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Introduction  
 

 
 This collection of selecta represents a tributary of evolution in the history of a 
mathematical idea, namely, the role played by geodesic fields in the calculus of variations 
for multiple integrals.  Along the way, one also sees how the nature of the problem 
suggested the introduction of the methods of the calculus of exterior differential forms as 
a convenient tool, the basic concepts of contact geometry, and eventually the notion that 
what finite variations actually seem to represent are differentiable homotopies of the 
objects being varied. The infinitesimal variations are then simply the vector fields that 
one obtains by differentiating the homotopy parameter, and thus represent infinitesimal 
generators of differentiable one-parameter families of objects that begin with the object 
that one is varying. 
 As one learns in the calculus of a finite number of variables, the necessary and 
sufficient condition for a critical point of a twice-differentiable function to be a local 
minimum is that the Hessian matrix that is defined by the second partial derivatives of 
that function must be positive-definite.  In the case of infinity variables, which is how one 
can regard the calculus of variations (at least, heuristically), one sees that since the matrix 
in question would be potentially infinite in its numbers of rows and columns (and 
probably not even countably infinite), some other approach must be taken. 
 Weierstrass and Legendre obtained in the case of extremal curves were sufficient 
conditions for a “strong” and “weak” local minimum, respectively.  Indeed, the Legendre 
condition is the positive-definiteness of the Hessian for the Lagrangian function itself, at 
least when one considers the partial derivatives with respect to the velocities.  
Furthermore, the customary analysis 1 of sufficient conditions for an extremal curve to be 
a (strong or weak) minimum involved the constructions of Mayer fields of extremals in 
which the given extremal would be embedded, the Hilbert independent integral, and the 
Weierstrass excess function. 
 Apparently, the genesis of the chain of events that is documented here in translation 
was a paper [3] by Clebsch that attempted to extend the well-established theory of 
extremal curves to extremal submanifolds of higher dimension.  In a series of brief notes 
[4], Hadamard later commented that the problem of establishing sufficient conditions for 
an extremal submanifold to represent a strong or weak minimum for the action functional 
in question was more involved than it had been in the case of minimal curves, such as 
geodesics.  Previously, the theory of sufficient conditions for a minimal curve had been 
adequately described by Legendre, who gave a sufficient condition for a weak minimum 
and Weierstrass, who gave a sufficient condition for a strong minimum.  The Legendre 
condition was concerned with the character of the eigenvalues of the Hessian of the 
Lagrangian function for the action functional, while the Weierstrass condition involved 
introducing an “excess” function that allowed one to describe the difference between the 
values of the action functional on an extremal curve and a neighboring curve that did not 
have to be extremal.  What Hadamard contributed was mostly a strengthening of the 
Legendre condition for a weak minimum. 

                                                
 1 Some standard references on the calculus of variations that address the details of these conditions are 
Bliss [1] and Gelfand and Fomin [2]. 
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 It was the seminal paper [5] of Caratheodory that first addressed the issues brought up 
by Hadamard in a definitive way.  In his formulation of the Weierstrass condition for the 
strong minimum, he introduced the concept of a geodesic field, whose existence is a 
stronger condition than the existence of a single extremal, and amounts to a foliation by 
extremal submanifolds. In the case of extremal submanifolds of dimension greater than 
one, he found that the existence of such a field was a necessary part of defining the 
Weierstrass excess function, as well as the embedding of the given extremal in such a 
field. In the process, he made essential use of the Hilbert independent integral, the 
Hamilton-Jacobi equation, and ultimately introduced the Caratheodory complete figure 
of a variational problem, which consisted of a pair of complementary foliations of space 
that were defined by the contact elements of the geodesic field and some transversal 
vector fields that appear in the process of its definition.  This construction generalized the 
picture that emerges in geometrical optics, or the theory of first-order partial differential 
equations, in which there is a foliation of dimension one defined by the null geodesic 
congruence and a transversal foliation of codimension one that is defined by the level 
hypersurfaces of the eikonal function, which are then geodesically equidistant. 
 Later, Caratheodory presented his work on the calculus of variations in an influential 
book [6], in which he took the canonical – i.e., Hamiltonian – approach for the most part.  
The general theory of the Hamilton-Jacobi equation and its application to the problems of 
physics was also eventually documented in the definitive treatise of Rund [7]. 
 Some time after Caratheodory’s paper on multiple integrals in the calculus of 
variations, Hermann Weyl commented on Caratheodory’s formulation of the problem, 
first in a brief note to the Physical Review [8], in which he applied the methodology to a 
critique of an early attempt that Max Born made at formulating quantum 
electrodynamics, and later in a more comprehensive article in the Annals of Mathematics 
[9].  Weyl characterized Caratheodory’s approach as one in which the integrand of the 
action functional was defined by a certain determinant, while his own version of the 
theory was a simpler version of the theory that involved a trace.  He also showed that, in 
effect, the trace theory was an infinitesimal approximation to the determinant theory.  
However, it was eventually recognized that the two theories produced different 
conclusions. 
 One of the parallel chains of development in this series of advances in the name of the 
Weierstrass problem was the fact that the mathematicians were gradually recognizing that 
the calculus of exterior differential forms seemed to represent a natural tool for 
applications to the calculus of variations.  In 1921, Cartan published his lectures on 
integral invariants [10], in which he more specifically showed how exterior differential 
forms could illuminate the problems of the calculus of variations at a fundamental level. 
This calculus was also discussed by Goursat in a book [11] that he published in 1922 on 
the Pfaff problem, which grew out of his own work in partial differential equations.  
Later, de Donder developed this idea further in two books [12, 13] on integral invariants 
and the invariant theory of the calculus of variations, respectively. 
 As one sees in the selected readings, Boerner [14], Géhéniau [15], Lepage [16], 
Debever [17], Hölder [18], Paquet [19], van Hove [20], and Dedecker [21, 22] carried on 
this tradition quite effectively; one also notices that the Belgian school of researchers was 
mostly developing the ideas of De Donder.  As van Hove points out, the Lepage 
congruences define a concise way of relating that various definitions of geodesic fields as 



Introduction                       3 

 

being equivalent in a reasonable sense; in particular, the differing approaches of De 
Donder-Weyl and Carathéodory are seen to be equivalent in the sense of Lepage 
congruence and can be converted to each other by means of a contact transformation, as 
shown by Hölder. 
 When one proceeds from the study of the exterior differential calculus to study of 
exterior differential systems, one arrives at one of the modern approaches to the calculus 
of variations (see, [23, 24]).  One of the directions that this took was an increasing 
emphasis on the formulation of Hamiltonian mechanic on symplectic manifolds, as well 
well as the Hamilton-Jacobi problem in mechanics.  However, one should notice that 
some of the identifications that make this all quite natural in the case of point mechanics 
actually seem increasingly contrived and non-intuitive when one goes to variations of 
higher-dimensional objects, such as submanifolds and fields.  Thus, it is probably best to 
keep an open mind about the relative advantages of the Lagrangian and Hamiltonian 
pictures when one is not always concerned exclusively with point mechanics, especially 
if one wishes to weaken the integrability assumptions that one makes about a physical 
system, not strengthen them.  For instance, in real-world physical systems, there are such 
things as non-conservative forces and non-holonomic constraints to contend with. 
 An important aspect of Dedecker’s formulation of the calculus of variations in [21] is 
his choice of differentiable singular cubic chains in a differentiable manifold M as the 
basic objects that one is varying.  These topological building blocks are no loss in 
generality from the use of compact submanifolds, and are entirely natural when one is 
using exterior differential forms, since one usually defines the integration of differential 
forms over such chains at the elementary level.  Hence, linear functionals on chains that 
are defined by the integration of differential forms can be immediately identified with 
real cochains, which is an elementary form of de Rham’s theorem. A finite variation of a 
k-chain in a manifold M is then a differentiable homotopy of that chain, which can also 
be regarded as a differentiable singular cubic k+1-chain.  Clearly, if one intends to 
investigate the topological aspects of the calculus of variations, this is the correct 
foundation.  Indeed, one might confer a later monograph [22] by Dedecker, in which he 
expanded upon some of the themes of the paper included in this collection. 
 Some of the ancillary topics that were being developed elsewhere in mathematics 
along the way, but which did not get applied in the articles featured here, were the 
introduction of jets by Ehresmann [25] and the increasing recognition that the most 
fundamental and unavoidable kind of geometry that pertained to the study of jets and the 
calculus of variations was contact geometry.  Indeed, this fact was already recognized by 
some figures of mathematical physics, such as Hamilton [26], Lie and Scheffer [27], 
Vessiot [28], and the aforementioned Hölder [18].  Hence, in our introductory remarks on 
a more modern formulation of the Weierstrass problem, we shall discuss some of these 
innovations as they relate to the readings. 
 What follows in this Introduction is then a summary of how one uses geodesic fields 
in the formulation of the Weierstrass problem when one includes some of the more 
modern considerations of jet manifolds and contact elements.  Thus, we commence with 
a somewhat lengthy general discussion of these latter concepts. 
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 1.  Contact elements and jets.  Suppose O is an orientable r-dimensional 

differentiable manifold with boundary, which will play the role of a parameter manifold 

for us.  Indeed, we will usually regard O as a closed subset of Rr, so one can also refer to 

the points by r-tuples (t1, …, tr) of coordinates ta directly.  For instance, if the central 
object of consideration is a curve then O will be a line segment, such as [0, 1], for the 

sake of specificity.  If one is concerned with surfaces then O will be two-dimensional, 

such as a closed disc D2. 
 Now, let M be an orientable m-dimensional differentiable manifold in which our 
objects are defined as submanifolds, where an r-dimensional submanifold in M is a 
differentiable map x: O → M.  If t is a point in O and x(t) is its image in M then the 

differential map dx|t: TtO → Tx(t)M takes the r-dimensional vector space TtO to an r′(t)-
dimensional subspace of Tx(t)M, where r′(t) is the rank of the linear map dx|t .  Hence, r′(t) 
= r at t iff dx|t is a linear injection, so, if one desires that this should always be the case 
then one implicitly demands that x must be an immersion.  Since immersions can still 
have self-intersections, which would make their images no longer represent differentiable 
manifolds, a stronger condition to impose is that x be an embedding, which means that 
when one gives x(O) the subspace topology in M – viz., its open subsets are intersections 

of open subsets in the topology of M with x(O) itself – the map x becomes a 

homeomorphism. 
 
 a.  Contact elements.  One can think of the r′(t)-dimensional linear subspace dx|t(TtO) 

as the contact element to x(t) that is defined by x at t.  In the simplest case of curves in M 
this contact element will be the line in Tx(t)M that is tangent to the curve x(t) at each point.  
Note that this line field is generated by the velocity vector field dx/dt iff the velocity is 
non-vanishing for every t.  One can also introduce the projectivized tangent bundle 
PT(M), whose elements are lines through the origins in the tangent space to M, and think 
of a line field along the curve x(t) as a special type of curve in PT(M) itself. 
 More generally, the contact element dx|t(TtO) will be an r′(t)-plane in Tx(t)M, and if x 

is an immersion then one can introduce the Grassmanian manifold , ( )( )m
r x tV M of r-planes 

in Tx(t)M and define a section of ( )m
rV M → M along x(t) to be the association of each t ∈ 

O with the image vector subspace dx|t(TtO) in , ( )( )m
r x tV M . 

 This is the route that Dedecker followed in his article [21] on the use of differential 
forms in the calculus of variations, but in the intervening years it has become more 
customary to go the route of jet manifolds in order to describe contact elements and 
contact geometry.  Fortunately, the transition from Grassmanian manifolds of tangent 
subspaces to jets is quite immediate. 
 
 b.  1-jets.  The 1-jet 1

tj x of a C1 (i.e., continuously differentiable) function x: O → M 

at t ∈ O is defined to be the set of all C1 functions x′: Ut → M that are defined in some 

neighborhood Ut of t and have the properties that their values x′(t) all agree with x(t) and 
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the values of their differentials dx′|t all agree with that of dx|t .  If the coordinates of O ⊂ 

R
r are ta, a = 1, …, r and the coordinates of some neighborhood of x(t) in M are xi, i = 1, 

…, m then the points in the image of O that lie inside the coordinate neighborhood 

around x(t) can be described by the system of m equations in r independent variables of 
the form xi = xi(ta), while the values of the differential map dx|t can be described by a 
system of rm equations in r independent variables of the form: 
 

i
ax = ( )

i

a

x
t

t

∂
∂

. 

 
 More generally, we can regard the (r + m + rm)-tuple of coordinates (ta, xi, i

ax ) as a 

coordinate representation of the 1-jets 1
tj x  that are associated with the point t ∈ O 

described by the ta and the point x ∈ M that is described by xi.  However, the (r + m + 
rm)-tuple (ta, xi, i

ax ) is more general than the previous discussion of contact elements in 
several ways: 
 1. We are not requiring that the xi be associated with ta by way of a C1 function x: O 

→  M, and similarly i
ax  is not functionally related to either ta or xi. 

 2. Since there is no functional relationship between i
ax  and ta, one cannot require 

that i
ax  take the form of a matrix of partial derivatives. 

 3. We have made no restriction on the rank of the matrix i
ax ; indeed, it could even be 

0. 
 In order to address these situations as special cases of a more general construction, we 
first agree that the 1-jet 1tj x  does indeed represent an r-parameter family of contact 

elements of dimension 0 ≤ r′(t) ≤ r in the tangent space TxM.  The set J1(O; M) of all such 

1-jets can be given a topology and local coordinates systems of the form (ta, xi, i
ax ) that 

makes it a differentiable manifold of dimension r+m+rm.  One calls J1(O; M) the 

manifold of 1-jets of C1 functions from O into M. 
 There are three canonically defined projections that are associated with the manifold 
J1(O; M): 

    source projection: J1(O; M) → O,  1
tj x ֏ t, 

    target projection: J1(O; M) → M,  1
tj x ֏ x, 

    contact projection: J1(O; M) → O×M  1
tj x ֏ (t, x). 

 
 None of these projections are fibrations, but they are submersions; i.e., their 
differentials have maximum rank in each case.  As a consequence, the fiber over any 
point of the image manifold will be a submanifold of J1(O; M), although one does not 

always have local triviality of some neighborhood of each fiber that would make the 
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submersion a fibration.  Hence, J1(O; M) is referred to as a fibered manifold relative to 

any of these projections.  Locally, the fibers are parameterized by (xi, i
ax ), (ta, i

ax ), and 

( i
ax ), respectively. 

 In case of the contact projection J1(O; M) → O×M one can see that the fibers are 

affine spaces that are modeled on the rm-dimensional vector space L(r, m) of linear maps 

from Rr into Rm.  In fact, it will be crucial at a later point to understand that any element 

1
tj x  can be regarded as a linear map from TtO to TxM, which defines a canonical 

identification of the fiber of the contact projection over (t, x) with the fiber of the 
projection of T*

O ⊗T(M) → O×M over (t, x). 

 It will prove intuitively useful to represent the elements of J1(O; M) schematically as 

in Fig. 1, in which the dimensions of the manifolds O, M, and L(r, m) have been reduced 

to one for ease of representation. 
 M 

O 
t 

x 

1
tj x  

 
Figure 1.  Schematic representation  
of an element 1tj x  in J1(O; M). 

 
 c.  Sections of the projections.  In order to account for the functional relationship 
between the ta and both the xi, as well as thei

ax , we introduce the concept of a section of 

the source projection, which will be a C1 map s: O → J1(O; M), t ֏  s(t) such that the 

source projection takes each s(t) back to t.  When this is not the case, we shall call the 
section s a singular section of the source projection.  Hence, in either case if the 
coordinates in a neighborhood of t are ta then the coordinates of the points in the image of 
s will be: 

s(t) = (ta, xi(t), ( )i
ax t ). 

 In the particular case: 
s(t) = (ta, xi(t), , ( )i

ax t ), 

 
where the , ( )i

ax t are the partial derivatives ∂xi/∂ta(t), we shall refer to the section s as 

integrable and also regard it as the 1-jet prolongation of the map x: 
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s = 1
tj x . 

 
This means that the integrability conditions for a general section take the local form: 
 

i
ax =

i

a

x

t

∂
∂

. 

 
 If one rewrites this in terms of coordinate differentials on J1(O; M) as: 

 
dxi = i

ax dta 

 
then one sees that if one defines the set of m 1-forms on J1(O; M) that take the local 

form2: 
ωi = dxi − i

ax dta 

 
then one can say that a section s: O → J1(O; M) is integrable iff: 

 
s*ωi = 0 for all i = 1, …, m. 

 
As we shall see, these 1-forms ωi play a recurring role in all of what follows, and their 
simultaneous vanishing at a point of J1(O; M) defines a subspace in T(J1) of codimension 

m.  The sub-bundle of T(J1) that consists of all such linear subspaces is referred to as the 
contact structure on J1(O; M).  If one regards the section s: O → J1(O; M) as a 

submanifold of J1(O; M) then the integrability of the section s means that the tangent 

spaces to the submanifold must be subspaces of the contact structure on J1(O; M). 

 We illustrate the nature of general sections, singular sections, and integrable sections 
of the source projection schematically in Fig. 2. 

                                                
 2 Although these 1-forms can be generalized to non-local expressions, since it will not be necessary for 
us to have that definition in what follows, we only refer the curious to the literature, such as Goldschmidt 
and Sternberg [30] or Saunders [31].  
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 M 

O 

Non-singular section Singular section 
 

Integrable section 
 

Figure 2.  The basic types of sections of J1(O; M) → O. 

 
 In order to make sense of the Lepage congruences that are defined in [16], and which 
we will discuss in more detail later, one needs only to say that two k-forms α and α′ in 
the exterior algebra Λk(J1) are congruent modulo ωi iff their difference α − α′ is an 
element of the ideal I{ ω1, …, ωm} in that exterior exterior algebra that is generated by the 
set {ω1, …, ωm}.  Its elements take the form of finite linear combinations of the form Aµ ^ 
ωµ, where the Aµ , µ = 1, …, N are k−1-forms on J1(O; M).  That is, one writes: 

 
α  ≡ α′ (mod ωi) 

 
iff there exist Ai ∈ Λk−1(J1) such that: 
 

α − α′ = Ai ^ ωi. 
 
 One sees that whenever two k-forms are congruent in the Lepage sense their pull-
backs s*α and s*α′ by any section s: O  → J1(O; M) will agree whenever s is integrable.  

In particular, as we will discuss later, Lepage concentrated on the congruence class of the 
fundamental p-form that defines the integrand of the action functional. 
 
 d.  The integrability of the contact structure.  Since the sub-bundle of T(J1) that is 
defined by its contact structure also represents a differential system on T(J1) of corank m 
the question naturally arises whether that differential system is completely integrable.  
That is: can it be foliated by integral submanifolds of codimension m? 
 The necessary and sufficient condition for this to be the case is given by Frobenius’s 
theorem, which can be phrased in various forms.  The one that is of immediate interest to 
us is based in the fact that since the sub-bundle in question is defined by the vanishing of 
the contact forms ωi, i = 1, …, m, it is the algebraic solution to the exterior differential 
system: 

0 = ωi, i = 1, …, m. 
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 The form that Frobenius’s theorem takes for such a system is to say that the system is 
completely integrable iff there are 1-forms i

jη  on J1(O; M) such that: 

 
dωi = i

jη ^ ωj,   i = 1, …, m. 

 Now if we define: 
Θi ≡ dωi = dta ^ i

adx  

 
then the question at hand is whether Θi is expressible in the form ijη ^ ωj for suitable 1-

forms i
jη ; i.e., can one solve: 

 
dta ^ i

adx  = i
jη ^ (dxj − i a

ax dt ) = i
jη ^ dxj − j i a

a jx dtη ∧  

 
for some set of i

jη .  However, since the left-hand side does not contain dxi as an exterior 

factor, one must have the vanishing of i
jη ^ dxj, which forces the formsi

jη  to take the 

form: 
i
jη = ηi dxj. 

 Since such 1-forms give: 
j i a
a jx dtη ∧ = i

ax ηi dxj ^ dta, 

 
and not something of the form dta ^ i

adx , one must conclude that no such 1-forms exist, 

and the differential system is not completely integrable. 
 However, the fact that integral submanifolds of dimension r + rm do not exist does 
not imply that integral submanifolds of lower dimension cannot exist.  In particular, any 
integrable section s: O → J1(O; M) defines an integral submanifold of dimension r. 

 
 e.  Sections of the source projection.  Any integrable section s: O → J1(O; M) will 

also have the property that: 
 

s*Θi = s*(dωi) = d(s*ωi) = 0 for all i, 
 
since integrability makes s*ωi vanish. 
 More generally, when a submanifold s: N → J1(O; M), with N an n-dimensional 

manifold, has the property that  
s*Θi = 0 for all i 

 
one calls it an isotropic submanifold. 
 Such a submanifold is also an integral submanifold of the differential system on J1(O; 

M) that is defined by the vanishing of all Θi, that is the sub-bundle of T(J1) that is the 
algebraic solution to the exterior differential equation: 

Θi = 0. 
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One sees that although the differential system that is defined by ωi = 0 does not have to 
be completely integrable, nonetheless, the system defined by Θi = 0 does have to be 
completely integrable, since all of the Θi are closed. 
 The maximum dimension of an isotropic submanifold is dictated by the rank of the 
Θi; viz., maximum dimension of an tangent subspace to J1(O; M) on which Θi(X, Y) for 

all i when one is given any two tangent vectors X, Y in that subspace.  When an isotropic 
submanifold has this maximum dimension, we shall call it a Legendrian submanifold.  In 
general, that maximum dimension is difficult to ascertain, although it is well-known in 
the case of one-dimensional parameter manifolds, as we shall discuss shortly. 
 If s(u) has the local expression s(u) = (ta(u), xi(u), ( )i

ax u ) then the pull-back of the Θi 

to N by way of s has the local expression: 
 

s*Θi = 
ia
axt

du du
u u

α α
α β

   ∂∂ ∧   ∂ ∂   
=

1

2

i ia a
a ax xt t

du du
u u u u

α α
α β β α

 ∂ ∂∂ ∂− ∧ ∂ ∂ ∂ ∂ 
. 

 
This vanishes iff all of the Lagrange brackets: 
 

[uα, uβ] = 
i ia a
a ax xt t

u u u uα β β α
∂ ∂∂ ∂−

∂ ∂ ∂ ∂
 

 
vanish.  Hence, one can regard the vanishing of Lagrange brackets as an integrability 
condition for integral submanifolds of the exterior differential system defined by the 
vanishing of the Θi.  It is for this reason that maximal isotropic manifolds, at least when 
one is concerned with 1-jets of curves, are also referred to as Lagrangian submanifolds. 
 In the case of a section s: O → J1(O; M) of the source projection, when one expresses 

it in the local form (ta, xi(t), ( )i
ax t ), one sees that the local form of the pulled-back 2-forms 

on O that are defined by s*Θi is: 

 

s*Θi = dta ^ s* i
adx  =

i
a ba

b

x
dt dt

t

 ∂∧  ∂ 
= 1

, .2 ( )i i a b
a b b ax x dt dt− ∧ . 

 
Hence, if one defines the m 1-forms on O: 

 
αi = i a

ax dt , i = 1, …, m 

 
then the isotropy of s implies the necessary condition that all of the αi must be closed 1-
forms. 
 By contrast, the requirement that s be integrable implies the necessary condition that 
all of the αi be exact, hence, closed.  That is, integrable sections define isotropic 
submanifolds. 
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 f.  Sections of target projection.  A section s: M → J1(O; M) will have the local 

coordinate form: 
s(x) = (ta(x), xi, ( )i

ax x ) 

 
Now, in effect, for each x ∈ M the section s associates the contact element( )i

ax x to the 

point ta(x) in O. 

 Although the question of integrability of the section s is meaningless, nonetheless, 
one still derives some useful consequences from investigating the vanishing of s*ωi and 
s*Θi. 
 In the first case, one has dta = (∂ta/∂xj) dxj, so: 
 

s*ωi = dti − 
a

i j
a j

t
x dx

x

 ∂
 ∂ 

 = ,( )i i a j
j a jx t dxδ − . 

 
Hence, the vanishing of s*ωi is locally equivalent to the condition: 
 

i
jδ = ,

i a
a jx t . 

 
This means that the matrix( )i

ax x of the contact element at x must be a left-inverse to the 

matrix ta,j(x), which is also a contact element at x, although the dimensions of the two 
elements are generally different.  Since a left-inverse can only exist when the first map x 
is a linear injection and the second one t is a linear surjection, we see that in order for this 
condition to obtain one must have that r ≤ m and the rank of both maps is r. 
 One can then prove that the contact elements defined by both maps are transversal.  
Consider the situation in its most elementary form: 
 

x tr m r→ →ℝ ℝ ℝ  
 
The contact element that is defined by x is its image, while the contact element that is 
defined by t is its kernel.  Since the composition t ⋅ x is non-zero everywhere except the 
origin, no non-zero element of the image of x can be in the kernel of t.  Hence, the 
intersection of Im x with ker t must be 0, and, from the nullity-rank theorem, one must 
have: 

R
m = Im x ⊕  ker t, Im x ∩ ker t = 0. 

 
Therefore, when r ≤ m and the rank of both maps is r the contact elements are transversal.  
This fact is at the root of the construction of the Caratheodory complete figure for more 
general extremal problems than geodesic curves. 
 As for the expression s*Θi, it takes the form: 
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s*Θi = 
ia

j ka
j k

xt
dx dx

x x

   ∂∂ ∧   ∂ ∂   
=

1

2

i ia a
j ka a

j k k j

x xt t
dx dx

x x x x

 ∂ ∂∂ ∂− ∧ ∂ ∂ ∂ ∂ 
. 

 
Hence, the vanishing of s*Θi is locally equivalent to the condition: 
 

0 = [xj, xk] i =
i ia a
a a

j k k j

x xt t

x x x x

∂ ∂∂ ∂−
∂ ∂ ∂ ∂

, all i, j, k. 

 
 g.  Sections of the contact projection.  It is the sections z: O×M → J1(M; O), (t, x) ֏  

z(t, x) that will be the primary focus in the sequel, since geodesic fields represent special 
cases of such sections.  Hence, we shall defer our discussion of them until a later point 
when we can discuss them in that context. 
 
 h.  The dual jet manifold J1(M; O).  One can just well consider 1-jets1xj t  of C1 maps t: 

M → O and denote the resulting manifold of all such jets by J1(M; O).  It will then have 

local coordinate systems of the form (xi, ta, a
it ). 

 It is important to note that the fibers of the contact projection J1(M; O) → M×O over 

each (x, t) are affine spaces modeled on the vector space L(Rm, Rr), which is canonically 

isomorphic to the dual of L(Rr, Rm) by the map that take any linear map from R
m to Rr to 

its transpose map from R to Rm.  Indeed, since jet1xj t ∈ J1(M; O) is also a linear map 

from TxM to TtO the fiber of the contact projection J1(M; O) → M×O over each (x, t) is 

also identified with the vector space *
x tT M T M⊗ , which maps isomorphically to the dual 

space *
t xT M T M⊗ by transposition. 

 If x: O → M is C1 and so is t′: M → O then the composition t′ ⋅ x: O → O is also C1.  

The differential map d(t′ ⋅ x)|t = dt′|x(t) ⋅ dx|t then takes each TtO to a subspace of Tt′O, 

where t′ = t′(x(t)).  In order for the composition t′ ⋅ x to be a diffeomorphism of O to itself 

t′ would have to be a surjection and x would have to be an injection, so x would be 
effectively a section of t′.  This would also make the differential maps invertible and the 
local condition for this would take the matrix form: 
 

det( )a i
i bt x ≠ 0. 

 
We shall refer to the maps x and t′ as conjugate whenever t′ ⋅ x = I, in which case: 
 

a i
i bt x = a

bδ . 
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Recall that we encountered this condition above as a transversality condition on two 
contact elements.  Hence, one must have that m ≤ r in this case and the rank of both x and 
t′ must be m. 
 The three canonical projections differ only in that the source and target manifolds 
have been exchanged.  Hence, one can effectively exchange the t’s with x’s and the a, b, 
… indices with i, j, … indices.  We therefore only summarize the form that the key 
equations of the previous section take. 
 For instance, since the integrability conditions for a section s: M →  J1(M; O), x ֏  

(xi, ta(x), ( )a
it x ) of the source projection now take the local form: 

 

a
it =

a

i

t

x

∂
∂

, 

 
one sees that the corresponding 1-forms they define are: 
 

ωa = dta − a i
it dx  ,  a = 1, …, r. 

 
 The corresponding set of 2-forms is then: 
 

Θa = i a
idx dt∧ . 

 
 If a section s pulls all of the Θa down to 0 on M then locally one has: 
 

s*Θa = dxi ^ s* a
idt  = 1

, .2 ( )a a i j
i j i jt t dx dx− ∧ , all a. 

 
 Hence, the local 1-forms on M τa = a i

it dx make: 

 
s*Θa = dτa, 

 
so s*Θa vanishes iff τa is closed; once again, if s is integrable then τa must be exact. 
 A section s: O → J1(M; O) of the target projection has the local coordinate form: 

 
s(t) = (xi(t), ta, ( )a

it t ). 

 
Hence, the pull-down of ωa takes the local form: 
 

s*ωa = dta − 
i

a b
i b

x
t dt

t

 ∂
 ∂ 

= ,( )a a i b
b i bt x dtδ − . 

 
Its vanishing then gives the transversality condition on the relevant contact elements. 
 The pull-down of s*Θa takes the local form: 
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s*Θa =
1

2

a ai i
b ci i

b c c b

t tx x
dt dt

t t t t

 ∂ ∂∂ ∂− ∧ ∂ ∂ ∂ ∂ 
. 

 
The vanishing of s*Θa is therefore locally equivalent to the condition: 
 

0 = [tb, tc]a =
a ai i
i i

b c c b

t tx x

t t t t

∂ ∂∂ ∂−
∂ ∂ ∂ ∂

,  all a, b, c. 

 
 i.  The case r = 1.  Since the main purpose of the articles that follow is to extend the 
methods of the calculus of variations that were established in the case of extremal curves 
to extremal submanifolds of higher dimension, we should discuss the more elementary 
case in order to show that the general methods do indeed reduce to the more elementary 
ones when r = 1. 

 The first thing to address is the fact that when r = 1 the two jet manifolds J1(R; M) 

and J1(M; R) take on simpler forms, namely, J1(R; M) becomes R×T(M) and J1(M; R) 

becomes T*M×R.  As we shall see, when the things that one defines on J1(R; M) and 

J1(M; R), such as Lagrangians and Hamiltonians, are time-independent, it is customary to 

simply start with T(M) and T*M as the kinematical dynamical state spaces, respectively. 

 The canonical 1-forms on R×T(M) become: 

 
ωi = dxi – vi dt. 

Hence, its exterior derivative is: 
Θi = dωi = dt ^ dvi. 

 

A section v: R → R×T(M), t ֏ v(t): 

 
v(t) = (t, xi(t), vi(t)) 

 
of the source projection is simply a vector field vi(t) along the curve xi(t), and an 
integrable section is a velocity vector field; i.e.: 
 

vi(t) =
idx

dt
. 

 

 When one pulls Θi down to R by way of a general section v, one gets: 

 

v*Θi = 
i

idx
v dt

dt

 
− 

 
. 
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Hence, it vanishes iff v(t) is a velocity vector field. 
 As for Θi, it pulls down to: 

v*Θi = 0 

since R is one-dimensional. 

 A section of the target projection v: M → R×T(M), x֏ v(x), with: 

 
v(x) = (t(x), xi, vi(x)) 

 
is a vector field on M, although the time function t(x) is somewhat unconventional as an 
extra component.  Its basic effect is to foliate M − or at least the open subset U⊂ M over 
which the local section v is defined – by simultaneity hypersurfaces relative to the time 
variable t. 
 The pull-down of ωi by the section v is now: 
 

v*ωi = ( ),
i i j
j jv t dxδ − . 

It vanishes iff: 
vi t,j =

i
jδ . 

 

However, this is impossible unless m = 1 since we are basically mapping Rm to R and 

then back to Rm, which can be of rank one, at best, not rank m. 

 Similarly, the pull-down of Θi is: 
 

v*Θi = 
i

j k
j k

t v
dx dx

x x

 ∂ ∂ ∧   ∂ ∂   
=

1

2

i i
j k

j k k j

t v t v
dx dx

x x x x

 ∂ ∂ ∂ ∂− ∧ ∂ ∂ ∂ ∂ 
. 

 
This vanishes iff: 

[xi, xj] = 0, 
with the previous notations. 

 When we consider the dual situation on J(M; R) = T*M×R, we see the familiar 

machinery of symplectic geometry emerge. 
 The canonical 1-form ω, which we now write as θ, for the sake of convention, takes 
the form: 

θ = dt – pi dxi, 
 

which defines the usual contact structure on T*M×R. 

 Its exterior derivative Θ is now: 
Ω = dxi ^ dpi , 

 
which defines the canonical symplectic form on T*M.  That is, it is a closed 2-form that is 
non-degenerate, in the sense that the linear map from each tangent space T(x,p)T

*M to the 
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corresponding dual cotangent space( , )x pT T M∗ ∗ that takes the tangent vector v = vi ∂/∂xi + vi 

∂/∂pi to the covector: 
ivΩ = − vi dxi + vi dpi 

is a linear isomorphism. 
 Customarily, the contact element pi that is associated with (t, xi) is regarded as linear 
momentum, since it generally appears as the conjugate momentum to velocity in 
Hamiltonian mechanics.  Of course, this essentially mixes kinematics with dynamics, and 
one finds that in geometrical optics, it is more conceptually consistent to first regard the 
frequency-wave number 1-form k = kµ dxµ as the kinematical dual of velocity, while 
phase is the kinematical dual to time.  However, for now, we shall simply revert to the 
dynamical notation. 

 A section  p: R → T*M×R, t ֏  p(t) of the source projection, with the local form: 

 
p(t) = (t, xi(t), pi(t)), 

 
is a covector field pi(t) along the curve xi(t). 

 When one pulls the canonical 1-form θ  down to R by means of it, one gets: 

 
p*θ = (1 – pi v

i) dt, 
which vanishes iff: 

1 = pi v
i. 

 
This is simply the transversality condition that the tangent hyperplane annihilated by the 
covector pi dxi cannot contain the velocity vector vi ∂/∂xi.  If one interprets the covector as 
linear momentum then this is also related to the requirement that the point mass that 
follows the curve in question must have non-vanishing kinetic energy, which takes the 
form 1/2 piv

i classically. 

 If one pulls the canonical symplectic form Ω down to R then one gets zero again, 

since R is one-dimensional. 

 A section of the target projection π: M → T*M×R, x ֏ π(x), with the local form: 

 
π(x) = (xi, t(x), pi(x)), 

 
is a covector field pi(x) on M, together with a simultaneity foliation defined by the level 
hypersurfaces of t(x). 
 The pull-down of θ to M by π is: 
 

π*θ = i
ii

t
p dx

x

∂ − ∂ 
. 

 
It vanishes iff the 1-form p = pi dxi is exact: 
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p = dt. 
 The pull-down of Ω by π is: 
 

π*Ω = 1
2 (pi,j – pj,i) dxi ^ dxj = dp. 

It vanishes iff p is closed. 
 Hence, closed 1-forms on any differentiable manifold M give elementary examples of 
Lagrangian submanifolds of the symplectic manifold that is defined by T*M, with its 
canonical 2-form Ω.  That is, they are isotropic submanifolds of maximal dimension, 
namely m, and therefore maximal integral submanifolds of the differential system on T*M 
that is defined by the exterior differential equation Ω = 0. 
 In order to derive the usual Lagrange brackets of classical mechanics, one does not 

consider sections of any projection of T*M×R, but simply submanifolds in it.  Hence, let 

f: N → T*M×R, u ֏ f(u) be an n-dimensional submanifold in T*M×R, with the local 

form: 
f(u) = (xi(u), t(u), pi(u)). 

 
Hence, it represents a covector field p = pi dxi on the image of the submanifold, together 
with a simultaneity foliation of N by way of the function t. 
 The pull-back to N of θ by f takes the local form: 
 

f*θ = dt – pi dxi = 
i

i

t x
p du

u u
α

α α

 ∂ ∂− ∂ ∂ 
, 

which vanishes iff: 
t

uα
∂

∂
=

i

i

x
p

uα
∂
∂

. 

 
 The pull-back of Ω to N by f locally looks like: 
 

f*Ω =
i

ipx
du du

u u
α β

α β

  ∂∂  ∧   ∂ ∂  
=

1

2

i i
i ip px x

du du
u u u u

α β
α α β α

 ∂ ∂∂ ∂− ∧ ∂ ∂ ∂ ∂ 
. 

 
Hence, its vanishing is locally equivalent to the vanishing of the Lagrange brackets: 
 

[uα, uβ] = 
i i

i ip px x

u u u uα β β α
∂ ∂∂ ∂−

∂ ∂ ∂ ∂
 

for all α, β = 1, …, n. 
 
 
 2.  The action functional.  It is conceptually valid, although not always 
computationally useful, to regard the calculus of variations as something like “the 
calculus of infinity variables.”  That is, if one were to make all of the analytical 
restrictions on the definitions that would make the space of objects in question – e.g., 
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curves, surfaces, fields, etc. – into an infinite-dimensional differentiable manifold then 
the basic variational problem would take the form of a typical critical-point problem in 
differential calculus.  That is: Given a differentiable function on the infinite-dimensional 
manifold, one would first form the differential of the function and look for the points of 
the manifold at which the differential vanished, at least when applied to the vectors in 
some specified subspace of the tangent space at the point in question. 
 This approach has been developed in the context of qualitative problems under the 
banner of “global analysis,” which seems to have originated as “the calculus of variations 
in the large” in the work of Morse [32] on the role of topology in the structure of spaces 
of geodesic curves.  However, even some of the classic references on Morse theory, such 
as Milnor [33], still emphasize that in order to do more tangible calculations one usually 
avoids the functional analytic details of setting up the infinite-dimensional manifold 
machinery.  Some classic references in which more functional-analytic approach is taken 
are Ljusternik [34] and Morrey [35]. 
 Hence, since the nature of the articles that follow is more concerned with the calculus 
of variations than the analysis of variations, we shall only refer to the infinite-
dimensional manifold picture heuristically in order to understand the motivation for the 
elementary definitions.  One also finds that for most of the standard problems and 
constructions of the calculus of variations it is sufficient to replace the infinite-
dimensional manifold of all objects being varied with the finite-dimensional manifold of 
jets that pertain to them. 
 
 a.  Action functional.  The basic objects that we shall be varying are submanifolds x: 
O → M, t ֏ x(t), where O is a compact orientable r-dimensional differentiable manifold 

with boundary and M is an m-dimensional differentiable manifold.  Furthermore, we shall 
usually assume that r ≤ m.  Hence, this class of objects includes the curve segments, 
bounded surfaces, and solid regions that are most commonly addressed in variational 
problems.  Although we shall eventually discuss the use of differentiable singular k-
chains in M as basic objects, which is advocated by Dedecker [21, 22], nonetheless, for 
the most elementary discussion it is sufficient to simply use the objects that we have 
chosen. 
 The “differentiable function” that one starts with is the action functional that 
associates an object x with a real number S[x].  The way that one gets around the infinite-
dimensional details is to factor this functional through the finite-dimensional manifold 
J1(O; M) by means of the 1-jet prolongation  j1x and define the action functional by 

means of an integral over the region in the parameter space O that x is defined over: 

 

S[x] = 1( )j x∫OL V = 1
,( , ( ), ( ))a a i a
at x t x t dt dt∧ ∧∫ ⋯

O

L , 

 

in which L: J1(O; M) → R is a C1 function that one calls the Lagrangian density of the 

action functional and V ∈ Λr
O is the volume element that one has chosen for O. 
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 It is important to recognize that although L(j1x) is a differentiable function on O, 

nevertheless, it factors through a function on J1(O; M) and a section of J1(O; M) → O, 

which will affect the differentiation. 
 An extremal of this action functional will then be a “point” x at which this “function” 
has an extremal value, such as a minimum or maximum.  Since we are assuming 
“differentiability” of the “function,” we can treat this as a problem in finding the “critical 
points” of the “differentiable function.” 
 
 b.  Equivalent Lagrangians.  Since the action functional is defined by an integral over 
O, its integrand is not unique.  Indeed, when one specifies a fixed-boundary problem, the 

degree of ambiguity increases again. 
 Any two Lagrangian r-forms LV and L*

V on J1(O; M) that pull down to the same r-

form on O by means of any 1-jet prolongation j1x: O → J1(O; M) – i.e., any integrable 

section − will give the same value of the action functional S[x] for the submanifold x: O 

→ M.  Since the canonical 1-forms ωi all vanish when they are pulled down to O by 

means of an integrable section of this form, one then sees that any two Lagrangian r-
forms that differ by a finite sum of exterior products of k-forms Ai on J1(O; M) with the 

Θi : 
L

*
V − LV = Ai ^ ωi 

 
will give the same action function for integrable sections. 
 One can also say that replacing the LV with: 

 
L

*
V = LV + Ai ^ ωi 

will not affect the action. 
 In particular, one can use Ai = #a

i aΠ ∂ , which makes: 

 
    L

*
V  = LV + #a

i aΠ ∂ ^ ωi  

     = LV + #a
i aΠ ∂ ^ (dxi – i

bx dtb) 

     = (L − a
iΠ i

ax )V + a
iΠ  #∂a ^ dxi . 

