt, becausé will create an
entirely new state by its action on the system

| think that these are the results of quantum physiasa definitive character, but,
contrary to what one assumes, they do not at allyitie impossibility of maintaining
the classical idea of individual entitiesi.e., corpuscles for which all quantities have
well-defined values. As we will see, one can imagia there exists a unique collective
system in any pure case that will give probability disttions for all of the quantities and
will satisfy all of the usual rules of statistics flwvihe existence gi(x, y, 2)], except that
these probability distributions will not, in general, bee ones that one ordinarily
envisions in wave mechanics, because each of therbemvi#alized only after performing
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the corresponding measurement. The distributions weatwill introduce cannot be

exhibited, since in order to create them, one must perfogasurements, and any
measurement, by the action that it exerts on the whjbat it affects, will generally

change the probability distributions. Finally, it is @eely the new role that is played by
measurement in microphysics that will permit us to imagirobability distributions that

remain hidden with no contradictions. We will returrthiat question.

We again make an important remark, to which we will disoe to return. A
measuring device that involves individual microphysicaltestiwill necessarily involve
the appearance of an observable macroscopic phenomeabristhriggered by a
microphysical individual entity. This must be true, sitft® measurement can only result
from an observation that is made by the physicisterdfore, in a Wilson chamber, the
observation of a corpuscular trajectory, which can fieone to either localize or
evaluate its energy or quantity of motion, will resdibom a phenomenon of
macroscopically-observable condensation droplets theggered by the ionizing action
of the corpuscle in motion. The same thing will be tareaf photographic record, where
the elementary action of a corpuscle (e.g., photon argeld particle) will trigger a
macroscopically-observable chemical phenomenon. Tagt important remark will
ultimately serve to reconstruct the theory of measargmn a new basis.

2. The statistics of two interacting systems, according to vadeumann.— Recall
von Neumann’s analysis, and consider two corpuscles msystems of corpuscles that
are involved in a measurement. Von Neumann said tadbtimer is the “system under
study” and the latter is the “measuring apparatus.” Wehave to critique these terms,
but for now, we shall let that pass.

Let u(x) be an orthonormal set of proper functions for thenfr system and let(y)
be the analogous set for the latter one. When theragsare isolated from each other (in
the initial state), their wave functiodg, andW, will evolve separately according to the
corresponding wave equation, and one can set:

(1) lezck(t)uk(x), Wi :zdp(t)Vp(X)-

Since system | is obviously in a pure case, it m@thain in a pure case. The total system,
whose Hamiltoniamd is then the sum of Hamiltoniam + H, of the two systems, will

have the wave function:
2 WX Y, ) =W ) Wiy, Y) = D (D d () u (R v( Y.

It will represent a pure case of the system théltpersist as long as the interaction has
not yet commenced.

When the interaction does commence, one must addtaraction ternH; to the
termsH; + H; in the global Hamiltonian that will depend upoe ttoordinatesg andy,
of the two systems in a form that is not simplyiidel. The wave function of the global
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system will then cease to be the product of(®) with av,y), but since the products
u(X) v(y) will continue to define a complete and orthonormal$agstem for the set of
variablesx andy, one can write:

3 Wx, ¥, 1) = > Co,(Du (X (Y,

but theC,, are no longer of the forek d,. Since we will always have a wave functién
for the total system that evolves according to wae equation, the total state of the
system will always remain a pure case. The coomdipg statistical matrix will then be
given by:

(4) Pio= C,,Cy -

Here, we remark that it takes two indices to regmes state of the global system. We
now direct our attention to system |, and envisaogertain quantityA in that system such
that the corresponding matrix is defined by:

5) Aa= [ U9 Ay( o
The mean value & during the interaction is:

(6) A=[ WAwdr = > CoC, [ WAy df §y d=3C.C,A .
k,0,l,0 k.ol

Now, the statistical matrix of system | during thteraction must be such that:

(7) A =Tr(P A),
which leads one to write:
(8) P = ZQkaDp.

One will likewise find that the statistical matox system Il is:
9) o= .CCo,-
k

The statistical matri® of the total system is Hermitian, has a trace ihagual to 1,
and is idempotent, as one easily verifies frombi@djaking into account the orthonormal
character of the producti(x) v/y); it is therefore an elementary statistical matridhe
same thing is not true for the matrid@sandP;;, which permit one to calculate the mean
value of the quantities for one or the other systéelrhey are indeed Hermitian matrices
with trace 1, but they are not idempotent. Theesfohe statistics of systems | and II,
when considered separately, are no longer thoparefcases, but mixtures.

In order to specify the composition of these migs) recall formula (3). For a given
value of the indey, we will have a sum of terms of the form:
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=1

VY)Y Cep (1) U(), with  >°|C,,

in the development (3). One can then say thatafgiven value op (i.e., for a certain
state of system II), system | will have a probapilhat is proportional toQy, |2 of being

found in the statk. The absolute value of that probability will bgual to‘ c ‘2 if one

sets:

C
(10) c =&

o
‘Zlclp |2
|
in such a fashion that one hds|C” ‘2 =1.
k

One can then write:

(11) € = z p,G” G,
with: ’
(12) po=>|C, |

and one will likewise find that:
(13) Pi)po= Y, PCYCT,
k

with:

(14) c» = 4 Pk = Z| Ckg |2 .

k @ckgr’

The matrice$, andP, thus indeed appear to be defining mixtures wigistical weights
p, andpy, respectively.

Therefore, whereas the total system will remaia pure case, despite the interaction,
each of the two partial systems, which are conetién be isolated, will be transformed
into a mixture by the interaction, and von Neumadded: “Whereas our knowledge of
the global system will remain a maximum, that & ttvo component systems will cease
to be a maximum. Since each partial system canobgidered to be found in a pure case
that we are ignoring, the mixture will represerattignorance. A simple verification can
then suffice to eliminate that ignorance by makihg effectively-realized pure case
known.”

By studying the forms of the statistical matri€ggndPy;, one confirms that for each
system the mixture is determined by the stateshef dther system. This is what
translates- for example, in formula (11) — into the fact thia@ sum in the right-hand side
involves an index that relates to the second system. It is by yiedfthe state of the
second system (i.e., the valuemfwhen effectively realized) that we can say wihnat t
pure case is that we can attribute to the first. okwever— and this is a point of
paramount importance that is not sufficiently engibed in von Neumann'’s theory — in
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order to verify the state of the second system, ih@sessary that it must trigger a
macroscopic phenomenon that we can observe direGitys is a point that will seem
clearer when we return to the question in a more physiaaner.

3. The measurement of a quantity in the von Neumann formals. — We just
studied the interaction of two systems, but in ordertfat interaction to be able to
provide the measurement of a quantity in the first systeenyesult of the interaction
must be of a special type. In other words, not just amg &f interaction can serve to
measure a quantity in the first system. Indeed, we baga that by macroscopically
verifying the state of the second system after the uneasent, one can deduce only that
the first one will be found in a certain pure case. Elmv, since a physical quantity does
not generally have a precise value in a pure case, Wehesiefore not generally obtain a
measurement of the quantity that we are interested in.

Let A be the physical quantity in the first system that wereés measure. Take the
proper functions ofA to be the basis functions of the first system. otder for the
interaction with the second system to serve as asumement ofA, it is necessary that
there exist a magnitude of the second system such thatfy) are the proper functions
of B then theW of the total system after the interaction will hake form:

(15) W=>CouRVv(Y,
with Cy, = Ck O 1.€., one will have: |
(16) ¥ =2 Cu(Iu(y.

One can then establish a bijective correspondbetgeen ther and theu, or, if one
prefers to say this in another way, between thembble phenomena that are triggered
by the second system and the valué&dobr the first one. We shall ultimately return to
this point in detail in a manner that will makentps much clearer.

CalculateP, when (16) is realized. We will have:

(17) Clgp) — Ckp — Cka—kp
(2% I
and
as) po=2lC, [ =Xl d.a [ =1cf
SO:
(19) P=3 p,c0C" =S pa, Sa G =ap=alcl
P o C, G

so P, is a diagonal matrix whose diagonal terms are thef’. One easily sees that the
same thing will be true fd?,, which is identical td”, .
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One will then have a mixture of states that eachespond to one value af and one
value of &, which is a one-to-one correspondene@d in which the probability of the
pair of valuesai, S will be |Cy [>. The verification of the valug of B by an observable
phenomenon that is triggered by the second system will permit us to attribute the
value ai to A; it is therefore truly a “measurement.” The vedfion that we just
supposed resulted from a macroscopic phenomenon thabalikeobserve or record that
makes our knowledge & more precise by showing us that it will be the valué that
is effectively realized in the mixture that is producedHhgyinteraction.

We now examine the conditions under which the hypothésiswe made on the
form (16) ofW can be found to be satisfied. Suppose that beforeghsurement system
Il is in the state/(y) and system | is in the staigx). The wave function of the global
system in the initial state will then be:

(20) (X Y) = Vo(y) W(X).

The hypothesis that was made on the final forrPokill be realized if, for any proper
functionuy(x) that is realized at the origin, one has:

(21) (X, y) = udx) vi(y)

at the end of the process of interaction, whefy is a proper function of the quantiBy
that corresponds bijectively ta(x). Indeed, due to the linear character of the wave
equation, if the initial state, instead of being represey (20), is represented by the
superposition:

(22) Wx,y) = 2 Cw(Mu(3

so at the end of the interaction the wave functdhindeed have the form (16) and the
measurement A& will be impossible.

In the presentation of the theory of measuremecwraling to von Neumann that we
just made, we avoided saying, as one generally doéke usual presentations, that
system Il is a measuring apparatus and that gydtis, for example, the position of a
needle. Indeed, system Il must be a microscoiteay at the atomic level, like system |,
and its role is tdrigger an observable macroscopic phenomenon in a megsienice.
No measurement can be made by making a corpugadle aenicroscopic body directly.

Moreover, in our opinion, von Neumann’s theorysemr#s an exaggeratedly abstract
character, like many of the present theories ohtjua physics, moreover. It does not
sufficiently specify the physical conditions of tlpgocess of measurement and the
necessity of triggering an observable macroscopienpmenon in this process. It
contains a pure formalism, so it gives us no peegisysical image of the manner by
which a measurement process can take us from acpseeto a mixture.

4. Less-admissible consequences of the theory of measuent in the present
interpretation of wave mechanics— As von Neumann said, the evolution of the wave

W continually unwinds during the measurement, shel the global system will remain
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in a pure case, while the state of each of the pangstess will be a well-defined
mixture. There is a break in the continuity of thedletion, with the creation of a new
situation, when the observer who is verifying the stétgystem Il can attribute a wave
function to system | that corresponds to a well-deffimalue of the quantit. In this
manner of looking at things, it is therefore the “pericepbf the observer” that, upon
verifying the state of system II, permits one to redingemixture that relates to the state
of the system studied that would result from the inteya¢o one of these terms.

It is indeed obvious that one’s knowledge of a quantity h&eing measured will
result from the observer becoming aware of the redulie measurement. However, this
seems to imply that one can give the w&¥eonly a subjective significance with the
present interpretation of wave mechanics, so von Neumadrhis commentators have
arrived at some concepts that are truly difficult tcegtc | would like to give a summary
of them following the presentation that was recenitheig by London and Bauet)(

Consider three partial systems: the object under stjdyhe measuring apparatus
(y), and the observer)( which collectively define a unique global system. Diéscthe
global system with the aid of the wave function:

(23) Wx, Y, 2 = 2,6 u (X (Y w( 2.

For the global system, we have a pure case thaisfgeduring the measurement, and
for the partial systems, we have a mixture. Theeafanction (23) will give a maximum
knowledge of the global system without one knowtimg state of the object being studied
(X) precisely.

However, the observer has another viewpoint becéarshim it is only the objecix)
and the measuring apparaty} that belong to the external objective world. fas as
that is concerned, he is in a very different sitrabecause he possesses the awareness or
faculty of introspection that permits him to know Btate directly. It is by virtue of that
immediate knowledge that he claims the right (?)cteate his proper objectivity by
cutting the chain of statistical coordinations tha¢ expressed by, and by verifying
that: “I am in the states, so the measuring apparatus is in the statand in turn, the
object is in the statey ,” a verification that implies the attribution ofrzell-defined value
to the quantityA; i.e., a measurement of that quantity.

Such is the presentation of London and Bauer, adb that: “It is therefore not a
mysterious interaction between the measuring apgsend the object that produces the
appearance of a neW for the system. It is only the awareness of a’'‘fat separates it
from the old functionW(x, y, 2 and constitutes a new objectivity by virtue o hi
conscious observation by henceforth attributinga wave function(x).”

| cited the phrase, “this ‘Me’ that separates\lae function,” even though | do not
understand it very well, which seems to me to bechmmore mysterious than an
interaction between the object and the measuripgrapus would be. One understands
why Schrodinger said, with an ironic twist: “Theetty of the waveéd is becoming a
psychological theory.” It serves no great purptmsadd that these considerations only
support the opinion of Bohr, who said that in quamtphysics one cannot draw an exact

() Seebibliography .
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boundary between the objective and the subjective, betaaisstatement is itself hardly
comprehensible and explains nothing. The more that yok éltiout it, the more you get
the impression that all of that interpretation shdwddrecast upon a different basis.

We continue our study of the London-Bauer pamphlet. alileors remark that their
ideas will raise one difficulty: If objective realitg created only by an act of perception
on the part of the observer then does that realityary from one observer to another?
Now, it is certain that this is not true, becauseentiise no collective science — i.e., a
science that is common to everyone — would be possiHiewever, we are told, one
must remark that the verification that permits the mesasent is a macroscopic
verification that does not modify the state of thingttls being observed. Nothing, in
turn, will prevent another observer from making the esatatement, and it is a fact of
experience that all observers will make the sameiwatibn, up to errors in observation.
We add that it is this fact that permits one to absfram the personality of the observer
and to create a science that has an objective chardnteummation, in the mixture that
results from the interaction of the measurementgti'eoneand only oneossibility that
it will prove to be realized for adlll observers.

That explanation seems insufficient to us, becauaengunts to confirming the fact
that one would like to explain. The existence of iarsze that is common to everyone
seems to us quite difficult to comprehend in a theory thauld like to describe
everything with the aid of a functio¥ that has a subjective character, since it is a
function that will depend upon what happens in the peraemifothe observer. The
undeniable agreement between the observations that ade by different observers
seems to us to be comprehensible only if one does notnasthe existence of an
objective reality, and if one does assume its existédmee that objective reality must be
capable of being described by something other than the subjdatictionW that the
present orthodox interpretation of wave mechanics aondeis to envision uniquely.

The present interpretation of wave mechanics thus sdembe lost in the
contradictions, because one does now know what exactimyeane is to attribute to the
waveW. Logically, one is led to attribute the meaning tofiasimple representation of
a purely subjective probability that capable of reducingptiedability packet when the
user receives new information. However, it can theronger account for the existence
of a science that is common to everyone and an olgectality that is independent of
the observer. Moreover, there exist some argumentgtftbuting an objective reality to
the waveW. Therefore, suppose that an observer has knowleddgeecstateW of a
corpuscle (or a system) and that he calculates theabilties of the result of a
measurement that he is to perform with that wave foinct If, before he performs the
projected measurement, another observer makes a measucdriiee corpusclavithout
the knowledge of the first ornthen generally the statistical predictions of thestfi
observer will be found to be false. Therefore, this action of the measuring device, and
not the perception of the observer, that modiflesand that would seem to impose a
certain character of objective reality on the wawection. Bohr always seemed to have
recognized this character, but his very subtle thinkingtenajuite obscure. In reality,
almost all authors that have presented the currenpnetation of wave mechanics have
alternatively passed from the idea of a functigh that is a simple subjective
representation of probability to the idea of a wave fitaserves a certain character of
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reality, and it is only with the aid of this unconsciauterfuge that they can avoid the
all-too-flagrant contradictions.

As for the corpuscle, one further knows even lestsa@act nature, and one confines
oneself to saying: “In quantum microphysics, a corpusclendowed with not just
guantities of determinate values, but also with a spbtential distributions that refer to
each measurable quantity, which are distributions thraeaah come into play only when
the corresponding measurement has been made,” and thisialogive one a very clear
idea of what a corpuscle can be.

We shall now examine whether one cannot arrivelsti@er comprehension of what
happens in the process of measurement by adopting a causdljective interpretation
of wave mechanics that seems clearer.



CHAPTER IV

CAUSAL INTERPRETATION OF WAVE MECHANICS
(THEORY OF THE DOUBLE SOLUTION)

1. Ideas at the basis for the theory of the double solat. — | would like to
rapidly summarize the bases for the interpretationave mechanics by the theory of the
“double solution” that | sketched out in 1927, and which | have metuto developing
for some years now, as a result of a paper by David Bahwollaboration with J. P.
Vigier. | made a summary of that theory in a book Hyieared recently, to which one
can refer {).

At the beginning of my work on wave mechanics, my ihidaa was to preserve the
idea of a physical reality that was independent obthserver, and to seek, as one always
does in classical physics, a clear representation afigdlyprocesses in the context of
space and time. | was thus led to seek a synthetic vietzgicthe duality between waves
and particles that would be compatible with the iddas t introduced Nlécanique
ondulatoire 1923-1924), and which was confirmed in a remarkable fashion {eay.,
work of Schrédinger in 1926, the discovery of the diffrattmf electrons in 1927).
Following a current of ideas that was manifested in tloekwof Mie and Einstein, |
sought to represent the corpuscle as a sort of localeatcid.e., a singularity — within an
extended wave phenomenon. That led me to represent @hysality, not by the
continuous solutiondV of the wave equation that were considered exclusivgly b
Schradinger and his school, but by other solutions afdgaation that | will denote hy,
in order to distinguish them from the regular solutidHs and which involve a
singularity. Upon reflection, | immediately saw a @radvantage to that concept of a
corpuscle being ‘“incorporated” into an extended wave fieldgd @onsequently
consolidated with the global motion of that fieldt seems to me to permit one to
comprehend that the corpuscle is localized and thamdson can nonetheless be
influenced by presence of obstacles that are at distamt its trajectory, which must
necessarily be interpreted, by preserving the idea of alidzed corpuscle, as the
existence of interference phenomena and diffraction.

Nevertheless, it seems to me that the probabilistexpretation of the regular wave
W, which originated in the work of Born, and was confirmeditsysuccess, must be
preserved. Whereas the wavavill be the true description of the structure of physical
unity, the waved will be a fictitious wave with a subjective charadteat is capable of
providing us with exact statistical information about fhasition and motion of the
corpuscle. However, in order for it to be able to futhat role, it is further necessary
that it be related to the wawein some fashion.

