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Introduction

This collection of selecta represents a tributary wilgion in the history of a
mathematical idea, namely, the role played by geodedasfin the calculus of variations
for multiple integrals. Along the way, one also skesv the nature of the problem
suggested the introduction of the methods of the calailasterior differential forms as
a convenient tool, the basic concepts of contact gegnaaid eventually the notion that
what finite variations actually seem to represent afferdntiable homotopies of the
objects being varied. The infinitesimal variations arenthenply the vector fields that
one obtains by differentiating the homotopy parameted, taus represent infinitesimal
generators of differentiable one-parameter familiestmécts that begin with the object
that one is varying.

As one learns in the calculus of a finite numbérvariables, the necessary and
sufficient condition for a critical point of a twigdifferentiable function to be a local
minimum is that the Hessian matrix that is definedthmy second partial derivatives of
that function must be positive-definite. In the cakmfmity variables, which is how one
can regard the calculus of variations (at least, becaily), one sees that since the matrix
in question would be potentially infinite in its numbersrows and columns (and
probably not even countably infinite), some other approacst be taken.

Weierstrass and Legendre obtained in the case of ealtmmves were sufficient
conditions for a “strong” and “weak” local minimumgspectively. Indeed, the Legendre
condition is the positive-definiteness of the Hes$marthe Lagrangian function itself, at
least when one considers the partial derivatives wittpaet to the velocities.
Furthermore, the customary analysisf sufficient conditions for an extremal curve ® b
a (strong or weak) minimum involved the constructiondafer fields of extremals in
which the given extremal would be embedded, the Hilbert inukgp# integral, and the
Weierstrass excess function.

Apparently, the genesis of the chain of events thdo@mented here in translation
was a paperd by Clebsch that attempted to extend the well-estadlistihneory of
extremal curves to extremal submanifolds of higher dinsensin a series of brief notes
[4], Hadamard later commented that the problem of estatdjshifficient conditions for
an extremal submanifold to represent a strong or weakmamifor the action functional
in question was more involved than it had been in the o&sninimal curves, such as
geodesics. Previously, the theory of sufficient cbods for a minimal curve had been
adequately described by Legendre, who gave a sufficienttmméir a weak minimum
and Weierstrass, who gave a sufficient conditionaf@trong minimum. The Legendre
condition was concerned with the character of thereglees of the Hessian of the
Lagrangian function for the action functional, while Weierstrass condition involved
introducing an “excess” function that allowed one tocdbs the difference between the
values of the action functional on an extremal camne a neighboring curve that did not
have to be extremal. What Hadamard contributed waslynasstrengthening of the
Legendre condition for a weak minimum.

! Some standard references on the calculus of variatiasddress the details of these conditions are
Bliss [1] and Gelfand and Fomir2].
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It was the seminal papées][of Caratheodory that first addressed the issues brayght
by Hadamard in a definitive way. In his formulation loé tWeierstrass condition for the
strong minimum, he introduced the concept ajemdesicfield, whose existence is a
stronger condition than the existence of a singleeexdt, and amounts to a foliation by
extremal submanifolds. In the case of extremal submidsifof dimension greater than
one, he found that the existence of such a field wascassary part of defining the
Weierstrass excess function, as well as the embedditige given extremal in such a
field. In the process, he made essential use of theeHlilindependent integral, the
Hamilton-Jacobi equation, and ultimately introduced @aeatheodory complete figure
of a variational problem, which consisted of a pairahplementary foliations of space
that were defined by the contact elements of the geodesicand some transversal
vector fields that appear in the process of its dedinitiThis construction generalized the
picture that emerges in geometrical optics, or therthef first-order partial differential
equations, in which there is a foliation of dimensiore @efined by the null geodesic
congruence and a transversal foliation of codimensim that is defined by the level
hypersurfaces of the eikonal function, which are themggioally equidistant.

Later, Caratheodory presented his work on the cal@aflyariations in an influential
book [6], in which he took the canonical — i.e., Hamiltoniarppra@ach for the most part.
The general theory of the Hamilton-Jacobi equation andpplication to the problems of
physics was also eventually documented in the definiteatise of Rund{].

Some time after Caratheodory’'s paper on multiplegrals in the calculus of
variations, Hermann Weyl commented on Caratheodorysftation of the problem,
first in a brief note to the Physical Revie8],[in which he applied the methodology to a
critique of an early attempt that Max Born made at fdatmg quantum
electrodynamics, and later in a more comprehensiideaith the Annals of Mathematics
[9]. Weyl characterized Caratheodory’s approach as mnehich the integrand of the
action functional was defined by a certain determinantJewtis own version of the
theory was a simpler version of the theory that inedla trace. He also showed that, in
effect, the trace theory was an infinitesimal approtimmato the determinant theory.
However, it was eventually recognized that the twooties produced different
conclusions.

One of the parallel chains of development in thisesesf advances in the name of the
Weierstrass problem was the fact that the matheraasiavere gradually recognizing that
the calculus of exterior differential forms seemed represent a natural tool for
applications to the calculus of variations. In 1921, Capablished his lectures on
integral invariants 0], in which he more specifically showed how exteridfedential
forms could illuminate the problems of the calculus afiations at a fundamental level.
This calculus was also discussed by Goursat in a hbfjkHat he published in 1922 on
the Pfaff problem, which grew out of his own work in partéferential equations.
Later, de Donder developed this idea further in two bodRs13] on integral invariants
and the invariant theory of the calculus of variatiorspectively.

As one sees in the selected readings, Boerbdlr Géhéniau 15], Lepage 16,
Debever 17], Holder [18], Paquet 19, van Hove 0], and Dedeckerdl, 23 carried on
this tradition quite effectively; one also notices ttiet Belgian school of researchers was
mostly developing the ideas of De Donder. As van Hovetpoout, the Lepage
congruences define a concise way of relating that vadefisitions of geodesic fields as
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being equivalent in a reasonable sense; in particulardiffering approaches of De
Donder-Weyl and Carathéodory are seen to be equivaletiheinsense of Lepage
congruence and can be converted to each other by meam®wtaat transformation, as
shown by Hdolder.

When one proceeds from the study of the exterior réiffial calculus to study of
exterior differentiakystemsone arrives at one of the modern approaches tcalbelas
of variations (see,23, 24]). One of the directions that this took was an insirea
emphasis on the formulation of Hamiltonian mechamcymplectic manifolds, as well
well as the Hamilton-Jacobi problem in mechanics. H@&wnewne should notice that
some of the identifications that make this all quiteural in the case of point mechanics
actually seem increasingly contrived and non-intuitivieéemw one goes to variations of
higher-dimensional objects, such as submanifolds and fiflltiss, it is probably best to
keep an open mind about the relative advantages of therggnaand Hamiltonian
pictures when one is not always concerned exclusively patht mechanics, especially
if one wishes towveakenthe integrability assumptions that one makes abqltyaical
system, not strengthen them. For instance, in reaEvphysical systems, there are such
things as non-conservative forces and non-holononmstcaints to contend with.

An important aspect of Dedecker’s formulation of ta&wlus of variations inZ1] is
his choice ofdifferentiable singular cubic chainis a differentiable manifold1 as the
basic objects that one is varying. These topologicdtlihg blocks are no loss in
generality from the use of compact submanifolds, and @tieely natural when one is
using exterior differential forms, since one usualljirees the integration of differential
forms over such chains at the elementary level. &lelimear functionals on chains that
are defined by the integration of differential forms d&e immediately identified with
real cochains, which is an elementary form of de Rhalngsrem. A finite variation of a
k-chain in a manifoldM is then a differentiable homotopy of that chain, whseah also
be regarded as a differentiable singular cubid-chain. Clearly, if one intends to
investigate the topological aspects of the calculus afations, this is the correct
foundation. Indeed, one might confer a later monogfaghby Dedecker, in which he
expanded upon some of the themes of the paper included cotleistion.

Some of the ancillary topics that were being develogisdwhere in mathematics
along the way, but which did not get applied in the agidkatured here, were the
introduction of jets by Ehresman2y and the increasing recognition that the most
fundamental and unavoidable kind of geometry that perdaio the study of jets and the
calculus of variations wasontact geometrylndeed, this fact was already recognized by
some figures of mathematical physics, such as Hamjké} Lie and Scheffer 47],
Vessiot 8], and the aforementioned HAlddi§]. Hence, in our introductory remarks on
a more modern formulation of the Weierstrass problemshed discuss some of these
innovations as they relate to the readings.

What follows in this Introduction is then a summaryhofv one uses geodesic fields
in the formulation of the Weierstrass problem when odudes some of the more
modern considerations of jet manifolds and contact eleamentus, we commence with
a somewhat lengthy general discussion of these @iterepts.
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1. Contact elements and jets. Suppose® is an orientabler-dimensional
differentiable manifold with boundary, which will playetliole of a parameter manifold

for us. Indeed, we will usually rega€das a closed subsetRf, so one can also refer to

the points byr-tuples ¢, ..., t") of coordinates® directly. For instance, if the central
object of consideration is a curve thénwill be a line segment, such as [0, 1], for the

sake of specificity. If one is concerned with surfacen{® will be two-dimensional,

such as a closed dif?.
Now, let M be an orientablen-dimensional differentiable manifold in which our
objects are defined as submanifolds, wherer-@imensional submanifold iM is a

differentiable mapc O - M. If tis a point inO andx(t) is its image inM then the
differential mapdx:: T:O - TypyM takes the-dimensional vector spadeO to anr'(t)-

dimensional subspace &fyM, wherer'(t) is the rank of the linear maix:. Hence/'(t)
=r att iff dx; is a linear injection, so, if one desires that thiswdd always be the case
then one implicitly demands thatmust be anmmersion Since immersions can still
have self-intersections, which would make their imagesnger represent differentiable
manifolds, a stronger condition to impose is thdte anembeddingwhich means that

when one giveg(O) the subspace topology M — viz., its open subsets are intersections

of open subsets in the topology & with x(O) itself — the mapx becomes a
homeomorphism.

a. Contact elementsOne can think of thg(t)-dimensional linear subspadg(T:0)

as thecontact elementb x(t) that is defined by att. In the simplest case of curveshh
this contact element will be the lineTpyM that is tangent to the curxé) at each point.
Note that this line field is generated by the velocity eedield dx/dt iff the velocity is
non-vanishing for every. One can also introduce thmojectivized tangent bundle
PT(M), whose elements are lines through the origins inahgent space thl, and think
of a line field along the curvet) as a special type of curve RT(M) itself.

More generally, the contact elemex(T.O) will be anr'(t)-plane inTyyM, and ifx
is an immersion then one can introduce the Grassmamdganifold V., . (M) of r-planes
in TxyM and define a section &™(M) — M alongx(t) to be the association of each
O with the image vector subspaté(T.O) in V" ,(M).

This is the route that Dedecker followed in his artj[@# on the use of differential
forms in the calculus of variations, but in the imgering years it has become more
customary to go the route of jet manifolds in order tecdbe contact elements and
contact geometry. Fortunately, the transition fronagsSmanian manifolds of tangent
subspaces to jets is quite immediate.

b. 1l-jets Thel-jet j'x of aC! (i.e., continuously differentiable) function ® — M
att 0 O is defined to be the set of @l functionsx: U; — M that are defined in some
neighborhoodJ; of t and have the properties that their valdég all agree withx(t) and
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the values of their differentiats|; all agree with that afix; . If the coordinates a [
R" aret®, a=1, ...,r and the coordinates of some neighborhoox(t)fin M arex, i = 1,

..., m then the points in the image @1 that lie inside the coordinate neighborhood

aroundx(t) can be described by the systermoéquations i independent variables of
the formx = x(t%), while the values of the differential malyj; can be described by a
system ofm equations im independent variables of the form:

ox
ot?

%= (1).
More generally, we can regard theH{m + rm)-tuple of coordinatest{, X, X)) as a
coordinate representation of the 1-jgjix that are associated with the poinfl O

described by thé€® and the poink 0 M that is described by. However, ther(+ m +
rm)-tuple ¢, X, x.) is more general than the previous discussioroafact elements in
several ways:

1. We are not requiring that tiebe associated witt by way of aC* functionx: ©

—~ M, and similarlyx., is not functionally related to eithéror X.
2. Since there is no functional relationship betme, andt®, one cannot require
that x, take the form of a matrix of partial derivatives.

3. We have made no restriction on the rank ofthgrixx. ; indeed, it could even be

0.
In order to address these situations as spesakaaf a more general construction, we

first agree that the 1-jef'x does indeed represent aparameter family of contact
elements of dimensionDr'(t) < r in the tangent spad&M. The set(©; M) of all such
1-jets can be given a topology and local coordmatestems of the form?®( X, x.) that
makes it a differentiable manifold of dimensioam+rm. One callsJ*(©; M) the
manifold of 1-jets of Efunctions from® into M.
There are three canonically defined projectioras #re associated with the manifold

JHO; M):

source projection: JY(O; M) - O, jix >,

target projection:  JY(O; M) - M, X X,

contact projection: JY{(O; M) - OxM  j’X > (t, X).

None of these projections are fibrations, but tleg submersions; i.e., their
differentials have maximum rank in each case. A®m@sequence, the fiber over any

point of the image manifold will be a submanifoltl 3(®; M), although one does not
always have local triviality of some neighborhoddeach fiber that would make the
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submersion a fibration. Henc#(O; M) is referred to as fibered manifoldrelative to
any of these projections. Locally, the fibers are pararzed by £, x.), (% x.), and
(X.), respectively.

In case of the contact projectid(@®; M) — OxM one can see that the fibers are
affine spaces that are modeled onrthedimensional vector spad€r, m) of linear maps
fromR" into R™. In fact, it will be crucial at a later point to umseand that any element
jix can be regarded as a linear map fr&i@ to T«M, which defines a canonical
identification of the fiber of the contact projectimver {, x) with the fiber of the
projection ofT'© OT(M) — OxM over ¢, x).

It will prove intuitively useful to represent the elents of}}(®; M) schematically as

in Fig. 1, in which the dimensions of the manifo@sM, andL(r, m) have been reduced
to one for ease of representation.

Figure 1. Schematic representation
of an elementj’x in JY(O; M).

c. Sections of the projectiandn order to account for the functional relatibips
between the® and both thed, as well as thg,, we introduce the concept okactionof

the source projection, which will beG maps: © - JHO; M), t > §(t) such that the

source projection takes eas{t) back tot. When this is not the case, we shall call the
sections a singular sectionof the source projection. Hence, in either cds¢éhe
coordinates in a neighborhoodtadret® then the coordinates of the points in the image of
swill be:

S(H) = ¢ X (1), %, (1))-

In the particular case:

t) = (%, X(1), X, (1)),

where the<fa(t) are the partial derivativedx/ot(t), we shall refer to the secticnas
integrableand also regard it as theet prolongationof the mapc:
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S=jx.
This means that the integrability conditions for a gelhgection take the local form:

. OX
ot?

If one rewrites this in terms of coordinate diffeialstonJ*(O; M) as:
dX =X, dt®

then one sees that if one defines the sendfforms onJ'(©; M) that take the local
form* -
@ =dxX - x dt?

then one can say that a sectio® — JY(O; M) is integrable iff:

SW=0 foralli=1, ....m.

As we shall see, these 1-formsplay a recurring role in all of what follows, and thei
simultaneous vanishing at a pointXf®; M) defines a subspace TigJ") of codimension
m. The sub-bundle oF(J") that consists of all such linear subspaces is refeaas the
contact structureon J*(©®; M). If one regards the sectiom ©® - JY(O; M) as a

submanifold ofJ*(©®; M) then the integrability of the sectianmeans that the tangent

spaces to the submanifold must be subspaces of the canatiire on*(O; M).

We illustrate the nature of general sections, singeetians, and integrable sections
of the source projection schematically in Fig. 2.

2 Although these 1-forms can be generalized to non-teqgadessions, since it will not be necessary for
us to have that definition in what follows, we onlyerethe curious to the literature, such as Goldschmidt
and Sternberg3[] or Saundersd1].
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M
(@]
Non-singular section Singular section Integrable section

Figure 2. The basic types of sectionsg'$&; M) — O.

In order to make sense of the Lepage congruences thdefared in 6], and which
we will discuss in more detail later, one needs dalgay that twdk-forms a and &’ in
the exterior algebra\“(J") are congruent modulas iff their differencea - @' is an
element of the ided{ «J, ..., J'} in that exterior exterior algebra that is generatedHheay
set {c}, ..., dJ. Its elements take the form of finite linear combiaas of the formA, »

o', where the,, =1, ...,N arek-1-forms ond}(®; M). That is, one writes:
a =a (modd)

iff there existA; O A**(3% such that:
a-a =A"d.

One sees that whenever twdorms are congruent in the Lepage sense their pull-
backss a ands @ by any sectiors: © - JY(O; M) will agree wheneves is integrable.

In particular, as we will discuss later, Lepage coneg¢atl on the congruence class of the
fundamentap-form that defines the integrand of the action function

d. The integrability of the contact structureSince the sub-bundle a{J") that is
defined by its contact structure also represents a eliffial system oif(J") of corankm
the question naturally arises whether that differergystem is completely integrable.
That is: can it be foliated by integral submanifolds@dimensiorm?

The necessary and sufficient condition for thiseahe case is given by Frobenius’s
theorem, which can be phrased in various forms. Thelmat is of imnmediate interest to
us is based in the fact that since the sub-bundle istiques defined by the vanishing of
the contact formso, i = 1, ...,m, it is the algebraic solution to the exterior difftial
system: _

O=w,i=1,..m
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The form that Frobenius’s theorem takes for such &8sy to say that the system is
completely integrable iff there are 1-form§s onJ{(O; M) such that:

ddd = ;" d, i=1,...m
Now if we define: _ _
) Eda}:dt"""d%

then the question at hand is whetfiis expressible in the form} A ¢ for suitable 1-
forms 7 ; i.e., can one solve:

dt* AdX, =7, ~ (dX = X,df) = 7, A dX - X7, Odt

for some set 0f7} . However, since the left-hand side does not coubéias an exterior

factor, one must have the vanishing /}tjf’\ dX, which forces the formy% to take the
form:
7, =r dX.
Since such 1-forms give:
xi7, Odf = X, 77 dX "~ df?,

and not something of the fordf ~ dxX , one must conclude that no such 1-forms exist,

and the differential system is not completely intégga
However, the fact that integral submanifolds of disiemr + rm do not exist does
not imply that integral submanifolds of lower dimens@amnot exist. In particular, any

integrable sectior © - J*(O; M) defines an integral submanifold of dimension

e. Sections of the source projectioAny integrable sectiog © — JY(©O; M) will
also have the property that:

sO =sdd)=d(s &) =0 for alli,

since integrability makes ) vanish.
More generally, when a submanifogd N — J*(O; M), with N an n-dimensional

manifold, has the property that
sO' =0 for alli

one calls it ansotropic submanifold.
Such a submanifold is also an integral submanifold odifferential system od*(©;
M) that is defined by the vanishing of &, that is the sub-bundle @(J") that is the
algebraic solution to the exterior differential equation
@' =0.
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One sees that although the differential system theefined by = 0 does not have to
be completely integrable, nonetheless, the systeineteby®' = 0 does have to be
completely integrable, since all of tBé are closed.

The maximum dimension of an isotropic submanifold isadéd by the rank of the
©'; viz., maximum dimension of an tangent subspac#(i©; M) on which®'(X, Y) for
all i when one is given any two tangent vect¥r¥ in that subspace. When an isotropic
submanifold has this maximum dimension, we shall calLegendrian submanifoldin
general, that maximum dimension is difficult to asairt although it is well-known in
the case of one-dimensional parameter manifolds, ahalediscuss shortly.

If S(u) has the local expressie(u) = (t?(u), X (u), X (u)) then the pull-back of the'
to N by way ofs has the local expression:

s (ot L) oxX 1( ot* ox, ot* oxX, ). .
so = | L au |of 2o g |=2 - du Dduf |
[au” ”j [auﬂ j 2[6u”6uﬂ auﬁau'j !

This vanishes iff all of the Lagrange brackets:

ot* ox,  ot* 0x
ou’ ou® au ouf

[u?, U] =

vanish. Hence, one can regard the vanishing of Lagrangkebsaas an integrability
condition for integral submanifolds of the exteriorfeliéntial system defined by the
vanishing of the®'. It is for this reason that maximal isotropic manfglat least when
one is concerned with 1-jets of curves, are also eddn ad agrangian submanifolds.

In the case of a sectien® — JY(O; M) of the source projection, when one expresses
it in the local form €, X(t), X.(t)), one sees that the local form of the pulled-backr@$o
on O that are defined by @' is:

sO =df s dX =dt? D(ZTX; dtbj =3 (X, ~ %) df Odt.

Hence, if one defines thm 1-forms on®:
d=xdf, i=1,..m

then the isotropy of implies the necessary condition that all of thenust be closed 1-
forms.

By contrast, the requirement thabe integrable implies the necessary condition that
all of the & be exact, hence, closed. That is, integrable sectiefise isotropic
submanifolds.
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f. Sections of target projectionA sections: M — J®; M) will have the local
coordinate form:

s(X) = (), X, X, (X))

Now, in effect, for eaclx 0 M the sectiors associates the contact elemeik)to the
point t3(x) in O.

Although the question of integrability of the sect®iis meaningless, nonetheless,
one still derives some useful consequences from invéistigne vanishing 0§ ) and
sO.

In the first case, one hd€ = (0t*/0X) dx, so:

. . . ata
W=dt - x :
S Xa[axJ

dxij = (] - X E)dX .

Hence, the vanishing sfd) is locally equivalent to the condition:
i _ i $a
O =Xt -

This means that the matnik(x) of the contact element atmust be a left-inverse to the

matrix t;(x), which is also a contact elementxatalthough the dimensions of the two
elements are generally different. Since a left-isgeran only exist when the first map
is a linear injection and the second ¢mea linear surjection, we see that in order for this
condition to obtain one must have that m and the rank of both mapsris

One can then prove that the contact elements defindmthymaps are transversal.
Consider the situation in its most elementary form:

R 0 R"OE R

The contact element that is defined bys its image, while the contact element that is
defined byt is its kernel. Since the compositibnk is non-zero everywhere except the
origin, no non-zero element of the imagexo€an be in the kernel df Hence, the
intersection of Imx with kert must be 0, and, from the nullity-rank theorem, one must
have:

R™=Imx0O kert, Imxn kert=0.

Therefore, whem < m and the rank of both mapsrishe contact elements are transversal.
This fact is at the root of the construction of thedaflaodory complete figure for more
general extremal problems than geodesic curves.

As for the expressiosn @', it takes the form:



12 Selected Papers on Geodesic Fields

s [0ttt ) [ ox. 1( ot* ox, ot axX, |
o= _dx! O] =2 d¥ |==| — - L dx! OdxX .
S [axl Xj (axk j 2(ax1 . ox axjj X

Hence, the vanishing sf@' is locally equivalent to the condition:

_O0t* 0x, _0t* 0X,

0= %y = .
KXT =309 " ax ax

. alli,j, ke

g. Sections of the contact projectioh.is the sectiong OxM — J'(M; O), (t, X) —

Z(t, X) that will be the primary focus in the sequel, sigeedesic fields represent special
cases of such sections. Hence, we shall defer ouwrsdisn of them until a later point
when we can discuss them in that context.

h. The dual jet manifold(M; ©). One can just well consider 1-jgis of C! mapst:
M - O and denote the resulting manifold of all such jets%y; ©). It will then have
local coordinate systems of the forrh €, t*).

It is important to note that the fibers of the con@ojectionJ* (M; ©) — Mx© over

each g, t) are affine spaces modeled on the vector shéRE, R"), which is canonically
isomorphic to the dual df(R", R™) by the map that take any linear map fréfito R" to

its transpose map frof to R™. Indeed, since jgit O J{M; 0) is also a linear map

from T,M to T;O the fiber of the contact projectidhM; ©) — Mx© over eachx, t) is
also identified with the vector spa@eM O T, M, which maps isomorphically to the dual
spacd, M 0T _M by transposition.

If x. © -~ MisC"and so ig': M - O then the compositioti x: © — O is alsoC".
The differential mag(t' [X)|; = dt'|xyy LdX: then takes eachO to a subspace O,

wheret' =t'(x(t)). In order for the compositiah [k to be a diffeomorphism d to itself
t'" would have to be a surjection ardvould have to be an injection, sowould be

effectively a section af. This would also make the differential maps invertdohel the
local condition for this would take the matrix form:
det¢*x’ ) 0.

We shall refer to the mapsandt’ asconjugatewhenevet' [k =1, in which case:

%= 5.
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Recall that we encountered this condition above asms\versality condition on two
contact elements. Hence, one must haventiat in this case and the rank of bothnd
t' must bem.
The three canonical projections differ only in that soeirce and target manifolds
have been exchanged. Hence, one can effectively exehbet’s with x’'s and thea, b,
. indices withi, j, ... indices. We therefore only summarize the form that key
equations of the previous section take.

For instance, since the integrability conditions fareations: M - JY(M; 0), x >
(xi, t%(x), t7(x)) of the source projection now take the local form:
ot?

ti=—

"X

one sees that the corresponding 1-forms they define are:
o =df-tdx , a=1,..r.
The corresponding set of 2-forms is then:
O = dX Odf.
If a sectiors pulls all of the®® down to 0 orM then locally one has:
SO =dX s dtf =3(t% -t2)dx Odx, alla
Hence, the local 1-forms dvi 7 = t*dx make:
se*=dr

sos © vanishes iff is closed; once again,dfis integrable ther® must be exact.
A sections: © - J*(M; O) of the target projection has the local coordinatenfor

S = (X(1), 1 (1)),
Hence, the pull-down off takes the local form:

ox’

sdf=df - t° (ﬁ dtbj = (03 —tx,,)dt*.

Its vanishing then gives the transversality conditionh@nrelevant contact elements.
The pull-down of ©® takes the local form:
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sor =2 QX O _OX O o 1 ype,
2\t ot ot at

The vanishing 0§ ©* is therefore locally equivalent to the condition:

0=t t7° :%%—%% alla, b, c.

i. The case £ 1. Since the main purpose of the articles that folloto extend the
methods of the calculus of variations that were estaddi in the case of extremal curves
to extremal submanifolds of higher dimension, we shouddudis the more elementary
case in order to show that the general methods do inédede to the more elementary
ones whem = 1.

The first thing to address is the fact that when1 the two jet manifoldd'(R; M)
and J'(M; R) take on simpler forms, namely*(R; M) becomesRxT(M) and J'(M; R)
becomesT MxR. As we shall see, when the things that one defined' @) M) and

J{M; R), such as Lagrangians and Hamiltonians, are time-indeperidis customary to

simply start withT(M) andT M as the kinematical dynamical state spaces, respictiv
The canonical 1-forms dRxT(M) become:

W=dX -V dt
Hence, its exterior derivative is: _ _ _
O =dw=dt™dv.
A sectionv: R —» RXT(M), t > v(t):

v(t) = (¢ X (1), V(1)

of the source projection is simply a vector fielgt) along the curved(t), and an
integrable section is a velocity vector field; i.e.:

i OX
V(L) =—.
O =%

When one pull®' down toR by way of a general sectionone gets:

vo = (%—v‘ j dt.
dt
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Hence, it vanishes iff(t) is a velocity vector field.
As for @', it pulls down to: _
VO =0
sinceR is one-dimensional.

A section of the target projectionM — RXT(M), x— V(X), with:

V(¥ = ¢, X, V(x)

is a vector field oM, although the time functiot{x) is somewhat unconventional as an
extra component. Its basic effect is to foligte- or at least the open sub#il M over
which the local sectiom is defined — by simultaneity hypersurfaces relative totithe
variablet. _

The pull-down ofw by the sectiow is now:

V= (3 -Vt )dx .
It vanishes iff:

\/jt,j:&.

J

However, this is impossible unless= 1 since we are basically mappiRgJ' to R and

then back tR™, which can be of rank one, at best, not namk
Similarly, the pull-down 0®' is:

s (ot )0V 1( ot oV at ov |
vO's| —dx |0 dX |=2| —— - - (dx! OdX.
(axj Xj (axk j 2(ax1 o ox axjj X

This vanishes fiff: o
[X,X] =0,
with the previous notations.
When we consider the dual situation &M; R) = TMxR, we see the familiar

machinery of symplectic geometry emerge.
The canonical 1-fornay which we now write a®g, for the sake of convention, takes
the form: _
g=dt —Pi d)(,

which defines the usual contact structurefdvixR.
Its exterior derivativ® is now: _
Q=dX"dp,

which defines the canonical symplectic form®M. That is, it is a closed 2-form that is
non-degenerate, in the sense that the linear map fromtaagent spacgxyT M to the
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corresponding dual cotangent spgge T~M that takes the tangent vector V' 9/0x + v,

0/0p; to the covector:
iWQ=-vidX +Vdp
is a linear isomorphism. _

Customarily, the contact elemgmtthat is associated with, (') is regarded as linear
momentum, since it generally appears as the conjugateentom to velocity in
Hamiltonian mechanics. Of course, this essentially maxssmatics with dynamics, and
one finds that in geometrical optics, it is more congalbt consistent to first regard the
frequency-wave number 1-forin= k, d¥' as thekinematicaldual of velocity, while
phase is the kinematical dual to time. However, fox,n@e shall simply revert to the
dynamical notation.

A sectionp: R — T MxR, t > p(t) of the source projection, with the local form:

p(t) = @, X(1), pi(t)),

is a covector fielgh(t) along the curve(t).
When one pulls the canonical 1-fo@down toR by means of it, one gets:

p 6= (1-pV)dt
which vanishes iff:

1:in|.

This is simply the transversality condition that thegent hyperplane annihilated by the
covectorp; dX cannot contain the velocity vectdd/ox. If one interprets the covector as
linear momentum then this is also related to the reqment that the point mass that
follows the curve in question must have non-vanishing kiretergy, which takes the
form 1/2pV classically.

If one pulls the canonical symplectic for down toR then one gets zero again,
sinceR is one-dimensional.

A section of the target projectionM — T MxR, x — 7£X), with the local form:

78X) = (X, 1(X), pi(¥)),

is a covector fielgi(x) on M, together with a simultaneity foliation defined by taeel
hypersurfaces dfx).
The pull-down of@to M by rris:

e (a—ti—p,jdx'.
X

It vanishes iff the 1-fornp = p; dX is exact:
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p =dt.
The pull-down ofQ by 77is:

7Q = 2 (pij —pii) dxX A dX =dp.
It vanishes iffp is closed.

Hence, closed 1-forms on any differentiable maniMlidive elementary examples of
Lagrangian submanifoldsf the symplectic manifold that is defined BYM, with its
canonical 2-formQ. That is, they are isotropic submanifolds of maximahetsion,
namelym, and therefore maximal integral submanifolds of theedéffitial system of M
that is defined by the exterior differential equatior O.

In order to derive the usual Lagrange brackets of ckssiechanics, one does not

consider sections of any projectionTdMxR, but simply submanifolds in it. Hence, let
f: N - TMxR, u — f(u) be ann-dimensional submanifold il MxR, with the local
form:

f(U) = (X(u), t(u), pi(W))-

Hence, it represents a covector fipld pi dX on the image of the submanifold, together
with a simultaneity foliation oN by way of the function.
The pull-back taN of &by f takes the local form:

ou odu
which vanishes iff:
o ox

au’ oue’

The pull-back of2 to N byf locally looks like:

N X | ap. 1( ox op  0X ap ),
Q= —du |0=—=dSf |== L du” Odu’.
[au” - j (auﬂ j 2[6u”6u” o o )

Hence, its vanishing is locally equivalent to the vanishintpe@ Lagrange brackets:

X dp 0X ap
u?, U] = -
[uf, ] ou” v’ o’ auf

foralla, =1, ...,n.

2. The action functional. It is conceptually valid, although not always
computationally useful, to regard the calculus of vemet as something like “the
calculus of infinity variables.” That is, if one wete make all of the analytical
restrictions on the definitions that would make the spafcobjects in question — e.g.,
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curves, surfaces, fields, etc. — into an infinite-din@med differentiable manifold then
the basic variational problem would take the form ofgc/ critical-point problem in

differential calculus. That is: Given a differefii@ function on the infinite-dimensional
manifold, one would first form the differential of tifienction and look for the points of
the manifold at which the differential vanished, at lealsen applied to the vectors in
some specified subspace of the tangent space at therpgirgstion.

This approach has been developed in the context of givalifatoblems under the
banner of “global analysis,” which seems to have patgd as “the calculus of variations
in the large” in the work of Morse8f] on the role of topology in the structure of spaces
of geodesic curves. However, even some of the clesf@eences on Morse theory, such
as Milnor [33], still emphasize that in order to do more tangidé&ulations one usually
avoids the functional analytic details of setting tine infinite-dimensional manifold
machinery. Some classic references in which more fumaitianalytic approach is taken
are Ljusternik 84] and Morrey B5).

Hence, since the nature of the articles that fol®wmore concerned with trealculus
of variations than theanalysis of variations, we shall only refer to the infinite-
dimensional manifold picture heuristically in order talerstand the motivation for the
elementary definitions. One also finds that for moktthe standard problems and
constructions of the calculus of variations it is mught to replace the infinite-
dimensional manifold of all objects being varied witk finite-dimensional manifold of
jets that pertain to them.

a. Action functional The basic objects that we shall be varying are sulioidsik:
O - M, t > x(t), whereO is a compact orientabtedimensional differentiable manifold

with boundary and/l is anm-dimensional differentiable manifold. Furthermore, wallsh
usually assume that< m. Hence, this class of objects includes the curve satpn
bounded surfaces, and solid regions that are most comraddhgssed in variational
problems. Although we shall eventually discuss the udsdifterentiable singulark-
chains inM as basic objects, which is advocated by DededXkr 24, nonetheless, for
the most elementary discussion it is sufficient topdy use the objects that we have
chosen.

The *“differentiable function” that one starts with tke action functional that
associates an objexwith a real numbefx]. The way that one gets around the infinite-
dimensional details is to factor this functional throupgé finite-dimensional manifold

JHO; M) by means of the 1-jet prolongatiofix and define the action functional by
means of an integral over the region in the paransgiaceQ thatx is defined over:

9 :jo L(iX)V :jo L(t*,x2(t), X, (1) dt O--- O df,

in which £: (©; M) - R is aC' function that one calls theagrangian densityf the

action functional and O A'© is the volume element that one has chose®for
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It is important to recognize that althoudlfj'x) is a differentiable function o,

nevertheless, it factors through a functiond&©; M) and a section of*(O; M) - O,

which will affect the differentiation.

An extremalof this action functional will then be a “point”at which this “function”
has an extremal value, such as a minimum or maximmce we are assuming
“differentiability” of the “function,” we can treahis as a problem in finding the “critical
points” of the “differentiable function.”

b. Equivalent LagrangiansSince the action functional is defined by an integuair
O, its integrand is not unique. Indeed, when one specifieg@boundary problem, the
degree of ambiguity increases again.

Any two Lagrangian-forms £V and£’V on J{(O; M) that pull down to the sanre
form on © by means of any 1-jet prolongatighx: © — JY(O; M) — i.e., any integrable
section— will give the same value of the action functioBgi] for the submanifold: O
— M. Since the canonical 1-forms all vanish when they are pulled down &by
means of an integrable section of this form, one thes Be# any two Lagrangian
forms that differ by a finite sum of exterior produofsk-forms A on J*(O; M) with the
o:

LY-LYV=A"&

will give the same action function for integrable s&t.
One can also say that replacing e with:

LY=LYV+ANS
will not affect the action.
In particular, one can uge = M?#4d,, which makes:

LY =LV+NP# N
=LV + N2 #a3, " (dX — X dt)
= (C-N2X)V+ N2 #9, "~ dX .
One recognizes the form of the Legendre transformaiidhe first term, and we shall
return to this fact shortly.
A weaker equivalence condition on Lagrangians is to redbat their pull-downs by

any integrable section must differ by an exadbrm. Hence, since the exterior
derivative operator commutes with pull-downs, one muse tiaat:

LV-Ly=ds
for some suitable-form SonJY(O; M).
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This type of equivalence means that when one is comsider fixed-boundary
problem the action functionals will agree everywhermepk possibly the boundady.
The case of interest in the sequel is when:

dS= N2 #d, " dx.

c. Variations of submanifoldsThe first thing that one then does is to define the
“differential” of the action functional, which is refed to as thérst variation functional
A K. The “tangent vectorsdx that it acts on are vector fields over the submaadtsfol
X, whose components then take the local form:

X = K(X(1)) aix

Such a vector fielddx can be regarded as the infinitesimal generator of a
“differentiable” one-parameter family @ihite variationsof the initial submanifold; i.e.,
a “differentiable curve” in our “differentiable maniféldf submanifolds. It is easiest to
define this as a differentiable homotoRy [0, 1]xO - M, (s, t) — H(s, t), that is, a
differentiable map of that form with the property th#D, t) = x(t) andH(1, t) = X'(t),
wherex:O - M is some other submanifold M. For the purposes of infinitesimal
variations, its nature is irrelevant, since one uswahsiders only the vector field when
=0, namely:

(X)) :%—H (x(V).

s=0

However, the notion of finite variations is stithavoidable in what follows, since it is
at the heart of the construction of the Weierstexsgss function that one uses in order to
treat the sufficient condition for a strong minimwhthe action functional. Hence, one

might also define the vector field on the submaddife: [0, 1[xO — M:

X(s, 1) :aa—':(s, (1)) .

We illustrate this situation in Fig. 3 schematigaby representing the initial
submanifoldx and final submanifol&k’ as curves and the homotopy as a surface that is
bounded by them. We emphasize that although whed, one customarily treats only
curve segments, for whicdx has two components — viz., the initial and finainp —
nevertheless, whem> 1, the boundary of the submanifold might veryl\ave just one
component. For instance, in the isoperimetric (@b as well as the Plateau problem,
one considers surfaces with a single boundary coemto
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Figure 3. Finite and infinitesimal variations.

One of the aspects of finite variations that is rcieaFig. 3 is the fact that one can
distinguish two basic types of finite variations:
1. Fixed-boundary variations, for which the lateral congmts of the boundary of

H([O, 1]xO) contract to the boundary componedié,) andox(ta).

2. Free-boundary variations, which is the general case.

The effect of fixing the boundary on the infinitesimvatiation is to forced(to) and
X(ty) to vanish.

One then obtains the first-variation functional bgams of the integral expression:

B =] L, (L(1%9V),

in which L represents the Lie derivative operatamich acts on the-form £V on JY(O;
M) in the manner that was described by Cartan:

Lx(LV) =ixd(LV) +dix(LV) =dL(X)V +d(Lix)),

whenX is a vector field od(O; M).

In the case at hand, the vector fiddakes the form of thprolongation d'x of
from a vector field orx to a vector field or'x. Once again, this is accomplished by
differentiation and the local form @tx whendk = &K(x(t)) d; is:

.9 d(oX) @
X Xax' df o0x

in which we are using the total derivative insteathe partial derivative.
Note that such a variation does not include ardmrtion from vectors tangent t0,

although when one considers symmetries of the radtiactional, one must indeed use
variations that do include such contributions.