 
One recognizes the form of the Legendre transformation in the first term, and we shall 
return to this fact shortly. 
 A weaker equivalence condition on Lagrangians is to require that their pull-downs by 
any integrable section must differ by an exact r-form.  Hence, since the exterior 
derivative operator commutes with pull-downs, one must have that: 
 

L
*
V − LV = dS 

for some suitable r-form S on J1(O; M). 
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 This type of equivalence means that when one is considering a fixed-boundary 
problem the action functionals will agree everywhere except possibly the boundary ∂O. 

 The case of interest in the sequel is when: 
 

dS = a
iΠ  #∂a ^ dxi. 

 
 c.  Variations of submanifolds.  The first thing that one then does is to define the 
“differential” of the action functional, which is referred to as the first variation functional 
δS|x[δx].  The “tangent vectors” δx that it acts on are vector fields over the submanifolds 
x, whose components then take the local form: 
 

δx = δxi(x(t)) 
ix

∂
∂

. 

 
 Such a vector field δx can be regarded as the infinitesimal generator of a 
“differentiable” one-parameter family of finite variations of the initial submanifold x; i.e., 
a “differentiable curve” in our “differentiable manifold” of submanifolds.  It is easiest to 
define this as a differentiable homotopy H: [0, 1]×O → M, (s, t) ֏  H(s, t), that is, a 

differentiable map of that form with the property that H(0, t) = x(t) and H(1, t) = x′(t), 
where x′:O →  M is some other submanifold in M.  For the purposes of infinitesimal 

variations, its nature is irrelevant, since one usually considers only the vector field when s 
= 0, namely: 

δx(x(t)) =
0

( ( ))
s

H
x t

s =

∂
∂

. 

 
 However, the notion of finite variations is still unavoidable in what follows, since it is 
at the heart of the construction of the Weierstrass excess function that one uses in order to 
treat the sufficient condition for a strong minimum of the action functional.  Hence, one 
might also define the vector field on the submanifold H: [0, 1]×O → M: 

 

δx(s, t) = ( , ( ))
H

s x t
s

∂
∂

. 

 
 We illustrate this situation in Fig. 3 schematically by representing the initial 
submanifold x and final submanifold x′ as curves and the homotopy as a surface that is 
bounded by them.  We emphasize that although when r = 1, one customarily treats only 
curve segments, for which ∂x has two components – viz., the initial and final point – 
nevertheless, when r > 1, the boundary of the submanifold might very well have just one 
component.  For instance, in the isoperimetric problem, as well as the Plateau problem, 
one considers surfaces with a single boundary component. 
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x(t) 

δx(s, t) 

x′(t) 

δx(t) 

H(s, t) 

 
Figure 3.  Finite and infinitesimal variations. 

 
 One of the aspects of finite variations that is clear in Fig. 3 is the fact that one can 
distinguish two basic types of finite variations: 
 1. Fixed-boundary variations, for which the lateral components of the boundary of 
H([0, 1]×O) contract to the boundary components ∂x(t0) and ∂x(t1). 

 2. Free-boundary variations, which is the general case. 
 The effect of fixing the boundary on the infinitesimal variation is to force δx(t0) and 
δx(t1) to vanish. 
 One then obtains the first-variation functional by means of the integral expression: 
 

δS|x[δx] = 1L ( ( ) )i

x
j x

δ∫O L V , 

 
in which L represents the Lie derivative operator, which acts on the r-form LV on J1(O; 

M) in the manner that was described by Cartan: 
 

LX(LV) = iXd(LV) + diX(LV) = dL(X)V + d(LiXV), 

 
when X is a vector field on J1(O; M). 

 In the case at hand, the vector field X takes the form of the prolongation δ1x of δx 
from a vector field on x to a vector field on j1x.  Once again, this is accomplished by 
differentiation and the local form of δ1x when δx = δxi(x(t)) ∂i is: 
 

δ1x = 
( )i

i
i a i

a

d x
x

x dt x

δδ ∂ ∂+
∂ ∂

, 

 
in which we are using the total derivative instead of the partial derivative. 
 Note that such a variation does not include a contribution from vectors tangent to O, 

although when one considers symmetries of the action functional, one must indeed use 
variations that do include such contributions. 
 Since dL has the local form: 
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dL = a i i
aa i i

a

dt dx dx
t x x

∂ ∂ ∂+ +
∂ ∂ ∂
L L L

, 

 
one can give dL(δ1x) the local form: 

 

dL(δ1x) = 
( )i

i
i i a

a

d x
x

x x dt

δδ∂ ∂+
∂ ∂
L L

= i i
i a i

a

d
x x

x dt x

δ δ δ
δ

 ∂+  ∂ 

L L
, 

 
in which we have introduced the variational derivative of L with respect to xi: 

 

ix

δ
δ
L

=
i a i

a

d

x dt x

∂ ∂−
∂ ∂
L L

. 

 
If one expands the total derivative then this takes the form: 
 

ix

δ
δ
L

=
2 2 2j

j b
ai a i j i a i j

a a a b

x
x

x t x x x t x x

∂∂ ∂ ∂ ∂− − −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
L L L L

. 

 
If we introduce the generalized force components Fi and the conjugate momenta 1-
forms a

iΠ by way of: 

Fi = 
ix

∂
∂
L

, a
iΠ  = 

i
ax

∂
∂
L

 

then we can also say: 

ix

δ
δ
L

= Fi −
a
i

a

d

dt

Π
. 

 
The momenta a

iΠ  are conjugate to the generalized velocitiesi
ax . 

 It is important to note that whether the Lagrangian density L is or is not a function of 

the ta is irrelevant as long as one considers only variations δx that do not affect the points 
of O, since the vanishing of the corresponding components of δx over O implies that the 

partial derivatives ∂L/∂ta do not appear in the final expression for the first variation δS|x[] 

when it is applied to such a δx.  However, if one wishes to consider symmetries of S[] 
then one must consider more general variations than the ones that give one the extremals 
themselves. 
 We can now express the first variation functional in the form: 
 

δS|x[δx] = ( )#i a i
i ii

x x
x

δ δ δ
δ ∂

  + Π ∂ 
 

∫ ∫O O

L
V . 
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In the boundary integral, we have introduced the Poincaré duals of the coordinate vector 
fields: 

#∂i =  i∂iV = �1

1

1
( 1)

( 1)!
m

m

iii i
i i dx dx dx

m
ε− ∧ ∧ ∧ ∧

− ⋯
⋯ ⋯ , 

 
in which the caret signifies that the term has been suppressed from the exterior product.  
For instance, one has  
 

#∂1 = dx2 ^ … ^ dxm,  #∂2 = − dx1 ^ dx3 ^ … ^ dxm,  etc. 
 
 It is interesting, though not directly relevant to the articles in this collection, that one 
can start the calculus of variations by defining a first variation functional, without the 
necessity of defining an action functional.  This is not only analogous to the fact that not 
all 1-forms are exact – i.e., expressible in terms of a potential function – but actually 
makes it possible to treat non-conservative mechanical systems, along with ones that are 
subject to non-holonomic constraints, variationally, which is not usually possible in terms 
of action functionals.  For a more detailed discussion of this, one can confer the author’s 
papers [36, 37]. 
 
 
 3.  Extremal submanifolds.  Now that we have a useful way of expressing the first 
variation functional for the purpose of local calculations, we can return to the basic 
critical point problem.  Naively, one desires to find those submanifolds x for which the 
first variation functional δS|x[] vanishes. 
 However, this is usually overly general, since the specific problems usually involve 
first specifying whether one is varying the boundary ∂x.  Hence, one then specifies that 
δS|x[δx] must vanish for some subspace of vector fields δx on x.  If one considers a fixed-
boundary problem then δx vanishes on the boundary points, and the boundary integral 
vanishes in the first variation functional.  However, for a free-boundary problem, in order 
to make the boundary integral vanish one must use only variations that satisfy the 
transversality condition: 

a i
i xδΠ = 0, a = 1, …, r 

on ∂x. 
 
 a.  Euler-Lagrange formulation.  In either case, the only remaining contribution to the 
first variation is the first integral: 
 

δS|x[δx] = i
i

x
x

δ δ
δ
 
 
 

∫O
L

V , 

 
and if it is to vanish for all δxi that make the boundary integral disappear then x must 
satisfy the Euler-Lagrange equations: 

ix

δ
δ
L

= 0, 

which can also be given the form: 
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Fi =
a
i

a

d

dt

Π
, 

 
which is essentially a balance law for the generalized momenta. 
 This system of partial differential equations for xi(t) is generally nonlinear and of 
second order when one considers only 1-jets.  More generally, when one goes to k-jets, 
which corresponds to higher-order Lagrangians, as well, one obtains partial differential 
equations of order k+1. 
 In order to motivate the material of the next section, we point out that one can 
characterize an extremal manifold by the condition that: 
 

1
1 *[ ( )]

x
j x i d

δ
LV = 0 

 
for every integrable vector field δ1x on J1(O; M) that is vertical for the source projection. 

 
 b.  Extremal submanifolds: Hamilton-Cartan formulation.  Returning to the conjugate 
momenta a

iΠ , one sees that what they really represent are the components of a one-form 

on J1(O; M), namely, the vertical part dVL of the 1-form dL relative to the contact 

projection. 
 Recall that the vertical sub-bundle V(J1) of the tangent bundle T(J1) relative to that 
projection consists of all tangent vectors to the manifold J1(O; M) that project to zero 

under the differential map to the projection J1(O; M) → O×M.  Vertical vectors will then 

be tangent to the fibers of the projection, so in terms of local coordinates, they will take 
the form: 

V = ( , , )i b j j
a b i

a

X t x x
x

∂
∂

. 

 
 Although one cannot canonically project an arbitrary vector field X on J1(M; O) onto 

its vertical part without defining a complementary “horizontal” sub-bundle to V(J1), 
nevertheless, one can restrict the 1-form dL to the vertical subspaces without making 

such a definition.  Thus, one can regard the vertical differential dVL as a section dVL: 

J1(M; O) → V*(J1) of the projection V*(J1) → J1(M; O); hence, to every 1-jet p∈ J1(M; 

O) one associates the 1-form dVL|p on the vertical vector space Vp(J
1). 

 The conjugate momenta then take the local form: 
 

Π(t, x, i
ax ) = ( , , )a b j j i

i b at x x dxΠ  ≡ ( , , )b j j i
b ai

a

t x x dx
x

∂
∂
L

. 

 
 When one considers the variational problem with r > 1, one first sees that the duality 
that one must now address is between J1(O; M) and J1(M; O).  However, one must also 



Introduction                       25 

 

now consider sections π: O → J1(M; O) of the target projection J1(M; O) → O, which 

will then have the local form: 
π(t) = (xi(t), ta, ( )a

i tπ ). 

 
 We now wish to define a Lagrangian density L

* on J1(M; O) such that one can define 

an action functional on submanifolds x: O → M that agrees with an action functional that 

is defined by some Lagrangian density L on J1(O; M). 

 However, since the notion of integrability does not mean anything for sections of the 
target projection, we can see that we also need to address what it means for a section, 
such as π, to correspond to some integrable section  j1x of J1(O; M) → O. 

 This is where the previous discussions of the canonical maps associated with the 
fibers of the two contact projections J1(O; M) → O×M and J1(M; O) → M×O proves to 

be most useful.  As we said, the fiber of the former projection over (t, x) is canonically 
identified with *

t xT T M⊗O .  Now, the vertical derivative Π = dVL takes any point p of 

that fiber to the point Π(p) = dVL|p of the vector space * 1
pV J . 

 If this map is invertible then we can think of it as a linear isomorphism of 
*

t xT T M⊗O with * 1
pV J .  This implies a restriction in the choice of Lagrangian, since not 

all Lagrangians will satisfy that condition, but only the ones that satisfy the local 
condition that: 

2

det
i j
a bx x

 ∂
 ∂ ∂ 

L ≠ 0. 

 
 If the Lagrangian permits this then since * 1

pV J  would be isomorphic to the dual of 
*

t xT T M⊗O − namely, *
x tT M T⊗ O  − by transposition, one sees that such a Lagrangian 

allows one to define an diffeomorphism of λ: J1(O; M) → J1(M; O) that preserves the 

contact projections and takes each 1
tj x ∈ J1(O; M) to the element of J1(M; O) that 

corresponds to Π( 1
tj x ).  This map takes the local form: 

 
λ(ta, xi, i

ax ) = ( ta, xi, ( , , )a b j j
i bt x xΠ ). 

 
 It is essential that this map be invertible, since the way that one defines a Lagrangian 
L

*
V on J1(M; O) that corresponds to the Lagrangian density LV on J1(O; M) is by pulling 

it back along λ−1: 
L

* = λ−*
L = L ⋅ λ−1, 

which takes the local form: 
 

L
*(xi, ta, a

iπ ) = L(ta, xi, ( , , )i j b b
a jx x t π ). 
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 We further define the C1 function H: J1(M; O) → R, which one calls a Hamiltonian 

density by the Legendre transform of L, which takes the form: 

 
HV = a

iπ dxi ^ #∂a – L*
V. 

 
 Hence, one can put the Lagrangian density on J1(M; O) into the local form: 

 
θ = L*(xi, ta, a

iπ )V  = a
iπ dxi ^ #∂a – H(xi, ta, a

iπ )V  = θa ^ #∂a, 

 
in which the 1-forms: 

θa = a
iπ dxi – H dta 

 
will serve as the r-dimensional equivalents of the Poincaré-Cartan 1-form of point 
mechanics. 
 One then finds that the differential equations for the submanifold x can be obtained by 
making our condition for an extremal in terms of the section π: O → J1(M; O) that 

corresponds to j1x.    One requires that for all vector fields X on J1(M; O) that are vertical 

form the target projection, and will then have the local form: 
 

X = i a
ii a

i

X X
x π
∂ ∂+

∂ ∂
, 

one will have: 
π*(iXdθ) = 0. 

Now: 
  dθ = a

idπ ^ dxi ^ #∂a −  dH ^ V 

  = a
idπ ^ dxi ^ #∂a – ix

∂
∂
H

dxi ^ V − b
ib

i

dπ
π

∂
∂
H

^ V. 

Thus, we have: 
 

iXdθ = − a a
i i

H
d dt

x
π ∂ + ∂ 

^ #∂a + #a i
i a a

i

H
X dx

π
 ∂∧ ∂ − ∂ 

V . 

 
 In order to pull this down to O one substitutes: 

 

b
idπ =

b
ci

c
dt

t

π∂
∂

. 

One gets: 

π*iXdθa = 
a i

i ai
ia i a a

i

d x d
X X

t dx t d

π
π

   ∂ ∂− + + −   ∂ ∂    

H H
V . 
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 If this vanishes for all Xi and a
iX  then one must have: 

 
i

a

x

t

∂
∂

=
a
iπ

∂
∂
H

, 
a
i
at

π∂
∂

= −
ix

∂
∂
H

, 

 
which constitute a system of partial differential equations for xi and a

iπ  that generalize 

the canonical ordinary differential equations of Hamiltonian mechanics. 
 Note that actually the issues of integrability for both the section π and the vector field 
X did not figure in the derivation of these extremal equations.  
 
 c.  Extremal curves.  In the case of point mechanics, for which r = 1, and when one 
restricts oneself to time-invariant Lagrangians, one can replace J1(O; M) with T(M) and 

J1(M; O) with T*M.  In order to associate a Lagrangian L on T(M) with a Hamiltonian H 

on T*M, one must first specify an isomorphism of T(M) with T*M if one is to define the 
Legendre transformation.  One starts by noting that the conjugate momentum p, as we 
have defined it, is a covector field on T(M), not on M.  If one has a vector field v: M → 
T(M) then one can pull p down to a 1-form v*p on M by means of v.  Its local expression 
is then: 

v*p(x) =  pi(x
j, vj(x)) dxi. 

 
 Hence, we can define a map π: X(M) → Λ1M, v ֏ v*p from vector fields on M to 

covector fields on M.  By the inverse function theorem, a necessary and sufficient 
condition for its local invertibility is given by the invertibility of the matrix: 
 

γij  = i
j

p

v

∂
∂

 = 
2

i jv v

∂
∂ ∂
L

. 

 
 In the case of Newtonian point mechanics in a Euclidian space, this matrix will take 
the form mδij when L depends upon vi only by way of the kinetic energy 1/2 mδij v

i vj.  

Hence, it is conformal to the Euclidian metric.  This latter restriction on L is also 

fundamental aspect of Finsler geometry, which uses the definition of L as the basis for 

the rest of the geometry, which has an unavoidably variational flavor to it.  (See, for 
instance, Rund [38] or Bao, Chern, and Shen [39].) 
 Once one has an isomorphism of velocity vector fields with momentum covector 
fields, one can define a Hamiltonian function H on T*M that corresponds to L by means 

of the Legendre transformation: 
 

H(xi, pi) = pi v
i(x, p) – L(xi, vi(x, p)). 

 
 When v is integrable – so vi = dxi/dt – if one multiplies both sides of this equation 
times the 1-form dt then one gets the one form: 
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H dt = pi dxi  – L dt, 

 
which means the integrand of the action functional takes the form: 
 

L dt = pi dxi – H dt, 

 
 Hence, one can also express the action functional in terms of sections of T*M → M by 
way of: 

S[x] =
[0,1]

[ ( ) ( ( )) ( , ( ), ( ))]i i
i ip t v p t H t x t p t dt−∫ . 

 

 The 1-form on T*M×R: 

θ  = pi dxi – H dt 
 

represents the Poincaré-Cartan 1-form, since the first term was discussed by Poincaré in 
the context of integral invariants for autonomous mechanical systems, while Cartan [10] 
showed that one could formulate the least-action principle in a third formalism (besides 
the Euler-Lagrange and Hamiltonian formalisms) by demanding that the 1-form θ be a 
“relative integral invariant” of the motion; i.e., its exterior derivative: 
 

dθ  = dpi ^ dxi – dH ^ dt 
 
would be an “absolute integral invariant.”  The equations of motion then followed by 

considering the “characteristic system” of the exterior differential system on T*M×R: 

 
dθ = 0. 

 
 This is obtained by solving the equation: 
 

iXdθ = 0. 
 

for the vector field X on T*M ×R and then finding its integral curves. 

 One should note that this equation can also be expressed as: 
 

iX(dpi ^ dxi) = iX(dH ^ dt) = iX dH ^ dt  − Xt dH, 
 
which can be put into the form: 

iXΩ = iX dH ^ dt  − Xt dH, 
 

if one defines the canonical symplectic form on T*M: 
 

Ω = dθ = dpi ^ dxi. 
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 A typical vector field X on T*M×R has the local form: 

 

X = i t
ii

i

X X X
x p t

∂ ∂ ∂+ +
∂ ∂ ∂

. 

 Now, since: 

dH = i
ii

i

H H
dx dp

x p

∂ ∂+
∂ ∂

, 

we get: 

dθ  = i i
i ii

i

H H
dp dx dx dt dp dt

x p

∂ ∂∧ − ∧ − ∧
∂ ∂

. 

 This makes: 
 

iXdθ  = i t i i t
i i ii i

i i

H H H H
X X dt X X dx X X dp

x p p x

   ∂ ∂ ∂ ∂ − + + + − −     ∂ ∂ ∂ ∂    
. 

 
If this vanishes then one must have the characteristic system: 
 

i
ii

i

H H
X X

x p

∂ ∂+
∂ ∂

= 0,  Xi = t

i

H
X

p

∂
∂

,  Xi = − t
i

H
X

x

∂
∂

. 

 
 One immediately sees that if the last two sets of equations are valid then the first set 
is automatically satisfied.  Hence, if one seeks the integral curves of the characteristic 
vector field X for the 2-form dθ then one obtains the system of ordinary differential 
equations: 

dH

dt
= 0, 

idx

ds
= t

i

H
X

p

∂
∂

,  idp

ds
= − t

i

H
X

x

∂
∂

. 

 
 Except for the factor of Xt, these are essentially Hamilton’s equations, combined with 
the requirement that the Hamiltonian be constant along the integral curves.  This also 
represents a restriction on the possible choices of Hamiltonian. 
 In order to account for the factor of Xt, which is arbitrary, but non-zero, since the 
characteristic equations are homogeneous in X, one must regard it as the derivative dt/ds 
that is associated with a change of parameterization for the integral curves.  One then can 
put the last two sets of equations into the form: 
 

idx

dt
=

i

H

p

∂
∂

, idp

dt
= −

i

H

x

∂
∂

, 

which has the customary form. 
 The factor of Xt did not appear in the previous section since we were restricting 
ourselves to vector fields for which it vanished.  Furthermore, if one treats only the time-
invariant case, so H is a function T*M, one will not have to consider it in that case, either. 
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 One can specialize the above argument in that case by defining H as a differentiable 
function on T*M and then defining the Hamiltonian vector field XH that is associated with 
by: 

HXi dθ = − dH, 

 
which is then the previous condition if one sets Xt = 1. 
 
 
 4.  Geodesic fields.  There is a fundamental difference between saying that a 
particular submanifold in a space, such as a curve segment or surface, is extremal for a 
particular action functional and saying that a region of that same space is foliated by 
extremal manifolds.  For instance, there is a difference between finding a geodesic 
between two points in space and finding a geodesic congruence that foliates a region of 
that space with one-dimensional leaves that consist of geodesics.  Hence, in the older 
literature one often finds the term “field of extremals” used to mean “foliation;” that is, 
an (m – r)-parameter family of r-dimensional extremals in an m-dimensional manifold M 
that partitions an m-dimensional region of M. 
 Basically, the key issue is one of integrability in reference to the action functional.  In 
order for an exterior differential system on a manifold M to define a foliation, it must be 
completely integrable, in the Frobenius sense.  Thus, if the exterior differential system is 
defined by ω = 0, where ω is an r-form on M, then in order this system to be completely 
integrable, in the Frobenius sense, one must have that ω ^ dω vanishes identically.  It is, 
of course, sufficient that ω be closed, which is locally equivalent to the condition that it 
be exact. 
 In the study of geodesic fields, the r-form one is concerned with is obtained by first 
pulling down either the fundamental Lagrangian p-form Ω = L V on J1(O; M), or one that 

is Lepage-congruent to it, to a r-form on O × M by means of a field z of contact elements.  

Such a field is then geodesic, in various senses, when [Ω] = z* Ω is an exact r-form.  One 
then finds oneself concerned with the Hamilton-Jacobi equation, originally in Lagrangian 
form, but also in Hamiltonian form, after a Legendre transformation.  
 
 a.  Fields of contact elements.  Previously, we did not address the issue of sections of 
the contact projection J1(O; M) → O×M.  That is not because it is insignificant, but just 

the opposite.  The sections of that projection, which we shall call fields of contact 
elements, play the central role in the articles that follow since a geodesic field is a special 
type of field of contact elements.  We caution the reader that in the literature the term 
slope field is used, to be consistent with the terminology used in the study of extremal 
curves, but since “slope” suggests that we are only using a one-dimensional parameter 
space O whose contact elements to M are tangent lines we shall modernize the 

terminology. 
 Hence, a field of contact elements is a section z: O×M → J1(O; M), (t, x) ֏ z(t, x), 

with the local form: 
z(t, x) = (ta, xi, ( , )i

ax t x ). 
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In the case of r = 1, one can regard a field of contact elements as a time-varying vector 
field on M.  More generally, it is an r-parameter family of r′(t, x)-planes in TxM, which 
will be r-planes if and only if one restricts the jets to 1-jets of immersions. 
 A submanifold x: O  → M is said to be embedded in the field of contact elements z iff 

the following diagram commutes: 
 

J1(O; M) 

O O×M 

j1x z 

graph x 

 
That is: 

j1x = z ⋅ (graph x). 
In local form, one has: 

(ta, xi(t), , ( )i
ax t ) = (ta, xi(t), ( , )i

ax t x ). 

 
We illustrate the general case of a field of contact elements and the embedding of a 
submanifold schematically in Fig. 4. 

 

O 

M 

 
 

Figure 4.  General field of contact elements with a submanifold embedded in it. 
 
 Now, the local condition on the fields is: 
 

( )
i

a

x
t

t

∂
∂

= ( , ( ))i i
ax t x t , 

 
so if one is given the field of contact elements, a priori, then the integrability condition 
for it to admit an embedded submanifold is obtained by differentiating both sides with 
respect to tb and demanding the symmetry of the mixed partial derivatives.  However, it is 
crucial to note that the differentiation on the right-hand side becomes a total derivative 
with respect to ta: 



32 Selected Papers on Geodesic Fields 

 

i
a
b

dx

dt
 = 

i ij
a a
b b j

x xx

t t x

∂ ∂∂+
∂ ∂ ∂

 = 
i i

ja a
bb j

x x
x

t x

∂ ∂+
∂ ∂

. 

 
Note that although we started by taking a total derivative along a submanifold, 
nevertheless, the final expression does not depend upon a submanifold for its definition.  
Hence, the second equality is really a replacement of the one expression with the other. 
 The resulting integrability condition on the field of contact elements ( , ( ))i i

ax t x t is: 

 

0 =
i i i i

j ja b a b
b ab a j j

x x x x
x x

t t x x

∂ ∂ ∂ ∂− + −
∂ ∂ ∂ ∂

. 

 
 If one pulls down the canonical 1-forms ωi to O×M by means of z then the result is: 

 
z*ωi = dxi – ( , )i

ax t x dta. 

 
Since this can never vanish for any field of contact elements ( , )i

ax t x , one sees that fields 

of contact elements cannot be integral submanifolds of the exterior differential system Θi 
= 0. 
 The pull-down of Θi takes the form: 
 

z*Θi = dta ^
i i

b ja a
b j

x x
dt dx

t x

 ∂ ∂+ ∂ ∂ 
=

1

2

i i i
a b a ja b a

b a j

x x x
dt dt dt dx

t t x

 ∂ ∂ ∂− ∧ + ∧ ∂ ∂ ∂ 
. 

 
In order for this to vanish, one must have: 
 

i
a
b

x

t

∂
∂

=
i
b
a

x

t

∂
∂

, 
i
a
j

x

x

∂
∂

= 0. 

 
Hence, such a field of contact elements will also satisfy the integrability condition given 
above, and a field of contact elements is isotropic only if it admits an embedded 
submanifold. 
 As we saw above, an extremal submanifold x: O → M must satisfy the condition: 

 

1
1 *[ ]

x
j x i d

δ
θ = 0 

 
for all vector fields δ1x on J1(O; M) that represent the prolongations of vector fields δx on 

x.  In this expression: 
 

θ = LV + a i
i dxΠ ^ #∂a = (L dta + a i

i dxΠ ) ^ #∂a  

 
is the Lagrangian form of the Poincaré-Cartan r-form. 
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 One can also formulate the condition in terms of the Hamilton-Cartan form on J1(M; 
O): 

θ = a i
i dxΠ ^ #∂a – H V. 

 
which corresponds to the Lagrangian form under the Legendre transformation. 
 The condition is then that for an section π: O → J1(M; O) that corresponds to j1x 

under Legendre transformation one must have that: 
 

π* iXdθ = 0 
for all vector fields X on J1(M; O). 

 
 b.  Extremal fields of contact elements.  Now, suppose z: O×M → J1(O; M) is a field 

of contact elements, so a submanifold x: O → M is embedded in z iff j1x = z ⋅ x.  (Here, 

we abbreviate the notation by replacing the reference to the graph of x with simply a 
reference to the map x.)  Once again, we let Ω = L V denote the fundamental r-form on 

J1(O; M) that is defined by a choice of Lagrangian density L and let δ1x be the 1-jet 

prolongation of a vector field δx on x. 
 Hence, the integrand in the first variation functional δS|x[δx] initially takes the form: 
 

(j1x)*[ 1x
i d
δ

Ω ] = x*(z*
1x

i d
δ

Ω ). 

 
 We shall call a field of contact elements z extremal iff z*Ω is a closed r-form on 
O×M; hence: 

d(z*Ω) = z*dΩ = 0. 
 
 In the articles that follow, one often sees the notation [Ω] = z*Ω used, so the latter 
condition takes the form: 

d[Ω] = 0. 
 
This clearly represents a stronger condition than the one that makes a submanifold 
extremal by itself, since one is now essentially defining a foliation of O×M by extremal 

submanifolds that are integral submanifolds of the exterior differential system [Ω] = 0 on 
O×M.  Such a foliation is sometimes referred to as a Mayer field in the articles that 

follows, which is one example of using the term “field” to refer to foliations, as well as 
the differential forms that define them. 
 One sees that it will automatically follow from the previous condition on z that any 
submanifold that is embedded in an extremal field of contact elements must be an 
extremal submanifold, since one will have: 
 

(j1x)*dΩ  = (z ⋅ x)*dΩ = x*(z*dΩ) = 0. 
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 We can examine the local form of the differential equations for an extremal field of 
contact elements in either Lagrangian or Hamiltonian form.  In Lagrangian form, we start 
with: 
 
 dΩ =  

1
, ,2 ( ) # #

a a
i a i a a i j j ii i

i a i j j i a b ai a j
b

dx dx dx dx dx dx
x t x

 ∂Π ∂Π∂ − ∧ + Π ∧ − Π − Π ∧ ∧ ∂ + ∧ ∧ ∂ ∂ ∂ ∂ 

L
V V . 

 
 In order to pull this down to O×M by means of a Lagrangian field of contact elements 

z, one must make the replacement: 

i
adx =

i i
b ja a

b j

x x
dt dx

t x

∂ ∂+
∂ ∂

. 

 This leads to: 
 

z*dΩ =
1

#
2

aj a
ja i i ja i

j ai i j i

dx d
dx dx dx

x x dx dx

δ
δ

 Π ∂ Π+ Π ∧ − − ∧ ∧ ∂    ∂   

L
V , 

 
in which we have introduced the total derivative of a

iΠ with respect to xi: 

 
a
i
j

d

dx

Π
=

a j a
i b i
j j j

b

x

x x x

∂Π ∂ ∂Π+
∂ ∂ ∂

. 

 
 If z*dΩ is to vanish identically then one must have: 
 

j
a a
ji i

x

x x

δ
δ

∂+ Π
∂

L
= 0, 

a
i
j

d

dx

Π
=

a
j

i

d

dx

Π
. 

 
 When a submanifold is embedded in an extremal field of contact elements, the first 
set of equations reduces to the customary Euler-Lagrange equations, since the 
supplementary term will vanish.  The second set of equations then represents an 
integrability condition on the conjugate momenta if they are to take the form: 
 

a
iΠ =

a

i

dS

dx
. 

 
 In Hamiltonian form, one starts with Ω in the Hamilton-Cartan form then one has: 
 

dΩ = #a i i a
i a ii a

i

d dx dx d
x

∂ ∂Π ∧ ∧ ∂ − ∧ − Π ∧
∂ ∂Π
H H

V V . 
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In order to pull it down by means of a Hamiltonian field of contact elements π: O×M → 

J1(M; O), one must make the replacement: 

 

a
idΠ =

a a
b ji i

b j
dt dx

t x

∂Π ∂Π+
∂ ∂

. 

This makes: 

π*dΩ = , ,

1
( ) #

2

a b
i a a i ji i

i j j i aa i b j
i

dx V dx dx
t x x

 ∂Π ∂Π∂ ∂− + + ∧ − Π − Π ∧ ∧ ∂ ∂ ∂ ∂Π ∂ 

H H
. 

 
If this vanishes then one must have the system of equations: 
 

a
i

at

∂Π
∂

= −
i

d

dx

H
,  

a
i
jx

∂Π
∂

=
a
j

ix

∂Π
∂

. 

 
 If x: O → M is embedded in π then one will have: 

 

i
ax =

i

a

x

t

∂
∂

=
a
i

∂
∂Π
H

, 

 
which gives the set of canonical equations, while its substitution in the previous system 
of equations puts them into the form: 
 

a
i

a

d

dt

Π
= −

ix

∂
∂
H

, 

 
which is then the other set of canonical equations. 
 
 c.  Geodesic fields.  In the previous subsection, we examined the nature of fields of 
contact elements that made the r-form Ω closed when one pulled it down to O×M.  In 

order to define geodesic fields, as they are treated in the following papers, one must 
strengthen this to the requirement that the pull-down of Ω must be exact.  That is, a 
Lagrangian field of contact elements z: O×M → J1(O; M) is a geodesic field if there 

exists an (r − 1)-form S on O×M such that: 

 
z*Ω = dS. 

 
Obviously, the (r − 1)-form S is not unique, but defined only up to a closed (r − 1)-form. 
 Of course, since one is dealing with r-forms on the manifold O×M, if the de Rham 

cohomology in dimension r vanishes then all closed forms will be exact, anyway. 
 Part of the motivation for the requirement of exactness was based in the desire that 
the action functional be independent of the choice of submanifold x, but dependent only 
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upon the choice of its boundary ∂x.  From Stokes’s theorem, this is precisely what 
exactness of an r-form gets one: 
 

S[x] = 1( )
x

j x ∗Ω∫ = 1( )
x

j x dS∗
∫ = 1( )

x
d j x S∗
∫ = 1( )

x
j x S∗

∂∫ . 

 
 First, we observe that locally one has: 
 

dS = d(Sa ^ #∂a) = #
a a

i
aa i

S S
dx

t x

∂ ∂+ ∧ ∂
∂ ∂
V . 

One also has: 
z*Ω = L(t, x, z(t, x))V + #a i

i adxΠ ∧ ∂ . 
 
 If the two expressions are identical then: 
 

L(t, x, z(t, x)) =
a

a

S

t

∂
∂

,  a
iΠ =

a

i

S

x

∂
∂

. 

 
 If x: O → M is embedded in z then one must replace sa(t, x) with sa(t, x(t)) and the 

partial derivatives with respect to ta with total derivatives, so one obtains the condition on 
L that: 

L(z ⋅ x) = 
a

a

dS

dt
, 

 
which explains Weyl’s terminology “Lagrangians of divergence type.” 
 In Hamiltonian form, one uses: 
 

z*Ω = [ ( , )a i
i t x dxπ  − H(x, t, π(t, x))] ^ #∂a , 

 
in which π: O×M → J1(M; O) is a Hamiltonian field of contact elements. 

 Equating this with dS gives the system of partial differential equations for Sa: 
 

a

a

S

t

∂
∂

= − H(x, t, π(t, x)), a
iπ =

a

i

S

x

∂
∂

. 

 
 These equations are clearly of a generalized Hamilton-Jacobi type, which becomes 
more evident when one embeds a submanifold x in the field of contact elements π, which 
involves replacing the partial derivatives with respect to ta with total derivatives: 
 

a

a

dS

dt
= − ( ), , ( , ( ))

a

i

S
H x t t t x t

t

 ∂
 ∂ 

,  a
iπ =

a

i

S

x

∂
∂

. 

 



Introduction                       37 

 

 If one solves an initial-value problem for the first equation for the Sa then the second 
equation serves to define the geodesic field by differentiation.  In Weyl’s article [9], he 
discusses the problem of solving the equation by Cauchy’s method of characteristics, as 
well the method of majorants. 
 
 d.  Lepage congruences, De Donder-Weyl, and Carathéodory fields.  So far, we have 
been considering Ω = L V to be the fundamental r-form for any variational problem 

involving extremal r-dimensional submanifolds of an m-dimensional manifold M.  
However, since s*ωi = 0 for any integrable section s: O → J1(O; M), one sees that as long 

as s is integrable s*Ω′ will be the same for any other r-form Ω′ on J1(O; M) that is 

congruent to W modulo the ideal in the exterior algebra that is generated by the 
fundamental 1-forms ωi.  Similarly, if dΩ = 0 then dΩ′ will be congruent to 0 (mod ωi). 
 The congruences that Lepage defined pertained to the definition of geodesic fields, in 
which one weakens the definition of the pull-down [Ω] and the condition on d[Ω] so they 
would be valid for all r-forms that are congruent to Ω = L V (mod ωi): 

 
Ω ≡ L V (mod ωi),  d[Ω] ≡ 0 (mod ωi). 

 
 Some of the authors that follow distinguish stationary fields from extremal fields by 
the requirement that when s satisfies these congruences in general it is stationary, and 
becomes extremal only when s is also integrable – i.e., s = j1x for some submanifold 
embedding x: O → M. 

 The Lepage congruences then help us clarify the distinction between the geodesic 
fields that were defined by De Donder-Weyl and the ones that were defined by 
Carathéodory.  It basically comes down to the particular choice of representative for the 
Lepage congruence class of Ω.  For a De Donder-Weyl field, the choice takes the 
Poincaré-Cartan form: 

Ω0 = L(j1x)V + (−1)? #a i
i a ωΠ ∂ ∧ . 

 
 For a Carathéodory field, one chooses the unique simple (i.e., decomposable) r-form 
in the congruence, which takes the form: 
 

Ω* = 1
1

1
( )

r
a a i

ir
a

dt ω−
=

+ Π∏ L
L

. 

 
However, Hölder shows that the two choices are related by a contact transformation. 
 
 e.  Caratheodory complete figure.  If one has a Lagrangian field of contact elements 

z: O×M → J1(O; M) then its values in J1(O; M) are contact elements, and thus define 

linear subspaces in the tangent spaces of T(O×M).  For the rest of this section, we assume 
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that z is regular, in the sense that all of its values ( , )i
az t x are matrices of rank r.  They 

then locally define r-frames in T(O×M) by way of the r local vector fields: 

 
za(t, x) = ( , )i

az t x ∂i , a = 1, …, r. 

 
Since they are presumed to be linearly independent, they span an r-plane [za](t, x) in T(O) 

for each (t, x).  This r-plane can also be associated with the r-vector field: 
 

Z = z1 ^ … zr . 
 