My first researches into wave mechanics led me tibaté a particular importance to
the “phase” of the wave that one associates wittoiguscle. It is essentially the

() Bibliography B]. SeeVigier's thesis 4], as well.
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agreement between phases of the corpuscle, which iglecet to be a sort of clock, and
the surrounding wave that led me to write the fundamédotaiulas of wave mechanics
(w=hv; A =h/p). Itis therefore the frequency and wavelengtiwhich are elements
that are contained in the phaséhat therefore establish a bridge between the propagatio
of the wave and the motion of the corpuscle. That ledawrite the wave function that
is usually envisioned in the form:

27

(1) Y=aeh ,

in whicha and ¢ are real, and to attribute a profound physical signitiean the phas¢
(which will coincide with the Jacobi functidhin the geometrical optics approximation).
On the contrary, the amplitudg which is continuous, does not seem to me to have any
objective significance, but only a statistical sigrafice.

Among the probabilities that are envisioned by the prolsaibilinterpretation of
wave mechanics that is already assumed in this epmeprobability of presenceH [ =
a? seems to me to have a sort of priority, because, imayyof looking at things, it will
correspond to the possibility that the corpuscle is agjisen point, independently of any
measurement process. The other probabilities, suctc(@$ F for the valuep of the
quantity of motion [whered(p) F is the Fourier coefficient that correspondsptin the
development off in monochromatic plane waves], must have a lesseulste sense,
from my viewpoint. They will be valid only after theteon of a measuring device for the
guantity envisioned on the real wauginto which a corpuscle has been incorporated,
when one does not know the result of that measurementower.

Endowed with these general ideas, | have assumed tiappito which | gave the
name of “the principle of the double solution”:

Any regular solution of the typ@d) of the wave equation of wave mechanics must
correspond to a singular solution of the type:

7,

(2) u=feh

that has the same phageas the solutior(1), but with an amplitude f that presents a
point-like singularity that is generally mobile.

In the period of time when | wrote my book on the dowollition, which was in the
Spring of 1927, one knew the Schrodinger wave equation:

8/°m VW = 4rim oW
h? h ot

(3) AW —

that corresponds to the motion of a corpuscle cfamain a field that is derived from a
potential functiorV(x, y, z, t), which is supposed to be known. Today, one roossider
equation (3) as valid only in the Newtonian appneadiion for the corpuscles of spin O.
Some time after Schrodinger’'s first papers, it bezaapparent that there must be an
equation that generalized equation (3) when onewmted for the corrections of



Chapter IV. Causal interpretation of wave mechanics. 35

relativity. This new equation, which one habitually célie “Klein-Gordon equation,”
and which constitutes the relativistic wave equatiorpéoticles of spin 0, is written:

75 & aw 47

arme,, 0¥ AS T C- eV - AJW=0,

(4) OWY-——V—->

c ot XyZTc

wheremy is the proper mass of the partickeis its electric charge; is the velocity of
light in vacuo, andA is the scalar and vector potential whose derivativahes
electromagnetic field to which the corpuscle is subjected.

Since equation (4) is the most general one, and it icsntaquation (3) as a
degenerate form in the non-relativistic approximation,iit ke equation (4) that | will
use as the basis for my reasoning. In the case ofodenee of a field, one will then
have:

5) 4772

—m; Y =0,

and the simplest solution to this equation when @ndines oneself to continuous waves
will be the monochromatic plane wave:

(6) W= aeT(Wt_ &

with a constant and\? / ¢® = m¢¢® + p°>. Wis the energy of the corpuscle in motion with

m, ¢ myv
-5 J1-5
the direction of motion is taken to be thaxis.

Now, | easily found that the Klein-Gordon equataso admits the moving singular
solution:

where

the velocityv = ¢, soW = andp is its quantity of motiomp =

278 e o
7) U(x,y, 2, 1) = const. : eT(Wt p)’
2 + y2+ (z—cY
1- 3
which will take the form:
const. 2 mcy,
(8) 00, Yo, 20,t0) = = en (fo= X+ Y2+ Z)

0

whenv = 0.

The solution (7) has the same phase as the so{&)o but its amplitude will present
a point-like singularity at the point=y = 0, z = vt that displaces with the velocityin
the direction of wave propagation, which provideslear image of the motion of the
corpuscle. In this particular case, one will tluldain what one seeks exactly, and the
constant value of the wave amplitudé will appear to simply have the following
significance: If one ignores the position of therprescle-singularity then one must
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consider all of the parallel trajectories and all & gossible positions of the corpuscle at
any instant to be equally probable.

Encouraged by this first success, | then considered theajease of equation (4),
with potentialsV andA that are given continuous functions»fy, z t, and in 1927 |
proved the following remarkable result:

1. If there exist two solution¥ andu of equation (4), one of which has a continuous
amplitude, while the other one has an amplitude thatluesoa point-like moving
singularity that has the same phage[which must say that they can be written in the
forms (1) and (2)] then the singularity ofwill displace in space with an instantaneous
velocity v that is defined by the formula:

grad¢+iA

9 ey
ot

(9) v(x,y,zt) =-c

This is the “guidance formula,” which will give simply:
1

(10) v =-— gradg,
m

when one can neglect the relativistic correctiond supppose that the magnetic field is
zero (i.e., one setip / 9t —eV ~ myc? andA = 0), which is a form that will correspond to
the Schrddinger equation (3). If propagation takes placéhengeometrical optics
approximation, moreover, then one cangetS whereSis the Jacobi function, and (10)
will then be nothing but the classical formuat& = — gradS of Hamilton-Jacobi theory.

2. The motion of the corpuscle is the same as ifetewsubjected, moreover, to a
classical force that is derived from the potentidlandA and a “quantum” force that is
equal to — grad), whereQ is a “guantum potential” that is ignored in classitaories,
and which is written simply as:

__ M (Af)__ W (2a
ah Q= B#m(fj 8ﬂ2m( aj

in the non-relativistic approximation of equatioB),( where the quantities in the
parentheses are calculated at the point whereinds the corpuscle at the instardand
the equality of the two expressions (11) @automatically follows from the hypothesis
that the two wave¥ andu have the same phage

The guidance formula and the definition of therguen potential will permit one to
give a Lagrangian form to the dynamics of the cegtithat is incorporated into its wave
as a singularity.

2. Another manner of expressing the guidance formula, and ome
generalizations.— The guidance formula gives a mathematical foonthe fact that
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because the corpuscle is integrated into the wave itbeilanalogous to a clock that
displaces while remaining in phase with the wave. Fitbm® viewpoint, it is the
crowning achievement of my initial considerations on @gmand corpuscles in wave
mechanics. However, one can give it another form thdlt permit a greater
generalization.

All of the forms of wave mechanics that are currehitypwn will permit one to
construct a hydrodynamical image that is associatedthatlpropagation of a wave,; i.e.,
to define a fictitious fluid whose densip/and flux densityov are given at each point and
each instant by functions that are bilinear in theeMawction and its complex-conjugate
function.

Therefore, in the case of the Schrodinger equationtli@) fictitious fluid and its
motion will be given by formulas that were originaliged by Madelung:

(12) P=WY = |WF  ov=— (¥ grad¥ —-¥ grad¥’),

whereW’ is the complex-conjugate quantity¢b Thanks to (1), one can also write:
2 1
(13) p=a, v:—agrad¢.

One sees from the expression yathat the guidance formula can be expressed by saying
that the corpuscle followsneof the streamlines.
In the case of the Klein-Gordon equation (4), thetiets fluid will be defined by:

LU WL A RV
(14) A7t mC? ot ot m, ¢ ’
,ovz—fh(‘4JDgracHJ—l4J gra(!alJD)—iALIJDLIJ
47im, m,c
or, thanks to (1):
1 a¢ 2 £ 2 1 2 3 2
15 =——Ta -———-Va, =- ——a‘gradg——— a‘’A,
so:
, grad¢+iA
(16) v=-cC
9 _py
ot

We thus recover the guidance formula for the kféordon equation; the corpuscle
then follows a streamline. We also see, moredwat, the hypothesis that is expressed
by (1) and (2), according to whi¢kh andu have the same phageamounts to supposing
that the streamlines are the same for two wavei$,ome prefers, that the velocity vector
field v(x, y, z t) is the same for both of them.
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In that form, the relationship that is established betwde two waves andW¥ can
be generalized to the equations of particles with noo-gpin. Therefore, in order for
the particles with spih / 477— such as electronsthe wave¥ will have four components
W\ that obey four simultaneous partial differential ecqurai(viz., the Dirac equations):

h o h 0 ¢
17 —— =&V | W = ———2A |a. +mca, W,
) (26t jk{z(maxcj'm)“}k
with k = 1, 2, 3, 4. The matricas, a», az, a, are matrices with four rows and four
columns, which are such that:
(18) oot aa=24),

wherel is the unit matrix. The fictitious fluid is thelefined by:
4 4 . )

(19) pP= Z|ka|2’ p‘/j:_czwkakq'}k (i=1223),
k=1 k=1

so one will have the following components for thad velocity:

4 4

> Waw, ZUEa U,
(20) yy=-c*¥ - -c&

4

DWW, iu U, |
k=1 k=1

In the theory of the double solution, it is thislacity that one agrees to attribute to
the corpuscle-singularity in such a way that (2a) eonstitute the guidance formula in
the Dirac theory (where one can no longer introdacenique phase for the four
components of the wave, in general). Here, ond neydace the postulate on the phases
@ with the one that of the velocity fieldmust be common t& andu, which will justify
the equality of the two expressions (20) pr

For particles with spin greater tharl 477 (e.g., photonsg-particles, gravitons, etc.),
one will have wave functions with more than foumpmnents that will always obey a
system of simultaneous partial differential equatio However, one can always define
the densityp and the fluxpv of a fictitious fluid by means of bilinear formslahat
analogous to (14) and (19) and obtain the corredipgrguidance formula by assuming
that the corpuscle-singularity of the wayevill always follow one of the streamlines that
are common to the wavaés andu.

Now, it is a fundamental fact that for all of theave equations that one has to
consider the fictitious fluid will be conservatig@d obey the equation of continuity:

o . _
(21) T div(ov) = 0
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which is a consequence of the wave equations. It is equ@il) that will permit one to
take the density to be the probability of presence and to “normalige{which is a

simple representation of probability) by the formylapdr = 1. In the case of the
D

Schrddinger equation, one will thus obteJ[iDri W Fdr =1 as the normalization formula,

and one must take¥ f = a® to be the probability of presence. We shall ¢ it is by
starting with equation (21) that one can obtain pheof of the guidance formula in all
cases.

3. Proof of the guidance formula.— We commence by remarking that if one
assumes that any regular soluti@rof the wave equation will correspond to a solution
with a moving singularityhat has the same streamlinggn the two densities(u) and
A(WP) will obey the same continuity equation, since ¥hetor fieldv will be the same in
the two cases, but, wherea8¥) is everywhere regulag(u) must present a point-like
singularity that is mobile, in general.

A first manner of obtaining the guidance formwidnich is basically equivalent to the
one that we gave in 193% (consists of writing the equation of continuity f(u) in the
form:

(22) %p(u) +v grado(u) + p(u) divv = 0;
hence, after dividing by(u):
(23) %Iog Au) +v grad logo(u) =—divv.

If u, and in turn,o(u) takes on very high values in a small region (Wwhg&obviously
around the singularity) then lggu) and its derivatives will have very high valuesrth
For a givenv, the right-hand side of (23) will then be negligitompared to the first
one, and upon letting D /tOdenote the total derivative with respect to tinfeng the
streamline (D / D=0 /dt + v [hrad), one will have:

D _

Therefore, logo(u), and in turn,o(u) will remain constant when one follows a streamlin
with the velocityv. Thus, while there will be convergence and dieagg of the
streamlines for moderate valuesain general (i.e., for div # 0), and in turnp will not
preserve a constant value when one displaces alatiggamline with the velocity, the
same thing will no longer be true whertakes on extremely high values. The locally-
elevated values of the density displace along stliras with the velocityy without
dispersing or damping out. One then sees thasittgularity of o(u) will follow one of
the streamlines that are, by hypothesis, commaratadW¥ with a corresponding velocity
v, which will give us the general form of the guidarformula.

() One will itin [3], pp. 101 et seq.
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Another method of obtaining the guidance formula consitsntegrating the
continuity equation, when it is written in the form:

(25) a—'o+vxa—'0+vYa—'0+vza—p+pdivv:0,

ot 0x oy 0z

by the well-known method.
One knows that the integration of such a linear-@rder partial differential equation
can be reduced to the integration of a system of difit&al equations:

(26) Ay _dz_y-_ 9P

wherey,, v, v, are functions o%, y, z t that are assumed to be known. The integration of
the first three differential equations (26) willvgiintegrals of the form:

27) fi(x, y, z t) = A, f2(x,y,zt) = 4, fa(x,y,z t) = 1.

When A, 4, v have constant values, these formulas will defin@oald streamline in

space-time; i.e., a world-line, at each point oiduhd—x, %’ Z—f will be equal to their

dt
valuesvy, W, V; at that point, respectively. This world streamlimdl, at the same time,
represent the trajectory and the motion of the maés of the fictitious fluid.

Equations (27) permit one to exprasy, z t as functions ofl, 4, v, t, and in turn, to
express diw in the formF(A, & v, t). In order to obtain the integration of the parti
differential equations, it will then suffice to weithe fourth differential equation (26) in
the form:

28) d=-—_34°
F(Auv.t)p

and then integrate this with g, v constant, which will give:

—.[t F(d,uw t)dt

(29) p=e DA, w4, V),

where the integration in the exponent of the exptiaemust be performed oveérmwith
A, 4, v constant, and whe®@ is an arbitrary function. Since the continuityuatjon is,
by hypothesis, valid for bot# andu with the same values g, v, v,, one will have:

H(W) = e—J-tF(A,,u,V,t)dt

—.[t F(A,uv t)dt

p(u)=e

(30) (A, u,v),

D, (A, uv).
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Since o(W) is regular, the two factors in its expression mustrdmgular. In the
expression fop(u), the first factor is the same as the one in theesgion foro(W), so it
must be regular. The singularity ofu) must then be provided I8, . It will then result
that®, must have a singularity for a certain valuelpf;, v, namely,A = Ao, £ = Lo, V =
Vo, Which translates into the existence of a point-likgw@arity of u that occupies a
positionXo, Yo, Zo at the instant. However, that singularity will then be found along the
world streamline that is defined by the valuesigfio, Vo, Of A, &, v. In other words,
Au), and in turnu will present a point-like singularity in space at anyanst, and the
motion of that singularity in the course of time will tepresented in space-time by the
world streamline that is defined By= Ao, 1/ = 1o, andv = vy .

When the singularity occupies the positigny, z at the instant it will then be
animated with a velocity(x, y, z, t). This is, once more, the guidance theorem in itg mos
general form, and we can state our result by sayiihgwo solutions of the wave
equations of wave mechanics are such that one of them is regular and thenetinas a
moving, point-like singularity and they admit the same streamlineshkesirtgularity of
the second solution will follow one of these streamlines.

It is important to remark that our proof will be fugthvalid if the solution, instead
of presenting a true mathematical singularity, involveg anlery small region, which is
generally moving, in which it attains very high values,levtie regular solutiok that it
couples to involves no such analogous accident. The sigueq30) then show that the
existence of that “singular region” must translat® iatparticular form ofp, that must
present very high values wheh 1, v have values that are close to certain values of
Ao, o, Vo . However, this will further signify that the motiaf the very small region
whereu takes on very large values in the course of time willdpeesented in space-time
by a very fine world-tube, whose axis is definediby Ao, i = tio,V = o .

In the general form that we just gave it, the theorguwflance permits one to better
perceive the agreement between the wasad the wavé&’. These waves must have the
same streamlines, so the waMewill just as well represent the waugwhich is the sebf
possible motions for the corpuscle, but it will lack asessial element, which is the
corpuscle itself that describes one of the streamlin€kis is why, according to this
viewpoint, if the wavé¥ can give can give agxact statistical imagef the motion of the
corpuscle then it cannot constitute@mplete descriptioof physical reality. Here, we
come back to an opinion that Einstein has always maeda

4. Introduction of nonlinearity and the form of the wave functon u. — When |
reprised the study of the double solution some years atjothe active collaboration of
Vigier, we were both immediately struck with the deepl@mathat it presented with
Einstein’s ideas on the coupling between corpusclesialus,fas well as those of Mie in
his nonlinear theory of electromagnetism. In the thedithe double solution, as in the
thinking of Einstein and Mie, the desired goal isrtcorporatethe corpuscle in the field
in the form of a very small region where the fieditds on very high values (which might
or might not involve a true mathematical singularityjlowever, in the theory of the
double solution, the field that one seeks to incorpdtaecorpuscle in will no longer be
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the electromagnetic field or the gravitational fidhdit the quantum wave field, which
must give an objective representation of the struafitke corpuscle.

Having arrived at this viewpoint, we now perceive the ragesf introducing a new
idea.

Indeed, when one assumes linear equations of evolutianffeld u, even when one
introduces source terms that are independent of the &sldn Lorentz's theory, one
cannot comprehend how a corpuscle can have a motion gha¢termined by the
evolution of the field; this is a point upon which Einsteiften insisted. In order to
escape this difficulty, it will be necessary to suppdtisat the field equations are
nonlinear. The idea of nonlinearity, which is new in wave mectsnhas nonetheless
been introduced in recent years by some autharstably, by Heisenberg — but in the
context of ideas that are very different from ours.

Meanwhile, what we said before leads us think that if wlsve equationu is
nonlinear then the nonlinear terms that appear in it musmpertant only in small
singular regions where the valueswére very high, which are the very small regions
that constitute a corpuscle. Outside of that very sragibn, the nonlinear terms must be
very small, and the equation of propagatiomughust become approximately linear and
coincide with the usual equation of propagation that israed for the wavéV, which
brings us back to the hypothesis that we assumed previousiglyndhatu and¥ must
obey the same equation.

Upon digging further into that idea, Vigier and myselfr@ually perceived that in
order to be able to account for the success of the naieilations of the phenomena of
interference and diffraction, and also the succedbeofisual calculations of the proper
values of the energies that correspond to the statistates of quantized systems, it will
be necessary to specify the form of the wavey the following hypothesis: In the
singular region where the equation fois very approximately lineay must have the
form:

(31) U=up+V,

whereup is a solution of the linear equation with a point-likegsilarity at the center of
the singular region, and is a regular solution of the same equation. We spatify
how the form of the two terms in the expression (31) fallow. The termuy must be
extremely small with respect tooutside of the immediate neighborhood of the singular
region; that hypothesis will have great importance. Timection uy will increase
extremely rapidly when one approaches the singularmegid it will become infinite at
the center of that region if one can prolong to d:, iif the linear equation remains valid
in the interior of the singular region. As farit will be a regular solution of the linear
equation that must — at least, in general — coincidetivtlusual form that is assumed for
the waveW in the problem considered, up to a constant factor. r lostewe shall show
that the set of hypotheses that we just posed can be fowe realized.