Sinced/ has the local form:
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= +Z—£dx + 9 gy,

0x,

d

one can givel£(Jd'x) the local form:

dﬁ(élx)——é' 0L d(oX) _ _OL s, d [aﬁaxj

%, df  ox dft | 0%,

in which we have introduced thariational derivativeof £ with respect t:

oL _oL d ac

Oox  ox df X
If one expands the total derivative then this takes thma:for

oL _0L 9L i 0°L 0% 0°L
OX oX ot0X “oxXoXx of oxo%

If we introduce thegeneralized forcecomponentss; and theconjugate moment4-
formsl?by way of:

F=9% =9
ox 0x,
then we can also say:
5—42 Fi - dni .
ox dt*

The momentd1? are conjugate to the generalized velocities

It is important to note that whether the Lagrangiarsitieif is or is not a function of
thet® is irrelevant as long as one considers only variatdrthat do not affect the points
of O, since the vanishing of the corresponding componenf® over O implies that the
partial derivative®L/dt* do not appear in the final expression for the firstatamn JG[]

when it is applied to such & However, if one wishes to consider symmetrie§pf
then one must consider more general variations than tlsetlogiegive one the extremals
themselves.

We can now express the first variation functionahie form:

B K] = j(ﬁaxjij(n?am#ai.
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In the boundary integral, we have introduced the Poindaaés of the coordinate vector
fields:

#0 = i)V = L(—l)iai_,_i e O0--- O dx O--- 0 die |
(m-21)! v

in which the caret signifies that the term has b&grpressed from the exterior product.
For instance, one has

Ho =X~ .. X" #H,=—dxX AdCA ... AdX, etc.

It is interesting, though not directly relevanttke articles in this collection, that one
can start the calculus of variations by definin§irst variation functional, without the
necessity of defining an action functional. TlEsot only analogous to the fact that not
all 1-forms are exact — i.e., expressible in teohs potential function — but actually
makes it possible to treat non-conservative mechasystems, along with ones that are
subject to non-holonomic constraints, variationaMich is not usually possible in terms
of action functionals. For a more detailed disaus®f this, one can confer the author’s
papers 36, 317.

3. Extremal submanifolds Now that we have a useful way of expressing thst fir
variation functional for the purpose of local cditions, we can return to the basic
critical point problem. Naively, one desires todfithose submanifolds for which the
first variation functionabS,[] vanishes.

However, this is usually overly general, since specific problems usually involve
first specifying whether one is varying the bournydax. Hence, one then specifies that
A K] must vanish for some subspace of vector figkdenx. If one considers a fixed-
boundary problem thedx vanishes on the boundary points, and the bounidéegral
vanishes in the first variation functional. HoweMVer a free-boundary problem, in order
to make the boundary integral vanish one must udg wariations that satisfy the
transversalitycondition:

M2ox'=0, a=1,...r
onox.

a. Euler-Lagrange formulationin either case, the only remaining contributiorthe
first variation is the first integral:

B3 = [ [ Soox |y

and if it is to vanish for albX that make the boundary integral disappear themust
satisfy theEuler-Lagrange equations:
oL _
—— = 0,
oxX

which can also be given the form:
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_dn?

I:I - ’
dt®

which is essentially a balance law for the generdlinementa.

This system of partial differential equations foft) is generally nonlinear and of
second order when one considers only 1-jets. More gbnev&ien one goes t&-jets,
which corresponds to higher-order Lagrangians, as wed, abtains partial differential
equations of ordei+1.

In order to motivate the material of the next settiwe point out that one can
characterize an extremal manifold by the condition that

i"Tig,d(£V)] = 0
for every integrable vector fieldx onJY(©; M) that is vertical for the source projection.

b. Extremal submanifolds: Hamilton-Cartan formudat Returning to the conjugate
momentall?, one sees that what they really represent are tinpaoents of a one-form
on JY(O; M), namely, the vertical pady£ of the 1-formd( relative to the contact

projection.
Recall that the vertical sub-bund¢J") of the tangent bundi@&(J") relative to that

projection consists of all tangent vectors to the nadohid*(©; M) that project to zero

under the differential map to the projectithi®; M) — OxM. Vertical vectors will then

be tangent to the fibers of the projection, so in teofiecal coordinates, they will take
the form:

. D
V=X, X, ) — .
(XA

Although one cannot canonicalbyojectan arbitrary vector fielk on J*(M; ©) onto
its vertical part without defining a complementatporizontal” sub-bundle tov(JY),
nevertheless, one caastrict the 1-formdL to the vertical subspaces without making

such a definition. Thus, one can regard the \@rtifferentialdyL as a sectiom.L:
JM; 0) - V' (3Y of the projectionv (31 — JYM; O); hence, to every 1-jgl] J'(M;
O) one associates the 1-fodw |, on the vertical vector spat/e(Jl).

The conjugate momenta then take the local form:

M x %) =3, ) = g—f;(tb,x%xg)d&-

When one considers the variational problem with1, one first sees that the duality
that one must now address is betwd¥®; M) andJ'(M; ©). However, one must also
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now consider sectiong © — JY(M; 0) of thetarget projection*(M; ©) — O, which
will then have the local form:

) = K(Y), £, (1))

We now wish to define a Lagrangian denglfyon J*(M; ©) such that one can define
an action functional on submanifolgs©® - M that agrees with an action functional that
is defined by some Lagrangian densitpn J'(O; M).

However, since the notion of integrability does noamanything for sections of the
target projection, we can see that we also need tessldvhat it means for a section,

such a7 to correspond to some integrable sectjbrof JY(O; M) - O.

This is where the previous discussions of the canom@s associated with the
fibers of the two contact projectiod®; M) — OxM andJ'(M; ©) — Mx© proves to
be most useful. As we said, the fiber of the form@jgation over {, X) is canonically
identified with TOOT M. Now, the vertical derivativel = dyL takes any poinp of

that fiber to the poinfl(p) = dv£|, of the vector space¥, J' .
If this map is invertible then we can think of it as a Imésomorphism of
T OOT,Mwith V J'. This implies a restriction in the choice of Laggam, since not

all Lagrangians will satisfy that condition, but onlget ones that satisfy the local

condition that:
2
det 2% |20
0%, 0%,

If the Lagrangian permits this then singgJ' would be isomorphic to the dual of
T O0TM - namelyT M OTO - by transposition, one sees that such a Lagrangian
allows one to define an diffeomorphism &f JY(O; M) - JY(M; ©) that preserves the
contact projections and takes eagix [ JO: M) to the element 08" (M; ©) that
corresponds t6l( jx). This map takes the local form:

A, X, X)) = (& X, Na@E°, x!, x)).

It is essential that this map be invertible, sincevibg that one defines a Lagrangian
£V onJY(M; O) that corresponds to the Lagrangian dengityonJY(O; M) is by pulling
it back alongl™:
L="C=co?,
which takes the local form:

LK, ) =L(E X, X (X, 0,7)).
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We further define th€" function: J'(M; ©) - R, which one calls &lamiltonian

densityby theLegendre transfornef £, which takes the form:
HY = mdX A #0,— L V.
Hence, one can put the Lagrangian density*tM; ©) into the local form:
0=L'(X, 2 1)V = T dX M #y —H(X, 2, 1)V =071 #D,,

in which the 1-forms:
= P dX —H dft

will serve as ther-dimensional equivalents of the Poincaré-Cartan 1-fofrpoint
mechanics.
One then finds that the differential equations fordinemanifoldx can be obtained by

making our condition for an extremal in terms of tleet®n 7 © - J(M; O) that
corresponds tp'’x.  One requires that for all vector fieldon J'(M; ©) that are vertical
form the target projection, and will then have thealdorm:

X=X i+ Xfi ,
ox o
one will have:
(ixd6) = 0.

Now:
de—dn"""dk"#aa— dH ™Y
—dn“d)d #o ——d>d"V —dﬂb"V
X o’

Thus, we have:

o

ixd® = — [dﬂr’* +3% dtaj“ #0a + Xf‘[d)& O#0, —a—ij .
In order to pull this down t@® one substitutes:

ot¢

. o’ dH X _ dH
de* = | -X' +xa| 2
= x5 a3

One gets:
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If this vanishes for al' andX? then one must have:

X _0H  Om __0H
ot* am’ At ox

which constitute a system of partial differential equeifor X and 71 that generalize

the canonical ordinary differential equations of Hamilam mechanics.
Note that actually the issues of integrability for bibit sectiorvzand the vector field
X did not figure in the derivation of these extremal equatio

c. Extremal curvesIn the case of point mechanics, for which 1, and when one
restricts oneself to time-invariant Lagrangians, onereataceJ'(®; M) with T(M) and

J{M; ©) with TM. In order to associate a Lagrangiamn T(M) with a HamiltoniarH
onT'M, one must first specify an isomorphismTgi) with T'M if one is to define the
Legendre transformation. One starts by noting thatctgugate momentum, as we
have defined it, is a covector field d(M), not onM. If one has a vector field M —
T(M) then one can pufl down to a 1-fornv'p onM by means o¥. lIts local expression
is then: o _

V'p(X) = piX, V() dX.

Hence, we can define a map¥(M) — AM, v Vv p from vector fields orM to

covector fields onM. By the inverse function theorem, a necessary anficisut
condition for its local invertibility is given by the iextibility of the matrix:

_0p _ 0L
oVl ovov

¥

In the case of Newtonian point mechanics in a Euclidfzace, this matrix will take
the formmd; when £ depends upow only by way of the kinetic energy 1f8d; vV V.

Hence, it is conformal to the Euclidian metric. Thadtdr restriction onl is also

fundamental aspect of Finslgeometry, which uses the definition 6fas the basis for

the rest of the geometry, which has an unavoidably vamalt flavor to it. (See, for
instance, Rund38] or Bao, Chern, and She&q).)
Once one has an isomorphism of velocity vector field® wmomentum covector

fields, one can define a Hamiltonian functidron T'M that corresponds t8 by means
of the Legendre transformation:

H(X, pi) = piv(x p) —L(X, V(X p)).

Whenv is integrable — s& = dX/dt — if one multiplies both sides of this equation
times the 1-forndt then one gets the one form:
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Hdt=pdxX — £ dt,
which means the integrand of the action functionalddke form:
L dt=pidX—H dt,

Hence, one can also express the action functiartarins of sections @M — M by
way of:

I=[ [ROVHDY) = H(t (D, p(Y)] dt

[0.1]

The 1-form ol MxR:
6 =pidX—H dt
represents thBoincaré-Cartan 1-formsince the first term was discussed by Poincaré in
the context of integral invariants for autonomous meidad systems, while Cartai(]
showed that one could formulate the least-action giedn a third formalisn{besides
the Euler-Lagrange and Hamiltonian formalisms) by dehmgnthat the 1-fornf be a
“relative integral invariant” of the motion; i.e., €xterior derivative:
dé =dp " dX —dH ~ dt

would be an “absolute integral invariant.” The equationsnofion then followed by
considering the “characteristic system” of the ertediifferential system ofi MxR:

dé=0.
This is obtained by solving the equation:
ixdd= 0.

for the vector fieldk on T M xR and then finding its integral curves.
One should note that this equation can also be exprasse

ix(dp A dX) =ix(dH A dt) =ixdH A dt — X' dH

which can be put into the form:
ixQ =ixdH A dt — X' dH,

if one defines the canonical symplectic formTami:

Q =dé=dp ~dX.
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A typical vector fieldX on T'MxR has the local form:

x=x2 4 Xii+ x 9
ox' ap, ot

Now, since:
dH =2 g + 2 gp.
0X on
we get:
do = dp Dot -2 axo a2 apo o
0X on
This makes:
. OH _; OoH oH . . OH
ixdd = -| — X' +— X, |dt+| X +— X |dx-| X-— X| d}.
' (6x‘ an'j (Xanj x5 1
If this vanishes then one must have the charactesigstem:
a—Hxi+a—Hxi=o, x =0 o x =9 xt.
ox op op, ox’

One immediately sees that if the last two setsgoh&ons are valid then the first set
is automatically satisfied. Hence, if one seeksitbegral curves of the characteristic
vector field X for the 2-formdé@ then one obtains the system of ordinary differential
equations:

dH_0 d>d:6H X! dp _ _oH X!

dt ' ds op ds  ox

Except for the factor of', these are essentially Hamilton’s equations, combirigid w
the requirement that the Hamiltonian be constantgatbe integral curves. This also
represents a restriction on the possible choices ofilkdanian.

In order to account for the factor &, which is arbitrary, but non-zero, since the
characteristic equations are homogeneous inne must regard it as the derivatdiéds
that is associated with a change of parameterizatiotindointegral curves. One then can
put the last two sets of equations into the form:

dx _ oH dp _ _oH
dt op dt ox
which has the customary form.
The factor ofX' did not appear in the previous section since we wereictesr
ourselves to vector fields for which it vanished. Furtleeemif one treats only the time-
invariant case, sHl is a functioriT M, one will not have to consider it in that casehasit
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One can*specialize the above argument in that casefningH as a differentiable
function onT M and then defining thElamiltonian vector field Xthat is associated with
by:

iy, df=~dH,

which is then the previous condition if one 9¢ts 1.

4. Geodesic fields. There is a fundamental difference between saying ahat
particular submanifold in a space, such as a curve segmentface, is extremal for a
particular action functional and saying that a regiorthat same space fsliated by
extremal manifolds. For instance, there is a diffeee between finding a geodesic
between two points in space and finding a geodesic congrubkatfoliates a region of
that space with one-dimensional leaves that consigeodesics. Hence, in the older
literature one often finds the term “field of extrenialsed to mean “foliation;” that is,
an (m—r)-parameter family of-dimensional extremals in an-dimensional manifold
that partitions am-dimensional region d¥.

Basically, the key issue is one of integrability irerehce to the action functional. In
order for an exterior differential system on a mddifd to define a foliation, it must be
completely integrable, in the Frobenius sense. Thule iexterior differential system is
defined byw= 0, wherewis anr-form onM, then in order this system to be completely
integrable, in the Frobenius sense, one must havauhatw vanishes identically. It is,
of course, sufficient thatw be closed, which is locally equivalent to the conditibat it
be exact.

In the study of geodesic fields, thdorm one is concerned with is obtained by first

pulling down either the fundamental Lagrangiform Q = £ V onJY(O; M), or one that

is Lepage-congruent to it, tordform onO x M by means of a field of contact elements.

Such a field is then geodesic, in various senses, wiblen f Q is an exact-form. One
then finds oneself concerned with the Hamilton-Jaegbiation, originally in Lagrangian
form, but also in Hamiltonian form, after a Legendensformation.

a. Fields of contact element$reviously, we did not address the issue of sections of
the contact projectiod’(O; M) — OxM. That is not because it is insignificant, but just

the opposite. The sections of that projection, whigh shall callfields of contact
elementsplay the central role in the articles that followce a geodesic field is a special
type of field of contact elements. We caution the redadat in the literature the term
slope fieldis used, to be consistent with the terminology usethé study of extremal
curves, but since “slope” suggests that we are only usimgeadimensional parameter

space O whose contact elements fd are tangent lines we shall modernize the
terminology.
Hence, a field of contact elements is a sectio®xM — JYO; M), (t, X) > zt, X),
with the local form:
2t %) = (X, X, (t.%).
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In the case of = 1, one can regard a field of contact elements anex\tarying vector
field on M. More generally, it is an-parameter family of'(t, X)-planes inTyM, which
will be r-planes if and only if one restricts the jets to 1-ggtsnmersions.

A submanifoldx: @ — M is said to bembeddedh the field of contact elementsff
the following diagram commutes:

JHO; M)

A

graphx
OxM

That is:
j’x = z Qgraphx).
In local form, one has: _ _
(% X(0, X,(1) = @ X(), X (tX)).

We llustrate the general case of a field of contdeiments and the embedding of a
submanifold schematically in Fig. 4.

M

™~

N

\\ T

o N\ | ™~

Figure 4. General field of contact elements with a sultimld embedded in it.

Now, the local condition on the fields is:

ox
ot?

(t)=x,(t, X (1),

so if one is given the field of contact elememtgriori, then the integrability condition
for it to admit an embedded submanifold is obtaibgddifferentiating both sides with
respect ta” and demanding the symmetry of the mixed partigiveleives. However, it is
crucial to note that the differentiation on thehtidghand side becomestatal derivative
with respect ta®:
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dX _ axa ox! 9%, _
da* — ot° atb ox! 6tb

OX,
]
xb—axj .

Note that although we started by taking a total derivatienga a submanifold,
nevertheless, the final expression does not depend updmesifold for its definition.
Hence, the second equality is reallseplacemenbdf the one expression with the other.

The resulting integrability condition on the fieldafntact elements. (t, X (t)) is:

0%, 0%, ;0% ;0%
Tott ot Xbaxi Xaaxj'

If one pulls down the canonical 1-formsto ©®xM by means of then the result is:
Z &) =dxX — X (t,x)dt’.
Since this can never vanish for any field of contaanelgts X, (t, X), one sees that fields
of contact elements cannot be integral submanifoldseoéxterior differential syste@®'

=0.
The pull-down o' takes the form:

o = df A Zagr + X g axg %) e e+ e gt 0 e
ot " Tax o ot® ox

In order for this to vanish, one must have:

atb  ot*’  ox
Hence, such a field of contact elements will alseés§athe integrability condition given

above, and a field of contact elements is isotropigy ohlit admits an embedded
submanifold.

As we saw above, an extremal submanifol® - M must satisfy the condition:
jlx*[idlxdﬂ =0

for all vector fieldsd'x onJY(O; M) that represent the prolongations of vector fieklsn
X. In this expression:

=LV + M2dX " #0, = (£ df + M2dX') * #0,

is the Lagrangian form of the Poincaré-Cantdarm.
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One can also formulate the condition in terms oftHlaenilton-Cartan form od*(M;
0):
6= N2*dX " #3, —H V.

which corresponds to the Lagrangian form under the Legdnainsformation.
The condition is then that for an section® - J'(M; ©) that corresponds tgx
under Legendre transformation one must have that:

TFixdd=0
for all vector fieldsX onJ*(M; ).

b. Extremal fields of contact elementsow, suppose OxM - JYO; M) is a field

of contact elements, so a submanifeld? — M is embedded iz iff j'’x = z (k. (Here,
we abbreviate the notation by replacing the referenddeograph ofk with simply a
reference to the map) Once again, we l€® = £ V denote the fundamentafform on

JHO; M) that is defined by a choice of Lagrangian densitgnd letd'x be the 1-jet

prolongation of a vector fieldx onx.
Hence, the integrand in the first variation functiod&l[ ox] initially takes the form:

(™Ti, dQ]=X(Zi,dQ).

We shall call a field of contact elemertextremaliff ZQ is a closed-form on
OxM:; hence:
dzQ)=zdQ = 0.

In the articles that follow, one often sees théation [Q] = ZQ used, so the latter
condition takes the form:
dQj]=0.

This clearly represents a stronger condition thanahe that makes a submanifold
extremal by itself, since one is now essentiallyrdef a foliation ofOxM by extremal
submanifolds that are integral submanifolds of the extéifarential systemQ] = 0 on
OxM. Such a foliation is sometimes referred to dglayer field in the articles that

follows, which is one example of using the term “fietd”refer to foliations, as well as
the differential forms that define them.

One sees that it will automatically follow from tpeevious condition oz that any
submanifold that is embedded in an extremal field of contdaminents must be an
extremal submanifold, since one will have:

(%) 'dQ =) 'dQ =x(zdQ) = 0.
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We can examine the local form of the differentiqui&ions for an extremal field of
contact elements in either Lagrangian or Hamiltoniamfoln Lagrangian form, we start
with:

dQ =
[gﬁ o jd)& VMG OV =315, ~M,) dk0 0k, + 0 okl o,
- |

In order to pull this down t@®xM by means of a Lagrangian field of contact elements
z, one must make the replacement:

dg_axa it + 9% gy

aJ
This leads to:
. « dne
70 =[ 95 + 72 9% | gy oy - L[ AT ot O ok 49,
ox 9% . dk

in which we have introduced the total derivativetjfwith respect to(:

dl_lia:('il_la ax) on?
dx'  ox' ax ax

If ZdQ is to vanish identically then one must have:

L, a0 _ dn; _dnj
Sx X T d¥ X

When a submanifold is embedded in an extremal fiélcontact elements, the first
set of equations reduces to the customary Eulerdogg equations, since the
supplementary term will vanish. The second setegfiations then represents an
integrability condition on the conjugate momentthéy are to take the form:

ne=95"
.

In Hamiltonian form, one starts with in the Hamilton-Cartan form then one has:

dQ =dne Od¥ O#o, - 2 axoy -2
o ane

UV,
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In order to pull it down by means of a Hamiltonian fieldcohtact element&g OxM —
J{M; ©), one must make the replacement:

dI‘If‘:aﬂbi dt + 90 g
ot ox’
This makes:
a b
sida = - 2. +6—H+6—Hban? dx Dv—i(nf. -M%)dx 0 dx O#, .
ot ax  an’ ax! 2

If this vanishes then one must have the system of emsati

ond _ dH ony _onj

ot? dx oxl o oax

If x: O - M is embedded imrthen one will have:

. oX _0H

Cott o’

which gives the set of canonical equations, while itstguben in the previous system
of equations puts them into the form:

dn: _ oM

det ~ ax

which is then the other set of canonical equations.

c. Geodesic fieldsIn the previous subsection, we examined the natureslosfof
contact elements that made théorm Q closed when one pulled it down @xM. In

order to definegeodesic fieldsas they are treated in the following papers, one must
strengthen this to the requirement that the pull-dow® ahust be exact. That is, a

Lagrangian field of contact elements @xM - JY(O; M) is ageodesic fieldf there
exists anf(— 1)-form Son OxM such that:

7Q =dSs

Obviously, the (= 1)-form Sis not unique, but defined only up to a closed 1)-form.
Of course, since one is dealing witliorms on the manifold)xM, if the de Rham

cohomology in dimensionvanishes then all closed forms will be exact, anyway.
Part of the motivation for the requirement of exassn@as based in the desire that
the action functional be independent of the choice bfranifoldx, but dependent only
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upon the choice of its boundadx. From Stokes’s theorem, this is precisely what
exactness of anform gets one:

— AN\ 0N — 1,\O — 1,0 — 1,0\ O
4 = | (i°Q=] (i%"ds=[ d(i'x"9 =] (i)"s.
First, we observe that locally one has:

0S" ), 93 4y O#0, .
ot? ox'

dS=d(S 7~ #,) =

One also has:
ZQ = L(t, % Zt, X))V + N3dx O#0, .

If the two expressions are identical then:

0s? 0S
L, X, Z(t, X)) =——, Mna= .
(% 2t X)) ot? B )'e

If x: © - M is embedded iz then one must replacg(t, x) with (t, x(t)) and the
partial derivatives with respect towith total derivatives, so one obtains the conditn
L that:

ds

['(ZDQ:F,

which explains Weyl's terminology “Lagrangians afergence type.”
In Hamiltonian form, one uses:

ZQ =[77(t,x)dX — H(X, t, 7At, X))] * #a ,

in which 7z OxM — J*(M: ©) is a Hamiltonian field of contact elements.
Equating this witldSgives the system of partial differential equatiforsS™:

0S° 0S
== H Xa ta t! X 1 n‘a = i "
pre (x t, 7, X)) v

These equations are clearly of a generalized Hamilacobi type, which becomes
more evident when one embeds a submanKaidthe field of contact elements which
involves replacing the partial derivatives withpest tot* with total derivatives:

dSa__ a_Sa :as
o H[x(t),t, = (t,x(t))j, =3
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If one solves an initial-value problem for the firguation for theS then the second
equation serves to define the geodesic field by differigomia In Weyl's article 9], he
discusses the problem of solving the equation by Cauchy'sothethcharacteristics, as
well the method of majorants.

d. Lepage congruences, De Donder-Weyl, and Carathéodory fiShigar, we have
been considering2 = £ V to be the fundamentatform for any variational problem
involving extremal r-dimensional submanifolds of am-dimensional manifoldM.
However, sinces ) = 0 for any integrable sectien® — JY(O; M), one sees that as long

ass is integrables Q' will be the same for any otherform Q' on JY(O; M) that is

congruent to W modulo the ideal in the exterior algethat is generated by the
fundamental 1-formgo. Similarly, ifdQ = 0 thendQ' will be congruent to 0 (mod)).

The congruences that Lepage defined pertained to the defioktigeodesic fields, in
which one weakens the definition of the pull-do ] and the condition od[Q] so they

would be valid for alt-forms that are congruent = £ V (mod &):
Q=LY (modd), d[Q] =0 (modd)).

Some of the authors that follow distingustationaryfields from extremal fields by
the requirement that whensatisfies these congruences in general it is statipaad
becomes extremal only whenis also integrable — i.es = j’x for some submanifold
embedding O - M.

The Lepage congruences then help us clarify the disimdietween the geodesic
fields that were defined by De Donder-Weyl and the ones wexe defined by
Carathéodory. It basically comes down to the pddicchoice of representative for the
Lepage congruence class @f For a De Donder-Weyl field, the choice takes the
Poincaré-Cartan form:

Qo =LV + (1)’ N?#0, DuJ .

For a Carathéodory field, one chooses the unique sithpl, decomposable)form
in the congruence, which takes the form:

Kl_l |_| (Ldt?* + M%) .

Q=

However, Holder shows that the two choices aragadlay a contact transformation.

e. Caratheodory complete figurdf one has a Lagrangian field of contact elements
z OxM - JY(O; M) then its values id*(O; M) are contact elements, and thus define

linear subspaces in the tangent spacd©@&M). For the rest of this section, we assume
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that z is regular, in the sense that all of its valugét, x) are matrices of rank They
then locally define-frames inT(OxM) by way of ther local vector fields:

z(t,X)=2(t X0, a=1,...r.

Since they are presumed to be linearly independent, thayaspegplane g(t, x) in T(O)
for each (; xX). Thisr-plane can also be associated withrtwvector field:

Z=" ...z .

The rankr sub-bundleE(OxM) of T(OxM) that is defined by all of theseplanes

then constitutes a differential system dmxM. By Frobenius, the necessary and

sufficient condition for it to be completely integrabls that g, z,) be a linear
combination of the's again. Since:

_(0zZ) ;020
[Za’zb]_[zaaxi j‘”ax’jax"

the issue comes down to whether one can solve therdg®aguation for the’'s in terms
of thedi’'s. However, there arez's andmd;’s, so as long as < m the system is over-
determined if one desires to solve for thés. Hence, a given set afs will not always
be associated be associated with some sgitspbut only the ones that lie in a certain

dimensional linear subspace Bf". If it so happens that = m then the condition of

possibility for the solution is the invertibility of theatrix z, , but this also follows from

the demand that be regular.

Note that in the case of= 1, the differential system is always integrable iat
foliation of curves. Whema(t, x) is an extremal field of contact elements, it ge@desic
congruence. (Recall that any submanifold that is embeaddad extremal field will be
extremal.)

More generally, in the event that the differentigbtem E(OxM) is completely

integrable the manifoldxM will be foliated byr-dimensional leaves, and if the field of

contact elementsis extremal then the leaves will be extremal subro&dsfof the action
functional that one is dealing with.
Whenz also happens to be a geodesic fieldz sa@S' » #9,, ther functionsS’, a=1,

..., I local foliate OxM with mrdimensional leaves by the level hypersurfaces of the m
OxM - R', (t, X) — S(t, X). Hence, the differential syste®(OxM) on OxM that is

defined by the tangent planes that are annihilated by daheofl-formsdS' is trivially
completely integrable.
Since thedS's are assumed to be linearly independent they define aaron-form:
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> =dg .. ~dS.

Ther-planes oE(OxM) and them-planes of§ OxM) are transversal if£(Z) is non-

zero at every point o®xM. This implies the non-vanishing of the determinant of the
matrix:
0s*

5

[STYp=dS(z) = ™

Such a pair of complementary foliations &M — when it exists- or the pair of

fields {S’, Z} is said to be theCaratheodory complete figurfer the geodesic field in
guestion, and one sees in what follows that he introdtieedoncept in the last section
of his article p]. We illustrate the sort of situation in Fig. 5:

M

1
!

’

/

S = const.

+ Extreinal jsubrhanifold ;

\

Y~ | zX

\
\

Figure 5. The Caratheodory complete figure for a geodiesic

Forr = 1, the Caratheodory complete figure is defined by a ggmdengruence and
the transversal hypersurfaces are defined by the eilfina), to use the terminology of
geometrical optics.

5. Sufficient conditions for a strong or weak local minimum. Now, let us return
to the basic problem that was posed in the introductongnes.
First, we should clarify the precise usage of theanser'strong” and “weak.”

Basically, they relate to two possible topologiestfe setCY(O, M) of all C* maps from
O to M. We shall only sketch the essential elements, sonéoe rigor, one can consult
Hirsch [4Q].

In the case of a strong local minimum, the topolégyhe C° — or compact-open
topology onCY®, M). If x ©® -~ M is aC' map then a neighborhood ®fin the

compact-open topology is defined by the NgK, V) of all C* mapsy: @ — M that map
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a compact subsét [1 O into an open subs®& 1 M whenx(K) O V; thus, the behavior of
y outside oK is irrelevant. We can represent this situation schieally as in Fig. 6:

Figure 6. A neighborhood in the compact-open topolog@'¢®, M).

These neighborhoods then define a sub-basis for thesmbsets of th€® topology.
That is, any open subset is a union of some familyfirofe intersections of these
neighborhoods.

The C! topology onCY®, M), which is a special case of the more gen&l

topology introduced by Whitney, is finer that tB8 topology, in the sense of having
“more” open subsets; i.e., some of the open subséke 6f topology are not open in the
C° topology. This is because one further restrictsGhéunctions in the neighborhood
above by the requirement that 4 > O and one replaces andy by their local

representatives, y: R" — R™ when one chooses coordinate chattst{) and ¥, &),
such thatk [J U then in addition to the condition above, the two snapst also satisfy
the constraint that:

ay' ox

t) - <&
ata() ot®

(t)

for everyt [J K; one denotes the set of all sychy Nk(K, V; ¢&).

These neighborhoods then constitute a basis foofiea subsets of tHg" topology.
That is, any open subset of that topology can be exprassadinion of some family of
these neighborhoods.

With these definitions, we clarify that an extrersabmanifolodx: © — M is astrong
local minimumfor the action functiona[ ] iff:

9X] < S[X]

for all C* mapsx: O - M that lie in aC® neighborhood of and aweak local minimum
iff this inequality is true for all maps in@ neighborhood of.
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a. Hilbert independent integralWhen a submanifold is embedded in a geodesic
field X, (t,X) the Lagrangian density must take the form:

dS* _0S* . ,9S _9S* oL
+ _ = +

L X, X (t, x(1)) =—— = il
(% X, x (t, x(1)) o e XaaX;

Hence, since the resulting action functional:
$q=[,ds=], s

is independent of the submanifotd- apart from its boundary — one defines the more
general integral functional:

0S* ;0L
+X, ——

I =] dS( fx)=jx[ata %o

p=f, s

the Hilbert independent integrdhat is defined by and X. (t, x) .

Since this functional is affected by only the bdary values of the-1-form S it will
take the same value for any submanif&that it does for the extremal submanifodd
and therefore all other submanifolds that havestimae boundary aswill be extremals,
as well. Hence, as an action functional it is guatnbiguous, but it can be added or
subtracted from the action functiorgk] without affecting the outcome.

One also notes that one can give it the form:

I[X] :j@f +r|?x;jv.

Hence, there is nothing to stop one from replatiegLagrangian densit§ with:

x 0s° -
L =L~ -N2x,
ot? R

as this will change the value of the resulting @actfunctional without changing the
resulting extremals. In particular, one sees that:

S[¥ =0
whenx is extremal.

b. Weierstrass excess functiowhen one has a geodesic fiete(t, x) for an action

functional, one can use it to express the diffeecloetween its valugx] on an extremal
submanifoldx and its value§ ¥ another submanifoldin terms of the integral of a
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function & JY(O; M) — R that vanishes for the extremal. Henéealso defines a

functional on submanifolds, just as action does, andilithave property that for the
arbitrary submanifoldx and an extremal submanifotdhat have the same boundary, one
will have:

IR - =] GV

The key to its construction is to see that althotlge two action functionals on left-
hand side are defined over two different submaagohamely:

SR=[ LX)V, 94 =] LV,

the Weierstrass excess functiomaldefined only on the submanifotd
Now, if x is embedded in a geodesic field, x) thenj’x = z 5k andgx] will have the
form:

=14 =[ dS({%.

Since the value of the functiond]lx] depends only upon the behavior »fon the
boundary andk shares that boundary, one can infer that:

I[X] =1[X] .
One then replacegx] with:

I[x] =] dS( %),

One further replace€(p), wherep O JY(O; M), with £, as in the previous

subsection, as we have a right to do, since theleogntary term will not affect the
extremals, and this makes:

¥ - 94 =L[£( ') = L(Z(4 X))~ MR PNCKOI— XX PV,
and we can then define tki¢eierstrass excess functitmbe:
E(IX) =L(j%) ~ L(z(t, X))~ N (A XK (Y- k(X Y).

The more traditional notation for this function &t* x* x.,X!) , although this
somewhat obscures the fact that once the geodeklcx has been chosen, it becomes a

function on JY(©; M) like any Lagrangian, as well as obscuring the cfiomal
dependencies of the last three sets of coordinates.
Clearly, £(G*X) = 0 whenx is an extremal, but the primary reason that Weiss had

for defining this function was to establish theudficient condition for that extremalto
be a strong local minimum f&x] was that one have:
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E(j') =0

for all other submanifolds that share a common boundary withnd are contained in a
C° neighborhood of it.
We illustrate the situation that we have been dsogsschematically in Fig. 7.

AL

@
\
/

Figure 7. Constructions used in the Weierstrass excessdn.

It is essential to understand that the existence of degéofield for the Lagrangian of
the action functiorgx] is a necessary part of defining the excess functidence, it will
be inapplicable to the consideration of more genergrdryians that do not admit
geodesic fields.

c. Legendre-Hadamard conditionA somewhat simpler sufficient condition for an
extremal to be a local minimum was defined by Legendtbarcase of extremal curves
and discussed by Hadamard for higher-dimensional submanifolds

It can be obtained by expanding the excess functica Traylor series about each

point of the extremal curve as a functionsgf- X, :

e opd 0& o }625 ST
5(JX)—5(JX)+—6)¢j1X(>g ><a)+26x-aa)<-jjlx(><a X)X - %)+ ...
which then becomes:
oy 1 0%€ o Jvol
5(Jx)~26)¢axg jlx(xa X)X~ %),

up to higher-order terms iR, — X, since the first two terms vanish when evaluatedm

extremal.
The Legendre-Hadamardsufficient condition that an extremalbe a weak local
minimum is then the demand that the matrix:

9%
0%,0%,

i
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must be positive-definite at each point along



Appendix A.
Differentiable singular cubic chains®.

Something that becomes gradually apparent in the work ofdReden the calculus
of variations P1, 22] is the fact that at one level of consideratioceith be regarded as the
study of differentiable homotopies. If one desires to ymuithis algebraic topological
aspect of variational problems then it becomes rapidjuliso make the objects that are
being varied have an algebraic-topological characsaned.

In particular, instead of varying compact submanifold® - M in a differential

manifold M, one can use more specific building blocks that lead iote singular
homology and cohomology, and when one applies de Rhdmaem, to de Rham

cohomology. Instead of a compact suli8éfl R, one first considers the standardube

I" =0, 1}x ... X[0, 1]. Adifferentiable singular r-cube in N& then a differentiable map

ag:. 1" -~ M. In order to define differentiability when one is deglwith a piecewise
linear manifolds, such &S, one must surround it with an open neighborhood, define a
differentiable extension of and then restrict the extensionl'tosince differentiation is a
local process, the choice of extension is irrelevant.

The reason that one refers to suchr@uabe inM as singular is because unless one
restricts the submanifold map to be an immersion doeeltiing the dimension of the
image does not have to beand might very well be zero, as in the case obrsstant
map. If all one desires to examine is singular homotbgw this is no loss of generality
since the effect of the degenerateubes eventually disappears when one passes to
homology, but if one also intends to consider geométissaes then one usually must
specify some regularity condition on the map. One alstes that the restriction from
continuous maps of" into M to differentiable ones is not significant since every
homotopy classdf] of continuous maps contains a differentiable elemehich one
proves by a smoothing construction.

Theboundarydl” of I is defined to be the sum of its “1-faces” minus the sdirits

“0-faces,” where the O-facesl](0)of I' take the form of all points of the forr{ (0) =
O, ..., ), .., 1L0)= (", ..., 1% .., 1), ..., 17(0)= (t, ..., t"}, 0), and the 1-
faced (1),a=1, ...,r take the same form with the O replaced with a 1. Etenc

o =Y 110 -14(0).

Since ther-faces ofl" arer-1-cubes in their own right, the process of takihg t
boundary can be applied to them as well. Howedeg to the sign alternation in the
definition of the boundary one always has that:

! For some standard mathematical references on sirtypaology and singular conomology, one can
confer Greenbergifl], Rotman 2], or Vick [43].
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as one easily verifies in the case of a square.

A differentiable singular cubi&-chaincc in M is composed of a “formal sum” of a
finite number ok-cubesq, i = 1, ...,N in M whose coefficients come from some chosen
ring R of coefficients:

Although it is possible to make the definition of a fifibemal sum with coefficients iR
more rigorous (one considers the “fiRenodule generated by the set oflattubes”), for
the sake of computation it is entirely sufficient taldeith the formal sums naively and
simply apply rules of computation to them.

A useful aspect of the use of cubichains is the fact that a differentiable homotopy
of a cubick-chain becomes a cubke-1-chain. Hence, if one regards finite variations of
k-chains as differentiable homotopies then this also mékee variations take the form
of differentiablek+1-chains.

One extends the boundary operator fieaubes tc-chains by linearity:

0cc= 2,300, =,30,(1)~ 2,37 (0).

Something that is not entirely obvious at this p@rthat theactual definition in practice
of this boundary operator for a givéhdoes not follow automatically from the nature of
the cubes iM, but must be introduced essentially “by hand” idey to account for the
topology of M. Otherwise, the fred&r-module we have defined involves only the
cardinality ofM as a set, and completely ignores the detailsdbpology.

In order to pass to homology, one starts with dferementioned fre&k-module
C«(M; R) of finite formal sums ok-cubes with coefficients iR and then regards the
boundary operator as a linear raC(M; R) —» Cy-1(M; R) for eachk from O tor. The
imageBy-1(M; R) of the boundary map is a submoduleGpf;(M; R) that one calls the
module ofk-1-boundariesin M, while its kernelZ(M; R) is a submodule o€(M; R)
that one calls the module &fcyclesin M. The quotient modulely(M; R) = Z(M; R) /
B«(M; R) of all translates oB«(M; R) in Zy(M; R) is called the(differentiable singular)
homology module in dimension kRoughly speaking, its generators represdat
dimensional holes” i.

One can also think of elementsHig(M; R) as equivalence classesketycles under
the equivalence relation of homology. That is, &achainsc, andc’'y arehomologousff
their difference is a boundary:

C'k —Ck = 0Ck+1 (for somecy:1 O Byea(M; R)).

It is important to note thad(M; R) will vanish for everyk >r.