 The rank-r sub-bundle E(O×M) of T(O×M) that is defined by all of these r-planes 

then constitutes a differential system on O×M.  By Frobenius, the necessary and 

sufficient condition for it to be completely integrable is that [za, zb] be a linear 
combination of the z’s again.  Since: 
 

[za, zb] =
j j

i ib a
a bi i j

z z
z z

x x x

 ∂ ∂ ∂− ∂ ∂ ∂ 
, 

 
the issue comes down to whether one can solve the defining equation for the z’s in terms 
of the ∂i’s.  However, there are r z’s and m ∂i’s, so as long as r < m the system is over-
determined if one desires to solve for the ∂i ‘s.  Hence, a given set of z’s will not always 
be associated be associated with some set of ∂i’s, but only the ones that lie in a certain r-

dimensional linear subspace of Rm.  If it so happens that r = m then the condition of 

possibility for the solution is the invertibility of the matrix i
az  , but this also follows from 

the demand that z be regular. 
 Note that in the case of r = 1, the differential system is always integrable into a 
foliation of curves.  When z(t, x) is an extremal field of contact elements, it is a geodesic 
congruence.  (Recall that any submanifold that is embedded in an extremal field will be 
extremal.) 
 More generally, in the event that the differential system E(O×M) is completely 

integrable the manifold O×M will be foliated by r-dimensional leaves, and if the field of 

contact elements z is extremal then the leaves will be extremal submanifolds of the action 
functional that one is dealing with. 
 When z also happens to be a geodesic field, so z = dSa ^ #∂a, the r functions Sa, a = 1, 
…, r local foliate O×M with m-dimensional leaves by the level hypersurfaces of the map 

O×M → Rr, (t, x) ֏  Sa(t, x).  Hence, the differential system S(O×M) on O×M that is 

defined by the tangent planes that are annihilated by all of the 1-forms dSa is trivially 
completely integrable. 
 Since the dSa’s are assumed to be linearly independent they define a non-zero r-form: 
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Σ = dS1 ^ … ^ dSr. 
 
 The r-planes of E(O×M) and the m-planes of S(O×M) are transversal iff Σ(Z) is non-

zero at every point of O×M.  This implies the non-vanishing of the determinant of the 

matrix: 

[ ] a
bS z⋅ = dSa(zb) = 

a
i
bi

S
z

x

∂
∂

. 

 
 Such a  pair of complementary foliations on O×M − when it exists − or the pair of 

fields {Sa, z} is said to be the Caratheodory complete figure for the geodesic field in 
question, and one sees in what follows that he introduced the concept in the last section 
of his article [5].  We illustrate the sort of situation in Fig. 5: 

 

O 

M 

Sa = const. 

( , )i
az t x  

Extremal submanifold 

 
 

Figure 5.  The Caratheodory complete figure for a geodesic field. 
 

 For r = 1, the Caratheodory complete figure is defined by a geodesic congruence and 
the transversal hypersurfaces are defined by the eikonal S(t, x), to use the terminology of 
geometrical optics. 
 
 
 5.  Sufficient conditions for a strong or weak local minimum.  Now, let us return 
to the basic problem that was posed in the introductory remarks. 
 First, we should clarify the precise usage of the terms “strong” and “weak.”  
Basically, they relate to two possible topologies for the set C1(O, M) of all C1 maps from 

O to M.  We shall only sketch the essential elements, so for more rigor, one can consult 

Hirsch [40]. 
 In the case of a strong local minimum, the topology is the C0 – or compact-open- 
topology on C1(O, M).  If x: O → M is a C1 map then a neighborhood of x in the 

compact-open topology is defined by the set Nx(K, V) of all C1 maps y: O → M that map 
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a compact subset K ⊂ O into an open subset V ⊂ M when x(K) ⊂ V; thus, the behavior of 

y outside of K is irrelevant.  We can represent this situation schematically as in Fig. 6: 
 

K 

O 

y 

x 

M 

x(K) 

V 

 
Figure 6.  A neighborhood in the compact-open topology on C1(O, M). 

 
 These neighborhoods then define a sub-basis for the open subsets of the C0 topology.  
That is, any open subset is a union of some family of finite intersections of these 
neighborhoods. 
 The C1 topology on C1(O, M), which is a special case of the more general Ck 

topology introduced by Whitney, is finer that the C0 topology, in the sense of having 
“more” open subsets; i.e., some of the open subsets of the C1 topology are not open in the 
C0 topology.  This is because one further restricts the C1 functions in the neighborhood 
above by the requirement that if ε > 0 and one replaces x and y by their local 

representatives xi, yi: Rr → Rm when one chooses coordinate charts (U, ta) and (V, ξi), 

such that K ⊂ U then in addition to the condition above, the two maps must also satisfy 
the constraint that: 

( ) ( )
i i

a a

y x
t t

t t

∂ ∂−
∂ ∂

 < ε 

 
for every t ∈ K; one denotes the set of all such y by Nx(K, V; ε). 
 These neighborhoods then constitute a basis for the open subsets of the C1 topology.  
That is, any open subset of that topology can be expressed as a union of some family of 
these neighborhoods. 
 With these definitions, we clarify that an extremal submanifold x: O → M is a strong 

local minimum for the action functional S[x] iff: 
 

S[x] ≤ S[x′] 
 
for all C1 maps x′: O → M that lie in a C0 neighborhood of x and a weak local minimum 
iff this inequality is true for all maps in a C1 neighborhood of x. 
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 a.  Hilbert independent integral.  When a submanifold x is embedded in a geodesic 
field ( , )i

ax t x  the Lagrangian density must take the form: 

 

L(ta, xi, ( , ( ))i
ax t x t ) =

a

a

dS

dt
=

a a
i
aa i

S S
x

t x

∂ ∂+
∂ ∂

= 
a

i
aa i

a

S
x

t x

∂ ∂+
∂ ∂

L
. 

 
Hence, since the resulting action functional: 
 

S[x] =
x
dS∫ =

x
S

∂∫  

 
is independent of the submanifold x – apart from its boundary – one defines the more 
general integral functional: 
 

I[x] = 1( )
x
dS j x∫ =

a
i
aa ix

a

S
x

t x

 ∂ ∂+ ∂ ∂ 
∫

L
V = 1( )

x
S j x

∂∫  

 
the Hilbert independent integral that is defined by L and ( , )i

ax t x . 

 Since this functional is affected by only the boundary values of the r−1-form S, it will 
take the same value for any submanifold x that it does for the extremal submanifold x, 
and therefore all other submanifolds that have the same boundary as x will be extremals, 
as well.  Hence, as an action functional it is quite ambiguous, but it can be added or 
subtracted from the action functional S[x] without affecting the outcome. 
 One also notes that one can give it the form: 
 

I[x] =
a

a i
i aax

S
x

t

 ∂ + Π ∂ 
∫ V . 

 
 Hence, there is nothing to stop one from replacing the Lagrangian density L with: 

 

L
* = L −

a
a i
i aa

S
x

t

∂ − Π
∂

, 

 
as this will change the value of the resulting action functional without changing the 
resulting extremals.  In particular, one sees that: 
 

S*[x] = 0 
when x is extremal. 
 
 b.  Weierstrass excess function.  When one has a geodesic field ( , )i

ax t x  for an action 

functional, one can use it to express the difference between its value S[x] on an extremal 
submanifold x and its value [ ]S x  another submanifoldx in terms of the integral of a 
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function E: J1(O; M) → R that vanishes for the extremal.  Hence, E also defines a 

functional on submanifolds, just as action does, and it will have property that for the 
arbitrary submanifold x and an extremal submanifold x that have the same boundary, one 
will have: 

[ ]S x − S[x] = 1( )
x

j x∫ E V . 

 
 The key to its construction is to see that although the two action functionals on left-
hand side are defined over two different submanifolds, namely: 
 

[ ]S x = 1( )
x

j x∫ L V , S[x] = 1( )
x

j x∫ L V , 

 
the Weierstrass excess functional is defined only on the submanifoldx . 
 Now, if x is embedded in a geodesic field z(t, x) then j1x = z ⋅ x and S[x] will have the 
form: 

S[x] = I[x] = 1( )
x
dS j x∫ . 

 
Since the value of the functional I[x] depends only upon the behavior of x on the 
boundary and x shares that boundary, one can infer that: 
 

I[x] = [ ]I x . 
 One then replaces S[x] with: 

[ ]I x = 1( )
x
dS j x∫ , 

 
 One further replaces L(p), where p ∈ J1(O; M), with L*, as in the previous 

subsection, as we have a right to do, since the supplementary term will not affect the 
extremals, and this makes: 
 

[ ]S x − S[x] = 1
,[ ( ) ( ( , ( )) ( ( , ( ))( ( ) ( , ( ))]a i i

i a ax
j x z t x t z t x t x t x t x t− − Π −∫ L L V , 

 
and we can then define the Weierstrass excess function to be: 
 

1( )j xE = 1
,( ) ( ( , ( )) ( ( , ( ))( ( ) ( , ( ))a i i

i a aj x z t x t z t x t x t x t x t− − Π −L L . 

 
 The more traditional notation for this function is E(ta, xa, i

ax , i
ax ) , although this 

somewhat obscures the fact that once the geodesic field i
ax has been chosen, it becomes a 

function on J1(O; M) like any Lagrangian, as well as obscuring the functional 

dependencies of the last three sets of coordinates. 
 Clearly, E(j1x) = 0 when x is an extremal, but the primary reason that Weierstrass had 

for defining this function was to establish that a sufficient condition for that extremal x to 
be a strong local minimum for S[x] was that one have: 
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1( )j xE ≥  0 
 
for all other submanifoldsx  that share a common boundary with x and are contained in a 
C0 neighborhood of it. 
 We illustrate the situation that we have been discussing schematically in Fig. 7. 

 

x 

x  

z(t, x) 

O 

M 

 
Figure 7.  Constructions used in the Weierstrass excess function. 

 
 It is essential to understand that the existence of a geodesic field for the Lagrangian of 
the action function S[x] is a necessary part of defining the excess function.  Hence, it will 
be inapplicable to the consideration of more general Lagrangians that do not admit 
geodesic fields. 
 
 c.  Legendre-Hadamard condition.  A somewhat simpler sufficient condition for an 
extremal to be a local minimum was defined by Legendre in the case of extremal curves 
and discussed by Hadamard for higher-dimensional submanifolds. 
 It can be obtained by expanding the excess function in a Taylor series about each 
point of the extremal curve as a function of i i

a ax x− : 

 

1( )j xE = E(j1x) + 
1 1

21
( ) ( )( )

2
i i i i j j
a a a a b bi i j

a a bj x j x

x x x x x x
x x x

∂ ∂− + − −
∂ ∂ ∂
E E

+ … 

 
which then becomes: 

1( )j xE ≈
1

21
( )( )

2
i i j j
a a b bi j

a b j x

x x x x
x x

∂ − −
∂ ∂
E

, 

 
up to higher-order terms in i i

a ax x− , since the first two terms vanish when evaluated on an 

extremal. 
 The Legendre-Hadamard sufficient condition that an extremal x be a weak local 
minimum is then the demand that the matrix: 
 

1

2

i j
a b j x

x x

∂
∂ ∂
E
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must be positive-definite at each point along x. 
 
 



 

 

Appendix A. 
 

Differentiable singular cubic chains 1. 
 
 Something that becomes gradually apparent in the work of Dedecker on the calculus 
of variations [21, 22] is the fact that at one level of consideration it can be regarded as the 
study of differentiable homotopies.  If one desires to pursue this algebraic topological 
aspect of variational problems then it becomes rapidly useful to make the objects that are 
being varied have an algebraic-topological character, as well. 
 In particular, instead of varying compact submanifolds x: O → M in a differential 

manifold M, one can use more specific building blocks that lead one into singular 
homology and cohomology, and when one applies de Rham’s theorem, to de Rham 

cohomology.  Instead of a compact subset O ⊂ Rr, one first considers the standard r-cube 

Ir = [0, 1]× … ×[0, 1].  A differentiable singular r-cube in M is then a differentiable map 
σr: I

r → M.  In order to define differentiability when one is dealing with a piecewise 
linear manifolds, such as Ir, one must surround it with an open neighborhood, define a 
differentiable extension of x, and then restrict the extension to Ir; since differentiation is a 
local process, the choice of extension is irrelevant. 
 The reason that one refers to such an r-cube in M as singular is because unless one 
restricts the submanifold map to be an immersion or embedding the dimension of the 
image does not have to be r, and might very well be zero, as in the case of a constant 
map.  If all one desires to examine is singular homology then this is no loss of generality 
since the effect of the degenerate r-cubes eventually disappears when one passes to 
homology, but if one also intends to consider geometrical issues then one usually must 
specify some regularity condition on the map.  One also notes that the restriction from 
continuous maps of Ir into M to differentiable ones is not significant since every 
homotopy class [σr] of continuous maps contains a differentiable element, which one 
proves by a smoothing construction. 
 The boundary ∂Ir of Ir is defined to be the sum of its “1-faces” minus the sum of its 
“0-faces,” where the r 0-faces (0)r

aI of Ir take the form of all points of the form 1 (0)rI = 

(0, t2, …, tr), …, (0)r
aI = (t1, …, ta, …, tr), …, (0)r

rI = ( t1, …, tr-1, 0), and the 1-

faces (1)r
aI , a = 1, …, r take the same form with the 0 replaced with a 1.  Hence: 

 

∂Ir =
1

[ (1) (0)]
r

r r
a a

a

I I
=

−∑ . 

 
 Since the r-faces of Ir are r−1-cubes in their own right, the process of taking the 
boundary can be applied to them as well.  However, due to the sign alternation in the 
definition of the boundary one always has that: 
 

∂2 = 0, 
                                                
 1 For some standard mathematical references on singular homology and singular cohomology, one can 
confer Greenberg [41], Rotman [42], or Vick [43]. 
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as one easily verifies in the case of a square. 
 A differentiable singular cubic k-chain ck in M is composed of a “formal sum” of a 
finite number of k-cubes σi, i = 1, …, N in M whose coefficients come from some chosen 
ring R of coefficients: 

ck = 
1

N

i i
i

aσ
=
∑ . 

 
Although it is possible to make the definition of a finite formal sum with coefficients in R 
more rigorous (one considers the “free R-module generated by the set of all k-cubes”), for 
the sake of computation it is entirely sufficient to deal with the formal sums naively and 
simply apply rules of computation to them. 
 A useful aspect of the use of cubic k-chains is the fact that a differentiable homotopy 
of a cubic k-chain becomes a cubic k+1-chain.  Hence, if one regards finite variations of 
k-chains as differentiable homotopies then this also makes finite variations take the form 
of differentiable k+1-chains. 
 One extends the boundary operator from k-cubes to k-chains by linearity: 
 

∂ck = 
1

N

i i
i

a σ
=

∂∑ =
1 1

(1) (0)
N N

i i i i
i i

a aσ σ
= =

−∑ ∑ . 

 
Something that is not entirely obvious at this point is that the actual definition in practice 
of this boundary operator for a given M does not follow automatically from the nature of 
the cubes in M, but must be introduced essentially “by hand” in order to account for the 
topology of M.  Otherwise, the free R-module we have defined involves only the 
cardinality of M as a set, and completely ignores the details of its topology. 
 In order to pass to homology, one starts with the aforementioned free R-module 
Ck(M; R) of finite formal sums of k-cubes with coefficients in R and then regards the 
boundary operator as a linear map ∂: Ck(M; R) → Ck−1(M; R) for each k from 0 to r.  The 
image Bk−1(M; R) of the boundary map is a submodule of Ck−1(M; R) that one calls the 
module of k−1-boundaries in M, while its kernel Zk(M; R) is a submodule of Ck(M; R) 
that one calls the module of k-cycles in M.  The quotient module Hk(M; R) = Zk(M; R) / 
Bk(M; R) of all translates of Bk(M; R) in Zk(M; R) is called the (differentiable singular) 
homology module in dimension k.  Roughly speaking, its generators represent “k-
dimensional holes” in M. 
 One can also think of elements in Hk(M; R) as equivalence classes of k-cycles under 
the equivalence relation of homology.  That is, two k-chains ck and c′k are homologous iff 
their difference is a boundary: 
 

c′k – ck = ∂ck+1 (for some ck+1 ∈ Bk+1(M; R)). 
 
 It is important to note that Hk(M; R) will vanish for every k > r. 
 The dual notion to a differentiable singular cubic k-chain is that of a differentiable 
singular cubic k-cochain, which is simply a linear functional ck: Ck(M; R) → R, which 
makes it a finite formal sum of linear functionals on k-cubes with values in R.  One 
denotes the corresponding free R-module of all k-cochains by Ck(M; R). 
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 Since k-cochains can be applied to k-chains, there is a natural bilinear pairing Ck(M; 
R)×Ck(M; R) → R, (ck, ck) ֏  <ck, ck>, where: 
 

<ck, ck > = ck(ck). 
 
 One then defines the coboundary operator δ: Ck(M; R) → Ck+1(M; R) to be the adjoint 
to ∂ under this pairing: 

<δck, ck+1> = <ck, ∂ck+1>. 
 
As we shall see shortly, this is really just an abstraction of Stokes’s theorem for 
differential forms. 
 One defines analogous R-modules Zk(M; R), Bk(M; R), and Hk(M; R) that one calls the 
modules of k-cocycles, k-coboundaries, and the cohomology module in dimension k, 
respectively.  The elements of the latter module are also called k-cohomology classes and 
two k-cochains are cohomologous iff their difference is a coboundary. 
 Although Ck(M; R) is defined to be the dual R-module Hom(Ck(M; R); R), the same 
does not have to be true of Hk(M; R); it can also include “torsion” factors; i.e., cyclic R-
modules.  However, if R is a principle ideal domain − such as, for instance, a field − there 

are no torsion factors, so, in particular Hk(M; R) = Hom(Hk(M; R); R). 

 In order to go from differentiable singular cubic cohomology to de Rham 
cohomology, one starts with the fact that any k-form α on M defines a linear functional 

on differentiable singular k-chains with values in R by integration: 

 

α[ck] = 
kc
α∫ . 

 
Hence, one can regard α as a representative of a differentiable singular cubic k-cochain. 
 In fact, from Stokes’s theorem, if α is a k−1-form then one has: 
 

dα[ck] = α[∂ck]. 
 
Hence, this, and the facts that d is a linear operator of degree +1 and d2 = 0, one can treat 
k-forms as k-cochains in a different sort of cohomology that one calls de Rham 
cohomology after its inventor Georges de Rham [44].  The coboundary operator is d, 
which makes the k-cocycles take the form of closed k-forms, the k-coboundaries are exact 
k-forms, and the de Rham cohomology vector spaces are equivalence classes of closed 
forms that differ by exact forms.  We say “vector spaces” in this case because the 

coefficient ring is the field R, which makes the R-modules into R-vector spaces; hence, a 

set of generators for the de Rham cohomology vector space ( )k
dRH M in dimension k is 

simply a basis for it as a vector space. 
 The theorem that de Rham had to prove was that the cohomology defined by the 

exterior differential forms on M was isomorphic to the singular cohomology Hk(M; R) 
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with values in R.  Hence, one sees that de Rham cohomology 1 represents something of 

an approximation to the topology of M, since manifolds that differ by torsion factors − 
e.g., an n-sphere and an n-dimensional projective space, will appear indistinguishable in 
the eyes of de Rham cohomology. 
 It is, however, a useful and powerful approximation, nonetheless. 
 The application of the foregoing discussion to the calculus of variations now becomes 
immediate when one restricts the objects being varied from submanifolds to chains, since 
we are defining the action functional to be essentially a differentiable singular r-cochain 
on M that is represented by the r-form LV on M.  Since the first variation functional takes 

the form of its coboundary, and does not generally vanish, except for extremal chains, 
one sees that in general the action functional is neither a cocycle nor a coboundary.  
However, the essence of Hamilton-Jacobi theory is that the functional becomes a cocycle 
for extremal chains and possibly a coboundary, as well. 
 Actually, the restriction from compact k-dimensional submanifolds with boundaries 
in M to differentiable singular cubic k-chains in M is no loss of generality, at least in the 
eyes of homotopy and homology, as Munkres [47] proved, in effect, that every compact 
submanifold is homotopically equivalent to such a chain. 
 
 

                                                
 1 In addition to the reference by de Rham, one might also compare Bott and Tu [45], as well as Warner 
[46].  



 

 

Appendix B 
 

Characteristics of first-order partial differential equat ions. 
 
Since the construction of a geodesic field often comes down to an initial-value problem 
for a first-order partial differential equation of Hamilton-Jacobi type, which can then be 
solved by the method of characteristics, it is worthwhile to point out that all of that is 
entirely natural within the context of jet manifolds and contact geometry.  We then 
briefly summarize the essential points that relate to the present class of problems. 
 
 a.  Differential equations and jet manifolds.  When one defines a system of N first-
order partial differential equations in the classical form: 
 

, ( ), ( )
i

a i
a

x
F t x t t

t
ν  ∂
 ∂ 

 = 0, ν = 1, …, N 

 
it becomes clear, from the foregoing discussions, that one can also put this system into 
the form of two systems: 
 

    ( ), ( ), ( )a i i
aF t x t x tν  = 0, ν = 1, …, N, 

    ( )i
ax t = ( )

i

a

x
t

t

∂
∂

,  a = 1, …, r, i = 1, …, m. 

 
 We now see that what the first one defines is a submanifold (or at least an algebraic 

subset) of J1(O; M) by way of the zero-locus of a function F: J1(O; M) → RN, while the 

second set is the integrability condition for a section of J1(O; M) → O.  Thus, one could 

also express the system of equations as: 
 

Fν(j1x) = 0. 
 

 Matters are simplest when one only has one function F to contend with.  For instance, 
the Hamilton-Jacobi equation, in its homogeneous form, can be expressed in the form: 
 

( ), ( ), ( )i
iH x S x p x = 0, pi = 

i

S

x

∂
∂

, 

 
as long as one includes the constraint that H is actually independent of S.  Thus, if H is a 

real-valued function on J1(M; R) the Hamilton-Jacobi equation is defined by integrable 

sections s: M → J1(M; R) that take their values in the zero locus of H. 

 
 b.  Method of characteristics.  As long as one is considering only one first-order 
partial differential equation whose solutions will take the form of differentiable functions 
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f on a manifold M, solving an initial-value problem (i.e., a Cauchy problem) can be 
reduced to a corresponding initial-value problem for a system of first-order ordinary 
differential equations that one calls the characteristic equations defined by the original 
PDE.  Indeed, this construction is perfectly natural in the language of jet manifolds, so we 
now describe it that way. 
 One must be aware that since any partial differential equation of order higher than 
one can be converted into an equivalent system of first-order partial differential 
equations, the method of characteristics is no longer applicable to systems of more than 
one first-order PDE.  In particular, the linear wave equation can be converted into a pair 
of first-order PDE’s, but they cannot be solved directly using characteristics, only 
indirectly by introducing the geometrical optics approximation. 
 Say a differentiable function φ on a manifold M is a solution to a Cauchy problem for 
a first-order PDE: 

F(xµ, φ, pµ) = 0,  pµ = 
xµ
φ∂

∂
, φ(0, xi) = φ0, 

 
in which µ = 0, 1, …, m, i = 1, …, m. 
 The essence of the method of characteristics is to first use the contact geometry of 

J1(M; R) and the function F to define a global vector field on J1(M; R), which then allows 

one to treat each point of that manifold as potentially the initial point of a trajectory for 
that vector field. 
 The function F defines a 1-form by its differential: 
 

dF = 
F F F

dx d dp
x p

µ
µµ

µ

φ
φ

∂ ∂ ∂+ +
∂ ∂ ∂

 . 

 
The question is now how one might convert this covector field into a vector field of the 
form: 

XF = X X X
x p

µ φ
µµ

µφ
∂ ∂ ∂+ +

∂ ∂ ∂
. 

 
 Here is where we use the integrability assumption about pµ .  It amounts to the 

statements that at each point of J1(M; R), the tangent vector XF is incident on the 

hyperplane defined by ω = 0  and: 

FXi Θ = dF 

 

in which the canonical 1-form ω and 2-form Θ on J1(M; R) are: 

 
ω = dφ − pµ  dxµ , Θ = dω = dxµ  ^ dpµ , 

respectively. 
 From the first requirement on XF, we find: 
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dφ = pµ dxµ,  Xφ = pµ  Xµ. 
 
 From the second, when combined with first equation above, we find: 
 

– Xµ dxµ  + Xµ dpµ  = (Fµ + pµ Fφ) dxµ + Fµ dpµ . 
 

This gives the following set of equations for the components of XF : 
 

Xµ = Fµ, Xφ = pµ  Xµ,  Xµ = − (Fµ + pµ Fφ). 
 

 The vector field XF, thus defined, represents the characteristic vector field defined by 
the first-order partial differential equation in question.  Since any vector field on a 
manifold locally defines a system of first-order ordinary differential equations by 
assuming that it always gives the velocity vector field of a solution trajectory, we obtain 
the characteristic equations that are associated with the PDE: 
 

dx

dt

µ

= 
F

pµ

∂
∂

,  
d

dt

φ
 = pµ 

F

pµ

∂
∂

,  
dp

dt
µ = − F F

p
x µµ φ

 ∂ ∂+ ∂ ∂ 
. 
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On the second variation of multiple integrals 
 

(By A. Clebsch) 
 

__________ 
 

 As is well-known, the examination of the criteria for the maximum and minimum of a 
simple integral has led to the consideration of the second variation, and this has given rise 
to the discovery of remarkable properties.  It shows that one may, by partial integration, 
reduce it to a simpler form.  This integration might not yield this result unless one had 
performed the integration of certain differential equations whose complicated character 
has long discouraged geometers from seeking this integration. 
 Jacobi, in the case of simple integrals of one dependent variable, discovered a 
connection between these equations and the ones that lead to the vanishing of the first 
variation, and insofar as he arrived at the integration of those transformation equations 
with great ease in this case, he arrived at an entirely new viewpoint of great significance 
by these investigations. 
 In an earlier paper that is included in the 55th volume, pp. 254, of this journal, I have 
proved that the Jacobi principles admit an application to all problems of the calculus of 
variations that depend on only simple integrals, and it is by means of the examination of 
the second variation that one is led back to the examination of values that can be assumed 
by a homogeneous function of second order, between whose arguments certain linear 
condition equations exist. 
 This advance, which is essentially necessitated by the method set down in the 
aforementioned paper, likewise leads to the conjecture that corresponding 
transformations will allow one to also pose similar problems in the calculus of variations 
that involve a greater number of independent variables.  In fact, I have found the 
following theorem, whose development defines the content of the present paper: 
 
 The second variation of an arbitrary multiple integral will always lead back, by 
partial integration, to the integral of a homogeneous function of second order whose 
arguments correspond to the respective highest differential quotients of the variations of 
the dependent variables, while these arguments are likewise coupled to each other by a 
series of partial differential equations. 
 
 Here, as in the aforementioned paper, I will also first consider integrals that include 
only the first derivatives of the dependent functions, and arbitrarily many partial 
differential equations of the first order can exist between these functions themselves as 
condition equations.  At the conclusion, I will briefly go on to the more general case, 
which can always be reduced, from the aforementioned. 
 

 
§ 1. 

 
 We denote an arbitrary multiple integral by V, which will be a maximum or a 
minimum.  F will denote the function under the integral sign, which contains the 
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independent variables x1, x1, …, xr and the dependent variables y(1), y(2), …, y(n), along 
with their first derivatives ∂y / ∂x, in such a way that: 
 

(1)     V = 
( )r

F∫ dx1 dx2 ... dxr . 

 
 The functions y, which are determined in such a way that the first variation of V 
vanishes, may be coupled to each other by means of a series of partial differential 
equations of first order, which shall be denoted by: 
 
(2)     ϕ1 = 0,  ϕ2 = 0, …, ϕr = 0. 
 Furthermore, we set: 
(3)     Ω = F + λ1ϕ1 + λ2ϕ2 + … + λrϕr , 
 
where the λ mean certain multipliers, so one also has: 
 

(4)     V = 
( )r

Ω∫  dx1 dx2 ... dxr , 

 
and the y, λ find their determination by means of equations (2) when they are linked with 
the following ones: 

(5)     

(1)(1)

(2)(2)

( )( )

,

,

,

m
m

m

m
m

m

rr m
m

m

yy x
x

yy x
x

yy x
x

∂Ω ∂ ∂Ω = ∂∂ ∂
 ∂

∂
 ∂Ω ∂ ∂Ω
 =

∂∂ ∂ ∂ ∂

 ∂Ω ∂ ∂Ω =
 ∂∂ ∂ ∂ ∂

∑

∑

∑

⋯

 

 
while equations (2) can also be represented in an analogous way by means of: 
 

(6)    
1λ

∂Ω
∂

= 0, 
2λ

∂Ω
∂

= 0, … , 
κλ

∂Ω
∂

= 0. 

 
 The resolution of the question of whether some particular solution of these equations 
makes the integral V a maximum or a minimum depends upon the investigation of the 
second variation.  If we let the y(i), λh in the expression (4) increase by small quantities 
εw(i), εµh, and develop them in powers of ε then we obtain: 
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(7)   V + dV + d2V = 
( ) 2

1 2( )
r

ε εΩ + Ω + Ω∫ …  dx1 dx2 ... dxr , 

 
except for a piece that can be brought about by the variations on the boundary, and can 
only exist in integrals of lower order.  The expression: 
 

( )

1

r
Ω∫ dx1 dx2 ... dxr  

 
is, due to equations (5), likewise soluble in integrals of lower order by partial 
integrations.  However, the sign of the second variation, i.e., of: 
 

(8)     δ2V = ε2 
( )

2

r
Ω∫ dx1 dx2 ... dxr , 

 
is decisive for the existence of a maximum or minimum.  This is the function that will 
now be examined more closely. 
 

§ 2. 
 

 Ω2 is a homogeneous function of second order of the n(r + 1) + κ quantities w, ∂w / 
∂x, µ, such that the last one enters in only in a linear way, and indeed, one can represent 
Ω2 in terms of Ω1 and Ω in such a way that: 
 

(9)   

( )
( )

( )( )

( )
( ) 1 1 1

2 ( )( )

,

2 .

i
i

hiii i m h
m h

m

i
i

hiii i m h
m h

m

w
w

yy x
x

w
w

yy x
x

µ
λ

µ
λ

 ∂Ω ∂ ∂Ω ∂ΩΩ = + + ∂∂ ∂ ∂ ∂
∂


∂Ω ∂Ω ∂Ω∂ Ω = + +

 ∂∂ ∂ ∂∂ ∂

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
 

 
 However, since the functions y are further coupled to each other by equations (2), 
which must also be fulfilled by the functions y + εw, one obtains a series of condition 
equations for the w which, when one goes from the functions ϕ to the ϕ + εψ by 
variation, can be represented by: 
 
(10)    ψ1 = 0,  ψ2 = 0,  …, ψκ = 0, 
 
or also, which amounts to the same thing, by: 
 

(11)    1

1λ
∂Ω
∂

 = 0, 1

2λ
∂Ω
∂

= 0, …, 1

κλ
∂Ω
∂

= 0. 

 
These equations show that the pieces of Ω2 that are multiplied by µ vanish. 
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 I now pose the problem of converting the expression δ2V by partial integration in such 
a way that in place of the function Ω, which contains n(r + 1) arguments w, ∂w / ∂x, 
another one enters, in which only nr arguments appear.  Ω2 must then be decomposed 
into one piece that can be solved completely into an aggregate of integrals of lower order 
by partial integration and another one whose nr arguments must be represented as linear 
functions of the w and ∂w / ∂x. 
 However, the first part of the function Ω2 must necessarily have the form: 
 

(12)    
1 2 r

B B B

x x x

∂ ∂ ∂+ + +
∂ ∂ ∂

⋯  = Θ(w), 

 
where the B mean homogeneous functions of second order in the w and ∂w / ∂x.  
However, if one imagines that the differentiations in Θ have been performed then the 
second derivatives of the w are not present in them.  From this, it emerges that, firstly, the 
∂w / ∂x may enter into the B only in a linear way, and, secondly, that the coefficient of 
w(i) · ∂w(h) / ∂xm in Bs and the coefficient of w(i) · ∂w(h) / ∂xs in Bm must be equal and 
opposite.  Thus, Ω(w) goes to a function of second order in the w and ∂w / ∂x that has the 
property that it contains the second dimensions of the latter only in the combinations: 
 

( ) ( ) ( ) ( )i h i h

n m m n

w w w w

x x x x

∂ ∂ ∂ ∂⋅ − ⋅
∂ ∂ ∂ ∂

. 

 
The aggregate of these terms of higher order in Θ shall be denoted by (Θ (∂w / ∂x)). 
 Now, regardless of the form in which the nr new arguments can also be represented, 
one can consider the equations, with whose help they are composed from the w, ∂w / ∂x, 
and which can then always be solved for the nr quantities ∂w / ∂x, and the linear 
combinations of the new arguments that enter into the equations thus solved, to be the 
new arguments themselves.  If we thus denote them by ( )i

mW  then they will have the form: 

 

(13)   ( )i
mW  = 

( )
,1 (1) ,2 (2) , ( )

i
i i i n n
m m m

m

w
w w w

x
α α α∂ + + + +

∂
⋯ , 

 
where the a still mean the coefficients to be determined, whose number adds up to n2r. 
 If one now, in analogy to the foregoing, denotes the aggregate of terms of higher 
order in Ω2 by (Ω2 (∂w / ∂x)), then one will see, with no further assumptions, that the part 
of Ω2 that remains after performing a partial integration can be nothing but: 
 

(Ω2 (W)) − Θ(W)), 
 
and that one must therefore have the equation: 
 
(14)    Ω2 = (Ω2 (W)) − Θ(W)) + Θ(w), 
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which infers the desired transformation in itself.  The terms of higher order in it already 
agree; the coefficients of the w(i) · w(h) and w(i) · ∂w(h) / ∂xm then give a series of equations 
for the determination of the a and B. 
 However, equation (14) is not necessarily an identity, but may become one only with 
the help of the condition equations (10) or (11) that link the w to each other.  Thus, in 
order for equation (14) to become an identity one must add the sum of the expressions 
(11), when they are multiplied by linear factors of the w whose coefficients are arbitrary.  
However, we remark that in formula (9),  Ω2 includes the vanishing term: 
 

1
hh

h

µ
λ

∂Ω
∂∑ , 

 
which is an expression of just the form imagined, except that here the µ enter in place of 
linear functions of w.  Therefore, if one lets this term in Ω2 remain then one can employ it 
in order to make equation (14) into an identity, in such a way that one represents the µ as 
linear functions of the w, and the problem can be expressed thus: 
 
 Equation (14) shall be fulfilled identically when the expressions µ are given in the 
form: 
(15)    µh = (1) (1) (2) (2) ( ) ( )n n

h h hM w M w M w+ + +⋯ . 

 
 

§ 3. 
 

 However, the problem that was contained in § 2 is still not well-defined, as one can 
easily see. 
 It is also convenient from the outset to impose certain other demands upon the desired 
transformation.  In fact, it is preferable that all of the condition equations that exist 
between the W can be represented in terms of only them, since otherwise it would be 
necessary for one to return to the w.  The consideration of the second variation then has 
nothing whatsoever to do with the w any more, but only the W that seem to be coupled 
with each other by means of certain ordinary equations and differential equations. 
 This remark suffices to not only determine the problem posed, but also to make it 
soluble, which is, in no way, true in general for the indeterminate case. 
 The conditions that this yields are of two types: The first one arises from the fact that 
the functions y must be representable as linear functions of the W alone, or the fact that 
the coefficients of the w vanish when one eliminates the quantities ∂w / ∂x by means of 
equations (13).  For each y, one obtains n equations in this way. 
 The other type of condition equations arise from the fact that equations (13) should be 
replaced with certain partial differential equations that exist between the W without the 
help of the w.  One defines them when one next eliminates the differential quotients of w 
from ( )i

mW  and ( )i
kW .  This then yields: 
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( ) ( )i i
m k

k m

W W

x x

∂ ∂−
∂ ∂

= 
, , ( ) ( )

( ) , ,
i h i h h h

h i h i hm k
m kh h

k m k m

w w
w

x x x x

α α α α
   ∂ ∂ ∂ ∂− + −   ∂ ∂ ∂ ∂   

∑ ∑ . 

 
In the last term on the right-hand side, one can once more eliminate ∂w(h) / ∂xk and ∂w(h) / 
∂xm  with the help of equations (13), and it then becomes: 
 

− ( ) ( )( ) , , , , , ( ) , ( )s i h h s i h h s i h h i h h
m k k m m k k mh s h

w W Wα α α α α α− + −∑ ∑ ∑ . 

 
If one is to then obtain partial differential equations between the W alone then it will be 
necessary that the coefficients of the w must vanish in this equation and that the α must 
therefore be linked to each other by the equations: 
 

(16)    
,

, ,
i s

i h h sm
k mh

kx

α α α∂ +
∂ ∑  = 

,
, ,

i s
i h h sk
m kh

mx

α α α∂ +
∂ ∑ , 

 
while completely similar equations then exist between the W: 
 

(17)    
( )

, ( )
i

i h hm
k mh

k

W
W

x
α∂ +

∂ ∑  =
( )

, ( )
i

i h hk
m kh

m

W
W

x
α∂ +

∂ ∑ . 

 
 The meaning of equations (18) shall now be examined and the general form that the α 
assume as a result will be deduced; however, it will thus be shown that for any system of 
W that satisfy the equations there is a system of w that satisfies equations (13) and thus, in 
fact, can be regarded as completely equivalent to equations (13) and (17). 
 
 

§ 4. 
 

 Equation (16) represents a system of n2 · (r · r – 1)/2 equations.  If we now multiply 
each equation with any quantity us and take the sum over s then (16) gives the equation: 
 

,
, ,

i s
s i h h s sm

k ms h s
k

u u
x

α α α∂ +
∂∑ ∑ ∑  =

,
, ,

i s
s i h h s sk

m ks h s
m

u u
x

α α α∂ +
∂∑ ∑ ∑ . 

 
If we add to the two sides the equal expressions: 
 

2
, ,

i s h
i s i h
m ks h

k m k m

u u u

x x x x
α α∂ ∂ ∂+ +

∂ ∂ ∂ ∂∑ ∑  = 
2

, ,
i s h

i s i h
k ms h

k m m k

u u u

x x x x
α α∂ ∂ ∂+ +

∂ ∂ ∂ ∂∑ ∑ , 

 
and likewise set: 

(18)    i
mA  = ,1 1 ,2 2 ,

i
i i i n n
m m m

m

u
u u u

x
α α α∂ + + + +

∂
…  
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then the equation above assumes the form: 
 

(19)    ,
i

i h hm
k mh

k

A
A

x
α∂ +

∂ ∑  = ,
i

i h hk
m kh

m

A
A

x
α∂ +

∂ ∑ . 

 
It is now clear that, with no further assumptions, these equations can enter in place of 
equations (16) when one only introduces n different systems of u whose determinant is 
non-zero.  If we denote the u that belong to one of these systems by: 
 

u1,σ, u2,σ, …, un,σ 
 
then we must similarly distinguish n systems of A that are determined by the equation: 
 

(20)   ,i
mA σ = 

,
,1 1, ,2 2, , ,

i
i i i n n
m m m

m

u
u u u

x

σ
σ σ σα α α∂ + + + +

∂
… , 

 
and in place of equation (19) the following one comes into view: 
 

(21)   
,

, ,
i

i h hm
k mh

k

A
A

x

σ
σα∂ +

∂ ∑ = 
,

, ,
i

i h hk
m kh

m

A
A

x

σ
σα∂ +

∂ ∑ . 