Therefore, externally, the solutiap of the linear equation seems to be a sort of very
fine pointer that is implanted in a wavdhat has the same form as the wé&te Now,
from the theory of guidance, the pointer functimnmust displace along one of the
streamlines of the wave However, if the wave equatianis everywhere linear and
coincides everywhere with the usual equation of wavehar@cs then the solutia and
v will be totally independent; there will be no reason fbem to admit the same
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streamlines, and the displacement of the pougevill be determined by the streamlines
of v. Things are completely different if the equation dois not linear in the singular
region or the nonlinear terms are important by reasdheolarge values af, . In that
region, the termsiy andv will be linked to each other by the nonlinearity. et
words, the nonlinear equation unwill admit one solutionu and the decomposition (31)
will be valid only approximately in the region that is ered to the singular regions; this
will appear very clearly in an example that | woullek lto give shortly.

Moreover, the very localized nonlinearity of the wawpaion u appears to be
essential if one is to understand the meaning of the guadadrorem. The proof that we
gave of this theorem by starting with the linear equatias based upon the hypothesis
that the regular solutiom (or W) and the regular solution = up + v have the same
streamlines. Now, that hypothesis is entirely arbjtrarthe context of an everywhere-
linear theory. It will cease to be true if there &xia local nonlinearity in the small,
singular region, because then the nonlinearity, althoudk épgalized, is, in a sense, the
“cement” that unites the solutions andv (%).

We shall now give an example that illustrates alth@fse considerations in a very
useful way.

5. lllustration of the hypotheses made om by an example— Consider the simple
case of a corpuscle with spin 0 that is at rest in lde@a system, with the center of its
singular region taken to be the origin of the coordisatind suppose arbitrarily that the
wave equation fou is the nonlinear equation:

1 0% 5 1 22a?
32 ——-Au+Ku=-=e '— Uu,
(32) c* at’ x o re

with ko = Zrnmo c. When equated to zero, the left-hand side of (8#)give us the

Klein-Gordon equation. The nonlinear right-handeshas a form inv®u” that was
already envisioned by the authors who recently Bbag introduce nonlinearity into
wave mechanics. It will contain a function of thistancer from the origin that we have
chosen arbitrarily and two constafisanda, the first of which is a numerical constant,
and the second of which is a very small length dledines a “radius,” in some sense, of a
corpuscle with spherical symmetry. Later on, wallstets = Ca, by definition.

As one must have = f €%, where isf a function of onlyr, one will find the
following equation foff:

() We remark that the guidance theorem can be expresseying shat in space-time the very high
values of the wave function are contained in the interior of a very thin world-tudeose walls are
defined by streamlines of the “external” wawéviz., the regular part of the wawe When one states the
guidance formula in that form, its lineage with the manbgrwhich Georges Darmois and André
Lichnérowicz stated the geodesic principle in generaitivy becomes obvioussée for example,
LICHNEROWICZ, Théories relativistes de la gravitation et de I'ElectromagmnégisMasson, 1955, book
[, chap. IlI).
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0%f 20f 1 223a°
33 Of = +5 = —e r— f3,
(33) o’ ra C? ré

which is an equation that will admit the solution:
(34) f=Cé&'"

That solution will take on very high values in theighborhood of the origin (i.e., for
< a), and it will even have a singularity at 0.

Here, can assume that the region that is extéortée singular region is defined by
> a. One then sees thawvill take on the approximate form:

(55) f:c+§ (e=Ca)

in the external region thus defined.

2
This is explained by the easily-verified fact th%:ti— and ?13_: are of the same order

2
as %9, whereas the right-hand side of (33) is of theesander asrgz(rgj , and is thus
rer

negligible with respect to the left-hand siderif> a. In the external region, the
nonlinear equation (33) will reduce reasonably e linear equatiod\f = O, so it is
natural to find thatf will take on the approximate form of a sphericaiynmetric
solution to that equation.

In the singular region that surrounds the origwherer is of ordera or less thara,
the two sides of the nonlinear equation will becavhéhe same order of magnitude, and
one must takéto be the rigorous expression (34).

Now, if the linear equatioAf = O is valid everywhere then its general sphdsical
symmetric solution will be:

B

(36) f=A+—,

whereA andB will have arbitrary constant values. In the emxétregion where the wave
equation foru reduces reasonably to the Klein-Gordon equatios, have found the
approximate form (35) fof, which coincides quite well with the general fo(@8%), but
with special well-defined values fér andB — namely,A = C andB = e = Ca - and one
indeed sees that these special values are impgdbe bonlinearity of the wave equation
for u in the very small singular region that surrourtgs arigin.

Moreover, the approximate solution (35) will halie formup + v, whereup will have

. . . . . u £ _a
a singularity and/ will be a regular function. Furthermore, sincedas—> = —= —

v Cr r
here, one also sees thgtbecomes much smaller thaas one gets more distant from the
singular region. We have thus recovered the deositipnu = Uy + v in the external
region with all of the characteristics that we haxghed for.
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One can, moreover, note thatis found to be the sum of the singular solution

2t

2
£e "™ that | already envisioned in 1927 for a corpuscle at hastdbeys the Klein-
r

2mt
Gordon equation in the absence of a fiéJcafd a regular solutioGe " rTbCZtthat will take
on the form of the classical monochromatic planeemat was envisioned in the early
years of wave mechanics when it is referred to a nedergystem in which the corpuscle
has a uniform, rectilinear motion. In that referenggteam, the form ot will thus be,
from (7):

1 esz‘W“ P2

XZ + yz + (Z_ Ct)z
1- 3

(387 u=|C+

outside the moving singular region. All of thiseolaps quite well.

We add a further remark: The solution (14) presensingularity at = 0. If, in
accord with an opinion that is frequently expresbgdEinstein, one considers it to be
desirable to avoid any mathematical singularityhe representation of the corpuscle that
is incorporated in the field then one will needyotd take the nonlinear equationwfo
be, in place of equation (32), the one that onainbtby replacing the variabtewith the
variablep=r + a, wherea is a positive length that is very small with resp®a (0 < a
< a). Thanks to that artifice, one can transformgaoleition (34) into:

(38) f=Ce&/P=Cce,

in such a way thdtwill possess a very high, but finite, value for 0. The modification
that was introduced will obviously make sense anlyhe center of the singular region,
wherer < a will become of ordema. It results easily from this that the values thvat
deduced from equation (32) will still remain valid.

Naturally, we have no reason to think that equma(82), with its right-hand side
chosen arbitrarily, will be the true nonlinear waaguation for a corpuscle of spin 0.
However, it has the advantage of offering us a @megample of the manner by which a
very localized nonlinearity in the equation for tlave fieldu can fuse together the two
terms in the expressian= up + v that is valid in the exterior of the singular @giand
which completely determines the value of the co#ffitsC and& that figure inup andv.

6. The relationship betweenu and W. — We shall now seek to specify the
relationship between the functierand the functiot¥ that is utilized in wave mechanics.
Since the functionu has an objective physical reality that is indemendof the
knowledge of the observer in the theory of the dewolution, the functiow that is a
part ofu and which practically agrees withwhen one gets distant from the singular

() Seeequation (8), above.
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region (becausep, < v then) will also have an objective reality. In parstar, v must
have a perfectly-determined amplitude that is not atliggosition of the user and cannot
be normalized at his discretion. However, the oleseran mentally construct a function
W that must be, in principle, everywhere proportionalvtdut with a coefficient of
proportionalityC that the user, who is free to give it any value thaddwres, can choose
in such a fashion that the functi& will be normalized. That function will then be a
mental construct with a subjective character thatuwiluely play the role of permitting
one to calculate certain probabilities, but they mstcbnstructed by the user, to the
extent that his information on the form of the funcotiois exact, with the aid of the
relation:

(39) WY=Cv

It is because the functioW was constructed by starting withthat it will have an
objective reality that will permit an exact statsti evaluation of the probabilities,
despite its subjective charactéy. (

If the functionv occupies several disjoint regions in physical spaue tlae corpuscle
is found in one of them, then the user can, accordinbéd state of his knowledge of the
position of the corpuscle, choose the constanh a different fashion for each of the
regions in question, and one can easily see how thHapevimit one to interpret the
reduction of the probability packet.

Along the same lines, it is interesting to reflectupoe idea of a “pilot-wave” that |
introduced in 1927, and which was reprised in some recent paj¢akly in those of
David Bohm. | remarked in 1927 that since, according to th@agoe formula, the
corpuscle must follow one of the streamlines of the wHyene can adopt the following
viewpoint: Consider only the waw of conventional wave mechanics and arbitrarily
add the notion of a corpuscle that displaces along btie streamlines of the wave that
will be found to be guided by the wa4¢ which will permit one to give it the name of
pilot-wave. However, | then consider — and | consitienore than ever today — the
theory of the double solution that incorporates the catpus the wave as being much
more profound. Moreover, the wa4é of conventional wave mechanics has, without a
doubt, a subjective character, since it changes with oornnaftion, and one cannot
assume that the “guidance” of the corpuscle by somethljgdive would be real.

The question will be clarified if one distinguisheffom ¥. The waveu involves a
very localized accident that is representedid\yso everything happens as if that accident
(i.e., the corpuscle) were guided in its motion by theemawy following one of its
streamlines. In reality, with the concepts that wdiseussed above, this will be true,
sinceup andv define a unique ensemble, namely, the wave functipmhich is equal to
Up + v outside of the singular region), in whialg andv are fused together by the
nonlinearity in the singular region. However, one chy, abstracting from these

() On the subject of the formuM¥(x, y, z t) = ¢ Ux, Y, z t), one can remark, with Jean-Louis
Destouches, that despite the equality of the two sidd#sabequation, the significance of the letterg, z
is not the same on the right and the left.v,Ithey denote the curremariablesof space, while it they
represent theoordinatesof the corpuscle. In the case of one corpuscle in adigkl, which is the only
one that we have studied here, that remark, which ig,ec@t seem to be a little subtle. It will take dn al
of its validity when one studies the interpretation vedive mechanics for systems of corpuscles in
configuration space by the theory of the double solution.
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profound reasons, consider the corpuscle to be piloted byatev. Here, there is no
longer any paradox, because the wavieas a physical reality, and consequently, the
corpuscle can be guided by it. However, since the Waweust be, in principle, chosen
to be proportional tov and have, in turn, the same streamlines, one will thet
impression that the corpuscle is guided by the wHyevhich is paradoxical. We can
then appeal to the image of a corpuscle that is guidedrbgudar wave such that it will
follow one of its streamlines, but with the conditidrat we remember that the regular
wave is the wavg, and that the corpuscle is not an object that is arlytrsuperimposed
on that wave, but constitutes a unique reality with imelg, the waveu in the singular
region.

We also think that the distinction that was just madeise between the watéand
the wavev will permit one to understand why for the last thirtyasseor so theoreticians
seem to have constantly oscillated more or less eaarsdg between the idea of a wave
with an objective character and that of a simple wausction that is an abstract
representation of probabilities.




CHAPTER V

SOME COMPLEMENTARY NOTIONS TO THE THEORY OF THE D@UE
SOLUTION AND GUIDANCE.

1. Existence of singular solutions in the exterior proldm. — We shall call the
study of the solutiona to the wave equation in the region that is externgheosingular
region the exterior problem when that equation agrees — at least, in the first
approximation — with the linear equation of propagation thas envisioned for the
corpuscle that is considered by conventional wave mechaaicks when it admits an
approximate solution of the form + v.

In 1927, | employed the Klein-Gordon equation exclusivebnghwith its degenerate
form, the Schrddinger equation, and | did not distinguifiom ¥. | would now like to
prove that each solutid#l in conventional wave mechanics will already corresipimna
solutionup with a moving singularity that will have the same phas#. In the case of
the absence of a field, | found the solution that p@isted out previously'}; however,
that is just one very special case, and | have not Beanone could establish the
existence of the functiowm, in a general fashion.

Today, when the theory of the double solution has takem anore precise and
coherent form, the study of the existence of singuhuti®ns to the exterior problem and
the coupling with the regular solutions continues to ber@sting in its own right. Some
notable progress in that direction was recently madkeirthesis of Francis Fer. In that
paper, the author considered a type of partial diffexkmtguation that contained the
Klein-Gordon equation as a special case. Utilizinggeneeral methods of integration for
partial differential equations, he proved the existenceoaftions with singularities that
are expressed by formulas of the same type as retaatedtipls. By studying the
agreement between these singular solutions and the regpllgions, Fer was led to
recover the same motion for the singularity that preslicted by the guidance formula.
The work of Fer thus seems to make an important camiwio to the establishment of
singular solutions to the exterior problem in the theadrthe double solution.

Naturally, that exterior problem, which is analogoustiie one that is posed in
general relativity when one studies the field outside wéry thin world-tube that is filled
with matter, will correspond to an incomplete viewpoinbne assumes that the true
equation that is satisfied loyis nonlinear and that the decomposition up + v is only an
approximate expression that is valid only in the extamwibn.

Without being able to give a general proof of the ersteofu, in the exterior
problem, | would like to insist on a method that seemgérmit one to effectively
construct the function of the exterior problem in the case of stationaayest.

() Chap. IV, form. (7) and (8).
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2. The Rayleigh-Sommerfeld formula.— There is something curious about the
method that we shall present, namely, the fact thdias point of departure in the
assertion of a fact that seems to constitute aingpgrtant difficulty for the theory of the
double solution.

That difficulty originates in the theory of Green ¢tions for wave equations, which
is discussed in many booky,(and which is intimately linked to the general theory of
linear integral equations.

Consider a wave functiom that obeys a wave equation such thatuifis a
monochromatic solution — i.e., it depends upon time dmigugh a factoe* — then it
will take the form:

(1) Au+ KK =F(x,y, 2] u=0.

We know that this is the case for the Schrodinger éuaor example, and th&f will
then be proportional to the energyf the corpuscle.

Envision a domail in physical space that is connected &inde-dimensional The
stationary waves that can be based in the domaare defined to be monochromatic
wave solutions of (1) that are annulled on the boundérthe® domainD. If, as in
conventional wave mechanics, one confines oneself éoctinsideration of regular
solutionsW¥ of equation (1) then one will prove that the statignaave exists only if the
constank has one of the values in a sequékge.., ky, ..., whose set forms the spectrum
of “proper values” of the problem considered. In wave rapds, as one knows, the
proper values define the quantized energies of the corpusitle domairD. The wave
functionsW, that are regular and zero on the boundary, and thatsporré to them will
be the “proper functions.”

However, one can also envision solutions to equatiorth@) will be zero on the
boundary of the domaib, but which will present a point-like singularity at a gdiin
that domain. These solutions are the “Green funstiof equation (1) for the domaih
and the “source” poinQ. These Green functiorg(M, Q) thus depend upon the current
point M and the source poiQ. One restricts them by the following two conditions:

1. They are zero on the boundary of the dorBain
2. The functiorG(M, Q) has a point-like singularity at the pof@tsuch that wheivi

tends toQ, it will increase Iikeiz E.
MQ r

Now, the general theory of linear integral equation give us the following
theorem on the subject of the existence of Greeniankt

The Green function (M, Q) will always exist when the constant k has a vahat t
does not coincide with any of the proper valugskk ... If k does coincide with one of
the proper values,kthen the Green function(d, Q) will exist only in the very special
case in which the corresponding proper funct#®M) is zero at the point Q.

() In particular seethe bibliography$] and ).
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One can prove this result by effectively constructirg @reen function with the aid
of a formula that was once given by Lord Rayleigh d@hen used frequently by
Sommerfeld.

In order to prove it, we start with the remark that reyason of the point-like
singularity in 1 /r that the Green function must present at the g@jm@ne must write the
equation that is satisfied ly= G(M, Q) in the form:

(2) Au+ [ —F(x,y, 2] u=edM-Q),

where one has introduced a source term into the riglt-$ide that involves a numerical
coefficient £ that is analogous to an electric charge whose valwbitsrary and the
singular Dirac functiordM — Q). Equation (1) will then be satisfied lbyeverywhere
except for the poin®, where it will have a singularity in 1r/

Now, one can develogdM — Q) in proper function&i(M) in the form:

(3) aAM -Q) = D g W (M),
with

(4) 6 = [o(M -QWi(M)dr = W](Q),
hence:

(5) M —Q) = X WHQW, (M).

If we likewise develop = G(M, Q) in the form:

(6) u=dWw (M)
then we must have: |
(7) B+ K =F(x y, 2] 2 dW, (M) =& 3 WIQW, (M),

and sincé¥;(M) is the solution of equation (1) wilt= k; , this will become:
(8) D (K =K qW, (M) =& Y WIQW, (M),
from which, one will infer:

_e¥(Q
(©) A=t

since the¥; form a complete system.
By substituting this in (6), one will obtain tRayleigh-Sommerfelidrmula:
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(10) oy =6m, @ = 3 2 ZECD.

It is appropriate to remark that the series that appedhe right-hand side of (10) is
not absolutely convergent. Despite that defect, it lsanused safely in general, as
Sommerfeld has shown.

One easily recovers the results that are provided byth#ery of linear integral
equations from formula (10). Indeed, if the constadbes not coincide with any of the
ki then formula (10) will give the Green function whosgsence is thus found to be
proved. On the contrary, i coincides with one of thie then the term in the sum (10)
that has the index will infinite, and the formula will not give an aquable Green
function, except for the very special case whéx€Q) is zero. We will thus indeed
recover the results that were stated above.

Now, upon reflection, these results first appear talibastrous for the theory of the
double solution. Indeed, in that theory, it obviously sedrasone must make a function
u=G(M, Q) that is zero on the boundary Bfcorrespond to the stationary state that is
usually represented by the functigfa(Q) and to the valu&,, and likeW,, that function
will also present a point-like singularity at the gaihwhere the corpuscle is found and
correspond to the valdg of the constank. However, it is precisely that Green function
that will not exist, or at least, it will exist onlf/the corpuscle is found at a pof@tsuch
thatW,(Q) = 0. Unfortunately, by virtue of the statistical sigrance of | |2, which is
certainly exact, the corpuscle will then have a zeabgbility of being found a®. The
contradiction is flagrant, and seems to constitutedaubtable objection again the theory
of the double solution.

Nevertheless, we shall see that when we look at thimy® closely the Rayleigh-
Sommerfeld formula, far from constituting an objectigaiast the existence of the wave
u in the stationary case, will, on the contrary, pdevihe means to construct it.

3. Construction of the function u with the aid of the Rayleigh-Sommerfeld
formula in the case of stationary states— We shall start with the following remark:
Sinceu = up + v is assumed to be zero on the boundary of the dobhaihe functionv
must not be rigorously zero on that boundary, but equalug. Upon discarding the
extremely improbable case whepeas situated so close to the boundarypahat the very
small singular region that surroun@swill touch that boundary, the valuesus that v
must present on the boundary will be extremely smadiryavhere, but they will
nonetheless not be rigorously zero. As a resuttannot be considered to be exactly
proportional to the proper functidH, that is usually calculated. Therefovemust be a
solution to the linear wave equation that corresponds \taliee ofk that is extremely
close tok,, but not exactly equal t,.

We are thus led to think that the functiorthat corresponds to the stationary state
with indexn must be equal to the Green functid(M, Q) that corresponds to a value of
k that is slightly different fronk, . That Green function will then exist, and it must be
given by the Rayleigh-Sommerfeld formula!