The dual notion to a differentiable singular cukichain is that of alifferentiable
singular cubic k-cochainwhich is simply a linear functionat: C(M; R) — R, which
makes it a finite formal sum of linear functionals k-cubes with values ifR. One
denotes the corresponding fieenodule of alk-cochains byC¥(M; R).
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Sincek-cochains can be applied kechains, there is a natural bilinear pairi@M;
R)xC(M; R) - R, (¢, c) — <c* c>, where:

<c*, o> =c(c).

One then defines th®boundary operatodi CY(M; R) — C**}(M; R) to be the adjoint
to 0 under this pairing:
<&, Gur> = <, 001>

As we shall see shortly, this is really just an alosiva of Stokes’s theorem for
differential forms.

One defines analogo®&smodulesZ“(M; R), B{(M; R), andH*(M; R) that one calls the
modules ofk-cocycles k-coboundaries and thecohomology module in dimensidn
respectively. The elements of the latter module e @lledk-cohomology classemnd
two k-cochains areohomologoudf their difference is a coboundary.

Although C(M; R) is defined to be the du&module HomC(M; R); R), the same
does not have to be true f(M; R); it can also include “torsion” factors; i.e., cycRe
modules. However, R is a principle ideal domata such as, for instance, a fieldhere

are no torsion factors, so, in particutfi{M; R) = HomHx(M; R); R).

In order to go from differentiable singular cubic cohdogy to de Rham
cohomology, one starts with the fact that &fprm a onM defines a linear functional
on differentiable singulak-chains with values iR by integration:

alc] = Lka.

Hence, one can regatdas a representative of a differentiable singular ckHomchain.
In fact, from Stokes’s theorem, dfis ak—1-form then one has:

dalcd = afocd.

Hence, this, and the facts thhis a linear operator of degree +1 afic= 0, one can treat
k-forms ask-cochains in a different sort of cohomology that arals de Rham
cohomology after its inventor Georges de Rha@#.[ The coboundary operator
which makes th&-cocycles take the form of clos&dorms, thek-coboundaries are exact
k-forms, and the de Rham cohomology vector spacesqralence classes of closed
forms that differ by exact forms. We say “vector g®cin this case because the

coefficient ring is the fiel®R, which makes th&-modules intdR-vector spaces; hence, a

set of generators for the de Rham cohomology vector spge@M ) in dimensionk is

simply a basis for it as a vector space.
The theorem that de Rham had to prove was that themmbdgy defined by the

exterior differential forms o was isomorphic to the singular cohomolad§(M; R)
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with values inR. Hence, one sees that de Rham cohomolagpresents something of

an approximation to the topology bf, since manifolds that differ by torsion factots
e.g., am-sphere and an-dimensional projective space, will appear indistingaige in
the eyes of de Rham cohomology.

It is, however, a useful and powerful approximation,etbaless.

The application of the foregoing discussion to thewak of variations now becomes
immediate when one restricts the objects being var@d submanifolds to chains, since
we are defining the action functional to be essegtaltlifferentiable singular-cochain

onM that is represented by thdorm £V onM. Since the first variation functional takes

the form of its coboundary, and does not generally vamistept for extremal chains,
one sees that in general the action functional ishe@eia cocycle nor a coboundary.
However, the essence of Hamilton-Jacobi theory istb@functional becomes a cocycle
for extremal chains and possibly a coboundary, as well.

Actually, the restriction from compa&tdimensional submanifolds with boundaries
in M to differentiable singular cubicchains inM is no loss of generality, at least in the
eyes of homotopy and homology, as Munki#g proved, in effect, that every compact
submanifold is homotopically equivalent to such a chain.

! In addition to the reference by de Rham, one migit @dmpare Bott and Td9], as well as Warner

[46].



Appendix B
Characteristics of first-order partial differential equations.

Since the construction of a geodesic field often comesidovan initial-value problem

for a first-order partial differential equation of Hdtmn-Jacobi type, which can then be
solved by the method of characteristics, it is worthevihd point out that all of that is

entirely natural within the context of jet manifolds acwointact geometry. We then
briefly summarize the essential points that relatia¢ present class of problems.

a. Differential equations and jet manifold¥Vvhen one defines a systemNffirst-
order partial differential equations in the classicaif:

ox’
ot?

F”(ta,xi(t), (t)j=0, v="1,...N

it becomes clear, from the foregoing discussiond, aha can also put this system into
the form of two systems:

F”(ta,xi(t),%(t)) =0, v=1,...,N,
ox
ot?

X ()= =), a=1,..r i=1,..m

We now see that what the first one defines iskarsunifold (or at least an algebraic
subset) oft}(®; M) by way of the zero-locus of a functi®n J*(O; M) - R", while the

second set is the integrability condition for ateecof J'(O; M) — O. Thus, one could
also express the system of equations as:
F('%) = 0.

Matters are simplest when one only has one funétito contend with. For instance,
the Hamilton-Jacobi equation, in its homogeneousfa@an be expressed in the form:

_0S
ox’

H(X,S(3 p(3)=0,  p

as long as one includes the constraint that actually independent & Thus, ifH is a
real-valued function od*(M; R) the Hamilton-Jacobi equation is defined by ingde

sectionss: M — JY(M; R) that take their values in the zero locugof

b. Method of characteristics.As long as one is considering only one first-orde
partial differential equation whose solutions walke the form of differentiable functions
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f on a manifoldM, solving an initial-value problem (i.e., @auchy problem) can be
reduced to a corresponding initial-value problem for aesysof first-order ordinary
differential equations that one calls tblearacteristic equationslefined by the original
PDE. Indeed, this construction is perfectly natural élimguage of jet manifolds, so we
now describe it that way.

One must be aware that since any partial differeetailation of order higher than
one can be converted into an equivalent system of-dider partial differential
equations, the method of characteristics is no longercayidi to systems of more than
one first-order PDE. In particular, the linear wave eiquatan be converted into a pair
of first-order PDE’s, but they cannot be solved direailing characteristics, only
indirectly by introducing the geometrical optics approxiorat

Say a differentiable functio@on a manifoldM is a solution to a Cauchy problem for
a first-order PDE:

9 i
FO¢ @ py) =0, py:aTi‘f, #0,X) = @,

inwhichy=0,1,...mi=1,...m
The essence of the method of characteristics igdbuse the contact geometry of

JYM; R) and the functioff to define a global vector field ai(M; R), which then allows

one to treat each point of that manifold as potentthltyinitial point of a trajectory for
that vector field.
The functionF defines a 1-form by its differential:

dF = a—Fdx“ +6—F d¢+a—F dp, -
ox* 0@ ap,

The question is now how one might convert this coveigdat into a vector field of the
form:

xe=x D axr D yy O
ox op ap,

Here is where we use the integrability assumptioruapg . It amounts to the
statements that at each point B{M; R), the tangent vectoKr is incident on the

hyperplane defined b= 0 and:
iy, ©=dF

in which the canonical 1-formvand 2-form® onJY(M; R) are:

w=dp-p, dx¥’, © =dw=dx¥' ~dp,,
respectively.
From the first requirement ofy, we find:
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dg=p, d¥, X?=p, X
From the second, when combined with first equation abwedind:
This gives the following set of equations for the comptgenXg:
The vector fieldXg, thus defined, represents ttigaracteristic vector fieldlefined by
the first-order partial differential equation in questio Since any vector field on a
manifold locally defines a system of first-order ordynatifferential equations by

assuming that it always gives the velocity vector f@i@ solution trajectory, we obtain
the characteristic equations that are associatedhatRDE:

dx’ _ oF dp _ _ oF dp, _ _[aF aFj

_= —_— — i -
dt  dp, at v op, dt ox - Pu EY,
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On the second variation of multiple integrals

(By A. Clebsch

As is well-known, the examination of the criterta the maximum and minimum of a
simple integral has led to the consideration of tloese variation, and this has given rise
to the discovery of remarkable properties. It showsdhatmay, by partial integration,
reduce it to a simpler form. This integration might gld this result unless one had
performed the integration of certain differential equagi whose complicated character
has long discouraged geometers from seeking this integration

Jacobj in the case of simple integrals ohe dependent variable, discovered a
connection between these equations and the ones thablehe vanishing of the first
variation, and insofar as he arrived at the integratibthose transformation equations
with great ease in this case, he arrived at an entielyviewpoint of great significance
by these investigations.

In an earlier paper that is included in thd' 58lume, pp. 254, of this journal, | have
proved that thelacobiprinciples admit an application to all problems of tiadculus of
variations that depend on only simple integrals, ansl lityimeans of the examination of
the second variation that one is led back to the exaimmaf values that can be assumed
by a homogeneous function of second order, between wdrgsenents certain linear
condition equations exist.

This advance, which is essentially necessitated bymb&éod set down in the
aforementioned paper, likewise leads to the conjecturat tborresponding
transformations will allow one to also pose similaskgems in the calculus of variations
that involve a greater number of independent variables.fa¢t, | have found the
following theorem, whose development defines the comtietine present paper:

The second variation of an arbitrary multiple integral will always leadkbdxy
partial integration, to the integral of a homogeneous function of second order whose
arguments correspond to the respective highest differential quotietite vhriations of
the dependent variables, while these arguments are likewise coopéedth other by a
series of partial differential equations.

Here, as in the aforementioned paper, | will alsst fionsider integrals that include
only the first derivatives of the dependent functionsd arbitrarily many partial
differential equations of the first order can exist lestw these functions themselves as
condition equations. At the conclusion, | will bhyefjo on to the more general case,
which can always be reduced, from the aforementioned.

§1.

We denote an arbitrary multiple integral My which will be a maximum or a
minimum. F will denote the function under the integral sign, vihicontains the
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independent variables, x*, ..., X and the dependent variablg8, y@, ..., y, along
with their first derivative®y / 0x, in such a way that:

(1) V=["F dx dw ...dx .

The functionsy, which are determined in such a way that the first tianaof V
vanishes, may be coupled to each other by means of & sdrigartial differential
equations of first order, which shall be denoted by:

(2) $1=0, $=0,..., ¢ =0.
Furthermore, we set:

(3) Q=F+Mhig+ Ao+ ... + Ay,

where thed mean certain multipliers, so one also has:
()
(4) V=[7Q dqde..dx,

and they, A find their determination by means of equations (2) whey ahe linked with
the following ones:

B! 9 00
=2

3O T Lamay @’
oy 0x, aaL
0X,
0Q 0 0Q
ov® _Zma_ v’
0X,

0 « 8 0Q
ay(r) _Zma)gﬂ aay(r) !
X,

while equations (2) can also be represented in an analegouly means of:

0Q _ 0Q 0Q

Canp Fi-0,... 2=
A, A,

©) "0,

The resolution of the question of whether some pdaticsolution of these equations
makes the integral a maximum or a minimum depends upon the investigation of the
second variation. If we let thé), A in the expression (4) increase by small quantities
al, i, and develop them in powers ofhen we obtain:
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@) V+dv+ V= [V(Qren, +£2Q,..) dxdx...dx

except for a piece that can be brought about by thetiarsaon the boundary, and can
only exist in integrals of lower order. The expression:

ledxl dx ... dx

is, due to equations (5), likewise soluble in integralslayer order by partial
integrations. However, the sign of the second vianat.e., of:

(8) Fv=2["q,dxdx..dx,

is decisive for the existence of a maximum or minimuhfis is the function that will
now be examined more closely.

§ 2.

Q, is a homogeneous function of second order ointher 1) + « quantitiesw, ow /
0x, K, such that the last one enters in only in a lineay, @wad indeed, one can represent
Q, in terms ofQ; andQ in such a way that:

_ Hy 0Q ow  9Q 0Q
Q=3 w Y0 D ox aay(u) Dk N
0
®) an ow® axfr; 0Q
i) Pt §
ZQ Z w (|) z Zm GXﬂ aay(l) Zh’uh aAh
0X,

However, since the functionsare further coupled to each other by equations (2),
which must also be fulfilled by the functiogst+ &w, one obtains a series of condition
equations for thew which, when one goes from the functiog#sto the ¢ + &y by
variation, can be represented by:

(10) Y =0, Y =0, ek =0,

or also, which amounts to the same thing, by:

(11) 9% _y K, A
oA oA, "9,

These equations show that the pieceQpthat are multiplied by vanish.



58 Selected Papers on Geodesic Fields

| now pose the problem of converting the expressivrby partial integration in such
a way that in place of the functidd, which containsi(r + 1) argumentsv, ow / 0,
another one enters, in which omly arguments appearQ, must then be decomposed
into one piece that can be solved completely intogamegyate of integrals of lower order
by partial integration and another one whaos@rguments must be represented as linear
functions of thev andow / dx.

However, the first part of the functid, must necessarily have the form:

(12) S22 = oW,

where theB mean homogeneous functions of second order inwthend dw / dx.
However, if one imagines that the differentiations@rhave been performed then the
second derivatives of thee are not present in them. From this, it emerges tinstly, the
ow / 0x may enter into th® only in a linear way, and, secondly, that the coeffitiof
W . aw®™ / dxy in Bs and the coefficient of - W™ / dxs in By, must be equal and
opposite. Thus2(w) goes to a function of second order in whandow / 0x that has the
property that it contains the second dimensions ofttiter only in the combinations:

o gw v gup
ox, 0%, 0x, 0%

The aggregate of these terms of higher ord& ghall be denoted by¥((ow / 0x)).

Now, regardless of the form in which the new arguments can also be represented,
one can consider the equations, with whose help thegoanposed from thev, ow / 0x,
and which can then always be solved for thiequantitiesdw / 0x, and the linear
combinations of the new arguments that enter intcethetions thus solved, to be the

new arguments themselves. If we thus denote theWBythen they will have the form:

. ) . . .
(13) W = aai +a'wO+a AW+ kg P wt),
X

where thea still mean the coefficients to be determined, whasaber adds up to’r.

If one now, in analogy to the foregoing, denotes thgregate of terms of higher
order inQ; by (Q, (dw/ 0x)), then one will see, with no further assumptionst tiha part
of Q, that remains after performing a partial integrationtmamothing but:

(Q2 (W) - 6(W)),

and that one must therefore have the equation:

(14) Q2 = Q2 (W)) - O(W) +6(W),
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which infers the desired transformation in itself. Téens of higher order in it already
agree; the coefficients of the” - W™ andw - ow" / dx, then give a series of equations
for the determination of the andB.

However, equation (14) is not necessarily an identiy,niay become one only with
the help of the condition equations (10) or (11) thét time w to each other. Thus, in
order for equation (14) to become an identity one must agldum of the expressions
(11), when they are multiplied by linear factors of thevhose coefficients are arbitrary.
However, we remark that in formula (99 includes the vanishing term:

0
ZhﬂhaAh,

which is an expression of just the form imagined, extegdthere thes enter in place of
linear functions ofv. Therefore, if one lets this term@h remain then one can employ it
in order to make equation (14) into an identity, in such yatvat one represents tjeas
linear functions of thev, and the problem can be expressed thus:

Equation(14) shall be fulfilled identically when the expressignsre given in the
form:

(15) th = MPWD + MPWD +. 4+ MW,

§ 3.

However, the problem that was contained in 8 2 isrstillwell-defined, as one can
easily see.

It is also convenient from the outset to impose gedther demands upon the desired
transformation. In fact, it is preferable that of the condition equations that exist
between the W can be represented in terms of only thieng otherwise it would be
necessary for one to return to the The consideration of the second variation then has
nothing whatsoever to do with tleany more, but only the/ that seem to be coupled
with each other by means of certain ordinary equatiadsd#ferential equations.

This remark suffices to not only determine the problesegdpbut also to make it
soluble, which is, in no way, true in general for thgeierminate case.

The conditions that this yields are of two types: Tire bne arises from the fact that
the functionsy must be representable as linear functions oMteone, or the fact that
the coefficients of thev vanish when one eliminates the quantifies/ 0x by means of
equations (13). For eaghone obtain® equations in this way.

The other type of condition equations arise from tletfaat equations (13) should be
replaced with certain partial differential equationst téaest between th&/ without the
help of thew. One defines them when one next eliminates the diftexl quotients oW

from W andwW,". This then yields:
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o) 3 ih ih . h) ' h)
WY _OW _ (00| - [ O _ o)
0% 0x, ox,  0x, X%, X,

In the last term on the right-hand side, one can omme eliminatew" / dx, andow® /
0Xm with the help of equations (13), and it then becomes:

_z z \N(s)(a,lha,:s |ha,:;s) zh(arinwl((h_alilvvgnb)'
If one is to then obtain partial differential equatidoetween th&V alone then it will be

necessary that the coefficients of themust vanish in this equation and that thenust
therefore be linked to each other by the equations:

(16) 6662: +> alan® = +Z alay®,

while completely similar equations then exist betwden\\:

(7) aW(I PG =2 +Z AW

The meaning of equations (18) shall now be examined argktieral form that the
assume as a result will be deduced; however, it wi the shown that for any system of
W that satisfy the equations there is a system thlat satisfies equations (13) ahds, in
fact, can be regarded as completely equivalengt@gons(13)and(17).

§ 4.

Equation (16) represents a systemmof ( - r — 1)/2 equations. |f we now multiply
each equation with any quantityyand take the sum ovethen (16) gives the equation:

IRECINED I WACETES YR LRTES 3 SRt

Saxk Saxm

If we add to the two sides the equal expressions:

o2
ox, 0%,

hau o2’ L Ou° Lou
= +3 @ty ah—,
axm axkaxm Zs k axm Zh m

Zsm

h k an
and likewise set:

(18) ‘ :a—u+a'lul+a' U+ +a ]
0Xp,
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then the equation above assumes the form:
aA}In i,h Ah aAL i,h Ah
19 — a,) = + a" .
( ) an Zh k An X Zh m Ak

It is now clear that, with no further assumptions,séhequations can enter in place of
equations (16) when one only introducedifferent systems ofi whose determinant is
non-zero. If we denote thethat belong to one of these systems by:

ut? u?e, L UM

then we must similarly distinguishsystems oA that are determined by the equation:

(20) Al = %u, +ayut +a U a2
X

and in place of equation (19) the following one comes irdw Vi

aAi'r;g i 0 — aALYU i o
(21) o +> oA = o + A A

However, theA indeed still contain the’ completely arbitrary quantities | can
think of them as being determined such that all of Ahesanish; i.e., such that they
represenh mutually independent systems of solutions of the simetias equations:

(22) =gi+a‘nful+a;2u2+...+a‘nﬂw.
X

Let us see what values the remaining funct®mean therefore assume.
If we setk = 1 in (21) then we have for every valuenothat is different from 1:

+at A +a A+ +a P KO

m

0=9%
d

which, when combined with equation (22) shows, with no &rrdssumptions, that the
A? can be nothing other than solutions of this systemjinear functions of:

or finally, that:
(23) A = BoUut+ BU A+ L+ B U",

where theB are independent of .
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We now introduce these values into those of equationgi{dihave either the value
mor k. This gives:

@) 3,y 3w =3 LSS e,

. P .
For the sumzha,'('huh"#%u—, which is nothing butA”, we can again set it to the
Xy
value in (23), and thereby reduce the above equation to:

(25) Zpui’p [_aaﬁ_)ig +Zrﬁn:ﬂ Ifrj — Z [ k ¢’ +Z 0’ ﬁﬁfj

However, since the determinant of thein these equations must not vanish, by
assumption, one must fulfill the equations:

(26) 6,3 J+Z ’Braﬁpr: 618 J+Z a' m ,

which must be completely free of the independent varibland thus differs from the
system (16) only in that the latter involves the

One can now apply the same process to tRdbkat just served for the representation
of thea. We can thus multiply equations (26) toynutually independent systems:

B

where thev, however, are independent ®f, in order to obtain equations that are
analogous to (21), and analogously introduce new funcBdas theA such that:

i
(27) B = av—+,3rin’lvl" + B+
X,

and when one imagines that theare determined such that all of tBe vanish, one
obtains, fom = 3, 4, ... n, the equation:

(28) Bl =)V e 2V 2

where they are independent of;, X, and must satisfy a system of equations that is
completely the same as the systems (16), (26), but irckitleerx; or x,, as well.

Proceeding in this way, one gradually arrives at thepbete representation of tlwe
which are expressed by:



Clebsch — On the Second Variation of Multiple Integrals. .63

n’ functions u"? of X1, Xz, X, .., X,
n? functionsV'? of X, %, ..., Xn,
n? functionsw"? of Xa, .y Xn,
etc.
I would now like to show that, without compromising theegaiity of the solution,
one can let all of these functions vanish up touthe
Namely, if we multiply equation (23) bﬁ'” and sum oveuothen, considering (27),
one comes to:

A 2,
DL ANV = u"ll?ﬁ"+d'23§”+---—{lh'lavl v 20 +}

0, 0X,,

or, when one also appeals to (28):
(29) Z A'n"v“+z LJ" Z u' oV +y”z UV 2.0 4 z VAAVAN

in which the right-hand side vanishes wimr 1 orm = 2.
The left-hand side of this equation is nothing but theesgion thatA" goes to as

long as one everywhere uses the expresgagrui'”v‘” in place ofu!. One then sees
that everywhere the functiomsv enter only in the combinations:

ZU ui,ava,/l ,

and since the"?, which represem independent solutions of equations (23), can possess
no other property a property that likewise correspondisetee combination — one can
then obwously use these combinations immediately ineptdi¢heu’?, and denote them

by u*?. However, equations (29) then show tiwith no loss of generahty, the, Aas

well as the A can be set equal to zero, and the remaining onasheaexpressed by the
eguation:

A}ir,]/i_yl/lull_i_yzﬁul +. +V141un
where theyare independent of the,»as well as the x
One needs only to repeat the same argument in ordeowothat one can also let all
of the A; vanish and one can then reduce the remaining ones todix@assions in the
whose coefficients are also independent.oOne finally arrives at the conclusion that all
of the Ay, can be set equal to zero, and one has thus proved tinerthe

The most general values of the functiartat satisfy the equations:

m +Z alh hs: Z alh h,s
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are the ones that one arrives at upon determiningath®m the equations:

i,o
il .10

(30) 0=——+a,'u’ +a,u¥ +-+a," U7,

where the u represent’ rompletely arbitrary functions whose determinant does not
vanish.

§ 5.

One now easily connects the foregoing with the prioaif the expression faW that is
given by equations (13) also represents the most genecldns that satisfy equations
@n.

From the derivation of these equations, it next follohet they, in fact, must be
fulfilled when one sets:

W(I) _ aV\/(I
(31) ox,
=W,

+a|lWl)+a| 2\N(2)+ +a|nV\F)

where thew mean any arbitrary functions, and since the equatibnsdre linear, they
obviously always remain true when one introduces tHerdiicew" - W% , instead of
W
ALE
Now, it is undoubtedly always possible to determine timetionsw in such a way
that this differencaV’ — W% vanishes fom = 1, which also might be the actual values

for the W. However, it then follows from equations (17) for= 1 and amm that is
different from 1 that:

oW —w i i i
Ao Ao )5 arw - we) =0
0%,
i.e., W —WY must be a linear function of the solutions of (22), or:

(32) ani) _qu) = br(nl)ui,1+ brf)lj'2+---+ bg)dm,

where théb, are independent of .
Furthermore, we substitute these values into thoseaditions (17) for which either
m=1ork=1. We then first obtain:

abplp |hphp_ a p|p |hphp
Z( )ZZakb Z(b“ )ZZakb
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Here, however, the coefficients bf andb? vanish as a result of equations (30), which

define thea.
Thus, all that remains is:

e %—% =
2 (axk 6me >

or, since the determinant of thenay not vanish:

oby _ o7
ox, 0%,
or
V7
(33) b =9
0x,

However, when this is introduced into the right-hand eidequation (32), this takes
the form:

ac(l) - 60(2) ) ac(n) ,

ut+——u? e+ ue,
0%, 0%, X,
or also:
O(CPu + U+ + V) (00Ut 0%, @O U ,
0x, 0x, 0%, 0x,

or finally, when one substitutes the values ofahé dx from equations (30):
a Py 4.0 ih {0
o (o2 X (2, ¢0).

which is an expression of the form of thié®’, except that thezpc”ui"’ enter in place

of thew, here.
We thus see from equation (32) that we arrive at thergéexpression foW when

we substituten” + >.,c°u” in place ofw) in the expression for W, and since this

expression is no more general than the completelgranpifunctionw”, one can, in turn,
denote them by/”, and thus arrive at the following theorem:

The most general values for the functidd$ that satisfy the equations:

oW g OWY i
T = BT

where thex are defined by the equations:
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ou"? -
0= +a U +a U e+ P
0

and the u represent completely arbitrary functions, are:

ow®

WO = W a4 g 2@ sk g ),
0

where the w mean arbitrary functions.

§ 6.

After these preparations, we are finally in a positioncompletely formulate the
problem that defined the actual objective of these inveagtigm

Convert the second variation:
(r)
[ Q dxdx-- dx

by partial integration into the integral of a homogeneous functigf? with nr
arguments that are linked with the previous argumefiisowthe equations:

WO = +ayw® +al WP+

while the coefficientsr are converted into nfunctions u with the help of the
equations:

au|a
O: +a,|lulﬂ+a,| 2u20 .-,

0x,

and furthermore, the linear function®Q /04 go to linear functions of the W.

From (14) above, the transformation of the funcfipris expressed by the equations:

(34) Q2 = Q2 (W)) — ©(W)) +O(w),
in which them are replaced with the expressions (15), and in whichhatély, the

coefficients of the— Ga; already agree.

If we denote, for the moment, the right-hand sidé3d) by® then this yields linear
equations for thev andow / ox:
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o _ 0
ow”  ow"’
(35) 6(22' _ 6CD'
3 ow® 3 ow"
0X, 0X.,

whose coefficients on both sides must agree. Ftmrsécond of these equations, one

deduces only?r equations, since the coefficients of t%%in them have already been
made to coincide, and from the first equation, one tlegluces(n + 1)/2 new equations
that originate in the coefficients of the produots - w" in (34).

In any case, it must then suffice when one fulfiie first n equations (35) fon
mutually independent systems of values of theand then show that the second
equations can still be completely satisfied.

Instead of the first equations (35), one can, howealsg appeal to the following
ones, which are defined with the help of the second equation

90 9 9Q, _ od 9 b

36 o8 0% 0 0
(36) o~ Ly ST ol 2o T
0x, 0x,

In this equation, | now successively introduce the vargystems ofi for thew and thus
obtainn® equations from (36). Let us see what form the right-Isiohel takes as a result
of this.

As a consequence of equations (13) and (30), the funatibase the property that
when they replace the, theW all vanish identically. The part df that has th&V for its
arguments then vanishes completely from (36), and alladh@® that remains i©©(w).
However,®(w) is a homogeneous function that admits the one-fakgration in all of
its parts, so the equations:

00 0 00
(37) ow® Zmaxn 3 ow®
0X,

must be fulfilled identically, and the right-hand sidg36) \_/anishes completely. If_one
now letsQ¢ denote the function th&, goes to when the(’ in it are replaced with"”

then this shows that th&? must then satisfy the equations:

0Q] < 0 097

ou'’ "0, 5 ou'’
0x,

(38)
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Here, it is necessary to make a remark: The furgjicenter intoQ,, which must be
set equal to the expression (15) in order to make equa&drat identity. Therefore, by
the differentiations in (35), (36), (38), thmust also be regarded as functions ofwhe

In fact, however, the part of equations (38) that aiisea differentiation with respect

to ¢ vanishes completely. The partgma% In question, is, in fact:

0 U,
EihaAhﬁgjw-

00,

Now, since the expressionas)l— should likewise be regarded as linear functions oithe
h

they must obviously vanish identically when one goes fioem’ to theu"?; i.e., theW
all vanish identically. Therefore, one can consitter.tto be completely independent of
theu under the differentiation in (38), and they alone takéhe system of values:

g

15 e 1

under the introduction of theinto (15).
However, one must likewise fulfill the equations:

(39) a&:o’ a&:o, ,a& :O,
o, ol oA,

which arenx in number, and are thus the complete expression ofdée that the
. 0 : o :

functlonsa—gjl can be represented as linear combinations oWheithout recourse to
thew.

Equations (38), (39) together now serve to determine thatidmsu"’ and 7, or, if
one would like, the functions andM, whose number is just as large, and indeed one has
n - kK + n? equations in just as many quantities. However, the mgstff unknowns,
divided by the various corresponding valuesopfare present in these equations, and
always in the same way. One thus has the remarkasldt,revhich represents the
immediate extension of the argument that was intradlbgdacobi:

The different systems of'@nd 4, are just as numerous as the different solutions of
the system of partial differential equations:
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0, <« 9 09
a0~ e, au
(40) 0X,
0, _o0,_
0A,  Ou,

that make the integral:
FV=2¢ Ierdxldxz . dx

assume a maximum or minimum value.

§7.

One can now easily represent the solutions totmmsa(40) when the solutions of
equations (5), (6) are assumed to be known.

Lety® y@ . v A1 A, ..., Ay be the most general solutions of equations (5), (6
Let a be any arbitrary constant that enters into therd, lanP an arbitrary function that
enters into them. One then obviously obtains neti®ns when one lets the constant
go toa + £a and the functior® go toP + &1, wherea is a new arbitrary constant ahd
is a new arbitrary function whose arguments comeuith those oP, ands means a very
small quantity. Now, under these operations, wtra develops them in powers&the
ygotoy+eau+ ..., thedgotod + gu+ ..., and one has the equations:

) 0] i)
#=x(o%n)

(41)
YR

= g +N="h ,

F Z( da apj

where the sums are extended over all of the arpittanstants and functions that are
included in the/"), A, . Likewise, howeverQ goes to:

Q+eQ+8Q,+ ...,

except that ther now enter into the functionQ;, Q, in place of thew. Now, one
obviously has:

0(Q+eQ, +£%Q,+-) _ 109(Q+£Q,+£°Q, +--)

ay® £ ou®
0(Q+EQ +£°Q,+-) _10(Q+Q, +£°Q,+--)
5" £ 50u” ’

Xy, X,
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6(Q+£§21+£2Q2 t--) :16(Q+g§21+52§22 t-)
oA, £ o, !

and from this, it likewise follows that:

0Q _ 09,
6y‘” ou®
0Q _ 09,
i~ (i)
a6y a6u
0X;, 0X;,
09y _0Q,
0, O,

and since the equations (5), (6), when one(ets £ Q; + &€ Q, + ... enter into it in
place ofQ as coefficients o, as is allowed, give the equations:

0 _x 0 u

ay(i) maxmaaL(i)’
X,

a_gzl: O,

a2,

one sees with the help of the equations above that émel . that were introduced here
represent nothing but the general solutions of equatds (The different systems of

u, M7 must therefore be obtained from equatiddd) when one onlyattributes
different systems of values to @nd[l1; i.e., one must have:

. () i)
ul,J:Z[aa ay +|—|Uay( }

(42) oa oP
oA 0

T=) o’ —=+07 2|

F Z( da apj

from which, these quantities are completely relatddchtmvn things.

§ 8.

All that still remains is the determination of thedtion®, and this comes about with
the help of the second of equations (35).

We recall that each of the equations that represeardnitlead to onlyn equations
when one sets the coefficients of theon both sides equal to each other, so in order to



Clebsch — On the Second Variation of Multiple Integrals. 71

make this equation into an identity it obviously sufficesttone adds that differentw
fulfill independent systems of values. Let this systdmalues, in turn, be those of the
Once again, all of the terms in the funct®rthat are independent of th'e then vanish,
and the second of equations (35) goes to the following one:

(43) -
aM - %
0X, 0X,

We now go into the behavior of the funct®more closely. In equation (12)(w)
was represented by the expression:

0B 0B, 0B
ox, 0%, ox

where theB,, were homogeneous functions of second order ofvtaeddw / 0%, such that
the latter appeared only in a linear way and, in additlm coefficient ofw BB% in

: " e OW i
Bk was equal and opposite to the coeﬁmentsv@f% in Bs. One can thus generally
set:

S S h)
(44) DD I IIAES 39 9 SR Ak
1 1 S ’ XS
where the coefficientls, a are subject to the conditions:
(45) b =k, al=-a,=-d\ =

The number of the quantities to be determined is then:

nCh+1 nCth-1_rb-1
r+ = ,
2 2 2

and since (43) delivers only - r equations then the problem is apparently indeterminate.
It shows that it suffices to know a single solutiowd dhat, for the present purpose, all
solutions deliver the same result.

When one substitutes the value in (44)@pone obtains the following equation:

(@) 0= XTI wow



72 Selected Papers on Geodesic Fields

DI ML LR e
D IDINI '“M)M)

S ox, ox

and from this, equation (43) goes to:

auha

4 F MU o S I

9
X,

If we multiply this equation by"” and then take the sum ovehen this gives:

A T

0
aXm
0a!
+ ul puh,a ,m
9> (zk - j
h[f
v2y, 33 ane 8
X,
If we finally let (o, 0)m denote the expression:
(47) 0. In= 1Y | ue B po O
' ou"? ou”’
0 0
0%, X,

then this gives:

(48) (0 On= zz(z

S e )|

“ axk 0X, 0%,

an equation that makes the functibnganish identically. We remark that (48) represent
nith-1

[ equations, and if we think of the as determined then what remain in the

+ . . . .
system (46) arenD;—lm equations that achieve the determination ofttltempletely.

In order to perform this determination in a symneetvay, one can now, parallel to the
expressions (47), introduce the notations:
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g P
(49) [0, Am= 22' U 0Q i o aQ'z |
i a i,o aul'p
0 0
axm axm
which then yields:
i ) ) h,o )
(50) thib:]*'u“pw'” =[p, dm+ thizsagrl{uu,paau_xs_ g aauxs j

However, we shall now turn to the more precise ictamation of equations (48).

§9.

Under the transformation of the functi€l, one comes down to just that part of it
that remains under thefold integral in reduced form. However, this piart

QW) — ©(W)),

and indeed, with the notation that we have jusbahiced:

1) STDEDIIS I ATAY

However, the present problem has led to the faat thea do not seem to be
completely determined, but admit an infinite numbgvalue systems. | would now like
to show thatthe various expressions th&®(W)) can be equal to can differ only by
functions that admit the one-fold integration in all of their parts, sotle present
purpose they vanish from consideration completely.

We letc denote the difference between two such correspgndistinct systems of
associated, and letH denote the difference between the functid®@/))) that arise in
that way. | would like to prove that always admits the one-fold integration in all tsf i
parts.

From equation (48), it then follows that:

(52) 0=ZhZiU“"““”(Z o

kaxk

)y 3 ¥ a0 e 2

0%,

while from (51), it likewise emerges that:

(53) H=> > > > cuW, W,
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In order forH to admit the one-fold integration, it is necessany surfficient that it fulfill
the equations:

oH 0 OH
4 I L
(54) owP Zmaxm aavw)
0X,

These equations are, however, as one easily showsngdut equations (52), from
which the assertion is established. In fact, when waelefuation (54), we next obtain,
considering the value &

DI IHLILTEED>
=Ty w55

"X, (z 2 chw®)
jiizrﬂwﬁ

ma)(m

If we now add equations (17), by which t¥éare defined, then this easily shows,
when one always keeps in mind the equation:

chl=—chh=—cPr=clP

that the second term on the right-hand side of this &oue&n be replaced by:

a ZhZSZ mz qcfgjza,:‘qwéq) !

and in such a way that each equation goes to:

oc?
ma)(m

=%, S WO ST 5 XY |

or that ultimately, since the that are contained W should remain completely arbitrary,
the equations to be fulfilled must be:

ocPhh

0<%, TE-F, ¥ (e i),

Instead of then” - r different equations that this equation represents, omalsa choose
then® - r equations that emerge from them when one multipliemthyu®” u™, and
sums oveh andp. However, this gives:
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- DE{E (X e )i oL, @y (Xaide) v,

or, with the help of equations (30):

0=3, %, %, Fiwd o 3 T T, e S e S

" 6xk 0%,

an equation that goes to (52) immediately with a diffiemotation for the indices. The
property of the functiomd that was alluded to is then proved, and likewise, thetlfet
one must only look for a single functi@from amongst the infinitude of possibilities.

§ 10.

Finally, in order to actually perform the determinatmithe a, one can now give
equations (48) the form:

a i i
0.0n= 3,3, X 5 Wu ).
or when one sets:

(55) Zn = Lo (uurdy),
the form:
(56) (0, g)m:%-i-%.{-....{-%_

ox, 0% o0x

The functiong, along with thea, then have the common property:
(57) 206 = 2y == 20 == 28,

and thea are determined from them easily by means of lieggiations.

Equation (56) is connected with an important prgpef the functions £, o)m .
Namely, if we differentiate this equation with resptox, and take the sum overthen
we obtain:

(58) op.0), ,0(p.0), ,  ,0(PO) _

0%, 0% 0%

This is, in fact, a fundamental equation for thections {p, o), . It can be derived
directly from the equations that thesatisfy. To that end, we need only to multiplg th
equations:
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0« 9 Qg
o’ moX, aau‘*" ’
0X,,
agg__§: o 097
ou”’ maxnaawﬁ’
0X,,

by u"” andu"’, respectively, and then add them, and take the suni.o¥éris gives:

D> lu 99, _ u’ 00
! ou'’ ou”
:zz U 0 an _de 0 an
P 0x., aau'*" ox, aau"”
0x, 0%,
and when one now adds the expression:
ou* 0Q7 au’ aQs

ZiZm

X,

X, aau‘*" 0x, aau"”

0x;,

to both sides, one obtains identically zero on thehignd side, from known properties of

homogeneous functions of second order, and with consimerepo the fact thata—Qz

Oy

vanishes, while the right-hand side likewise yieldsdtpeation to be proved:

0=900), 0p0),,  0(p0)

0%, 0%

0%

This equation may also be expressed by sayinghbdtinctions:

(0 0)1, (0, 0)2,

oes (0, O)r

can always be represented as sub-determinants ef amd the same functional
determinant,and this gives rise to a remarkable representatidhe functionsz. If we
imagine that the functions of this determinant h&een found, i.e., that the partial

differential equation:
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0¢”°
0%,

0¢”°
0%,

0p””

(59) 0=(p,0), o

+...+(10’0-)Ir

+(0,0),

whose multiplier is unity, has been integrated completely, awd denote the solutions
to it by:

A Y
and the partial functional determinants that are defined from them, wraoh equal to

the functiongp, 0), by A??, AY?, ..., A??, then one obtains solutions to equati&®)
when one sets:

p.0 p.0
0A 0A
PO — $P.O m — _ PO h
0— 0—
28 0x,,

From this, it then follows from known properties of ftinoal determinants that:

0,0
0,0 N X
azl_v'“+%+... = z 6¢ aAm — Aﬁ{g,
0 0% "X, | 599
0%,

or (o, dm , which was to be proved.

However, since the functiozshere take the form of the second differential quotients
of a functional determinant that is comprised of eleiéhat one may, in general,
assume to be known, there is another path that leatihe timmediate representation of
certain solutions of (56)Namely, one can set:

(61) 25 = { (.0t~ (p.0)x}

If one then differentiates with respectXpand sums then this gives, upon consideration
of equations (58):

0%y _
Zhﬁ = (0, Om,
as it should be.