 
 However, the A indeed still contain the n2 completely arbitrary quantities u.  I can 
think of them as being determined such that all of the A1 vanish; i.e., such that they 
represent n mutually independent systems of solutions of the simultaneous equations: 
 

(22)   0 = ,1 1 ,2 2 ,
i

i i i n n
m m m

m

u
u u u

x
α α α∂ + + + +

∂
… . 

 
Let us see what values the remaining functions A can therefore assume. 
 If we set k = 1 in (21) then we have for every value of m that is different from 1: 
 

0 = 
,

,1 1, ,2 2, , ,
i

i i i n nm
m m m m m m

m

A
A A A

x

σ
σ σ σα α α∂ + + + +

∂
… , 

 
which, when combined with equation (22) shows, with no further assumptions, that the 

,i
mA σ  can be nothing other than solutions of this system; i.e., linear functions of: 

 
ui, 1, ui, 2, …, ui, n, 

or finally, that: 
(23)    ,i

mA σ  = , ,1 2, ,2 , ,i i i n i n
m m mu u uσ σ σβ β β+ + +… , 

 
where the β are independent of x1 . 
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 We now introduce these values into those of equations (21) that have either the value 
m or k.  This gives: 
 

(24) 
, ,

, , ,
i s i

i h hm
k mh

k

u
u

x

σ
ρ σ ρ

ρ ρ

β α β∂ +
∂∑ ∑ ∑  =

, ,
, , ,

i
i h hk
m kh

m

u
u

x

ρ σ ρ
ρ σ ρ

ρ ρ

β α β∂ +
∂∑ ∑ ∑ . 

 

For the sum 
,

, ,
i

i h h
kh

k

u
u

x

ρ
ρα ∂+

∂∑ , which is nothing but ,i
kA ρ , we can again set it to the 

value in (23), and thereby reduce the above equation to: 
 

(25) 
,

, , ,i m
m k

k

u
x

ρ σ
ρ τ σ ρ τ

ρ τ

β β β
 ∂ + ∂ 

∑ ∑  = 
,

, , ,i k
k m

m

u
x

ρ σ
ρ τ σ ρ τ

ρ τ

β α β
 ∂ + ∂ 

∑ ∑ . 

 
 However, since the determinant of the u in these equations must not vanish, by 
assumption, one must fulfill the equations: 
 

(26)   
,

, ,m
m k

kx

ρ σ
τ σ ρ τ

τ

β β β∂ +
∂ ∑ = 

,
, ,k

k m
mx

ρ σ
τ σ ρ τ

τ

β α β∂ +
∂ ∑ , 

 
which must be completely free of the independent variable x1, and thus differs from the 
system (16) only in that the latter involves the α. 
 One can now apply the same process to these β that just served for the representation 
of the α.  We can thus multiply equations (26) by n mutually independent systems: 
 

v1, λ, v2, λ, …, vn, λ, 
 

where the v, however, are independent of x1, in order to obtain equations that are 
analogous to (21), and analogously introduce new functions B for the A such that: 
 

(27)    ,i
mB λ  = 

,
,1 1, ,2 2,

i
i i
m m

m

v
v v

x

λ
λ λβ β∂ + + +

∂
⋯ , 

 
and when one imagines that the v are determined such that all of the B2 vanish, one 
obtains, for m = 3, 4, …, n, the equation: 
 
(28)    ,i

mB λ  = 1, ,1 2, ,2i i
m mv vλ λγ γ+ +⋯, 

 
where the γ are independent of x1, x2, and must satisfy a system of equations that is 
completely the same as the systems (16), (26), but includes either x1 or x2, as well. 
 Proceeding in this way, one gradually arrives at the complete representation of the α, 
which are expressed by: 
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  n2 functions  ui,σ of  x1, x2, x3, …, xn , 
  n2 functions  vi,σ  of  x2,  x3, …,  xn , 
  n2 functions  wi,σ  of   x3, …,  xn , 
etc. 
 I would now like to show that, without compromising the generality of the solution, 
one can let all of these functions vanish up to the u. 
 Namely, if we multiply equation (23) by vσ,λ and sum over σ then, considering (27), 
one comes to: 

, ,i
mA vσ σ λ

σ∑ = 
1, 2,

,1 1, ,2 2, ,1 ,2i i i i
m m

m m

v v
u B u B u u

x x

λ λ
λ λ  ∂ ∂+ + − + + ∂ ∂ 

⋯ ⋯ , 

 
or, when one also appeals to (28): 
 

(29)   
,

, , ,i i
m

m

v
A v u

x

σ λ
σ σ λ σ

σ σ

∂+
∂∑ ∑ = 1, , ,1 2, , ,2 , , ,i i n i n

m m mu v u v u vλ σ σ λ σ σ λ σ σ
σ σ σγ γ γ+ +∑ ∑ ∑⋯ , 

 
in which the right-hand side vanishes when m = 1 or m = 2. 
 The left-hand side of this equation is nothing but the expression that ,i

mA λ  goes to as 

long as one everywhere uses the expression , ,iu vσ σ λ
σ∑  in place of ui,λ.  One then sees 

that everywhere the functions u, v enter only in the combinations: 
 

, ,iu vσ σ λ
σ∑ , 

 
and since the ui,σ, which represent n independent solutions of equations (23), can possess 
no other property – a property that likewise corresponds to these combination – one can 
then obviously use these combinations immediately in place of the ui,σ, and denote them 
by ui,σ.  However, equations (29) then show that, with no loss of generality, the A1, as 
well as the A2, can be set equal to zero, and the remaining ones can be expressed by the 
equation: 

,i
mA λ = 1, ,1 2, ,2 , ,i i n i n

m m mu u uλ λ λγ γ γ+ + +⋯ , 

 
where the γ are independent of the x1, as well as the x2 . 
 
 One needs only to repeat the same argument in order to show that one can also let all 
of the A3 vanish and one can then reduce the remaining ones to linear expressions in the u 
whose coefficients are also independent of x.  One finally arrives at the conclusion that all 
of the Am can be set equal to zero, and one has thus proved the theorem: 
 
 The most general values of the functions α that satisfy the equations: 
 

,
, ,

i s
i h h sm
k mh

kx

α α α∂ +
∂ ∑  = 

,
, ,

i s
i h h sk
m kh

mx

α α α∂ +
∂ ∑  
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are the ones that one arrives at upon determining the α from the equations: 
 

(30)   0 =
,

,1 1, ,2 2, , ,
i

i i i n n
k k k

k

u
u u u

x

σ
σ σ σα α α∂ + + + +

∂
⋯ , 

 
where the u represent n2 completely arbitrary functions whose determinant does not 
vanish. 
 

§ 5. 
 

 One now easily connects the foregoing with the proof that the expression for W that is 
given by equations (13) also represents the most general functions that satisfy equations 
(17). 
 From the derivation of these equations, it next follows that they, in fact, must be 
fulfilled when one sets: 
 

(31) 

( )
( ) ,1 (1) ,2 (2) , ( )

( ) ,

i
i i i i n n

m m m m
m

i
m

w
W w w w

x

W

α α α ∂= + + + + ∂
 =

⋯
 

 
where the w mean any arbitrary functions, and since the equations (17) are linear, they 
obviously always remain true when one introduces the difference ( ) ( )Wi i

m mW − , instead of 
( )i

mW . 

 Now, it is undoubtedly always possible to determine the functions w in such a way 
that this difference ( ) ( )Wi i

m mW −  vanishes for m = 1, which also might be the actual values 

for the W.  However, it then follows from equations (17) for k = 1 and an m that is 
different from 1 that: 

( ) ( )
, ( ) ( )

1
1

( W )
( W )

i i
i h i im m

m mh

W
W

x
α∂ − − −

∂ ∑  = 0; 

 
i.e., ( ) ( )Wi i

m mW −  must be a linear function of the solutions of (22), or: 

 
(32)   ( ) ( )Wi i

m mW −  = (1) ,1 (2) ,2 ( ) ,i i n i n
m m mb u b u b u+ + +⋯ , 

 
where the bm are independent of x1 . 
 Furthermore, we substitute these values into those of equations (17) for which either 
m = 1 or k = 1.  We then first obtain: 
 

,
, ,( )i

i h hm
k mh

k

b u
b u

x

ρ ρ
ρ ρ

ρ ρ
α∂ +

∂∑ ∑ ∑  = 
,

, ,( )i
i h hk
k mh

m

b u
b u

x

ρ ρ
ρ ρ

ρ ρ
α∂ +

∂∑ ∑ ∑ . 
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Here, however, the coefficients of mbρ  and kbρ  vanish as a result of equations (30), which 

define the α. 
 Thus, all that remains is: 

,i m k

k m

b b
u

x x

ρ ρ
ρ

ρ

 ∂ ∂− ∂ ∂ 
∑  = 0, 

 
or, since the determinant of the u may not vanish: 
 

m

k

b

x

ρ∂
∂

= k

m

b

x

ρ∂
∂

, 

or 

(33)     mbρ  = 
m

c

x

ρ∂
∂

. 

 
 However, when this is introduced into the right-hand side of equation (32), this takes 
the form: 

(1) (2) ( )
,1 ,2 ,

n
i i i n

m m m

c c c
u u u

x x x

∂ ∂ ∂+ + +
∂ ∂ ∂

⋯ , 

or also: 
(1) ,1 (2) ,2 ( ) , ,1 ,2 ,

(1) (2) ( )( )i i n i n i i i n
n

m m m m

c u c u c u u u u
c c c

x x x x

 ∂ + + + ∂ ∂ ∂− + + + ∂ ∂ ∂ ∂ 

⋯
⋯ , 

 
or finally, when one substitutes the values of the ∂u / ∂x from equations (30): 
 

( ) ( ), , ,i i h i
mh

m

c u c u
x

ρ ρ ρ ρ
ρ ρ

α∂ +
∂ ∑ ∑ ∑ , 

 
which is an expression of the form of the ( )W i

m , except that the ,ic uρ ρ
ρ∑  enter in place 

of the w, here. 
 We thus see from equation (32) that we arrive at the general expression for W when 
we substitute w(i) + ,ic uρ ρ

ρ∑  in place of w(i) in the expression for W, and since this 

expression is no more general than the completely arbitrary function w(i), one can, in turn, 
denote them by w(i), and thus arrive at the following theorem: 
 
 The most general values for the functions ( )i

mW  that satisfy the equations: 

 
( )

, ( )
i

i h hm
k mh

k

W
W

x
α∂ +

∂ ∑  = 
( )

, ( )
i

i h hk
m kh

m

W
W

x
α∂ +

∂ ∑ , 

 
where the α are defined by the equations: 
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0 = 
,

,1 1, ,2 2, , ,
i

i i i n n
k k k

k

u
u u u

x

σ
σ σ σα α α∂ + + + +

∂
⋯ , 

 
and the u represent completely arbitrary functions, are: 
 

( )i
mW  = 

( )
,1 (1) ,2 (2) , ( )

i
i i i n n
k k k

k

w
w w w

x
α α α∂ + + + +

∂
⋯ , 

 
where the w mean arbitrary functions. 
 
 

§ 6. 
 

 After these preparations, we are finally in a position to completely formulate the 
problem that defined the actual objective of these investigations. 
 
 Convert the second variation: 
 

( )

2 1 2

r

rdx dx dxΩ∫ ⋯  

 
by partial integration into the integral of a homogeneous function ( )i

mW  with nr 

arguments that are linked with the previous arguments w(n) by the equations: 
 

( )i
mW  = 

( )
,1 (1) ,2 (2)

i
i i
m m

m

w
w w

x
α α∂ + + +

∂
⋯ , 

 
while the coefficients α are converted into n2 functions u with the help of the 
equations: 

0 = 
,

,1 1, ,2 2,
i

i i
m m

m

u
u u

x

σ
σ σα α∂ + + +

∂
⋯, 

 
and furthermore, the κ linear functions ∂Ω / ∂λ go to linear functions of the W. 
 

 From (14) above, the transformation of the function Ω2 is expressed by the equations: 
 
(34)   Ω2 = (Ω2 (W)) – (Θ(W)) + Θ(w), 
 
in which the m are replaced with the expressions (15), and in which, ultimately, the 

coefficients of the 
( ) ( )i h

k s

w w

x x

∂ ∂⋅
∂ ∂

already agree. 

 If we denote, for the moment, the right-hand side of (34) by Φ then this yields linear 
equations for the w and ∂w / ∂x: 
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(35)   

2
( ) ( )

2
( ) ( )

,

,

i i

i i

m m

w w

w w

x x

∂Ω ∂Φ = ∂ ∂


∂Ω ∂Φ =
 ∂ ∂∂ ∂ ∂ ∂

 

 
whose coefficients on both sides must agree.  From the second of these equations, one 

deduces only n2r equations, since the coefficients of the 
i

m

w

x

∂
∂

in them have already been 

made to coincide, and from the first equation, one then deduces n(n + 1)/2 new equations 
that originate in the coefficients of the products w(i) · w(h) in (34). 
 In any case, it must then suffice when one fulfills the first n equations (35) for n 
mutually independent systems of values of the w, and then show that the second 
equations can still be completely satisfied. 
 Instead of the first equations (35), one can, however, also appeal to the following 
ones, which are defined with the help of the second equation: 
 

(36)  2
( )( ) ii m

m

m

ww x
x

∂Ω∂Ω ∂−
∂∂ ∂ ∂
∂

∑  = ( )( ) ii m
m

m

ww x
x

∂Φ ∂ ∂Φ−
∂∂ ∂ ∂
∂

∑ . 

 
In this equation, I now successively introduce the various systems of u for the w and thus 
obtain n2 equations from (36).  Let us see what form the right-hand side takes as a result 
of this. 
 As a consequence of equations (13) and (30), the functions u have the property that 
when they replace the w, the W all vanish identically.  The part of Φ that has the W for its 
arguments then vanishes completely from (36), and all that of Φ that remains is Θ(w).  
However, Θ(w) is a homogeneous function that admits the one-fold integration in all of 
its parts, so the equations: 

(37)    ( )( ) ii m
m

m

ww x
x

∂Θ ∂ ∂Θ−
∂∂ ∂ ∂
∂

∑ = 0 

 
must be fulfilled identically, and the right-hand side of (36) vanishes completely.  If one 
now lets 2

σΩ  denote the function that Ω2 goes to when the w(i) in it are replaced with ui,σ  

then this shows that the ui,σ  must then satisfy the equations: 
 

(38)    2 2
,, ii m

m

m

uu x
x

σ σ

σσ
∂Ω ∂Ω∂−

∂∂ ∂ ∂
∂

∑  = 0. 
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 Here, it is necessary to make a remark: The functions µ enter into Ω2, which must be 
set equal to the expression (15) in order to make equation (34) an identity.  Therefore, by 
the differentiations in (35), (36), (38), the µ must also be regarded as functions of the w. 
 In fact, however, the part of equations (38) that arises by a differentiation with respect 

to µ vanishes completely.  The part of 2
( )iw

∂Ω
∂

 in question, is, in fact: 

 

1
( )
h
ih

h u

µ
λ

∂∂Ω ⋅
∂ ∂∑ . 

 

Now, since the expressions 1

hλ
∂Ω
∂

should likewise be regarded as linear functions of the W, 

they must obviously vanish identically when one goes from the w(i) to the ui,σ; i.e., the W 
all vanish identically.  Therefore, one can consider the µ to be completely independent of 
the u under the differentiation in (38), and they alone take on the system of values: 
 

1
σµ , 2

σµ , …, σ
κµ  

 
under the introduction of the u into (15). 
 However, one must likewise fulfill the equations: 
 

(39)   1

1

σ

λ
∂Ω
∂

 = 0, 1

2

σ

λ
∂Ω
∂

= 0, …, 1
σ

κλ
∂Ω
∂

 = 0, 

 
which are nκ in number, and are thus the complete expression of the idea that the 

functions 1

λ
∂Ω
∂

 can be represented as linear combinations of the W, without recourse to 

the w. 
 Equations (38), (39) together now serve to determine the functions ui,σ and h

σµ , or, if 

one would like, the functions u and M, whose number is just as large, and indeed one has 
n · κ + n2 equations in just as many quantities.  However, the systems of unknowns, 
divided by the various corresponding values of σ, are present in these equations, and 
always in the same way.  One thus has the remarkable result, which represents the 
immediate extension of the argument that was introduced by Jacobi: 
 

The different systems of u(i) and µh are just as numerous as the different solutions of 
the system of partial differential equations: 
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(40)   

2 2
( )( )

1 2

,

0

ii m
m

m

h h

uu x
x

λ µ

∂Ω ∂Ω∂ = ∂∂ ∂
 ∂ ∂
∂Ω ∂Ω= =

∂ ∂

∑

 

 
that make the integral: 

δ2V = ε2 2

r
Ω∫ dx1 dx2 … dxr 

 
assume a maximum or minimum value. 

 
 

§ 7. 
 

 One can now easily represent the solutions to equations (40) when the solutions of 
equations (5), (6) are assumed to be known. 
 Let y(1), y(2), …, y(n), λ1, λ2, …, λn be the most general solutions of equations (5), (6).  
Let a be any arbitrary constant that enters into them, and let P an arbitrary function that 
enters into them.  One then obviously obtains new solutions when one lets the constant a 
go to a + εα and the function P go to P + εΠ, where α is a new arbitrary constant and Π 
is a new arbitrary function whose arguments coincide with those of P, and ε means a very 
small quantity.  Now, under these operations, when one develops them in powers of ε, the 
y go to y + εu + …, the λ go to λ + εµ + …, and one has the equations: 
 

(41)    

( ) ( )
( ) ,

,

i i
i

h h
h

y y
u

a P

a P

α

λ λµ α

  ∂ ∂= + Π  ∂ ∂  


∂ ∂  = + Π  ∂ ∂ 

∑

∑
 

 
where the sums are extended over all of the arbitrary constants and functions that are 
included in the y(i), λh .  Likewise, however, Ω goes to: 
 

Ω + ε Ω1 + ε2 Ω2 + …, 
 

except that the u now enter into the functions Ω1, Ω2 in place of the w.  Now, one 
obviously has: 

2
1 2

( )

( )
iy

ε ε∂ Ω + Ω + Ω +
∂

⋯
 = 

2
1 2

( )

( )1
iu

ε ε
ε

∂ Ω + Ω + Ω +
∂

⋯
, 

2
1 2

( )

( )
i

m

y

x

ε ε∂ Ω + Ω + Ω +
∂∂
∂

⋯
=

2
1 2

( )

( )1
i

m

u

x

ε ε
ε

∂ Ω + Ω + Ω +
∂∂
∂

⋯
, 
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2
1 2( )

h

ε ε
λ

∂ Ω + Ω + Ω +
∂

⋯
=

2
1 2( )1

h

ε ε
ε µ

∂ Ω + Ω + Ω +
∂

⋯
, 

 
and from this, it likewise follows that: 
 

1
( )iy

∂Ω
∂

 = 2
( )iu

∂Ω
∂

, 

1
( )i

m

y

x

∂Ω
∂∂
∂

= 2
( )i

m

u

x

∂Ω
∂∂
∂

, 

1

hλ
∂Ω
∂

= 2

hµ
∂Ω
∂

, 

 
and since the equations (5), (6), when one lets Ω + ε Ω1 + ε2 Ω2  + … enter into it in 
place of Ω as coefficients of ε, as is allowed, give the equations: 
 

1
( )iy

∂Ω
∂

= 1
( )im

m

m

yx
x

∂Ω∂
∂∂ ∂
∂

∑ , 

1

hλ
∂Ω
∂

= 0, 

 
one sees with the help of the equations above that the u and µ that were introduced here 
represent nothing but the general solutions of equations (40).  The different systems of 
ui,σ, h

σµ  must therefore be obtained from equations (41) when one only attributes 

different systems of values to the α and Π; i.e., one must have: 
 

(42)    

( ) ( )
, ,

,

i i
i

h h
h

y y
u

a P

a P

σ σ σ

σ σ σ

α

λ λµ α

  ∂ ∂= + Π  ∂ ∂  


∂ ∂  = + Π  ∂ ∂ 

∑

∑
 

 
from which, these quantities are completely related to known things. 
 
 

§ 8. 
 

 All that still remains is the determination of the function Θ, and this comes about with 
the help of the second of equations (35). 
 We recall that each of the equations that represent it can lead to only n equations 
when one sets the coefficients of the w on both sides equal to each other, so in order to 
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make this equation into an identity it obviously suffices that one adds that n different w 
fulfill independent systems of values.  Let this system of values, in turn, be those of the u.  
Once again, all of the terms in the function Φ that are independent of the W then vanish, 
and the second of equations (35) goes to the following one: 
 

(43)     2
,i

m

u

x

σ

σ
∂Ω
∂∂
∂

= ,i

m

u

x

σ

σ
∂Θ
∂∂
∂

. 

 
 We now go into the behavior of the function Θ more closely.  In equation (12), Θ(w) 
was represented by the expression: 
 

1 2

1 2

r

r

B B B

x x x

∂ ∂ ∂+ + +
∂ ∂ ∂

⋯ , 

 
where the Bh were homogeneous functions of second order of the w and ∂w / ∂x, such that 

the latter appeared only in a linear way and, in addition, the coefficient of 
( )

( )
h

i

s

w
w

x

∂⋅
∂

 in 

Bk was equal and opposite to the coefficients of 
( )

( )
h

i

k

w
w

x

∂⋅
∂

 in Bs .  One can thus generally 

set: 

(44)   Bk = 
( )

, ( ) ( ) , ( )
,

h
i h i h i h i
k k si h i h s

s

w
b w w a w

x

∂+
∂∑ ∑ ∑ ∑ ∑ , 

 
where the coefficients b, a are subject to the conditions: 
 
(45)   ,i h

kb  = ,h i
kb , ,

,
i h
k sa  = − ,

,
h i
k sa  = − ,

,
i h
s ka  = ,

,
h i
s ka . 

 
The number of the quantities to be determined is then: 
 

1 1 1

2 2 2

n n n n r r
r

⋅ + ⋅ − ⋅ −+ ⋅ , 

 
and since (43) delivers only n2 · r equations then the problem is apparently indeterminate.  
It shows that it suffices to know a single solution and that, for the present purpose, all 
solutions deliver the same result. 
 When one substitutes the value in (44) for Θ, one obtains the following equation: 
 

(45)   Θ =  
,

( ) ( )
i h

i hk

i h k
k

b
w w

x

∂
∂∑ ∑ ∑  
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     + 
,( )
,( ) ,2

i hh
k si i h

si h s k
s k

aw
w b

x x

 ∂∂ +  ∂ ∂ 
∑ ∑ ∑ ∑  

     + 
( ) ( )

,
,

i h
i h
k si h s k

k s

w w
a

x x

∂ ∂
∂ ∂∑ ∑ ∑ ∑ , 

 
and from this, equation (43) goes to: 
 

(46)   2
,i

m

u

x

σ

σ
∂Ω
∂∂
∂

 = 
, ,
,, , ,

,2 2
i h h
k sh h i h i

m s mh k h s
k s

a u
u b a

x x

σ
σ  ∂ ∂+ +  ∂ ∂ 

∑ ∑ ∑ ∑ . 

 
If we multiply this equation by ui,ρ and then take the sum over i then this gives: 
 

    , 2
,

i
ii

m

u
u

x

σ
ρ

σ
∂Ω
∂∂
∂

∑  = , , ,2 h i i h
mh i

b u uρ σ∑ ∑  

      + 
,
,, ,

h i
k mi h

h i k
k

a
u u

x
ρ σ  ∂

  ∂ 
∑ ∑ ∑  

      + 
,

, ,
,2

h
h i i
s mh i s

s

u
a u

x

σ
ρ ∂

∂∑ ∑ ∑ . 

 
If we finally let (ρ, σ)m denote the expression: 
 

(47)   (ρ, σ)m = , ,2 21
2 , ,

i i
i ii

m m

u u
u u

x x

σ ρ
ρ σ

σ ρ

 
 ∂Ω ∂Ω −

∂ ∂ ∂ ∂ ∂ ∂ 

∑  

then this gives: 

(48) (ρ, σ)m = 
, , ,
,, , , , ,

,

h i h i
k mh i h i i h

k mh i k h i s
k k k

a u u
u u a u u

x x x

σ ρ
σ ρ ρ σ ∂  ∂ ∂+ +    ∂ ∂ ∂  

∑ ∑ ∑ ∑ ∑ ∑ , 

 
an equation that makes the functions b vanish identically.  We remark that (48) represents 

1

2

n n
r

⋅ − ⋅  equations, and if we think of the a as determined then what remain in the 

system (46) are 
1

2

n n
r

⋅ + ⋅  equations that achieve the determination of the b completely.  

In order to perform this determination in a symmetric way, one can now, parallel to the 
expressions (47), introduce the notations: 
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(49)  [ρ, σ]m = , ,2 2
, ,2 i i

i ii

m m

u u
u u

x x

σ ρ
ρ σ

σ ρ

 
 ∂Ω ∂Ω +

∂ ∂ ∂ ∂ ∂ ∂ 

∑ , 

which then yields: 
 

(50)  , , ,h i i h
mh i

b u uρ σ∑ ∑ = [ρ, σ]m + 
, ,

, , ,
,

h i
h i i h
s mh i s

s s

u u
a u u

x x

σ ρ
ρ σ ∂ ∂− ∂ ∂ 

∑ ∑ ∑ . 

 
However, we shall now turn to the more precise consideration of equations (48). 
 

 
§ 9. 

 
 Under the transformation of the function Ω2, one comes down to just that part of it 
that remains under the r-fold integral in reduced form.  However, this part is: 
 

(Ω2(W) – (Θ(W)), 
 
and indeed, with the notation that we have just introduced: 
 
(51)    (Θ(W)) = ,

,
i h i h
k s k si h k s

a W W∑ ∑ ∑ ∑ . 

 
 However, the present problem has led to the fact that the a do not seem to be 
completely determined, but admit an infinite number of value systems.  I would now like 
to show that the various expressions that (Θ(W)) can be equal to can differ only by 
functions that admit the one-fold integration in all of their parts, so for the present 
purpose they vanish from consideration completely. 
 
 We let c denote the difference between two such corresponding distinct systems of 
associated a, and let H denote the difference between the functions (Θ(W)) that arise in 
that way.  I would like to prove that H always admits the one-fold integration in all of its 
parts. 
 From equation (48), it then follows that: 
 

(52)  0 = 
, , ,
,, , , , ,

,

h i h i
k mh i h i i h

s mh i k h i s
k k k

c u u
u u c u u

x x x

σ ρ
σ ρ ρ σ ∂  ∂ ∂+ +    ∂ ∂ ∂  

∑ ∑ ∑ ∑ ∑ ∑ , 

 
while from (51), it likewise emerges that: 
 
(53)    H = ,

,
h i i h
s m k sh i k s

c W W∑ ∑ ∑ ∑ . 
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In order for H to admit the one-fold integration, it is necessary and sufficient that it fulfill 
the equations: 

(54)    
( )p

H

w

∂
∂

 = ( )pm
m

m

H

wx
x

∂ ∂
∂∂ ∂
∂

∑ . 

 
These equations are, however, as one easily shows, nothing but equations (52), from 
which the assertion is established.  In fact, when we define equation (54), we next obtain, 
considering the value of W: 
 

, , ( )
,

i h i p h
k s k si h k s

c Wα∑ ∑ ∑ ∑  = ( ). ( )
,

p h h
m s sm h s

m

c W
x

∂
∂∑ ∑ ∑  

= 
. ( )
,( ) .

,

p h h
m sh p h s

s m sh s m h s m
m m

c W
W c

x x

 ∂ ∂+  ∂ ∂ 
∑ ∑ ∑ ∑ ∑ ∑ . 

 
 If we now add equations (17), by which the W are defined, then this easily shows, 
when one always keeps in mind the equation: 
 

,
,

p h
m sc  = − ,

,
h p
m sc  = − ,

,
p h
s mc  = ,

,
h p
s mc , 

 
that the second term on the right-hand side of this equation can be replaced by: 
 

− , , ( )
,

p h h q q
m s m sh s m q

c Wα∑ ∑ ∑ ∑ , 

 
and in such a way that each equation goes to: 
 

0 = 
,
,( ) , , , ,

, ,

p h
m sh i h i p p i i h

s k s k k s kh s m i k i k
m

c
W c c

x
α α

 ∂ − − ∂  
∑ ∑ ∑ ∑ ∑ ∑ ∑ , 

 
or that ultimately, since the w that are contained in W should remain completely arbitrary, 
the equations to be fulfilled must be: 
 

0 =
,
, , , , ,

, ,( )
p h
m s i h i p p i i h

k s k k s km k i
m

c
c c

x
α α

∂
− +

∂∑ ∑ ∑ . 

 
Instead of the n2 · r different equations that this equation represents, one can also choose 
the n2 · r equations that emerge from them when one multiplies them by up,ρ uh,σ, and 
sums over h and p.  However, this gives: 
 

0 = 
,
, , ,

p h
m s p h

h m
k

c
u u

x
ρ σ

ρ

∂
∂∑ ∑ ∑  



Clebsch – On the Second Variation of Multiple Integrals.                              .75 

 

− ( ) ( ){ }, , , , , , , ,
, ,

i h i p p h p i i h h p
k s k k s kk i h p h

c u u c u uρ σ σ ρ
ρ
α α+∑ ∑ ∑ ∑ ∑ ∑ , 

 
or, with the help of equations (30): 
 

0 = 
, , ,
, , , , , , ,

, ,

i h i i
k s p h i h h p i p

k s k sk m k i h p
k k k

c u u
u u c u c u

x x x

ρ ρ
ρ σ σ ρ

ρ

∂  ∂ ∂+ + ∂ ∂ ∂ 
∑ ∑ ∑ ∑ ∑ ∑ ∑ , 

 
an equation that goes to (52) immediately with a different notation for the indices.  The 
property of the function H that was alluded to is then proved, and likewise, the fact that 
one must only look for a single function Θ from amongst the infinitude of possibilities. 
 
 

§ 10. 
 

 Finally, in order to actually perform the determination of the a, one can now give 
equations (48) the form: 

    (ρ, σ)m = , , ,
,( )h i h i

k mk h i
k

u u a
x

σ ρ∂
∂∑ ∑ ∑ , 

or when one sets: 

(55)    ,
,k mzσ ρ  = ( ), , ,

,
h i h i

k mh i
u u aσ ρ∑ ∑ , 

the form: 

(56)   (ρ, σ)m = 
, , ,

1, 2, ,

1 2

m m r m

r

z z z

x x x

ρ σ ρ σ ρ σ∂ ∂ ∂
+ + +

∂ ∂ ∂
⋯ . 

 
The functions z, along with the a, then have the common property: 
 
(57)    ,

,k mzσ ρ  = ,
,m kzρ σ = − ,

,k mzρ σ  = − ,
,m kzσ ρ , 

 
and the a are determined from them easily by means of linear equations. 
 Equation (56) is connected with an important property of the functions (ρ, σ)m .  
Namely, if we differentiate this equation with respect to xm and take the sum over m then 
we obtain: 

(58)   1 2

1 2

( , ) ( , ) ( , )r

rx x x

ρ σ ρ σ ρ σ∂ ∂ ∂+ + +
∂ ∂ ∂

⋯  = 0. 

 
This is, in fact, a fundamental equation for the functions (ρ, σ)m .  It can be derived 
directly from the equations that the u satisfy.  To that end, we need only to multiply the 
equations: 
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2
,iu

σ

σ
∂Ω
∂

 = 2
,im

m

m

ux
x

σ

σ
∂Ω∂
∂∂ ∂
∂

∑ , 

2
,iu

ρ

ρ
∂Ω
∂

= 2
,im

m

m

ux
x

ρ

ρ
∂Ω∂
∂∂ ∂
∂

∑ , 

 
by ui,ρ and ui,σ, respectively, and then add them, and take the sum over i.  This gives: 
 

, ,2 2
, ,

i i
i ii

u u
u u

σ ρ
ρ σ

σ ρ

 ∂Ω ∂Ω− ∂ ∂ 
∑  

= , ,2 2
, ,

i i
i ii m

m m

m m

u u
u ux x
x x

σ ρ
ρ σ

σ ρ

 
 ∂Ω ∂Ω∂ ∂ −

∂ ∂ ∂ ∂∂ ∂ ∂ ∂ 

∑ ∑ , 

 
and when one now adds the expression: 
 

, ,
2 2
, ,

i i

i ii m
m m

m m

u u

u ux x
x x

σ ρρ σ

σ ρ

 
 ∂Ω ∂Ω∂ ∂ −

∂ ∂ ∂ ∂∂ ∂ ∂ ∂ 

∑ ∑  

 
to both sides, one obtains identically zero on the left-hand side, from known properties of 

homogeneous functions of second order, and with consideration to the fact that 2

kµ
∂Ω
∂

 

vanishes, while the right-hand side likewise yields the equation to be proved: 
 

0 = 1 2

1 2

( , ) ( , ) ( , )r

rx x x

ρ σ ρ σ ρ σ∂ ∂ ∂+ + +
∂ ∂ ∂

⋯ . 

 
 This equation may also be expressed by saying that the functions: 
 

(ρ, σ)1,  (ρ, σ)2,  …, (ρ, σ)r 
 
can always be represented as sub-determinants of one and the same functional 
determinant, and this gives rise to a remarkable representation of the functions z.  If we 
imagine that the functions of this determinant have been found, i.e., that the partial 
differential equation: 
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(59)   0 = 
, , ,

1 2
1 2

( , ) ( , ) ( , )r
rx x x

ρ σ ρ σ ρ σϕ ϕ ϕρ σ ρ σ ρ σ∂ ∂ ∂+ + +
∂ ∂ ∂

⋯ , 

 
whose multiplier is unity, has been integrated completely, and if we denote the solutions 
to it by: 

ϕρ,σ, ,
1
ρ σϕ , …, ,

2r
ρ σϕ − , 

 
and the partial functional determinants that are defined from them, which were equal to 
the functions (ρ, σ), by ,

1
ρ σ∆ , ,

2
ρ σ∆ , …, ,

r
ρ σ∆ , then one obtains solutions to equation (56) 

when one sets: 

(60)   ,
,h mzρ σ  = 

,

, m

hx

ρ σ

ρ σϕ ϕ

 
 ∂∆
 

∂ ∂ ∂ 

=  − 

,

, h

mx

ρ σ

ρ σϕ ϕ

 
 ∂∆
 

∂ ∂ ∂ 

. 

 
From this, it then follows from known properties of functional determinants that: 
 

, ,
1, 2,

1 2

m mz z

x x

ρ σ ρ σ∂ ∂
+ +

∂ ∂
⋯ = 

,

,
m

h
h

h

x
x

ρ σ

ρ σϕ
ϕ

 
 ∂∆∂
 

∂∂  ∂ ∂ 

∑ = ,
m
ρ σ∆ , 

or (ρ, σ)m , which was to be proved. 
 However, since the functions z here take the form of the second differential quotients 
of a functional determinant that is comprised of elements that one may, in general, 
assume to be known, there is another path that leads to the immediate representation of 
certain solutions of (56).  Namely, one can set: 
 

(61)   ,
,h mzρ σ  = { }1

( , ) ( , )m h h mdx dx
r

ρ σ ρ σ−∫ ∫ . 

 
If one then differentiates with respect to xh and sums then this gives, upon consideration 
of equations (58): 

,
,h m

h
h

z

x

ρ σ∂
∂∑  = (ρ, σ)m, 

as it should be. 
 Equation (61) thus contains the solution to the present problem.  I thus point out the 
remarkable fact that in the entire course of the investigation, no condition was imposed 
upon the character of the solutions ui,σ of the system (40).  It is known that such 
conditions enter in when only one independent variable is present, and indeed, it is the 
condition that the constant values that the functions (ρ, σ) can assume must all be equal 
to zero.  Such a condition then appears in no other cases.  In fact, the second of equations 
(35) leads to n2r equations in: 
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1 1 1

2 2 2

n n n n r r
r

⋅ + ⋅ − ⋅ −+ ⋅  

 

undetermined functions.  The difference between the two numbers is 
1 3

2 2

n n r r⋅ − ⋅ −⋅ .  

One thus has, when r = 3, just as many functions to be determined as equations that are 

present, and too many when r > 3.  However, for r = 1 and r = 2 there are 
1

2

n n⋅ −
 more 

equations than functions, and (56) then actually leads to the 
1

2

n n⋅ −
 condition equations: 

 
(ρ, σ) = 0. 

 

For r = 2, however, these 
1

2

n n⋅ −
 conditions are nothing but equations (58), which are 

fulfilled identically.  Indeed, this situation also diminishes the number of equations by 
1

2

n n⋅ −
 for r = 3 such that the problem will be truly undetermined for r = 3.  

Furthermore, this shows that r = 2 yields the only case in which the problem is 
determinate, without leading to conditions on the u, and in this case, one has: 
 

,
1,2zρ σ  = { }1

2 1 1 22 ( , ) ( , )dx dxρ σ ρ σ−∫ ∫ , 

or also: 
,

1,2zρ σ  = 2 1 1 2(( , ) ( , ) )dx dxρ σ ρ σ−∫ , 

 
where a complete differential is found under the integral sign. 
 
 

§ 11. 
 

 The result of the present developments may be summarized in the following theorem: 
 
 Let u1,σ, u2,σ, …, un,σ be a system of functions that are composed from the solutions to 
equations (5), (6) in such a way that: 
 

(42)    ui,σ = 
( ) ( )i iy y

a P
σ σα ∂ ∂+ Π

∂ ∂∑ ∑ , 

 

while U denotes their determinant and Ui,σ is equal to 
,i

U

u σ
∂

∂
.  By partial integration, the 

integral: 
( )

2 1 2( )
r

rw dx dx dxΩ∫ ⋯  
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reduces to: 
( )

2 1 2(( ( ) ( ( )))
r

rW W dx dx dxΩ − Θ∫ ⋯ , 

 
where the arguments ( )i

kW  have the form: 

 

(13.30)    ( )i
kW  = 

( ) , ,
( )

i h i
h

h
k k

w u U
w

x x U

σ σ

σ

∂ ∂− ⋅
∂ ∂∑ ∑ , 

 
or, when they are coupled to each other by the equations: 
 

( ) , ,
( )

i h i
hm

mh
k k

W u U
W

x x U

σ σ

σ

∂ ∂− ⋅ ⋅
∂ ∂∑ ∑  = 

( ) , ,
( )

i h i
hk

kh
m m

W u U
W

x x U

σ σ

σ

∂ ∂− ⋅ ⋅
∂ ∂∑ ∑ , 

 
and where the coefficient ,

,
h i
k na , with which ( ) ( )h i

k mW W⋅ is multiplied in (Θ(W)), has the 

form: 

    ,
,

h i
k na  = ( )

, ,

2
( , ) ( , )

h i

m h h m

U U
dx dx

rU

σ ρ

ρ σ
ρ σ ρ σ⋅ −∑ ∑ ∫ ∫  

     = ( )
2

, ,

1
( , ) ( , )

2 m h h mh i

U
dx dx

rU u uσ ρρ σ
ρ σ ρ σ∂ −

∂ ∂∑ ∑ ∫ ∫ . 

Likewise, the equations: 
(10)    ψ1 = 0,  ψ2 = 0, …, ψκ = 0, 
 
go to linear condition equations between the ( )i

kW . 
 
From the above, the form of the latter is easy to give, as well as that of the integrals of 
lower order that were excluded from the partial integration. 
  