52 The theory of measurement in wave mechanics.

In order to examine the form of that functimnwe write formula (10) by isolating the
term with the indexx and denoting the differende— k, by &, , which, to abbreviate, |
will call the “frequency shift.” One can then write ryeapproximately:

(11) n(M, Q) = Z‘gwié?qu:iz(l\ﬂ) + SWHZ(E);JI;](M) |

Let W (M) be a function then that is a solution of the wave egudbr k = k, + Jk,

where &, corresponds to a very small shift in frequency whoseevare will determine
later on. Since the functioW is very close to the proper functigf,, we will set:

W, (M) =Wy(M) + JPn(M),

in which &¥, is the very small variation 8f, that will result wherk, varies by, (.
One will then have:

We are then assured of having obtained a solution of teei@xproblem that is zero on
the boundary oD and presents a point-like singularityfirt at the pointQ, since we
have only to apply the Rayleigh-Sommerfeld formula foralbue ofk that is different
from all of thek; .

Since the functionW (M) is regular, the singularity can affect only the firsotw
terms in the right-hand side of (12). Therefore, ifsg&

eV QW (M) W (Q¥ (M)

W(M,Q) =)

13 " D(Ql; -k 2k ok
_EY, ' — '
V(M)_—andkn Y. (M) =CW (M),
with

2k Ok,

then we will have finally converted the functiamnto the formu = uy + v, whereu, andv
are solutions of the linear equatiag,has a point-like singularity &, andv is regular.

. ov . . , .
@) W' is equal toW¥, + 3 " &, . Upon neglecting the terms idk’, one will see that¥' is

n

asolution (which is non-zero on the boundarppfof the equationf —F + (k + &) W' =0 by taking

into account the equatioA|-F + k:] W, = 0 and its derivative with respectip.
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Moreover, we see that is of the form CW, = CW¥, ; i.e., it is very reasonably

proportional to the functiot!, , which is the proper function that is considered in
conventional wave mechanics.

If the ratioe/ C is considered to be well-defined then we will obtaireapression for
the value of the frequency shifk, that is determined entirely by the position of the
singularity:

(15) o= £4Q)

C 2k

However, in the exterior problem, where one considahg the linear wave equation, the
value ofe/ C will be arbitrary. Indeedg is introduced into the right-hand side of (2)
artificially with a well-defined value. As fo€, that constant has no value imposed upon
it a priori. Therefore, formula (15) will not provide us with alkgefined value fordk, .

We previously saw that the viewpoint that is adopted enetkterior problem, where
one implicitly considers the linear equation (1), witkhesio right-hand side, to be valid
everywhere except for a poiq, is insufficient. We must assume that in the imntedia
neighborhood o€ there will exist a very small singular region whergiation (1) is no
longer valid, and where one must take into accountnéingar right-hand side. Now, as
| showed in an example in the preceding chapter (8 5)ptadized nonlinearity in the
singular region can suffice to impose perfectly-deteeativalues o, C, ande/ C. It
results from this that this localized nonlinearity mustngeone to obtain a perfectly-
determined and extremely small value of the frequency dqifrom formula (15).

Here, it is appropriate to make a remark that can lportant. If the preceding
theory is exact, since the frequercyf the “true” waveu will differ very slightly from
ko, then the usual method of calculating the quantized &seng wave mechanics that
deduces these energies from the proper values of theddajet equation will be tainted
with a very slight inexactitude. However, in the prestate of the theory of the double
solution, we can always suppose that the ratloC is very small so there will be no
observable effect, even in the most precise spectrasogasurements.

| have, moreover, givert)(the complete calculation of the functiarin the case of a
corpuscle at rest at the center of a spherical emdoand showed that it can be
represented by the Rayleigh-Sommerfeld formula. Thaulzlon is rendered very easy
by the fact that the proper functions and the Greeantitum will then have very simple
smrknr an dcoskr
in the more general case of a corpuscle that oesugm arbitrary position in a spherical
enclosure, and then extended it to the case of fmitg domain D when there is
separation of the variable, and even in certaiesas$ infinite domains.

Be that as it may, it seems that, at least ind&ge of finite domains, and while
ignoring the examination of certain questions afvargence, the Rayleigh-Sommerfeld
formula, which seems to constitute a grave diffiguior the theory of the double

forms [viz., ,res@.. Andre Rot just mad€)(an analogous calculation

() Sed3], pp. 226-230.
() C.R. Acad. S@43(1956), pp. 483 and 1281.
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solution, provides, on the contrary, a method for canstrg a wave functiom in the
exterior domain that possesses all of the requisdpasties.

4. Interpretation of the statistical significance off W F in the stationary states.—
We shall now study a problem that was often considesqut@viding a strong objection
against the guidance formula.

In all of the attempts at a causal interpretatiomwa¥e mechanics, one must demand
to know how one can justify the fact that for quite sdime it has been well-established
that the square of the modulus of the wave functtogives that probability of presence
of the corpuscle at each point and each instant. Bolnvaier (*) made an important
contribution to the solution of that problem by showingttif the motion of the corpuscle
that is defined by the “guidance formula” is constanthbjesct to small random
perturbations then the probability of presence Yh [f must be established very rapidly.
These small random perturbations play the same rolématecular chaos” does in
Boltzmann’s statistical mechanics. To what can thessssant small random
perturbations be due? To interactions with other systdms come close (i.e.,
collisions), to feeble fluctuations of the boundary ctiads that are imposed upon the
wave, perhaps even, as Vigier suggested, to interactiatis av turbulent and
uncoordinated wave field that fills up what we call “‘eeuum.”

From a general viewpoint, one can remark that in aagrththat imposes a well-
defined law of motion upon a corpuscle, it will be necgssa introduce a random
element in order to obtain statistical mechanics (&gltzmann’s molecular chaos in
classical mechanics, Bohm and Vigier's hypothesis aftupeation in the casual
interpretation of wave mechanics). However, thassiedl result that the introduction of
that random element permits one to justify will besame way, already contained in the
equations of motion that one starts with, which wilbal one to predict that resudt
priori. Therefore, in the context of the old mechanics eivtdn and Einstein, one can
prove Liouville’s theorem, which asserts the conseovatn the course of time of the
domain in the extension-in-phase that is occupied by thegseprative points in that
abstract space of a cloud of corpuscles that displacgsaoe saccording to the laws of
dynamics. That theorem makes it probadaleriori that the fundamental statistical
principle in classical or relativistic statistical amanics must be the equal probability of
elements that are equal in the extension-in-phaseweti#r, the rigorous proof of that
proposition, which is the objective of ergodic theor&@giays seems to demand the more
or less explicit introduction of a random element tlstanalogous to Boltzmann’s
molecular chaos.

Similarly, in the theories of the double solutions loe pilot wave (the distinction
between the two is unimportant here), the role tegtlayed in the old mechanics by

Liouville’s theorem belongs to the continuity equat%te+div PV = O} that is valid for

the fictitious fluid that is associated with theopagation of the regular wave. That
equation makes it probable priori that in the new dynamics that arises from the

() D. BOHM, Phys. Rev85 (1952), pp. 166 and 180; D. BOHM and J. P. VIGIER, Phys. Bev.
(1954), 208.
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guidance formula, the quantigydv (wherep= | ¥ F for the Schrodinger equation) will
be the probability for the corpuscle to be present envilume elementlv of physical
space at the instaht However, here again, that assertion cannot be jtrstified by an
argument that is analogous to that of Bohm and Vigemely, that one can introduce a
random element in the form of incessant, small pertionsthat we spoke of above.

No matter what the physical origin of these pertudveti we can represent them in
the following manner: Suppose that, abstracting fromethesturbations, the regular
wave that is associated with a corpuscle (either tneeW or the wavey, if one assumes

2m
that they are proportional) is of the foranaeT¢ with a and ¢ real. The motion of the
corpuscle that is incorporated into that “unperturbed” wewi be defined by the
guidance formula, which will be written:

(15 bis) v=-21 gradg,
m

upon confining oneself to the simple case of the Sehgéd equation.

Introduce small perturbations: Although they are verjnenous during each unit of
our macroscopic time (for example, per second), weassume that they are very long
with respect to their duration. During one of theseypbdtions, the wave will take the

27

(g : .
form @+ ¢eh ! , Whereg and 7 are small perturbations of the amplitude and phase,
respectively. By reason of the random character ofpgreurbations, it is natural to
assume that the mean values in timeand 77 will be zero. During the duration of the

perturbation, the velocity of the corpuscle will becothe sum of the unperturbed
velocity that is given by (16is) and the additional velocity = - % gradsn. Although

the mean value of is zero, these additional velocities will make theposcle move
from its initial, unperturbed trajectory to another umpdryed trajectory, and then to a
third, etc. Finally, although the duration of each of ¢hesrturbations is, by hypothesis,
much shorter than that of the interval during which tlwepascle describes an
unperturbed trajectory, the enormous number of pertormthat the latter is subject to
will have the effect that after a length of time tth& very short on our scale, the
probability of presence f = a® will be found to be realized; this seems to prove the
argument of Bohm and Vigier. Moreover, if one only gtefrst order then sinc& =

0, that probability will also be found to be equal to thean value of the square of the

perturbed amplitudéa + £)> .

We now arrive at the application of the guidance tdanto the stationary states,
which is an application that seems to lead to a grdacully at first. Consider a
stationary state of a quantized system; for examplejexctron in the hydrogen atom. In

2nm
general, the corresponding wave function will be offdren a(x, y, 2 e" E"t, in which
E, is the quantized value of the energy, and a real function of the variablesy, z
Formula (15) then tells us that the electron mustamerat rest at an arbitrary, but well-
defined, point in the atom. That would correspond to thetfat the quantum force —
grad Q, which is derived from the quantum potent@ can then equilibrate the
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electrostatic force. In other cases, one can fintthigaelectron is animated with a simple
periodic motion. Therefore, for the electron in theddpgen atom, when the wave

2
function is of the form¥ = F(r, 6 €™ e ", wherer, & are the polar coordinates
around the kernel, since the phase is then a linearidanat the longitude angle, the
electron must, from formula (15), describe a “parali@tdound the polar axis with a
uniform velocity. In all cases where the electronitisez at rest or animated with a very
simple periodic motion, one cannot at all see howptodability of presenced [ can be
realized. This objection seems to be grave.

However, one now introduces small random perturbatiozisare brief and spaced-
out from each other and begins to imagine the caseewthe electron of the hydrogen
atom has a uniform, circular motion for its unperturbsation. One can easily see that
the length of the circular trajectory must be of ortiéf to 10° cm, and the velocity of
the electron, of order @m/s. One then assumes, by way of example, tpadituces a
million brief perturbations per second, in the meamveMtheless, the corpuscle will have
enough time to describe a million orbits around its unpertuttagectory in each time
interval between two consecutive perturbations, in tearm That example shows that
the corpuscle can be considered toabmost constanthanimated with the unperturbed
motion that is defined by formula (15), although it will chants circular trajectory a
million times per second. This permits us to understand Hespite the circular form of
the unperturbed trajectories, one can expect to fingletron at any point of the atom
with the probability W F.

In the case where the electron remains at respainh of the atom in its unperturbed
state, one can say that the unperturbed motion will eettua state of rest. However, if
we always assume that it produces a million perturbster second, in the mean, then
the electron will be propelled from one position to &erota million times per second, in
the mean, and after a second, it will have occupiedllmmdifferent positions in the
atom, and that will be true despite the fact thatmaias at rest, in the mean, in each of
these positions during a length of time that is very laitg respect to the period of its

. . h : .
wave (which, being always close te—c2 will be of order 10?° s). Here again, we
m
arrive at an understanding of how one can realize thieapility of presence withy F,
even though the corpuscle remamisnost constantlyat rest, thanks to the continual
jittering of the corpuscle that is due to perturbations.

5. Two theorems in the theory of the double solution-pilot awve.— We shall now
prove two interesting theorems in the causal interpoetaif wave mechanics that one
can state in the language of the theory of the piloteweavhich will be equivalent to the
theory of the double solution, here. These theorems bega known to us for quite
some time. Moreover, they have been given by othéoasitnotably by Herbert Franke.

a. Theorem on the expression for the kinetic energyn conventional wave
mechanics, one considers the wave functiBnto be an indecomposable, complex
qguantity in which one does not make the modulus and the anfjuenéerseparately
One takes the Hamiltonian operator be:



Chapter V. On the theory of the double solution and guidance 57

(16) H= L p2+v pr=- " A
2m ar )’

where the operatdP? / 2m corresponds to the kinetic ener@yof the classical theory.
The mean value of the total enefigyn the statéV is then:

_ of h2
(17) E -ij ( 8n2mA+lePdr,

in the usual formalism.

2m
: . . g
In the theory of the double solution-pilot wave, onégesW =a e " , and makes the
amplitudea and the phas@ play distinct roles. By substituting this into theve
equations, one obtains the generalized Jacobi equation:

o _~_ 1 2
(18) i E= o (gradg)”+V +Q,
with
___h ha
(19) Q= 87m a

Moreover, one also obtains the continuity equation
2
(20) 9 (@) +div (—a—grad¢j = 0.
ot m

Since, from the guidance formula (15), the kinetreergy of the corpuscle has the
well-defined valueT = % (grad @)%, one sees that the total enefgys the sum of the

kinetic energy, the classical potential enekjyand the quantum potential enerQy
Since the probability of presence density4s|f, one is led to write:

(21) E = jD(%grad?¢+v+Qj a’dr.

Now, by taking equation (20) into account, one lgdsids that:

W Aa
87°m a

_ _ 1 2 _
(22) 3 ﬂzmAlP = om (grad¢)

Upon substituting (22) into (17), and upon compatimat with (21), one will see that:
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1. The usual expression (17) f& will coincide with the expression (21) that is
given by the theory of the double solution-pilot wave.

h2

87°'m

does not correspond to the kinetic enefgihat is defined by the guidance formula, but
to the sum of that kinetic energy and the quantum potentfaihat potential does not
figure explicitly in formula (17) then that will bbecause it is contained in the term

L P? that the usual theory considers as correspondiriget kinetic energy, but which

2m
we interpret differently here.

2. In the expression (21) foE, the term- A in the usual expression (17)

This theorem is important for the exact comparisbtihe usual theory with the causal
interpretation and the guidance formula.

b. Virial theorem.— In classical statistical mechanics, one provéisearem that is
known by the name of the “virial theorem,” whichagheorem that notably plays a role
in the kinetic theory of gases. | shall first étlae classical proof of that theorem. The
motion of a corpuscle with a quantity of motion ttlemualsp in a force field that is
derived from a potential is:

(23) d—i) =—gradV.
From this, one deduces that:

d p
24 —(r =p0s+r = 2T —r hradV,
(24) Olt( [h) =p e Wy

wherer is the radius vector that defines the positiothefcorpuscle. One then sees that
for a periodic motiorthe left-hand side of equation (24) must be zerthe temporal
mean, so one will get:

(25) 2T -r [radv =0

for such a motion. The quantityigradV is called the “virial of the forces,” and formula

(25) expresses the classical virial theorem.
This theorem can be transposed into conventio@aevwmechanics. In order to do
that, we introduce the following definitions:

_h 0
_2_77i'[DLP (r [gradV W dr

(26) R:—jD(r [gradV W™ dr ,

2
T:i(Lj [ wawar.
2m\ 277i D
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It is obvious thaR represents the mean value of the virial, here. i8gawith the
Schrédinger equation and performing some integrations bg,pame then proves that
one will have:

(27) =27 +R

2

If the wave is stationar{\lJ ~ehEtj then the left-hand side of (27) will be zero, and

what remains is:
(28) 2T +R=0,

which is obviously the transposition of the claakieirial theorem into conventional
wave mechanics.
We shall interpret formula (28) by taking the vvint of the causal interpretation.
Upon taking theorem into account and introducing the quantum poter@iat —
2
h_Aa and its mean valuﬁ Qa’dr, we rewrite formula (28) in the form:
87m a D

(29) 2T'+2Q +R=0,

where T' is the “true” kinetic energy2i (grad ¢)?, here, which corresponds to the
m

guidance formula. Now, in the theory of the doubddution-pilot wave, the virial
theorem must obviously be written in the form:

(30) 2T'+R +R=0,
where
(31) R :—jDQaZdr: 20

is the mean value of the virial of the quantum énehich one obviously must add to the
mean valudr of the virial of the classical force here.
In order to prove (31), it will suffice to showih

(32) R =2 jD (r @radQ )a’dr,

namely:

(33) zj' al\adr :—j (r @radﬁjazdr.
D D a

Now, one easily verifies that:

(34) —j (r @radﬁjazdr :I E(3a2+r [hrada® )dr
D a D a
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= J'D (3aAa+ 2Aar [grada )ar
= ZJ' aladr,
D

because one easily sees, by a sequence of intewrdly parts, that:

(36) ZJ'DAar Ograchdr =- J'D aladr.

The virial theorem in the form (30) is thus proved.

6. Some words about the wave mechanics of systems in configuoatispace.—
One knows that in those beautiful papers in 1926pinder to construct the wave
mechanics of systems of corpuscles in such a fasthat it admits the classical
Hamilton-Jacobi theory as its geometrical opticpragimation, Schrodinger was led to
associate the motion of a system with the propagaif a wave in configuration space
that was defined by the set of thi 8oordinates of th&l corpuscles that constituted the
system. He wrote the equation of propagation mfigaration space in the form:

Akl.p_ﬁ l.|J :4_7716_‘4-),
H h ot

(36) >

1
k=1 M,

wherem is the mass of th&" corpuscle, whose coordinates ate Vi, z, andAx =

2 2 2
6_2+6_2+6_. The potentiaV corresponds to both the interactions that carxbeted
ox, 0y, 0z
on the system from the exterior, if it is not idel$ and to the interactions between the
corpuscles of the system. In that case wherel, one comes back to the equation that
is valid for just one corpuscle in a given exteffit.

By thus putting the propagation of the waMeof a system in configuration space and
that of the wavéV of a corpuscle in physical space on the same,l@stseliminates any
character of physical reality from the wat% because the propagation of a wave in
abstract configuration space can only be pureltitibas. Even in the case of one
corpuscle, if one considers the wave equation af torpuscle to be a special case of
equation (36) forN = 1 then one will obtain an equation of propagatianthe
configuration space of the corpuscle that is deffibg its coordinateg, y, z, and not an
equation of propagation in the physical space ithdefined by the spatial variablrsy,

z. The wave must then be a purely abstract quantity

Naturally, in the era when | sought to presene ¢haracter of objective reality for
the wave of wave mechanics, | could not assume \igatpoint. For me, any real
phenomenon can be described in framework of spadeime. It seems inadmissible to
me that one can treat the problemNotorpuscles in interaction only by considering a
type of wave propagation that is obviously fictitgoin an entirely abstract configuration
space. To my eyes, it must be possible to pos#,earn to solve, that problem by
considering the propagation in the physical spdchl avavesu with singularities that
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mutually influence each other. One must then be aljeowe that the statistical result of
these interactions is provided by the consideration diriglinger's waveW in
configuration space, where since the w&vés only a representation of a probability, it
can have only an abstract character. In short |lito@ionly a statistical representation of
the correlations that are established between thégusdf the singularities of the wave
u under the influence of their interactions.