Equation (61) thus contains the solution to the presettlgm. | thus point out the
remarkable fact thah the entire course of the investigation, no ctindi was imposed
upon the character of the solutions’wf the systen{40). It is known that such
conditions enter in when onlyne independent variable is present, and indeed, it is the
condition that the constant values that the fumsti, o) can assume must all be equal
to zero. Such a condition then appears in no othesscds fact, the second of equations
(35) leads ta’r equations in:
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nlCh+1 nCth-1_rb-1
r+ 4
2 2 2

n Dh—ld -3
>
One thus has, when= 3, just as many functions to be determined as equatiahsie

undetermined functions. The difference between therwmbers is

present, and too many wherr 3. However, for = 1 andr = 2 there arenD;—_:L more

equations than functions, and (56) then actually leads tg—%ég condition equations:

(0, 0)=0.

Forr = 2, however, thest—?%L conditions are nothing but equations (58), which are

fulfilled identically. Indeed, this situation also dinshes the number of equations by
nbh-1

for r = 3 such that the problem will be truly undetermined for 3.

Furthermore, this shows that = 2 yields the only case in which the problem is
determinate, without leading to conditions ondheand in this case, one has:

27 = 3{[(0.0),d% [ (0,0),0%}
or also:
zy =[((0,0),d% = (0,0),dx),

where a complete differential is found under thegnal sign.

8 11.
The result of the present developments may be suined in the following theorem:

Let U, u?“, ..., u™? be a system of functions that are composed frorsdheions to
equationy5), (6)in such a way that:

0 oy" oy
42 us=>» g’—+)>» N ——,
(42) z oa z oP
while U denotes their determinant and€Us equal toaa%. By partial integration, the
U

integral:
("
[ Qu(w) dx dx. dx
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reduces to:

[ (@,W) - (@) dydx--- dx,

where the argumenté/”’ have the form:

i,o

(13.30) S N “>a” GUT

or, when they are coupled to each other by the equations:

I a

aW(I) Z z auha (h) _ aWk(i) _Z a UI[J’ (h)
hax, U o o hox, U

and where the coefficiens;, with which W” W{is multiplied in (©(W)), has the
form:

a, —Z >, Uhruz ([ (0.0)ndx,~[ (0,0),0x,)

2I’U z zaauhaa |p('[(p U) dxh J(,O U) an)
Likewise, the equations:
(20) Y =0, W=0,..,¢=0,

go to linear condition equations between W§’.

From the above, the form of the latter is easyite,gas well as that of the integrals of
lower order that were excluded from the partia¢gnation.

| couple this with a remark that concerns the nmgaeeral problem in which higher
differential quotients also enter under the inteégign. One can then introduce all of the
lower differential quotients as new independentaldes, and define their character by
the condition equations that one appends. However, remark that in the
aforementioned theoremy" has the form:

ow® gut 9u’  9u°
%, 0% 0% 0%

W ot ut? o g

w2 ot ou?? ... u®

U-wo =

VV(n) un,l un,2 un,n
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If w" does not correspond to one of the highest-order diffefeqibtients that are now
introduced as new variables then amongst the sequences:

\N(i) uh,l uh,2 uh,n

there is always one of them that is equal to the seguen

ow®  au't 9u"? ou'™"
ox, 0% 0% 0%

precisely. W will then always be vanishing, and one thus obtains thHewimg
theorem:

After an application of the present transformations under the integral sign,
integral that contains differential quotients of arbitrarily higher order the
dependent variables exhibits a homogeneous function of second order whose
arguments correspond to the respective highest-order differential quonénhe
dependent variables.

If the differential quotients go up to the degreesp., ..., pn, respectively, then the
number of arguments in the reduced function of second @der

z rf+1d+2--r +p, -1
h 102038 -- p, '

Berlin, 12 June 1858.




On a question in the calculus of variations

By J. HADAMARD

At the present time, one knows that conditions haenlrigorously established for
the maximum and minimum of a simple integral that amst an arbitrary number of
unknown functions, or again a multiple integral that aos only one of these functions
(*). In the first case, if one limits oneself, fimplicity, to the study of an integral:

[ O Yo Yo S o $a)

where the functiongy, y», ..., ym are not subject to any given relation and appeahe
first order, the Legendre condition for the weakimium, which is generally equivalent
(®) to that of Weierstrass, is that the quadrationfor

must be positive definite. In the second caseirtegral being:

JJ- [ 1% %%, R Ry p) dydye- dp

andp, p2, ..., pn denoting the partial derivatives of the unknownchiony with respect
to the independent variables x,, ..., Xn, the condition will be on the form:

Z 0°f uu
Topop,
which must be definite.

The most general case, in which both several mewi@pnt variables and several
unknown functions are involved, has been, to th@raoy, almost universally neglected
although one must regard it as a natural and imabedjeneralization of the preceding
cases.

From that analogy, one must, upon being givemeegral:

) ] O Yo Yo X % e ) e e

() Here, | am making an abstraction of the cases inhngome of the inequalities that must be satisfied
in order for there to be a maximum or a minimumrapaced by the corresponding inequalities, cases that
are yet to be elucidated and will probably never be camee HEDRICK, Bulletin of the American
Math. Society2™ series, v. IX, 1902). These cases are exceptionalpdhe fact that the difficulties that
are at issue in the text are presented in a completebralecase.

(®) The exceptions are valid only for the limiting caseshich we alluded in the preceding footnote.
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where the quantity under tHe...] depends omn unknown functions, n independent
variablesx, andmnderivatives:

i 5)/. i=1,2,:--m
pk:a_ _
x  |k=12:-,n

of the former ones with respect to the latter, abarsia necessary condition for the
minimum to be that the quadratic form:

) Z 0% f U
i,k,i’,k’apli(adk" o

in themnindeterminatest,...,U" must be positive definite.

It is not pointless to remark that it is nothing loé tsort, and that the casemof 1,n
> 1 presents a difficulty that is peculiar to it. Thesnark is not, moreover, completely
new: It results from the transformations that wpeeformed by Clebsch in his memoir
Uber die zweite Variation vielfacher Integrdl). These transformations, which
generalize the ones that have been performed by Jactie @econd variation of simple
integrals, consist uniquely in the addition of terms th&tgration by parts allows to
disappear when one transports them to the frontieebsCh showed that by a convenient
introduction of terms of this type one may supplemeatfonm (2) with particular linear

combinations of thd™tM=1 1) expressions:
i'=1,2,m

(3) u U, — U, U, k,K'=1,2,--,n]|.
iz, k #k'

It is therefore absolutely necessary only that tenf(2) be definitelt suffices that it
become that way when one combines it in an arbitrary manner with the f@rms

Furthermore, we see that this condition is sufficienrender the second variation
essentially positive. However, it is easy to deduaenfit the desired sufficient
conditions for a minimum.

Indeed, suppose that the form (2) is defined by the addifiome or more terms of
the form:

AUl = ),

where A is a quantity, either constant or variable, that omg @mways assume to be
expressed as a function ef We may, with Clebsch, consider these terms to be pr
existing in the form in question, with the condition tlwate adds td corresponding
terms:

() Journal de Crellet. 56, 1859, pp. 122-149.
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9 vy g
R(Ayipw) axk'(/ly.m
= A(p, B M)w[naxk naij,

which naturally do not change the question that pased, and consequently also remain
without influence on the other elements of the sotu— | would like to say, on the
Lagrange equation and the Jacobi condition. Oheeepression fof has been thus
transformed, everything proceeds asnfor 1.

It remains to know whether the condition, thus ifed, is necessary.

Now, one may easily establis}) the following necessary conditiofthe form(2)
must be essentially positive for all the values of u that annul gresstong3).

However, it is not obvious that this conditiorepuivalent to the former one. Indeed,
if one considerp arbitrary quadratic formgi, ¢, ..., ¢, , and a + 1" form ¢, and if
one knows that it is positive for all values of teriables that annul the former then it
results only from this thag must be a linear combination of the forgh&nd a definite
form. At the very most, one may be more affirmatbn this point if, instead of arbitrary
forms ¢, one considers the particular forms (3).

Meanwhile, the deduction in question is legitimateen the numbep is equal to
unity. Since this is true fan= 2,n = 2, the question is solved in this case.

On the contrary, it seems to call for further e#s wherm, n > 2.

() This proof, which rests, moreover, on consideratityat are completely distinct from the integration
by parts that must be utilized for the converse proof, appeay Lecons sur la propagation des ondes et
les equations de I'Hydrodynamiquehich will be published shortly.



On some questions in the calculus of variations

By J. HADAMARD

In a previous Communication)( | gave a necessary condition (corresponding to the
Legendre condition or that of Weierstrass) for theimum of am-fold integral in which
m unknown functions appear. | added that the method dbsEle ¢) furnishes a
condition that is equivalent to the preceding onenfor n = 2 (the equivalence being
doubtful for higher values ah andn), and which is capable of playing the role of the
Legendre-Weierstrass condition as a sufficient candit

This latter point is not exact, and, as one seesgtiestion is yet to be elucidated,
except for the simplest casernf=n = 2.

Let z;, z be unknown functions of the variablesy and letp;, qi, p2, g2 be their
partial derivatives. Any condition that is analogaushiat of Legendre or Weierstrass for
the weak minimum (for us upon considering this case) muelve a certain form F that
IS quadratic irps, g1, P2, O

I. The necessarycondition that we have previously obtained is that Ftnies
essentially positive for all the (non-null) valuestbé variablei, o1, p2, 02 that satisfy
the relation:

(1) P102 — P2 = 0.

II. The methodClebschgives thesufficientcondition that the quadratic form:

(2) ® + A(p102 — p2)

(where A is a function ofx andy, but not thep, ) must be positive definite. To this
condition one must, of course, addazobi condition

In the present case, this consists in the existenbgoo$olutions {1, &), (1, ) of
theequations of variationsuch that the determinant:

A=00 - G,

is not annulled in the domain of integration.

If A may be chosen arbitrarily then the condition that- A(p:g. — qip2) may be
rendered definite by a choice afwill be equivalent to the previously stated necessary
condition.

However, this is not the case. Just as it results) fthe analysis of Clebsch, the
values of/ are determined by those of the solutighsg, or at least, once these solutions
are chosen] contains only an arbitrary constaht

It therefore does not suffice that for each systdmatues ofx andy there exist
values of1 that render the form (2) positive definite. Let:

1) ThisBulletin, t. XXX, 1902, pp. 253.

)
(®) Journal de Crellet. 56, 1859.
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(3) M<A <A

be the interval that comprises these valued.ofit is further necessary that one must
determine the constaftin such a manner that for all pairs of values,of contained in
the domain of integration the inequality (3) must be vetifie other words, that the
minimum of the values o€ deduced (at each point) from the relatibr= A, are not
inferior to the maximum of the value Gfthat is deduced frooh = A; .

Likewise, if one takes, in all possible ways, thdusons ¢, r of the equation of
variations then the functioh may not be taken at will. It will satisfy a systeinpartial
differential equation$ (most likely complicated) resulting from the elimimatiof {1, {;
n1, > between the equations of variation (which are fouruimiper for the two systems)
and the two relations that defide the six equations thus written reducing, moreover, to
five, thanks to the fact that the system of equationaoétion is identical to its adjoint.

One will then be led to the following question:

Does there exist a solution to the systesatssfying the inequalitie§3) in the entire
domain of integration?

This problem belonging to the same category of questiondy@®nes that we
encountered a moment ago, it offers a simple exampategory that is probably quite
worthy of attention.

Of course, once one has such a soludprone must calculate the corresponding
solutionsd, r and verify the Jacobi conditi(l\n>/< 0.

[ll. The method oHilbert (which is not fundamentally distinct from that of G$eh)
leads to results that are entirely similar.

In order for a function ox, z, z1, z, p1, P2, Q1. O, When integrated over andy, to
give a result that depends upon only the contour, géessary and sufficient that it have
the form:

G=A+Byp; +Bopr+Ci01 + Cop+ D(PL O — O1 P2)
(A, B, ... functions ofx, y, z;, z), a form that generally refers, as one sees, tona tieat

is nonlinear with respect to the first derivatives.
In order to follow the path pointed out by Hilbert, wstftake:

(4) ¢=f(xy, 2, @, Y1, @, o) + o — @) i, + (P2 — @) £,
t-x) f +@R-x)f,,

wheref is the given function under thé sign, in such a manner that:
[[xv.2,2, R B g g) dxd

is the integral whose extremum one seeksandwm, xi, x» are defined in the following
manner:
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One considers a family of extremals that depend uporathitrary constants, b:
5) z =Wi(x, y, & b), z=Wy(x Y, & b),

these equations being supposed soluble with respeat bp in such a way that the
determinant:
(6) D(qu’LIJZ)

D(a,b)

is not annulled at any point of the domain of integration

Geometrically speaking, the functioms z of x andy represent a doubly-extended
multiplicity traced out in the space of four dim&ms, or, more conveniently, a pair of
surfaces in ordinary space, with the conventioh ¢in@ considers any two points to be an
indissoluble entity when, taken on these two seda@spectively, they have the same
projection on thexy-plane {). These are two points thus situated on the ssarellel to
the z-axis that we call pair of points. The condition that was imposed ondkigemals
(5) amounts to saying that one may make them jpasagh any pair of given points (that
are sufficiently close to the extremal that onesiders).

Having said thisgm, yi1, ab, . are the partial derivatives @, z that are deduced
from equations (5). They are thus functionx,0f, a, b, and consequently (by virtue of
the previously-postulated solubility) functionsxfy, z1, z, in such a way that expression
(4) is a function 0K, y, z1, Z, p1, Q1, P2, Q-

The calculations involve two types of derivativeamely:

1. The derivatives of a function of y, z1, 2, p1, 1, P2, 2, When these eight
guantities are considered to be independent vasalwe denote them by indices. For
example®, denotes the derivatives @ with respect top.. This is what we did in

formula (4), wherd, represents the value 6f when one replaces,, o1, p2, oz by @,

b, X1, X2 In it.
2. The derivatives of a function of y, z, z with respect to these quantities
considered as independent variables; we denote ligetime symbolb. For a functior®

of X, v, z1, z, @, x1, @, > one has:

ow. ox. ox
7 — =d_+o +O 2+ 2+ L2 i =1, 2).
) 520 Pa g, P g O Oy (=12

3. The derivatives are taken along the pair offasess (which are arbitrary,
moreover) whose tangent planes have the anguldficieets p;, di, p2, 2 . We denote
them by the symbal; one has (for a function af y, z, z):

(*) In particular, these surfaces are limited by two gigentoursC,, C, that are both subsets of the
same cylinder parallel to tlzeaxis.
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(8)

4. The derivatives are taken along the extremals (4)n upmnsidering, as a
consequencez, z to be functions ok, y anda, b to be constants. These derivatives,
which will be denoted by the symbilare coupled to the derivativédy the relation:

0 _0 o o

— =ttt W, ———,

oX OX oz 0%
(9)

0 _0 9 o

Having said this, the conditions for the integrfl¢ dx dy ¢ being the expression
(4), to depend upon only the contour, namely:

B 0, 0, o B 0, 0, g
oz, ox' ™ o9y * 0z, ox * ody *

(equalities that must be valid for apyq), reduce, upon taking into account formulas (8)
and the fact that the surfaces (5) are extremals, to:

9O _9
522 oy 5% w;
o) o)
—f -——1f =0.
522 X 5% X2

= O,
(10)

They will therefore not be satisfied in general.
However, if (as we have the right to do) we adtittee two integrable terms:

0 0 0 0
—WUp1) - — (1AL D) =—'up122——'uCI122+,U(D1CI2—CI1p2)
oy o0X oy 0Xx
o o
:—”plzz——” 012 + LAP102 — 0L P2)
oy OX

(m being a function oX, y, z;, z,, andA denoting the combination:

J
A=p+ zzﬁj
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or furthermore, if, without changirgwe add to the expression (4), the term:

= Al(pr — @)(02 — X2) — (P2 — @) (a1 — x1)],

then equations (10) are replaced by:

d. 0 H(%%jm:o,

oy 2]

0. 1) 0z O 0
(10) 5 4 4 4 y

O _ 9 ¢ 9, 0w, +M:o,

oz, * 9z * 0z 03z) 02X

and, to satisfy the conditions of the problem, we onleha determinel by these latter
equations.

However, these are nothing but the equations that weeldny Clebsch. In order to
convert them to the Clebsch form, it suffices to ¢famm the derivativesd upon
replacing the independent variabiesz by the variables, b. The derivatives of one of
them with respect to the other are the quantitieswlesé previously denoted bg, &,

n, Iz, and the functional determinant (6) is what we hallecA.

Consequently, as in the Clebsch method, the equation}y ftkéh a completely
integrable system and have, as a consequence, a salthienhdepends upon an arbitrary
constant.

We are thus led to exactly the same point as in tbeeding method, and we have to
study a system that is analogous to S (but notably manel@ated and more difficult to
form, since the equations will no longer be linear) wileid by eliminatingz, z between
equations (10 and the ones that express that the family (5) isposed of extremals.
We must express the notion that this system adnstdution satisfying the inequalities

3).

IV. In reality, one must presume that the discusda e just had is not necessary.

Indeed, if we consider, no longer the method of Hilbéuf the method of
Weierstrassn its original form then we arrive at some conauasi in a notably different
form.

Indeed, let %, s) be the pair of surfaces that constitute the extretoaliex, while
(S1, &) is another pair that one may compare them withyamndh is limited by the same
contour (G, &). On (9, &), trace out a pair of variable contouns, (5) ()4 and )4
being, of course, situated on the same cylinder paral@k}o Make a pair of surfaces
(Z1, o) that constitute aextremalpass through}{, )5). If this latter construction is
always possible then it will suffice to vary the taurs (4, )5) from a pair of points to the
position (G, C) in order to apply the reasoning of Weierstrass.

Now, the condition that is analogous to that of Legeridrwhich one thus arrives
(for a weak minimum) is theecessargondition that was recalled to begin with.

However, upon proceeding thus the difficulty appeatianJacobi condition. Instead
of simply supposing the existence of a two-parameteilyfaoi extremals one must
express that one may construct the extremal pajr3(), i.e., solve a Dirichlet problem
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in two unknowns under the most general and difficult dioml, since)s and )» are
arbitrary.

The present state of science does not, for examplenit one to deduce from this
method the existence of a minimum for a very smalkgration domain. On the
contrary, it results from the method of Clebsch-Hillsnce, by reason of the arbitrary
constants that appear In one may always suppose that this quantity satisfies th
inequalities (3) in the environment of an arbitrary giveimpo

I will conclude by indicating some points for which, imetlectures taught at the
College de France for two years, | have yet to coraptle¢ results acquired from the
calculus of variations.

The first concerns thisoperimetric problemin which one seeks the extremum of a
certain integrald, knowing the values of one or more other given intsgaald certain
accessory conditions. The fundamental result (whetluces that extremum to a free
minimum by the intervention of a multiplier) has yetbe extended to the case where,
among the accessory conditions the conditions of ingywgdpear. It still remains true
in this case; however, the proof must appeal to somedmyasions that are noticeably
different from the classical considerations.

On the other hand, the question of knowing whetheMWherstrass constructiois
possible in this same isoperimetric problem, may, in masgs;abe considered to be
solved if the arc considered satisfies the sufficiemmdiions for a minimum (for
example) for the integrab I+ |11 (11 being the given integral arid the multiplier), this
minimum being considered to be free. Indeed, one continatsthe extremities remain
fixed. This remark will be very useful, for example,tie proof of the existence of a
minimum in a sufficiently small region.

Finally, I will further note a very great simplifigah that one may achieve in the
proof of the theorem of Osgrod, from which one may a&ssiglower limit on the
difference that exists between the minimum integnal a varied integral. A procedure
that is completely similar to the one that was eaypd by Kneser in the context of
stability of equilibrium for a massive string permitseaio pass to the inequalities that
were employed in the different direct proofs that giugnto now. Unfortunately, this
method is no longer applicable to multiple integrats, Wwhich, what is more, the
guestion is always much more delicate.

I will content myself with merely mentioning these igas points, which will be
treated in more detail in a later work.




On the calculus of variations

By David HILBERT

Necessity of the existence of the Lagrange differentiabjuations

The question of the necessity of the Lagrange criterd.e., the existence of the
differential equations that are implied by the vanishindfist variation — has been

treated by A. MAYER? and A. KNESER. Here, | would like to present a rigorous and

likewise very simple method that leads to the desiredff the Lagrangian criterion.
For the sake of brevity, | will always assume in thifving communication that the
given functions and differential relations are analyfiom which the analytical character
of the solutions that come to be employed will be a&skur
We further choose the more convenient representationtheut diminishing the
generality of the method — in the case of three diduwactionsy(x), z(x), S(x) of the
independent variabbe between them and their first derivatives with respex:

5 Y0 =200, = =80

let there be given two conditions of the form:
f(y',i,é,y,zs)(:o,} )
a(y.Z,s, ¥ 25 ¥ 0.

From this, one arrives at the following theorem tqimved:

It might be that/(x), z(x), S(x) are three particular functions that satisfy thedibons
(1) and possess the following properties: for all valuestbét lie betweer = a; andx =
ap, one has:

of  of
Z
o 0 z0; (2)
dg 99
oy 07

if we choose any other three functio¥(s), Z(x), Sx) that likewise satisfy the conditions
(1), for which one has:

! Essentially unchanged from the version that was puldligh¢he Gottinger Nachrichten 1905, pp.

159-180.
2 Math. Ann. v. 26 and Leipziger Berichte 1895; in the latteiend. MAYER has extended his
foundation of the Lagrange differential equations totiost general problem.
% Lehrbuch der Variationsrechnung § 56-58, Braunschweig 190(rtiéem was likewise posed in
full generality in this work.
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Y(a1) =y(a),
Z(a1) = Z(a), Z(a2) = Z(ayp),
Sa1) = @), @) = @),

then one always lets — assuming that the functdwy Z(x), Sx), along with their
derivatives (any particular functiongx), z(x), s(x) and their derivatives, resp.) differ

sufficiently little:
Y(az) = y(a2). ()

If this minimality requirement is fulfilled then there are essarily two functiond(x),
H(X) that do not both vanish identically for all x, and which together with thetitursc
y(X), z(X), S(x) fulfill the Lagrange differential equations that arise from the annullihg o
the first variation of the integral:

I:{/lf(y’, Z,S YZSKU QY 'Z'S.Y,ZI9KX,

namely:
i@(/]f+,ug)_6(/lf+,ug)zo, @)
dx oy oy
ia()lf+,ug)_6()lf+,ug)zo 5)
dx 97 0z ’
ia()lf+,ug)_6()lf+,ug)zo ()
dx 0s 0s '

In order to carry out the proof of this theoreme wake any two well-defined
functionsgi(X), a(X) that vanish fox = a; andx = a,, and substitute foy, z, sin (1):

Y= Y(X, &1, 52),
Z= Z(X, &, 52),
S=9X) + &0i(X) + & c(X),

resp., wheres, & mean two parameters. We regard the resultingtieaqsa

f(Y',Z,S, Y. = 0,
( ZS )y } @)

aY,.Z,S, Y 2 S )0
as a system of two differential equations for tkéedmination of the two functiong Z.
As the theory of differential equations teachedue to assumption (2), for sufficiently
small values ofy, & there is certainly a system of two functions:

Y, &, & and Z(x &, &),

1 Cf., E. Picard: Traité d’Analyse, t. lll, ch. VIII.
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that fulfill both equations identically ir, &, & and go toy(x), z(x) for & = 0, & = 0, and
assume the valugga;) andz(a,) for x = a; and arbitraryg, &, moreover.

Since our minimality requirement (3) demands &t &, &) must have a minimum
as a function o, & at& = 0, & = 0, while the equation:

Z(x, &, &) = Zap)

exists betweemn, &, the theory of relative minima for functions ofdwariables teaches

that there must necessarily be two consthmtsthat are not both null, and for which one
has:

0 (a.6)+ MA@.6,8) | _
| ¢, 1o ®)
0(Y(a,.6,.8,)+ mZ(8.£.6,) | _
I 0, L

in which the index 0 means, in both cases, that bothmedeass;, & are set to zero.

Moreover, we determine as is certainly possible according to (2) — two fumstio
A(X), ((X) of the variablex that satisfy the differential equations (4), (5), whask both
linear and homogeneous for them, and for which at keepvherex = a, the boundary
conditions:

oy’

[aul +ug)} o
07 x=a,

{a(;n +,ug)} -
9

are valid. Sincé, m are not both null, both of the function§x), 1(x) thus determined
also vanish, but certainly not identically.

By differentiation of the equations (7) with respexti &, and subsequent annulling
of these two parameters, we obtain the equations:

oy'| of [ov]of [0z]| of [az]af, ,of of
| 0g, |, 0y | 0& | 0y |0g |02 |0¢ |,
ov'] 9g,[0v] ag,[02] 24,[27]
| 0g, |, 0y | 0¢& | 0y |0€ |, 0Z |O0¢,
ov'] of [ov]of [az] of oz
| 0&, |, 0y | 0¢&, | 0y |0¢, |, 0Z |0¢,
ov'| a9 [ov)ag,[02]dg[0Z]0g 04
| 0&, |, 0y | 0¢&, | 0y |0&,| 0Z |0&,|,0Z 5




Hilbert - Necessity of the existence of the Lagranfferéntial equations 93

in which the index 0 always means that both parameiees are set to zero. Starting
from these equations, on the one hand, one multigieesirst and second ones Ayand
M, resp., adds the resulting equations, and integrates rethedmitsx = a; andx = az;
on the other hand, one multiplies the third and fourtbsoby A andy, resp., adds the
resulting equations, and integrates between the Ixmt®; andx = a;. From this, we
obtain:

.[az O(Af +ug)| oY’ LA f+ug oY L0 f+ug oY
2 oy' a¢, |, oy d¢, |, 0z o€, |,

L0 +pg)[ oY +6(/|f+ﬂ9)01+6()lf+’u@al}dx =0,
0z 1 0g, |, 0s

.[az d(Af +ug)| oY | LA f+ug oY LU frug oY’
2 oy’ 0, |, oy s, |, oz 0, |,

L0 +ug)[aY +6(/1f+ﬂ9)05+6(“+”902}dx =0.
0z 0, |, 0s

(10)

We now have, on the one hand, the conditions definedeab
Y(as, &, &) =Y(an), Z(a, &, &) =Z(a),

and therefore at the locatiors a; :
a_Y - O’ a_z - O
| 0&, o | 0&, o

a_Y} “o, 6_2} =0
| 05, |, | 0¢, |,

on the other hand, we deduce from equations (8) and (9) lactHi®nx = a;, :

d(Af +ug)| oY LA f+ugloz| _
ay | 0g |, 07 og, |,

0Af +ug)[aY | 0 f+ug[az 0o
oy  |oe, |, 07 o, |,

Keeping this in mind, it follows from (10), usind)( (5), and by means of the formula for
the integration of a product (partial integratitimt we have the equations:
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jaz a(Af+/«lg)0_,+a(Af+ﬂg)0_ dx =0
a oy ! 07 ! ’
Jaz{a()lf tH9) v 0AT+pg) }dx: 0
a 9s 2 ds 2 '

We set, to abbreviate:

= [T 5, 2010

SO we can express the result obtained as follBasany two functionsgr, o that vanish
at x = ag and x= a there is always one system of solutiohs¢ of the differential
equationg4), (5)that does not vanish identically and is such,:that

Ay, 0)) =0 and Ay ®) =0
If we now assume that there is a funct@rfor this system of solutiorlsm such that
the inequality:

(Ap, 05 %0 (11)

is valid then we define any system of solutidhsy/ of the differential equations (4), (5)
that does not vanish identically, such that one has

N i, o) =0. (12)
If we assume, moreover, that there is a functipfor which the inequality:
(AU, o) %0 (13)

is valid then we can apply our previous resulthe functionsos, g; and recognize from
this the existence of a system of solutidhsy/" of (4), (5), such that the equations:

A", x
A" ', o

(14)
(15)

)
2)

are valid. Sincel, i; A', i/; A", /' are solutions of a system of two homogeneousailine
first-order differential equations, there must exiemogeneous linear relations between
two of them that take the form:

al+a A +a' A" =0,

au+a g +a' y' =0,

wherea, &, @' mean constants that are not all zero. Howevem ff11), (12), (14), it
would then follow necessarily that= 0 and then, from (13), (15), it would follow tre
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= 0, which is not possible, since one indeed &ag 0, moreover, and the system of
solutionsA”, i/' does not vanish identically i

Our assumptions are therefore inapplicable, and wewbs@lom this that eithet, ¢
or A', i/ is a system of solutions of (4), (5) such that tleeeahentioned integral relation:

(Au, 0 =0 (" 44, 0) =0, resp.)

is valid for any functioro. The application of the product integration (partiggnation)
to this relation then shows that, equation (6) mustssaecédy be valid for the system of
solutionsA, u (A" i, resp.), and with that, our desired proof is brought topdetion.

The independence theorem and the Jacobi-Hamilton theory
of the associated integration problem

In my talk* “Mathematical Problems,” | put forth the following methfor extending
the necessary and sufficient conditions in the calooflwariation:

It treated the simplest problem in the calculus ofatmns, namely, the problem of
finding a functiorny of the variablex such that the integral:

3= [[F(Y, v 9 dx [y’=j—ﬂ

attains a minimum value in comparison to the valuesttigmintegral assumes when we
replacey(x) with other functions oX that have the same given initial and final values.
We now consider the integral:

T =[{F+y-nF}dx

{F:F(p,y;x), szw]
ap

and we ask how thein it is to be regarded as a functionxpy in order that the value of
this integralJ* be independent of the path of integration in ¥yeplane—- i.e., of the
choice of functiony of the variablex. The answer is: One takes any one-parameter
family of integral curves of the Lagrange differenaglation:

oF

da' oF
W oo, F=F.y; ]
dx dy

! Presented to the International Congress of Matheiaas in Paris 1900; this volume, paper no. 17.
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and determines at each poxt, the value of the derivatiwe of the curve of the family
that goes through this point. The value of this derivative a functionp(x, y) with the
desired property.

From this “independence theorem,” what immediately ¥adlas not only the known
criterion for the attainment of the minimum, but addbessential facts from the Jacobi-
Hamilton theory of the associated integration problem.

A. MAYER * has proved the corresponding theorem for the casevefa functions
and exhibited its connection with the Jacobi-Hamiltorotie In the following, | would
like to show that the independence theorem is capaldegeheral conception, and also
without any application of calculation, and can be pdovery simply by returning to the
aforementioned special case that was treated in iy tal

For the sake of simplicity, | start with only two fiionsy(x), Zx). The variational
problem consists in choosing them in such a way thantbgral:

b dy dz
J=| F(Y.Z,y, d, '=—=, Z=—
L Y.Z,% 23 [y ™ dx}

attains a minimum value compared to the values ttmatintegral assumes when one
replaces the(x), z(x) with other functions ox that have the same given initial and final
values.

We now consider the integral:

I=[{FHy-DFR+Z2-97 o

{F:F(p,q,y'z g, p=OF(Pay.zY _0Rpdyz )1

op dq
and ask how the p, g, in it can be regarded astions of x, y, z in order that the value of
this integral J be independent of the path of integration in xyaesp- i.e., of the choice
of functions {x), z(x).

In order to respond to this question, we choosarhitrary surfacd(x, y, 2) = 0 and
think of the same functiong, q as being determined in such a way that the intefjra
attains a value that is independent of the chofceuove when we take it over a curve
lying in T = O that goes between two pointsTof 0. Thus, we construct the integral
curve of the Lagrange equations:

oF

da' oF

_Y T o F=Fy.Z,y,zX)],
dx dy

' Math. Ann., v. 58, pp. 235.
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oF
d—

az _6F -0
dx 0z

through each poirf® of the surfacd = 0 inxyzspace, for which one has:

Yy =n Z=q

at each poinP, such that a two-parameter family of integral curves fills up a spatial
field comes about in this way. We now think of each pajny, z of this field as
determining the integral curve of the family that goe®ugh it. The value of the
derivatives {; Z at each point x, y, z are then function®, py, 2), q(x, y, 2 with the

desired property.

In order to prove this assertion, we connect a ceptaint A of the surfacd = 0 with
an arbitrary pointQ of the spatial field by means of a pathwe think of an integral
curve of our two-parameter family as going through eachtmdithis pathv. The one-
parameter family of integral curves that thus arisesbeirepresented by the equations:

y=¢/(xa),} a7

z=x(xa).
Those points of the surfade= 0 from which these integral curves (17) begin define a
pathwron the surfacd@ = 0 that leads from the poiAtto that pointP? of T = O that is the
starting point of the integral curve of the family thaeg througi®.
A surface will be generated by a one-parameter fanityives (17) whose equation:
z=1(x,y) (18)

is obtained when one eliminates the parametieom the two equations (17).
If we now introduce the functiofifx, y) into F in place ofz, and set:

F(yﬂﬂ v,y f(% w;xj = d(y, y; )
ox ay

then for any curve that lies on the surface (18) one has

I:F(Y,i, 23 d= jbcb(y',y, x) dx,

a

and thus vanishes in tlg-plane for curves of the family:

y =YX a) (19)

as well as the first variation of the integral:
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[y, v, 9 dx (20)

i.e., the family of curves (19) in they-plane is a family of integral curves of the
Lagrange differential equations, which implies the vanishinth® first variation of the
integral (20). From the validity of the independence téwoforonefunctiony it follows
that the integral:

b
[{@+(y-po}dx,  [®=0(p,y;X] (21)
possesses a value that is independent of the choiceatiofay.
Since:

Z’ = ﬂ-}-ﬂ y’ ,
ox ay

q-= o +ﬂ p
ox ody

one will have, however:
of
—(y-p=Z-q,
oy

and as a result, we have:

@y )+ -pP  =FpP.qy.zx)+ Y —p) (FpJ’Fqg—;j
=F(P, a9y, zX)+ Y —p)Fp+(Z —) Fq.

The independence of the integral (21) that we pusted also brings with it the fact
that our original integral:

I=[{FHy-DFR+(Z-97 o

preserves its value when we choose our integrgtaah to be, notv, but another path
from A to Q that lies on the surface (18)say, a curve that consists of the patland the
integral curve of the family (17) that runs frdito Q. This fact may be expressed by
considering that equations (16) are valid on theéh megmentPQ, so one has the
equation:

JJFHY-PDRHZ-98 o

[ (FHY-DRHZ-0 7 o[ Fo 2)

If we let w denote any other path in our spapglfield that leads fron\ to Q and let
W, denote the corresponding path fréno P on the surfacd = 0 then, for the stated

reasons, the equation:
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JJFHY-PDRHZ-9 8 o
=, (FHY-PFR+(Z-0 ) d¢[ Fo (23)

follows, and since, from our assumptions, the finségrals on the right-hand sides of
(22) and (23) have equal valuesincewr and w; lie in T = 0 - it then follows that the

integrals in the left-hand sides of (22) and (2®) @so equal to each other, from which,
our independence theorem is proved.

The simplest type of functiong g on surfacel = 0 that one can choose that are
consistent with our demand consists of ones tlatierermined by the equations:

oT dT 0T
F_pr—qu3Fp3Fq:&3a—y:Ei (24)

the integrand of the integrdf then vanishes for any path that lies = 0, and this
integral thus has the value zero©r 0O, independently of the path.

In particular, one can replace the surfdce O with a point; all of the integral curves
of the Lagrange differential equations that go tigto this point then define a two-
parameter family of curves that one has employetthenconstruction of the spatiadr
field.

Since the integral* will be independent of the path, it representlsirgction of the
variables of the upper limit — i.e., a functiontbé endpoink, y, z in the spatiapg-field;
we set:

Jx vy, 2) = I:”{F +Hy-pF+HZ-9 7 d. (25)

This function obviously satisfies the equations:

0J

&:F—pr—qu’
0J

_:F,

oy P

o

oz

If we eliminate the quantitigs, g from them then what results is the first-orderctlai-
Hamilton partial differential equation” for the fatmon J(X, y, z). In particular, if the
values ofp, gonT = 0 are determined by the construction of theiajpadrfield in such a
way that the integrand of the integdalvanishes — i.e., such that (24) is true — th&ny,
2) is the solution of a Jacobi-Hamilton differentggjuation that vanishes ar= 0.

If we think of the surfacd = 0 as belonging to a two-parameter family of acek
and denote the parameters of this familyably then the functiom, g of the spatial field,
and therefore the functiad(x, y, 2 will also be independent of these parameterse Th
differentiation of the equation (25) with respextiie parameteis b gives:
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2 - jj“{(y P (2 q—}
== j“{(y P (2 q—}

and since, from (16), the integrands of the integrals enrigpht-hand sides obviously
vanish while progressing along an integral curve, thesgnals represent functions xf
y, Zthat assume the same value on any individual integra¢cue., the equations:

— =,
da
a_J:d
ob

are— whenc, d, as well as, b, mean integration constantsothing but integrals of the
Lagrange differential equations.

This way of looking at things suffices to show how #ssential theorems of the
Jacobi-Hamilton theory arise immediately from the pefedence theorem.

Adaptation of the method of independent integrals
to double integrals

When one merely treats the question of the conditionthe minimum of an integral,
one does not require the given construction of a spaddield; it usually suffices to
construct a one-parameter family of integral curves @@7)he Lagrange differential
equations in such a way that the surface thus generated m¢hedearied curvev. The
application of the independence theoremdioefunction in the aforementioned way then
leads to the conclusion.

This remark is of use when one wishes to adapt the methdlge andependent
integral to the problem of finding the minimum of a douhtegral that includes several
functions of several variables.

In order to treat such a problem, weZget denote two functions of two variablgsy
and seek to determine these functions in such a waghinabuble integral:

=| F(z.2,% 1,221 %y o,

(@

:% :a_z &:ﬁ :ﬁ
“Tox oy’ ax’ b ay|’

which is taken over a given domdnhin thexy-plane, assumes a minimum value when
compared to those values that the integral assumes weereplacez, t with other
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functions Z, t that possess the same prescribed valuestasn the boundar of the
domain Q. The Lagrange equations, which are given by the vanishinipeo first
variation, read:

doF, doF_OF_

dxdz dydz 0z

d oF  doF OF _

_  +— —  — =0

dxoat, dydt ot
in this case.

Furthermore, we start with a certain solutiant of the Lagrange differential
equations, and ez, t be any varied system of functions that satisfy #mmesboundary
conditions az, t. We then determine a functi&y, y) of the variables, y such that the
equationyx, y) = 0 represents the boundary curveoin thexy-plane, whileSx, y) = 1
will be fulfilled only by the coordinates of a singleipiinside ofQ; finally, the equation
Sx, y) = a, whena runs through the value between 0 and 1, shall represamily bf
curves that fill up the interior of2 simply without gaps. Thus, we determine those
functions:

Z=(% y,a)} (26)
t=x(x y.a)

that satisfy the Lagrange differential equations andgsssthe same prescribed values on
the curveS(x, y) = a as the varied system of functio@éx y), t (X, y), and are such that
for a = 0 the functions (26) go over to the originalsiminz, t. These functions (26) then
onviously define a one-parameter family of solutgystems for the Lagrange equations
for which the equations:

Z(x V)= ¢Ux y, X Y)),

txy) =xxy, Sx ),

are satisfied identically.