 I couple this with a remark that concerns the more general problem in which higher 
differential quotients also enter under the integral sign.  One can then introduce all of the 
lower differential quotients as new independent variables, and define their character by 
the condition equations that one appends.  However, we remark that in the 
aforementioned theorem ( )i

kW  has the form: 
 

U · ( )i
kW  = 

( ) ,1 ,2 ,

(1) 1,1 1,2 1,

(2) 2,1 2,2 2,

( ) ,1 ,2 ,

i i i i n

k k k k

n

n

n n n n n

w u u u

x x x x

w u u u

w u u u

w u u u

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

⋯

⋯

⋯

⋯ ⋯ ⋯ ⋯ ⋯

⋯

 . 
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If w(i) does not correspond to one of the highest-order differential quotients that are now 
introduced as new variables then amongst the sequences: 
 

w(i), uh,1, uh,2, …, uh,n, 
 
there is always one of them that is equal to the sequence: 
 

( )i

k

w

x

∂
∂

, 
,1i

k

u

x

∂
∂

, 
,2i

k

u

x

∂
∂

, …, 
,i n

k

u

x

∂
∂

 

 
precisely.  ( )i

kW  will then always be vanishing, and one thus obtains the following 

theorem: 
 

After an application of the present transformations under the integral sign, an 
integral that contains differential quotients of arbitrarily higher order in the 
dependent variables exhibits a homogeneous function of second order whose 
arguments correspond to the respective highest-order differential quotients of the 
dependent variables. 
 

If the differential quotients go up to the degrees p1, p2, …, pn, respectively, then the 
number of arguments in the reduced function of second order is: 
 

1 2 1

1 2 3
h

h
h

r r r r p

p

⋅ + ⋅ + + −
⋅ ⋅∑
⋯

⋯
. 

 
Berlin, 12 June 1858. 
 

_____________ 
 

 
 
 



 

 

On a question in the calculus of variations 
 

By J. HADAMARD 
 
 

 At the present time, one knows that conditions have been rigorously established for 
the maximum and minimum of a simple integral that contains an arbitrary number of 
unknown functions, or again a multiple integral that contains only one of these functions 
(1).  In the first case, if one limits oneself, for simplicity, to the study of an integral: 
 

1 2 1 2( , , , , , , , , )m mf x y y y y y y dx′ ′ ′∫ ⋯ ⋯ , 

 
where the functions y1, y2, …, ym are not subject to any given relation and appear to the 
first order, the Legendre condition for the weak minimum, which is generally equivalent 
(2) to that of Weierstrass, is that the quadratic form: 
 

2

1 1

m m

i k
i k i k

f
u u

y y= =

∂
′ ′∂ ∂∑∑  

 
must be positive definite.  In the second case, the integral being: 
 

1 2 1 2 1 2( , , , , , , , , )n n nf y x x x p p p dx dx dx∫∫ ∫∫⋯ ⋯ ⋯ ⋯  

 
and p1, p2, …, pn denoting the partial derivatives of the unknown function y with respect 
to the independent variables x1, x2, …, xn, the condition will be on the form: 
 

2

,
i k

i k i k

f
u u

p p

∂
∂ ∂∑ , 

which must be definite. 
 The most general case, in which both several independent variables and several 
unknown functions are involved, has been, to the contrary, almost universally neglected 
although one must regard it as a natural and immediate generalization of the preceding 
cases. 
 From that analogy, one must, upon being given an integral: 
 

(1)    1 2 1 1 1 2( , , , , , , , , , )m
m n n nf y y y x x p p dx dx dx′∫∫ ∫⋯ ⋯ ⋯ ⋯ ⋯ , 

 

                                                
 (1) Here, I am making an abstraction of the cases in which some of the inequalities that must be satisfied 
in order for there to be a maximum or a minimum are replaced by the corresponding inequalities, cases that 
are yet to be elucidated and will probably never be complete (see HEDRICK, Bulletin of the American 
Math. Society, 2nd series, v. IX, 1902).  These cases are exceptional, due to the fact that the difficulties that 
are at issue in the text are presented in a completely general case. 
 (2 ) The exceptions are valid only for the limiting cases to which we alluded in the preceding footnote. 
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where the quantity under the ∫∫ …∫ depends on m unknown functions y, n independent 
variables x, and mn derivatives: 
 

i
kp =

1,2, ,

1,2, ,
i

k

i my

k nx

= ∂
 =∂  

⋯

⋯
 

 
of the former ones with respect to the latter, consider a necessary condition for the 
minimum to be that the quadratic form: 
 

(2)     
2

, , ,

i i
k ki i

i k i k k k

f
u u

p p
′
′′

′ ′ ′

∂
∂ ∂∑  

 
in the mn indeterminates 11, , m

nu u… must be positive definite. 

 It is not pointless to remark that it is nothing of the sort, and that the case of m > 1, n 
> 1 presents a difficulty that is peculiar to it.  This remark is not, moreover, completely 
new: It results from the transformations that were performed by Clebsch in his memoir 
Über die zweite Variation vielfacher Integral (1).  These transformations, which 
generalize the ones that have been performed by Jacobi on the second variation of simple 
integrals, consist uniquely in the addition of terms that integration by parts allows to 
disappear when one transports them to the frontier.  Clebsch showed that by a convenient 
introduction of terms of this type one may supplement the form (2) with particular linear 

combinations of the 
( 1) ( 1)

2 2

m m n n− −
expressions: 

 

(3)    i i i i
k k k ku u u u′ ′

′ ′−   

, 1,2, ,

, 1,2, ,

,

i i m

k k n

i i k k

′ = 
 ′ = 
 ′ ′≠ ≠ 

⋯

⋯ . 

 
 It is therefore absolutely necessary only that the form (2) be definite: It suffices that it 
become that way when one combines it in an arbitrary manner with the forms (3). 
 Furthermore, we see that this condition is sufficient to render the second variation 
essentially positive.  However, it is easy to deduce from it the desired sufficient 
conditions for a minimum. 
 Indeed, suppose that the form (2) is defined by the addition of one or more terms of 
the form: 

λ( i i i i
k k k ku u u u′ ′

′ ′− ), 

 
where λ is a quantity, either constant or variable, that one may always assume to be 
expressed as a function of x.  We may, with Clebsch, consider these terms to be pre-
existing in the form in question, with the condition that one adds to f corresponding 
terms: 

                                                
 (1 ) Journal de Crelle, t. 56, 1859, pp. 122-149. 
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    ( ) ( )i i
i k i k

k k

y p y p
x x

λ λ′ ′
′

′

∂ ∂−
∂ ∂

 

     = ( )i i i i i i
k k k k i k k

k k

p p p p y p p
x x

λ λλ ′ ′ ′ ′
′ ′ ′

′

 ∂ ∂− + − ∂ ∂ 
, 

 
which naturally do not change the question that was posed, and consequently also remain 
without influence on the other elements of the solution − I would like to say, on the 
Lagrange equation and the Jacobi condition.  Once the expression for f has been thus 
transformed, everything proceeds as for m = 1. 
 It remains to know whether the condition, thus modified, is necessary. 
 Now, one may easily establish (1) the following necessary condition: The form (2) 
must be essentially positive for all the values of u that annul the expressions (3). 
 However, it is not obvious that this condition is equivalent to the former one.  Indeed, 
if one considers p arbitrary quadratic forms ϕ1, ϕ2, …, ϕp , and a (p + 1)th form ψ, and if 
one knows that it is positive for all values of the variables that annul the former then it 
results only from this that ψ must be a linear combination of the forms ϕ and a definite 
form.  At the very most, one may be more affirmative on this point if, instead of arbitrary 
forms ϕ, one considers the particular forms (3). 
 Meanwhile, the deduction in question is legitimate when the number p is equal to 
unity.  Since this is true for m = 2, n = 2, the question is solved in this case. 
 On the contrary, it seems to call for further research when m, n > 2. 
 
 

____________ 
 
 

 
 

                                                
 (1 ) This proof, which rests, moreover, on considerations that are completely distinct from the integration 
by parts that must be utilized for the converse proof, appear in my Leçons sur la propagation des ondes et 
les equations de l’Hydrodynamique, which will be published shortly. 



 

 

On some questions in the calculus of variations 
 

By J. HADAMARD 
 
 

 In a previous Communication (1), I gave a necessary condition (corresponding to the 
Legendre condition or that of Weierstrass) for the minimum of an n-fold integral in which 
m unknown functions appear.  I added that the method of Clebsch (2) furnishes a 
condition that is equivalent to the preceding one for m = n = 2 (the equivalence being 
doubtful for higher values of m and n), and which is capable of playing the role of the 
Legendre-Weierstrass condition as a sufficient condition. 
 This latter point is not exact, and, as one sees, the question is yet to be elucidated, 
except for the simplest case of m = n = 2. 
 Let z1, z2 be unknown functions of the variables x, y and let p1, q1, p2, q2 be their 
partial derivatives.  Any condition that is analogous to that of Legendre or Weierstrass for 
the weak minimum (for us upon considering this case) must involve a certain form F that 
is quadratic in p1, q1, p2, q2 . 
 
 I.  The necessary condition that we have previously obtained is that F must be 
essentially positive for all the (non-null) values of the variables p1, q1, p2, q2 that satisfy 
the relation: 
(1)      p1q2 – q1p2 = 0. 
 
 II.  The method Clebsch gives the sufficient condition that the quadratic form: 
 
(2)      Φ + λ(p1q2 – q1p2) 
 
(where λ is a function of x and y, but not the p, q) must be positive definite.  To this 
condition one must, of course, add a Jacobi condition. 
 In the present case, this consists in the existence of two solutions (ζ1, ζ2), (τ1, τ2) of 
the equations of variation, such that the determinant: 
 

∆ = ζ1τ2 − ζ2τ1, 
 
is not annulled in the domain of integration. 
 If λ may be chosen arbitrarily then the condition that Φ + λ(p1q2 – q1p2) may be 
rendered definite by a choice of λ will be equivalent to the previously stated necessary 
condition. 
 However, this is not the case.  Just as it results from the analysis of Clebsch, the 
values of λ are determined by those of the solutions ζ, τ, or at least, once these solutions 
are chosen, λ contains only an arbitrary constant C. 
 It therefore does not suffice that for each system of values of x and y there exist 
values of λ that render the form (2) positive definite.  Let: 
                                                
 (1 ) This Bulletin, t. XXX, 1902, pp. 253. 
 (2 ) Journal de Crelle, t. 56, 1859. 
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(3)      λ1 ≤ λ  ≤ λ2 
 
be the interval that comprises these values of λ.  It is further necessary that one must 
determine the constant C in such a manner that for all pairs of values of x, y contained in 
the domain of integration the inequality (3) must be verified; in other words, that the 
minimum of the values of C deduced (at each point) from the relation λ = λ2 are not 
inferior to the maximum of the value of C that is deduced from λ = λ1 . 
 Likewise, if one takes, in all possible ways, the solutions ζ, τ of the equation of 
variations then the function λ may not be taken at will.  It will satisfy a system of partial 
differential equations S (most likely complicated) resulting from the elimination of ζ1, ζ2;  
τ1, τ2 between the equations of variation (which are four in number for the two systems) 
and the two relations that define λ, the six equations thus written reducing, moreover, to 
five, thanks to the fact that the system of equations of variation is identical to its adjoint. 
 One will then be led to the following question: 
 
 Does there exist a solution to the system S satisfying the inequalities (3) in the entire 
domain of integration? 
 
 This problem belonging to the same category of questions as the ones that we 
encountered a moment ago, it offers a simple example, a category that is probably quite 
worthy of attention. 
 Of course, once one has such a solution λ, one must calculate the corresponding 
solutions ζ, τ and verify the Jacobi condition ∆ >

< 0. 

 
 III.  The method of Hilbert (which is not fundamentally distinct from that of Clebsch) 
leads to results that are entirely similar. 
 In order for a function of x, z, z1, z2, p1, p2, q1, q2, when integrated over x and y, to 
give a result that depends upon only the contour, it is necessary and sufficient that it have 
the form: 

ϕ = A + B1 p1 + B2 p2 + C1 q1 + C2 q2 + D(p1 q2 − q1 p2) 
 
(A, B, … functions of x, y, z1, z2), a form that generally refers, as one sees, to a term that 
is nonlinear with respect to the first derivatives. 
 In order to follow the path pointed out by Hilbert, we first take: 
 
(4)   ϕ = f(x, y, z1, ϖ1, χ1, ϖ2, χ2) + (p1 – ϖ1)

1
fϖ + (p2 – ϖ2)

2
fϖ  

  + (q1 – χ1)
1

fχ + (q2 – χ2)
2

fχ , 

 
where f is the given function under the ∫ ∫ sign, in such a manner that: 
 

1 2 1 2 1 2( , , , , , , , )x y z z p p q q dx dy∫∫  

 
is the integral whose extremum one seeks and ϖ1, ϖ2, χ1, χ2 are defined in the following 
manner: 
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 One considers a family of extremals that depend upon two arbitrary constants a, b: 
 
(5)     z1 = Ψ1(x, y, a, b), z2 = Ψ2(x, y, a, b), 
 
these equations being supposed soluble with respect to a, b, in such a way that the 
determinant: 

(6)      1 2D( , )

D( , )a b

Ψ Ψ
 

 
is not annulled at any point of the domain of integration. 
 Geometrically speaking, the functions z1, z2 of x and y represent a doubly-extended 
multiplicity traced out in the space of four dimensions, or, more conveniently, a pair of 
surfaces in ordinary space, with the convention that one considers any two points to be an 
indissoluble entity when, taken on these two surfaces respectively, they have the same 
projection on the xy-plane (1).  These are two points thus situated on the same parallel to 
the z-axis that we call a pair of points.  The condition that was imposed on the extremals 
(5) amounts to saying that one may make them pass through any pair of given points (that 
are sufficiently close to the extremal that one considers). 
 Having said this, ϖ1, χ1, ϖ2, χ2 are the partial derivatives of z1, z2 that are deduced 
from equations (5).  They are thus functions of x, y, a, b, and consequently (by virtue of 
the previously-postulated solubility) functions of x, y, z1, z2, in such a way that expression 
(4) is a function of x, y, z1, z2, p1, q1, p2, q2. 
 The calculations involve two types of derivatives, namely: 
 
 1. The derivatives of a function of x, y, z1, z2, p1, q1, p2, q2, when these eight 
quantities are considered to be independent variables; we denote them by indices.  For 
example,

1pΦ denotes the derivatives of Φ with respect to p1.  This is what we did in 

formula (4), where
1

fϖ represents the value of
1pf when one replaces p1, q1, p2, q2 by ϖ1, 

ϖ2, χ1, χ2 in it. 
 2. The derivatives of a function of x, y, z1, z2 with respect to these quantities 
considered as independent variables; we denote them by the symbol δ.  For a function Φ 
of x, y, z1, z2, ϖ1, χ1, ϖ2, χ2 one has: 
 

(7)   
iz

δ
δ

Φ
=

1 2 1 1

1 2 1 2
iz

i i i iz z z zϖ ϖ χ χ
δϖ δϖ δχ δχ
δ δ δ δ

Φ + Φ + Φ + Φ + Φ    (i = 1, 2). 

 
 3. The derivatives are taken along the pair of surfaces (which are arbitrary, 
moreover) whose tangent planes have the angular coefficients p1, q1, p2, q2 .  We denote 
them by the symbol ∂; one has (for a function of x, y, z1, z2): 
 

                                                
 (1 ) In particular, these surfaces are limited by two given contours C1, C2 that are both subsets of the 
same cylinder parallel to the z-axis. 
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(8)     
1 2

1 2

1 2
1 2

,

.

p p
x x z z

q q
y y z z

δ δ δ
δ δ δ
δ δ δ

δ δ δ

∂ = + +∂
 ∂ = + +
∂

 

 
 4. The derivatives are taken along the extremals (4) upon considering, as a 
consequence, z1, z2 to be functions of x, y and a, b to be constants.  These derivatives, 
which will be denoted by the symbol d, are coupled to the derivatives δ by the relation: 

 

(9)     
1 2

1 2

1 2
1 2

,

.

x x z z

y y z z

δ δ δϖ ϖ
δ δ δ
δ δ δχ χ

δ δ δ

 = + +


 = + +


d

d

d

d

 

 
 Having said this, the conditions for the integral ∫ ∫ ϕ  dx dy, ϕ being the expression 
(4), to depend upon only the contour, namely: 
 

1 1

1
p qz x y

δϕ ϕ ϕ
δ

∂ ∂− −
∂ ∂

= 0, 
2 2

2
p qz x y

δϕ ϕ ϕ
δ

∂ ∂− −
∂ ∂

= 0 

 
(equalities that must be valid for any p, q), reduce, upon taking into account formulas (8) 
and the fact that the surfaces (5) are extremals, to: 
 

(10)    
1 2

1 2

2 1

2 1

0,

0.

f f
z z

f f
z z

ϖ ϖ

χ χ

δ δ
δ δ

δ δ
δ δ

 − =


 − =


 

 
 They will therefore not be satisfied in general. 
 However, if (as we have the right to do) we add to f the two integrable terms: 
 

  
y

∂
∂

(µ p1 z2) – 
x

∂
∂

( µ q1 z2)  = 
y

µ∂
∂

p1 z2 − 
x

µ∂
∂

 q1 z2 + µ(p1 q2 − q1 p2) 

      = 
y

δµ
δ

p1 z2 − 
x

δµ
δ

 q1 z2 + µ(p1 q2 − q1 p2) 

 
(m being a function of x, y, z1, z2, and λ denoting the combination: 
 

λ = µ + 2
2

z
z

δµ
δ




, 
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or furthermore, if, without changing f, we add to the expression (4), the term: 
 

− λ[(p1 – ϖ1)(q2 – χ2) − (p2 – ϖ2)(q1 – χ1)], 
 

then equations (10) are replaced by: 
 

(10′)   
1 2

1 2

1 2

2 1 1 2

1 2

2 1 1 2

0,

0,

f f
z z z z y

f f
z z z z x

ϖ ϖ

χ χ

δχ δχδ δ λλ
δ δ δ δ

δϖ δϖδ δ λλ
δ δ δ δ

  
− + + + =  

  


  − + + + = 
 

d

d

d

d

 

 
and, to satisfy the conditions of the problem, we only have to determine λ by these latter 
equations. 
 However, these are nothing but the equations that were posed by Clebsch.  In order to 
convert them to the Clebsch form, it suffices to transform the derivatives δ upon 
replacing the independent variables z1, z2 by the variables a, b.  The derivatives of one of 
them with respect to the other are the quantities that were previously denoted by ζ1, ζ2, 
τ1, τ2, and the functional determinant (6) is what we have called ∆. 
 Consequently, as in the Clebsch method, the equations (10′) form a completely 
integrable system and have, as a consequence, a solution λ that depends upon an arbitrary 
constant. 
 We are thus led to exactly the same point as in the preceding method, and we have to 
study a system that is analogous to S (but notably more complicated and more difficult to 
form, since the equations will no longer be linear) obtained by eliminating z1, z2 between 
equations (10′) and the ones that express that the family (5) is composed of extremals.  
We must express the notion that this system admits a solution satisfying the inequalities 
(3). 
 
 IV. In reality, one must presume that the discussion that we just had is not necessary. 
 Indeed, if we consider, no longer the method of Hilbert, but the method of 
Weierstrass in its original form then we arrive at some conclusions in a notably different 
form. 
 Indeed, let (s1, s2) be the pair of surfaces that constitute the extremal studied, while 
(S1, S2) is another pair that one may compare them with, and which is limited by the same 
contour (C1, C2).   On (S1, S2), trace out a pair of variable contours (γ1, γ2) (γ1 and γ2 
being, of course, situated on the same cylinder parallel to Ox).  Make a pair of surfaces 
(Σ1, Σ2) that constitute an extremal pass through (γ1, γ2).  If this latter construction is 
always possible then it will suffice to vary the contours (γ1, γ2) from a pair of points to the 
position (C1, C2) in order to apply the reasoning of Weierstrass. 
 Now, the condition that is analogous to that of Legendre to which one thus arrives 
(for a weak minimum) is the necessary condition that was recalled to begin with. 
 However, upon proceeding thus the difficulty appears in the Jacobi condition.  Instead 
of simply supposing the existence of a two-parameter family of extremals one must 
express that one may construct the extremal pair (Σ1, Σ2), i.e., solve a Dirichlet problem 
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in two unknowns under the most general and difficult conditions, since γ1 and γ2 are 
arbitrary. 
 The present state of science does not, for example, permit one to deduce from this 
method the existence of a minimum for a very small integration domain.  On the 
contrary, it results from the method of Clebsch-Hilbert since, by reason of the arbitrary 
constants that appear in l, one may always suppose that this quantity satisfies the 
inequalities (3) in the environment of an arbitrary given point. 
 I will conclude by indicating some points for which, in the lectures taught at the 
Collège de France for two years, I have yet to complete the results acquired from the 
calculus of variations. 
 The first concerns the isoperimetric problem, in which one seeks the extremum of a 
certain integral I0, knowing the values of one or more other given integrals and certain 
accessory conditions.  The fundamental result (which reduces that extremum to a free 
minimum by the intervention of a multiplier) has yet to be extended to the case where, 
among the accessory conditions the conditions of inequality appear.  It still remains true 
in this case; however, the proof must appeal to some considerations that are noticeably 
different from the classical considerations. 
 On the other hand, the question of knowing whether the Weierstrass construction is 
possible in this same isoperimetric problem, may, in many cases, be considered to be 
solved if the arc considered satisfies the sufficient conditions for a minimum (for 
example) for the integral I0 + lI1 (I1 being the given integral and l, the multiplier), this 
minimum being considered to be free.  Indeed, one confirms that the extremities remain 
fixed.  This remark will be very useful, for example, in the proof of the existence of a 
minimum in a sufficiently small region. 
 Finally, I will further note a very great simplification that one may achieve in the 
proof of the theorem of Osgrod, from which one may assign a lower limit on the 
difference that exists between the minimum integral and a varied integral.  A procedure 
that is completely similar to the one that was employed by Kneser in the context of 
stability of equilibrium for a massive string permits one to pass to the inequalities that 
were employed in the different direct proofs that given up to now.  Unfortunately, this 
method is no longer applicable to multiple integrals, for which, what is more, the 
question is always much more delicate. 
 I will content myself with merely mentioning these various points, which will be 
treated in more detail in a later work. 
 
 

___________ 
 



 

 

On the calculus of variations 1 
 

By David HILBERT 
 
 

Necessity of the existence of the Lagrange differential equations 
 
 The question of the necessity of the Lagrange criterion – i.e., the existence of the 
differential equations that are implied by the vanishing of first variation – has been 
treated by A. MAYER 2 and A. KNESER 3.  Here, I would like to present a rigorous and 
likewise very simple method that leads to the desired proof of the Lagrangian criterion. 
 For the sake of brevity, I will always assume in the following communication that the 
given functions and differential relations are analytic, from which the analytical character 
of the solutions that come to be employed will be assured. 
 We further choose the more convenient representation – without diminishing the 
generality of the method – in the case of three desired functions y(x), z(x), s(x) of the 
independent variable x; between them and their first derivatives with respect to x: 
 

dy

dx
 = y′(x), 

dz

dx
 = z′(x), 

ds

dx
 = s′(x) 

 
let there be given two conditions of the form: 
 

( , , , , , ; ) 0,

( , , , , , ; ) 0.

f y z s y z s x

g y z s y z s x

′ ′ ′ = 
′ ′ ′ = 

    (1) 

 
From this, one arrives at the following theorem to be proved: 
 It might be that y(x), z(x), s(x) are three particular functions that satisfy the conditions 
(1) and possess the following properties: for all values of x that lie between x = a1 and x = 
a2, one has: 

f f

y z

g g

y z

∂ ∂
′ ′∂ ∂

∂ ∂
′ ′∂ ∂

 ≠ 0;      (2) 

 
if we choose any other three functions Y(x), Z(x), S(x) that likewise satisfy the conditions 
(1), for which one has: 
 

                                                
 1 Essentially unchanged from the version that was published in the Göttinger Nachrichten 1905, pp. 
159-180.  
 2 Math. Ann. v. 26 and Leipziger Berichte 1895; in the latter note, A. MAYER has extended his 
foundation of the Lagrange differential equations to the most general problem. 
 3 Lehrbuch der Variationsrechnung § 56-58, Braunschweig 1900; the problem was likewise posed in 
full generality in this work.  
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    Y(a1) = y(a1), 
    Z(a1) = z(a1),  Z(a2) = z(a2), 
    S(a1) = s(a1),  S(a2) = s(a2), 
 
then one always lets – assuming that the functions Y(x), Z(x), S(x), along with their 
derivatives (any particular functions y(x), z(x), s(x) and their derivatives, resp.) differ 
sufficiently little: 

Y(a2) ≥ y(a2).      (3) 
 
If this minimality requirement is fulfilled then there are necessarily two functions λ(x), 
µ(x) that do not both vanish identically for all x, and which together with the functions 
y(x), z(x), s(x) fulfill the Lagrange differential equations that arise from the annulling of 
the first variation of the integral: 
 

2

1

{ ( , , , , , ; ) ( , , , , , ; )}
a

a
f y z s y z s x g y z s y z s x dxλ µ′ ′ ′ ′ ′ ′+∫ , 

namely: 
( ) ( )d f g f g

dx y y

λ µ λ µ∂ + ∂ +−
′∂ ∂

= 0,    (4) 

( ) ( )d f g f g

dx z z

λ µ λ µ∂ + ∂ +−
′∂ ∂

= 0,     (5) 

( ) ( )d f g f g

dx s s

λ µ λ µ∂ + ∂ +−
′∂ ∂

= 0.    (6) 

 
 In order to carry out the proof of this theorem, we take any two well-defined 
functions σ1(x), σ2(x) that vanish for x = a1 and x = a2, and substitute for y, z, s in (1): 
 
      Y = Y(x, ε1, ε2), 
      Z = Z(x, ε1, ε2), 
      S = s(x) + ε1σ1(x) + ε2 σ2(x), 
 
resp., where ε1, ε2 mean two parameters.  We regard the resulting equations: 
 

 
( , , , , , ; ) 0,

( , , , , , ; ) 0

f Y Z S Y Z S x

g Y Z S Y Z S x

′ ′ ′ = 
′ ′ ′ = 

    (7) 

 
as a system of two differential equations for the determination of the two functions Y, Z.  
As the theory of differential equations teaches 1, due to assumption (2), for sufficiently 
small values of ε1, ε2  there is certainly a system of two functions: 
 

Y(x, ε1, ε2) and Z(x, ε1, ε2), 
 

                                                
 1 Cf., É. Picard: Traité d’Analyse, t. III, ch. VIII.  
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that fulfill both equations identically in x, ε1, ε2 and go to y(x), z(x) for ε1 = 0, ε2 = 0, and 
assume the values y(a1) and z(a2) for x = a1 and arbitrary ε1, ε2 , moreover. 
 Since our minimality requirement (3) demands that Y(x, ε1, ε2) must have a minimum 
as a function of ε1, ε2 at ε1 = 0, ε2 = 0, while the equation: 
 

Z(x, ε1, ε2) = z(a2) 
 
exists between ε1, ε2 , the theory of relative minima for functions of two variables teaches 
that there must necessarily be two constants l, m that are not both null, and for which one 
has: 

2 1 2 2 1 2

1 0

2 1 2 2 1 2

2 0

( ( , , ) ( , , )
0,

( ( , , ) ( , , )
0,

lY a mZ a

lY a mZ a

ε ε ε ε
ε

ε ε ε ε
ε

 ∂ + =  ∂  


 ∂ + =  ∂  

   (8) 

 
in which the index 0 means, in both cases, that both parameters ε1, ε2 are set to zero. 
 Moreover, we determine − as is certainly possible according to (2) – two functions 
λ(x), µ(x) of the variable x that satisfy the differential equations (4), (5), which are both 
linear and homogeneous for them, and for which at the place where x = a2 the boundary 
conditions: 

2

2

( )
,

( )

x a

x a

l g
l

y

l g
m

z

λ µ

λ µ
=

=

 ∂ + =  ′∂  


∂ +  =  ′∂  

    (9) 

 
are valid.  Since l, m are not both null, both of the functions λ(x), µ(x) thus determined 
also vanish, but certainly not identically. 
 By differentiation of the equations (7) with respect to ε1, ε2, and subsequent annulling 
of these two parameters, we obtain the equations: 
 

  1 1
1 1 1 10 0 0 0

Y f Y f Z f Z f f f

y y z z s s
σ σ

ε ε ε ε
       ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂′+ + + + +       ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂       

= 0, 

  1 1
1 1 1 10 0 0 0

Y g Y g Z g Z g g g

y y z z s s
σ σ

ε ε ε ε
       ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂′+ + + + +       ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂       

= 0, 

  2 2
2 2 2 20 0 0 0

Y f Y f Z f Z f f f

y y z z s s
σ σ

ε ε ε ε
       ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂′+ + + + +       ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂       

= 0, 

  2 2
2 2 2 20 0 0 0

Y g Y g Z g Z g g g

y y z z s s
σ σ

ε ε ε ε
       ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂′+ + + + +       ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂       

= 0, 
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in which the index 0 always means that both parameters ε1, ε2 are set to zero.  Starting 
from these equations, on the one hand, one multiplies the first and second ones by λ and 
µ, resp., adds the resulting equations, and integrates between the limits x = a1 and x = a2 ; 
on the other hand, one multiplies the third and fourth ones by  λ and µ, resp., adds the 
resulting equations, and integrates between the limits x = a1 and x = a2 .  From this, we 
obtain: 
 

2

1
1 1 10 0 0

1 1
1 0

2 20 0

( ) ( ) ( )

( ) ( ) ( )
0,

( ) ( ) ( )

a

a

f g Y f g Y f g Y

y y z

f g Y f g f g
dx

z s s

f g Y f g Y f g

y y

λ µ λ µ λ µ
ε ε ε

λ µ λ µ λ µσ σ
ε

λ µ λ µ λ µ
ε ε

      ′ ′ ′∂ + ∂ ∂ + ∂ ∂ + ∂ + +      ′ ′∂ ∂ ∂ ∂ ∂ ∂      

 ′∂ + ∂ ∂ + ∂ + ′+ + + =  ′∂ ∂ ∂ ∂  

   ′ ′∂ + ∂ ∂ + ∂ ∂ ++ +   ′∂ ∂ ∂ ∂   

∫

2

1
2 0

2 2
2 0

( ) ( ) ( )
0.

a

a

Y

z

f g Y f g f g
dx

z s s

ε

λ µ λ µ λ µσ σ
ε










  ′∂ 
   ′∂ ∂   

 ′∂ + ∂ ∂ + ∂ +  ′+ + + =  ′∂ ∂ ∂ ∂   

∫

 (10) 

 
 We now have, on the one hand, the conditions defined above: 
 

Y(a1, ε1, ε2) = y(a1), Z(a1, ε1, ε2) = z(a1), 
 

and therefore at the location x = a1 : 
 

     
1 0

Y

ε
 ∂
 ∂ 

= 0,  
1 0

Z

ε
 ∂
 ∂ 

= 0, 

 

     
2 0

Y

ε
 ∂
 ∂ 

= 0,  
2 0

Z

ε
 ∂
 ∂ 

= 0; 

 
on the other hand, we deduce from equations (8) and (9) at the location x = a2 : 
 

    
1 10 0

( ) ( )f g Y f g Z

y z

λ µ λ µ
ε ε

   ∂ + ∂ ∂ + ∂+   ′ ′∂ ∂ ∂ ∂   
= 0, 

 

    
2 20 0

( ) ( )f g Y f g Z

y z

λ µ λ µ
ε ε

   ∂ + ∂ ∂ + ∂+   ′ ′∂ ∂ ∂ ∂   
= 0. 

 
Keeping this in mind, it follows from (10), using (4), (5), and by means of the formula for 
the integration of a product (partial integration) that we have the equations: 
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2

1
1 1

( ) ( )a

a

f g f g
dx

y z

λ µ λ µσ σ ∂ + ∂ +′ + ′ ′∂ ∂ 
∫  = 0, 

2

1
2 2

( ) ( )a

a

f g f g
dx

s s

λ µ λ µσ σ∂ + ∂ + ′ + ′∂ ∂ 
∫ = 0. 

 
 We set, to abbreviate: 
 

(λ µ, σ) = 
2

1

( ) ( )a

a

f g f g
dx

s s

λ µ λ µσ σ∂ + ∂ + ′ + ′∂ ∂ 
∫ , 

 
so we can express the result obtained as follows: For any two functions σ1, σ2 that vanish 
at x = a1 and x = a2 there is always one system of solutions λ, µ of the differential 
equations (4), (5) that does not vanish identically and is such, that: 
 

(λ µ, σ1) = 0  and  (λ µ, σ2) = 0. 
 

 If we now assume that there is a function σ3 for this system of solutions l, m such that 
the inequality: 

(λ µ, σ3) ≠ 0     (11) 
 
is valid then we define any system of solutions λ′, µ′ of the differential equations (4), (5) 
that does not vanish identically, such that one has: 
 

(λ′ µ′, σ3) = 0.     (12) 
 
If we assume, moreover, that there is a function σ4 for which the inequality: 
 

(λ′ µ′, σ4) ≠ 0     (13) 
 

is valid then we can apply our previous result to the functions σ3, σ4 and recognize from 
this the existence of a system of solutions λ″, µ″ of (4), (5), such that the equations: 
 

(λ″ µ″, σ3) = 0,    (14) 
(λ″ µ″, σ4) = 0,     (15) 

 
are valid.  Since λ, µ; λ′, µ′; λ″, µ″ are solutions of a system of two homogeneous, linear, 
first-order differential equations, there must exist homogeneous linear relations between 
two of them that take the form: 

a λ + a′ λ′ + a″ λ″ = 0, 
a µ + a′ µ′ + a″ µ″ = 0, 

 
where a, a′, a″ mean constants that are not all zero.  However, from (11), (12), (14), it 
would then follow necessarily that a = 0 and then, from (13), (15), it would follow that a′ 
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= 0, which is not possible, since one indeed has a″ ≠ 0, moreover, and the system of 
solutions λ″, µ″ does not vanish identically in x. 
 Our assumptions are therefore inapplicable, and we conclude from this that either λ, µ 
or λ′, µ′ is a system of solutions of (4), (5) such that the aforementioned integral relation: 
 

(λ µ, σ) = 0  ((λ′ µ′, σ) = 0, resp.) 
 
is valid for any function σ.  The application of the product integration (partial integration) 
to this relation then shows that, equation (6) must necessarily be valid for the system of 
solutions λ, µ (λ′ µ′, resp.), and with that, our desired proof is brought to completion. 
 
 

The independence theorem and the Jacobi-Hamilton theory 
of the associated integration problem 

 
 In my talk 1 “Mathematical Problems,” I put forth the following method for extending 
the necessary and sufficient conditions in the calculus of variation: 
 It treated the simplest problem in the calculus of variations, namely, the problem of 
finding a function y of the variables x such that the integral: 
 

J = ( , ; )
b

a
F y y x dx′∫ ,  

dy
y

dx
 ′ =  

 

 
attains a minimum value in comparison to the values that the integral assumes when we 
replace y(x) with other functions of x that have the same given initial and final values. 
 We now consider the integral: 
 

J* = { ( ) }
b

pa
F y p F dx′+ −∫  

( , ; )
( , ; ), p

F p y x
F F p y x F

p

 ∂= = ∂ 
, 

 
and we ask how the p in it is to be regarded as a function of x, y in order that the value of 
this integral J* be independent of the path of integration in the xy-plane − i.e., of the 
choice of function y of the variable x.  The answer is: One takes any one-parameter 
family of integral curves of the Lagrange differential equation: 
 

F
d

Fy

dx y

∂
′ ∂∂ −

∂
= 0,  [F = F(y′, y; x)] 

 

                                                
 1 Presented to the International Congress of Mathematicians in Paris 1900; this volume, paper no. 17.  
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and determines at each point x, y, the value of the derivative y′ of the curve of the family 
that goes through this point.  The value of this derivative y′ is a function p(x, y) with the 
desired property. 
 From this “independence theorem,” what immediately follows is not only the known 
criterion for the attainment of the minimum, but also all essential facts from the Jacobi-
Hamilton theory of the associated integration problem. 
 A. MAYER 1 has proved the corresponding theorem for the case of several functions 
and exhibited its connection with the Jacobi-Hamilton theory.  In the following, I would 
like to show that the independence theorem is capable of a general conception, and also 
without any application of calculation, and can be proved very simply by returning to the 
aforementioned special case that was treated in my talk. 
 For the sake of simplicity, I start with only two functions y(x), z(x).  The variational 
problem consists in choosing them in such a way that the integral: 
 

J = ( , , , ; )
b

a
F y z y z x dx′ ′∫ , ,

dy dz
y z

dx dx
 ′ ′= =  

 

 
attains a minimum value compared to the values that the integral assumes when one 
replaces the y(x), z(x) with other functions of x that have the same given initial and final 
values. 
 We now consider the integral: 
 

J* = { ( ) ( ) }
b

p qa
F y p F z q F dx′ ′+ − + −∫  

 
( , , , ; ) ( , , , ; )

( , , , ; ), ,p q

F p q y z x F p q y z x
F F p q y z x F F

p q

 ∂ ∂= = = ∂ ∂ 
, 

 
and ask how the p, q, in it can be regarded as functions of x, y, z in order that the value of 
this integral J* be independent of the path of integration in xyz-space – i.e., of the choice 
of functions y(x), z(x). 
 In order to respond to this question, we choose an arbitrary surface T(x, y, z) = 0 and 
think of the same functions p, q as being determined in such a way that the integral J* 
attains a value that is independent of the choice of curve when we take it over a curve 
lying in T = 0 that goes between two points of T = 0.  Thus, we construct the integral 
curve of the Lagrange equations: 
 

     

F
d

Fy

dx y

∂
′ ∂∂ −

∂
= 0,  [F = F(y′, z′, y, z; x)], 

 

                                                
 1 Math. Ann., v. 58, pp. 235.  
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F
d Fz
dx z

∂
∂′∂ −
∂

= 0 

 
through each point P of the surface T = 0 in xyz-space, for which one has: 
 

y′ = p,  z′ = q 
 
at each point P, such that a two-parameter family of integral curves that fills up a spatial 
field comes about in this way.  We now think of each point x, y, z of this field as 
determining the integral curve of the family that goes through it.  The value of the 
derivatives y′, z′ at each point x, y, z are then functions p(x, y, z), q(x, y, z) with the 
desired property. 
 In order to prove this assertion, we connect a certain point A of the surface T = 0 with 
an arbitrary point Q of the spatial field by means of a path w; we think of an integral 
curve of our two-parameter family as going through each point of this path w.  The one-
parameter family of integral curves that thus arises will be represented by the equations: 
 

( , ),

( , ).

y x

z x

ψ α
χ α

= 
= 

     (17) 

 
Those points of the surface T = 0 from which these integral curves (17) begin define a 
path wT on the surface T = 0 that leads from the point A to that point P of T = 0 that is the 
starting point of the integral curve of the family that goes through Q. 
 A surface will be generated by a one-parameter family of curves (17) whose equation: 
 

z = f(x, y)     (18) 
 
is obtained when one eliminates the parameter α from the two equations (17). 
 If we now introduce the function f(x, y) into F in place of z, and set: 
 

, , , ( , );
f f

F y y y f x y x
x y

 ∂ ∂′ ′+ ∂ ∂ 
 = Φ(y′, y; x) 

 
then for any curve that lies on the surface (18) one has: 
 

( , , , ; )
b

a
F y z y z x dx′ ′∫  = ( , , )

b

a
y y x dx′Φ∫ , 

 
and thus vanishes in the xy-plane for curves of the family: 
 

y = y(x, α)     (19) 
 

as well as the first variation of the integral: 
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( , , )
b

a
y y x dx′Φ∫ ;    (20) 

 
i.e., the family of curves (19) in the xy-plane is a family of integral curves of the 
Lagrange differential equations, which implies the vanishing of the first variation of the 
integral (20).  From the validity of the independence theorem for one function y it follows 
that the integral: 

{ ( ) }
b

pa
y p dx′Φ + − Φ∫ , [Φ = Φ(p, y; x)]  (21) 

 
possesses a value that is independent of the choice of function y. 
 Since: 

      z′ = 
f f

y
x y

∂ ∂ ′+
∂ ∂

, 

      q = 
f f

p
x y

∂ ∂+
∂ ∂

, 

one will have, however: 

( )
f

y p
y

∂ ′ −
∂

= z′ − q, 

and as a result, we have: 
 

 Φ(p, y; x) + (y′ − p)Φp = F(p, q, y, z; x) + (y′ – p) p q

f
F F

y

 ∂+ ∂ 
 

     = F(p, q, y, z; x) + (y′ – p) Fp + (z′ – q) Fq . 
 