Conforming to this program, one must seek to represeygtans ofN corpuscles as
being composed dfl trains of wavesi that each carry a singular region and evolve in
physical space in the course of time, such that the propag#teach of the wave trains
is influenced by the actions that are exerted on thenhdginhgular regions of the other
wave trains. In my paper in 1927, | already made a fitstmpt to justify this by
directing my attention to the role of the wa¥ein configuration space. In these latter
years, | have reprised my work along those lines, aravé Ipresented it in my recent
book ). Certainly, one cannot say that a clear and rigorousf pemobeen obtained up
to now, but | have reason to think that one will b&aoted. In the present presentation, |
also assume that when the traces of the wavdst correspond to various corpuscles
interact — for example, in a measuring device — thesttati correlations that are
established between the positions of the corpuscles byhdwry of the waved in
configuration space will be exact. This hypothesis wilhpeus to obtain the results that
we desire without having to treat the problem of the motibeach wave traia during
the period of interaction.

We shall now return to the problem of measurement, wioiteetheless assuming the
viewpoint of the theory of the double solution and subjectingp a more detailed
analysis than one has habitually done up to now.

() Seg3], chap. XII, and als€. R. Acad. Sc244 (1957), 529.



CHAPTER VL.

POSITION OF THE CAUSAL INTERPRETATION IN REGARD TO
MEASUREMENTS IN MICROPHYSICS.

1. The special role played by the position of the corpuscle The theory of the
double solution re-establishes a description of phenonrenlei context of space and
time. It is therefore inclined to give a special raleéhle measurement of position. This
seems nhatural, moreover, if one remarks that allrghens are necessarily carried out
in the context of physical space.

If one contemplates the manner in which one can partbe determination of the
position of a corpuscle then one will be led to theofeihg assertions: First, since the
corpuscle is not directly observable, its presence can teetdd only by way of some
local macroscopic effect that it will provoke, and tlame thing will be true for any
microphysical system. That is why a photon that asriakethe sensitive coating of a
photographic plate will produce a photoelectric effect,thecemitted photo-electron will
trigger a cascade of chemical phenomena by ionizati@ctsfthat translate into a local
reduction of the silver bromide, and a local darkening efsnsitized plate that will be
visible after photographic developing. Likewise, an elecorpuscle that penetrates a
Wilson chamber will trigger condensation vapor dropletsuyonization effect that will
leave a trace in the chamber, and a series of comge@nalogous actions will then
provoke the appearance of a filament of vapor droplets rthaghly sketch out the
trajectory of the corpuscle.

Upon pondering that, it seems that any observable phewonigat is provoked by
corpuscles at the atomic level will be detectable iy oimht way. There will always be
the local action of a corpuscle that finally triggers absewvable macroscopic
phenomenon at the origin of the observation. Thiansessential point that was not
sufficiently brought to light in von Neumann’s analyaisd the comments that he made.
By contrast, in that analysis, one makes the maagulevice, and similarly the indicator
of the measuring device, play a role that seems exagdeta us. In reality, the
measuring device and its indicator can play only a secomdéryn the measurement of
macroscopicphenomena that are triggered by the local action efcirpuscle: For
example, a galvanometer can serve to measure the tcdiseharge that is provoked by
the arrival of a corpuscle in a scintillation countert, b is the triggering of the discharge
that is the essential thing and not its measurement bgalvanometer. The role of the
measuring instrument appears to us to be much less imptréanone frequently hears
that it is, and there are even cases in which onegremma it completely (for example, in
the direct visual observation of a photographic plate).

In the usual interpretation, one very often consitlesis one measures the position of
a corpuscle by making it pass through a hole that is gienca screen that is open for a
very short period of time. One will then have a deteation of the position of the
corpuscle that will be as exact as one desires. Howedependently of the fact that
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one never performs such a measurement of the positiancorpuscle in practice, one
must remark that there would have to be, in turn, som&@aseopic phenomenon that
was triggered by the corpuscle when it traversed the scrgbarwise, one would

observe nothing. One can perform the experiment iriclle@ving fashion: Receive the
wave train that contains the corpuscle on a piercezesdhat has an infinitude of very
close holes (e.g., a sieve) and place a photographe lhiind that screen.

Incident oL Photographic
wave train ~ Sieve plate

Figure 1.

The observation of a local darkening of the photograplie plill permit one to say
that the corpuscle has passed through the hole thiahasesl in front of that darkening.
The determination of the position, thus performed, wilags be imprecise, since the
dimensions of the black spot on the photographic platehaile a macroscopic order of
magnitude (if that spot is observable), and in turn, wdl fouch larger than the
dimensions of the corpuscle. Nevertheless, one willeaat a considerable improvement
in the precision of the position of the corpuscle, sitheedimensions of a hole in the
sieve will be much smaller than the transverse din@ssof the incident wave train.

We arrive at the general idea, which is too often unknothat if one cannot
determine the position of a corpuscle in a very precishida then, meanwhile, any
observation or measurement that relates to a migo@scorpuscle will always amount to
observing a very localized macroscopic phenomenon thaggered by the action of the
corpuscle.

Contrary to what is said in the very abstract theafryepresentations in the usual
wave mechanics, the position of a corpuscle will thlay @ role that is completely
different from that of the other measurable magnitud@g¢e repeat that this is quite
natural since any observation is performed in the contéxphysical space. By
disregarding that fact, the theory of representatiodst¢n put the space of momengg, (
Py, Pz) and physical space,(y, z) on exactly the same footing, but that is too muchrof
abstraction: The physicist, his laboratory, and his umsénts are in physical space, and
the space of mometa exists only in the mind of the dtiecan.

Since the theory of the double solution deals with ngorerete ideas and establishes
the privileged role that is incontestably played by expenis in physical space, it is not
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surprising that it must lead us to attribute a specialtotbe probability distribution that
relates to the position @ [, in the case of the Schrédinger equation). Indeedillit w
teach us that this probability distribution corresporas tcollective property that one
must associate with the initial state before the omesmsent. On the contrary, the
probability distribution that the usual formalism atitdés to a quantity that is not
simultaneously measurable with the position is not gégeealized in the initial state: It
will correspond to a collective property that is asdedavith the state that will exist
after the action of a device on the corpuscle that pemnie to measure the quantity that
is imagined.

2. Any measuring device will involve a separation of wave traing space.— We
shall now insist upon another circumstance that hes laéen ignored in the theory of
measurement up to now.

We first place ourselves in the case where one mussune a quantity that relates to
a corpuscle without making another corpuscle intervenae @ust then employ a
macroscopic device whose action on the propagation efwave, into which the
corpuscle is incorporated, will finally have the effectsphtially separating the wave
trains that each correspond to a given value of theure@ent. That conclusion is the
immediate consequence of the fact that was brougltghioih the last paragraph that any
observation of a corpuscle will always consist of d@salization. In order for the
localization of a corpuscle after the action of a soemg device to permit us to say what
the value of that quantity is at that moment, it isessary that one have a one-to-one
correspondence between the localization of the compusd the value of the quantity
that is being measured, and that is what will demandeparation of the wave trains in
space after the measurement.

The device that we imagined above (Fig. 1) for the measemt of position satisfies
that condition, since it has the effect of isolatthg wave trains with very small lateral
dimensions, which permits one to measure (somewhat amspig) the coordinates of the
corpuscle in the plane of the screen, thanks to thg lmalized darkening that is
triggered in the photographic plate that is placed behindi¢ive.

Now, imagine the measurement of the quantity of motibe knowledge of which
will provide us with the energy. In order to measure thenfiysof motion of a photon
(and therefore, its energy, frequency, and “coloriie passes the incident sheaf through
a device like a prism or grating that spatially separ#ttesvarious wave trains that
correspond to different frequencies by bending them inferdifit directions. When the
incident wave train is not monochromatic, the device wélalize a true spectral
decomposition by spatially isolating the various Fouriemponents of the incident
wave. However, the same separation would obtaingteitlevice successively received
monochromatic wave trains that had different freqes)dboecause each of them will be
bent into the direction that corresponds to its frequenSince the wave trains can be
superposed at the exact point when they leave the déwclcalization of the photon in
that region by the observation of a macroscopic phenomehat it triggers will not
permit one to attribute a well-defined frequency to it.e@iso ordinarily places a lens
behind the prism or grating that will separate the varimosiochromatic sheaves and
make them converge onto some small separated regigadocal plane, where they will
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each give a colored image of the source. If an obserwadteoscopic phenomenon (for
example, the local darkening of a photographic plate)iggdred by the arrival of a
photon in one of these regions then one can attréowell-defined frequency to it. The
initial sheaf is therefore divided by the action of tevice (e.g., grating + lens) into a
series of wave portions that will strike the photpdpia plate in spatially-disjoint regions,
and it is that spatial separation that will permit tmeneasure the frequency, and in turn,
the quantity of motion, of the photon. The fact that just reasoned with a photon has
no particular importance, because we know today that campuscle can give us
phenomena of optical type, and we can construct devicedefcirons, for example, that
are analogous to a prism or a lens. There is there@imressential difference between the
photon and the other corpuscles in the problem that wexaraining.

More generally, we can analyze this kind of measurerinetite following fashion:
Suppose that we would like to measure a quatitirat relates to a corpuscle. If the
initial wave trainRy is represented by the wave function:

(1) W= zck¢k ,

wheregy is the proper function o that corresponds to the proper vaige then we will
send that wave train into a devibe(grating + lens, in the case that was studied above)
that separates the componemtgy in such a way that upon leaving the de\ilgeeach of
them will occupy a regioR that is spatially separated from the regions thabecapied

by the other ones.

If we then observe (with the aid of a photographicoréc or some other one) a
macroscopic phenomenon that is triggered by the corpinstte regionR; then we can
say that the quantiti of that corpuscle will have the valug after the action of the
device, and we will have thus performed a measuremeft ofhe formalism of wave
mechanics tells us that the valaewill have the probability ¢ F:ie., if we perform the
same measurement experiment a great number of timeghgitwave trains represented
by the same wave function (1) then the proportionaskes in which we will obtain the

value a; will be given by [ [.
<"

CL ¢

Ro — D — || R

\ C3 @3

NV

Figure 2.
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In the usual interpretation, where one adds nothing éoctimcept of the wave,
there will be no localization of the incident corpuseld,, nor will there be any in the
regionsRy, Ry, ... after the action of the devi@ It will be only at the moment when an
observable phenomenon is producedRjithat the corpuscle will bbriefly localized in
that region. In the von Neumann-London-Bauer theomng, must even say that it is the
awareness of the macroscopic phenomenon by the ebskat localizes the corpuscle in
R . However, that seems truly unacceptable! It seebvious that the macroscopic
phenomenon will be produced, even if the observer hasyis closed, in such a way
that the awareness of the observer should have nothohg with that.

What is equally incomprehensible in the present explamasi how it happens that
the triggering of an observable macroscopic phenomenBnwiill instantlyprevent the
corpuscle from manifesting itself in any other regiBp. Something even more
surprising is that the variow& can be found to be very distant frd¥nat the moment of
localization of the corpuscle.

It was, in short, that very difficulty that Einstgbointed out, in a somewhat different
form, to the Solvay Council in 1927, and which has never bestly eliminated.
Einstein said: “Consider a planar screen that is piebgea hole upon which a train of
wavesW falls normally.”

“Behind the screen, if the hole is very small them Wave will take the form of a
spherical wave whose center will be the hole. Thaogh hemispherical filld behind
the screen. If the corpuscle is manifested by a gowit F then that will be interpreted
very easily if the corpuscle has followed a well-defitregectory (such as the one that is
represented by the dashed line in Fig. 3) that takesAt tblowever, if the corpuscle is
not localized then it will be spread out into the potdratate in all of the hemispherical
wave that is behind the screen. How can the facittisamanifested af instantaneously
prevent it from manifesting itself at any other pdhbf the film, which is a point that
can be at a great distance fré’

Figure 3.

One see that this objection is indeed the same asnthéhat we presented above,
because Einstein’'s device is a measuring device for theigposif the corpuscle.
Moreover, one will be led from this device to the ore the envisioned previously (Fig.
1) by supposing that the hemispherical film is placed ewchately behind a likewise
hemispherical screen that is pierced by an infinitudsotds.
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One can object to Einstein’s argument by saying tletdnpuscle does not manifest
its presence at the poidt, but in a very small region aroud However, since the
surface of that region is very small with respecthat tof the hemispheré, Einstein’s
objection remains valid.

Return to Figure 2. One will encounter difficulties thall seem insurmountable if
one does not want to assume that the corpuscle isziedabut everything will be clear if
one establishes the localization of the corpuscle ashéwey of the double solution does.
Indeed, the corpuscle must then have a position in thal miave train. Moreover, we
cannot know that position, because in order to measwe wvill be obliged to employ a
device that completely perturbs the initial wave traidowever, we assume that this
position exists, and that the probability for the corpuszlee found at the poiiily of
the wave train at the initial instatt will be given by [¥(Mo, to)) . (One will refer to
paragraph 4 of the last chapter for the justificatiorthef latter hypothesis.) From the
guidance theorem, the corpuscle that starts at the pagtion Mg at the instant, must
follow the streamline that passes throld&. The motion that results for it is generally
very complicated: It is rectilinear and uniform only def the action of the device when
the wave train is reasonably monochromatic. Howewerknow that after the passage
through the device that separates the wave tRinR;,, ..., the motion of the corpuscle
will finally lead to one of the wave trairf , and the probability for it to be iR is
obviously:

[JWkdr =] Ic FIg Fdr =IGF,

sinceg; is normalized ) and zero outside d¥; . If the corpuscle triggers an observable
macroscopic phenomenon B then that will be because it has arrivedRnand the
magnitudeA will have the valuey; .

Obviously, it is necessary that the observer magstfirm the triggering of the
macroscopic phenomenon in order for him to becomara of the fact thaf has the
value a; when the corpuscle is R . However, this fact is independent of the awassn
of the observer, and everything will become clegia

3. Recovering the usual schema of statisticians. We shall now show that the
ideas of the theory of the double solution (whicle ean apply here in the simple form of
a pilot wave) will immediately lead to an organiaatof the issues that are concerned
with the question of the probability distribution.

We shall envision the case in which the quantiat bne must measure is the quantity
of motionp. We suppose that the Schrdodinger equation id vatid we write:

(2) Ar) = W) F

for the probability density of the position We then set:

() In the development (1), thi are, in reality, proper differentials that represeatwlave group.
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(3) W=ae™" =] cp) W(p,r) dp = Y b(p)¥,

in the initial state.
In the initial state, if the corpuscle is at amai then, from the guidance formula, it
will have a quantity of motion that is:

(4) p=mv=-gradg(r).

Before the measurement®f one will have:

(5) or(r) = W) F, P5 (p.r) = Ap + gradg)

for the two random variableR and P in the initial state, where the second formula

signifies that if one knows that value @fand therefores(r), thenp will have the value
that is given by the guidance formula. One wittler have:

(6) o, p) = |W(r) F p + gradg),

and one will verify that:

(7) ] A, 1) dp = [W(r) = n(1), (dp = dpcdp, dp).

One will likewise have:

(8) pe(p) = D IW()F,

where ther; correspond to the positions of the corpuscle foictvgradg has the valup
in question, and one will verify thatir(= dx dy d

(9) I ptr.p) dr = 1W(r) P dp + gradg) dr = 2 1Y) F=oo(p).

In order to complete the statistical schema of dlassical type that relates to the
initial state, one must further defing (p,r), which one does by setting:

p prp) _ _|W(E)F O +grads )
10 P(p.r)= = .
o) PP D= 0 ®) T JIWE)F oo+ oracs

Finally, if one considers all of the possible piosisr of the corpuscle in the initial
wave train and the corresponding valuegp tiiat are given by the guidance formula then
one will have defined a collection of individualtgies that have well-defined positions

() In order for the measurementmthat separates wave trains in space to be perfortriediécessary
that thep, must define a discontinuous sequence. Neverthelessaaremploy the integral by considering
it to act on proper differentials.
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and momenta, for which one will have a statisticdiesna of the classical type that will
correspond to the following table:

p)FWEOIE, )= W E)T,
(1) prp)=|Wg)Fop + grads ),

A0 p)=00 roradp), AP (p o OO0+ gad)
b [lw@)F 56 +grads x

with the likewise classical relations:

[otp)d =p.0),  [ptp)e =p0),

() (R) pr.p) (P) ptp)
rp)=——>-—-=, Fp)="—"——.
P (rp) 2.() PR tp) 5.0)
However, we can insist upon an important pointxcept for or(r), the probability
distributions that we just defined will be “hiddém the sense that we cannot determine
them experimentally. Indeed, except fa(r) = | W(r) , which we can determine
directly with the aid of the screen-sieve devicd=ig.1, we cannot determine the values
of p without making a measurement of that quantity,easarement that will change the
wave state completely by destroying the superposiif ¥/, and the original collection

that it is associated with, since that measuremahinvolve a spatial separation of the
components¥, in the development (3). We have thus indeed defaeollection with

the aid of table (1), but it will be hiddencollection.

Now, study the situation after a measuremenp.of The measuring device has
partitioned the initial wave into trains of parti@hves that each correspond to one of the
components¥ . We have seen above that we will then hea(ew) = | ¢« I, which will

be written:
(11) pe(p) = | c(p) F,

in continuous notation, and we will also have:

(12) PR(r) =] lc(p) P |W(p, 1) Fdp
and
(13) A1, p) =lcp) F W, 1) F.

Since the proper functid#(p, r) is normalized ]() one will verify immediately that:

(14) [ Ar, p) dp = r(r), [ or, p) dr = pe(p).

() Seenote pp. 89.
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Since the probabilities are linked, we will find that:
(15) AR p)= ¥, I, A (p,r)= | (' -r)d ",

in which, R is the region where the wave will reduce to its conepop.

The last formula (15) expresses the idea that for evkipo if the pointr is inR,, then
one will have p{” = 1, and that if is not inR, then one will haveo{” = 0, and this is
nothing but the mathematical expression of the fact ifhidite corpuscle manifests its
presence iR, (e.g., by triggering an observable phenomenon in it) s must
attribute the valu@ to the quantity of motion. That is precisely why Heparation of
wave trains will permit the measurement of the quawtityotion.

Briefly: After the measurement, upon consideringrdmitude of corpuscles that are
divided between the trairi&, according to the proportions(p)  and then divided in the
interior of each wave traiR, according to the densityW(p, r) , we will obtain a
collection that is composed of individual entities thatehperfectly-determined positions
and quantities of motion, which is a collection thatl worrespond to the following
statistical schema of classical type:

L) =[lcO)F WO FD ., ot )=l )T,
(I p(rp)=lce)f W o )i,
AOCR)=IYEE, AR )=[ o

and the following classical relations will exist betweébhese quantities:

[op)d =p.0),  [ptp)e =p(),

() p(rp) pEp)

PR p)=8, 06 p )=

] Pr(r) " P P)

The relations (Il) are verified immediately, except for the penultimatee, which is
written:

(16) lo(p) F1 W, 1) F= [le@)F [We'r )T’ [ SC'— )d".