If we interpret the basic solutiant of the Lagrange equations as a two-dimensional
surface in thexyztspace, and likewise the arbitrarily varied systniunctionsz, t,
then the two-dimensional integral surfaces of the-parameter family (26) generate a
three-dimensional subspace of tkiztspace whose equation is obtained by eliminating
the a in (26); let the equation of this three-dimensi@pace take the form:

t=1(xy, 2.

We assume that the one-parameter family (26) €ifisthis three-dimensional space
simply and without gaps.
If we replace the in F with the functiorf(x, y, 2) and set:

of of _ of of
F ) ’__ l_+_ 1 :¢ b l;l
(szyax+azéay 35 3 z(xy):x} (%, 2,ZXY)
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then it is only necessary for us to apply the independéem@dam that | proved in the
cited talk foroneunknown function and the argument that is linked witb ithe integral:

Jo @202, 2% Y @,

in order to recognize that the integdalinder the assumption of a positlzdunction for
the system of functiorgx, y), t(x, y) before us, actually assumes a minimum value. The
appearance of the minimum is thus bound by the followingregairements:

1. Constructibility of the family (26). This requiremastcertainly fulfilled when
the Lagrange partial differential equations always possesstem of solutions t that
possess arbitrarily prescribed values on any closed ¢uthat lies inside of2, while
they are regular functions gfy onK.

2. Simple and gapless covering of the three-dimensgpede by the family (26).
This requirement is certainly fulfilled when each systof solutiong, t of the Lagrange
equations isiniquelydetermined by its boundary values on any arbitrary closeg &
that lies inside of.

We can briefly summarize the result as follows:

Our criterion for the attainment of the minimum requires that the boundsne
problem for the Lagrange differential equations relative to any closed ¢uhat lies
inside ofQ be uniquely soluble for arbitrary boundary values. Our argument shows that
this criterion is certainly sufficient.

If, in particular, the given functioR under the integral sign in the problem treated
only happens to be of second degreejrg, ty, ty, z t then the Lagrange differential
equations will be linear in these quantities, and in thée ¢he boundary-value problem
that is required for the application of our criteriortirsated completely with the help of
my theory of integral equations.

In order to develop the reasoning that comes abobgeiapplication in this case more
closely, we define thatomogeneoudjnear system of differential equations that arises
from the Lagrange equations by dropping the terms thdtesefz t; we would like to
refer to this system of equations as the “Jacobi equdtiofisis now immediately
obvious that the boundary-value problem for a civenly allows several systems of
solutions when the Jacobi equations possess a systerutidrsoz, t that are zero on a
curve K, but not everywhere inside the domain that is bounde&.byThe theory of
integral equations now shows that the latter caséasvise the only one in which the
boundary-value problem for the curiéewill not be soluble for the curv€ for certain
prescribed boundary values.

In the case of a quadratic F, our criterion for the attainment of themum thus
comes down to the demand that the Jacobian equations allow no system ohsalutj
other than zero that are null on boundary S or a closed curve thanbBeteiofQ. (The
fulfillment of the criterion is also necessary in this case.)
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In the general case when the given funcBiainder the integral sign is not quadratic,
in particular, but arbitrary, in the functiomst to be determined and their derivatives, we
have to apply the aforementioned criterion on the skeaniation of the integral and
thus arrive at a criterion is completely analogouséowell-known Jacobi criterion in the
case ofone independent variable amne function of several variable to be determined,
and which will thus be briefly referred to here as theobi criterion.

Minimum of the sum of a double integral and
a simple boundary integral

We finally treat the problem of determining the functawof the variables;, y in such
a way that a double integral that is extended over angleenainQ in the xy-plane and
augmented by an integral that is extended over aJaftthe boundary of2, namely the
integral sum:

I=[ F@ez zxy+| {2z 25
_9z _ _0z __0z
T Yoy % as|

attains a minimum value, whileshall have prescribed values on the remaining $art
the boundary; thuss, f are given functions of their arguments amdeans the arc length
of the boundary curv8 of Q, as measured from a fixed point in the positive senseeof t
circuit.

The vanishing of the first variation requires that diesired functiorz, as a function
of x, y in the interior 0Q, must fulfill the partial differential equation:

doF doF_oF _, 27)
dxdz dydz 0z

while the differential relation:

{a_FJ d_(a_Fj dy, dof _of_, 28)
0z, s ds (02 s

must be valid on the boundas§i; in it, we understandix/ds dy/ds to mean the
derivatives of the functiongs), y(s) that the boundary cun& defines.
We now consider the integral sum:

I=[ (FHz-DFR+(2-0R d‘”Lsi f{ z-% d

oF oF of
F=F(p.q, , B=— R=—, f=10r,z9, f=——1
{ (pazxy F=7m R=g zd A 677}
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and would like to seek to determine theq in them as functions of, y, zandp as a

function ofs, z in such a way that the value of this integral sum ispeddent of the
surfacez = z(x, y) over Q — i.e., of the choice of functiom — when they have only
prescribed boundary values$n. The integral surd” has the form:

j(Q){A;+ Bz- G du+J'(sj az-}b ¢

whereA, B, C represent functions of y, zanda, b are functions ok, z This integral
sum is, as one easily recognizes, independent of tifecear= z(x, y) in the desired
sense, when the differential equation:

9A,98,9Cy (29)

is fulfilled identically forx, y, z inside of thexyzspace that projects onto the dom&in
and the differential equation:

dy,0a,db
B _ + 90 30
()Sds()%dsasa- (30)

is fulfilled identically ins, z on theszcylinder that projects into the boundary cu&e
When we replacé, B, C, a, b with their values:

A=F,

B=F,

C=pF +qF-F, (31)
a=1f,

b=rmf - f,

the two equations (29), (30) represent partial differeetialations for the functions q,
7T
We now determine a one-parameter family of functions:

Z=Yy(X. ¥, 9 (32)

that satisfy the Lagrange equations (27), (28), and set:

Z=YX(s), Y(s), a) = U s, a) (33)

on the boundary; we assume that this one-parametely falisi up the spatial field in a
single-valued and gapless manner. Thus, we comgpatea function oX, y, z from (32)
anda as a function o$, z from (33), and form the expressions:
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p(x, Y, Z) = [M} ,
X a=a(x,y,2)

S LZCV I
y a=a(x,y,z)

s 2) = [aw(s, a)} |
aS a=a(s,2)

The function®, q of x, y, zand rof s, z that thus result have the expected property.
In fact, that the functiong, q satisfy the equation (29), follows easily from our
consideration of the equation:

0 0 0 0
p+q p_oq p_q
dy 0z X 0z

if we think that¢(x, y, @) shall fulfill the Lagrange equation identically for a#llues of
X, ¥, a. In order to prove the existence of (30), we substitute:

zZ _0mr _O0mr
+

]T_
ds® 0s 0z

in the Lagrange equation (28), which is satisfied identigals, a, and it goes over to the
equation:

d azfan o 0% f 02f Of
(F)Sid ~(F) s+ ( Zj+ " =

ds 977 92 omd z omd so

which is valid identically for als, z We obtain precisely the same equation when we
substitute the expressions (31) in formula (30). With, tie proof of the independence
theorem for the present problem is completed.

From the independence theorem, it follows, as betbagt:

Hz,2,p, 09 =Fz,2)-Fp,d) - &-p F-@-9F;>0,
E(z, ) =f(z) - (79 — @—p) f~> 0O,

such that in the present probldmo Weierstrass E-functions come into consideration
one for the interior and one for the boundasy. S

On the other hand, in order for a one-parameter fafB2y to exist that generates a
simple, gapless, spatial field in the desired way, weepbe requirement thany
solution z of the Lagrange equatiof®7), (28) must be uniquely determined by its
boundary values on any arbitrary curve K that ither closed or begins and ends in S
and lies inside of2. Our argument then shows that this criterion is agy sufficient.
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In particular, if the given functions, f under the integral sign in the problem being
treated happen to be of only second degreg,ip, z (%, S, resp.) then the Lagrange
differential equations become linear. If we then defthe homogeneouyslinear,
differential equations that come about by dropping thedehat are free af from the
Lagrange equations and refer to them as the Jacobi equidt@ms is immediately clear
that the boundary-value problem for a cuk/eadmits several solutions only when the
Jacobi equations possess a soluadhat is null orK, but not everywhere inside of the
domain that is bounded It/ (K andS,, resp.).

Thus, in the case of quadratic Four criterion for the attainment of the minimum
leads to the requirement that the Jacobi equations allow no solution z besiddabat is
zero on the boundary, ®r on a curve K inside d® that is either closed or begins and
ends inside of:S

In the general case, if the given functidhsf are not quadratic, in particular, but
depend arbitrarily upon the functi@to be determined and its derivatives then we must
apply the aforementioned criterion to the secondatian of the integral suy, and thus
arrive at a criterion that is precisely analogous ®\lell-known Jacobi criterion, and
will thus be briefly referred as such here.

When the problem is posed of making the double integral:

Jon FZaz 2%y o

attain a minimum, while the boundary values for the ddsiunctionz shall satisfy the
supplementary condition:
f(z, z 9 =0,

then we can immediately apply the formulas and reagowif the aforementioned
problem; it is only necessary to append the equdtm® and replac§s) with A(s) f in
formulas everywhere, where the Lagrange fadi@) is to be regarded as a yet-to-be-
determined function o,

General rule for the treatment of variational problems
and the statement of a new criterion

In conclusion, let me state a general rule forttatment of variational problems in
which the values of the functions to be determined arscpbed everywhere on the
boundary that is an abstraction of the cases that de=ie with above.

First, one obtains the Lagrange equatibnsf the variational problem by annulling
the first variation. Then let a systefrof such solutions of these differential equatibns
be known that fulfills given conditionB of the variational problem that relate to the
interior, as well as the boundary.

When the Weierstragsfunction for our system of solutio@shappens to be positive,
we refer to the system of solutioAss having gositive-definite character.
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We now fix our attention on any paftof the domain of integration, and denote the
boundary of this sub-domaih, as long as it belongs to the boundary of the original
domain of integration, b, as long as it lies in the interior of the origimEmain of
integration; thus, the new boundary that results is Let the condition® be valid for
the first boundarySr, as well as for the interior of, as demanded by the present
variational problem; fosr , we prescribe that the values of the functions efsystem of
solutionsZ on it be the boundary values. The system of comdititbat comes about for
the sub-domaif will be denoted b .

Thus, when no system of solutions of the Lagrange equdtiaxssts that satisfies
the conditiondB other than the system of solutioAsand when, furthermore, no system
of solutions of the Lagrange equatidnsexists for each sub-domainthat fulfills the
conditionsBr other than the system of solutidnnside ofT, the system of solutiorigis
said to have amtrinsically unique character.

For the system of solutions Z a certain minimum occurs when it hasiav@o
definite and intrinsically unique character.

As one sees, in the statement thus expressed, a gairereent enters in along with
the Weierstrass requirement of the definite charactethe solutionZ, namely, the
requirement of the intrinsically unique character ofgbkitionZ. The latter requirement
now has the same relationship to the Jacobi critericas it was formulated in the
calculus of variations up to now — as the Weierstragsrion does to the Legendre one,
when one regards the Weierstrass criterion as thesseagecorrect strengthening of the
Legendre criterion to arbitrary variations. In facttjas one will obtain the Legendre
criterion by an application of the second variatiortte Weierstrass one, so will the
Jacobi criterion arise from the one that | presenteck Hthe requirement of the
intrinsically unique character of the solutidhby an application of the second variation.
Namely, if we define, by an easily recognizable analtigyhomogeneous, linealacobi
equations I[] from the Lagrange equatiorls and likewise, thehomogeneous, linear
associated condition8] from the given condition8 then our criterion comes down to
the requirement that this homogeneous, linear systemuatiens and conditions may
possess no solution besides zerand indeed not for any sub-domdineither— when
one also prescribes the boundary value of zero on ehe boundarysr of this sub-
domain that then comes about. However, the critedhah| posed is — in analogy with
the Weierstrass criterion — also valid as a sufficenterion without restriction when
arbitrary variations come into consideration, notrehe ones in a sufficiently close
neighborhood; this is then applicable, by way of exampleen the decision about the
minimum must be made for a curve between two conjupaiets, where the Jacobi
criterion breaks down.

Whether the criterion that | posed also sufficesbfoundary values that are not given
as fixed — how it is to be modified in that case, respeguires an examination in
particular cases.



On the calculus of variations for multiple integrals

By C. Caratheodory

Introduction

1. TheWelierstrasstheory of the calculus of variations and th&cobi-Hamilton
theory that he employed were completely establishedhiby in two extreme cases,
namely, when one hassimpleintegral andn independent functions to vary and when
one has a+fold integral withonefunction to be varied. By contrast, the general problem
of the form:

(1.1) '[---'[f{xl,...,xq;g,... t -a—xl,...,a—X"J dt--- df,

is actually never well-posed, when one considersesbrief remarks thatiadamard
foresaw when he remarked on some peculiaritieshisf problem® In the following
pages, | will thoroughly set down the first attempt a treatment of this problem that
seem indispensible to me. My investigations is tegard already go back several years
and have also been published piecerfieal.

Upon studying the important work Bifaar on the adjoint variational problefr then
remarked that my old computations could be writlemvn in a much more symmetric
fashion by a minor modification in the notation.n @his basis, the entire system of
formulas was derived once again. The first chaptlich is devoted to the derivation of
some purely formal identities, thus includes simbly results of my prior work in a new
form. However, by means of the newer notationyels as some advice of DF.. Radg |
hope that the representation has become more tnamtp The second chapter is devoted
to the Weierstrass theory for the problem (1.1)ictvth had previously only inadequately
touched upon. ThE-function that belongs to this problem will be meted here for this
first time in canonical coordinates, as well ashe usual coordinates. The same is true
for the Legendre condition, as well as the difféiedrequations that the “geodetic fields”
must satisfy. Finally, it will be shown that whangeodetic field intersects a surface
transversally then this surface must necessarilya l®olution of the Euler-Lagrange
equations.

The opposite problem of constructing “geodetiddfg i.e., ones through which a
complete figuref our variational problem can be constructed, stdhnot yet be solved.

1 J. Hadamard Sur quelques questions de calcul de variations. Bull. \gath. de Franc&3 (1905),
73-80.

2 C. Caratheodory Uber die kanonischen Veranderlichen in der Variateetsnung der mehrfachen
Integrale. Math. Annaler85 (1922), 78-88; Uber ein Reziprozitatsgesetz der verallg@mem
Legendreschen Transformation. Math. Annaén(1922), 272-275. [In this work, see v. |, pp. 383-395
and pp. 396-400.]

® A. Haar. Uber adjungierte Variationsprobleme und adjungierte Extfiishen. Math. Annalefi00
(1928), 481-502.
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Chapter I. Formal identities

2. Elementary examples of birational involutory contact transbrmations. Since,
in the sequel, we will occupy ourselves with a contemmisformation that is birational
and involutory, it is of interest to recall that alsoydransformations that possess these
properties have played a prominent role in the calculwarmdtions for some time now:
We let the symbols:

(2.1) f,ép,m (=12 ..0)

denote a number of quantities, between which (with thealusuppression of the
summation sign) the relation:

(2.2) f+¢ =pi 77

must exist. We introduce a second sequencendf 2 quantitiesf, ®, P;, I';, through
which the following equations:

(2.3) F:¢, CD:f, P =, I'Ii:pi .

This transformation is nothing but thieegendre transformatignlt possesses the
following properties:

a) It is birational andinvolutory. This means: One solves equations (2.3) for the
small symbols by simply exchanging the large symbol& wie small ones. Thus, it
follows from (2.2) and (2.3) that the relation:

(2.4) F+1 =PRI
must exist.

b) It is acontact transformation In fact: Iff, @, pi, 77 are functions of arbitrary
parameters then there always exists the relation:

(2.5) dF —; dP, = — (df — 77 dp).

3. The Legendre transformation is naturally not the ardpsformation that has the
propertiesa) andb) of 8 2. An entirely trivial transformation that olsethem is, e.g., the
following one:

(3.1) F=-1i, CD:—W, P=-rm.

4. As a third example, we consider theneralized inversiothat is defined by the
following relations:
(4.1) F=—, ==, Pi:ﬂ, M =—.

The transformation (4.1) is obviously involutorydabirational. In addition, one verifies
that the relation (2.4) is a consequence of (A2)vell as the fact that one is concerned
with a contact transformation, with the help of iimenediate relations:
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1
(4.2) F+¢—Pini:f—¢(f+¢_pi77)

_ 1
(4.3) dF—I‘IidP.—f—¢(df 7dp).

One remarks, moreover, that not only (4.1), but é8s2) must be used to establish (4.3).

5. The transformation tha&. Haar used in the citation in our footnote 3 is a simple
combination of the previous ones when sets:

5.1) F=-i =21 p=-Z p=R

6. A very interesting, but somewhat complicatedatinal and involutory contact
transformation was used By Levi-Civitain the regularization of the three-body problem
with great success.lt consists in the following: If one introducé®tnotation:

(6.1) a=pp, b=pn,  c=7nn,
(6.2) F=f, ®=¢ -, P :%, M = az— 2p,
(6.3) A=P P, B=P I, cC=nnmn;

then one obtains by completely elementary calauisti
(6.4) Aa=1, B+b=0, AC=ac
From this, one easily verifies propert@sandb) of § 2.

7. The canonical transformations of the calculus of variations.The main subject
of our investigation is a birational, involutory itact transformation, which, when
combined with generalized inversion of 8 4, givdse tgeneralized Legendre
transformation of my older work. The latter possée advantage that the small symbols
can be switched with the large ones in all formulagt they also have one small
disadvantage, that they do not go over to the arglihegendre transformation in the
limiting casestf = 1 ory = 1), but the transformations thahar employed.

From now one, we will use the Latin symbaolg k, ..., which run from 1 ta, along
with the Greek indicesr, G, y; p, o, ..., which are to be taken from 1 tg e.qg., the
symbolp;i, then represents a matrixmfows andu columns.

8. We consider the variables:

1 T. Levi-Civita Sur la regularization du probléme des trois corpsa Amthematicd?2 (1920), 99-144.
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(81) fl ¢l pia1 H—a,
between which the relation:

(8.2) f+ ¢ =pia 7o,
must exist.

Furthermore, we introduce the symbol:
(8.3) agp = Oupf — Pia Tip,
where, as usuab,s shall represent the number one or zero, depending omeviaet 8
orazp.

To abbreviate, we set the determinami,4 | equal toa and denote the algebraic
complement o,z in this determinant by, ;. One thus has:

(8.4) a=|agl,
(8.5) Oap@ =8gp 8y, = Aop @, ;-
9. Now, we introduce a new sequence af2¢ 1) variables:

(9.1) F, @, Pg, Mg,

which are defined by the following equations:

H-2
(9.2) L
f ¢ a
_1
(93) Pia_gni-paap’
fH2
(9.4) Mia = Po 8o

It is very remarkable that one can represent thanatigyariables (8.1) as rational
functions of the quantities (9.1) by successive solutidribe linear system of equations
that was given in (9.2) to (9.4).

10. We first derive some identities that follow fronetprevious relations. If one

replaces the summation symbaisn (9.3) byo and contract this equation wil3, then
it follows, from considering (8.5), that:

(101) Pia = Pisaga -

In an entirely similar manner, one obtains from (9.4):
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(10.2) pa=F Ny a,.

Third, it follows from (9.3), when one considers (8.3)}tha

1 _
Ra Bis :gni-p plﬂanp
1_
:gaap(a—ﬂpf _aﬁp)’

and thus it follows from (8.5) and (9.2) that:

fr2

(10.3) 8=

(%5 + Pia Pip)-

In order to ultimately present the latter of the rielag that we have considered here, we
state the following equation with the help of (9.3) and (9.4)

H-2

PioMig= ?ni-ppaanpaﬁa'

It then follows from (8.3) and (8.5) that:

fH2 _ frt fu2
Pia Mig= ?(5@—3@) aapaﬁazaaﬂT_Taﬂa
or, from (9.2):
(10.4) Pia I‘Iiﬁ: 50,,3':—%8.'&7.

By (8.3), the relation (10.4) can also be symmetricalijten as:

1 1
(10.5) Epm I‘Iiﬁ:T Pia 7i5.

11. From (9.2) and (8.2), we find that:
F F
F+¢:T(f+¢) :Tpiaﬂa,

or, from (10.5):
(11.2) F+®=Pj,l,.

12. We now introduce a notation that is analogou818):
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(12.1) Agp = OgpF — Pig Mig;

it then follows from (10.4) that:

Ao _ 8o

(12.1) =

and thus, when one also recalls our previous notatiothdéolarge symbols:

A _a
(12.3) T

'Kbﬂ - aﬂa
(12.4) e

(12.5)
Furthermore, it follows from (10.2), when one uses (12d)taen (12.5) that:
1. 7.

(12.6) Pe=—M,A,;
A
and likewise one obtains from (10.1), (12.2), and (12.3):

FAt
(12.7) Tig =

PiaAaa .

If one compares (8.2) with (11.1), and then (9.2), (9.3), @¥), resp., with (12.5),
(12.6), and (12.7), resp. then one sees that one can shwédarge symbols with the
small ones in these and therefore also all of thean@ing equations.

Our transformation is thusrational andinvolutory.

13. Introduction of f, F, pi,, P, as variables. Up till now, we have alternately
based our calculations on the system of quantities (Bdlj%1). For many purposes, it
is more convenient to develop formulas in which the gtiesti

(131) f! F! piaa IDICh
appear as basic variables.
Thus, we set:

(13.2) 0ap = Oap *+ Piapig,
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such that, from (10.3), one has:

F _
(13.3) Qap = Waaﬂ -

In order to compute the valgeof the determinantdqs|, we remark tha#ﬁaﬂ‘ =a“ it
then follows from (13.3) and (9.2) that:

(13.4) g = Ff,
and (13.3) can then be written:
(13.5) Qo= 8.

From this latter equation, we gather that:

— _ g - _
gpa gpﬂ am'r _m a‘pa gpﬂ amT

or:
— a ™~ .

(13.6) aop Y Yap >

hence, from (9.2):

(13.7) gaﬂ = Faaﬁ .

Due to (10.1), it now follows that:

(138) FH—U = RUGUH’

and, from (9.4):

(13.9) fMia=p,0,0-

Ultimately, when one solves the latter two equatioms &, and P;, they give the
relations:
(13.10) Fpe=Mipgpa,

14. The property of contact transformation. We now assume that the quantities
that we are considering depend upon arbitrary parametershandfarm the total
differential of (13.4) with respect to these parametémnghis way, we obtain the relation:

(14.1) F df +f dF = dg;

however, it is now well-known that:
dg = gaﬂdgaﬂ
and, from (13.2):
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dgas=Picdps+ pipdPs .
From the latter two equations one then has, when oads¢t3.8) and (13.9):
(14.2) dg=F pgdps+flli,dP,.
The comparison of (14.2) with (14.1) ultimately leads tordhation:
(14.3) F(df —pigdpg +f(dF —Miq dRg) = 0,
from which it follows that our transformation iantact transformation.
15. Reciprocity. In a previous work | made the remark, which can, moreover, be

immediately confirmed, that the determinantas we showed in § can also be written
as a [t + n)-rowed determinant in the following way:

o T
Pia Jaﬂf

(15.1) a=

in this formula, the rows are denotedil®nda, and the columns hyandg. In the same
way, one sees, when one introduces a new systemiables by the equations:

(15.2) bij = & = Pip 755,
that the determinait of b; can be written:

gt 7,
pja 5a

(15.3) b :‘

Comparing (15.1) and (15.3) then leads to the relation:
(15.4) f"a=fDh,

from which we deduce, with the help of (972):

f 4 b

n-2
(15.5) F.o_

Furthermore, it follows from (15.2) that:

bsi Pso = Pig — Psp 7Tp Psa ;

1 Cf., footnote 2 [on page 1 of this article].
7 [A printing error in (15.5) in the original has been corddt
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from (13.2), one can write this as:
Bsi Pso = Pia = 775 (Qap — Oup);
or, taking (13.11) into account:
(15.6) Tta = Dbsi Pso .
Similarly, we deduce from (15.2) that:

i Psa :fpia_pipﬂapia
. =Pia (5apf_pia TT0),
or, from (8.3):

(15.7) Bit Pra = Pip@ap -

From (9.4), one thus obtains, when one observes (15.4):

(15.8) I'Im:

Finally, it follows by solving (15.6) that:
1 _
(15.9) Pia :Bﬂmlqr :

16. The similarity between formulas (15.2), (15.5), (15a9d (15.8) and (8.3), (9.2),
(9.3), and (9.4) shows that [in the same sense as on ppf 8% volume] in all of our
equations one can switch the Latin indices with the Goeelk when one simply replaces
aap with bij .

17. Introduction of the parametersSys, Si , and c,z. For the treatment of our
variational problem, it is necessary to introduce nevamaters and to examine their

connection with the previous notation.
To that end, we consider three matrices:

(171) Saﬁ, Sm y Ca’ﬁ1
which shall be linked with the previous quantities by theticeia:
(17.2) Cap=Sup + Sui Pig,

(17.3) Sii = Pip Sap:

” [A printing error in the original was corrected here.]
[The comment in square brackets was incorrect in tiynati]
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1_
(17.4) == 1Sol,

By replacing (17.3) in (17.2) one now obtains:

Cap = Sap + Sap Pip Pis
= Sap (9 + Pip P,
or, from (13.2):

(17.5) Cap = Sap Gps-

From the laws of multiplication for determinants,nbw follows, when one observe
(13.4), thatt = Ff | Sy, |, or, from (17.4):

(17.6) c=f.
Furthermore, one deduces from (17.5) that:

€108 Yo = Sioc Go o Gp »
and from this it follows, from (13.4) and (17.6) that:
(17.7) J,s=F Sia Cyp.
From this, it follows, using (13.8), that:
(17.8) a=5,T, .

18. We would now like to show that when one assumes (1qugtiens (17.6) and
(17.8) are equivalent to equations (17.3) and (17.4). We thusoioe to the equations:

(18.1) Cap=Supt+ S P,
(18.2) TTa= S, Gy
(18.3) c=f,

and would like to derive (17.3) and (17.4). First, it followesm (18.2) that:

]TUCUU: Spi_CpU 90— ’
hence, upon considering (18.3):
(18.4) f Sii = 715 Coo-

” [In the following equation, a printing error in the origimais corrected.]
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This, when substituted in (18.1), gives:

fCaﬁ:fSaﬁ+CaaQﬁﬂay

from which, from (8.3), it follows that:

From (18.5), it next follows that:

The right-hand side of the latter equation is, from (1Cefjual toc,, 775, and with the
help of (18.4) one ultimately obtains:

(18.6) Sii = Pio Seos

i.e., relation (17.3), as we wished to prove. Equation (13 .HRewise a consequence of
(18.5) when one observes (18.3) and (9.2); it then becomes:

H-1

| Sep| =ac= f f

or:
(18.7) F Sy =1.

Chapter Il. The variational problem.

19. Definition of the geodetic fields. In an @ + g)-dimensional space whose
coordinates argy, ..., X, t, ..., t,, or, with the previous notatioR, t,, we consider @-
parameter family oh-dimensional surfaces. A family of this sort can &eresented by
M equations of the form:

(19.1) Sal%; 1) = Aar.
Furthermore, a-dimensional manifold will be defined by the equations:
(19.2) X = &(ty) i=1,2,..n),

which intersect the family (19.1). This is the casemded only when a one-to-one map
of a regionG; in the p~dimensional space df;, onto a regiorG, of the p~-dimensional
parameter space of thg is generated by the system of equations:

(19.3) Su<i(ty); tg) = Aa .

In this, however, the functional determinant, in pattc.
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oS, (&;
(19.4) A= —”’(5' 2
ot,
must be non-zero G .
If one sets, to abbreviate:
0S 0S
19.5 i =—, Spp=—2%,
(199 ox ™
9
19.6 1 :_',
( ) Pia ot
(29.7) Cap=Sap+ S Pig
then (19.4) takes the form:
(19.8) A =|cys| =cC.
We further remark that the integral:
(19.9) I-G-t-.[Adtl---dtﬂ

represents the volume of the regiGmin the parameter space, onto which the re@on
is mapped by the relation (19.3).

However, this volume depends onkpon the form of the boundary of G

If one thus considers a secaomdiimensional surface:

(19.10) X = &(ta)

and a regiofs, that is mapped ontthe sameregionG, that we have just considered
through this new surface then the integral:

(19.11) J.-ét-.[ﬁdtl--- dt, ,

which will be mapped in a manner that is completeiglogous to (19.9), will possess the
same value as (19.9).

In particular, if a manifold that also lies on (19) is taken from surface (19.2)
through the boundary of the regi@ then one must compute the integrals (19.9) and

(19.11) for the same regid®; i.e., one must s&b, = G .

20. The coordinates of g-dimensional surface element of thee« 1)-dimensional
space shall now be represented byrthey + ny quantities:

" [In the original, the word was “nun” here. In the Geszelte Mathematische Schriften, the word was
“uur,” when it should have been “nur;” i.e., there wapriting error in the correction to the printing
error!]
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(20.1) Xi, o, Pia -

We now consider positivefunction:

(20.2) f(x, ta , Pia)

of these quantities and form the expression:

(203) f(Xi’ta’ na),
A%t Ra)

in which A shall have the same meaning as in (19.8). We lmd the &, t,) fixed in
(20.3) and seek to determine thgin such a way that:

(20.4) %z minimum;

we say of a surface element (20.1) for which thaddomn (20.4) is satisfied that it
intersects the family of surfaces (19%tfBnsversally

We now assume that in a certait)-dimensional region of the space &f {,) we
can determine functions:

(20.5) Pia = PiadX, tp),

which generate nothing but surface elements thdit imtersect our family (19.1)
transversally.

If we now substitute the values (20.5) of thein (X, ts pia) andA(X;, ta, pia), and if
one then has the validity of the equation:

(20.6) f=A

at any point of the region in question then we lddike to say that the family (19.1)
forms ageodetic fieldassociated with). A necessary condition for the validity of (2D.4

will be given by the equations:
i(ij =0,
op, \ A

which can, due to (20.6), be written in the folloggimanner:

_an

20.7 fo=98
(20.7) "~ 3p.

The equations (20.6) and (20.7) comprise the fumshah relations through which a
geodetic field is defined.
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21. Solution of the variational problem. If one has constructed, by whatever
means, a geodesic field that intersects a manifold (1&@3versally, moreover, then it
always constitutes a solution of the variational probkrat is associated with the
integral:

(21.1) [ [ f(t, p,) b df, .

Namely, we consider a piece of (19.2) that projects a regiors; of the space af, and

a corresponding piece of (19.10) that projects Gntan which the relations betweds
andG, that were specified at the end oi§shall be valid. Then, from the results of §
19, it is linked with (20.6) that:

(21.2) Jo ftodt,=[ Adt-dt,=] Adt--dt,.
If one then denotes the valuefafn the surface (19.10) tythen, from (21.2), one has:
(21.3) I@ f dtl~--dtﬂ—'[q fdt.-- d;,:.[ét(f -A)dt,---dt,.

One now remarks that from the fact thatO and also from (20.6) it follows that>

0. For a weak variation of our original surfaceqa one therefore also hAs> 0. From
this, it follows, upon considering (20.4) and (2Glat:

(21.4) f-A= B[L—i} 0,
A A

by which our main assertion is proved.

22. Introduction of canonical variables. The further treatment of our problem will
be simplified considerably if we now introduce ttenonical quantities, Pi,, i, that
we examined in the first chapter. In fact, fror.{@) and (19.8), one has:

0A _
22.1 2 -st .
( ) ap A gla

a

and comparison of this formula with (17.8) and {2&hows that we must set:

(22.2) b= f, .

Thus, from 88 and9, one can now compute thgs F, ®, P, , IMis as functions ox;, tg,
pi» by rational operations. Likewise, one can comptlite determinanta and, in
particular, verify that it does not vanish. In easvanishes identically, the functidn
upon which our variational problem depends, isusa&ful for our theory.
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However, our goal is to take, t,, Pi, as the independent variables, and we must
therefore present the condition that must be veriteorder to express th&, in terms of
these quantities. Thus, the best equation to make usg1f.1), an equation that, from
(8.3), can be written most effectively in the follogiform:

(22.3) Mig = Pig — Pio (0oa T —Pxo 7&a) = 0.

This latter system of equation shall thus be solubleesims of theP,,, and we must
therefore demand that the functional determinant musfysat

(22.4) aM—"’ # 0.
op;
If one sets, to abbreviate:
0 f
22.5 —— = T4, iB,
(e2:3) op,op,
then it follows from (22.3) that:
aI\/Iia
(22.6) ?= Tta,ip— Pia g+ Pig 7Ta + Pig Pko Tka, ip-
iB

From our assumptions, it now follows tha# O; therefore, one can replace the condition
(22.4) with the non-vanishing of a determinant whose elenagats

(22.7) Nig, js= b,9,, My, b, My |
0P P

From (22.6) and (22.7), it now follows, with the help of (15tBat:
(22.8) Nig,ig=bxi 780,ip = TTa 75+ T o+ ThoPko Tka, iB;

now, since one hds; 7z, jp = bui 7&q, jp andbyi + 775 Pro, = Ak f, one can also write (22.8)
in the form:

(22.9) Nig,ig =1 7o, jp = TTa T+ 715 7a;

The introduction of thé;, as independent variables is then always possible, gs lon
as the determinant satisfies:

2
o°f , of of ot of | .
apiaapjﬂ apﬂ ar‘}a apa a Pﬂ ‘

(22.10)
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23. Once we have represented Bygas functions ox, ts, Pis we can, from chapter
|, determine the remaining quantities — hence, in pdafick, ®, Mjz — as functions of
these variables.

If one now substitutes these functions in (14.3) themmtediately follows that one
has the relations:

(23.1) Ff.=-fF_, Ff=-fF
(23.2) ia= ——,
which we shall use later.

24. TheE-function. We are now in a position to compute the Weierstexsgss
function that belongs to the integral (1.1) for any geiodietid.

Thus, the equations (20.6) and (20.7) shall be valid; howi\are considers (19.8),
(22.2), and (22.1) then one sees that equations (18.2) and (18t3Isouke valid, and,

from 8§18, equivalent to (17.3) and (17.4).
If we thus substitute the right-hand side of (17.3) lieiS; in:

(24.1) A=[S,; + S B

then it follows from the multiplication rules foeterminants, when one observes (17.4),
that:

(24.2) Z:é\% +P, 1,
Now, we define new quantitidss by the equations:

(24.3) Ps=pis+ T Chig,

and obtain from (24.2), upon consideration of (13.2):
(24.4) A= %|gaﬁ+fpm hsl.

If we now remark that from (13.4) and (13.8) it followatth

(24.5) 0os + T Piohig G,5=F f(dap + 772 hip)
then, from (24.4), we obtain:

A|G,5 = F 1 1dup + o hig .

Now, since, from (13.4), one h%@,ﬂ‘ = F*1#, one finally obtains:
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(24.6) Z:f |5gﬂ+ Ty hiﬂl-

We now computéiz from (24.3) and remark that, fron?8, one must take:

E=f-A.
Ultimately, one thus has:

— 1 —
(24.7) E=f =510t (PP |

This is a formula for th&-function that goes over to the usual one whenl; it is also
noteworthy that thé&-function depends only upon the surface elempptsp,;here, but

not, however, on the geodetic field.

25. The Legendre condition. We develop the determinant (24.6) in power$;pf
and determine and quadratic terms of this development. Weustroduce the notation:

(25.1) Mgp = 5gﬁ+ TTa hiﬁ,

from which, by abbreviations that are similar to thesoine88, it follows that:

OgpM=m, M,
and, by differentiation:
Ogpdm= m ,dm,, +m, dry,.

We contract this equation witm_, and obtain, when we replace the summation sypbol
with A:
mdm, = m,, dm- T, T, dn.

Now, it is well-known thaim= m,, dm), , and we ultimately have that:

(25.2) mdm, = (M,, M, — M, T,) dry.

It then follows from (24.6) that:

(25.3) a—A: fm,7z,
oh,
and from (25.2):
om, _ . _ _
(25.4) m . (m, m,, — m, rpﬂ)njp.
iB

Hence, from (25.3):
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8 f . _
_(mcm nLﬂ_ n)m rgﬂ)ni-an-ja'

(25.5) =
oh,oh, m

For hiz= 0, we now havem, ;= ds5 and from (25.3) and (25.5), it thus follows that:

oA
(25.6) = =fn,,
oh,|,
9%/
25.7 — =1(n7,4 - 7).
(25.7) an, on (780 75— Tp T5a)

Thus, if we now develop the-function (24.7) in powers off§ ;- pip then the constant

drops away along with the linear terms. The quadratmgen the development define a
guadratic form, which reads as follows:

I 9°f 1 of of _ of of
(25.8) | Q=(Pa~Pia)(Pi ”ﬁ){anaapm f(apaanﬁ apaapﬁ]}

ThelLegendre conditiomf our problem consists in the requirement that the qiadr
form (25.8) must be positive definite. One should obsdrae the determinant of this
quadratic form agrees [up to a positive factarth the expression (22.10); whenever the
Legendre condition is satisfied, one also has the pbgsibf introducing canonical
coordinates.

Finally, we remark that the first derivativesfofith respect tqi, are also present in
the Legendre condition.

26. TheE-function in canonical coordinates. For the case in which one presents
the variational problem in canonical coordinates fromahiset by means of the function
F(X, ta, Pig), it is useful to have an expression for tBdunction in which these
coordinates alone appear. Thus, one sets:

(24.1) Pa=R, +FKk,

in (24.2) and transforms the expression (24.2) in a conyplgtailar manner to what we
did in 824. One ultimately finds that:

F 1, =.5 5
(26.2) FE=F-==|0,F+,(R, - R

" [The comment in square brackets was absent in the drjgina
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If one computes the Legendre condition from (26.2) thea finds a formula that is
completely analogous to the relation (25.8).

Finally, one remarks that as a result of recipro(ty5) the E-function can also be
represented by-rowed determinants in the original coordinates, as wsllin the
canonical ones.

27. The differential equations of geodetic fieldsFrom 8820 and22, one obtains a
geodetic field when one simultaneously satisfies thetemsa

(27.1) f=nA=c, f. =Pa= S, G,

with the notations of §9. From 818, however, this system of equations is completely
equivalent to the following one:
(27.2) S = Pip Sap )

(27.3) FOS|=1.

If one now computes the functidt{x, ts Pis) then one can find a geodetic field in
the following way: One determines th®, as rational functions of the first partial
derivatives of th&,(x, tp from equations (27.2) and substitutes the values thuml fou
(27.3). One then obtaimnefirst order partial differential equation fer functionsS, ,

(1 — 1) of which can therefore be chosen completelyilat

28. By means of an arbitrary given geodetic field, with belp of (27.2) and (27.3),
the P, and F — and therefore, by applying the formulas of chapter Il rexhaining
guantities— will be determined as functions o4,(t,); i.e., as functions of position im ¢
L)-dimensional space.

However, conversely one can also give Bheas such functions of position to begin
with and ask what the necessary and sufficient camditare in order for one to find
functionsSy(x;, tg) for which the relations (27.2) and (27.3) are valid.