 The independence of the integral (21) that we just proved also brings with it the fact 
that our original integral: 
 

J* = { ( ) ( ) }
b

p qa
F y p F z q F dx′ ′+ − + −∫  

 
preserves its value when we choose our integration path to be, not w, but another path 
from A to Q that lies on the surface (18) − say, a curve that consists of the path wT and the 
integral curve of the family (17) that runs from P to Q.  This fact may be expressed by 
considering that equations (16) are valid on the path segment PQ, so one has the 
equation: 
 
  

( )
{ ( ) ( ) }p qw
F y p F z q F dx′ ′+ − + −∫  

=
( )

{ ( ) ( ) }
T

Q

p qw P
F y p F z q F dx F dx′ ′+ − + − +∫ ∫ .  (22)  

 
 If we let w  denote any other path in our spatial pq-field that leads from A to Q and let 

Tw  denote the corresponding path from A to P on the surface T = 0 then, for the stated 

reasons, the equation: 
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( )

{ ( ) ( ) }p qw
F y p F z q F dx′ ′+ − + −∫  

=
( )

{ ( ) ( ) }
T

Q

p qw P
F y p F z q F dx F dx′ ′+ − + − +∫ ∫   (23)  

 
follows, and since, from our assumptions, the first integrals on the right-hand sides of 
(22) and (23) have equal values − since wT and Tw  lie in T = 0 − it then follows that the 

integrals in the left-hand sides of (22) and (23) are also equal to each other, from which, 
our independence theorem is proved. 
 The simplest type of functions p, q on surface T = 0 that one can choose that are 
consistent with our demand consists of ones that are determined by the equations: 
 

F – pFp – qFq : Fp : Fq = 
T

x

∂
∂

: 
T

y

∂
∂

: 
T

z

∂
∂

;   (24) 

 
the integrand of the integral J* then vanishes for any path that lies on T = 0, and this 
integral thus has the value zero on T = 0, independently of the path. 
 In particular, one can replace the surface T = 0 with a point; all of the integral curves 
of the Lagrange differential equations that go through this point then define a two-
parameter family of curves that one has employed in the construction of the spatial pq-
field. 
 Since the integral J* will be independent of the path, it represents a function of the 
variables of the upper limit – i.e., a function of the endpoint x, y, z in the spatial pq-field; 
we set: 

J(x, y, z) = 
, ,

{ ( ) ( ) }
x y z

p qA
F y p F z q F dx′ ′+ − + −∫ .   (25) 

 
This function obviously satisfies the equations: 
 

     
J

x

∂
∂

 = F – pFp – qFq , 

     
J

y

∂
∂

= Fp , 

     
J

z

∂
∂

= Fq . 

 
If we eliminate the quantities p, q from them then what results is the first-order “Jacobi-
Hamilton partial differential equation” for the function J(x, y, z).  In particular, if the 
values of p, q on T = 0 are determined by the construction of the spatial pq-field in such a 
way that the integrand of the integral J* vanishes – i.e., such that (24) is true – then J(x, y, 
z) is the solution of a Jacobi-Hamilton differential equation that vanishes on T = 0. 
 If we think of the surface T = 0 as belonging to a two-parameter family of surfaces 
and denote the parameters of this family by a, b then the function p, q of the spatial field, 
and therefore the function J(x, y, z) will also be independent of these parameters.  The 
differentiation of the equation (25) with respect to the parameters a, b gives: 
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J

a

∂
∂

 = 
, ,

( ) ( )
x y z p q

A

F F
y p z q dx

a a

∂ ∂ ′ ′− + − ∂ ∂ 
∫ , 

     
J

b

∂
∂

=
, ,

( ) ( )
x y z p q

A

F F
y p z q dx

b b

∂ ∂ ′ ′− + − ∂ ∂ 
∫ , 

 
and since, from (16), the integrands of the integrals in the right-hand sides obviously 
vanish while progressing along an integral curve, these integrals represent functions of x, 
y, z that assume the same value on any individual integral curve; i.e., the equations: 
 

     
J

a

∂
∂

 = c, 

     
J

b

∂
∂

= d 

 
are −  when c, d, as well as a, b, mean integration constants − nothing but integrals of the 
Lagrange differential equations. 
 This way of looking at things suffices to show how the essential theorems of the 
Jacobi-Hamilton theory arise immediately from the independence theorem. 
 

Adaptation of the method of independent integrals 
to double integrals 

 
 When one merely treats the question of the conditions for the minimum of an integral, 
one does not require the given construction of a spatial pq-field; it usually suffices to 
construct a one-parameter family of integral curves (17) of the Lagrange differential 
equations in such a way that the surface thus generated includes the varied curve w.  The 
application of the independence theorem for one function in the aforementioned way then 
leads to the conclusion. 
 This remark is of use when one wishes to adapt the method of the independent 
integral to the problem of finding the minimum of a double integral that includes several 
functions of several variables. 
 In order to treat such a problem, we let z, t denote two functions of two variables x, y 
and seek to determine these functions in such a way that the double integral: 
 

J =
( )

( , , , , ; , ; , )x y x yF z z t t z z t x y dω
Ω∫ , 

 

, , ,x y x y

z z t t
z z t t

x y x y

 ∂ ∂ ∂ ∂= = = = ∂ ∂ ∂ ∂ 
, 

 
which is taken over a given domain Ω in the xy-plane, assumes a minimum value when 
compared to those values that the integral assumes when we replace z, t with other 
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functions z , t that possess the same prescribed values as z, t on the boundary S of the 
domain Ω.  The Lagrange equations, which are given by the vanishing of the first 
variation, read: 

     
x y

d F d F F

dx z dy z z

∂ ∂ ∂+ −
∂ ∂ ∂

= 0, 

     
x y

d F d F F

dx t dy t t

∂ ∂ ∂+ −
∂ ∂ ∂

= 0 

in this case. 
 Furthermore, we start with a certain solution z, t of the Lagrange differential 
equations, and let z , t  be any varied system of functions that satisfy the same boundary 
conditions as z, t.  We then determine a function S(x, y) of the variables x, y such that the 
equation S(x, y) = 0 represents the boundary curve of Ω in the xy-plane, while S(x, y) = 1 
will be fulfilled only by the coordinates of a single point inside of Ω; finally, the equation 
S(x, y) = α, when α runs through the value between 0 and 1, shall represent a family of 
curves that fill up the interior of Ω simply without gaps.  Thus, we determine those 
functions: 

( , , ),

( , , )

z x y

t x y

ψ α
χ α

= 
= 

     (26) 

 
that satisfy the Lagrange differential equations and possess the same prescribed values on 
the curve S(x, y) = α as the varied system of functions ( , )z x y , ( , )t x y , and are such that 

for α = 0 the functions (26) go over to the original solution z, t.  These functions (26) then 
onviously define a one-parameter family of solution systems for the Lagrange equations 
for which the equations: 
     ( , )z x y = ψ(x, y, S(x, y)), 

     ( , )t x y  = χ(x, y, S(x, y)), 
are satisfied identically. 
 If we interpret the basic solution z, t of the Lagrange equations as a two-dimensional 
surface in the xyzt-space, and likewise the arbitrarily varied system of functions z , t , 
then the two-dimensional integral surfaces of the one-parameter family (26) generate a 
three-dimensional subspace of this xyzt-space whose equation is obtained by eliminating 
the α in (26); let the equation of this three-dimensional space take the form: 
 

t = f(x, y, z). 
 
We assume that the one-parameter family (26) fills up this three-dimensional space 
simply and without gaps. 
 If we replace the t in F with the function f(x, y, z) and set: 
 

, , , , , ( , , ); ,x y x y

f f f f
F z z z z z f x y z x y

x z y z

 ∂ ∂ ∂ ∂+ + ∂ ∂ ∂ ∂ 
 = Φ(zx , zy , z; x, y) 
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then it is only necessary for us to apply the independence theorem that I proved in the 
cited talk for one unknown function and the argument that is linked with it to the integral: 
 

( )
( , , ; , )x yz z z x y dω

Ω
Φ∫ , 

 
in order to recognize that the integral J, under the assumption of a positive E-function for 
the system of functions z(x, y), t(x, y) before us, actually assumes a minimum value.  The 
appearance of the minimum is thus bound by the following two requirements: 
 1. Constructibility of the family (26).  This requirement is certainly fulfilled when 
the Lagrange partial differential equations always possess a system of solutions z, t that 
possess arbitrarily prescribed values on any closed curve K that lies inside of Ω, while 
they are regular functions of x, y on K. 
 2. Simple and gapless covering of the three-dimensional space by the family (26).  
This requirement is certainly fulfilled when each system of solutions z, t of the Lagrange 
equations is uniquely determined by its boundary values on any arbitrary closed curve K 
that lies inside of Ω. 
 We can briefly summarize the result as follows: 
 
 Our criterion for the attainment of the minimum requires that the boundary-value 
problem for the Lagrange differential equations relative to any closed curve K that lies 
inside of Ω be uniquely soluble for arbitrary boundary values.  Our argument shows that 
this criterion is certainly sufficient. 
 
 If, in particular, the given function F under the integral sign in the problem treated 
only happens to be of second degree in zx, zy, tx, ty, z, t then the Lagrange differential 
equations will be linear in these quantities, and in this case the boundary-value problem 
that is required for the application of our criterion is treated completely with the help of 
my theory of integral equations. 
 In order to develop the reasoning that comes about in the application in this case more 
closely, we define that homogeneous, linear system of differential equations that arises 
from the Lagrange equations by dropping the terms that are free of z, t; we would like to 
refer to this system of equations as the “Jacobi equations.”  It is now immediately 
obvious that the boundary-value problem for a curve K only allows several systems of 
solutions when the Jacobi equations possess a system of solutions z, t that are zero on a 
curve K, but not everywhere inside the domain that is bounded by K.  The theory of 
integral equations now shows that the latter case is likewise the only one in which the 
boundary-value problem for the curve K will not be soluble for the curve K for certain 
prescribed boundary values. 
 
 In the case of a quadratic F, our criterion for the attainment of the minimum thus 
comes down to the demand that the Jacobian equations allow no system of solutions z, t, 
other than zero that are null on boundary S or a closed curve that lies inside of Ω.  (The 
fulfillment of the criterion is also necessary in this case.) 
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 In the general case when the given function F under the integral sign is not quadratic, 
in particular, but arbitrary, in the functions z, t to be determined and their derivatives, we 
have to apply the aforementioned criterion on the second variation of the integral J and 
thus arrive at a criterion is completely analogous to the well-known Jacobi criterion in the 
case of one independent variable or one function of several variable to be determined, 
and which will thus be briefly referred to here as the Jacobi criterion. 
 
 

Minimum of the sum of a double integral and  
a simple boundary integral 

 
 We finally treat the problem of determining the function z of the variables x, y in such 
a way that a double integral that is extended over a given domain Ω in the xy-plane and 
augmented by an integral that is extended over a part S1 of the boundary of Ω, namely the 
integral sum: 

J = 
1( ) ( )

( , , ; , ) ( , ; )x y sS
F z z z x y d f z z s dsω

Ω
+∫ ∫  

 

, ,x y s

z z z
z z z

x y s

 ∂ ∂ ∂= = = ∂ ∂ ∂ 
, 

 
attains a minimum value, while z shall have prescribed values on the remaining part S2 of 
the boundary; thus, F, f are given functions of their arguments and s means the arc length 
of the boundary curve S of Ω, as measured from a fixed point in the positive sense of the 
circuit. 
 The vanishing of the first variation requires that the desired function z, as a function 
of x, y in the interior of Ω, must fulfill the partial differential equation: 
 

x y

d F d F F

dx z dy z z

∂ ∂ ∂+ −
∂ ∂ ∂

 = 0,    (27) 

while the differential relation: 
 

11
y x sSS

F dx F dy d f f

z ds z ds ds z z

   ∂ ∂ ∂ ∂− + −    ∂ ∂ ∂ ∂  
= 0   (28) 

 
must be valid on the boundary S1; in it, we understand dx/ds, dy/ds to mean the 
derivatives of the functions x(s), y(s) that the boundary curve S1 defines. 
 We now consider the integral sum: 
 

J* = 
1( ) ( )

{ ( ) ( ) } { ( )}x p y q sS
F z p F z q F d f z dsω π

Ω
+ − + − + + −∫ ∫  

( , , ; , ), , , ( , ; ),p q

F F f
F F p q z x y F F f f z s f

p q ππ
π

 ∂ ∂ ∂= = = = = ∂ ∂ ∂ 
, 
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and would like to seek to determine the p, q in them as functions of x, y, z and p as a 
function of s, z in such a way that the value of this integral sum is independent of the 
surface z = z(x, y) over Ω – i.e., of the choice of function z – when they have only 
prescribed boundary values in S2 .  The integral sum J* has the form: 
 

1( ) ( )
{ } { }x y sS
Az Bz C d az b dsω

Ω
+ − + −∫ ∫ , 

 
where A, B, C represent functions of x, y, z and a, b are functions of s, z.  This integral 
sum is, as one easily recognizes, independent of the surface z = z(x, y) in the desired 
sense, when the differential equation: 
 

A B C

x y z

∂ ∂ ∂+ +
∂ ∂ ∂

= 0     (29) 

 
is fulfilled identically for x, y, z inside of the xyz-space that projects onto the domain Ω, 
and the differential equation: 
 

1 1
( ) ( )S S

dx dy a b
B A

ds ds s z

∂ ∂− + +
∂ ∂

= 0    (30) 

 
is fulfilled identically in s, z on the sz-cylinder that projects into the boundary curve S1 .  
When we replace A, B, C, a, b with their values: 
 

 

,

,

,

,

,

p

q

p q

A F

B F

C pF qF F

a f

b f f
π

ππ

= 
= = + − 
=


= − 

    (31) 

 
the two equations (29), (30) represent partial differential equations for the functions p, q, 
π. 
 We now determine a one-parameter family of functions: 
 

z = y(x, y, s)     (32) 
 
that satisfy the Lagrange equations (27), (28), and set: 
 

z = ψ(x(s), y(s), α) = ψ(s, α)    (33) 
 
on the boundary; we assume that this one-parameter family fills up the spatial field in a 
single-valued and gapless manner.  Thus, we compute α as a function of x, y, z from (32) 
and α as a function of s, z from (33), and form the expressions: 
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     p(x, y, z) = 
( , , )

( , , )

x y z

x y

x α α

ψ α
=

∂ 
 ∂ 

, 

     q(x, y, z) = 
( , , )

( , , )

x y z

x y

y α α

ψ α

=

 ∂
 ∂ 

, 

       π(s, z) = 
( , )

( , )

s z

s

s α α

ψ α
=

∂ 
 ∂ 

. 

 
 The functions p, q of x, y, z and π of s, z that thus result have the expected property. 
 In fact, that the functions p, q satisfy the equation (29), follows easily from our 
consideration of the equation: 

p p
q

y z

∂ ∂+
∂ ∂

 = 
q q

p
x z

∂ ∂+
∂ ∂

 

 
if we think that ψ(x, y, α) shall fulfill the Lagrange equation identically for all values of 
x, y, α.  In order to prove the existence of (30), we substitute: 
 
      zx = p, 
      zy = q, 
      zs = p, 

      
2

2

d z

ds
 = 

s z

π ππ∂ ∂+
∂ ∂

 

 
in the Lagrange equation (28), which is satisfied identically in s, α, and it goes over to the 
equation: 

1 1

2 2 2

2( ) ( )q S p S

dx dy f f f f
F F

ds ds s z z s z

π ππ π
π π π

∂ ∂ ∂ ∂ ∂ ∂ − + + + + − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
= 0, 

 
which is valid identically for all s, z.  We obtain precisely the same equation when we 
substitute the expressions (31) in formula (30).  With that, the proof of the independence 
theorem for the present problem is completed. 
 From the independence theorem, it follows, as before, that: 
 
   E(zx , zy , p, q)  ≡ F(zx , zy) – F(p, q) – (zx − p) Fp – (zy – q) Fq > 0, 
   E(zs , π)  ≡ f(zs) – f(π) – (zs – p) fπ > 0, 
 
such that in the present problem two Weierstrass E-functions come into consideration: 
one for the interior and one for the boundary S1 . 
 On the other hand, in order for a one-parameter family (32) to exist that generates a 
simple, gapless, spatial field in the desired way, we pose the requirement that any 
solution z of the Lagrange equations (27), (28) must be uniquely determined by its 
boundary values on any arbitrary curve K that is either closed or begins and ends in S1 
and lies inside of Ω.  Our argument then shows that this criterion is certainly sufficient. 
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 In particular, if the given functions F, f under the integral sign in the problem being 
treated happen to be of only second degree in zx, y , z (zs , s, resp.) then the Lagrange 
differential equations become linear.  If we then define the homogeneous, linear, 
differential equations that come about by dropping the terms that are free of z from the 
Lagrange equations and refer to them as the Jacobi equations then it is immediately clear 
that the boundary-value problem for a curve K admits several solutions only when the 
Jacobi equations possess a solution z that is null on K, but not everywhere inside of the 
domain that is bounded by K (K and S1, resp.). 
 
 Thus, in the case of quadratic F, f our criterion for the attainment of the minimum 
leads to the requirement that the Jacobi equations allow no solution z besides zero that is 
zero on the boundary S2 or on a curve K inside of Ω that is either closed or begins and 
ends inside of S1 . 
 
 In the general case, if the given functions F, f are not quadratic, in particular, but 
depend arbitrarily upon the function z to be determined and its derivatives then we must 
apply the aforementioned criterion to the second variation of the integral sum J, and thus 
arrive at a criterion that is precisely analogous to the well-known Jacobi criterion, and 
will thus be briefly referred as such here. 
 When the problem is posed of making the double integral: 
 

( )
( , , ; , )x yF z z z x y dω

Ω∫  

 
attain a minimum, while the boundary values for the desired function z shall satisfy the 
supplementary condition: 

f(zs, z; s) = 0, 
 
then we can immediately apply the formulas and reasoning of the aforementioned 
problem; it is only necessary to append the equation f = 0 and replace f(s) with λ(s) f in 
formulas everywhere, where the Lagrange factor λ(s) is to be regarded as a yet-to-be-
determined function of s. 
 
 

General rule for the treatment of variational problems 
and the statement of a new criterion 

 
 In conclusion, let me state a general rule for the treatment of variational problems in 
which the values of the functions to be determined are prescribed everywhere on the 
boundary that is an abstraction of the cases that were dealt with above. 
 First, one obtains the Lagrange equations L of the variational problem by annulling 
the first variation.  Then let a system Z of such solutions of these differential equations L 
be known that fulfills given conditions B of the variational problem that relate to the 
interior, as well as the boundary. 
 When the Weierstrass E-function for our system of solutions Z happens to be positive, 
we refer to the system of solutions Z as having a positive-definite character. 
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 We now fix our attention on any part T of the domain of integration, and denote the 
boundary of this sub-domain T, as long as it belongs to the boundary of the original 
domain of integration, by ST, as long as it lies in the interior of the original domain of 
integration; thus, the new boundary that results is sT .  Let the conditions B be valid for 
the first boundary ST, as well as for the interior of T, as demanded by the present 
variational problem; for sT , we prescribe that the values of the functions of the system of 
solutions Z on it be the boundary values.  The system of conditions that comes about for 
the sub-domain T will be denoted by BT . 
 Thus, when no system of solutions of the Lagrange equations L exists that satisfies 
the conditions B other than the system of solutions Z, and when, furthermore, no system 
of solutions of the Lagrange equations L exists for each sub-domain T that fulfills the 
conditions BT other than the system of solution Z inside of T, the system of solutions Z is 
said to have an intrinsically unique character. 
 
 For the system of solutions Z a certain minimum occurs when it has a positive-
definite and intrinsically unique character. 
 
 As one sees, in the statement thus expressed, a new requirement enters in along with 
the Weierstrass requirement of the definite character of the solution Z, namely, the 
requirement of the intrinsically unique character of the solution Z.  The latter requirement 
now has the same relationship to the Jacobi criterion – as it was formulated in the 
calculus of variations up to now – as the Weierstrass criterion does to the Legendre one, 
when one regards the Weierstrass criterion as the necessary correct strengthening of the 
Legendre criterion to arbitrary variations.  In fact, just as one will obtain the Legendre 
criterion by an application of the second variation to the Weierstrass one, so will the 
Jacobi criterion arise from the one that I presented here (the requirement of the 
intrinsically unique character of the solution Z) by an application of the second variation.  
Namely, if we define, by an easily recognizable analogy, the homogeneous, linear Jacobi 
equations [L] from the Lagrange equations L, and likewise, the homogeneous, linear 
associated conditions [B] from the given conditions B then our criterion comes down to 
the requirement that this homogeneous, linear system of equations and conditions may 
possess no solution besides zero − and indeed not for any sub-domain T, either − when 
one also prescribes the boundary value of zero on the new boundary sT of this sub-
domain that then comes about.  However, the criterion that I posed is – in analogy with 
the Weierstrass criterion – also valid as a sufficient criterion without restriction when 
arbitrary variations come into consideration, not merely ones in a sufficiently close 
neighborhood; this is then applicable, by way of example, when the decision about the 
minimum must be made for a curve between two conjugate points, where the Jacobi 
criterion breaks down. 
 Whether the criterion that I posed also suffices for boundary values that are not given 
as fixed – how it is to be modified in that case, resp. – requires an examination in 
particular cases. 
 

__________ 



 

 

On the calculus of variations for multiple integrals 
 

By C. Caratheodory 
 
 

Introduction 
 

 1.  The Weierstrass theory of the calculus of variations and the Jacobi-Hamilton 
theory that he employed were completely established by him in two extreme cases, 
namely, when one has a simple integral and n independent functions to vary and when 
one has a µ-fold integral with one function to be varied.  By contrast, the general problem 
of the form: 

(1.1)   1
1 1 1

1

, , ; , , ; , , n
n

xx
f x x t t dt dt

t tµ µ
µ

 ∂∂
  ∂ ∂ 

∫ ∫⋯ … … … ⋯  

 
is actually never well-posed, when one considers some brief remarks that Hadamard 
foresaw when he remarked on some peculiarities of this problem.1  In the following 
pages, I will thoroughly set down the first attempts at a treatment of this problem that 
seem indispensible to me.  My investigations in this regard already go back several years 
and have also been published piecemeal.2 
 Upon studying the important work of Haar on the adjoint variational problem 3 I then 
remarked that my old computations could be written down in a much more symmetric 
fashion by a minor modification in the notation.  On this basis, the entire system of 
formulas was derived once again.  The first chapter, which is devoted to the derivation of 
some purely formal identities, thus includes simply the results of my prior work in a new 
form.  However, by means of the newer notation, as well as some advice of Dr. T. Radó, I 
hope that the representation has become more transparent.  The second chapter is devoted 
to the Weierstrass theory for the problem (1.1), which I had previously only inadequately 
touched upon.  The E-function that belongs to this problem will be presented here for this 
first time in canonical coordinates, as well as in the usual coordinates.  The same is true 
for the Legendre condition, as well as the differential equations that the “geodetic fields” 
must satisfy.  Finally, it will be shown that when a geodetic field intersects a surface 
transversally then this surface must necessarily be a solution of the Euler-Lagrange 
equations. 
 The opposite problem of constructing “geodetic fields”, i.e., ones through which a 
complete figure of our variational problem can be constructed, can still not yet be solved. 
 

                                                
 1  J. Hadamard, Sur quelques questions de calcul de variations.  Bull. Soc. Math. de France 33 (1905), 
73-80. 
 2 C. Caratheodory, Über die kanonischen Veränderlichen in der Variationsrechnung der mehrfachen 
Integrale.  Math. Annalen 85 (1922), 78-88;  Über ein Reziprozitätsgesetz der verallgemeinerten 
Legendreschen Transformation.  Math. Annalen 86 (1922), 272-275.  [In this work, see v. I, pp. 383-395 
and pp. 396-400.] 
 3 A. Haar.  Über adjungierte Variationsprobleme und adjungierte Extremalflächen.  Math. Annalen 100 
(1928), 481-502. 
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Chapter I.  Formal identities 
 

 2.  Elementary examples of birational involutory contact transformations.  Since, 
in the sequel, we will occupy ourselves with a contact transformation that is birational 
and involutory, it is of interest to recall that also any transformations that possess these 
properties have played a prominent role in the calculus of variations for some time now: 
 We let the symbols: 
(2.1)    f, ϕ, pi, πi  (i = 1, 2, …, n) 
 
denote a number of quantities, between which (with the usual suppression of the 
summation sign) the relation: 
(2.2)     f +ϕ  = pi πi 
 
must exist.  We introduce a second sequence of 2n + 2 quantities, F, Φ, Pi, Πi, through 
which the following equations: 
 
(2.3)   F = ϕ,  Φ = f,  Pi = πi,  Πi = pi . 
 
This transformation is nothing but the Legendre transformation; It possesses the 
following properties: 
 
 a) It is birational and involutory.  This means: One solves equations (2.3) for the 
small symbols by simply exchanging the large symbols with the small ones.  Thus, it 
follows from (2.2) and (2.3) that the relation: 
 
(2.4)     F + Π = Pi Πi 
must exist. 
 
 b) It is a contact transformation.  In fact: If f, ϕ, pi, πi are functions of arbitrary 
parameters then there always exists the relation: 
 
(2.5)    dF – Πi dPi = − (df – πi dpi). 
 
 3.  The Legendre transformation is naturally not the only transformation that has the 
properties a) and b) of § 2.  An entirely trivial transformation that obeys them is, e.g., the 
following one: 
(3.1)    F = − fi , Φ = − φi , Pi = − πi . 
 
 4.  As a third example, we consider the generalized inversion that is defined by the 
following relations: 

(4.1)   F = 
1

f
, Φ = 

1

ϕ
, Pi = ip

f
, Πi = iπ

ϕ
. 

 
The transformation (4.1) is obviously involutory and birational.  In addition, one verifies 
that the relation (2.4) is a consequence of (2.2), as well as the fact that one is concerned 
with a contact transformation, with the help of the immediate relations: 
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(4.2)    F + Φ − Pi Πi = 
1

f ϕ
(f + ϕ  − pi πi) 

 

(4.3)    dF – Πi dPi = 
1

f ϕ
(df – πi dpi). 

 
One remarks, moreover, that not only (4.1), but also (2.2) must be used to establish (4.3). 
 
 5.  The transformation that A. Haar used in the citation in our footnote 3 is a simple 
combination of the previous ones when sets: 
 

(5.1)   F = − 1

ϕ
, Φ = -

1

f
, Pi = − iπ

ϕ
, Πi = ip

f
. 

 
 6.  A very interesting, but somewhat complicated, birational and involutory contact 
transformation was used by T. Levi-Civita in the regularization of the three-body problem 
with great success.1  It consists in the following: If one introduces the notation: 
 
(6.1)    a = pi pi , b = pi πi , c = πi πi , 
 

(6.2)  F = f,  Φ = ϕ  – 2b,  Pi = ip

a
, Πi = aπi – 2bpi, 

 
(6.3)    A = Pi Pi , B = Pi Πi , C = Πi Πi  
 
then one obtains by completely elementary calculations: 
 
(6.4)    Aa = 1,  B + b = 0, AC = ac. 
 
From this, one easily verifies properties a) and b) of § 2. 
 
 7.  The canonical transformations of the calculus of variations.  The main subject 
of our investigation is a birational, involutory contact transformation, which, when 
combined with generalized inversion of § 4, gives the generalized Legendre 
transformation of my older work.  The latter possess the advantage that the small symbols 
can be switched with the large ones in all formulas, but they also have one small 
disadvantage, that they do not go over to the ordinary Legendre transformation in the 
limiting cases (n = 1 or µ = 1), but the transformations that Haar employed. 
 From now one, we will use the Latin symbols i, j, k, …, which run from 1 to n, along 
with the Greek indices α, β, γ, ρ, σ, …, which are to be taken from 1 to µ; e.g., the 
symbol piα then represents a matrix of n rows and µ columns. 
 
 8.  We consider the variables: 

                                                
 1 T. Levi-Civita, Sur la regularization du problème des trois corps.  Acta mathematica 42 (1920), 99-144. 
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(8.1)     f, ϕ, piα , πiα , 
between which the relation: 
(8.2)     f + ϕ = piα πiα , 
must exist. 
 Furthermore, we introduce the symbol: 
 
(8.3)     aαβ = δαβ f − piα πiβ , 
 
where, as usual, δαβ  shall represent the number one or zero, depending on whether α = β 
or α ≠ β. 
 To abbreviate, we set the determinant | aαβ | equal to a and denote the algebraic 
complement of aαβ in this determinant by aαβ .  One thus has: 

 
(8.4)     a = | aαβ |, 
 
(8.5)    δαβ a = aαρ aβρ = aσβ aσβ . 

 
 9.  Now, we introduce a new sequence of 2(nµ + 1) variables: 
 
(9.1)     F, Φ, Piα , Πiα , 
 
which are defined by the following equations: 
 

(9.2)     
F

f
=

ϕ
Φ

= 
2f

a

µ −

, 

 

(9.3)     Piα =
1

i a
a ρ αρπ , 

 

(9.4)     Πiα =
2f

a

µ −

piσ aασ . 

 
 It is very remarkable that one can represent the original variables (8.1) as rational 
functions of the quantities (9.1) by successive solutions of the linear system of equations 
that was given in (9.2) to (9.4). 
 
 10.  We first derive some identities that follow from the previous relations.  If one 
replaces the summation symbols α in (9.3) by σ and contract this equation with aσα then 
it follows, from considering (8.5), that: 
 
(10.1)     piα = Piσ aσα . 
 
In an entirely similar manner, one obtains from (9.4): 
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(10.2)     piα = f2−µ Πiσ aρα . 

 
Third, it follows from (9.3), when one considers (8.3) that: 
 

     Piα piβ  =
1

i ip a
a ρ β αρπ  

      =
1

( )a f a
a αρ βρ βρδ − , 

 
and thus it follows from (8.5) and (9.2) that: 
 

(10.3)    aαβ =
2f

F

µ −

(δαβ + Piα piβ). 

 
In order to ultimately present the latter of the relations that we have considered here, we 
state the following equation with the help of (9.3) and (9.4): 
 

Piα Πiβ = 
2

2 i i

f
p a a

a

µ

ρ σ αρ βσπ
−

. 

 
It then follows from (8.3) and (8.5) that: 
 

Piα Πiβ = 
2

2

f

a

µ −

(δσρ – aσρ) a aαρ βσ =
1 2f f

a
a a

µ µ

αβ βαδ
− −

−  

or, from (9.2): 

(10.4)    Piα Πiβ = δαβ F – 
F

f
aβα . 

 
By (8.3), the relation (10.4) can also be symmetrically written as: 
 

(10.5)    
1

F
Piα Πiβ =

1

f
 piα πiβ . 

 
 11.  From (9.2) and (8.2), we find that: 
 

F + Φ = 
F

f
(f + ϕ) =

F

f
piα πiα , 

or, from (10.5): 
(11.1)    F + Φ = Piα Πiα . 
 
 
 12.  We now introduce a notation that is analogous to (8.3): 
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(12.1)    Aαβ = δαβ F − Piα Πiβ ; 
 
it then follows from (10.4) that: 
 

(12.1)    
A

F
αβ =

a

f
βα , 

 
and thus, when one also recalls our previous notation for the large symbols: 
 

(12.3)    
A

F µ =
a

f µ , 

 

(12.4)    
1

A

F
αβ
µ− = 1

a

f
βα
µ − . 

 
The comparison of (9.2) with (12.3) now gives: 
 

(12.5)    
f

F
=

ϕ
Φ

=
2F

A

µ−

. 

 
Furthermore, it follows from (10.2), when one uses (12.4) and then (12.5) that: 
 

(12.6)    piα =
1

i A
A ρ αρΠ ; 

 
and likewise one obtains from (10.1), (12.2), and (12.3): 
 

(12.7)    πiα =
1F

A

µ−

 Piσ Aασ  . 

 
If one compares (8.2) with (11.1), and then (9.2), (9.3), and (9.4), resp., with (12.5), 
(12.6), and (12.7), resp. then one sees that one can switch the large symbols with the 
small ones in these and therefore also all of the remaining equations. 
 Our transformation is thus birational and involutory. 
 
 13.  Introduction of f, F, piα, Piα as variables.  Up till now, we have alternately 
based our calculations on the system of quantities (8.1) and (9.1).  For many purposes, it 
is more convenient to develop formulas in which the quantities: 
 
(13.1)     f, F, piα , Piα , 
appear as basic variables. 
 Thus, we set: 
(13.2)     gαβ = δαβ + Piα piβ , 
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such that, from (10.3), one has: 

(13.3)     gαβ = 2

F
a

f αβµ − . 

 

In order to compute the value g of the determinant | gαβ |, we remark that aαβ = aµ−1; it 

then follows from (13.3) and (9.2) that: 
 
(13.4)     g = Ff, 
and (13.3) can then be written: 

(13.5)     gαβ = 1

g
a

f αβµ− . 

 
From this latter equation, we gather that: 
 

g g aρσ ρβ ασ = 1

g
a g a

f ρσ ρβ ασµ −  

or: 

(13.6)     aαβ = 1

a
g

f αβµ − ; 

hence, from (9.2): 
(13.7)     gαβ = Faαβ . 

 
Due to (10.1), it now follows that: 
(13.8)     Fπiα = iP gσ σα , 

and, from (9.4): 
(13.9)     f Πiα = ip gσ ασ . 

 
Ultimately, when one solves the latter two equations for piα and Piα they give the 
relations: 
(13.10)     F piα =  Πiρ gρα , 
 
(13.11)     f Piα =  πiρ gαρ . 
 
 
 14.  The property of contact transformation.  We now assume that the quantities 
that we are considering depend upon arbitrary parameters and then form the total 
differential of (13.4) with respect to these parameters.  In this way, we obtain the relation: 
 
(14.1)     F df + f dF = dg; 
 
however, it is now well-known that: 

dg = g dgαβ αβ  

and, from (13.2): 
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dgαβ = Piα dpiβ + piβ dPiα . 
 
From the latter two equations one then has, when one recalls (13.8) and (13.9): 
 
(14.2)    dg = F piβ dpiβ + f Πiα dPiα . 
 
The comparison of (14.2) with (14.1) ultimately leads to the relation: 
 
(14.3)   F(df – piβ dpiβ) + f(dF – Πiα dPiα) = 0, 
 
from which it follows that our transformation is a contact transformation. 
 
 15.  Reciprocity.  In a previous work 1 I made the remark, which can, moreover, be 
immediately confirmed, that the determinant a, as we showed in § 8, can also be written 
as a (µ + n)-rowed determinant in the following way: 
 

(15.1)     a = ij i

jp f
β

α αβ

δ π
δ

; 

 
in this formula, the rows are denoted by i and α, and the columns by j and β.  In the same 
way, one sees, when one introduces a new system of variables by the equations: 
 
(15.2)     bij = δij f – piρ πjρ , 
 
that the determinant b of bij can be written: 
 

(15.3)     b = ij i

j

f

p
β

α αβ

δ π
δ

. 

 
Comparing (15.1) and (15.3) then leads to the relation: 
 
(15.4)     fn a = fµ b, 
 
from which we deduce, with the help of (9.2):∗ 
 

(15.5)     
F

f
=

ϕ
Φ

=
2nf

b

−

. 

 
Furthermore, it follows from (15.2) that: 
 

bsi Psα = f Piα – psρ πiρ Psα ; 

                                                
 1 Cf., footnote 2 [on page 1 of this article].  
 ∗ [A printing error in (15.5) in the original has been corrected.]  
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from (13.2), one can write this as: 
 

bsi Psα = f Piα – πiρ (gαρ – δαρ); 
 
or, taking (13.11) into account: 
 
(15.6)    πiα  = bsi Psα . 
 
Similarly, we deduce from (15.2) that: 
 
     bsi psα  = f piα − piρ πiσ piα  
      = piα (δαρ f − piα πiσ), 
or, from (8.3):**  
(15.7)    bit ptα = piρ aαρ  . 
 
From (9.4), one thus obtains, when one observes (15.4): 
 

(15.8)    Πiα =
2nf

b

−

 ptα bit  . 

 
Finally, it follows by solving (15.6) that: 
 

(15.9)    Piα =
1

r irb
b απ . 

 
 16.  The similarity between formulas (15.2), (15.5), (15.9), and (15.8) and (8.3), (9.2), 
(9.3), and (9.4) shows that [in the same sense as on pp. 397 of this volume]* in all of our 
equations one can switch the Latin indices with the Greek ones when one simply replaces 
aαβ with bij . 
 
 17.  Introduction of the parameters Sαβ , Sαi , and cαβ .  For the treatment of our 
variational problem, it is necessary to introduce new parameters and to examine their 
connection with the previous notation. 
 To that end, we consider three matrices: 
 
(17.1)      Sαβ , Sαi , cαβ , 
 
which shall be linked with the previous quantities by the relations: 
 
(17.2)    cαβ = Sαβ  + Sαi piβ , 
 
(17.3)    Sαi = piρ Sαρ , 
 
                                                
 **  [A printing error in the original was corrected here.]  
 * [The comment in square brackets was incorrect in the original.]  
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(17.4)    
1

F
= | Sαβ |. 

 
 By replacing (17.3) in (17.2) one now obtains:**  
 
  cαβ = Sαβ  + Sαρ Piρ piβ , 
  = Sαρ (δρβ + Piρ piβ), 
or, from (13.2): 
(17.5) cαβ = Sαρ gρβ . 
 
From the laws of multiplication for determinants, it now follows, when one observe 
(13.4), that c = Ff | Sαρ |, or, from (17.4): 
 
(17.6)   c = f . 
 
Furthermore, one deduces from (17.5) that: 
 

c c gλρ λβ ασ =S g g cλσ ρσ ασ λβ , 

 
and from this it follows, from (13.4) and (17.6) that: 
 
(17.7)  gαβ = F Sλα cλβ . 

 
From this, it follows, using (13.8), that: 
 
(17.8)     πiα = iS cλ λα . 