Here is how one proves this: The last integral in (18)oe equal to 1 if the pointis in
Rp, and then the quantity of motion will be equaptoit will be zero ifr is not inR. It
will then result that the right-hand side of (16) redumesc(p) | W(p, r) f, wherep
will have the value that corresponds to the known pasition such a way that equation
(16) will indeed be verified.

We remark that, neither of the two probability dlmttions o:(r) and op(p) will be
“hidden” for the collection after the measurement. Whisresult from the fact that, on
the one hand, the distributigm(r) that relates to the position is, as we know, always
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verifiable by a statistical experiment (for examplathwthe aid of the screen-sieve
device), and that on the other hand, the distribytgp) will result from the same action
of the device that permits one to measureBy contrast, the probability distribution that
corresponds to a quantity in the final collection thaho$ simultaneously measurable
with either the position or the quantity of motion Maave a perfectly-determined value,
but it will remain “hidden,” since the measurement of thaantity will destroy the
collection. One then sees that in the theory ofdiwgble solution-pilot wave, any state
will correspond to a well-defined collection, but therd always exist quantities whose
probability distribution is hidden, because their measuremveotld destroy the
collection ).

It would now be very interesting to compare the prolgtilistributions (1) and (11)
that correspond to the collection that is realizedt@ethe measurement pfand the
collection that is realized after the measuremet, oéspectively.

First of all, the comparison g@k(r) in (1) and in (1) will show us that we recover all
of the usual formulas for the interference of probaédi

On the other hand, the distributiga(r) = |W [ in (1) andos(p) = | ¢, [ in (II) are
both the ones that are considered in the usual prol&bitismalism. However, here one
will neatly see that they refer to the various adltens that are realized, one of them,
beforethe measurement, and the other aafégr the measurement. That is the reason
why these probability distributions cannot verify the uschema of statisticians, which
assumes the existence of a unique collection.

One now sees very neatly the flaw that vitiateptoef of the celebrated theorem of
von Neumann. His argument shows that is it indeed isiples even by introducing
hidden variables, to construct a collection that simelasly corresponds to the
probability distributions W [ and |c, [* that are habitually envisioned for the conjugate
canonical quantities of “position” and “quantity of motibrHowever, it does not prove
that one cannot construct the collections (by partiaiiggen probability distributions)
that are of the usual type and which correspond to thal isiiate before the measurement
and the final state after the measurement, respectibglintroducing hidden variables.
The usual probabilities that are considered will figuréhgse collections, but not in the
samecollection. We just constructed the collection in gio@sin detail in the case of the
measurement gb, and we now indeed perceive that von Neumann’'s theorem raiie
have the weight that one usually attributes to it.

4. Interpretation of the uncertainty relations. — In the usual interpretation, the fact
that the probability distributions for a coordinatand the conjugate momentuypnwill
correspond to “dispersiongi{x) and a(py), such that:

(17) o) A(py) 241,
7T

() One must remark that each regRpnwill be occupied by a “wave group” that is representabla by
proper differential and will correspond, not to a conmglieexact value op, but to extremely close values
of p, in such a way that the uncertainty relations will agnvalid for each wave grougy,.
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which will permit one to write the qualitative relation:
(18) X Py = h,

where ox and dpx are the uncertainties in the valuesxandpy, must be interpreted by
saying that the uncertainties in the valuex atn never be both zero at the same time.
However, from that prudent assertion, one generally pasc& a much more audacious
assertion. One assumes that quantities suckkand Jpx do not represent simple
experimentalincertaintiesn the values of these quantities that result fronctrelitions
themselves that relate to the measurements of micragshysit that they correspond to
true indeterminaciesthat will always affect a part of the quantities tmatate to a
corpuscle. In that manner of looking at things, whichmseéo have been assumed
implicitly by the authors, one is then obliged to ddes the corpuscle as being
statistically divided between the various states, which produce an image of the
corpuscle that is much less intelligible.

On the contrary, with the theory of the double solutionwhich the probability
distributions px(x) and o, (p,) refer to different states, the interpretation of the

uncertainty relations will no longer be the same.ednh state, the corpuscle will have a
position in the wave that is well-defined and a quantitynotion that is likewise well-
defined as a function of position by the guidance. Alihef quantities that relate to the
corpuscle that are all expressed with the aid of therdioates of the corpuscle and
therefore the corresponding Lagrange momenta will akee well-defined values at
each instant. However, these values cannot all be rksowultaneously. Indeed, with
the exception of position and the quantities that arasmm@ble at the same time as
position, the action of the device that will be necgssameasure a quantigywill have
the effect of sending that corpuscle into one or tlinerodf the wave trains that finally
correspond to a given value Afin a perfectly-well-defined manner, in such a way that
there will be ara priori uncertainty in the result of the measuremeni dhat provides
the uncertainty in the (hidden) position of the corpustide initial wave train, which is
an uncertainty that corresponds to the probabilityilistion |& . The dispersiomx(p,)

of the possibléinal values ofp, after the measurement will be related to the dispeisio
the possibldanitial values of the position by the relation (17), and onesan in that
sense, that the position and quantity of motion ofrawsele will always be affected with
uncertaintiesx and dpx such that the relation (18) is verified.

However, from our standpoint, these are only uncéiesinn the possible results of
two incompatible measurements (viz., the measuremgrasation and the measurement
of the quantity of motion) that demand different measgudevices. They are not both
real indeterminacies in the position and quantity of matioa corpuscle at each instant.
These indeterminacies (at least, for quantities difeen position) are produced by the
action of the measuring device on the wave phenomenahtoh the corpuscle in
incorporated (i.e., the wawe not the wave¥, although the two are proportional). Since
the coupling of the corpuscle to its wave involves Planchkisstant essentially (whose
true physical significance will remain mysterious), o cemain in agreement with
Bohr, who said that the Heisenberg uncertainties arsevitable consequence of the
guantum of action, by the intermediary of the reacbéithe wave propagation on the
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motion of the corpuscle, but he reiterated that thers doeresult a true indeterminacy
in the position and quantity of motion of the corpuscla hecessary fashion.

The Heisenberg uncertainties will keep all of theailue in the theory of the double
solution, but they must be interpreted with more prudémae one ordinarily invests.

Moreover, some analogous considerations are applicablethé notion of
complementarity. In the theory of the double solutiong can, if one so desires,
preserve it, but on the condition that one indeed liitstscope. It will signify only that
the same measurement operation cannot simultaneouslyl@ribv values of quantities
that describe the wavelike aspect (such as the comooktite quantity of motion) and
guantities that describe the corpuscular aspect (sucle a®oindinates of the corpuscle).
However, one cannot conclude from this that these simonitaneously measurable
guantities do not have a perfectly-well-defined value ah éastant. Thus limited, the
notion of complementarity will not raise any essalndifficulties. It will no longer have
the much less intelligible significance that one gelhesadtributes to it, and as a result of
which, what we call a “corpuscle” will be a proteanitgnthat is capable of alternately
taking on a wave-like aspect and a granular aspect, emith of processes that will defy
any rational representation.




CHAPTER VII.

MEASUREMENT OF QUANTITIES BY THE INTERACTION
OF TWO CORPUSCLES.

1. The inconvenience of the measurement that was envisionpceviously for
just one corpuscle— Much earlier, we envisioned the measurement of a quanthat
is effected by sending the wave train that carriextipuscle to a measuring device that
is capable of chopping the initial wave train into spigtiseparated wave trains that each
correspond to a well-defined value of the quanfityi.e., of materially producing the
spectral decomposition that relateto

However, this measuring process has an inconvenient agpett When the
corpuscle has triggered an observable macroscopic pheaonrethe regiorR; (which
is indispensible if one is to measure anything), the obBernvaan attribute the value
to the quantityA. However, it is probable that when the observerdimsined the value
for A, it will not be exact. Indeed, the triggering of tbbservable macroscopic
phenomena will, in general, cause a reaction in theomaif the corpuscle, and the
quantityA will, in turn, no longer have the same valyehat it had before the triggering.

It is therefore preferable to proceed in a differeranner, and to perform the
measurement by appealing to an interaction between tipeisme “under study” and
another corpuscle that we call the “indicator” corpuscl®/hereas the measuring
processes that were studied in the preceding chapter czalléd “measurements of the
first kind,” the ones that we shall study can beethfimeasurements of the second kind.”
Let 1 denote the corpuscle under study and let 2 denotedieatior corpuscle. To begin
with, the two corpuscles which are, moreover, interacting — are attached teewaams

that occupy region®" and R’ that are separated in space and are represented by wave

functions W (r,,t) and WP (r,t), resp. The wave function of the system in
configuration space will then be:

(1) Wo(r, 12, 1) = WP, HPEE 1)
Following von Neumann, we assume that in order for @acq®s to serve as a

measurement of a quantikythat relates to the corpuscle under study, it will éeessary
for the final wave to be of the form:

(2) W= zck¢k(rl)/Yk(r 2) s

where thegy are proper functions of the quantéyof the corpuscle under study that
correspond to the proper valueg, and theyxi are proper functions of the indicator
corpuscle that relate to a quantiy for that corpuscle that has proper valygs.
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Therefore, after the action of the measuring device, vlues ofA and B will be
“correlated,” so the valuei of A will correspond to the valué of B.

However, that will not suffice. One must furtherveathat after the end of the
measuring interaction, the functiong(r,) must correspond to wave portions that are

spatially-separated, and consequently occupy disjoint megR}” in space. If the
indicator corpuscle triggers an observable macroscopingmhenon in the regiortR}Z)

then we can assert that its quanBtyill have the valugs, and as a resultthe quantity
A of the corpuscle under study will have the vatyehat is correlated witl3 . The
probability for us to find thaf = a; will be, moreover, equal tagj [*.

One sees the advantage of that measurement ofdiwedskind over the measurement
of the first kind. The triggering of observable macrgsc@henomena by the indicator
corpuscle can perturb the motion of that corpuscle antyrm make its quantiti3 no
longer have the valug . However, since the two corpuscles are entirely indiggn
and separated in space at the end of the interac¢tieniriggering of the observable

phenomena irRJFZ) can have no influence on the corpuscle under study, rmndanm state

with certainty that the quantit¥ of the corpuscle under study has the valpafter one
has confirmed the observable phenomenon.

Moreover, here, as with the measurement of thé Kirsd, it is not necessary to
introduce the coordinates of the “measuring apparatus’omtanalysis, whose role can
only be that of permitting us to observe the observableasegpic phenomenon with
precision.

We remark that in order to make a measuremem, of is not necessary that the

functions ¢, (r,) must correspond to spatially-separated regi®? in the final state.
What will be indispensible is that the regioR§’ must be disjoint. However, for more

clarity, we shall first suppose that the regioR$’ are separated, while we shall return

later on to the case in which that hypothesis is patized. We will then have the
following schema:

Figure 4.
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Before the interaction, the two wave trai®” and R are separated and

independent. They then approach each other and ententetaction in region |. After
the interaction, the wave function in configuration cavill, by hypothesis, have the
form (2), so the various functiorg will likewise correspond to spatially-separated wave
trains R® in physical space, and the various functigrswill likewise correspond to

spatially-separated wave traif” in physical space. The statistical correlations éna

established by the interaction between the presendhs tiio corpuscles in the different
regionsR in physical space and translate into the form (2hefwave function will then

tell us that if an observable, macroscopic phenoméntniggered in the regiorIsz) by
the indicator corpuscle then the corpuscle under studybeihecessarily found irIRj‘l)

with A=q; .

We shall specify an example of this measuring processler to show that it indeed
corresponds to experimental conditions that are ottalized. Suppose that we initially
have two corpuscles whose energies and quantities tdénmoave known values. The

two wave trainsR{” and R® will be in interaction (e.g., collision) in a neighbodubof
a pointO, which we will take to be the origin of the coordinatester the interaction,
the correlated wave trair®” and R will be distant from the poir in directions that

are defined by the angleg and ¢, with respect to an ax®x that is contained in the
symmetry plane of the phenomenon.

@ O

3

( )/O Tl g OR?Z) X
R)z - \J\

Figure 5.

All of the phenomena are produced in the symmetmnepi@y, so one knows that the
correlation betweerR™ and R™® will be expressed by three conservation relations for

the energy and the twoandy components of the quantity of motion. We thus hakeeth
relations in the final state between the angleand ¢, , and the magnitudgs andp, of
the quantities of motion. If the corpuscle 2 then asrige a devicd (for example, a
scintillation counter) where it produces an observaimiacroscopic phenomenon then
one can determine the angdg, and one will obtaip; and@; by eliminatingp, from the
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three conservation equations, ; i.e., one will havasuesd the magnitude and direction
of the final quantity of motion of the first corpuscéad that measurement will obviously
exert no effect on the corpuscle 1 under study, simgedbrpuscle can be found to be
very distant from the devic® at the moment when it produces the observable
macroscopic phenomenon in it.

2. Interpretation of the measurement of the second kind bthe usual theory.—
How are we to interpret the measurement of the sedomd in the current wave
mechanics, where the corpuscle is not localized invehe¥?

The interpretation that conforms to the von Neumaoneon-Bauer theory of
measurement consists in saying: It is the observer'sepgon of the macroscopic

henomenon that is triggered R that will localize the corpuscle 1 iR® that was
p j

hitherto divided statistically between all of the waxatrts R%Y. Such an interpretation
seems inadmissible: Something that happens in the perceyftian observer cannot
provoke a physical effect at a distance.

Suppose that there are two observers in the rerEir,l one of whom has his eyes
open, and is thus aware of the observable macroscopiompleeon, while the other one
has his eyes closed, so he is not aware. Does theress of the first observer provoke
the localization of the corpuscle 1 le), or does the unawareness of the second observer
prevent that localization? The question remains unamexly because it is absurd.

However, one thing seems certain: The observer whohisasyes open, after having
confirmed that a macroscopic phenomenon has been tribbgréhe corpuscle 2, will

replace the wave functio = ch . (r)x.(,) with the new wave functiott =
k

d(r)x(r2), and that “reduction of the probability packetillypermit him to then make
exact statistical predictions. Therefore, whallyematters is not the knowledge of the
observer, but the physical fact that the triggerimig the observable phenomenon
constitutes.

An interpretation that might appear to be moresoeable will then consist of saying:

It is the observable, macroscopic phenomenon shatovoked by the corpuscle 2 IRjZ)

that briefly localizes the corpuscle 1 under stirdthe correlated regioRj‘l). In reality,

that interpretation is no more admissible than fnevious one. The observable
phenomenon that is manifestedmf’ can in no way localize the corpuscle 1RfY, and

that will be all the more the case when the regi®fsand R are extremely distant
from each other at the moment when that phenomesoproduced. For such a
localization to be produced briefly at no particutiistance by the phenomenon that is
observed inR}Z) would be inconceivable. While discussing thatobpn, Schrédinger
wrote: “That would be magic!” and indeed that woh&l magic.

In the final analysis, it thus seems clear that itheory where corpuscles are not
localized in their waves, no reasonable interpi@tatan be given for correlations that
are represented by the walkein configuration space and which permit measurésien
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We shall see that the theory of the double solutioh prdvide a clear and intelligent
interpretation for measurements of the second kind tabkshing the position of the
corpuscle in the wave.

3. Interpretation by the theory of the double solution.— Return to Fig. 4. In the
theory of the double solution, we must suppose that tieneR” and R® are initially

occupied by the singular regions of the waweof each of the two corpuscles,
respectively. Upon arriving in |, the two wave traindl Wwegin to integrate; i.e., the
propagation of each of them will depend upon the action hlegtexert upon each other.
As | pointed out at the end of chapter V, | will assumbile hoping that this hypothesis
can be justified rigorously in the theory of the double smi)tthat the Schrodinger wave
W in configuration space of two corpuscles will permit daerepresent precisely the
correlations between the possible positions of the colgus the course of time and at
the end of the interaction. That will be a reasanwby the waveW in configuration
space, although obviously fictitious and representing no maallution of the
phenomenon in physical space, still gives a statisgieadhct view of thgossibleresults
of the interaction.

We are thus led to think that after the end of titeraction the wava of corpuscle 1

will have been chopped into a series of wave tr&fls ..., R”, ... that are spatially-
separated, and that, similarly, the wamef the corpuscle 2 will have been chopped into a
series of wave trainR®, ..., R?, ... that are likewise disjoint. Moreover, since the

statistical correlations that are represented by im& form (2) of the waveV are
supposed to be exact, if the singular region that coresittdrpuscle 2 finally arrives in

R? then the one that constitutes corpuscle 1 will armivéR’, and the probability of
that eventuality will be given by F.

In other words, in the theory of the double solution twe corpuscles-singular
regions will have trajectories that are determinedr@gtiby their initial positions in the

wave trainsR” and R®, which are trajectories that will necessarily leaghttto occupy

two well-defined positions in the two “correlated” wavaitis R®” and R in the final
state. Therefore, according to a wish that was o@gpressed by Einstein, the
description of the interaction by the wa¥ein configuration space will remain an exact
theory, but it will not be a complete description, whizould be the theory that
establishes the localization of corpuscles and the detisrmin their motion.

Here, the interpretation of the measure of the skéamd becomes quite clear and
can be expressed in several ways. If an observable, soapioc phenomenon is

triggered by corpuscle 2 in the regich) then that will be, quite simply, because that
corpuscle is effectively found to be in that region, #meh the corpuscle 1 under study
will necessarily be found in the correlated regﬁfr’, which will permit us to attribute

the valueq; to the quantityA with some confidence. Here, there is no inadmlssib

instantaneous action-at-a-distance in the observed pleg@omWe are relieved to see
that: “There is no longer any magic!”
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As for the perception of the observable phenomenon bglberver that permits one
to attribute the valu@; to A, it is only the perception of an external objectivalitg, and
it will thus recover the completely reasonable meaniagithhas in classical physics.

We would like to insist a little bit on the manner Wwhich the question of the

relationship between the waueand¥ should present itself here. In the regid®8 and

R, the waveu of each corpuscle will have the four= Uy + v outside of a very small
singular region, wherg > up is a regular wave. The wavwewill have a perfectly-
defined amplitude, since it has objective reality, bet physicist will have the right to
define dfictitious wave functiort¥ by setting¥ = Cv and choosing the constadtin such
a manner tha¥’ will be normalized. One will then define the individdiahctionsW in
R and R for the two corpuscles in the initial state, and thee wiil construct the
wave function in configuration space by taking the produdheftwo individual wave
functions.