We introduce the linear operator:

(28.1) Li=—-P

Equations (27.2) then say that the system of differeatjations:

(28.2) LiS=0

for the i independent function§, must be valid, and thus one must havédaaobi
system.The necessary and sufficient condition for this edlaknown to be the vanishing

of the bracket expressionsl( —LjL;)S this is equivalent to the following relations:

(28.3) Lj Pip—Li Ljp: 0.
If we then set, to abbreviate:
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orP, 0P, orP oP
(28.4) lijp] =2 -—2~|P,—£-R, =12 |
ox, 0% ot, ot

g

then we must write:
(28.5) o =0.

29. Let the conditions (28.5) all be verified. Betweei tsystemsS, and T, of any
M independent solutions of the Jacobi system (28.2) thesy/salexists the relation:

oT,,...,T,)

— " = | T,
(S....S) I Tas

(29.1) S|

which represents a well-known property of the functia®erminant. If one then gives
the T, then equation (27.3) is soluble when and only when onelegammine thes, as
functions of theT g such that the equation:

oT,,...,T,)

29.2 SAL RIS
(29.2) (S, S)

=(F) [ Tasl

is satisfied. ThusH) means any function in the ¢ 4) variables %;, t,) that one obtains
when one expresses tRg, in F(X, ta, Pio) as functions ofx, tg). Relation (29.2) can,
however, be satisfied when and only when the right-Issohel of this equation is itself a
function of theTg; i.e., when it satisfies the Jacobi system (28.2). &a@ug27.3) is then

equivalent to the system:

_ 0T
(29.3) Li((F) + P T, L an =0.
Now, one has:
oT 0°T 0°T
(29.5) L—£2= L -P, LI
ot, 0xot, ot dt,

On the other hand, becauBgis, by assumption, a solution of (28.2) one has:

0°T, 9 (0T, _o Pan.
oxot, ot (ox | at | “at, )

when this is substituted in (29.5) it gives the equation:

oT, oP
P, =T
‘ot, ot

g

(29.6) L

g
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We substitute this value in (29.4) and obtain, after digiby | Tz |, the condition that
we wished to present:

(29.7) Li(F) + (F)%I 0.

30. We now set, to abbreviate:

orP y
o T i Al

(30.1) [1=L(F) + (F) "

and develofi(F), while taking (23.2) into account; we obtain:

oP
1=+, Sie
0

oF oP oP ,
-P,|—+N ,—& |+ F—2+0, :
0x '”[atg 7 ot, j 0t ioL1P)

g

From this, it follows, when one uses (28.4), that:

Gl oP ,
(30.2) 1= _p F.n (B p OB, OR,
0% ot, 0X, ot, ot
an equation that can be written, with our previous rarati
(303 i ZG—F—P— a—F+I'I. ﬂ+ R,
[] a)g 10 ata O a)(i Afp at .

The necessary and sufficient conditions for the emis¢ of a geodetic field ultimately
take the form:
(30.4) o =0, [i]=0.

31. The Euler equations. It is actually not difficult to prove directly thatw s~
dimensional manifold that intersects a geodetic fiedtidversally must satisfy the Euler
differential equations:

(31.1) 2§ —f=0;

however, it is much more interesting and instructive &s@nt a general identity from
which this requirement will be deduced immediately.

To that end, we give tha, as completely arbitrary functions of,(tp) and likewise
compute the remaining quantiti{s;, to, pia), 772 =f, , etc., as functions of position with

the help of our previous formulas.
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Furthermore, we introduce the notatidgy / dt, for any function¢(x, t;) that enters
into (31.1), in particular, and is defined by the relation:

(31.2) dp _oy oy

With these preparations, we consider the relation (13.8):
F Pia =Ry 0
and deduce from this equation, by differentiation, that:
(31.3) Fdpo=-pi.dF+g,dR, + P, dg,.
From a formula that is derived from equation (25.2), mow has:
9d9,, = (G50 9o ~ G Gn) Y,
hence, from (13.4), (13.8), (13.9), and (13.2):

F f Radgaa: F(ni-HGp/i _lz-/igpa)( pj/] dIJDp + Pp dp/i)’
(31.4) f R,dQ,, = (f 712 Njp— G0 Pia 712) AP + F(7a 733 — 753 752) dpis -

By substituting this relation in (31.3) we obtain:

We now introduce the notation:

- dp, d
(31.6) Q =Ft| Y% ¢ |_pr [P _ )
dt A J dta dti

a

and obtain from (31.5) that:

_ d(F) N
(31.7) Qi =-Fff -fm, dr +(f77m|'|jp+gmqi)dt1:.

Now, from (23.1), (23.2), and (31.2), one has:

0F) _cay 9Py

— f2 —
“Fff=FR= 720 R
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d(F) _a(F) o(F)
=Pt ,
dt,  ox, ot,
de:anpp Ty
dt, ox, ' at,

When all of this is substituted in (31.7), it giv@sth some simplifications:

(31.8) Q =

f, 12

o (F)
axk + f(nkpbji _niji)a_):kp_ fﬂa

ot,

= 9
+( f]?arljp-i_ goalj?) ata '
With the use of (15.6) and (28.1) this can be emitt

ok,
ot

oP_ dR _
(31.9) Qi:fbKiLk(F)—fl‘l,-pbK{ £ — ”j+(ffzal'ljp+gml%)

ox, ~ 0X

J

However, from (28.4) and (30.1), one has:

_aPJ'/’ _%: [ik,O] + P aPJp -P apkp
ox,  0X “ot, oo,

Lu(F) = [ + M [kl — (F)‘Z,%.

g

If one substitutes these quantities in (31.9) dmhtremarks that, from (15.6), (13.7),
(12.2), and (12.1), one has:

bi Puo = 7o, )
O, =Faw=1Agp=1(s F—PisMjy) ,

then nearly all of the terms vanish and what reman

(31.10) Q; =1 bii[K].
One obtains the identity that we wish to presentdpyating (31.6) and (31.10); it reads:
(31.11) dr, ¢ :&[k]_ﬂaﬂ,-ﬁ dp, dp,

ad, * F f d, df '

" [A printing error in this equation in the original was emted.]
” [A printing error in (31.11) in the original was corratie
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32. Now, if, as we have assumed, the functions of posgigx, tg), in particular,
belong to a geodetic field that intersectg-dimensional manifold transversally then one
has at any point of this manifold:

[K =0, %:%_
dt, dt,
The left-hand side of (31.11) must then vanish on this midnidmd this is an integral of
the Euler equation (31.1).

We would like call the geodetic fielddistinguished fieldvhen an extremal can be
found through any point of this field that intersects fielsl transversally. The extremals
in such a case then define a field in their own righttaedigure that is defined by these
extremals and the manifoldS, = A, is called acomplete figureof the variational
problem.

33. We consider an arbitrary family of extremals thatpdy cover a region ofn(+
L)-dimensional space. The left-hand side and the lastitethe identity (31.11) must
then vanish, from which it follows that aK][= 0.

However, in order for the extremals of a field to gatee a complete figure of the
variational problem one must further have thatjiij[= O, which is already well-known
to not always be the case wher 1.




Observations on Hilbert’'s independence theorem
and Born’s quantization of field equations

Hermann Weyl)nstitute for Advanced Study, Princeton, New Jersey
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Born recently proved a quantization of the field equatiauiich is based upon
Hilbert’s independence theorem of the calculus of viariat My intention here is to
give, in the first, purely mathematical, Part A, anfiaftation as simple and explicit as
possible of the independence theorem. The agreemergdiethve principle of variation
and the independence theorem, complete in the caseohdependent variable and one
unknown function, fails in two respects in the caseewéral variables and functions; the
independence theorem specializes the extremal vectdr 6el the one hand, and it
discards the assumption of integrability, on the otferd® In Part B, | first suggest a
modification of Born’s scheme, without which it would Im disagreement with ordinary
guantum mechanics, even in the one-dimensional caseer Afe modification, a
comparison of Heisenberg-Pauli’'s quantization becomesilgesunder the simplest
circumstances. Born’s scheme proves to be too narrBwally, | raise the principal
objection that the quantum-mechanical equation should eobfbthe form: four-
dimensional divergence af equalsHy with a scalar operator of actidth, but that it
should rather consist of four components stating tletitferentiation o with respect
to four space-time coordinates is performed by means obpleeators: energy and
momentunt.

A. HILBERT'S INDEPENDENCE THEOREM FOR SEVERAL ARGUENTS

8 1. The problem of variation The problem of the calculus of variationsrin
independent variablgs ... t' consists in determining functions, or a “surface:”

=t .. 1) (@=1,2,..V) (1)
such that the variation:
5jL(ti,z",;”)df..-dt:o 2)

' Proc. Roy. Soc. M3 410 (1934).

2 These are known facts. Born himself refers tange, Thesis, Gottingen 1915, but the theory was
developed before Prange, and in a more general and stittableby Volterra (1890), Fréchet (1905), and
de Donder. Cf., de Donder, Mém. Acad. Roy. de Belgique2sdt.(1911); Théorie invariative du calcul
des variationsParis, 1930, Chaps. VIl and VIII.

7 The abstract will also serve as a summary and inttimiiuto the paper. — EDITOR.
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for arbitrary variations¥’(t) which vanis_h at the border of the domain of integration.
is here a given function of the argumetitg”, z* ; one has to substitute the functions (1)

for 7 and the derivativesZ'/ dt for z° .

§ 2. Surface field and vector field. A family of «o" surfaceg” = Z'(t* ... t') simply
covering a piec€ of the ¢+ v) dimensional space of coordinatész”) may be called a
surface fieldn Q. At every point {;, z) of Q we have the “gradient vector:”

dZ'/ dt =z2°(t, 2) (3)

of the surface passing throughZ). Conversely, if one is given tivector field z° (t, 2)

arbitrarily, one can find a corresponding field of scef provided Eqgs. (3) are
completely integrable. As one readily sees, the ssarg and sufficient conditions of
integrability are the relations:

[azf_aij{afzﬂ_azzszo_ (4)

ot ot 0z 7 9f

(Always sum over two-fold occurring indices!) A vecf@ld satisfying these equations
may be calledntegrable

8 3. Three stages of independent variabled/Ve distinguish three standpoints:

at, 2 z" are taken as independent variables, as for instantie fanctionL. The
derivatives with respect to these variables are gsiaimed by an attached index.

(2) By using a given vector field, tE&are replaced by functions of thendz”. The

partial derivatives with respect to the arguméehandz” are then denoted tayat', 9/07".
(3) The subscription:

=7 .., 1) [z =dZ/ df]

changes functions which appeared in the second (oirshestandpoint, into functions of
thet alone. The derivatives with respect to theare denoted bg/dt.
We have already complied with these conventionsamagraphs 1 and 2.

8 4. Extremal vector field. The Lagrangian equations of the problems of variation
(2) are (standpoint 3):
qua /dt = L. (5)

A solution of these equations may be designatexhastremal surface.We start with a
field of extremal surfaces.Such a field is, according to (5), characterizsd the
eqguations (standpoint 2):
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oL oL
ML I ST 6
ot 0z2° Ay ©)

A vector field z°(t, 2) satisfying (6) is called amxtremal vector fieldwhether it is
integrable or not.

8 5. Legendre transformation. We introduce (standpoint 1) the momenta:

p,= L, )
and:
p=L-p, 7. (8)
From the total differential:
d =Lt +L,0z"+L,07,
there follows:
FP=L+L,02-7dp.

It is therefore natural to assume thas given as a function af 27, P, :
p=H(t. 2" p,).

We then have’ = -H 5 as the converse of the relation (7).

We now should write (standpoint @), instead of_qa, on the left side of (6). In
order to determine the right side, one has to differenka. (8) or:

p=L-p,7
with respect ta”:
0z _ 97 _0p,

op _ “p '
7927 "Poar af

0"

L, +L

Here, the second and third terms cancel each other, amkequently the equations
characteristic of an extremal field read as follows:

op, (0P, _9P; ) ,_dp
T+ —— T = 9
ot (62" o |7 oz ©

p=H(,Z, p,), Z=-H, . (10)

Pa
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8 6. Special extremal vector field and Jacobi-Hamilton equain. Eq. (9) is
satisfied in particular if:
op, _OPs _ 9P, _ 9p
0z o ot o0z"

(11)

We then speak of gpecial extremal vector field
One makes good these equations by putting:

p. =as /a7,
and by assuming that the new unknown quantitiésfill the equation:
as /ot =p.

In this way, determination of a special extremal vedteld is reduced to the
integration of thelacobi-Hamilton equation:

(divs=) 9s / ot =H(t', 2%, as / 02%). (12)

If one wants the vector field” = —-H o to be integrable one has to satisfy further Egs. (4).

§ 7. Invariance. Flux. Thet, as well as the”, may be subjected to an arbitrary
transformation among themselves. Let us &z€as a vector contravariant in the Greek,
covariant in the Latin indices, as a scalar density with respect totthend as a scalar in
Z'; p,as a contravariant vector densityijnas a covariant vector im, ands as a
contravariant vector density with respect to th@s a scalar with respect28). Under
such circumstances, all our equations remain unaltered lsatieformation. Hence, the

flux of § through an arbitraryr (- 1)-dimensional “cross sectioA’ of ther-dimensional
t-space:

g ... d

o ldtt - dtf

S_.[/\ 0 - 0O (13)
ot ... ot

has an invariant significance. In forming (13), we opevata surfac&: z* = Z°(t* ... t)
(standpoint 3), and\ is to be considered as an« 1)-dimensional “line” on the surface
2.

8 8. The independent integral. Following Gauss’s theorem, one can change the
flux (13) through alosedA into an integral extending over the piece&dfounded by\;
its integrand:
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ds _ 6§ as di’ . dZ
i Al =p+ P i
dt' ot 62 df dt

contains only the original quantitigs andp instead of. This is Hilbert's independent

integral,” for it does not change its value if one changes iaraitrary manner the piece
of the surfaceZ bounded byA in the ¢+1)-dimensional t{, z%-space, provided the
boundary line\ is preserved.

8 9. Case of no forceslf L depends only on the third group of variabis and if
H consequently depends only on fhghen:

p.=const., p=H(p,) = const.
yields a special integrable extremal field. The corregipys is:
d=plZ+ (1h)pt. (14)

This particular solution is, of course, not endowed angdo with the general invariance
as described in section 7.

B. CRITICAL REMARKS CONCERNING BORN’'S PROPOSAI
OF A QUANTIZATION OF ELECTROMAGNETIC FIELD EQUATION

8 10. Born’s procedure. Professor Born propounds the following procedure for the
transition to quantum physics. One first forms the 8.%13) of the vector density (14)
through an arbitrary closed linfe and takesy =€° (“plane wave”); one then builds up
wave packets or a generdl by forming linear superpositions of plane waves that
correspond to several values of the constgnts Each suchy is a function of the

following arguments:

V:Ldtln-dtr, j—dt (15)

Here,Z denotes the domain in omdimensionalt-space surrounded by the like
|/ should be interpreted as the probability that the ialedf.5) assume given values in
a domainZ of given volumeV. All domains of the-space here, be it noticed, if they
only have the same volume, are thrown into the samtevithout regard to their shape
and situation! This sounds queer enough, and, as a miataet,dBorn’s interpretation
does not coincide with the usual well-proved interpretabibguantum mechanics even
in the one-dimensional case whére time is the only variable. For themg|f is the
probability that the quantitie®” assume given values at the instantvhereas Born is
urged to look upon it as a probability of transition, namiég probability that the
quantitiesz” experience given changég” = [ (dZ' /df) dt in a time internal of given
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lengthAt — irrespective of the temporal localization of theeimal At. One obviously has
to tear asunder the closed “null-dimensional line,” Wwhitbunds the one-dimensional
time interval and consists of two time points, intoiriial and end points. We are able
to imitate this procedure in dimensions by determining the flu& through across
section A of the t-space instead of elosed/\. Let us think of the wholé-space as
dissolved into a simply infinite sequence of such cresstions. In the physical
applicationsr is equal to 4 and, t?, t%t° =t are the 4 space and time coordinat&fter
choosing the planes of simultaneity tonst. as our cross sectiohsBorn’s procedure
becomes somewhat comparable to the Heisenberg-Paulizgaiemnt

8 11. Comparison of the Born and Heisenberg-Pauli process ihd simplest case.
The comparison can actually be carried out for thequaati case of abh depending only

on the temporal derivativeg] = dz’ / dt. In this case, the fundamental- the plane
wave— becomes, according to Born:

exp[i [[] &tH (p2)+ P22} ot o dﬁ} .

Here, thep? are constants; th& are arbitrary functions dt, t?, t*>. The Heisenberg-
Pauli procedure yields the same result, with the diffee, however, that this time
the p are arbitrary functions of the space coordingtes, t*; the probability refers to the

question as to which values the physical quantifiesssumaet all possible space points.
This more general formulation, obviously not requiredthssy nature of the problem, is
not entirely beyond the scope of Born’s quantizationr ikdhe present circumstances
the followingp’s:

0 _

p® = arbitrary functions of*, t*, t*, [p.,=0(G=1, 2, 3)]

furnish a special extremal vector field. But it is noegrable! Thus, one is led to
renounce the assumption of integrability.

8 12. Objections and hopesNevertheless, | am unable to see how, by means of an
analogous extension of Born's scheme, the general cade loe brought into agreement
with the fundamental physical experience, for the attaristic commutation rules of
coordinates and corresponding momeqtandp, are missing in Born’s theory, owing to
the fact that he subsumes the field equations under thbameal “problem without
forces,” but these commutation rules seem to be eabkeotr the possibility of
considering the electromagnetic ether as a superpositioscillators (photons). On the
other hand, | am fairly sure that the scheme of quamtysics should not be obtained
from the one equation (12) in the form divH=by means of Schrddinger’s quantum-
mechanical transmutation, but that it should considterabf four equations:

didt =T;,
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in which the four operator3; represent the energy and the three components of
momentum. The recipe for forming theis rather complicated in the Heisenberg-Pauli
theory, and the fact that they form a covariant 4esgch the sense of relativity theory,
needs a special proof. One may, perhaps, expect thay aimilar to that followed by
Born will lead to an essentially simpler formulatjcand perhaps a modification of this
prescription, so as to put the relativistic invariancevidence from the beginning.




Geodesic fields in the calculus of variations
for multiple integrals

BY HERMANN WEYL
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Introduction

Carathéodory recently drew my attention to an “indeeat integral” in the calculus
of variation for several variables exhibited by him in mpartant paper in 1929and he
asked me about its relation to a different independeagial | made use of in a brief
exposition of the same subject in the Physical Review, 193he present note was
drafted to meet Carathéodory’s question (§ 11). To fatlitomparison, | first serve my
own dish again in Carathéodory style (trace theoryt Ba and then expound the
essentials of his theory (Part 2); the link betweemthigereby becomes fairly obvious.
In Part 3, | consider the approximation known as tleerse variation. Thus, the whole
formal apparatus of the calculus of variations — Lagrangegation, Legendre’s,
Jacobi’s, Weierstrass’s conditions, and Hilbert’s indepan integral — will be found in
these three Parts, packed together in a nutshellwaset Chapter 4 solves the problem
of embedding a given extremal in a geodesic slope field -nthien taken in the sense
of the trace theory. The reader who does not care for technical detaiiswants the
lucid simplicity of the general foundations not to be mdrby toilsome existential
considerations is warned to ignore this last Part.

Part 1. The linear trace theory.
§ 1. The problem of variation. v functions ofr variables':
(1) =11, ¢ ..t)inG, (@=1, ..,
describe armr-dimensional “surfaceZ in the ¢ + v)-dimensionalt-z-space covering a
given regionG of thet-space. We consider only surfag$ying in a certain domai
of thet-z-space which have their boundary in common; i.e., the sadfi¢he functions
(1) at the boundary d3 are prescribed once for all.

The situation in the calculus of variations witmdependent variablas(i = 1, ...,r)
is this: A functionL of the variables:

t, 2% z° (@=1,..vi=1,..r

! Acta litt. ac. scient. universe. Hungaricae, Szeged, Stath.4 (1929), 193.
2 Physical Reviewt6 (1934), 505.

% Prof. Carathéodory advises me that Mr. Boerner didséime for his more sophisticated theory.
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is given. By an appropriate choicexyfone tries taninimize the integral:

2) J=J() = jG L(t', 2% (t),dZ / dt) dt--- dt.

8 2. Three stages of independent variables~r functions z7 (t, 2 in Q define what
we call aslope field§ in Q. The surfac&, (1) isembeddedh the slope field if:

dZ'/dt = Z7(t, Z ()

holds.

We distinguish three standpoints concerning therments in our functions:

at, 2, z" are taken as independent variables, as for instamtige functiorL. The
derivatives with respect to these variables arekethby attaching the respective variable
as an index.

(2) By using a given slope fielgl, thez” are replaced by functions of thleand 2.
The partial derivatives with respect to the argutsi€randz” are then denoted hy/ot,

a/0Z".
(3) The substitution:

=72 .., 1) [27=dZ ] dt]

referring to a given surfackE changes functions which appeared in the secondnhér
first) standpoint into functions of thealone. Their derivation with respect tois
denoted byl/dt.

In keeping with these conventions and the furthee that one always has to sum
over two-fold occurring indices, the vanishing bé tfirst variation:J = 0 is expressed
by Euler’s equations:

(3) de/df—Li,:o.

2 is called arextremalwhen satisfying these relations. The argumenits, 'mnqua are
t, 2, dZ'/ dt.

8 3. Lagrangian of the divergence type One may fornk for which the integral (2)
is independent af by the following method: Let:

(4) s(t, 2) i=1,..r

be given functions if2. After substituting the functions (1) for the angentsz, we
consider the divergence:

as o8 08 o7
dtt oat' 0z dt
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Its integral is the flux of the vector fielt, z(t)) through the boundary d®, and
therefore depends on the valuegf) at the border o& only. Hence:

0s as

(5) D(t, 2 ) = S+

All surface< are extremals of this Lagrangian, which is linea’in

8 4. Geodesic field and independent integralLet L be a given Lagrangian, and let
us now suppose we succeeded in determining our functions (4hestbpe fieldz" (t,
2) such that:

(6) L =D, L.=D, for ' =27 (t, 2.

A slope field of this kind may be callggodesic We notice, in passing, tha% =0s
/ 82" does not contain the variables For the “momentaL’qa, we often use the

abbreviationg, .
As:

i i i 0s ( dZ
D(t', 2% dZ / dt) =D(t', 2, z° — -7
(t, 7, dz'/df) (& ’Z)+62”[df Zj’

its integral the independent integhalinder these circumstances changes into:
(7) W=WE) = [ {L+p(Z - £)} d

A surface integral like:

[F.2,7,7)d
is always to be interpreted as meaning:
jGF(t‘,z“, Z(t 29, dZ/ di)Odt-- dt

The arguments of the functiohsandp;, in (7) aret', 7, z.

A surfaceX embedded in our geodesic slope field is, of negessi extremal for the
Lagrangian L Indeed, on account of:

B
s, % o =

0z° 7 977 7 977 4 of

one can supplement equations (6) by:
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L.=D for ' =7 (t, 2.
Hence, the identity:
dD, / dt —ng= 0,

which is satisfied foeverysurface, leads, foraembedded in our geodesic field, to (3).
In the case = 1, v =1, the independent integral (7) was first propounded theHil

8 5. Legendre transformation. The equations (6) with the definition (5) Dfare
equivalent to:

0s - 0s -
8 =p, ==L-p 7.
(8) P P, P,z

ot'

We therefore have to introduce into the function:

H=L-p,7
the momenta:
9 p,=L.,

instead of the” , as independent variables:
(10) H=H(t, 2, p)
(Legendre’s transformatign The total differential:

A =Ldt'+L,02"+ g,0%
leads at once to:
(11) dH=L ot +L,0z" - 70 §;
thus, one gets:

as the converse of the equations (8).order to construct a geodesic field, one has to
solve the one Jacobi-Hamilton equation:

(12) g—jz H(t', 2%, ds 1 0Z%);
the formula:

Z'=-H_ (t,20s/02

then furnishes the geodesic field.
By the way, equation (12) can be formulated irhsaiecnanner that it does not involve
any derivatives with respect to ttig; the integral oH(t', z°, ds / 8z°) over an arbitrary
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part V of the regionG in t-space is equal to the flux of the vector-fisldhrough the
boundary of.

8 6. Weierstrass’s formula. A surfaceZ embedded in our geodesic fiefis

extremal, and the integrl(%), (7) coincides withd(Z) for this surface.
Let us then suppose we have an extrémal

(13) =7r(t-t), t'...t)inG,

lying in a regionQ of t-zspace and embedded in a geodesic fiethiat cover€. We
comparex, with other surfaceg, (1) inQ of the same boundary. Under the notations:

) =7, JZ)=J; WE) =W, WS -Wo: AJ=J-Jo

we have:
A=A -W) = I -W) — (Jo —W),

because of the independencéNyfand furthermord, = Wy, because of the embedding of
3o In . Inthis simple fashion we arrive teierstrass’s formula:

(14) AJ:J—W:LE(t‘,z";Z’,'Z) d,

(15) E(t, 252, 7) =[L(t, 2, £)- Wt, £, §)]- L(2- 9,

the clue to which is the fact that the differedce Jo is expressed by a single integral
extending ovelX; ¥, has been mysteriously juggled out. In (L';},,)depends on the

arguments', 2%, z7.

One may say that the method consists in repldcibgL — D, subtracting a suitable
D of the type (5) fronk; this process does not change the extremadls dthe “suitable”
choice ofD is effected by solving the Jacobi-Hamilton equa(ib2).

Sufficient for a (“strong”) minimum is the positieefinite character of Weierstrass’s
E-function:

(16) E(t, 2, z,2)=20.

Here, thez” range independently over all values fremo to +o; z" =2 (t, 2) are the

slope functions of the embedding geodesic field, tie point {; z) varies in a regio)
surrounding the extremal, in thet-z-space. The existence of such a field is an integral
part of Weierstrass'’s criterion.

1 with such limitations as to the spreadvofof course, as are necessary for the statementke ma

senseV =V, has to be such for a given poigf {hat all pointst; 2) lie in Q when ¢) lies inV.
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§ 7. Invariance. Thet may be subjected to an arbitrary transformation among
themselves. We might even replace the redoiwof the t-space by an arbitrary
dimensional manifold, only parts of which can be referred to coordingltes.,t’. The
r quantitiesz” (i = 1, ...,r) are to be treated as components of a covarianbvégith
respect to the Latin indices, matched with the varjaﬁ)e The Lagrangian is to be
transformed as a scalar density (of weight 1); i.as, i be multiplied with the absolute
value of the functional determinant of the transforarabf thet. The integral(Z) then
has an invariant significance — even when the wi@®les not coverable by a single
coordinate systerm Covariance and contravariance are designated by tit®pad the
indices in the usual way. Some of the quantities — iticodar, L, S, p., H, E — are
densities in the sense just described; | would have detlo¢@d by German letters, in
accordance with the usage in my book “Raum, Zeit, Matehad | not to reckon with
the Anglo-Saxon aversion to these types.

It is conceptually simpler to take as the realm ¢tdégnationG the whole manifold,
not a finite portion ( = compact subset) thereof. #™en must replace the boundary
condition forX by the requirement that S coincides with the standdrérmal, outside
a sufficiently largdinite portion ofG (depending orx). Under these circumstances, the
differenceAJ, as its integrand vanishes outside that finite redias,a meaning (though
not the integral(%) itself.).

At a higher standpoint of invariance, the dependent biasa® may be included in
the transformations. But, in contrast to thethey should not be looked upon as a
separate set in the row of+ v variablest!, ..., t', Z', ..., 2’; we have the case of
“reduction,” not of “decomposition.” The situation prdwvey can be described in this
way: An ( + v)-dimensional manifold2 is mapped upon thedimensional manifolds;
this mapping — called the projection — is given once for @llus,G may be considered
as the manifold arising fro by identifying pointswin Q with the same projection
The coordinates, ..., t", Z%, ..., z’ covering a part of are subject to the restriction that
the coordinates, ..., t" have the same values at pointsiith the same projection, but all
transformations in agreement with this requirement dneissible. Z is a mapping o6
in Q: t -~ « such that the image hast as its projection. The behavior of all our
guantities could be easily discussed under this widercagpenvariance, but | do not
wish to dwell upon it here.

Part 2. Carathéodory’s determinant theory and its relation to he trace theory.

§ 8. Lagrangian of the determinant type. Carathéodory uses a different
independent integral. He, too, starts witlanctions:

(17) S(t, 2),

from which he forms, with reference to a given surfacél), instead of the divergence
(5), the functional determinant:
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(18)

dS(t 49) dS _90S 08 _dz
— =+ O—.

dt* dt“ ot* 9z" dt

Its integral ovelG is independent af, as long as the boundary dfis preserved, for
it gives the volume in thd-space upon which the regi@in thet-space is mapped by
the transformation:

S(t, ) = A"

In accordance with the formation (18), we now take:

S 0S8 _,

(19) D(z) =S+ =~ 3.

This Lagrangian, too, has the property of possessingidéices as its extremals. Since
D is not linear in the argument® — the only one we put in evidence — one needs a little

algebraic computation to compddéz”) for two sets of valueg’: D(z") =D andD(Z") .

8 9. An algebraic identity. D =D(z") is the determinant of certain quantities of the
form:

S=8 0%
The elemens, +0 Z of the second determinad{z") can be written as:
S+a, .

theu”being the differences’ — 7'.  Application of the multiplication theorem of
determinants readily leads to the formula:

IS+, | =[S0 + 72, ],
where thet, are determined by the equations:
(20) S7,= 0,

| maintain that:
(21) ni, = D;a /D.

Indeed, Ie’ﬁki H be the inverse matrix ﬁﬁ;” The general formula:

dD /D =T*dS,
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when applied to derivatives with respectto yields:
—71k ot
D p ID=T'0g,,

and this shows exactly that (21) are the solutiohshe equations (20). Hence, the
following identity obtains:

(22) D(')=D(Z) B, +(D, / D)(Z - £)|.
§ 10. Geodesic field and independent integral once mor&V/hen the functions:

S(t, 2, Z'(t, 2
are such that:
L =D, L,=D for z'=27'(t, 2,

Carathéodory calls the slope figft(t, 2 geodesic In a geodesic field, (22) changes into:
D(Z) =L {8, +(L, /L - Z)|-

The arguments df anqua: p, are heret', 2%, Z°(t,2. Theindependent integral
takes on the form:

W) = L [.Bk (L, Iz - sz’)‘ [t

All further developments follow the same line astR..
The differential equations, though, that are ingabenS by the requirement that the

slope fieldz’(t, 2 be geodesic are essentially more complicated. Ot of the
HamiltonianH in Part 1 is taken over by the determinant:

.1 i
L[.E<_Epazg"

The theory will work only if this function, as wedkL, is of constant sign in the region to
be considered.

8§ 11. Mutual relationship of the two independent integrals.The relation between
the two competing theories of Parts 1 and 2, wisetve the same end, is now fairly
obvious; they do not differ in the case of only oraiablet. In the general case, the
extremals for the Lagrangidn are the same as far = 1 + &, € being an arbitrary
constant. Notwithstanding, Carathéodory’s the@rynot linear with respect tb, but
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applying it to 1 +&., instead ofL, and then lettings tend to zero, we fall back on the
linearity of Part 1. One has to choose Carathéodanyistions:

S(t, 2 =t + e [B(t, 2).

Neglecting quantities that tend to zero wétimore strongly thar itself, one then
gets:

95 g e
dt dt

or Carathéodory'®’, (19) becomes = 1 8D, whereD has the significance (5) of Part 1.
One may therefore describe Carathéodory's theoryfiate determinant theoryand the
simpler one of Part 1 as the correspondinfmitesimal trace theory

The Carathéodory theory is invariant when theare considered as scalars not
affected by the transformations of It appears unsatisfactory that the transition here
sketched, by introducing the density 1 relative to the codeitia breaks the invariant
character. This, however, is related to the existerfca distinguished system of
coordinatest' in the determinant theory, consisting of the funct®ii§ 2 9). This
remark reveals, at the same time, that, in contoaSte trace theory, it is not capable of
being carried through without singularities on a manifélthat cannot be covered by a
single coordinate systetn

8§ 12. Special extremal slope fields.Returning, for the rest of the paper, to the
theory of Part 1, we keep to the definitions and notagopsained there. In my article in
the Physical Review, | viewed the problem from a slightifferent angle. One is
accustomed, in the classical case of one variabled one unknows, to perform the
embedding by means offeeld of extremals | therefore started with a field of extremal
surfaces simply coverin@, and | introduced the gradient:

(23) dZ'/dt =2°(t, 2)

of the field surface passing throudghz). Such a gradient field of extremals is, according
to (3), characterized by the relations:

24 e Ov L,=0
+ ¥ |-L,=0.
( ) atl azﬂ Q‘ pal

Conversely, if one is given the slope fielef (t, 2 arbitrarily, one can find a

corresponding field of surfaces provided equations (23)canepletely integrablethe
conditions of integrability being:

0z 97 (04 p 9% ).
(5SS )-o

ot ot 0z*
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| proposed to call a slope field (t, 2) satisfying the equations (24) axtremal slope

field whether it be integrable or not.
With respect to a Lagrangidh of the special form (5), not only is every surface an
extremal, but every slope field is an extremal fielthis is an immediate consequence of

the fact thaD is linear inz”, as we shall see at once. Therefore, our geodesicrfiust
needs be an extremal field for On account ofp, = ds / 37%, it satisfies the conditions:

%—%: 0

25
(25) 02" 07

For this reason, | conceived the geodesic fields énRhysical review a%pecial
extremal slope fields,’”and thus the essential modification imposed upon theicdds
concept of an extremal field appeared as dropping off iabddy and replacing it by the
new conditions (25). For Carathéodori@showever, it is not true at all that every slope
field is extremal — notwithstanding the fact that alifaces are extremals Bt This robs
the notion of a special extremal field of its primaryportance for our present purpose.

In order to justify our assertion that the left sidg23) vanishes identically far =

D, (5), one merely needs to observe that it does mitatothe derivatives o’ (t, 2),
since D o= ds / 0z does not contain the variabl€s A surfacez’(t) may be chosen
such that(t), dZ / dt have arbitrarily given values at one specific poinHence, our

statement is evident from the fact that every surfa@xtremal forD. He who is not
afraid of a simple calculation could verify the aeeridentical vanishing at once.

Part 3. Second variation

§ 13. Legendre’s quadratic form. Let us consider the Weierstrdsgunction for
definite values of, 2,z , and expand it into a power series in terms of thebbeau” =

z"-2z". The expression (15) shows that the constant and lieeas are missing, and
the development starts with the quadratic terms:

(26) 1L, U Ui =1F(t, 2, Z | u).

4

It should not go unnoticed that the discriminant of tjusdratic form in thers is
that determinant whose non-vanishing makes possible thimgof the equations (9)

forz”. Our formF, when taken oR,, i.e., for:
=2, z"=dZ/dt,

may be designated WBys(t |u). The positive definite character of the quadrédrm Fo(t,
u) — for every () in G — is, as is seen from this whole development ffc&nt condition
for a“weak minimum”(Legendre’s condition
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Whereas Weierstrass’s condition refers explicidtyan embedding geodesic field,
Legendre’s condition does not. Does it therefore gteeaa weak minimum without
assuming the existence of an embedding geodesic field? thidb,is exactly where
Legendre was wrong. But, only ttagproximategeodesic field (Jacobi’s condition)
enters into the proof of Legendre’s criterion — approxantat the same degree as (26)
approximates th&-function. Legendre’s stunt of subtracting a divergence:

d )
— (S, 0707
dt (Sup )

from the integrand of the second variatidid is exactly the same procedure for that
infinitesimal variation as the Welierstrass-Hilbert-&taéodory method of subtractindda
from L with respect to the finite “variatioJ.

8 14. Trivial preparations for solving the problem of embedthg. This
coincidence will become clearer when we now attackptbélem of embedding a given
extremal:

So: 27 =7(t-- 1)

a

in a geodesic slope field. We have to construct a solstion(12) such thads / 9z
reduces top;, (t)for 27 =27(t). Here, lefp) (t) be the value ofp} = L, for =720, 7=

dZ / dt, so that we have, conversely:

dZ / dt=-H 5 (6 2(1), p(D).

>, being an extremal, the equation:
dpj, / dt=H_, (t, 2(1), p(1)

obtains [observe thati , =L ,, because of (11)]. We rid ourselves of the canstad

linear terms irs andH in the following simple way:
Writing z7(t) + 2%, p.(t)+ p,, instead oZ” andp,,, we put:

S(tAY+ - S(tenN=p, (7 +0 (L3,

HL 20+ 2 10+ 9= HE2), )= B - g 2,

The differential equation (12) now changes into:

99 _e t‘,z",aa :
ot' 0z°
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and the initial conditions:
0s
0z°

=p (t) forz=2(t)

into:

The Taylor expansions o:f‘(t, 2) andH’(t, z, p) in terms ofz or z, p, respectively,
contain no constant and linear terms. Restoringpaginal notations andH, instead of

oandH’, we thus have shown that we may put, without asg bf generalityz” (t) = 0,
P, ()=0.

8 15. First approximation: Legendre’s differential equations When limitingH to
its quadratic term:

(27) szépbﬂfzﬁ+/§79£+—%£€pgj,
the quadratic part of:
(28) 19,77

provides an exact solution of the Jacobi-Hamiltdfecential equation. The coefficients
A and s‘,,ﬂ are functions of only and are, of course, written in symmetricahian:

Agp=RPp,  AP=AT,  Sp=s,.
(12) yields the following system of differentiajueations for the unknowe‘,,ﬂ

ds,
dt

(29) =ALTALS, T RS S

The transformation character is indicated againth®y position of the indices. It
should be added that the thr&s on the right side are densities of weight +1;-0,
respectively. A solution of these Legendre equatiturnishes what may properly be
called an approximate geodesic field. (Legendneshod, as he applied it to the second
variation, would lead exactly to the same result.)

Whereas Legendre’s condition is only a part of thech stronger Weierstrass
condition, it is to be guessed that the existerfca geodesic field, in the approximate
sense of the “second variation,” implies its existein the exact sense. Our conjecture
will be proved in the last Chapter. The resutinsfold:

1) The embedding dfy by a geodesic slope field is alwagsally possible. This
sufficies for answering all questions abdatal minima (when only surfaceg are
admitted to competition that differ froly in a small enough neighborhood of a pajnt
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2) The embedding goes through, even in the large, fomtiwe extremalXo,
provided the first approximation viz., the solution of Legendre’s equationgan be
effected.

§ 16. Appendix: Necessary Local ConditionsLet us consider the extrenisd: 27
= 0 in the neighborhood of a given poiiint t' , and denote thE-function at that point of
2o, — namely,E(to, 0; 0,u”) — by E,(4”). One gets a necessary local condition for a
strong minimum by putting a little cone-shaped hoo&en Its basis may be defined by
f(r ... 7') < 1 in terms of the relative coordinatés t =t\ + &7 ; here,¢ is a positive
constant doomed to approach zero &im&la ray function, i.e., a positive homogeneous

function of degree 1:
fAL, . AT) = A0 ..., 1) (for A = 0);

(e, ...,1)>0 except ford, ...,7) = (0, ..., 0).

In terms of further arbitrary constam® the varied surfacg itself — the “hood” — is
described by:
7= {117, ..., )}for (7, ..., 7)<1,

= 0 outside this region.