 
 18.  We would now like to show that when one assumes (17.2) equations (17.6) and 
(17.8) are equivalent to equations (17.3) and (17.4).  We thus now come to the equations: 
 
(18.1)     cαβ = Sαβ + Sαi piβ , 
 
(18.2)     πiα = iS cρ ρα , 

 
(18.3)     c = f, 
 
and would like to derive (17.3) and (17.4).  First, it follows from (18.2) that: 
 

πiσ cασ = iS c cρ ρσ ασ , 

hence, upon considering (18.3): 
(18.4)     f Sαi = πiσ cασ . 
 

                                                
 **  [In the following equation, a printing error in the original was corrected.] 
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This, when substituted in (18.1), gives: 
 

f cαβ = f Sαβ + cασ piβ πiσ , 
 
from which, from (8.3), it follows that: 
 
(18.5)     f Sαβ = cασ  aβσ  . 
From (18.5), it next follows that: 
 

f Piρ Sαρ = cασ  Piρ aρσ  . 
 

The right-hand side of the latter equation is, from (10.1), equal to cασ  πiσ , and with the 
help of (18.4) one ultimately obtains: 
 
(18.6)     Sαi = Piσ Sασ ; 
 
i.e., relation (17.3), as we wished to prove.  Equation (17.4) is likewise a consequence of 
(18.5) when one observes (18.3) and (9.2); it then becomes: 
 

fµ | Sαβ | = ac = 
1f

f
F

µ−

 

or: 
(18.7)     F | Sαβ | = 1. 
 
 
 

Chapter II.  The variational problem.  
 
 19.  Definition of the geodetic fields.  In an (n + µ)-dimensional space whose 
coordinates are x1, …, xn, t1, …, tµ , or, with the previous notation, xi, tα , we consider a µ-
parameter family of n-dimensional surfaces.  A family of this sort can be represented by 
µ equations of the form: 
(19.1)     Sα(xi; tβ) = λα . 
 
Furthermore, a µ-dimensional manifold will be defined by the equations: 
 
(19.2)    xi = ξi(tα) (i = 1, 2, …, n), 
 
which intersect the family (19.1).  This is the case when and only when a one-to-one map 
of a region Gt in the µ-dimensional space of tα onto a region Gλ of the µ-dimensional 
parameter space of the λα is generated by the system of equations: 
 
(19.3)     Sα(ξi(tγ); tβ) = λα . 
 
In this, however, the functional determinant, in particular: 
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(19.4)     ∆ = 
( ; )iS t

t
α β

β

ξ∂
∂

 

must be non-zero in Gt . 
 If one sets, to abbreviate: 

(19.5)    Sαi =
i

S

x

∂
∂

, Sαβ =
S

x
α

β

∂
∂

, 

 

(19.6)     piα = i

tα

ξ∂
∂

, 

 
(19.7)     cαβ = Sαβ + Sαi piβ , 
 
then (19.4) takes the form: 
(19.8)     ∆ = | cαβ | = c. 
 
We further remark that the integral: 

(19.9)     1
tG

dt dtµ∆∫ ∫⋯ ⋯  

 
represents the volume of the region Gλ in the parameter space, onto which the region Gt 
is mapped by the relation (19.3). 
 However, this volume depends only* upon the form of the boundary of Gλ . 
 If one thus considers a second µ-dimensional surface: 
 
(19.10)     xi = ξi(tα) 
 
and a region tG  that is mapped onto the same region Gλ that we have just considered 

through this new surface then the integral: 
 

(19.11)      1
tG

dt dtµ∆∫ ∫⋯ ⋯ , 

 
which will be mapped in a manner that is completely analogous to (19.9), will possess the 
same value as (19.9). 
 In particular, if a manifold that also lies on (19.10) is taken from surface (19.2) 
through the boundary of the region Gt then one must compute the integrals (19.9) and 
(19.11) for the same region Gt ; i.e., one must set tG = Gt . 

 
 20.  The coordinates of a µ-dimensional surface element of the (n + µ)-dimensional 
space shall now be represented by the n + µ + nµ quantities: 

                                                
 * [In the original, the word was “nun” here.  In the Gesammelte Mathematische Schriften, the word was 
“uur,” when it should have been “nur;” i.e., there was a printing error in the correction to the printing 
error!] 
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(20.1)     xi, tα , piα . 
 
We now consider a positive function: 
 
(20.2)     f(xi, tα , piα) 
 
of these quantities and form the expression: 
 

(20.3)     
( , , )

( , , )
i i

i i

f x t p

x t p
α α

α α∆
, 

 
in which ∆ shall have the same meaning as in (19.8).  We now hold the (xi, tα) fixed in 
(20.3) and seek to determine the piα in such a way that: 
 

(20.4)      
f

∆
= minimum; 

 
we say of a surface element (20.1) for which the condition (20.4) is satisfied that it 
intersects the family of surfaces (19.1) transversally. 
 We now assume that in a certain (n+µ)-dimensional region of the space of (xi, tα) we 
can determine functions: 
(20.5)     piα = piα(xj, tβ), 
 
which generate nothing but surface elements that will intersect our family (19.1) 
transversally. 
 If we now substitute the values (20.5) of the piα in f(xi, tα, piα) and ∆(xi, tα, piα), and if 
one then has the validity of the equation: 
 
(20.6)     f = ∆ 
 
 at any point of the region in question then we would like to say that the family (19.1) 
forms a geodetic field (associated with f).  A necessary condition for the validity of (20.4) 
will be given by the equations: 

i

f

pα

∂  
 ∂ ∆ 

= 0, 

 
which can, due to (20.6), be written in the following manner: 
 

(20.7)     
ipf
α

=
ipα

∂∆
∂

. 

 
The equations (20.6) and (20.7) comprise the fundamental relations through which a 
geodetic field is defined. 
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 21.  Solution of the variational problem.  If one has constructed, by whatever 
means, a geodesic field that intersects a manifold (19.2) transversally, moreover, then it 
always constitutes a solution of the variational problem that is associated with the 
integral: 

(21.1)    1( , , )i if x t p dt dtα α µ∫ ∫⋯ … . 

 
Namely, we consider a piece of (19.2) that projects onto a region Gt of the space of tα and 
a corresponding piece of (19.10) that projects ontotG , in which the relations between Gt 

and tG  that were specified at the end of § 19 shall be valid.  Then, from the results of § 
19, it is linked with (20.6) that: 
 

(21.2)   1
tG
f dt dtµ∫ ⋯ = 1

tG
dt dtµ∆∫ ⋯ = 1

tG
dt dtµ∆∫ ⋯ . 

 
If one then denotes the value of f on the surface (19.10) byf then, from (21.2), one has: 
 

(21.3)    1 1
t tG G

f dt dt f dt dtµ µ−∫ ∫⋯ ⋯ = 1( )
tG

f dt dtµ− ∆∫ ⋯ . 

 
 One now remarks that from the fact that f > 0 and also from (20.6) it follows that ∆ > 
0.  For a weak variation of our original surface piece one therefore also has ∆ > 0.  From 
this, it follows, upon considering (20.4) and (20.6) that: 
 

(21.4)    f − ∆ = 
f f 

∆ − ∆ ∆ 
> 0, 

 
by which our main assertion is proved. 
 
 22.  Introduction of canonical variables.  The further treatment of our problem will 
be simplified considerably if we now introduce the canonical quantities F, Piα, Πiα that 
we examined in the first chapter.  In fact, from (19.7) and (19.8), one has: 
 

(22.1)     
ipα

∂∆
∂

= iS cλ λα , 

 
and comparison of this formula with (17.8) and (20.7) shows that we must set: 
 
(22.2)     piα = 

ipf
α

. 

 
Thus, from §§ 8 and 9, one can now compute the aαβ, F, Φ, Piα , Πiα as functions of xi, tα, 
piα by rational operations.  Likewise, one can compute the determinant a and, in 
particular, verify that it does not vanish.  In case it vanishes identically, the function f, 
upon which our variational problem depends, is not useful for our theory. 
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 However, our goal is to take xi, tα, Piα as the independent variables, and we must 
therefore present the condition that must be verified in order to express the Piα in terms of 
these quantities.  Thus, the best equation to make use of is (10.1), an equation that, from 
(8.3), can be written most effectively in the following form: 
 
(22.3)    Miα = piα – Piσ (δσα f – pkσ πkα) = 0. 
 
This latter system of equation shall thus be soluble in terms of the Piα , and we must 
therefore demand that the functional determinant must satisfy: 
 

(22.4)     i

j

M

p
α

β

∂
∂

 ≠ 0. 

If one sets, to abbreviate: 

(22.5)     
2

i j

f

p pα β

∂
∂ ∂

= πiα , jβ , 

then it follows from (22.3) that: 
 

(22.6)   i

j

M

p
α

β

∂
∂

= πiα , jβ − Piα πjβ + Piβ πjα + Piσ pkσ πkα , jβ . 

 
From our assumptions, it now follows that b ≠ 0; therefore, one can replace the condition 
(22.4) with the non-vanishing of a determinant whose elements are: 
 

(22.7)    Niα, jβ = r
ri

j

M
b

p
σ

σα
β

δ ∂
∂

= r
ri

j

M
b

p
α

β

∂
∂

. 

 
From (22.6) and (22.7), it now follows, with the help of (15.6), that: 
 
(22.8)   Niα, jβ = bri πrα, jβ − πiα πjβ+ πiβ πjα + πiσ pkσ πkα, jβ ; 
 
now, since one has bri πrα, jβ = bki πkα, jβ and bri + πiσ, pkσ, = δik f, one can also write (22.8) 
in the form: 
(22.9)    Niα, jβ = f πiα, jβ − πiα πjβ + πiβ πjα ; 
 
 The introduction of the Piα as independent variables is then always possible, as long 
as the determinant satisfies: 
 

(22.10)   
2

i j i j i j

f f f f f
f

p p p p p pα β β α α β

∂ ∂ ∂ ∂ ∂+ −
∂ ∂ ∂ ∂ ∂ ∂

 ≠ 0. 
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 23.  Once we have represented the Pjβ as functions of xi, tα, Piα, we can, from chapter 
I, determine the remaining quantities – hence, in particular, F, Φ, Πjβ – as functions of 
these variables. 
 If one now substitutes these functions in (14.3) then it immediately follows that one 
has the relations: 
(23.1)    

ixFf = −
ixf F ,  tF f

α
= − tf F

α
, 

 

(23.2)     Πiα = 
i

F

Pα

∂
∂

, 

which we shall use later. 
 
 24.  The E-function.  We are now in a position to compute the Weierstrass excess 
function that belongs to the integral (1.1) for any geodetic field. 
 Thus, the equations (20.6) and (20.7) shall be valid; however, if one considers (19.8), 
(22.2), and (22.1) then one sees that equations (18.2) and (18.3) must also be valid, and, 
from § 18, equivalent to (17.3) and (17.4). 
 If we thus substitute the right-hand side of (17.3) for the Sαi in: 
 

(24.1)     ∆ = i iS S pαβ α β+  

 
then it follows from the multiplication rules for determinants, when one observes (17.4), 
that: 

(24.2)     ∆ =
1

i iP p
F αβ α βδ + . 

 
Now, we define new quantities hiβ by the equations: 
 
(24.3)     ip β = piβ + f ⋅ hiβ , 

 
and obtain from (24.2), upon consideration of (13.2): 
 

(24.4)     ∆ = 
1

F
| gαβ + f Piα hiβ |. 

 
If we now remark that from (13.4) and (13.8) it follows that: 
 
(24.5)    (gρβ + f Piρ hiβ) gσβ = F f(δαβ + πiα hiβ) 

then, from (24.4), we obtain: 
 

gαβ∆ = Fµ−1 fµ |δαβ + πiα hiβ |. 

 

Now, since, from (13.4), one has gαβ = Fµ−1 fµ, one finally obtains: 
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(24.6)    ∆ = f |δαβ + πiα hiβ |. 
 
We now compute hiβ from (24.3) and remark that, from § 21, one must take: 
 

E = f − ∆ . 
Ultimately, one thus has: 
 
(24.7) 
 
 
This is a formula for the E-function that goes over to the usual one when µ = 1; it is also 
noteworthy that the E-function depends only upon the surface elements piβ, ip β here, but 

not, however, on the geodetic field. 
 
 25.  The Legendre condition.  We develop the determinant (24.6) in powers of hiβ 
and determine and quadratic terms of this development.  Thus, we introduce the notation: 
 
(25.1)     mαβ = δαβ + πiα hiβ , 
 
from which, by abbreviations that are similar to the ones in § 8, it follows that: 
 

δαβ m = m mρβ ρα  

and, by differentiation: 
δαβ dm = m dm m dmρβ ρα ρα ρβ+ . 

 
We contract this equation with mσβ and obtain, when we replace the summation symbol β 

with λ: 
mdmσα = m dm m m dmσα σα σλ ρλ− . 

 
Now, it is well-known that dm = m dmρλ ρλ , and we ultimately have that: 

 
(25.2)    mdmσα = ( )m m m m dmσα ρλ ρα σλ ρλ− . 

 
It then follows from (24.6) that: 
 

(25.3)    
ihα

∂∆
∂

= if mσα σπ  

and from (25.2): 

(25.4)    
j

m
m

h
σα

β

∂
∂

= ( ) jm m m mσα ρβ ρα σβ ρπ− . 

 Hence, from (25.3): 
 

 

E = f −
1

1

f µ− | δαβ f + πiα( ipβ − piβ) | . 
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(25.5)   
2

i jh hα β

∂ ∆
∂ ∂

= ( ) i j

f
m m m m

m σα ρβ ρα σβ σ σπ π− . 

 
For hiβ = 0, we now have mαβ = δαβ, and from (25.3) and (25.5), it thus follows that: 

 

(25.6)     
0ihα

∂∆
∂

= f πiα , 

 

(25.7)    
2

i jh hα β

∂ ∆
∂ ∂

= f(πiα πjβ − πiβ πjα). 

 
Thus, if we now develop the E-function (24.7) in powers of (ip β − piβ) then the constant 

drops away along with the linear terms.  The quadratic terms in the development define a 
quadratic form, which reads as follows: 
 
 
(25.8) 
 
 
 The Legendre condition of our problem consists in the requirement that the quadratic 
form (25.8) must be positive definite.  One should observe that the determinant of this 
quadratic form agrees [up to a positive factor]* with the expression (22.10); whenever the 
Legendre condition is satisfied, one also has the possibility of introducing canonical 
coordinates. 
 Finally, we remark that the first derivatives of f with respect to piα are also present in 
the Legendre condition. 
 
 26.  The E-function in canonical coordinates.  For the case in which one presents 
the variational problem in canonical coordinates from the outset by means of the function 
F(xi, tα, Piα), it is useful to have an expression for the E-function in which these 
coordinates alone appear.  Thus, one sets: 
 
(24.1)     Piα = i iP F kα α+  

 
in (24.2) and transforms the expression (24.2) in a completely similar manner to what we 
did in § 24.  One ultimately finds that: 
 
(26.2) 
 
 

                                                
 * [The comment in square brackets was absent in the original.]  

 

2Q = ( ipα − piα)( jp β − pjβ)
2 1

i j i j j i

f f f f f

p p f p p p pα β α β α β

  ∂ ∂ ∂ ∂ ∂ − −   ∂ ∂ ∂ ∂ ∂ ∂   
. 

 

1

1
( )i i i

F
E F F P P

f F αβ β α αµ δ−= − +Π − . 
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If one computes the Legendre condition from (26.2) then one finds a formula that is 
completely analogous to the relation (25.8). 
 Finally, one remarks that as a result of reciprocity (§ 15) the E-function can also be 
represented by n-rowed determinants in the original coordinates, as well as in the 
canonical ones. 
 
 27.  The differential equations of geodetic fields.  From §§ 20 and 22, one obtains a 
geodetic field when one simultaneously satisfies the equations: 
 
(27.1)    f = ∆ = c, 

ipf
α

= piα = iS cλ λα , 

 
with the notations of § 19.  From § 18, however, this system of equations is completely 
equivalent to the following one: 
(27.2)     Sαi = Piρ Sαρ , 
 
(27.3)     F ⋅ | Sαβ | = 1. 
 
 If one now computes the function F(xi, tα, Piα) then one can find a geodetic field in 
the following way: One determines the Piα as rational functions of the first partial 
derivatives of the Sα(xi, tβ) from equations (27.2) and substitutes the values thus found in 
(27.3).  One then obtains one first order partial differential equation for µ functions Sα , 
(µ – 1) of which can therefore be chosen completely at will. 
 28.  By means of an arbitrary given geodetic field, with the help of (27.2) and (27.3), 
the Piα and F − and therefore, by applying the formulas of chapter I, all remaining 
quantities − will be determined as functions of (xi, tα); i.e., as functions of position in (n + 
µ)-dimensional space. 
 However, conversely one can also give the Piα as such functions of position to begin 
with and ask what the necessary and sufficient conditions are in order for one to find 
functions Sα(xi, tβ) for which the relations (27.2) and (27.3) are valid. 
 We introduce the linear operator: 

(28.1)     Li = i
i

P
x tρ

ρ

∂ ∂−
∂ ∂

. 

 
Equations (27.2) then say that the system of differential equations: 
 
(28.2)     Li Sα = 0 
 
for the µ independent functions Sα must be valid, and thus one must have a Jacobi 
system.  The necessary and sufficient condition for this is well-known to be the vanishing 
of the bracket expressions (LiLj – LjLi)S; this is equivalent to the following relations: 
 
(28.3)     Lj Piρ – Li Ljρ = 0. 
If we then set, to abbreviate: 
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(28.4)     [ ] ,j ji i
j i

j i

P PP P
ij P P

x x t t
ρ ρρ ρ

σ σ
σ σ

ρ
∂ ∂∂ ∂ 

= − − − ∂ ∂ ∂ ∂ 
 

then we must write: 
(28.5)     [ijρ] = 0. 
 
 
 29.  Let the conditions (28.5) all be verified.  Between two systems Sα and Tα of any 
µ independent solutions of the Jacobi system (28.2) there always exists the relation: 
 

(29.1)    1

1

( , , )

( , , )

T T
S

S S
µ

αβ
µ

∂
∂
…

…
= | Tαβ |, 

 
which represents a well-known property of the functional determinant.  If one then gives 
the Tα then equation (27.3) is soluble when and only when one can determine the Sα as 
functions of the Tβ such that the equation: 
 

(29.2)    1

1

( , , )

( , , )

T T

S S
µ

µ

∂
∂
…

…
= (F) | Tαβ | 

 
is satisfied.  Thus, (F) means any function in the (n + µ) variables (xi, tα) that one obtains 
when one expresses the Piα in F(xi, tα, Piα) as functions of (xi, tβ).  Relation (29.2) can, 
however, be satisfied when and only when the right-hand side of this equation is itself a 
function of the Tβ ; i.e., when it satisfies the Jacobi system (28.2).  Equation (27.3) is then 
equivalent to the system: 

(29.3)    Li((F) + (F) i

T
T L

t
ρ

ρσ
σ

∂
∂

= 0. 

 Now, one has: 

(29.5)    i

T
L

t
ρ

σ

∂
∂

= 
2 2

i
i

T T
P

x t t t
ρ ρσ

λ
σ σ λ

∂ ∂
−

∂ ∂ ∂ ∂
. 

 
On the other hand, because Tρ is, by assumption, a solution of (28.2) one has: 
 

2

i

T

x t
ρ

σ

∂
∂ ∂

= 
i

T

t x
ρ

σ

∂ ∂
 ∂ ∂ 

 = i

T
P

t t
ρ

λ
σ λ

∂ ∂
 ∂ ∂ 

; 

 
when this is substituted in (29.5) it gives the equation: 
 

(29.6)     i

T
L

t
ρ

σ

∂
∂

= iP
T

t
λ

ρλ
σ

∂
∂

. 
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We substitute this value in (29.4) and obtain, after dividing by | Tαβ |, the condition that 
we wished to present: 

(29.7)     Li(F) + (F) iP

t
σ

σ

∂
∂

= 0. 

 
 30.  We now set, to abbreviate: 
 

(30.1)    [i] = Li(F) + (F) iP

t
σ

σ

∂
∂

+ Πjρ[ijρ], 

 
and develop Li(F), while taking (23.2) into account; we obtain: 
 

[i] = [ ]j j i
j i j j

i i

P P PF F
P F ij

x x t t t
ρ ρ σ

σ σ ρ σ
σ σ σ

ρ
∂ ∂  ∂∂ ∂+ Π − + Π + + Π ∂ ∂ ∂ ∂ ∂ 

. 

 
From this, it follows, when one uses (28.4), that: 
 

(30.2)  [i] = i i i
i j j

i j

P P PF F
P P F

x t x t t
ρ ρ σ

σ σ ρ
σ σ σ

 ∂ ∂ ∂∂ ∂− + Π − +  ∂ ∂ ∂ ∂ ∂ 
, 

 
an equation that can be written, with our previous notation: 
 
(30.3) 
 
 
 
The necessary and sufficient conditions for the existence of a geodetic field ultimately 
take the form: 
(30.4)    [ijρ] = 0, [i] = 0. 
 
 
 31.  The Euler equations.  It is actually not difficult to prove directly that any µ-
dimensional manifold that intersects a geodetic field transversally must satisfy the Euler 
differential equations: 

(31.1)    
i ip x

d
f f

dt α
α

− = 0; 

 
however, it is much more interesting and instructive to present a general identity from 
which this requirement will be deduced immediately. 
 To that end, we give the piα as completely arbitrary functions of (xj, tβ) and likewise 
compute the remaining quantities f(xi, tα, piα), πiα =

ipf
α

, etc., as functions of position with 

the help of our previous formulas. 

 

[i] = i i
i j

i j

P PF F
P A

x t x t
ρ ρ

σ σ σρ
σ σ

∂ ∂∂ ∂− + Π +
∂ ∂ ∂ ∂

. 
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 Furthermore, we introduce the notation dψ / dtα for any function ψ(xi, tα) that enters 
into (31.1), in particular, and is defined by the relation: 
 

(31.2)    
d

dtα

ψ
= i

i

p
t x α
α

ψ ψ∂ ∂+
∂ ∂

. 

 
 With these preparations, we consider the relation (13.8): 
 

F piα = iP gσ σα , 

 
and deduce from this equation, by differentiation, that: 
 
(31.3)    F dpiα = − piα dF + i ig dP P dgσα σ σ σα+ . 

 
From a formula that is derived from equation (25.2), one now has: 
 

g dgσα = ( )g g g g dgσα ρλ ρα σλ ρλ− ; 

 
hence, from (13.4), (13.8), (13.9), and (13.2): 
 

iF f P dgα σα = ( )( )i i j j j jF g g p dP P dpα ρλ λ ρα λ ρ ρ λπ π− + , 

(31.4)  if P dgσ σα = (f πiα Πjρ – gρα pjλ πiλ) dPjρ + F(πiα πjλ – πiλ πjα) dpjλ . 

 
By substituting this relation in (31.3) we obtain: 
 
(31.5)  F f dπiα = − f πiα dF + (f πiα Πjρ + gρα bji) dPjρ + F(πiα πjλ − πiλ πjα) dpjλ . 

 
We now introduce the notation: 
 

(31.6)  Ωi =
i

j ji
x i j

dp dpd
Ff f F

dt dt dt
λ αα

α λ
α α λ

π π π
   

− − −   
   

, 

 
and obtain from (31.5) that: 
 

(31.7)  Ωi = 
( )

( )
i

j
x i i j ji

dPd F
F f f f f g b

dt dt
ρ

α α ρ ρα
α α

π π− − + Π + . 

 
Now, from (23.1), (23.2), and (31.2), one has: 
 

− F f 
ix

f = f2
ixF = 2 2( ) j

j
i i

PF
f f

x x
ρ

ρ

∂∂ − Π
∂ ∂

, 
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( )d F

dtα
=

( ) ( )
h

h

F F
p

x tα
α

∂ ∂+
∂ ∂

, 

jdP

dt
ρ

α

= j j
h

h

P P
p

x t
ρ ρ

α
α

∂ ∂
+

∂ ∂
. 

 
When all of this is substituted in (31.7), it gives, with some simplifications: 
 
(31.8)  Ωi = 

( ) ( )
( ) ( )j j

ki k ji j ki i i j ji
k k

P PF F
fb f b b f f g b

x x t t
ρ ρ

ρ ρ α α ρ ρα
α α

π π
∂ ∂∂ ∂+ Π − Π − + Π +

∂ ∂ ∂ ∂
. 

 
With the use of (15.6) and (28.1) this can be written: 
 

(31.9)  Ωi = f bki Lk(F) − ( )j jk
j ki i j ji

k j

P PP
f b f g b

x x t
ρ ρρ

ρ α ρ ρα
α

π
 ∂ ∂∂

Π − + Π +  ∂ ∂ ∂ 
. 

 
However, from (28.4) and (30.1), one has: 
 

j k

k j

P P

x x
ρ ρ∂ ∂

−
∂ ∂

= [jkρ] + j k
k j

P P
P P

t t
ρ ρ

σ σ
σ σ

∂ ∂
−

∂ ∂
, 

Lk(F) = [k] + Πjρ [jkρ] – (F) kP

t
σ

σ

∂
∂

. 

 
If one substitutes these quantities in (31.9) and then remarks that, from (15.6), (13.7), 
(12.2), and (12.1), one has: 

bki Pkσ = πiσ , 
gρσ = F aρσ = f Aσρ = f(δρσ F – Pjσ Πjρ)

*, 

 
then nearly all of the terms vanish and what remains is: 
 
(31.10)     Ωi = f bki[k]. 
 
One obtains the identity that we wish to present by equating (31.6) and (31.10); it reads:**  
 
(31.11) 
 
 
 

                                                
 * [A printing error in this equation in the original was corrected.]  
 **  [A printing error in (31.11) in the original was corrected.] 

 

[ ]
i

i j j ji ki
x

dp dpd b
f k

dt F f dt dt
α β α βα

α β α

π ππ  
− = − −  

 
. 
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 32.  Now, if, as we have assumed, the functions of position piα(xj, tβ), in particular, 
belong to a geodetic field that intersects a µ-dimensional manifold transversally then one 
has at any point of this manifold: 

[k] = 0,  jdp

dt
α

β

= jdp

dt
β

α

. 

 
The left-hand side of (31.11) must then vanish on this manifold, and this is an integral of 
the Euler equation (31.1). 
 We would like call the geodetic field a distinguished field when an extremal can be 
found through any point of this field that intersects this field transversally.  The extremals 
in such a case then define a field in their own right and the figure that is defined by these 
extremals and the manifolds Sα = λα is called a complete figure of the variational 
problem. 
 
 33.  We consider an arbitrary family of extremals that simply cover a region of (n + 
µ)-dimensional space.  The left-hand side and the last term in the identity (31.11) must 
then vanish, from which it follows that all [k] = 0. 
 However, in order for the extremals of a field to generate a complete figure of the 
variational problem one must further have that all [jkρ] = 0, which is already well-known 
to not always be the case when µ = 1. 
 

_____________ 



 

 

Observations on Hilbert’s independence theorem  
and Born’s quantization of field equations 

 
Hermann Weyl, Institute for Advanced Study, Princeton, New Jersey 
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 Born recently proved a quantization of the field equations which is based upon 
Hilbert’s independence theorem of the calculus of variations.1  My intention here is to 
give, in the first, purely mathematical, Part A, a formulation as simple and explicit as 
possible of the independence theorem.  The agreement between the principle of variation 
and the independence theorem, complete in the case of one independent variable and one 
unknown function, fails in two respects in the case of several variables and functions; the 
independence theorem specializes the extremal vector field, on the one hand, and it 
discards the assumption of integrability, on the other hand.2  In Part B, I first suggest a 
modification of Born’s scheme, without which it would be in disagreement with ordinary 
quantum mechanics, even in the one-dimensional case.  After the modification, a 
comparison of Heisenberg-Pauli’s quantization becomes possible under the simplest 
circumstances.  Born’s scheme proves to be too narrow.  Finally, I raise the principal 
objection that the quantum-mechanical equation should not be of the form: four-
dimensional divergence of ψ equals Hψ with a scalar operator of action H, but that it 
should rather consist of four components stating that the differentiation of ψ with respect 
to four space-time coordinates is performed by means of the operators: energy and 
momentum.∗ 
 

A. HILBERT’S INDEPENDENCE THEOREM FOR SEVERAL ARGUMENTS 
 

 § 1.  The problem of variation.  The problem of the calculus of variations in r 
independent variables t1 … tr consists in determining ν functions, or a “surface:” 
 

zα = zα( t1 … tr), (α = 1, 2, …, v)   (1) 
such that the variation: 

1( , , )i r
iL t z z dt dtα αδ ∫ ⋯ = 0    (2) 

                                                
 1  Proc. Roy. Soc. A143, 410 (1934). 
 
 2  These are known facts.  Born himself refers to: Prange, Thesis, Göttingen 1915, but the theory was 
developed before Prange, and in a more general and suitable form, by Volterra (1890), Fréchet (1905), and 
de Donder.  Cf., de Donder, Mém. Acad. Roy. de Belgique, ser. 2, III (1911); Théorie invariative du calcul 
des variations, Paris, 1930, Chaps. VII and VIII. 
 
 ∗ The abstract will also serve as a summary and introduction to the paper. – EDITOR.  
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for arbitrary variations δzα(t) which vanish at the border of the domain of integration.  L 
is here a given function of the arguments ti, zα, izα ; one has to substitute the functions (1) 

for zα and the derivatives dzα / dti for izα . 

 
 § 2.  Surface field and vector field.  A family of ∞r surfaces zα = zα(t1 … tr) simply 
covering a piece Ω of the (r+ ν) dimensional space of coordinates (ti, zα) may be called a 
surface field in Ω.  At every point (t, z) of Ω we have the “gradient vector:” 
 

dzα / dti = ( , )iz t zα      (3) 

 
of the surface passing through (t, z).  Conversely, if one is given the vector field ( , )iz t zα  

arbitrarily, one can find a corresponding field of surfaces provided Eqs. (3) are 
completely integrable.  As one readily sees, the necessary and sufficient conditions of 
integrability are the relations: 
 

k i k i
i ki k

z z z z
z z

t t z z

α α α α
β β

β β

   ∂ ∂ ∂ ∂− + −   ∂ ∂ ∂ ∂   
= 0.   (4) 

 
(Always sum over two-fold occurring indices!)  A vector field satisfying these equations 
may be called integrable. 
 
 § 3.  Three stages of independent variables.  We distinguish three standpoints: 
 (1) ti, zα, izα are taken as independent variables, as for instance, in the function L.  The 

derivatives with respect to these variables are distinguished by an attached index.   
 (2) By using a given vector field, theizα are replaced by functions of the ti and zα.  The 

partial derivatives with respect to the arguments ti and zα are then denoted by ∂/∂ti, ∂/∂zα. 
 (3) The subscription: 
 

zα = zα(t1, …, tr)  [ izα = dzα / dti] 

 
changes functions which appeared in the second (or the first) standpoint, into functions of 
the t alone.  The derivatives with respect to the t’s are denoted by d/dti. 
 We have already complied with these conventions in paragraphs 1 and 2. 
 
 § 4.  Extremal vector field.  The Lagrangian equations of the problems of variation 
(2) are (standpoint 3): 

/
i

i

z
dL dtα = 

z
L α .     (5) 

 
A solution of these equations may be designated as an extremal surface.  We start with a 
field of extremal surfaces.  Such a field is, according to (5), characterized by the 
equations (standpoint 2): 
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i iz z

ii

L L
z

t z

α α β
β

∂ ∂
+

∂ ∂
=

z
L α .     (6) 

 
A vector field ( , )iz t zα satisfying (6) is called an extremal vector field whether it is 

integrable or not. 
 
 § 5.  Legendre transformation.  We introduce (standpoint 1) the momenta: 
 

ipα = 
iz

L α      (7) 

and: 
p = L − i

ip zα
α .     (8) 

 From the total differential: 
δL = i

i

i
it z z

L t L z L zα α
α αδ δ δ+ + , 

there follows: 
δp = i

i i
it z

L t L z z pα
α α

αδ δ δ+ − . 

 
 It is therefore natural to assume that p is given as a function of ti, zα, ipα : 

 
p = H(ti, zα, ipα ). 

 
We then haveizα = − ip

H
α
as the converse of the relation (7). 

 We now should write (standpoint 2)ipα , instead of
iz

L α , on the left side of (6).  In 

order to determine the right side, one has to differentiate Eq. (8) or: 
 

p = L − i
ip zβ

β  

with respect to zα: 

p

zα
∂
∂

=
i

i
ii i

iz z

pz z
L L p z

z z z
α β

β β
β β

βα α α

∂∂ ∂+ − −
∂ ∂ ∂

. 

 
Here, the second and third terms cancel each other, and consequently the equations 
characteristic of an extremal field read as follows: 
 

ii i

ii

pp p
z

t z z
β βα α

β α

 ∂∂ ∂+ −  ∂ ∂ ∂ 
=

p

zα
∂
∂

;    (9) 

 
p = H(ti, zα, ipα ), izα = − ip

H
α
.   (10) 
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 § 6.  Special extremal vector field and Jacobi-Hamilton equation.  Eq. (9) is 
satisfied in particular if: 

ii pp

z z
βα

β α

∂∂ −
∂ ∂

= 0, 
i

i

p

t
α∂

∂
=

p

zα
∂
∂

.    (11) 

 
We then speak of a special extremal vector field. 
 One makes good these equations by putting: 
 

ipα = ∂si / ∂zα, 

 
and by assuming that the new unknown quantities si fulfill the equation: 
 

∂si / ∂ti = p. 
 

 In this way, determination of a special extremal vector field is reduced to the 
integration of the Jacobi-Hamilton equation: 
 

(div s = ) ∂si / ∂ti = H(ti, zα, ∂si / ∂zα).   (12) 
 

If one wants the vector field izα = − ip
H

α
to be integrable one has to satisfy further Eqs. (4). 

 
 § 7.  Invariance. Flux.  The ti, as well as the zα, may be subjected to an arbitrary 
transformation among themselves.  Let us treatizα as a vector contravariant in the Greek, 

covariant in the Latin indices, L as a scalar density with respect to the ti and as a scalar in 
zα; ipα as a contravariant vector density in i¸ as a covariant vector in α, and si as a 

contravariant vector density with respect to the ti (as a scalar with respect to zα).  Under 
such circumstances, all our equations remain unaltered by the transformation.  Hence, the 
flux of si through an arbitrary (r – 1)-dimensional “cross section” Λ of the r-dimensional 
t-space: 

S =

1

1

1

r

r

r

s s

dt dt

t tδ δ

Λ ⋅ ⋅∫

⋯

⋯

⋯

⋯

     (13) 

 
has an invariant significance.  In forming (13), we operate on a surface Σ: zα = zα(t1 … tr) 
(standpoint 3), and Λ is to be considered as an (r – 1)-dimensional “line” on the surface 
Σ. 
 
 § 8.  The independent integral.  Following Gauss’s theorem, one can change the 
flux (13) through a closed Λ into an integral extending over the piece of Σ bounded by Λ; 
its integrand: 
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i

i

ds

dt
= 

i i

i i

s s dz

t z dt

α

α
∂ ∂+
∂ ∂

= p + i

i

dz
p

dt

α

α  

 
contains only the original quantitiesipα  and p instead of s.  This is Hilbert’s “independent 

integral,” for it does not change its value if one changes in an arbitrary manner the piece 
of the surface Σ bounded by Λ in the (r+1)-dimensional (ti, zα)-space, provided the 
boundary line Λ is preserved. 
 
 § 9.  Case of no forces.  If L depends only on the third group of variables izα , and if 

H consequently depends only on theipα then: 

 
ipα = const., p = H( ipα ) = const. 

 
yields a special integrable extremal field.  The corresponding si is: 
 

si = ip zα
α + (1/r)pti .     (14) 

 
This particular solution is, of course, not endowed any longer with the general invariance 
as described in section 7. 
 
 

B.  CRITICAL REMARKS CONCERNING BORN’S PROPOSAl 
OF A QUANTIZATION OF ELECTROMAGNETIC FIELD EQUATIONS 

 
 § 10.  Born’s procedure.  Professor Born propounds the following procedure for the 
transition to quantum physics.  One first forms the flux S, (13) of the vector density (14) 
through an arbitrary closed line Λ and takes ψ  = eiS (“plane wave”); one then builds up 
wave packets or a general ψ by forming linear superpositions of plane waves that 
correspond to several values of the constantsipα .  Each such ψ is a function of the 

following arguments: 

V = 1 rdt dt
Σ∫ ⋯ , 1 r

i

dz
dt dt

dt

α

Σ∫ ⋯ .   (15) 

 
 Here, Σ denotes the domain in our r-dimensional t-space surrounded by the line Λ.  
|ψ |2 should be interpreted as the probability that the integrals (15) assume given values in 
a domain Σ of given volume V.  All domains of the t-space here, be it noticed, if they 
only have the same volume, are thrown into the same pot without regard to their shape 
and situation!   This sounds queer enough, and, as a matter of fact, Born’s interpretation 
does not coincide with the usual well-proved interpretation of quantum mechanics even 
in the one-dimensional case where t = time is the only variable.  For there |ψ |2 is the 
probability that the quantities zα assume given values at the instant t, whereas Born is 
urged to look upon it as a probability of transition, namely the probability that the 
quantities zα experience given changes ∆zα = ∫ (dzα /dt) dt in a time internal of given 
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length ∆t – irrespective of the temporal localization of the interval ∆t.  One obviously has 
to tear asunder the closed “null-dimensional line,” which bounds the one-dimensional 
time interval and consists of two time points, into its initial and end points.  We are able 
to imitate this procedure in r dimensions by determining the flux S through a cross 
section Λ of the t-space instead of a closed Λ.  Let us think of the whole t-space as 
dissolved into a simply infinite sequence of such cross sections.  In the physical 
applications, r is equal to 4 and t1, t2, t3; t0 = t are the 4 space and time coordinates.  After 
choosing the planes of simultaneity t = const. as our cross sections Λ, Born’s procedure 
becomes somewhat comparable to the Heisenberg-Pauli quantization. 
 
 § 11.  Comparison of the Born and Heisenberg-Pauli process in the simplest case.  
The comparison can actually be carried out for the particular case of an L depending only 
on the temporal derivatives 0zα = dzα / dt.  In this case, the fundamental ψ − the plane 

wave − becomes, according to Born: 
 

0 0 1 2 31
4exp { ( ) }i tH p p z dt dt dtα

α α
 + ∫∫∫ . 

 
 Here, the 0pα  are constants; the zα are arbitrary functions of t1, t2, t3.  The Heisenberg-

Pauli procedure yields the same result, with the difference, however, that this time 
the 0pα are arbitrary functions of the space coordinates t1, t2, t3; the probability refers to the 

question as to which values the physical quantities zα assume at all possible space points.  
This more general formulation, obviously not required by the nature of the problem, is 
not entirely beyond the scope of Born’s quantization.  For in the present circumstances 
the following p’s: 
 

0pα = arbitrary functions of t1, t2, t3, [ ipα = 0 (i = 1, 2, 3)] 

 
furnish a special extremal vector field.  But it is not integrable!  Thus, one is led to 
renounce the assumption of integrability. 
 