In the final state, after the end of the interactitne waveu of the corpuscle 1 will

have been chopped in physical space into wave trgns ..., u®, ... that occupy
spatially-disjoint region®R™, ..., R®, ..., while the wavau of corpuscle 2 will likewise
have been chopped into wave train®, ..., u®, ... that occupy spatially-disjoint
regionsR?, ..., R?, ... in physical space. However, corpuscle 1 will only henébin

one of the region®R"”. The partuy of u will exist in only that region, and will reduce

to v in the other region®Y. An analogous situation will be realized for the secon
corpuscle. However, the wave function (2) must reptesenstatistical correlations in

the final state exactly, so the two corpuscles wiltaialy be found in the two correlated
wave trains. When the observer confirms the triggeahan observable, macroscopic
phenomenon irRJFZ) by the indicator corpuscle, he will say that the corpusatier study

is in R™, and he must then construct a new individual wavetimdor corpuscle 1 by
setting¥ = CW”, wherevl" is the functionv for corpuscle 1 inR"™ andC is chosen in

such a fashion tha¥ will be normalized in RJ.‘”. This is the rupture of the statistical

correlations that von Neumann spoke of, and therese r@duction of the probability
packet, since the waw of corpuscle 1, instead of being divided between all of the
regionsR™, is briefly reduced to no longer occupying tiRit .

Here, the reduction of the probability packet takes aerg clear significance. It
signifies simply that the observer, having acquired infélonaabout physical reality,
consequently modifies the functidH that serves to represent the probability of the
observable phenomenon. However, the information ighatcquired by the observer
cannot modify the physical reality itself that is dédsed by the wavel. The distinction
between objective and subjective is thus established ampletely clear and satisfying
fashion.

We remark that if the “subjective” functidk can provide exact statistical predictions
then that will be because the user must constructhetproportional to the waue (or
rather, to its part that is “exterior” to the singulagion, by abstracting from that singular
region)in the region where one knows that the corpuscle can be foAndopen-eyed
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observer who has confirmed the triggering of the obsesyathcroscopic phenomenon
in the regionR™ will employ the functior = CV for the corpuscle under study, and

can make exact statistical predictions with it. Tdesed-eyed observer, who will
observe nothing, will utilize a functiof for corpuscle 1 that will remain proportional to
v in each regionR"”, and he will make inexact statistical predictions vitftsince he

assumes that corpuscle 1 can be found in regRfother thanR™ , which is not true.

One then sees that if the subjective wdvean be of service then that will be due to
the fact that it is constructed by the user as a funaifohis knowledge of a certain
exterior, physical reality. It is, moreover, obviohatta subjective wave function can be
constructed arbitrarily, and that it will then be incoaignsible that it will lead to exact
predictions. In other words, a purely subjective integti@t of the waveW is
impossible; it is only necessary that there be some tolge®ality behind it. Now, the
wave ¥, which undergoes the reduction of the probability packatnot itself have
objective reality, but it can be a reflection of tiser’'s knowledge of objective reality.

We add that in the case of the measurement by intemaet two corpuscles, as we
did in the case of the measurement of the first kirtth yust one corpuscle that traverses
a device, one can construct collective systems thaesond to the initial and final
states and represent the concepts of localization argbrmof the corpuscles in the
theory of the double solution. As in the preceding chiaptee will recover the
probability distributions that are usually envisioned, butytiwill belong to different
collective systems, with the consequences that thiiesr One will also recover the
interference of probabilities and the interpretatioh tke Heisenberg relations as
representing, not an indeterminacy in the position antiommf corpuscles, but the
uncertainties that are introduced by the interventiothefwave nature of corpuscles in
any measurement process.

We further point out a difficult, but important, questidmat is posed when one
applies the concepts of the double solution to the problemvihgust studied. When the

observer has observed the phenomenon that is produded jrhe will know that the
corpuscle or singular region of the wav® is found in R®, and he will reconstruct his

wave WY as a consequence, in order to make ulterior statigtiedictions. However,
the fragments of the wawé” that go into region®R® other thanR™ must persist, since,

having objective reality, they cannot depend upon the infeomaif the observer. They
will constitute pieces of the wawé” of the corpuscle under stuthat do not contain the
singular region. What do these fragments of the wameith no singular region become

then, and how, on the other hand, does the wave fraguiféthat arrives inRJ.‘l) and

carries the singular region evolve, which is a wavenfiext whose exterior pavt” was
weakened with respect to what it was in the initialestag chopping up the wauéb?
These questions pertain to a type of difficult questiont tha theory of the double
solution is forced to address. However, it is probalbde ihit succeeds in answering
them, then that will be by making nonlinear phenomenaviete essentially, and in
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particular, of transitory states that have represiemtah the present linear theory).(
However, | would not like to insist here upon a probleat th, moreover, difficult to
undertake today.

Finally, note that the analysis that we just madehef measuring process by the
interaction of two corpuscles can be, it seems totraasposed into the study of two
systems of corpuscles with no difficulty. The comgtions that one might encounter
will be only complications of notation, while the gesledeas will remain the same.

4. Case of a measurement process involving the interaction wfo corpuscles,
whose singular regionsR™ are not spatially disjoint. — We have already remarked that
since the functio®¥ in configuration space is assumed to have the form (&) ¢ end

of the interaction of the two corpuscles, it will sceé that the wave traingi(r) of the
indicator corpuscle are spatially-separated in orderHerttiggering of the observable,

macroscopic phenomena R to permit us to attribute the valug to the quantityA

without the R® being spatially separated.

It is easy to give a concrete example: Let thera hydrogen atom whose peripheral
electron will play the role of the corpuscle under studye wave of that electron will
occupy a region of the atom that we will represent Isplaerical regioiR™. Another
corpuscle that plays the role of indicator then passd®ineighborhood of the atom, and
during that passage, it will interact with the atomieceion. The wave train of that

indicator corpuscle will be initially contained in a i@y R” in space. At the end of that
interaction, the wave functioW in configuration space of the two corpuscles will take
the form (2), by hypothesis, and tenow correspond to spatially-disjoint regioR§’,
while the g, will always correspond to the same regih.

In its initial state, the atomic electron has a @dunction of the formWw{’ =

Zcf @, (r), where thepy are the proper functions of a certain quarAityvhich might be
k

energy, for example. When one has noted an olservaacroscopic phenomenon that
is triggered by the indicator corpusclemﬁz), one can attribute the valugto A and take

W® to be equal tg; in that final state.

Here, one recovers the same considerations &g ipreceding case that was studied.
There can be no question of saying, as one do ipresent interpretation, that it is the
perception of the observable phenomenon by theradaser the triggering of observable
phenomena that makes the atom pass briefly fromiital state to its final state; this will
always be magical. The perception of the obsemasrnothing to do with this case, and

R}Z) can be very distant frolR™, so an instantaneous influence of the phenomematn t
is triggered on anything that happen$Ri would be inconceivable.

One can illustrate this by a striking example, ahhis not described in the same
fashion as the preceding one in the present stateuo formalism, but which is

() | have touched upon these questions in the last chaptayokcent book3. Seethe very
interesting recent book by Jean-Louis Destoucligs§ well.
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completely analogous to it physically, namely, the gxdanof the emission of a photon
by an atom (a hydrogen atom, for example). If the queAtis the energy of the atomic
electron then thex = Ex and thegy will be the corresponding proper values and proper
functions, respectively. We assume that the atonmiiglly in a quantized state of
energyEx and that, in turn, its wave function 8{” = ¢ . If it passes through a quantum
transition from that initial state to the quantizedtstof energyE, then there will be
emission of a photon of frequeney= (Ex — E) / h. Collect the emitted photon at a
distance in a mesh + lens device that will, as we have peemit one to attribute a well-
defined frequency to it by making it produce an observable effdor example, the
darkening of a photographic plate at a point. From the oligmrvaf that phenomenon,
the observer can deduce that the atom has passedhieoimittal stateW{’ = ¢y to the
final statew® = g, .

Now, nothing prevents one from supposing that the atam the star Sirius and that
the observer is in Paris. Is it admissible thatgheception by a Parisian observer of a
local darkening on photographic plate will change theestd an atom on Sirius? Is it
admissible that the physical triggering of this darkening preduhat effect? Obviously
no, in both cases, and the argument is, just the sanestriking here.

O
O O
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J

Figure 6.

We now refer to Fig. 6, and demand to know how oneartarpret the measurement
of A in this case using the ideas of the double solution. Tihibiead us to a new
concept. Since the functid¥, when it is well-constructed, must always be proportional

to v, one must have{” ~ " clg, in the initial state of the atom, and one must héve-
k

@ in the final state — viz., when the indicator corpuscleves in the regionR.

Therefore, according to the concept of the double solutfi@natomic electron must have
a motion in the initial state that conforms to thadgance formula, which is a very
complicated motion that has the same phase as the Wd that is defined by the

superposition of thepx . However, after the end of the interaction, onetnase a
motion that is in phase with the single compongntsince one will then havé” = @ .
One can then say that during the interaction the motibrthe atomic electron
progressively “switched” from “unhooking” from the iiait superposition of thep to
finally “hooking onto” the single componeu, and that is precisely because the atomic
electron is finally found to be hooked W = @; , while correlatively the indicator
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corpuscle is found ierZ), where there is a possibility of measuring the quaatizhose

proper valuex; corresponds t@ .

Here then, the corpuscle being studied can be finallgdfda be hooked to just one
of the original components of its wavas a result of the interaction, all while remaining
localized in the same regioR® as in the beginning, but it is essential for the
measurement ok that the regionsR® that relate to the indicator corpuscle be spatially-

separated in such a fashion that the triggering of anrwdisle, macroscopic
phenomenon will permit one to say that it is the wa¥e~ ¢, to which the corpuscle
under study will finally remain hooked. Naturally, the sathing is not true in the case
of a measurement of the first kind, where one perfadhmsmeasurement by making the
corpuscle that is incorporated into its wave pass intoveele such as a mesh + lens
that will isolate thepy into spatially-disjoint wave trains. In that cases torpuscle is, in
some way, both the corpuscle under study and the indicatpuscle, and that is the
reason why the separation of the wave tradasvill then be necessary. However, that
will no longer be true for a measurement of the se&anl

5. The idea of directing. Examination of a remark by Einstei. — While always
remaining in the case that was envisioned in the last patagaad maintaining the
viewpoint of the causal interpretation, we can makeptieeeding more precise in the
following fashion: Starting with the initial position tie two singular regions iR™ and
R the interaction evolves in an entirely determinatemer in such a way that in the

course of the interaction, the corpuscle under studyrogressively directed by the
motion that the guidance law imposes upon it to its fitetes where it is found to be
implanted in the wave = ¢;, while the indicator corpuscle is progressively directetst
final state in the same way, where it is implantedt@nwavev = y; that is localized in
R®. The same interpretation will be valithutatis mutandisin the case that was

previously studied where the regioi” were disjoint. One will then arrive at the

general idea that for each corpuscle, the streamlinksbgvianimated with a sort of
wiggling that is a result of the interaction, and thia corpuscle, which is obliged to
constantly follow one of the wiggling streamlines by tp@&dance law, is therefore
progressively directed towards the final state thawiit possess at the end of the
interaction.

In light of these ideas, it is interesting to exaena point in the present formalism of
wave mechanics that Einstein touched upon many times, hiuh \weemed to him to
appear particularly difficult to interpret by a causaiaty.

Consider a corpuscle whose initial state correspondsedunctionW = ¢, in
which |¢;| = 1 andg; is one of the proper functions of a quanfty If A is energy then
we can represent the initial state by a wave tRaithat corresponds to the enelgy= a;
(mathematically, by a proper differential of the contus spectrum of energy that
corresponds to the central frequengy E; / h). If the corpuscle is subjected to a very

weak perturbing field of limited duration then its wa¥ewill becomeW = ch¢k after
k

the end of the perturbation, and since it is very wea,vaith have a final value forg; |
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that is very slightly less than 1 and extremely smallies for the ¢« | whenk # j. If the
corpuscle then passes into a de\iicéhe sends thé into spectrally-disjoint regionBy
(such as the mesh-lens device, in the case wherenergy) then the corpuscle will have
a probability that is close to 1 of being manifested enrdgionsR, with k # j. Since the
ax can have very different values, one will finally gbat the very slight perturbation
will make very small probabilities appear for the statéhe corpuscle to be subjected to
large changes. Einstein considered that one will thusirobt statistical description that
is certainly exact from the standpoint of what takes@| but that it will be, without a
doubt, very difficult to substitute a causal descriptmnthe individual phenomena for it,
which is a description that will nonetheless be nexrgsm order to avoid unacceptable
paradoxes.

Recall this problem from the viewpoint of the theoryief double solution. Consider
a wave trairR, that carries a corpuscle. The corpuscle occupiegarc@osition in this
wave train. It is implanted in a wawe~ ¢, that has objective reality and fills up the
region R,. We suppose that the wave train is a group of wavets ishalmost
monochromatic with enerdy;, and whose streamlines are parallel lines. The wawestr
will be directed towards a devigethat permits the measurement of energy by separating
the wave trains that correspond to the different vabifesnergy. If the wave train does
not traverse any perturbing field between its initial posiR, and its arrival aD then
the corpuscle that follows one of the streamlines avilive at the regio® by a uniform,
rectilinear motion, and then the action of the dewcwill impose a more complicated
motion upon it that will result in a wave train witmexgy E; leaving the device.
However, if the wave train traverses a region in Whacsmall perturbing field reigns

before arriving ab then the wave will become proportional toz c P, withg=1-¢
k

and all of the othecy very small. In the wave train, thus modified, theainlines that
correspond to the guidance formula will be animated wibré of very small trembling
with respect to the rectilinear form that they will ggeve in the absence of perturbation.
It will then result from this that, according to the piosi in the wave train, the corpuscle
will be sent after traversing the devibeeither towards the wave trait (this will be, by
far, the most probable case) or towards the one oivewve traindR that corresponds to
an energyex # E;, but this will be a very rare case. We are suretthatwill so because
we know that there will be an infinitude of corpusclesi that are distributed with the
density | ¢ F, so the motion along these streamlines that is impbgethe guidance
formula will finally lead to a proportion that is equal|c [ in the regiorR¢. Since the
corpuscle will have an energy that is equaEfoin the regionR, one can say: The
direction that is imposed upon the corpuscle by the négédkat it must always follow a
streamline will, when one ignores its initial position Ry, give it a probability that is
almost equal to 1 of having preserved the initial vddpef its energy at the end of the
measuring process, but it will also give it a very sipadbability of finally possessing an
energyEx that is very different fronk; . One finds a picture that clearly represents the
situation that Einstein touched upon in regard to the dstrahlism of wave mechanics.
Nevertheless, if one would like to study the basistlier idea of directing that was
sketched above then one will have to study the questitreaonservation of energy in
the theory of the double solution, as well as the analogmidems that we alluded to at
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the end of paragraph 3. We will not undertake that stuhe, hsince it would be
premature, moreover.

6. Conclusions. Pure case and mixtures The study of measurement that we just
carried out in chapter VI and VII shows us that one cansenvimeasurement in
microphysics as having a concrete aspect, which is, mareoleious, and does not
require the overly-abstract formalism that one haliuadsigns to it. It is essential to
account for the fact that all of the information tiagt obtain about microphysical reality
is triggered by thdéocal action of a corpuscle. It is likewise essentialemark that the
wave into which a corpuscle is incorporated is alwaysreled over a bounded region of
space. It exists only as bounded wave trains, so unboundsathmomatic plane waves
in space and time are abstractions, as well as shayiomaves that extend to infinity,
moreover. As Schrédinger has quite rightly remarked, just that bounded character of
wave trains that permits one to speak of the beginningeadohg of an interaction. It is
what permits one to construct devices that have theteffespatially separating the wave
trains that each correspond to a well-defined value gqpfamtityA, and thus, to perform
measurements at the microphysical level. It then sdbat this concrete conception of
measurement is compatible with a permanent localizatonaawell-defined motion of
the corpuscle, and the arguments of Einstein and Sclg@diwith all of their weight,
show clearly that it is necessary that the corpuselcalized with the wave if one is to
avoid certain truly inadmissible consequences of the pregenpretation.

To our way of looking at things, the distinction betweade pure case and the
mixture, which was quite rightly introduced by von Neumatakes on a concrete
significance that does not appear in the exact, butyabdtract, formalism that was
discussed in chapters Il and .

One has a “pure case” when the wawiz., the exterior part of the wawg of a
corpuscle is formed by a superpositioniatierfering components, and the corpuscle
follows one of the streamlines that results from thgierposition. On the contrary, one
has a “mixture” when the various components of theaintiavev cease to interfere at
the end of the interaction, either by a sequence aia$gaparations of the wave trains or
by a sequence of directing phenomena, in the sense ofi¢hgave that word in the last
paragraphs. The corpuscle is then found to be hooked tonestfdhese components,
and until we know that, our ignorance will be représérby a mixture.

It is upon assuming that viewpoint — namely, carefulbtidguishing the objective
wave u from the subjective and predictive wa4, and thus establishing a clear
distinction between objective and subjective — that fdrenalism of von Neumann’s
theory seems to us to have been included and interpreted.

We shall, moreover, arrive at an analogous conaiusiadhe last chapter, which will
be concerned with von Neumann’s thermodynamics.



CHAPTER VIIL.
GLIMPSE OF VON NEUMANN'S THERMODYNAMICS.

1. Introduction to von Neumann’s formalism in thermodynamics.— First recall
some points regarding classical statistical thermoayc® Boltzmann established the
celebrated relation:

(1) S=klogP

between the entropy of a physical system and the pidbaifithe state of that system,
wherek — viz., Boltzmann’s constant — has the value X30*®in C.G.S. units and the
absolute temperature scale. The relation (1) has beemnncedfby an immense volume
of verifications that were deduced from its consequences

If we consider a set dd systems that are distributed into a certain numbetaiés,
in the classical sense of the word, in such a wayttleae will ben; states in the staie

(with Zq = Nj then one will easily find that the probability of tlshstribution will be:

N!

(2) P=

SinceN and then; are assumed to be large, Stirling’s formula pesroite to set, very
approximatelyN! = N¥ ™ andni! = n"e ™", and one easily gets:

(3) logP = logN! = > logn ! =NlogN-> nlogn .

Setp = n;i / N, wherep; is the statistical weight of the statm the distribution. Since
> p =1, we will have:

(4) logP=-N>'p logp +NlogN-N > plogN=-N> plogp .

As a result, from formula (1):
(5) S=-kN) p logpi,

which is a classical formula from statistical thedynamics.
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If we would like to now construct quantum thermodynarnties we must modify the
definition of entropy by replacing the classical conagfpthe state of a system with a
wave function.

Recall the algorithms of chapter Il. When the varistages o\ systems that we are
considering are defined by wave functiogs, ..., ¢, ... that define a complete,
orthonormal system of basis functions (for examgble,proper functions of a measurable
guantity), one can convert von Neumann’s statisticalim® into its diagonal form by
taking theg; to be basis functions; one will then have:

(6) Pu = pk & [Z Py =1j :

Moreover, the matrix lod®, whose elements are (&« = da log p«, will also have a
diagonal form. It is then natural to convert the Bminn formula by defining the
entropy upon starting with the statistical matiand setting:

(7) S=-KkNTr(PlogP),

because that expression, which has a value that is imdiepieof the chosen system of
basis functions, by reason of the invariance of theetrwill be expressed by:

(8) S=-kN > p,log p,
k

in the basis system where the matrieand logP are diagonal, in such a way that we
come back to the old formula (5).