The inequalityAd > 0 with the expression (14) f&J and withe - 0 leads to:

[1] M {E(U =V {(D)} 20.

f (1)<l

fi(7) are the derivativedf / d7', 9t is the integral extending over the domgir, ...,

') < 1 in r-space, which that should now be looked upon as the &ffingent space” of
ther-dimensional manifolds in (t); the left side of [1] is invariant in this sense. Ast
fi(7) — the components of the normal vector — are homogeneausl@f zero, the integral
may equally well be interpreted as an average over theefsp of all directions inr-
space.

One can show, by specializing the functian an appropriate manner, that not only
the integral [1] but every element of it mustb@8. We choose a positive constarand
put:

[2] f(r 7...7) =max(f|, k7|, ...k 7' |) for =0,
= maxk| |,k 7], ....K|7" |) for < 0.

Afterwards, we lek in [1] tend to zero. The volume of the negative Ira¥ 0 of the
regionf(7) < 1 equals 2YK, whereas the volume of the positive part= 0 equals
274K Let us write, for a moment:

[3] (1, 0, ...,O)Zlql, Up, ...,Ur).
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fi is of orderk in the negative half, whereas it differs frafrby quantities of the same
order in the positive half of our region. Considering fact thatE(u”) for arguments

u” of the order of magnitude dfis =0O(K%) = o(K) one finds for the left side of [1], after
multiplication by k/2)"™, an expression:

Eo(vu) + %o(k),

and consequently one arrives with> 0 at:
[4] Eo(v°u) = 0.

The particular covariant vector [3] may be hereaepd by an arbitrary one. The
result, formerly obtained in a slightly different maniy McShané,is the following:

Necessary local condition for a strong minimum: Unlg$s holds for arbitrary
values V¥, uy at any poinf(to) of G, the surfacez, cannot have the minimizing property.

An immediate consequence is the similar:

Necessary local condition for a weak minimum: The quadratic foyin| &) must
be = 0 for such values of the variableg’that nullify all the quadratic forms

Uf’uf—tftf-

In the general case> 1, v > 1, there yawns a wide gap between the necessary and
sufficient conditions; unfortunately, it seems néely that one will be able to set up a
more complete set of local necessary conditions ahatcomparable in simplicity to
McShane’s inequalities [4].

Part 4. Construction of Geodesic Fields

§ 17. Cylindrical domains and fields. For the purpose of the local proble@can
be assumed to be a cube. We shall solve the probléme iarge forcylindrical regions
G, i.e., for regionss which are the product of an< 1)-dimensional manifol&" and the
open one-dimensional contlnuum — such that the pé&int$ G appear as paird(, 1)
consisting of an arbltrary poift of G and an arbitrary numbér G* may be referred
(locally) to coordinated?, ..., ', andt may be used as the coordinate Since the
Hamilton-Jacobi equation (12) — preferably in its undiffeetad form as stated at the
end of 8 5 — is invariant under topological transfornmegicour method yields a solution
for all manifolds topologically equivalent to a cylinderThe complete intrinsic

topological characterization of the ‘cylinders” istryet known, but we certainly get a

! Annals of Math32 (1931), 578.
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fairly general picture of the situation in the largeer though we have to make this
restriction of a topological nature. Its necessiwpwes, however, that our mode of
approach is not quite adequate. Every “cell,” as fdaimse, a convex region in ordinary
(t', ..., t")-space, is, of course, a cylinder. _

We start out to construct in our cylindrical maniféda solutions for which all
components?’, ..., s excepts- vanish identically. Writing, s, instead ot* ands', and
dropping the upper index 1 where it appears with a similar meansgeduce (12) to
the partial differential equation with only one unknasvn

0s 0s
30 —=H(t, Z, py), =
(30) ot .2, Po) Pa=5z

(moo <t<+0)

The coordinatef, ..., t" play now merely the role of accessory parameters.hsive:

(31) H=0, H.=0, H,=0 for z=0, p=0
(ie., ford= ... =2"=0,p. = ... =p, = 0), and our aim is to find a soluticft, 2%
making:
(32) s=0, % o forz = 0.
0z

One can get at the partial differential equation (3@hwwo different tools: either
with the theory of characteristigsor, following Cauchy, bypower series and their
dominants. Let us first go the former way.

8§ 18. The characteristic equations. The differential equations for the
characteristics of (30) read as follows:

dz
E:_Hpa(t’zﬂ’ P ),
(33) d
pa —_ i
—<=H_(t,27, .
ot (627, )

When one is called upon to determine that solwfgre”) of (30) which satisfies the
initial conditions (32), one has to has to proceedhénfollowing manner: One integrates
(33):

(34) 7=t 20), Pa = 7Tt, Z0),
with the initial values:
&0; Z8) =2, 1{0,2°) = 0,
and the further equation:
ds
= H
dt z pa Py

a

by quadrature:
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(35) s=oft; %) j[adﬂj

One then must express the initial valuigfdy means of the” themselves in solving
the equations:

(36) =4 7))

and in doing so one changes the quantitigs(34), andg, (35), into functiong, ands
of (t, 7). They satisfy all the relations (30).
The solution of the ordinary differential equatior83) is possible in the

neighborhood of = 0 for sufficiently small initial value® . Furthermore, the desired

inversion of the functions (36) near= 0, z7 = 0 is possible since the functional
determinant:

ZU
0z

(37 ‘ equals 1 for t=0.

This remark settles tHecal question.

8 19. The characteristics in the large.The first step goes through in the large, too.
That is to say: to a finite intervala-< t < a arbitrarily given,one may assign a positive
constants such that (33) is solvable throughout that whole interpedvided all the
initial valuesz; are of modulus less than Let us briefly repeat the well-know proof.

Our differential equations (33) are of the type:

?j—)::fi(t;xl, ooy X) (=1, ...n)

wherefi(t; 0, ...,0) = 0. Combined with the initial conditions= x’for t = 0, one replaces
them by the integral equations:

o, ! .
X (t) =X +j0 f(tx(D)dt
and determines successive approximatiéfs<, x', ... recursively according to:
(38) X0 = + [ (t:x (1) dt [XO(t) =Y.

Using the abbreviation ¥ | for the largest of th@ moduli | x |, ..., | X |, and
supposing the functiorfsto satisfy the Lipschitz inequality:

[f(t; ¥) —f(t;y) [SM [x -] C-ast<a),
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aslongask|<A |y|<A one sees from (38) that the sequence of the successive
approximation is majorized by the partial sums of theeser

° 1
£;H(Mt)h =M t=0),

and that one is allowed to go one step furtherhis tevelopment as long as the
preceding approximations keep within the rangg £ A. It is supposed that the initial
valuesx’ satisfy the inequality{’ | < & The first step is all right because the intedran
in:

x’—XOZI;f(t;xo)dt

can be replaced by the differenie x°) —f(t; 0) of modulus less thagM. Hence, the
whole estimation is legitimate, and the approxiomwgi converge to a solutiox for
which:

| x(t) | < M ast<a),

wheneis taken as Ae ™2,

Notwithstanding the solubility of the charactadstquations (33) thus proved, the
construction in the large of the embedding geodfisid might fail in the second step,
because the functional determinant:

o

o7 for z=..=2z=0

(39) ‘

becomes zero for some valuetgflacobi's “conjugate point”). Therefore, one tias
necessity ofrequiring Legendre’s equationg9) to have a solutiod[,ﬂthroughout the

whole domain G.

8§ 20. Determination of the geodesic field by means of charagastics. But, this
admitted one is able to overcome the obstacle just meatiorWe split off the quadratic
part:

$(E.2)=2 T 8,(t)2 £
a.p

as formed by the given solutiors;ﬂ(tk)of Legendre’s equations as our first
approximation, and thus put:
S(t, 2) =s,(t, )+ 3 (1, 2),
H(t',z",08 /07 + H)- H('t, 2,0's/0 2)=H(',z°,,).

The equation (12) remains valid for the “correntits andH :
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—=H|t,z,—
ot' 0z

as' —( a§j
but the situation is improved, insofar as the gaticpartH,of H(z, ) contains no terms
"7’ (only product$, Z°, P, Ps). It is material that we start witiny given solution of
Legendre’s equations without introducing the “cgllical” specializatiors’ = ... =s"= 0
for thes,,(t). The correctionss', though, shall be determined in the cylindrical
manner again’s’= ... =s'= 0. Thus, after returning to the old notatisns, H, instead
ofs,p,H, all previous relations are preserved, but we lvawe the further condition:

(40) H 0 for z=0, p=0.

£F

We treat equation (12) with theew HamiltonianH by the method of characteristics
again,and now prove the non-vanishing of the determiijaay.
For this purpose, we must consider the derivatives

oJ“ o7t
P E—, =—2 for =...=7=0
{5 o T g Z Z

If CZ(t) denotes the second derivative:

Hpayz,, for z=0, p=0,
one deduces, by differentiating the second lineapfations (33) with respect zHand

taking into account the fact (40):

dr,
Ttﬂ =C/(1) 714(1).

Sincergp = 0 fort = 0O, this leads at once to the result tigg{t) = O for all values of.
In view of this situation, the first line (33) geise to the relations:

dZg _
dt

AGIFI0R

Hence, the determinaatof thed; fulfills the simple equation:

da _
(41) S remaso,
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where ¢t) is the trace of the matrixdf () [|. The initial value of\(t) for t = 0 is 1;
hence, from (41):

Aty =e

This shows thaf(t) is positive throughout the whole interval <t < a, and it even
gives a fixed positive lower limiA > €% ¢ being an upper bound tt) in that interval.
One easily infers now that a certain neighborh®tdf z; = 0 in az-space is put into

one-to-one correspondence with a neighborHfipdf z = 0 inz-space by means of the

relations (36) for every fixetlin the interval a<t<a
Thus, one succeeds in building up the correctighat is to be added to Legendre’s

approximations, in order to get aexactgeodesic field.

8§ 21. The method of power seriesOne can hardly avoid a feeling of discontinuity
regarding this whole process of solving the Jacobi-Hamégumation — an equation that
served as a tool for the theory of extremals — by meéits characteristics, which are
something much akin to, but not quite identical with, ékremals. Furthermore, one
ought to understand better why everything goes smoothly diecexistence of the first
approximation is granted.

Anyhow, | thought it worthwhile to carry through also tbecond, more direct,
method: the application qgfower seriesvhose convergence has to be secured through
simple dominant series. Here, the reason becomes iqergp: the subsequent
approximations depend on linear equations pmiyiereas Legendre’s equations for the
first approximation are of the quadratic Ricatti type.

For our present purpose, one must assume at the thaskt is analytic in z andp,

and is thus given as a power series in terms of all thasablesz” andp,. The

expansion begins with the quadratic teiasonly. Starting with a given solutid;ﬂ(tk)

of Legendre’s equations, we make use of the same trick 20, and thus are able to
assumeH, to contain no product’ 7. Let us subtract frorhl the part bilinear irz and

p:

(42) H=Co(tp,Z+H,

and put the first term on the left side of our equatit).( Our solutiors should be a
power series iz, the terms of which we arrange by increasing order:

d(t,) =8, +g+...
SL(LZFZ#.!MSWQWra:t)(i)”l---(2)”V (M +...+n,=n)

is the totality of all terms of order. The lowest order occurring is 3. The coeffitseof
then®” approximatiors, have to satisfy equations of the type:
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(43) W—Zq‘;(t) N CE(. Nast oo Mg o ) = F(M ... i 1),
g

Thes in the second term on the left side contain the sSadieesn; ... n, as the first
term if 5= a, the same holds fgf # a, except thah, is increased ands diminished by
1. The right-hand side becomes a known function #feipreceding approximations of
order lower than n have been computethis was the reason for our shoving over the
first part ofH in (42) to the left side of our equations.

§ 22. Solving and majorizing the differential equations for theapproximations.
At this stage, we introduce again our assumption of thadsyitlike topological nature of

G, enabling us to pu¥ = ... =5 = 0 and to forget about the variabtés...,t". (43) are
changed into ordinary differential equations:

d e n; a
(44) W—z%(t)nﬁ&(... Navt o Mot e ) = F(Ny .. Ny 0),
B
which we want to solve under the initial conditions
sn...n,;t)=0 for t=0.

The coefficientsC; (t) are the same as in § 20.

One knows how the solution is effected explicitly an infinite series. One first
combines the differential equations with the initianditions into an integral equation:

() :j; F(t)dt+I;C(t) g9 dt.

s stands here for all thosén, ... n,; t) for whichn; + ... +n, has the prescribed value
> 3, arranged in a single colunfa;has the same significance, whilét) is the matrix of
the linear transformation occurring in (44):

M ...ny) - D Cotynga(...ng+ 1 ...ng—1...).
7

The solving series:

s(t) = SOt) + V(1) + (1) + ...

is computed by successive integrations according to
) = [ F(n)dr, ") = [ c(r) s”(7) or

This was mentioned for the purpose of deducinmfitcthemajorizing property:if
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(45) CaM 1<),  [F(...n;t) <Dy ... ny;t)

then the corresponding solutianof the equations witlh and @, instead ofC andF,
dominates:

[s(ny...ny;t) [ ang...ny;t).

Let us assume, in particular, that we are in possesdiupper bounds:
(46) Cs =T, |F(ny ... ny ;1) |[< A, CE"DA

involving certain constants, A, A,, and valid throughout the intervalOt < a. It is
essential that neithdr nor A depend om. A bound likel can be assignea priori,
whereas the proper choice AfandA, is to be kept open for later decision. With these
dominants, (46), instead of (45), all the elements of olwmoos(n; ... n,; t) become
equal.gy(t) and the majorizing system (44) reduces to the simple equati

da-n -nr [bl-’] :An [E(H—Z)At
dt ’
with the solution:
O = Ah {e(n—Z)At _ enrt}_
(n-2)A-n
If:

EA—F:B
3

is positive then the denominatar{ 2)A —nl" will be>nB > 0 forn> 3. Thus, one is led
to the estimation:

47) [s(ny ... n, ;1) | < iBEAn g2 A
n
Consequently:

s(t, 2% is dominated byziB [ DA
n=3 N

Pa :aa—i is dominated byZ% [Pt e 2A
z

(z=Z"+ ... +2).

8§ 23. Recursive formula for the upper bounds.In order to determine an upper
bound of the desired form (46) f&i(n, ... n,; t), we first have to majorize the given
HamiltonianH(t, Z, p,). Such a dominant may obviously be chosen irfdha:
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M(z+ p? _MZ
1-R(z+ p

since the product®” 7’ in the quadratic terrhl, of H are missingp stands forpy + ...+
Py, just axz stands foiz" + ... +2’. The factorR andM are constants valid throughout
the whole interval a<t<a. I =2M is then a proper upper bound for t8¢(t), and
H" is dominated by:

M(z+ p’°

(48)

We now replace by its dominant as given at the end of the last sedtia;is, byz [J
f({), where:

(49) () =2 AL

depends only on the combined argumértz CE™. The dominant (48) is still enlarged
when one replaceR in the denominator big CE™; it then takes on the form:

Mz’ (1+ f({))° _

R 1y MO

(50)

The coefficient ofZ' herein is an upper bound f&{n; ... n,; t) provided that the
inequalities (47) prevail for all orders less than.n Because (50) equaid times a
function of ¢ = z ™, that upper bound is precisely of the form (46). In thasy,vwe
have arrived at a proof of (47). The factérsare determined by the following recurrent
equation for the generating function (49):

Mz*(1+ f({))*
1-R{A+ 1))

- MZ(1 + %()) :i A2 N

or
+f)

(51) W qen=B
1-R{(1+ f) vM

8 24. The auxiliary quadratic equation. Final conclusions. The recurrent
computation of the coefficients, of f({) guarantees that they are positive, whereas the
solution of the quadratic equation (51) fawill show that the series (49) is convergent in
a circle round the originThis settles the convergence for our successiveoajppations.

But let us be a little more explicit! On putting:

R{=u, 1+f =9,
our equation becomes:
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el sm)
1-¢u vM vM

Hence, we choose a constant 2, takef = a — 1, and consider the equation fr

y ¢° = (ap - (L —gu).

(52) $=ap+au+all+ ...

is its solution with the initial coefficierd, = 1 then the inequalities (47) will hold with:

B:I/M(ﬁ_l), %A:M[V(ﬁ—l)+2],
A, /B =an_2R”‘2.
We find:
(53) ¢:(a+,3U)—\/(a+,8u)2—4,8(1+au).

2(1+au)

The square root must be taken with the minus aigm = O in order to have the
expansion (52) op start with the term 1. The quadric under the sgjuaot:

(Bu—-a)y-48= ,[’2 (U=ug)(u—up)
Ug, b = (a;( 12\/2)-

has two positive roots:

Cauchy’s integral formula gives the following egpsion fora,:

an-—f ¢u)du

n+1

The integral extends over a small cirklabout the origin. The functiog(u) is regular in
the complexu-plane to be slit along the ling < u < w . It has no pole, since the
numerator in (53) vanishes far= - 1/a, where 1 +qu = 0, and it is finite at infinity. For
negative real values af the square root in (53) is positive, so that thdue of ¢ at
infinity equalsfa. Thus,K may be replaced, for> 1, by a path closely surrounding the
incision. One adds together in the usual mannerctimtributions from the opposite
points on the two borders of the slit, and thussasrat the formula:

(54) an :éq V(U ~U(u-y) du (h=1)

(1+ au)u™
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which proves anew the positiveness of dn the cas& = 0 one has to add to the path
around the slit an infinitely large circkewhose contribution will be:

Sinceap = 1 and 1- (4 a) = 1/a one finds here:

(55) 1_8 qr\/(uz—u)(u— N

a 2 (A+au)u

(55) yields the following bound for (54):

Let us putB= )%, a=)# + 1, and replace b%A in the final result.We then find p=
ds/dz" to be dominated by:

Ty QZ{(VL—J RZéAh}n’

z=7+..+2, A=M[UW)-1) +2].

where:

The numbery> 1 may be chosen at random, whetdaandR are fixed by the nature
of the HamiltonianH(t, z%, p,) and the solutions,(t) of Legendre’s equations. A

reasonable choice fgrwould bey= 2.
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On extremals and geodesic fields in the calculus gériations
for multiple integrals

By

Hermann Boerner in Munich

Introduction

The calculus of variations for multiple integrals 2.yseveral independent variables
and several desired functions — exhibits some charactatifficulties, as long as one
wishes to proceed from the derivation of the Euler dffiéial equations to the statement
of necessary and sufficient conditions. For thasos, from the earliest times onward
only a few first steps towards the presentation ofegéndre condition” were suggested
1), Caratheodory wrote the first comprehensive wirkHis methods in the calculus of
variations ®), which consequently made use of the connection betwie Hilbert
“independent integrals” and the Hamilton-Jacobi partiiedntial equation, have also
proved fruitful in overcoming the initial difficultieniprecisely this case. In between
these two approaches, there is the notion of a “geofielsi¢’ which one obtains as one
does in the special case of ray optics as the wavacas{i.e., the eikonal) of the rays.

Carathéodory’s “Legendre condition” and “Weierstrddsnction” have appeared to be

something other than one suspected up to now. As a partiecnma for the mastery of
geodesic fields he devised a sort of generalized Legendsdraation that reduced to
something different from the ordinary one in the caseefintegrals.

The algebraic and analytical properties of this Legetd@dmsformation, which has
very little to do with the calculus of variations, koop the most space in Carathéodory’s
treatment. Thus, a representation would be welcomehinh the variational problem
appears at the outset and remains in the foregroundj bemjiven in the first chapter of
the following work, which will likewise serve for its gemalization in the second. It also
shows that one may make many things much simpler whenamg &t one’s disposal.

Thus, | will first derive theE-function and the Legendre condition with few caldolas,

and then the write down the comprehensive system ofulasnfor the Legendre
transformation that | will need for later purposesthi@ beginning, | choose the path that
Carathéodory followed in his bool, which truly represents the most elegant, and

1) Clebsch, Crelles JourB6 (1859), pp. 122-148; Hadamard, Bull. Soc. Math. de Fran¢@902),
pp. 253-25633 (1905), pp. 73-80; McShane, Ann. Ma82 (1931), pp. 578. — Prange treateder alia,
the case of two independent and two dependent variabies Diss. (Go6tt. 1915); he employed a Legendre
transformation as a means of integrating the Eulérdifitial equations.

2) Carathéodory, Acta Szegdq1929), pp. 193-216.

%) carathéodory, Variationsrechnung und partielle Difféadgleichungen erster Ordnung, Leipzig
and Berlin 1935.

*) pp. 197, et seq. He gave it for the first time in &éisUres on geometrical optics in Summer 1934.
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likewise simplest, path to all of the basic formutdshe calculus of variations. Here,
one may convince oneself that one brings a difficult gmmbko its solution in an
exceptionally quick and compelling way by this means.

However, this theory is still incomplete in one egse point: One has shown that
any surface that is intersected transversally by a geofleld ') is a solution of the
variational problem when the Legendre and Weierstrasslittons are satisfied,
moreover, and it has been proved that any such sudaae ‘extremal,” i.e., it satisfies
the Euler differential equations. However, in oradeptove that these three conditions —
viz., those of Euler, Legendre, and Weierstrass — wiienullated in a particular way, are
necessarysufficient resp.), one must be able to “embed” each (suffilyiesmhall) piece
of an extremal in a geodesic field, i.e., to find a geiodésld that intersects it
transversally. The second chapter of this work is @eeldt to the proof of this
embedding theorem.

In the case of a single desired function there is ngttanprove: One needs only to
construct more extremals in the neighborhood of thergaxtremal; here, any extremal
field is a geodesic field. The theorem is also velgyda prove in the case of a single
independent variable; in that case, any geodesic field isxtnemal field, and the
extremals are the characteristics of the Hamilmeebi equation.

Things are different in the general case. Howewvee, aso arrives at the proof here
with the help of the theory of characteristics. Nbm#he geodesic fields will be still be
obtained as the solutions of a single partial diffea¢®quation, in such a way that one
can choose the system of functions that one usesabittn@ith here up to an arbitrary
function. When one does this in a particular way — sisolv — then each characteristic
curve of the partial differential equation that corgdbe extremal surface lies completely
within it. One thus needs only to choose the Cauchwlinitilues suitably in order for all
of the characteristics that begin in the extremalbet completely within them, and then
they will, in fact, be transversally intersected by gleedesic field.

In general, the geodesic field will intersect no otbetremals transversally, and is
therefore not indeed an extremal field. Howevert thaalso completely unnecessary,
and precisely this circumstance pushes the use of tlenraf a “geodesic field” into a
brighter light. In order to be able to write down theigvstrass formula, one needs, in
fact, precisely a geodesic field and nothing nfyre

In the third chapter, | give the beginnings of a theordis€ontinuous solutions for
multiple integrals. Here, as well, the latter viewpg@lays a decisive role, namely, that
one does not necessarily have to construéield of discontinuous solutions. The
geodesic fields in canonical variables prove to be, ovate the most convenient for the
presentation of the generalized Erdmann equations.

1) For the definition of this notion, cf. sec. 2 ofstivork.

2) Recently, Weyl [Phys. Re¥6 (1934), pp. 5050; Ann. Matt36 (1935), pp. 607] has made a new
attempt, and likewise, with some modification, an extreguads through a geodesic field that likewise
obeys the Hamilton-Jacobi method, and seems much sirhplemthat is presented here. Weyl's formulas
are all linear, as in the simple problems, whereasi$ determinants of linear expressions always appear.
However, it also happens that the Weyl theory is not mosition to answer all of the questions that one
can pose in the calculus of variations. Namggnsversalitycan only be defined by nonlinear formulas in
the general problems, and therefore it follows thaha Weyl theory, simply stated, it is impossible to
compare surfaces that do not possess the same boundary.
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First Chapter
The geodesic field and the Legendre transformation

1. nfunctions:
(1.1) Xi(ta)

of u variables') define az~dimensional manifold in the + z~dimensional space of the
, g
Their derivatives, which we briefly denote by:

ox
(1.2) X = pa,

shall be piecewise continuous and differentiable¥(; , ty) is an arbitrary function in
space then we can replace #heavith the functions (1.1), in particular; i.e., we saer
the function to be defined on our surface, in particulde then denote its derivatives on
the surface by the plaih?); one thus has:

dy o¥ oV
= + hallil

1.3 —=—+p 3.
(13) dt, ot, P ox )

We will employ this differential operator when thg are defined, not on a surface
(1.1), but, for example, as functions in space. Iniqdar, if these functions belong to a
family of surfaces (1.1) that cover a piece of spacglgitmen they satisfy the condition:

d

(1.4) 9, R,
dt, dt,
everywhere.

Letf(x, t4, pia) be apositivefunction that is analytic in its + & + ng arguments. We
denote its derivatives by indices and introduce the ableelietationz, = f .

If G; is a region in the space of thevariablest, in which the functions (1.1) are
defined then one can consider the integral

(1.5) Jo fx.t o)t

1) Latin indices always range through the numbers ftdon; Greek indices range from 1 ta

2) Total derivatives of a variable first appear in seeond chapter, and there they will be denoted by
a dot, so there should be no danger of confusion.

) Anydoubled index in a term is to be summed over.

*) We will consider onlyfold integrals and thus we will briefly wrife... dt, instead of ... [ ... dt,
. dt,.
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The variational problem reads: How must the functiih4) be chosen in order for the
integral (1.5) to possess a smaller value than the same integral when it is takearoy

other surfacex/(t,)? For this, the class of surfaces to be compared bwishade

somewhat more precise. In general, we will assuntettieaboundary of the surface is
given, i.e., that we always integrate over the seag®nG; and the functiong(t,) shall

agree with (1.1) on the boundary of this region.

2. In order to answer this question, with Carathéoddrywe embark upon the
following path:

A surface (1.1) is apparently a solution of the vaial problem when the
following is true: In a region of space that contdine surface there exist functions
piXi, tg) that satisfy (1.2) on the surface — on the contfary,) need not be valid outside
the surface, at all — and for these functions onef(xad,, pio) = O everywhere; on the
other handf(x, ta, p,) > 0 whenp), # pio. Our functionf does not possess his property

— indeed, we have assumed that it is always positiveveder, we can seek to construct
anequivalentproblem that does possess it.

Two problems are calledquivalentwhen any solution of the one is likewise a
solution of the other. This is especially the casemithe integrals differ from each other
by a “path-independent” integral; i.e., one that possdbgsesame value on two surfaces
that agree on the boundary. One arrives at suchdapamdent integral in the following
way:

We introduceu functions Si(xi, tp that shall possess continuous derivatives up to
second order. The equations:

(2.1) Se(Xi, tﬁ) =Aa

represent g~parameter family oh-dimensional surfaces. If one replaces xhavith
functions oft, then equations (2.1) define a one-to-one map from anr&yito a region
G, in the space of thig in the case that the surfagé,) goes through the manifolds (2.1)
without touching them. In this case, the functional mheitgant:

ds
o |SwtSapsl D)
tﬂ

IS non-zero. Inthe event that it is positive, ititegral:

qudt:jG dA

represents the volume of the region. If one theeef@onsiders any other
functionsx (t,) then one has:

2.2 A'dt=| Adt,

(22) Jodt=]

1) Variationsrechnung und partielle Differentialgleinigen erster Ordnung, pp. 197, et seq.
2 ) Here, as in the sequel, we havedSgt' dx = S, and 9S,/ 0tz =S
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as long as the regi@jis mapped to the same regi@ asG; . Furthermore, this is
certainly the case when the functioggt,) agree with the(t,) on the boundary o®: ,
and one takes, =G:.

We thus obtain an equivalent problem when we replactutigionf with f — A, and
a solution of the variational problem in the previouslggested sense, when the family
(2.1) possesses the following property: At every poiatrttnimum of the functiofh— A
is zero under variation of thg, . A family (2.1) with this property is calledgeodesic

field. To a geodesic field there then belongs a systemnatibnspi, (X, ty) that satisfy
the equations:

oA
(2.3) T =
P,
and:
(2.4) f=A.

Moreover, one says that the surface element tltfised by thesp;, will transversally
intersect each surface of the family (2.1) that gbesuigh these points.

Now, if these functiongi, satisfy equations (1.2) on a surface (1.1) then this surfac
is, in fact, a solution of the variational problem. emhif x/(t,) is a comparison surface

with the same boundary then due to (2.4) and (2.2) one has:

(2.5) jqf'dt—jqfdt:jq(f'—A')dt,

and this is positive.
(2.5) is the Weierstrass formula, and the functiend’, which defines our equivalent
problem, is nothing but the Weierstrasginction for our problem. From (2.4) and (2.3),

it follows that it vanishes and is stationary fpf, = pi» . That one is really dealing with

aminimumwhen theS-function is therefor@ositivefor p/, = pi, must then be introduced
as a special condition. However, if this is not saisthen our surface, which intersects
the geodesic field transversally, actually provides eofgf” minimum for the integral
(1.5); for the comparison surfaces, one needs to assathmg more than that they lie in
the field.

We would now like to derive another expression for ghignction. We will see that

one can define this function without the use of a geodietitand express it in terms of
only the functiongi, and p, .

3. In order to do this, we summarize some formulas frieentheory of determinants
that we will need incessantly in the sequel.

If ¢op are the elements of a non-singular matrix yutrows andu columns then we
denote its determinant ky, and the algebraic complementyaz in this determinant by
@,;- One then hag # 0 and:

(3.1) waﬂwﬂy:wﬁmwﬂﬂ = Oap Y
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and thus, from the multiplication theorem for determtsa
(3.2) Pos| = 0/

If the ¢,z are functions of any other variables then one has:
(3.3) A=, A,

Occasionally, we will also need the derivativest#y,,. From (3.1) and (3.3), it

follows that:
dawpadwpa: dﬂ dl// = [/Iﬂpdlpap +¢7apd¢//1;1 !

and when one contracts this with,, (i.e., multiplies withZ,, and sums oved) one
obtains, with a simple conversion:

1
(3.4) dwgﬂza(waﬂwﬂp —%ﬂ%ﬂ)d%ﬂ-

What appears here as the coefficient@fz on the right-hand side is likewise naturally
the algebraic complement ¢, in the sub-determinang,,, .

4. Now, we would like to calculate the quantityas a function of thg, and p, .
To that end, we denote the elements of the detamtinby c,5. Then, from (2.3), we

calculate:
(4.2) Tip=S,;C,.
Furthermore, from (2.4), it follows that:

O0pt=CuCp=SuCst S B H=S,Cpt Rl

If we now introduce new quantiti@gs by way of:

(4.2) Agp = a-0/,81:_pi0/ Tia
then we have:
(4.3) agp = SWT:pﬂ.

Now, we contract the elements&fwith € ,. Due to (4.3) and (4.1), one obtains:

(S +S B)G=am*p,Pis=dpsf+ (P, Pid Pis-

For the determinant, this means, from (3.2) and))(2
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1 .
(4.4) A= W' Oapf + (P, — Pid) Pigl -

The &-function is, as saw, the quantfty-A'. We thus have to set:

] VA 1 ]
(4.5) €, ta s Piay Po) =F7= 75| Qap T+ (P~ Pia) Pis | -

5. We are now also in a position to give the Legenciyndition for our problem.
Thus, we develop thé-function in powers ofp,, - pi;. To that end, we calculate the

derivatives ofA" with respect t@;, at the locatiorpi, , or, what amounts to the same

thing, the derivatives af with respect t;, with the use of (2.3) and (2.4djterwards.
We have already calculated the first derivatives:i

oA’

I
0P Po= R

=Tig.

In order to obtain the second derivatives, we naifférentiate S, G, with respect
pis. With the use of (3.4), we obtain:

GZA S/n %j — — — —
= C,,Cs—C
apmapjﬂ A ( Aa ~up A8 910)
and due to (4.1) and (2.4):
Ry

= 1(77 5= Tip 7o)
1 J Iy /8_ /8 *
9P40P; Plo=Ra £ ’

If one thus considers the developmentdhen, as one sees, no terms of null or first
order appear; the terms of second order defineadrgtic form with the coefficients:

1
(5.1) Giaio = Top, =5 (Fo, fo, = T4 Fp,)

in then Ou variables (0, — pis). TheLegendre conditioronsists in the requirement that
this form shall be positive definite. Surface edgns that satisfy this condition are called
regular. If it is satisfied then thé-function is certainly positive whep', differs slightly

from pi,. It therefore guarantees the existence of a “Weakimum. In fact, one can
indeed set:

(52) & :qa,j/]( p'a - pa)( q,ﬂ B pﬂ)’
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where one has to define the coefficients of the quadiatm for a valuepi, + & p, -
Pie) On the connecting line frorp, to pia.

6. We have seen that one can express the quantitiesarthamportant for the
variational problem in terms of onlg;, andf without the use of the functiorts, .
Furthermore, in fact, a certain arbitrariness indeed ueddHe choice of these functions.
Two geodesic fields are already regarded as identical whigntheir surface elements
agree at each point. That prompts us to introduce ansydtealues that are connected to
precisely these surface elements in a one-to-one maanménye will see very soon that
these quantities yield the must usefahonical variabledor our variational problem.

We think of am-dimensional surface of the family (2.1) that goes thraugbint as
being given by functiong(x) in the neighborhood of this point and set:

o,

—£=-Pi,.

ox

We would now like to consider those families of sugfafor which this is possible;
thus the determinant &,z must be non-zero for given functio®s, and therefore we
calculate the functionB;, from the equations:

(6.1) Sa=Pip Sep.
We next introduce the quantiyby means of:
(6.2) FOSwl=1.
Analogous to the differential operator (1.3), we can mavoduce the symbol:

d _o 0
6.3 —=—-P —_—
(6:3) dx ox 7ot

(6.1) then simply readsS, / dx = 0.
As differential quotients, th®;, must satisfy a system of differential conditions,
namely:

(6.4) ijal=0 ,j=1,...nma=1, ...,
where we have set:
dp. dP .
6.5 e 1 =Tjiq].
(6.5) = liid

] I

A further condition shall likewise be derived next. otfe totally differentiateS,s
with respect tog then one obtains, with the use of (6.1):
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dS, _. OR, 1
dx 7 ot

When one thus differentiates the determingi| = 1F from (3.3) one obtains (cf,,
(3.2)):

1
Ye_10®,
dx F o,
or:
oP
(6.6) LA
dx ot,

From the theory of partial differential equations iodtforder it follows that (6.4) and
(6.6) are the only conditions to which one must subjectfuhetionsP;, andF; thus,
there are functionS, that satisfy (6.1) and (6.2).

All of this is valid for families oh-dimensional surfaces. Now, we again consider a
geodesic field, in particular, and look for the relatitimst exist betweep-dimensional
surface elementgi, that will make it intersect them transversally. GOnatation is
completely symmetric: Therdimensional surface element will be spanned by /the
vectors:

(piﬂ, 5aﬂ), ﬁ: 1, ol

and then-dimensional element that is perpendicular to it Bthectors:

(=9, pg),  1=1,..m

by contrast, the element thatiansversalto it is spanned by thevectors:

(-4, Pa), i=1,...n.

For any simple problem, where the notions of “orthogoaali “transversal” agree, one
hasP;, = Pia 2).

However, in the general case, it is also easy lulede P, andF from p;, andf with
the help of equations (2.3) and (2.4) for geodesic fieldemK#.3), it follows with the
use of formula (3.2):

a=|Syp | L.
Hence:
fat
(6.7) F= ,
a

') One observes that one &8s / 0ts = 0S,z/ 0% , 89S,/ Ots=0S,/ 0 t.
) For the problem of the shortest arclength orstnallest surface area, one has indeed.
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in the casea # 0, which we will assume from here on, and when omstgutes (6.1) in
(4.1) one obtains:

(68) Hﬁ:SpaPip Epﬂ: Pipaaﬁ.

If one contracts that witl, ,/ a then one obtains:

aaﬂ
(69) Pig: ?ﬂ;ﬂ

In the future, we will defineP,, and F by means of formulas (6.7) and (6.9).
Equations (6.1) and (6.2) are then completely equivate(2.3) and (2.4) and, at that
point, these equations will serve as the definitiom@ddesic fields. Our “generalized
Legendre transformation” is, however, still not finidh&/e must see whether we can
solve (6.9) for thepi,, and thus calculat& as a function of thd>,, namely, as a
“Hamiltonian function.”

7. Before we do this, we briefly develop the algebralatiens between the lower-
case and upper-case notations. The symmetry of oufdraradion will clearly emerge,
and we will later need the majority of these formubas/way.

We write all of the formulas in the form where thlements of the determinants
appearwithout overbars: By contracting components, one can succesdiving each
formula in terms of the variables that appear on ti& ri

As a starting point, we recall the previously-developenhidas:

(7.8.1) Agp = é},;;f—pm 7ig ,
(7.a2) TTa=Pipasa,

U1
(7.a3) Pt

a

We introduce the matrix:
(7.91) Oap = 5a,8f+ Pia Pig

with whose application many other particularly simghi;mmgs may be written down. One
immediately arrives at the simple connection betwggnanda,sz when one subtitutes
(6.9) in (7.91) and observes thmgt 775 = s f —agz. One finds that:

f_
Qo :E Qg
and from this, it follows that:

(7.92) Jap 8g = Oapf,
and conversely:

Qaﬂz aaﬁF.

For the determinant, (7.92) then yields, because aB)7.
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(7.93) g=fF.
From (7.a2), it follows, when one contracts wgtlz, and due to (7.92), that:
(7.94) fPig= T8 Qap -

One can also switch the roles of the Greek and lintites?). We introduce the
matrix:

(7.h1) i =4 + Pia Pia-
When one substitutes, into (7.a2), one sees immediately that:

In exactly the same way, it follows conversely fréfrg4), when one introduces:

(7.b1) bij = d] f—pia Ure
that:
(7.b2) TTa=Pra by .

(7.h4) and (7.b2) are constructed in precisely the sameaway.g4) and (7.a2).
Therefore, one must also have:
(7.h2) hi by =g f.

Now, the determinants andb are still missing. However, one immediately seas th
h =g. Namely, both of them are equal to the x-rowed determinant:

5ii Ry 2)
pja 5a/]
Thus, one has:
(7.h3) h=fF,
and therefore it follows from (7.h2) that:
fFb=f"
hence:
f n-1 3
(7.h3) F= : ).

1) Cf., C. Carathéodory, Math. An86 (1922), pp. 272.

2) Cf., the previous citation. Usually, it followsfn the non-vanishing of this determinant that the
mutually transversal surface elemeptsandP,, that were considered in the previous section do nohtouc
each other.

%) If a# 0then one also has# 0; this is indeed the case when one can also showlylitieat(" a =
“ b.
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The system of formulas is, however, still incompleds long as the analogous one
relating Mi, to piy is missing. We must introduce these quantities in sualayathat
whenf is a function ofpi; andF is a function ofPi, the relationgpi, = f, andMia =

F. are mutually implicit. To that end, we next assume &fiadf our quantities depend

upon arbitrary parameters, and construct the differestiaguation (7.93)dg = F df + f
dF. From formula (3.3), one obtains, duegg, = F ags:

dg=F agpdges=F ags (Pia dpa + Pig dP0)

and finally, due to (7.a2) and (7.a3):

H-2
Hdf —7,dpg) + f [dF— fa (B, pﬂdlg,j: 0.
We must therefore set:
H-2
(7.a4) Mig :T P,a,
and then one has:
(7.%) F(df — 77, dpg) +f(dF -1, dR,) = 0.