We shall seek to determine the maximum entropynadrae supposes that one has
been given the number of systeiland the valu& of their total energy.

First, recall the calculation of that maximum iassical statistical thermodynamics.
One can writed log P = 0, with the condition®N = 0 andd = 0, which leads us to
introduce the Lagrange multipliessand$, and to write:

(9) Alog P —aN-fE) = 0.
Namely, from (4):
(10) -N Zép, [logpi+1+a+/F]=0

for any variation of p  such that Zpi remains equal to 1

(becauseYE =Y Edn=N> EJ pj. One deduces from this that:

(11) p=e? &
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This is the classical Boltzmann-Gibbs law, which can ks written:

o FE

k

(12)

when one takes the conditioE p. = 1 into account. If one compares this expression

with the one in the theory of perfect gases then onesea tha3 = 1 /KT, whereT is the
absolute temperature of a setMfsystems, which is assumed to be well-defined; for
example, by contact with a thermostat.

One then easily finds that entropy of the most probdiskeibution (which is almost
always realized) will be:

_BE
(13) S=-kN plogp =kN|log) e T+ ———F

_E
SetZ = Ze kKT - this is Planck’s “state sum.” We have:

S= kNPog z—ﬁa'ggz]

_NalogZ
0B
F=E-TS=- kNTog Z

(14) E=

as expressions for entropy, energy, and free energy

In von Neumann’s quantum thermodynamics, the tations are completely parallel
to the preceding one. One must express the iddhé entropy (7) is a maximum under
the conditions:
(15) TrP=1, E =NE-N Tr(PH) = const.,

whereH is the Hamiltonian matrix of any of tiesystems. One must then write:

(16) 0> R, logR, =0, with 0> R, =0, & RH, =0,
k k kI

S0, upon introducing Lagrange multiplieraand .
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a7 52 P, log Pkk+a'52 Pkk+,352 P,H, =0,
k k kI

which one can also write:

(18) Z5Pkk[|09 P|<k+1+a+,3Hkk]+,325Ple|k =0,
K

k#l

which is a relation that must be verified for aralue of Py . It is then necessary that
the system must be in an energy proper stéte=(0 fork # 1) and that:

(19) Pac= €777,

moreover, withe™®»" €™ =1, since} R, =1. Thus, upon setting(3 = Tre™",
k k
one will get:

0 P T T Z(B)

e e

As in the classical theory, one proves tfat 1 / kT, and one finds for the most
dlogz _ 190z _ 1

probable state (while taking into account the taat === =—- ZTrHe?:
op Zop Z
S:m-ﬁ-[ ghst (B H+log 2] = kh{log Z+w}
Z(B) z
dlogZ
=kN| log Z- ,
(21) { T }
E = NTr(PH) = - N2199Z.
yé4
F=E-TS=- kNTog Z

One thus recovers formulas (14) of classical tieéil thermodynamics, but with a
different definition ofZ. Formula (20) teaches us that the statisticalgitepf the
~BE«
guantum statély, with energyEx = Hyk in the mixture will beﬁ, which indeed
e k
k
brings us back to the canonical Boltzmann-Gibbs law
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2. Reversible and irreversible evolution— The preceding considerations led von
Neumann to distinguish the two types of evolution atnierophysical scale- namely,
reversible and irreversible evolutionghat would result from the measurement.

The reversible evolution of a system or a set ofesys is represented by an entirely
determinate evolution of the wave function of the systerall of the wave functions of
the systems of the set. If one is dealing with a pase,cand if’(0) is the initial form of
the wave function then that evolution will followetlequation:

(22) L9 —Hy,

whereH is the Hamiltonian operator of the system, which dlindependent of time if
the system is isolated. One will then have:

(23) Yo =er" W),

L 1(2m .Y - . .

with e = Zﬁ(TtHj . The pure initial case will then remain a pure casee T
27y, n Sy
operatore" hase " for its adjoint, as one will easily verify, in suahway that its
inverse will coincide with its adjoint. It is then a tamy operator that preserves the
traces of matrices, so the entrdpgf a set oN systems in the statd, which is equal to
— kN Tr(P log P), will thus remain invariant in the course of the evolnt viz., the
process will be reversible.
Now, consider, no longer a pure case, but a mixture & pases. Each of the

functions®®(t) of the pure cases will evolve according to the wavetémué22), where
H is the Hamiltonian operator of each of the identigatesms that are considered. Each

of these evolutions is entirely determinate, and thezafepresented by:

(24) PO = e " W)

i.e., by a unitary transformation &#®(0). The evolution of the statistical matrix will
then be given by:

(25) P(t) = > pR(Y),
or by:
(26) CHIm =D PO,

it WOt = > ()4
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The trace ofP, which is equal to) ka‘ cM (1) ‘2, is preserved by the unitary
k |

transformation (25) of th&P™, which preserves the norm &®: ie., Z‘c,"‘)(t) ‘2.
|

Therefore, here again, the entrdpgf the mixture will remain invariant, just as it doas i
the pure case.

According to von Neumann, the irreversible transfaroms will correspond to
processes that are not subject to determinism thabeviiroduced at the moment of the
measurement interactions. The interaction of theesy®r corpuscle 1 under study by a
measuring apparatus 2 (or, in our presentation of things, imdemator corpuscle 2) will
correspond to a determinate and reversible evolutioneogltdbal system 1 + 2 up to the
point at which there is a macroscopic confirmationhefindividual state of the system 2
by the observer that would interrupt that evolution lpr@cess that is neither reversible
nor even causal, in the present interpretation.

If the initial state of system 1 is a pure case thénf thep; will be zero, except for
just one, which is equal to 1. The entrdpgf the system will then be zero, and it will
remain so as long as the system is isolated and ev@vessibly. If the interaction that
follows the measurement with the system 2 then toams the state of system 1 into a
mixture then all of thgpx become less than 1, and the entropy of system Dbhwibusly
become positive.

The measurement process is therefore irreversillessmccompanied by an increase
of entropy. The chain of reversible evolution is brgkeand one can no longer
reassemble the state that preceded the measurementhieoane followed it by any
means.

Von Neumann also showed, by a very long argumentifitred initial state is already
a mixture then any measurement that effectively meslithat mixture will have the
effect of increasing entropy.

Von Neumann’s conclusion is that any measurementingikase entropy, and will
in turn have an irreversible character. That irreNodlity is obviously linked to the
destruction of phase differences by the measuremenivdsalready pointed out and to
the impossibility of reassembling the state that edistefore the measurement from the
state that exists after the measurement, which resoitsit.

3. How the theory of the double solution must interprettie irreversibility that
results from measurement processes: Since the increase of entropy that is provoked
by a measurement process is linked to irreversibility, wbathe origin of that
irreversibility, when it cannot result from indetermsim in a causal theory? It seems that
in the context of the ideas that we have discussatlirtleversibility must be interpreted
in the following fashion: After the measurement, eitther initial waveu will have been
fragmented into spatially-separated portibhas and the corpuscle will be finally found
in one of these wave trains, or the corpuscle that w@@rm the initial waveu is
finally hooked onto one of the componeftby a process like “directing.” In one case,
as in the other one, there will no longer be any fatence between the componeuts
andv after the measurement, and the phase differencesbetithese components will no
longer intervene. If one assumes that viewpoint thenill clearly appear that von
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Neumann’s increase in entropy after the measuremeat & @ll linked to the perception
of the result of the measurement by the observer, buhdmbjective fact that the
corpuscle will, as a result of the action of the meag device, be finally found to be
hooked to just one componetin the superposition that constitutes the initial puseca

Our ideas regarding the relationship between the warel the wavéd permit us to
make this more precise. In order to represent the pidpabate after the measurement,
physicists will be led to construct the functity that corresponds to the “hooking” of
the corpuscle to each of the componegtsof the initial wave. If the result of the
measurement is not known then in order to represenptbigability state, one must
envision a “mixture” of the set dF, with statistical weighty = | ck [ that are equal to
the squares of the moduli of the coefficient of gaeén the original wave. However, once
the observation of an observable, macroscopic phemmmieas permitted us to know the
result of the measuring process, it can no longer presbat one¥,, which will again
constitute a pure case. The phase relations betweeh thél then disappear, and one
can no longer reassemble the initalfrom the final¥. That is why in von Neumann’s
theory, which involves the subjective wave functighexclusively, the increase in
entropy by the measurement will correspond to a lossfwrmation” about the phase
differences when we pass from the initial pure castheéomixture that represents the
probability state after the measurement when one doekmown the result. That
concept is in accord with the well-known idea in cybeosetthat information
corresponds to entropy, with the opposite sign (i.egentropy), in such a way that a
diminishing of information is the same thing as an inaeasentropy (cf., Shannon,
Léon Brillouin).

Despite the great interest in the links that can laglerbetween information and
entropy (with the sign changed), it seems certain thatehtropy of a physical system
corresponds to an objective situation, and cannot benedkefby starting with the
information (which can be more or less exact) ofeolers. The increase of entropy that
is provoked by the measurement must, in our opinion, behattanot to the fact that the
observer is aware of the result of the measureni®ritto anobjective process that
provokes the cessation of the interference betwesicdmponents of the initial wave
In the theory of the double solution, where the evotubd the waveu is determined
completely, the phases of the componemtsf v keep a well-defined value after the end
of the measurement process, but since the corpuscle leger hooked to one of the
componentsp; , and any observation that provides us with knowledgeiofophysical
phenomena will imply the localized action of a corpustlere is no longer any
possibility of knowing the phases of the other componeégsides ¢; after the
measurement.

It will be very interesting to analyze the interptieta of the increase in entropy that
is provoked by a measurement in detail using the theatyeoflouble solution. Such an
analysis will probably permit the best understanding & tlue meaning of von
Neumann’s thermodynamics.



APPENDIX

STUDY OF THE PASSAGE FROM CLASSICAL MECHANICS
TO WAVE MECHANICS IN A PARTICULAR EXAMPLE.

In this Appendix, we shall study an important precise exmtal case that shows
quite well how the passage from classical mechaniegt@ mechanics is introduced in
the present interpretation.

We envision an “electron gun” that is basically definedahyincandescent plate
that emits electrons, which is followed by a grlBethat carries an electrostatic potential
that is much higher than that of the plate.

P G

Figure 7.

A flux of electrons leaves the mouEhof the electron gun with roughly the same
energyW and forms a parallel sheaf. In wave mechanics, tl@afshill be associated
with a wave train that has a cross section thatjisal to that of the mouth and can be
roughly assimilated into a piece of a monochromaticeplaave with a frequenocy=W/

h and wave lengtil =h /p.

In the regionR, the electrons pass through an electrostatic fieddl it created by
human means, and which, in turn, will vary only slighigm the scale of the wave
length (which is of order at most £0cm). We know that it will then result that wave
that is associated with one of the electrons willppgate according to the laws of
geometrical optics, which will permit us to define rayectories in a classical fashion.
After traversing the static field, the electrons\arat a photographic plafé where their
arrivals will be inscribed by successive local actions.

We shall then assume that we have a “mdsat our disposal, which we can possibly
place at the mouth of the electron gun. This mesheixqd with equal holes that are
extremely close and distributed regularly over its safavhere the diameter of the holes
is so small that they seem almost point-like to usaktsd sufficiently large that they are
bigger than the wave length

We shall analyze the production of the phenomena &hnat observed on the
photographic plate in the case where there is no mesghhen in the case where the
mesh is placed on the mouth by successively adopting thepamet of classical
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mechanics, then the interpretation of wave mechanit¢hébgouble solution, and finally
that of the usual interpretation of wave mechanics. $toaly will be very instructive.

1. Viewpoint of classical mechanics.

a. The mesh is not in place. A trajectory will possibly pass through each point of
the mouth of the electron gun that will be normal to plene of that mouth. In the
region R, the static field will curve the trajectories, whichllwhave the effect of
increasing their density in certain regions and rangfyi in other regions. It will then
result that the relative of number of trajectoriest tinaverse equal areds in the plane
M will vary from one point of that plane to anotheo, there will be variations in the
photographic impression on the plate. In Hamilton-Jattwdmry, the trajectories will be
rays of the propagation of a fictitious wave in the geoig@toptics approximation, and
it will then result that the density of the trajea¢srthat pierce an arel of the plandl
around a poinM must vary proportionally to the square of the amplitafi) of the
Hamilton-Jacobi wave at the poiM, if one nonetheless assumes the very natural
hypothesis that all of the trajectories that leavenb@th of the electron gun are equally
probable. Indeed, experiment shows that the variatiotise photographic impressions
will be proportional taa’(M) at the different pointM of the plate.

b. The mesh is in place.Certain electronic trajectories will be stopped &/ gblid
parts of the mesh, while other ones will pass throbgtbles in it. Since these holes are
very close and uniformly distributed over the surfacehef mesh, we will have a very
dense set of bundles of electronic trajectories thedpesfrom the holes of the mesh.
Each of these bundles can be considered to a buntdg6f the Hamilton-Jacobi wave.
It will further result that the density of the trajedes that pierce the plamé of the plate
will be, in the mean, proportional &5(M), and as a result, the same thing will be true for
the photographic impression. There is therefore no eabkdifference between case
and caseb, as far as the interpretation of the distributionetdctron impacts on the
photographic platél is concerned.

2. Viewpoint of the interpretation of wave mechanics by theheory of the
double solution.

a. The mesh is not in place.In the theory of the double solution, the electn i
very localized accident in the structure of the objectixaveu, which is assumed to be
everywhere proportional the wa#e before that accident. Each electron that escapes
from the electron gun will thus be incorporated into a/avrainv whose transverse
dimensions are macroscopic, since they are equal talithensions of the mouth.
However, the electron has a position and a well-déftngectory at the wave front, and
since that trajectory is defined by the guidance formuid, the common phase of the

. . . . . 1
wavesv and¥ is equal to the Jacobi function, one will see (sinee- —grad9) that the
m

possible trajectories of the electron will again cadecwith the rays of the Hamilton-
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Jacobi wave. Therefore, although the electron is ngelo conceived as an isolated
material point here, but as a local accident thataerporated into a wave, the electron
trajectories will be the same as in classical meitisa and the interpretation of the
variations in the photographic impressions on the sudédtee platel1 will remain the
same as it was ind..

b. The mesh is in place.Here, when an electron leaves the gun, we mushaagt
small wave trairv carries the electron through one of the holes imtbsh. Since these
holes have dimensions that are very small at oue sbat very large with respect to the
wave length, we can consider the wave train that feawe of the holes as coinciding
with a small piece of the Hamilton-Jacobi wave, andesthe holes on the surface of the
mesh are very numerous and regularly distributed, théagae formula will further
show us that the electron trajectories will coincide,in 1, with a very dense set of
bundles of rays of the Hamilton-Jacobi wave. Therpretation of the distribution of the
photographic impressions on the plétewill thus once more be exactly the same as it
was in 1b.

3. Viewpoint of the usual interpretation of wave mechanics.

a. The mesh is in place.Contrary to what we did in paragraphs 1 and 2, we shall
commence with the case in which the mesh is in pléwdeed, it is by studying that case
that we shall bring about the agreement between cddssrechanics and wave
mechanics, according to a method that is frequently diedus the usual treatments.

If the mesh involves only one hole then the widvef an electron once it leaves the
gun will be reduced to a small wave train whose transv@diraensions will be negligible
at our scale. This small wave train will slide alonge @f the ray-trajectories of the
Hamilton-Jacobi theory. The usual interpretation wikn tell us that the electron is
localized in the wave train, which is distributed stetadly over all of its extent.
However, since the wave train is roughly point-like at ecale, everything happens
practically as if the electron were a material point that dessritne of the trajectories
that were predicted by classical mechanics. That iswdgan bring about agreement
between classical mechanics and wave mechanics icaieewhere the propagation of
the wave conforms to geometrical optics, and the t@jgas defined approximately at
our scale by the hole that is pierced in the mesh thatrsahe mouth of the gun.
However, this agreement will conceal a great differencgrinciple, since in the usual
interpretation of wave mechanics the corpuscle is noelongorously localized in the
wave train. The trajectory is no longer defined raymly, but only a very fine bundle of
Hamilton-Jacobi rays-trajectories that constitutesod of very thin tube in which the
corpuscle is presemtithout being localizeénd which, at our scale, appears to be a line
with no thickness; it is a sort of “pseudo-trajectory.”

Now, pass to the case in which the mesh is piercddamwrery large number of small
holes that are distributed regularly over its surfacéhethe electron leaves the gun, its
waveW will be composed of a very large number of small sépdraave trains that will
define a very dense sheaf of pseudo-trajectories. Isisteaaccount for the fact that the
distribution on the photographic plate of the intetises of the pseudo-trajectories with
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the pland1 will always be given by the functiaf(M). With the usual interpretation, the
electron will not describe any of these pseudo-trajedprit will be statistically
distributed with an equal probability over every setlase pseudo-trajectories. This
concept is somewhat strange. What is more, at theemiowhen the local photographic
impression is produced, the electron chomsesof these possible pseudo-trajectories, in
some way, in order to be localized at the point whepgerces the planB. Despite the
strangeness of this concept, it nonetheless permitsoconederstand the origin of the
distribution in a%(M) of photographic impressions on the plate better. Indéwt,
distribution comes from the distribution of interseos of the pseudo-trajectories with
the plandT.

b. The mesh is not in place.This is the most interesting case. When the relect
escapes from the gun, it is then associated with & wain¥ whose transverse section
has macroscopic dimensions, namely, those of the moUtie usual interpretation of
wave mechanics tells us that the electron will lsistically spread over all of the
volume ofmacroscopialimensions that is occupied by the wave train. Thetbus no
longer any question of defining the trajectories, nor everpdeudo-trajectories. Once
again, we are led to say that at the moment whemldatron produces a photographic
impression at a point &1, will briefly choose the very small region whetesilocalized,

a conclusion that, as Einstein has often emphasigad,dontradiction with the validity
of the usual notions of space and time, even at tloeaseopic scale. Moreover, in order
for there to be agreement with experiment, we are\&lvedbliged to assume that the
distribution of photographic localizations on the plBtés given by the functiom?(M),
but here that assertion cannot be justified at all bysidening the intersection of the
trajectories or pseudo-trajectories with the photograplatepsince there are neither
trajectories nor pseudo-trajectories, now; it must theea purely arbitrary postulate.

Conclusions. — From this detailed analysis of the experimental detheg was
studied, one can infer the following conclusions: Perhagsds not prove the falsehood
of the present interpretation of wave mechanics, bat least shows, without a doubt,
that the law of distribution of the corpuscular locafians ina” = | W [ has a perfectly-
intelligible origin in the interpretation of wave mecies by the double solution, as it
does in classical mechanics, while it takes on the agifiemn entirely arbitrary postulate
in the present interpretation, and despite everything, tijgsts a certain element of
doubt into the validity of that present interpretation.
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