If one regard$ as a function ox;, t,, andpi,, andF as a function ok, t,, and Ry,
and if 7o = f, andMi, =F, then (7.*) implies the following important formulas:

(7.%%) Ff,=-fF, Ff=-fF

% % ta "

However, we must still complete the system of algebiformulas. Had we
calculateddh instead oflg above, then we would have found, in place of (7.a4):

Fn—l
(7b4) Mia :T prabr .

From (7.a4) and (7.b4), it follows upon contracting vaia (h;;, resp.):

(7.95) F pia =iy Qpa
and:
(7.h5) Fpa=Tighy.

Now, the solution of the system of formulas (7.a2-#4)7b2-4) for the upper case
symbols, without taking into account the remark, yiekist the formulas (7.g3-5) or
(7.h3-5), from which one can derive everything else, arevstnic in the lower case and
upper case symbols. In fact, (7.g3) and (7.h3) remain ugetamhen one switches the
lower case and upper case symbols; (7.g4) and (7.g5) wiWibehed, as well as (7.h4)
and (7.h5). Clearly, we thus still need to introduce th&ioes:
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(791) Agp = 557,8 F—Pialig
ana:
(7.B1) Bj = d] F —Pig Mg,

and then we simply rewrite the previous formulas withekehange of lower and upper
case quantities:

(7.A2) I'Iia:pipApa , (7.B2) Mig=pra B,
Fﬂ—l Fn—l
7.A3 f= , 7.B3 f= )
(7.A3) A (7.B3) 5
F,U—Z F//_z
(7A4) Tha = TRpAwp’ (784) Tha = B Pra Br :

From g, = F ag it finally follows that:

(7.%%%) Fag="1fAz.

Finally, we introduce the quantitigsand® by way of:

(7.9) f+ @=pisMNia
and:
(7.0) F+®=Pi;Mig.

If one rewrites (7.***) in detail and identifiesandb then one obtains:

F Pia TTa=f P Mg

or:
F(f + ¢) =f(F + D).
One thus has:
d F
(7_****) =

o f

8. As a first application, we write thé&function in canonical variables. If one
substitutes (6.1) in:
A =S+ Sa Pl
and observes (6.2), then one obtains:
(8.1) FA = |5a,8+ Pis pi'ﬂ|.

Here, the right-hand side remains invariant when onelEimeously exchanges the
primed and unprimed notations, along with the lower easeupper case ones. Thus,
instead of (4.4), one can also write:

o F

=T

|5aﬂF' + (F?a - Fiya)rli'ﬂ |’
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and obtain for thé-function, in place of (4.5):

F f' , ,
(82) ?5:F_m|5aﬂ|: +(Pia_|:i)’a)r|iﬂ |

If one develops this in powers Bf, — P, then one obtains for the second order terms
a quadratic form with the coefficients:

1
(8.3) Qiaip=Fp p, —E(n allis = Miplia)

which are to be constructed at the locaB)nhere.

9. However, we have anticipated this. Indeed, we stilhdbknow whether one
really can solve (6.9) in terms pf;, and, in that way, calculateas a function o, .

Instead of (6.9), we start with formula (7.a2), which thessame effect, and take the
differential of this equation in general, which we wiked another time in another
context later on. We obtain:

Aap AR = d71, — Pig dag, = d71p — Pip df + Pig 77, dpg + Pig o d7%, -

From (7.h1) and (7.h4), one can thus also write:
1
(9.1) agpdPip = hik{dmp—T(mp df - 77, 7%p d77p)}-

We would like to differentiate this with respeotgs ; hence, one hadf = 773 dps.
We next contract witly,s and obtain, due to (7.g2) and (5.1):

aF?a — hk gap 0, .
apjﬂ f ko, iB*

The determinant of thjg [Ch-rowed matrix is:

oP
— = F"| g is] Y.

9.2)
0P

This is certainly non-zero when the Legendre daowlis satisfied. In this case, there
therefore always exists the possibility of introithigccanonical variables.
Had we started from (7.A2) instead of (7.a2) thenwould have found:

1) One sees that the determinant of ghe n-rowed matrixhy; g,z has the valué” g as follows: We
have, as we easily sedy;|d,s | =h and |d; dos| =0, and one halsj gos =hi Iap & Jap-
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Py NG

0P, F

Qkpy B

The matrix that appears on the right-hand side isttieiseciprocal of the one that we
previously wrote down, and for the determinant, one has:

1=f"“F%| sl |Qajsl -

10. The method of Lagrange provides the Euler equationthéoextremals of our
variational problem:

(10.1) —Te_f =0,

One then easily calculates that a surface thatsetes a geodesic field satisfies these
equations). Under general assumptions, one has an identitynia&es understanding
the connection between fields of extremals and geodedds clear, and which we
would now like to derive.

We assume that we are given the quantgigsf(x, ts, pia), andPi,, F(X, ts, Pis) @s
functions of space, and that the relations that wartten down in section 7 are valid
between them. We then use equation (9.1) in order t@mmoh relation in which the

quantitiesdsz, / di, appear:

dP dm, 1 df dp,,
%, ”k{ . f(’%d—tﬂ"%’%d—; -

Here, we calculatdf / di,, using (7.h4), and obtain:

ILI IT 1
aap at, R, (1, *+ R, ) =N at, T(’Ep”m‘”jp%)d—t :
However, one haB, p«, = hik — A« . Thus:

dr, dP,
aa(dt pJp dxj-f-Eptp_t(k

d . ds . dc .
:R(Sﬂitﬂﬂ)' Sincecy; :ditﬂ’ the d|vergence£ vanishes; hence one has

14 14
14
d ip _= ds/]i H S/] — apj dni’ﬂ — A apw — of apiﬂ —
a, = M?. However, if one ha !‘dﬁ——x s a then pm _5? U ox —& - ox —fﬁ.

0
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“h {dﬂ'kp Tl (dp,-p ) dng}
Xk .

dt, £ ldt,

(In the last term on the right, we implicitly maderenaming of the summation
indices.) Now, we introduce the upper case notationyesare on the left, in which we
use (7.***), (7.a4) with (7.a3), and (7.**). The left-hand simkcomes:

f{A ®ovn et -p Fﬂ}

F o, e TR

and with the notations (6.3) and (6.5):

: > 9P .
TJAF  p Ry g (OB, OB |[_f[dF, LOR il
Fldx ot  “(ax ox [ Flax ot

With:
dF oP .
10.2 = _+F 12 41.
(10.2) 1 ax ot ol ] al

we obtain the desired identity when we contradiZ)/with b :

drm, T it ( dp d
(10.3) L —f, Lt P o |~ By,
dt, f \d, dt | F

In a geodesic field (6.4) and (6.6) are true, beri¢ = 0. If the geodesic field
intersects a surface transversally then this i tno the surface (1.4), and thus it follows
from (10.3) that such a surface satisfies the Eedeiations (10.1).

Conversely, if one has field of extremals, i.é.sautions to the Euler equations, then
it follows from (10.3) thati] = 0, however, in order for a geodesic field topbesent one
must have that allij a] = 0, from which (6.6) follows. In this case, ohas what
Carathéodory called @omplete figureand what the Americans callMayer field(in the
case of a simple integral).

There is no method of embedding a given extremalfield of extremals that defines
a complete figure. We have, however, already $se&nthis is completely unnecessary.
One needs no field of extremals whatsoever to ahy@yWeierstrass theory. In order to
construct a geodesic field, it is completely sudint that the given extremals (and
possibly no others) intersect transversally. Bnikxt chapter we will show how one can
make this happen; thus, it will likewise be provkdt the extremals are solutions of the
variational problem.
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11. Now, a word about transversality. For a simple pmoble the calculus of
variations transversality ordinarily enters in conmettvith the boundary conditions, and
indeed only when the boundary of the given curve or surfanetiassumed to be fixed.
Also, for the aforementioned general problem one easilives at such transversality
conditions by the theory of geodesic fields. One needisto show that the integrl\’
dt has the same value for all “permissible” comparsariaces, or, what amounts to the
same thing, that all such surfaces map the re@idhat is determined by its boundary to
the same regios; %). In case the boundary is assumed to be fixed, thissisie have
seen, unavoidably the case. We assume, as an exaimgileg part of the — usually
assumed fixed — boundary ofvadimensional manifoldy (v = 1) can move freely! A

surfaceS, = A, goes through each boundary point. In order for our comdio be
satisfied, all of the boundary points of all of the pissible comparison surfaces must

necessarily lie on these same surf&e= A,. Therefore, the manifold) must be

contained in the + x4 —1-dimensional manifold that is defined by these surfaces.

On thus obtains the following transversality condtidm part of the boundary of the
desired surface moves freely on-dimensional manifold > £) then any solution of the
problem on this manifold must intersect it transversallifius, aim + g — 1-dimensional
surface element (¥ m < n) that hasy — 1 directions in common with the extremal is
called transversal to it when it contains preciselylinearly independent transversal
directions (i.e., ones that are contained in the pusWedefined n-dimensional
transversal surface element).

In particular, am + x — 1-dimensional that is represented by the equ&mnt,) =
const is called transversal to an extremal whenghat®ns:

(11.1) S,=§ F,
are satisfied.

Second Chapter
Construction of a geodesic field that intersects a given egmal transversally

12. Carathéodory has remarked that in order for ondtairoany geodesic field one
has to solve just one partial differential equatiotheffirst order. The equations that one
has to satisfy indeed read like:

(12.1) Sy = Pip Sap,
(12.2) [Sos | TF(X, tay Pia) = 1.

One merely needs to solve (12.1) R and substitute the result in (12.2). One can
therefore choosg/ — 1 of the functionsS, arbitrarily, and then (12.2) is a partial
differential equation of first order for thé” function.

In order to examine this closer, we introduce some nawations. We denote an
index that ranges through the numbers from 2 taith a primed Greek notatiom’, 53/,
etc. The index 1 that will frequently appear is alwag@reek oneo = 1.

1) cf., section 2.
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We choose the functiors,. arbitrarily and denote the derivatives of the desired
functionS = a(x;, ty) by:
Si1 = a1y, Sig=0q .

All of the elements in the matr,z, except for the ones in the first renhence, the
sub-determinar$,_ in particular, as wel- are now known functions of andt, . Since
we would like to satisfy (12.2) and since one has:

(12.3) S| =0,S,

at least one of these sub-determinants must be eveigwba-zero. We assume that in
the region that we consider one has:

(12.4) S,#20.

By solving (12.1) forP;, and introducing the known functioSy1, Sy, One obtains
the P, as functions o%; , t,, & , g, , which we will denote by:

(12.5) Cia) =PidX ,ta, G, 0,) .

Correspondingly, letR) = F(x , ta, (Piz)) and (i) =F, (x.t,,(R,)).
Finally, we set:
(12.6) 0,5, AF)-1=MX,ta, G, 0o,

and then our partial differential equation (12.2) becomes:
(12.7) M(X ,ta, G, 02 =0.
13. Recall the following facts from the theory of clasaistics for first order partial

differential equations: One can give the functaman ann + 1 — 1-dimensional manifold
(“hypersurface”):

(13.1) ty = (X, ta')
arbitrarily:
(13.2) a%, T, ta) = Z(X;, ta).

From (13.2), it follows by differentiation, when we démohe derivatives of and
simply by the symbolsandd’:

0, =3 =0,
(13.3)

g,=2,=07T,.

If one substitutes this i then (12.7) can serve for the calculatioropin the event
that the derivative with respect ¢ is non-zero:
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(13.4) M, -M, 7, -M,r;#0.

One then calculateg and g, from (13.3). With the initial values for fax and g,
thus obtained, we integrate the equations of the chasttis

(13.5) t,=M, , % =M,
(13.6) o,=-M_, 0=- |v| Y.
By this, one obtaingf and g,- as functions in space and from them, by a quadratwge, th

desired functioro = S, and thereby, the geodesic field.
Instead of (13.4), one can now also write:

fl_fa’ra’ _)(ITI 7 O’

i.e., the characteristic curves shall not touch tivtase (13.1). It will therefore cover a
certain region of space simply.

One can read the proof that the functiens g, that we found satisfy the required
integrability conditions in Carathéodofy

14. Our aim is to show that these methods provide a geofielsidhat intersects a
given extremal transversally, in the case where sngivien the function§, and the
initial values forS; (on a hypersurface that the extremal goes through¢éntain way.

For this, we must examine the characteristic equattoser. We begin with (13.5).
From (12.6), these equations read:

{,=(F)§,+0,5,N.,) ";ZH) |
(14.1) R a
%=0,8,(,) %

The functionsR®;,) are obtained by solving the equations:

(14.2) G =Pipdp,
(14.3) S = Pip Sep

for P, . We differentiate these equations with respect:

AP )

ip

_P]a = p?
a

1) The dot means the derivative with respect to a pasmby which we represent the
characteristics.
2) Variationsrechnung und partielle Differentialgleingen erster Ordnung, Chapter 3.
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0 _9(P)
lils)

a

S

a'p!?

and obtain, by solving for the differential quotients:

o(P,)

(14.4) g,S, 50,

= _(Pja)s,ﬂ'
In the same way, one obtains:

£, =(F)S, —(R)(M,)S, =( A)°S,

14.6 il
( ) X, :(ni/])%/]'

15. For the following section we give; and g, to be arbitrary functions in space,
between which the equation (12.7) exists. Likewise, funstio space originate from

(12.5) that we denote b, , F, etc.
One can also first give the functio®s. They must satisfy only the equations (14.3):

(15.1) Si=P.S,,.

u'p

There are still — 1 of theo that can be chosen entirely arbitrarily; e@y, One
always obtaingi uniquely on account of (12.4) from:

(15.2) 0,S,F=1
(viz., (12.7)), and them; from:
(15.3) g=PR,o,

(viz., (14.2)). The relation (15.2) allows us to repla:gé_;lywith 1F .
The equations:

ft =A"S,,

(15.4) f’ A’é” ?ﬂ

X = niﬂslﬂ

(viz., (14.6)) define a particular family of curves in spadé.is noteworthy that this

family, when one proceeds in the manner that was preyiokesicribed, does not depend

upon the choice of the functiows, at all. It is easy to clarify the geometric mearwig

the curves. With the use of (14.3) and (7.A.1), one computes

(155) Sa’i )I( + %’a z; = O’
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and when one lets, denote they-dimensional surface element that is associated
with P, by means of the Legendre transformation one finds, dugAQ;

(15.6) %= Pat,-

The curves under consideration thus lie on the surf8ges Ay and contact the
surface elementg, . In the case wherg, belongs to a family of~-dimensional surfaces
that intersect then(+ 1)-dimensional surfacesy, = Ay, they are simply the intersection
curves of these two families of surfaces.

16. Under the assumptions that were introduced in theséatton, we now come to
grips with the other half (13.6) of the characteristjoations. Due to (14.4) and (14.5),
one has:

0R; _3(R,), a(Ry) 30, A(Ry) 30,
ot &, do o, oo, o,

_0(P, ﬂ) = (00; 9o,
ot, S”’[ ~ B o, j

a

(one always observes (15.2)!), or, when one takes intgideration equation (15.3),
differentiated with respect tg :

o(P ) 6 — aPD
16.1 £ Fr 2.
(16.1) ot at,, "8 ot
One obtains precisely:
oPy) Py g o o
0X, 0X; 0x%

and therefore also, with the operator (6.3), in whiehtakeP;, = PD

d(Ry) _dF; s 9B,

16.2 -F5S .

With the help of (16.1), we calculamg (i.e., the derivative of the function (12.6)
with respect td,, in which we then substitute the given functiahand g,;) and obtain:

Ni,(oP, _.= OF,
M, =Flo,—= 5 + +_FJ§( L-FS, ot

o, F° " ot

(16.3) - ‘
3 05, 1 . 0P,
-FDU/:I”LE W~ JUﬂI’
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here, we have used (15.4). Inthe same way, one compitte$16.2):

. dP,
(16.4) M?-PIM?=F", 48, N
dx F’dx "7 dx

Now, we must carry out the differentiation along toeves (15.4). (X, ty) is any
function in space then, from (15.4), one has:

L_0Y . A, v aw
=¥y 0¥ O ¥ s
o S T St T e R X
or:
(16.5) W= xd_:ﬂFsﬂ

A further auxiliary formula gives the derivatives§pg. With the help of (15.1), one
obtains:

dSa’a — aSﬂ'p _ a %p PD 0 %0’ =S aPD
dx  ox i ot atp 7 ot o,

and therefore the formula (3.4) gives us:

(16.6) dS, _~ oR, S il
' dx =S a, ot

in which, sincea = 1, we may use a primed index far
We go on to the differentiation of equations (15.2) d&d3) along the curves (15.4),
which we write as:

L = F- =
(16.7) Uasiaz‘ﬁ‘%sm
and:
(16.8) o, -Rlo,=0,P;.

From (16.3) and (16.7), we calculate the quantit®s(c, + M_)and then use

formula (16.5), first fol? = F', and then fotV E§lﬂ, and then formula (16.6). Most of
them go away, and what remains is:

(16.9) 5 (0 + ME):_%{dFDJFFDaF}H}

dx; ot,
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Likewise, we calculate the expressiogy +M, —R,(d,+ Mtf)from (16.4) and
(16.8), where we again use (16.6) and (16.5)”9#{2 . One obtains:

(16.10) g, +M, -R,(0,+M,)
-t {dFD+FDa—P"D’j+X.Uﬂ{d—F‘j‘]’—aP’E’j
Fol dx ot, : dx dx

1 ( dF® 6PDJ N
= +FD_Ip +ngaaaa-ﬂ[l Jﬁ]D
FD{ dx ot, .

In order to further put this into another form, weamark that due to (15.1) a close
connection exists betwee®), and f ja]”. Namely, from (15.1), it follows that:

dS, 95, _ .08, . 95,

dx, dx “dx " dx

] I

[I J 10] DSa’p '

One only needs to write out the differentiations ase the facts th&,, andS,, are

the derivatives db, with respect tox, andt, ; everything else goes away, and what
remains is:

lijd s, =0.

Theseu — 1 equations fori[j g are the same ones that the quantiﬁ‘ggatisfy.

From this, it follows that for any pair of numbeirsj the ¢ numbers i[j g are
proportional t(ﬁm, which one can write as:

(16.11) a' S,=liiAS, .
One thus ultimately finds from (16.10), with theewf the abbreviation (10.2):

. . il”
(16.12) g +M§—R§(ap+|v|5):[|:im.

17. Let there be given an extremal, i.e., a surfdcé)(that satisfies the Euler
differential equations (10.1). Thp, for the surface follow from (1.2). Let the
determinant [, jg | (cf., (9.2)) be non-zero, such that one canutatle Pi, and the
functionF(x , t, , Pig) on the surface from (6.9) and (6.7). We shativslthat one can
choose the functionS,- and the functiongrn, o, that were introduced in section 15, in
such a way that one hd = P;; on the extremal.
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The S, obviously need to satisfy, in addition to the inequality4),2only equations
(14.3) on the extremal; i.e., the surfap = A, must intersect the extremal
transversally. From this, one can conclude that ialgays possible to give such
functions®). Now, in order to also find suitable functioosve again first give ourselves
theP.. These functions must satisfy (15.1) everywhere anceagité theP;, on the

extremals (which indeed satisfy the same equation). dhe remain completely
arbitrary, as before, and the remainmgvill be calculated from them, as in the previous
section.

Once we have determined all the functions in this wes, consider they — 1-
parameter family of curves, in which the surfa&s = A,- go through our extremal.
Due to (15.5) and (15.6), these curves belong to the farhdurees that we considered
in the previous section, and can therefore be represbgtRinctions:

(17.2) Xi(7, U, ..., Ug1), T, U, ooy Ug1)

that satisfy equations (15.4). Now, we determinegthel arbitrary functionsg,- in
such a way that they satisfy the- 1 differential equations:

(17.2) o, +M/=0;

') We show this by actually writing down such functiofirough each point’, x’=x (t’) of the
extremal, we pass andimensional plan#hat is transversal to it; it will be given by the etjoras:

(1) te=ta (%, t)) =t = Pialx —x').

A certain neighborhood of the extremal will covered ligse planes simply. If the derivative of the

functions (1) with respect tDZ IS 0o + Pia Pg = dap the functional determinarf is, from section 6, non-
zero. For that reason, one can solve equations (1§ dord obtain certain functiort§ (%, tp).

Now, we choosg/— 1 arbitrary functions,, (tZ) , and determine the functiofg in such a way that
they have the following values:

2) S (x(£),t)=s (t),
on the extremal, and are constant on any plane; ieesetv

S (% 1 ta) =S (1] (%, tg).
These functions satisfy (14.3) on the extremals. Towreby differentiating (2), with the use of the
prior abbreviations, one obtains the relation:
Swp90s=Cap
(here, thec,; are the derivatives ddy), which allows us to calculate the derivatives of Seon the
extremals from those of tisg . F0r§u, one finds:

= _1 _
811_6 glacla ’

Thes, must therefore be chosen in such a way that timeriszero; (12.4) is then satisfied on the extremal
and thus in a neighborhood of it.
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here, the new notation means thatlinone expressesg; anda in terms ofag,- by means

of (15.2) and (15.3), and shall thus substitute the func{ibh4d). The values that tlm,
assume outside of the extremal are immaterial.
We likewise write the system of functioas g, thus obtained in the form:

(17.3) G (T, ug, ..., Uy), Oy (T, Uy, ..., Uy-1).

These functions, together with7.1),define a(/ — 1)-parameter family of characteristics
of the differential equation M 0.

In fact, one hasR,) = P.= Pi, on the extremal. Thus, the functions (17.1) satisfy

not only (15.4) (as we said), but also (17.3), together Wii#.6), i.e., (13.5).
Furthermore, due to (17.2), one has:

(17.4) o, +MI=0.

Now, we consider the identity (16.9). Due to (10.3),jhll§ 0 on the extremal (here,
we use the fact that it can be treated around an eXjrewtach one can write (cf.,
(10.2)):
dF” 0P, .

+F 22 =-N ik A"

dx ot sl 1K Bl

J

Thus, for the right-hand side of (16.9) we can write:
F_éznfﬂ[ J kﬂ]D,
or also, due to (16.11) and beca®&gt 0:

Xj Or; TR S 0
kol 1K1 Fwﬁlj&“ ]

This is, however, null because the coefficientjdf1] is symmetric irj andk, but |
k 1] itself is anti-symmetric. The left-hand side ©6(9) thus vanishes on the extremal
and from this it follows, from (17.4):

(17.5) g, +M>=0.

Now, we consider the identity (16.12). Here, tilght-hand side also vanishes on the
extremal, and since adf, + MS = 0 there already, one must also have:

(17.6) g, +ML=0.
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Since Pig) = P, we can write (17.4) to (17.6) in just the same wayauittstars. In
fact, all of the equations (13.6) are also satisfied, wiva$ to be proved.

18. A characteristic is uniquely determined by the values; @nd g, at one of its
points. Under the assumption that esatisfy (14.3) on the extremals, we have thus
proved the following:

At a point of the extremal one determines thim such a way that,) = P, %), and
integrates the characteristic differential equationth hese initial values.All of the
characteristics thus determined remain on the extremal and on@hgas P, along the
entire curve.

We would like to see whether one can choose thelindlaes that were spoken of in
section 13 in such a way that all characteristics blegin on the extremal have these
properties.

We deduce nothing else from the hypersurface (13.1) — itlesl@— except for the

fact that it goes through the extremal and the cudses A, on it (which will indeed be
characteristics). The intersection is.a<1)-dimensional manifold :

(18.1) t=7(t,), x=é&(ts).

This manifold thus lies of:

(18.2) (Gita), tg) =7(t,),
and on the extremal:
(18.3) X (T(t,), tg) = &i(ta);

here, the functions (1.1) appear on the left-hand side.
On this manifold , we must likewise satisfy, along with (13.3), the equation

(18.4) oS, = é
and:
(185) Oi- = Pip Up

((12.7) is then also satisfied naturally). We can elate all o from theseu+ 2n

equations, in total, between which there exiselations between thE. The simplest
expressions that one defines from (13.3) are the lineabioations%; — P,y Z, and

> S, ; by the use of (18.4) and (18.5), one obtains:

2 —Pg 2y =G —-Pig Oy + 0i(T —Pig Tp) = 01(Pi1 + T —Piy Ta),

1) In this, theg, are still completely arbitrary at this point; in faete still do not have the
integration of (17.2) for the initial values at our disgos
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_ _ —_ 1 _ _
Za’%ﬂ’ :Ua’Sa’ tol, Sa :E_Ul(sll_ Ty Sa) !
and one then eliminates from them?"):
1 — _ _
(18.6) (E_z”'s’”'j (Pa+6i—Pip1p)—@1—Pia Za) (S,-753;)=0.

| assert: When the initial valugs on the manifold3 satisfy then relations (18.6),
there is alway®nesystem of solutions;, g, of the equations (13.3), (12.7) that belongs
to Pig, i.e., that satisfies (18.4) and (18.5).

This is almost self-explanatory. Since, from 8we do not need to worry about
(12.7), we have to concern ourselves — in conttiati¢co the general case in section 13 —
with linear equations, and clearly need to verify that theredminant does not vanish.
We would like to make it into something else, andpiace of the g + n)-rowed
determinant, consider a/(- 1)-rowed one. Namely, we remark that one can dyrea
calculate all of ther and g, on this manifold from their initial values G

(18.7) o(&,7.t,)=2(6 ta) =5,

In fact, we know indeed that on it only tlag- are freely at one’s disposal. We
differentiate (18.7) with respect to the:

a-i gia’ + Ulfa’ + Ua’ = Za’ !

and substitute the valugs, 7, + p, that follow from (18.3) for the&i, in this equation,

and for g and g, the expressions that are calculated from (18d)(&8.5) in terms of
0. . By the use of the abbreviation (7.g1), we ahthom an easy conversion:

1

18.6
(18.6) .

{Sl( Ba t Gilo ~ _Sj‘p( gt Qfa,)} Oy

~ 1 5
o g (Gt Ol),

One can calculate,- from theseu — 1 equations in the event that their determinant is
non-vanishing. In order to establish this, we cacttits matrix withS,5 and use the
relationsS;3 S, 5 = 0 andSys gga’ = Cp o', IN Which the second one follows immediately
from the first one when one uses (14.3) (cf., a#sn.2%). Contraction yields the matrix:

1) One easily convinces oneself which relations rapgear in place of (18.6) whé_t311l - raém, or all

of theP,; + § —P;, T, vanish. One can conclude that one or the other ¢ondihters in, as a geometric
argument shows. Cf., below.
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ds,  d$
~ — p ~
Cp'a' + Cp,lTa, —dTa’ +d_t1 Ta’ .

Its determinant is nothing but the functional determired theS,- with respect to the
ts on the surface (18.1), which is non-zero by our assunptidie same is true for the
determinant$,| =S, and thus one can calculate the desired determinantidfoth of
them, and this is likewise non-vanishing.

One can choose the initial valuE®n § arbitrarily. From (18.7), it follows that:

i gt 2g :ia' :

and these equations, together with (18.6), define a system-qf — 1 equations fok;
andZ, . These equations will be satisfied for the values fihillow from (13.3) once
one has calculategfrom (18.8), (18.4), and (18.5).

The geometric meaning of the equations (18.6) is that o&gtewing that the surface
S = const. intersects the extremal at the points irstque This is easy to see when one
takes§ to be such a surfac® = const. and asks what sort of restriction one nmhes t

subject the orientation @& to. One would thus like to choo%e= const., so that aH;
andZ, shall vanish, and it would thus follows from (18.6):

Pi1+75- Pﬂ'Tﬁ' =0.

i — 1,15 are, however, the components of the normg,tso these equations then say
nothing more than the fact that this hypersurface mustabsversal to the extremal, as
we expected (cf., 11.1).

We can summarize the result whose proof sections 14€t8 dedicated to in the
following way:

In order for a given extremal to be embedded in a geodesic field, onegmest
functions (% , ts) such that the surface,S= A, is transversal to the extremal. One
then gives the initial values for 8n a hypersurface that goes through the extremal, and
on it, the curves &= A, such that they satisfy the equati¢h8.6)on the extremal, and
integrate the partial differential equatiofi2.7)with these initial values. The geodesic
field that is thus obtained intersects the extremal transversally.

Third Chapter
Discontinuous solutions

19. Let two functionsF(x;, ts Pig) andF'(x, ts P,) be given. We would like to
construct a geodesic field, on the one side of whichparsyrface§ is given by theu +
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n— 1 parametens , Uy, that belong td- and, on the other side, EJ, in such a way that
the functionsS, are continuous. That is, gnthe following equations shall be valid:

(19.1) S =S,
(19.2) Si =PispSus, Si=RsS,.
(19.3) F|Sp|=1, F'|S,|=1.

From (19.1), it follows by differentiation with respeotthe parameters that:

s ox; S ot, g 0x; ‘g
" 9y, ﬂaq ) au ﬂaq
0X; 0X; ot,
Y=g
2 au S’/’a “l au * S ou,

That means that thevectors with the components:
S;j_SGJW S;/J_Saﬂ’

all point in the direction of the normal & whose components we denotevys . That
is, there arg/ functionsp, on the hypersurface such that:

- %j :payj,

194
( ) - %/J =PVs-

20. Now, we assume that we are given the quantRigsandP, on a { — 1)-

dimensional manifold:
(20.1) t = 1(ta), X = §i(ta)-

It shall be possible to construct a geodesic field thraagih hypersurfacg that goes

through (20.1), such that the equations (19.1) to (19.4) ardieshi@sd whose surface
elements agree with the given ones on (20.1). Whatittmms must these quantities
therefore satisfy?

From (19.2), it follows by subtraction that:

(20.2) Si—Si- B;( §/;_ %)_( iP_ i;B a§:0
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One now chooses the hypersurfgcespecially such that at a point of (20.1), one has

l):
(20.3) Vi— Py,=0

It then follows from (19.4) and (20.2) for this point that:

(Rs—Rp)§=0
and therefore, sinceS}z|# 0:
(20.4) R;: Pia .

Instead of (20.2), one now has at the point in question:
S-S - R(%- 2)=0.

However, one can choose the hypersurface such that (20c®) valid. Due to
(19.4), one can then satisfy the latter equation onlg Bjf= S, and S ;= Syz, and it

then follows from (19.3) that:
(20.5) F'=F.

The given quantities must then satisfy equations (20.4%5)20

21. Now, we consider an extremal that possesses a “lalddig a manifold (20.1).
Its surface element is representedphyon one side of (20.1) and on the otherphy

such that on the kink one hgs,# pi,. One is then dealing with a special case of the

previously treated problem, and therefore equations (20.4 P&l (must be satisfied on
the kink.
From (20.4), it follows that one cannot operate on katés of the kink with one and

the same Legendre transformation (otherwise, it wolndoh tfollow fromP, = P;, that
P, = Pia ). Here, one therefore also has to deal with wfferent Hamiltonian

functions, and (20.5) is not a consequence of (20.4).
When written out in detail, thgeneralized Erdmann corner conditioread like:

= =

a

ap . —%ap
(21.1) —Th,=—

Q

1) Thus, - cf., (11.1) —itis “transversal piia “in the event that the “lower case” quantities are
defined.

2)  We will likewise see thaf(x , t, , Pia , pi'a) = 0. Now, if the&-function is usually positive, and
one writes it in the form (5.2) then one sees thagtia@ratic form is singular in the point of the connecting
line fromp, to pi'a that is denoted by the circumflex, and thus the determinatjty@nishes.



Boerner — On extremals and geodesic fields in the calctiizsiations. 193

U1 ru-1
(21.2) ot ,
a a

22. One arrives at a system of equations that is equivedethe Erdmann equations
in the following way: We consider an extremal, and arotura meighborhood in which it

is “strong,” i.e., where€ > 0 for p,# pio. If we fix our attention on a particular
boundary point of this neighborhood then the followinghsiously valid there: We have
€2 0; however, there is at least one system of vafes pi, for which one has:

(22.1) &Xi s ta s Pia, P,)=0.

A surface element with this property may be called fssnong.” We would still
like to deduce for the semi-strong surface elementsthieaé is a neighborhood of the

system of valuesy, # pis in Which the&-function does not vanish fop, # pi,. In other

words: Semi-strong surface elements shall regular (sec. 5). In particular, the
determinant is thendj,, i3 | # 0.
If pis is @ semi-strong surface element then there istaraysf valuesp, # pi, that

satisfy equation (22.1) and therefore, the equations:
(22.2) 9 -0
P,
If we set:

Oap = Oap +@ Thg

then, from (4.5), we can write:

(22.3) f'=qf
and:
(22.4) m,= 0,71,

for (22.1) and (22.2).

We show that equations (21.1) and (21.2) follow from (22.5) @22.4), and
conversely; thus, the Erdmann equations have a solutisarainstrong surface elements.
In fact, it follows from (22.4) that:

a;/] = 557,31”_ pi'a]z’/] = 557,31”_ pi'aqupmp’
and from this, one calculates, due to (22.3), and because:

fQus=ags+ P, 715,
that one has:

I

(22.5) %, Qop= Qo T/~ P A 7= — Clap.
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If one defines the determinant here then one findsilato (22.3) one has:

fro f
—a

AT

hence, (21.2). However, if one contracts the row@a5) witha,, /a, q,,/q,
anda,, /@ then one obtains, due to (22.3):

and when one multiplies this byszand observes (22.4) then one obtains (21.1).
In order to prove the converse, we use (8.1) and deowe this formula that:

(22.6) E:f'—%|5aﬁ+ Pia P, |-

When (21.1) and (21.2) are vatid.e., when (20.4) and (20.5) are true — then the
elements that enter into the determinant (22.6) are égggl, and then, on account of

(7.93), one has:

g:f’—g:f—f_F
F’ F’

=0.

Furthermore, when one differentiates (22.6) with reisweg, , and then set8;, =P, , F
=F’, one obtains:
o 1, g,
= G By = = (

W ia E' paFiyp - E'f nilﬂg;zﬂ_f’p):()’

ip

due to (7.g4).

23. Two surface elements at a pdixt,t’), pio , andp), that satisfy the Erdmann

equations with each other, satisfy, as we just sawtieqsg22.1) and (22.2). Since the
Erdmann equations are symmetric in the primed and unpriméables we must also
have the validity of the equations that arise fromXP2and (22.2) by exchanging primed
and unprimed; we can also see this directly. Nanvedyremember that in section 2 of
chapter | we introduced the quantities:

f—Azfg()ﬂO’tg’ na’ pa)’

for the &-function, which possess an extremum with the value @ f& pis, in any case.
From (22.1), (22.2) it follows that an extremum 0 alsotexas the locationp, = p/, ; the
considerations of the second section then show tleatamalso set:
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f-B=E(X1, Ho» R )-
Hence, for allp,, one has:
(23.1) E(X 1130 Re s B )=EX 5 o R )-

From this, it follows with no further conditions:ttiere are two surface elements at a
point that satisfy the Erdmann conditions with eatffenand one of them is semi-strong
then the other one is always semi-strong, as well.

A further consequence of (23.1) affects the second demgabf the&-function,
which we will likewise need. Namely, one must have:

2 0 4+0
(23.2) 0°E(X L. R H.)
op,.0P; 5

=0.ip>

i.e., it is equal to the numbers that were defined by ,(5vhjch were constructed for
thep, . In particular, the: n-rowed determinant of these quantities is non-zero sirce w

have assumed the regularity of semi-strong surfaceeeksm

24. We would now like to present the condition for atrexal to be isolated on a
manifold where the Erdmann equations possess a solutide. thus consider the
Erdmann equations on an extremal, i.e., we exptessdpi, in terms oft, . We can
then perhaps write thegen + 1 equations as:

W(t, p,)=0, W, p,)=0.
When these equations possess a solution at a pginhén — and only then this

point obviously belongs to a well-defined— 1-dimensional manifold of points with the
same property when the matrix:

oW oWy,
. og
(24.1) Pa Ra
o oWy,
o, ot

of yn+ 1rows ang/n + y columns has the rankn + 1.

This condition can now be written in a particularlyngly manner when one starts
with the Erdmann equations in the form (22.1), (22.2). Nanaglthe point in question
the matrix (24.1) looks like:
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0%
op, 0P L
ok '
ot, ot,0p,

If the surface elements in question are semi-strong fhem, the previous section,

2
the determina 6 5,
P, 9P,

when and only when the numbet§ / dt, do not all vanish; i.e., when ti#&function
possesses a gradient at the points in question.

The condition (24.1) for a semi-strong surface elenerie an extremal will thus
mean the same thing as saying that this surface elemengbdo au — 1-dimensional
manifold of surface elements of the extremal suchdhat a “strong” neighborhood of
one of them splits into “weak” ones.

Along the boundary of a strong neighborhood, which mayepeesented in the form
(20.1), a solution of the Erdmann equations whose surfaneeatsp), are semi-strong is
thus determined, and thus one obtains no broken extramthis way. Therefore, if it is
entirely possible to construct an extremal with th&ahivaluesp!, then it must satisfy

the condition that we would now like to present, and wigafot satisfied, in general.

does not vanish. Thus, the matrix (24.1) has mank+ 1

25. Namely, if po and p, are functions on (20.1), and they belong toua
dimensional surface that this manifold contains they #atisfy the equations:

A& ar
25.1 iz 2Ly,
(25.1) ot P ot Ra
oé _ , or ,
25.2 =g 24,
(25.2) ot P ot Ha

This is what one calls a strip condition in the calsg» 2. If one starts with an extremal
then (25.1) is satisfied, but (25.2) is not, in general.

On the other hand, there are alwgt)/S‘kinked strips,” i.e., manifolds (20.1) and
functionspi, and p, on them that satisfy the Erdmann equations, along (@&tL) and

(25.2). If one is given (20.1) then one must determma Rinctions that satisfy:

pun+l+2@p-1)=0+2)u-1

1) The derivative of with respect td, is naturally understood to mean that one also constders

dependency of the andp,, ont,.
2) Assuming that the variational problem is not regfdarll surface elements (in which case, there
are only strong surface elements).
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equations. Only fopr = n = 1 are there exactly as many equations as the number of
desired quantities. Thus, only in the plane does thest e characteristic property of
the ordinary theory of discontinuous extremals thateareuniquely determine a field of
“corners” in a neighborhood of a corner. If one lgtBicrease then one obtains more
equations than unknowns; e.g., one will find that on sesfac spacey= 2,n = 1) the
curves along which a kink can be found cannot be specifigttaaily. By contrast, ih

> 1 then one always has more unknowns than equations.

26. If one has found a discontinuous extremal that gagishe Erdmann equations
with the condition (24.1) and it is strong on both sidéshe kink then a sufficiently
small piece of this surface provides a strong minimunmfaah. In order to obtain a
geodesic field that intersects the surface transversaly must only carry out the
construction of the previous chapter on both sides ofpa@rByrfacef that contains the

kink. One chooses the functiofg in such a way that they remain continuous with all of
their derivatives. The initial values fax , g, will then be the same on both sides, and
therefore thd>;, are continuous over the entire geodesic field.

(Received on 2 July 1935.)