 § 12.  Objections and hopes.  Nevertheless, I am unable to see how, by means of an 
analogous extension of Born’s scheme, the general case could be brought into agreement 
with the fundamental physical experience, for the characteristic commutation rules of 
coordinates and corresponding momenta, q and p, are missing in Born’s theory, owing to 
the fact that he subsumes the field equations under the mechanical “problem without 
forces,” but these commutation rules seem to be essential for the possibility of 
considering the electromagnetic ether as a superposition of oscillators (photons).  On the 
other hand, I am fairly sure that the scheme of quantum physics should not be obtained 
from the one equation (12) in the form div = H by means of Schrödinger’s quantum-
mechanical transmutation, but that it should consist, rather, of four equations: 
 

d/dti = Ti , 
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 in which the four operators Ti represent the energy and the three components of 
momentum.  The recipe for forming the Ti is rather complicated in the Heisenberg-Pauli 
theory, and the fact that they form a covariant 4-vector, in the sense of relativity theory, 
needs a special proof.  One may, perhaps, expect that a way similar to that followed by 
Born will lead to an essentially simpler formulation, and perhaps a modification of this 
prescription, so as to put the relativistic invariance in evidence from the beginning. 
 

___________ 
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Introduction  

 
 Carathéodory recently drew my attention to an “independent integral” in the calculus 
of variation for several variables exhibited by him in an important paper in 1929,1 and he 
asked me about its relation to a different independent integral I made use of in a brief 
exposition of the same subject in the Physical Review, 1934.2  The present note was 
drafted to meet Carathéodory’s question (§ 11).  To facilitate comparison, I first serve my 
own dish again in Carathéodory style (trace theory, Part I), and then expound the 
essentials of his theory (Part 2); the link between them thereby becomes fairly obvious.  
In Part 3, I consider the approximation known as the second variation.  Thus, the whole 
formal apparatus of the calculus of variations – Lagrange’s equation, Legendre’s, 
Jacobi’s, Weierstrass’s conditions, and Hilbert’s independent integral – will be found in 
these three Parts, packed together in a nutshell, as it were.  Chapter 4 solves the problem 
of embedding a given extremal in a geodesic slope field – this notion taken in the sense 
of the trace theory.3  The reader who does not care for technical details, but wants the 
lucid simplicity of the general foundations not to be marred by toilsome existential 
considerations is warned to ignore this last Part. 
 
 

Part 1.  The linear trace theory. 
 

 § 1.  The problem of variation.  ν functions of r variables ti: 
 
(1)    zα = zα(t1 … tr), (t1 … tr) in G,  (α = 1, …, ν) 
 
describe an r-dimensional “surface” Σ in the (r + ν)-dimensional t-z-space covering a 
given region G of the t-space.  We consider only surfaces Σ lying in a certain domain Ω 
of the t-z-space which have their boundary in common; i.e., the values of the functions 
(1) at the boundary of G are prescribed once for all. 
 The situation in the calculus of variations with r independent variables ti (i = 1, …, r) 
is this: A function L of the variables: 
 

ti, zα, izα   (α = 1, …, v; i = 1, …, r) 

                                                
 1 Acta litt. ac. scient. universe. Hungaricae, Szeged, Sect. Math. 4 (1929), 193. 
 
 2 Physical Review 46 (1934), 505. 
 
 3 Prof. Carathéodory advises me that Mr. Boerner did the same for his more sophisticated theory.  
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is given.  By an appropriate choice of Σ, one tries to minimize the integral: 
 

(2)    J = J(Σ) = 1( , ( ), / )i i r

G
L t z t dz dt dt dtα α

∫ ⋯ . 

 
 § 2.  Three stages of independent variables.  ν-r functions ( , )iz t zα in Ω define what 

we call a slope field F in Ω.  The surface Σ, (1) is embedded in the slope field F if: 

 
dzα / dti = ( , ( ))k

iz t z tα β  

holds. 
 We distinguish three standpoints concerning the arguments in our functions: 
 (1) ti, zα, izα are taken as independent variables, as for instance, in the function L.  The 

derivatives with respect to these variables are marked by attaching the respective variable 
as an index. 
 (2) By using a given slope field F, the izα are replaced by functions of the ti and za.  

The partial derivatives with respect to the arguments ti and zα are then denoted by ∂/∂ti, 
∂/∂zα. 
 (3) The substitution: 

zα = zα(t1, …, tr)   [ izα = dzα / dti] 

 
referring to a given surface Σ changes functions which appeared in the second (or the 
first) standpoint into functions of the t alone.  Their derivation with respect to ti is 
denoted by d/dti. 
 In keeping with these conventions and the further one that one always has to sum 
over two-fold occurring indices, the vanishing of the first variation: δJ = 0 is expressed 
by Euler’s equations: 
(3)      /

i

i

z z
dL dt Lα α− = 0. 

 
Σ is called an extremal when satisfying these relations.  The arguments in

z
L α and

iz
L α are 

ti, zα, dzα / dti. 
 
 § 3.  Lagrangian of the divergence type.  One may form L for which the integral (2) 
is independent of Σ by the following method:  Let: 
 
(4)       si(t, z)    (i = 1, …, r) 
 
be given functions in Ω.  After substituting the functions (1) for the arguments z, we 
consider the divergence: 

i

i

ds

dt
=

i i

i i

s s dz

t z dt

α

α
∂ ∂+ ⋅
∂ ∂

. 
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 Its integral is the flux of the vector field si(t, z(t)) through the boundary of G, and 
therefore depends on the values of zα(t) at the border of G only.  Hence: 
 

(5)     D(ti, zα, izα ) = 
i i

ii

s s
z

t z
α

α
∂ ∂+ ⋅
∂ ∂

. 

 
All surfaces Σ are extremals of this Lagrangian, which is linear inizα . 

 
 § 4.  Geodesic field and independent integral.  Let L be a given Lagrangian, and let 
us now suppose we succeeded in determining our functions (4) and the slope field izα (t, 

z) such that: 
(6)    L = D,  

iz
L α =

iz
D α  for izα = izα (t, z). 

 
 A slope field of this kind may be called geodesic.  We notice, in passing, that

iz
D α = ∂si 

/ ∂zα does not contain the variablesizα .  For the “momenta”
iz

L α , we often use the 

abbreviations ipα . 

 As: 

D(ti, zα, dzα / dti) = D(ti, zα, izα ) +
i

ii

s dz
z

z dt

α
α

α

 ∂ − ∂  
, 

 
its integral (the independent integral) under these circumstances changes into: 
 

(7)    W = W(Σ) = { ( )}i
i iL p z z dtα α

αΣ
+ −∫ ɺ . 

 
 A surface integral like: 

( , , , )i
i iF t z z z dtα α α

Σ∫ ɺ  

 
is always to be interpreted as meaning: 
 

1( , , ( , ( ), / ))i i r
iG

F t z z t z t dz dt dt dtα α α ⋅∫ ⋯ . 

 
The arguments of the functions L and ipα in (7) are ti, zα, izα . 

 A surface Σ embedded in our geodesic slope field is, of necessity, an extremal for the 
Lagrangian L.  Indeed, on account of: 
 

L

zα
∂
∂

=
i

i
z z

z
L L

z
α β

β

α
∂+
∂

 or 
z

L α =
i

i
z

zL
L

z z
β

β

α α
∂∂ −

∂ ∂
 

 
one can supplement equations (6) by: 
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z
L α =

z
D α  for izα = izα (t, z). 

Hence, the identity: 
/ i

z
dD dtα −

iz
D α = 0, 

 
which is satisfied for every surface, leads, for a Σ embedded in our geodesic field, to (3). 
 In the case r = 1, ν = 1, the independent integral (7) was first propounded by Hilbert. 
 
 § 5.  Legendre transformation.  The equations (6) with the definition (5) of D are 
equivalent to: 

(8)     
is

zα
∂
∂

= ipα , 
i

i

s

t

∂
∂

= L − i
ip zα

α . 

 
We therefore have to introduce into the function: 
 

H = L − i
ip zα

α  

the momenta: 
(9)      ipα =

iz
L α , 

 
instead of theizα , as independent variables: 

 
(10)     H = H(ti, zα, ipα ) 

 
(Legendre’s transformation).  The total differential: 
 

δL = i

i i
it z

L t L z p zα
α α

αδ δ δ+ +  

leads at once to: 
(11)    dH = i

i i
it z

L t L z z pα
α α

αδ δ δ+ − ; 

thus, one gets: 

izα = − ip
H

α
 

 
as the converse of the equations (9).  In order to construct a geodesic field, one has to 
solve the one Jacobi-Hamilton equation: 
 

(12)    
i

i

s

t

∂
∂

= H(ti, zα, ∂si / ∂zα); 

the formula: 

izα = − ( , , / )ip
H t z s z

α
∂ ∂  

then furnishes the geodesic field. 
 By the way, equation (12) can be formulated in such a manner that it does not involve 
any derivatives with respect to the t’s; the integral of H(ti, zα, ∂si / ∂zα) over an arbitrary 
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part V of the region G in t-space is equal to the flux of the vector-field si through the 
boundary of V.1 
 
 § 6.  Weierstrass’s formula.  A surface Σ embedded in our geodesic field F is 

extremal, and the integral W(Σ), (7) coincides with J(Σ) for this surface. 
 Let us then suppose we have an extremal Σ0 : 
 
(13)     zα = 1( )rz t tα

ɺ ⋯ ,   (t1 … tr) in G, 
 
lying in a region Ω of t-z-space and embedded in a geodesic field F that covers Ω.  We 

compare Σ0 with other surfaces Σ, (1) in Ω of the same boundary.  Under the notations: 
 

J(Σ) = J, J(Σ0) = J0 ; W(Σ) = W, W(Σ0) – W0 ; ∆J = J – J0 
 
we have: 

∆J = ∆(J – W) = (J – W) – (J0 – W0), 
 
because of the independence of W, and furthermore J0 = W0, because of the embedding of 
Σ0 in F.  In this simple fashion we arrive at Weierstrass’s formula: 

 

(14)    ∆J = J – W = ( , ; , )i
i iE t z z z dtα α α

Σ∫ ɺ , 

 
(15)  E(ti, zα; , )i iz zα α

ɺ  = [ ( , , ) ( , , )] ( )
i

i i
i i i iz

L t z z L t z z L z zα
α α α α α α− − −ɺ ɺ , 

 
the clue to which is the fact that the difference J – J0 is expressed by a single integral 
extending over Σ; Σ0 has been mysteriously juggled out.  In (15),

iz
L α depends on the 

arguments ti, zα, izα . 
 One may say that the method consists in replacing L by L – D, subtracting a suitable 
D of the type (5) from L; this process does not change the extremals of L.  The “suitable” 
choice of D is effected by solving the Jacobi-Hamilton equation (12). 
 Sufficient for a (“strong”) minimum is the positive-definite character of Weierstrass’s 
E-function: 
(16)     E(ti, zα, izα , izα

ɺ ) ≥ 0 . 
 
Here, the izα

ɺ range independently over all values from − ∞ to + ∞; izα = izα (t, z) are the 

slope functions of the embedding geodesic field, and the point (t, z) varies in a region Ω 
surrounding the extremal Σ0 in the t-z-space.  The existence of such a field is an integral 
part of Weierstrass’s criterion. 
 

                                                
 1 With such limitations as to the spread of V, of course, as are necessary for the statement to make 
sense: V = Vz has to be such for a given point (z) that all points (t, z) lie in Ω when (t) lies in V.  
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 § 7.  Invariance.  The ti may be subjected to an arbitrary transformation among 
themselves.  We might even replace the region G of the t-space by an arbitrary r-
dimensional manifold G, only parts of which can be referred to coordinates t1, …, tr.  The 
r quantities izα (i = 1, …, r) are to be treated as components of a covariant vector (with 

respect to the Latin indices, matched with the variables ti).  The Lagrangian L is to be 
transformed as a scalar density (of weight 1); i.e., it is to be multiplied with the absolute 
value of the functional determinant of the transformation of the t.  The integral J(Σ) then 
has an invariant significance – even when the whole G is not coverable by a single 
coordinate system t.  Covariance and contravariance are designated by the position of the 
indices in the usual way.  Some of the quantities – in particular, L, si, ipα , H, E – are 

densities in the sense just described; I would have denoted them by German letters, in 
accordance with the usage in my book “Raum, Zeit, Materie,” had I not to reckon with 
the Anglo-Saxon aversion to these types. 
 It is conceptually simpler to take as the realm of integration G the whole manifold, 
not a finite portion ( = compact subset) thereof.  We then must replace the boundary 
condition for Σ by the requirement that S coincides with the standard extremal Σ0 outside 
a sufficiently large finite portion of G (depending on Σ).  Under these circumstances, the 
difference ∆J, as its integrand vanishes outside that finite region, has a meaning (though 
not the integral J(Σ) itself.). 
 At a higher standpoint of invariance, the dependent variables zα may be included in 
the transformations.  But, in contrast to the ti, they should not be looked upon as a 
separate set in the row of r + ν variables t1, …, tr, z1, …, zν ; we have the case of 
“reduction,” not of “decomposition.”  The situation prevailing can be described in this 
way: An (r + ν)-dimensional manifold Ω is mapped upon the r-dimensional manifold G; 
this mapping – called the projection – is given once for all.  Thus, G may be considered 
as the manifold arising from Ω by identifying points ω in Ω with the same projection t.  
The coordinates t1, …, tr, z1, …, zν covering a part of Ω are subject to the restriction that 
the coordinates t1, …, tr have the same values at points ω with the same projection, but all 
transformations in agreement with this requirement are admissible.  Σ is a mapping of G 
in Ω: t → ω, such that the image ω has t as its projection.  The behavior of all our 
quantities could be easily discussed under this wider aspect of invariance, but I do not 
wish to dwell upon it here. 
 
 

Part 2.  Carathéodory’s determinant theory and its relation to the trace theory. 
 

 § 8.  Lagrangian of the determinant type.  Carathéodory uses a different 
independent integral.  He, too, starts with r functions: 
 
(17)     Si(t, z), 
 
from which he forms, with reference to a given surface Σ, (1), instead of the divergence 
(5), the functional determinant: 
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(18)   
( , ( ))i

k

dS t z t

dt
,  

i

k

dS

dt
=

i i

k k

S S dz

t z dt

α

α
∂ ∂+ ⋅
∂ ∂

. 

 
 Its integral over G is independent of Σ, as long as the boundary of Σ is preserved, for 
it gives the volume in the λ-space upon which the region G in the t-space is mapped by 
the transformation: 

Si(t, z(t)) = λi . 
 
 In accordance with the formation (18), we now take: 
 

(19)    ( )iD zα =
i i

kk

S S
z

t z
α

α
∂ ∂+ ⋅
∂ ∂

. 

 
This Lagrangian, too, has the property of possessing all surfaces as its extremals.  Since 
D is not linear in the arguments izα − the only one we put in evidence – one needs a little 

algebraic computation to compare( )iD zα for two sets of valuesizα : ( )iD zα = D and ( )iD zα
ɺ . 

 
 § 9.  An algebraic identity.  D = ( )iD zα is the determinant of certain quantities of the 

form: 
i
kS = i i

k ks zα
ασ+ . 

 
The elementi i

k ks zα
ασ+ ɺ of the second determinant( )iD zα

ɺ can be written as: 

 
i i
k kS uα

ασ+ , 

 
the iuα being the differencesi iz zα α−ɺ .  Application of the multiplication theorem of 

determinants readily leads to the formula: 
 

| i i
k kS uα

ασ+ | = i i i
k k kS uα

αδ π⋅ + , 

 
where the i

απ are determined by the equations: 

 
(20)     i r

rS απ = i
ασ . 

 I maintain that: 
(21)     i

απ = /
rz

D Dα . 

 Indeed, let i
kT be the inverse matrix of i

kS .  The general formula: 

 
dD /D = k r

r kT dS , 
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when applied to derivatives with respect toizα , yields: 

 
/

kz
D Dα = k r

rT ασ , 

 
and this shows exactly that (21) are the solutions of the equations (20).  Hence, the 
following identity obtains: 
 

(22)   ( )iD zα
ɺ = ( ) ( / )( )

i

i
i k k kz

D z D D z zα
α α αδ⋅ + −ɺ . 

 
 § 10.  Geodesic field and independent integral once more.  When the functions: 
 

Si(t, z),  ( , )iz t zα  
are such that: 

L = D,  
iz

L α =
iz

D α  for izα = ( , )iz t zα , 

 
Carathéodory calls the slope field( , )iz t zα geodesic.  In a geodesic field, (22) changes into: 
 

( )iD zα
ɺ = ( / )( )

i

i
k k kz

L L L z zα
α αδ⋅ + −ɺ . 

 
 The arguments of L and

iz
L α = ipα are here: ti, zα, ( , )iz t zα .  The independent integral 

takes on the form: 

W(Σ) = ( / )( )
i

i
k k kz

L L L z z dtα
α αδ

Σ
⋅ + − ⋅∫ ɺ . 

 
 All further developments follow the same line as Part 1. 
 The differential equations, though, that are imposed on Si by the requirement that the 
slope field ( , )iz t zα be geodesic are essentially more complicated.  The role of the 

Hamiltonian H in Part 1 is taken over by the determinant: 
 

1i i
k kL p z

L
α

αδ⋅ − . 

 
The theory will work only if this function, as well as L, is of constant sign in the region to 
be considered. 
 
 
 § 11.  Mutual relationship of the two independent integrals.  The relation between 
the two competing theories of Parts 1 and 2, which serve the same end, is now fairly 
obvious; they do not differ in the case of only one variable t.  In the general case, the 
extremals for the Lagrangian L are the same as for L* = 1 + εL, ε being an arbitrary 
constant.  Notwithstanding, Carathéodory’s theory is not linear with respect to L, but 
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applying it to 1 + εL, instead of L, and then letting ε tend to zero, we fall back on the 
linearity of Part 1.  One has to choose Carathéodory’s functions: 
 

Si(t, z) = ti + ε ⋅ si(t, z). 
 
 Neglecting quantities that tend to zero with ε more strongly than ε itself, one then 
gets: 

i

k

dS

dt
 = 1 + ε ⋅ 

i

i

ds

dt
, 

 
or Carathéodory’s D*, (19) becomes = 1 + εD, where D has the significance (5) of Part 1.  
One may therefore describe Carathéodory’s theory as a finite determinant theory, and the 
simpler one of Part 1 as the corresponding infinitesimal trace theory. 
 The Carathéodory theory is invariant when the Si are considered as scalars not 
affected by the transformations of t.  It appears unsatisfactory that the transition here 
sketched, by introducing the density 1 relative to the coordinates ti, breaks the invariant 
character.  This, however, is related to the existence of a distinguished system of 
coordinates ti in the determinant theory, consisting of the functions( , ( ))iS t z tɺ .  This 
remark reveals, at the same time, that, in contrast to the trace theory, it is not capable of 
being carried through without singularities on a manifold G that cannot be covered by a 
single coordinate system t. 
 
 § 12.  Special extremal slope fields.  Returning, for the rest of the paper, to the 
theory of Part 1, we keep to the definitions and notations explained there.  In my article in 
the Physical Review, I viewed the problem from a slightly different angle.  One is 
accustomed, in the classical case of one variable t and one unknown z, to perform the 
embedding by means of a field of extremals.  I therefore started with a field of extremal 
surfaces simply covering Ω, and I introduced the gradient: 
 
(23)     dzα / dti = ( , )iz t zα  

 
of the field surface passing through (t, z).  Such a gradient field of extremals is, according 
to (3), characterized by the relations: 
 

(24)     i iz z

ii z

L L
z L

t z

α α

α
β

β

∂ ∂ 
+ ⋅ −  ∂ ∂ 

= 0. 

 
 Conversely, if one is given the slope field ( , )iz t zα arbitrarily, one can find a 

corresponding field of surfaces provided equations (23) are completely integrable, the 
conditions of integrability being: 
 

k i k i
i ki k

z z z z
z z

t t z z

α α α α
β β

β β

   ∂ ∂ ∂ ∂− + ⋅ − ⋅   ∂ ∂ ∂ ∂   
= 0. 
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I proposed to call a slope field ( , )iz t zα satisfying the equations (24) an extremal slope 

field whether it be integrable or not. 
 With respect to a Lagrangian D of the special form (5), not only is every surface an 
extremal, but every slope field is an extremal field.  This is an immediate consequence of 
the fact that D is linear in izα , as we shall see at once.  Therefore, our geodesic field must 

needs be an extremal field for L.  On account of ipα = ∂si / ∂zα, it satisfies the conditions: 

 

(25)     
ii pp

z z
βα

β α

∂∂ −
∂ ∂

= 0. 

 
 For this reason, I conceived the geodesic fields in the Physical review as “special 
extremal slope fields,” and thus the essential modification imposed upon the classical 
concept of an extremal field appeared as dropping off integrability and replacing it by the 
new conditions (25).  For Carathéodory’s D, however, it is not true at all that every slope 
field is extremal – notwithstanding the fact that all surfaces are extremals of D.  This robs 
the notion of a special extremal field of its primary importance for our present purpose. 
 In order to justify our assertion that the left side of (24) vanishes identically for L = 
D, (5), one merely needs to observe that it does not contain the derivatives of ( , )iz t zα , 

since 
iz

D α = ∂si / ∂zα does not contain the variablesizα .  A surface zα(t) may be chosen 

such that zα(t), dzα / dti have arbitrarily given values at one specific point t.  Hence, our 
statement is evident from the fact that every surface is extremal for D.  He who is not 
afraid of a simple calculation could verify the averred identical vanishing at once. 
 
 

Part 3.  Second variation 
 
 § 13.  Legendre’s quadratic form.  Let us consider the Weierstrass E-function for 
definite values of ti, zα, izα , and expand it into a power series in terms of the variables iuα = 

izα
ɺ − izα .  The expression (15) shows that the constant and linear terms are missing, and 

the development starts with the quadratic terms: 
 
(26)    1

2
i k

i k

z z
L u uα β α β = 1

2 ( , , | )iF t z z uα α . 

 
 It should not go unnoticed that the discriminant of this quadratic form in the u’s is 
that determinant whose non-vanishing makes possible the solving of the equations (9) 
for izα .  Our form F, when taken on Σ0, i.e., for: 

 
zα = ( )z tα

ɺ , izα = / idz dtα
ɺ , 

 
may be designated by F0(t | u).  The positive definite character of the quadratic form F0(t, 
u) – for every (t) in G – is, as is seen from this whole development, a sufficient condition 
for a “weak minimum” (Legendre’s condition). 
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 Whereas Weierstrass’s condition refers explicitly to an embedding geodesic field, 
Legendre’s condition does not.  Does it therefore guarantee a weak minimum without 
assuming the existence of an embedding geodesic field?  No, that is exactly where 
Legendre was wrong.  But, only the approximate geodesic field (Jacobi’s condition) 
enters into the proof of Legendre’s criterion – approximate to the same degree as (26) 
approximates the E-function.  Legendre’s stunt of subtracting a divergence: 
 

( )i
i

d
s z z

dt
α β

αβδ δ  

 
from the integrand of the second variation δ2J is exactly the same procedure for that 
infinitesimal variation as the Weierstrass-Hilbert-Carathéodory method of subtracting a D 
from L with respect to the finite “variation” ∆J. 
 
 § 14.  Trivial preparations for solving the problem of embedding.  This 
coincidence will become clearer when we now attack the problem of embedding a given 
extremal: 

Σ0 : z
α = 1( )rz t tα
ɺ ⋯  

 
in a geodesic slope field.  We have to construct a solution si of (12) such that ∂si / ∂zα 
reduces to ( )ip tαɺ for zα = ( )z tα

ɺ .  Here, let ( )ip tαɺ be the value of ipα =
iz

L α for zα = ( )z tα
ɺ , izα = 

/ idz dtα
ɺ , so that we have, conversely: 

 
/ idz dtα

ɺ = − ( , ( ), ( ))ip
H t z t p t

α
ɺɺ . 

 
 Σ0 being an extremal, the equation: 
 

/i idp dtαɺ = ( , ( ), ( ))
z

H t z t p tα ɺɺ  

 
obtains [observe that 

z
H α =

z
L α , because of (11)].  We rid ourselves of the constant and 

linear terms in si and H in the following simple way: 
 Writing ( )z tα

ɺ + zα, ( )i ip t pα α+ɺ , instead of zα and ipα , we put: 
 

( , ( ) ) ( , ( ))i is t z t z s t z t+ −ɺ ɺ = ( ) ( , )i ip t z t zα
α σ+ɺ , 

 

( , ( ) , ( ) ) ( , ( ), ( ))H t z t z p t p H t z t p t+ + −ɺ ɺɺ ɺ = 
i

i

i i

dp dz
z p

dt dt

α
αα

α−
ɺ ɺ

+ H*(t, z, p). 

 
 The differential equation (12) now changes into: 
 

i

it

σ∂
∂

= , ,
i

iH t z
z

α
α

σ∗  ∂
 ∂ 

, 
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and the initial conditions: 
is

zα
∂
∂

= ( )ip tαɺ  for z = ( )z tɺ  

into: 
i

zα
σ∂

∂
= 0 for z1 = … = zr = 0. 

 
 The Taylor expansions of σi(t, z) and H*(t, z, p) in terms of z or z, p, respectively, 
contain no constant and linear terms.  Restoring our original notations s and H, instead of 
σ and H*, we thus have shown that we may put, without any loss of generality: ( )z tα

ɺ = 0, 

( )ip tαɺ = 0. 
 
 § 15.  First approximation: Legendre’s differential equations.  When limiting H to 
its quadratic term: 
(27)   H2 = 1 1

2 2
i i k

i ikA z z A p z A p pα β α β αβ
αβ β α α β+ + , 

 
the quadratic part of si: 
(28)     1

2
is z zα β
αβ  

 
provides an exact solution of the Jacobi-Hamilton differential equation.  The coefficients 
A and isαβ  are functions of t only and are, of course, written in symmetrical fashion: 

 
Aαβ = Aβα , ikAαβ = kiAβα , isαβ = isβα . 

 
 (12) yields the following system of differential equations for the unknown isαβ : 

 

(29)    
i

i

ds

dt
αβ = i i k

i ikA A s A s sρ ρσ
αβ β ρα ρα σβ+ + . 

 
 The transformation character is indicated again by the position of the indices.  It 
should be added that the three A’s on the right side are densities of weight +1, 0, −1, 
respectively.  A solution of these Legendre equations furnishes what may properly be 
called an approximate geodesic field.  (Legendre’s method, as he applied it to the second 
variation, would lead exactly to the same result.) 
 Whereas Legendre’s condition is only a part of the much stronger Weierstrass 
condition, it is to be guessed that the existence of a geodesic field, in the approximate 
sense of the “second variation,” implies its existence in the exact sense.  Our conjecture 
will be proved in the last Chapter.  The result is twofold: 
 1) The embedding of Σ0 by a geodesic slope field is always locally possible.  This 
sufficies for answering all questions about local minima (when only surfaces Σ are 
admitted to competition that differ from Σ0 in a small enough neighborhood of a point t). 
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  2) The embedding goes through, even in the large, for the whole extremal Σ0, 
provided the first approximation − viz., the solution of Legendre’s equations − can be 
effected. 
 
 § 16.  Appendix: Necessary Local Conditions.  Let us consider the extremal Σ0 : z

α 
= 0 in the neighborhood of a given point ti = 0

it , and denote the E-function at that point of 

Σ0  − namely, E(t0 , 0; 0, iuα ) – by 0( )iE uα .  One gets a necessary local condition for a 

strong minimum by putting a little cone-shaped hood on Σ0 .  Its basis may be defined by 
f(τ1 … τr) ≤ 1 in terms of the relative coordinates τi : ti = 0

it  + ετi ; here, ε is a positive 

constant doomed to approach zero and f is a ray function, i.e., a positive homogeneous 
function of degree 1: 

f(λτ1, ..., λτr ) = λ ⋅ f(τ1, ..., τr )  (for λ  ≥ 0); 
 

f(τ1, ..., τr ) > 0  except for (τ1, ..., τr) = (0, …, 0). 
 

 In terms of further arbitrary constants vα, the varied surface Σ itself – the “hood” – is 
described by: 
    zα = εvα {1 – f(τ1, ..., τr)} for f(τ1, ..., τr) ≤ 1, 
 
         = 0 outside this region. 
 
 The inequality ∆J ≥ 0 with the expression (14) for ∆J and with ε → 0 leads to: 
 
[1]     0

( ) 1
{ ( ( ))}i i

f
E u v fα α

τ
τ

≤
=M ≥ 0 . 

 
 fi(τ) are the derivatives df / dτi, M is the integral extending over the domain f(τ1, ..., 

τr) ≤ 1 in τ-space, which that should now be looked upon as the affine “tangent space” of 
the r-dimensional manifold G in (t0); the left side of [1] is invariant in this sense.  As the 
fi(τ) − the components of the normal vector – are homogeneous of order zero, the integral 
may equally well be interpreted as an average over the “sphere” of all directions in τ-
space. 
 One can show, by specializing the function f in an appropriate manner, that not only 
the integral [1] but every element of it must be ≥ 0.  We choose a positive constant k and 
put: 
[2]    f(τ1 τ2 ... τr)    = max(|τ1 |, k|τ2 |, …, k| τr |) for τ1 ≥ 0, 
      = max(k|τ1 |, k|τ2 |, …, k|τr |) for τ1 ≤ 0. 
 
 Afterwards, we let k in [1] tend to zero.  The volume of the negative half τ1 ≤ 0 of the 
region f(τ) ≤ 1 equals 2r−1/kr, whereas the volume of the positive part τ1 ≥ 0 equals 
2r−1/kr−1.  Let us write, for a moment: 
 
[3]     (1, 0, …, 0) = (u1, u2, …, ur). 
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 fi is of order k in the negative half, whereas it differs from ui by quantities of the same 
order in the positive half of our region.  Considering the fact that ( )iE uα for arguments 

iuα of the order of magnitude of k is = O(k2) = o(k) one finds for the left side of [1], after 

multiplication by (k/2)r−1, an expression: 
 

E0(v
αui) + 

1

k
o(k), 

 
and consequently one arrives with k → 0 at: 
 
[4]      E0(v

αui) ≥ 0. 
 
 The particular covariant vector [3] may be here replaced by an arbitrary one.  The 
result, formerly obtained in a slightly different manner by McShane,1 is the following: 
 
 Necessary local condition for a strong minimum: Unless [4] holds for arbitrary 
values vα, ui at any point (t0) of G, the surface Σ0 cannot have the minimizing property. 
 
 An immediate consequence is the similar: 
 
 Necessary local condition for a weak minimum: The quadratic form F0(t | iuα ) must 

be ≥ 0 for such values of the variables iuα that nullify all the quadratic forms 

i k k iu u u uα β α β− . 

 
 In the general case r > 1, ν > 1, there yawns a wide gap between the necessary and 
sufficient conditions; unfortunately, it seems not likely that one will be able to set up a 
more complete set of local necessary conditions that are comparable in simplicity to 
McShane’s inequalities [4]. 
 
 

Part 4.  Construction of Geodesic Fields 
 
 § 17.  Cylindrical domains and fields.  For the purpose of the local problem, G can 
be assumed to be a cube.  We shall solve the problem in the large for cylindrical regions 
G, i.e., for regions G which are the product of an (r – 1)-dimensional manifold G* and the 
open one-dimensional continuum – such that the points P of G appear as pairs (P*, t) 
consisting of an arbitrary point P* of G* and an arbitrary number t.  G* may be referred 
(locally) to coordinates t2, …, tr, and t may be used as the coordinate t1.  Since the 
Hamilton-Jacobi equation (12) – preferably in its undifferentiated form as stated at the 
end of § 5 – is invariant under topological transformations, our method yields a solution 
for all manifolds topologically equivalent to a cylinder.  The complete intrinsic 
topological characterization of the ‘cylinders” is not yet known, but we certainly get a 

                                                
 1 Annals of Math. 32 (1931), 578.  
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fairly general picture of the situation in the large, even though we have to make this 
restriction of a topological nature.  Its necessity shows, however, that our mode of 
approach is not quite adequate.  Every “cell,” as for instance, a convex region in ordinary 
(t1, …, tr)-space, is, of course, a cylinder. 
 We start out to construct in our cylindrical manifold G a solution si for which all 
components s2, …, sr except s1 vanish identically.  Writing t, s, instead of t1 and s1, and 
dropping the upper index 1 where it appears with a similar meaning, we reduce (12) to 
the partial differential equation with only one unknown s: 
 

(30)   
s

t

∂
∂

= H(t, zα, pα), pα =
s

zα
∂

∂
  (− ∞ < t < + ∞) 

 
The coordinates t2, …, tr play now merely the role of accessory parameters.  We have: 
 
(31)  H = 0,  

z
H α = 0, pH

α
= 0     for   z = 0,  p = 0 

 
(i.e., for z1 = … = zν = 0, p1 = … = pν = 0), and our aim is to find a solution s(t, zα) 
making: 

(32)    s = 0,  
s

zα
∂

∂
= 0 for z = 0. 

 
 One can get at the partial differential equation (30) with two different tools: either 
with the theory of characteristics, or, following Cauchy, by power series and their 
dominants.  Let us first go the former way. 
 
 § 18.  The characteristic equations.  The differential equations for the 
characteristics of (30) read as follows: 
 

(33)    
( , , ),

( , , ).

p

z

dz
H t z p

dt
dp

H t z p
dt

α

α

α
β

β

βα
β


= −


 =


 

 
 When one is called upon to determine that solution s(t, zα) of (30) which satisfies the 
initial conditions (32), one has to has to proceed in the following manner: One integrates 
(33): 
(34)    zα = ζα(t; 0zβ ),  pα = πα(t, 0zβ ), 

with the initial values: 
ζα(0; 0zβ ) = 0zα , πα(0, 0zβ ) = 0, 

and the further equation: 
ds

dt
= − pp H

αα
α

⋅∑  

by quadrature: 
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(35)    s = σ(t; 0zα ) =
1

0

d
dt

dt

α

α
ζπ 

 
 
∫ . 

 
 One then must express the initial values 0zα by means of the sα themselves in solving 

the equations: 
(36)     zα = ζα(t; 0zβ ),  

 
and in doing so one changes the quantities πα , (34), and σ, (35), into functions pα and s 
of (t, zα).  They satisfy all the relations (30). 
 The solution of the ordinary differential equations (33) is possible in the 
neighborhood of t = 0 for sufficiently small initial values0zα .  Furthermore, the desired 

inversion of the functions (36) near t = 0, zα = 0 is possible since the functional 
determinant: 

(37)    
0z

α

β
ζ∂

∂
 equals 1 for t = 0. 

 
This remark settles the local question. 
 
 § 19.  The characteristics in the large.  The first step goes through in the large, too.  
That is to say: to a finite interval – a ≤ t ≤ a arbitrarily given, one may assign a positive 
constant ε such that (33) is solvable throughout that whole interval, provided all the 
initial values 0zα are of modulus less than ε.  Let us briefly repeat the well-know proof. 

 Our differential equations (33) are of the type: 
 

idx

dt
= fi(t; x1, …, xn)    (i = 1, …, n) 

 
where fi(t; 0, …,0) = 0.  Combined with the initial conditions xi =

0
ix for t = 0, one replaces 

them by the integral equations: 

xi(t) =
0
ix +

0
( ; ( ))

t

i
f t x t dt∫  

 
and determines successive approximations x(0), x′, x″, … recursively according to: 
 

(38)    x(h+1)(t) = x0 + ( )

0
( ; ( ))

t hf t x t dt∫   [x(0)(t) = x0]. 

 
 Using the abbreviation | x | for the largest of the n moduli | x1 |, …, | xn |, and 
supposing the functions fi to satisfy the Lipschitz inequality: 
 

| f(t; x) – f(t; y) | ≤ M | x – y |   (− a ≤ t ≤ a), 
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as long as | x | ≤ A, | y | ≤ A, one sees from (38) that the sequence of the successive 
approximation is majorized by the partial sums of the series: 
 

0

1
( )

!
h

h

Mt
h

ε
∞

=
∑ = ε ⋅ eMt     (t ≥ 0), 

 
and that one is allowed to go one step further in this development as long as the 
preceding approximations keep within the range | x | ≤ A.  It is supposed that the initial 
values x0 satisfy the inequality | x0 | ≤ ε.  The first step is all right because the integrand 
in: 

x′ – x0 = 0

0
( ; )

t
f t x dt∫  

 
can be replaced by the difference f(t; x0) – f(t; 0) of modulus less than εM.  Hence, the 
whole estimation is legitimate, and the approximations converge to a solution x for 
which: 

| x(t) | ≤ ε ⋅ eM| t |    (− a ≤ t ≤ a), 
 

when ε is taken as A ⋅ e−Ma. 
 Notwithstanding the solubility of the characteristic equations (33) thus proved, the 
construction in the large of the embedding geodesic field might fail in the second step, 
because the functional determinant: 
 

(39)    
0z

α

β
ζ∂

∂
  for 1

0z = … = 0zν = 0 

 
becomes zero for some value of t (Jacobi’s “conjugate point”).  Therefore, one has the 
necessity of requiring Legendre’s equations (29) to have a solutionisαβ throughout the 

whole domain G. 
 
 § 20.  Determination of the geodesic field by means of characteristics.  But, this 
admitted, one is able to overcome the obstacle just mentioned.  We split off the quadratic 
part: 

2( , )i ks t zα =
,

1
( )

2
i ks t z zα β
αβ

α β
∑  

 
as formed by the given solution ( )i ks tαβ of Legendre’s equations as our first 

approximation, and thus put: 
si(tk, zα) = 2( , ) ( , )i k i ks t z s t zα α+ , 

 

2 2 2( , , / ) ( , , / )i i i i iH t z s z p H t z s zα α α α
α∂ ∂ + − ∂ ∂ = ( , , )i iH t z pα

α . 

 
 The equation (12) remains valid for the “corrections”s andH : 
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i

i

s

t

∂
∂

= , ,
s

H t z
z

∂ 
 ∂ 

, 

 
but the situation is improved, insofar as the quadratic part 2H of ( , )H z p contains no terms 

zα zβ (only products ip zβ
α , i kp pα β ).  It is material that we start with any given solution of 

Legendre’s equations without introducing the “cylindrical” specialization s2 = … = sν = 0 
for the ( )i ks tαβ .  The corrections is , though, shall be determined in the cylindrical 

manner again: 2s = … = rs = 0 .  Thus, after returning to the old notations s, p, H, instead 
of s , p , H , all previous relations are preserved, but we have won the further condition: 
 
(40)    

,z z
H α β = 0 for z = 0, p = 0. 

 
We treat equation (12) with the new Hamiltonian H by the method of characteristics 
again, and now prove the non-vanishing of the determinant (39). 
 For this purpose, we must consider the derivatives: 
 

α
βζ =

0z

α

β
ζ∂

∂
, παβ = 

0z
α
β

π∂
∂

 for 1
0z = … = 0zν = 0. 

 
 If ( )C tα

β denotes the second derivative: 

 

,p z
H β

α
 for z = 0, p = 0, 

 
one deduces, by differentiating the second line of equations (33) with respect to0zβ and 

taking into account the fact (40): 
d

dt
αβπ

= ( ) ( )C t tγ
α γβπ . 

 
 Since παβ = 0 for t = 0, this leads at once to the result that παβ(t) = 0 for all values of t.  
In view of this situation, the first line (33) gives rise to the relations: 
 

d

dt

α
βζ

= − ( ) ( )C t tα γ
γ βζ . 

 
 Hence, the determinant ∆ of the α

βζ fulfills the simple equation: 

 

(41)     
d

dt

∆
+ c(t) ∆ = 0, 
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where c(t) is the trace of the matrix || ( )C tα
β ||.  The initial value of ∆(t) for t = 0 is 1; 

hence, from (41): 

∆(t) = 0
( )

t
c d

e
τ τ−∫ . 

 
 This shows that ∆(t) is positive throughout the whole interval – a ≤ t ≤ a, and it even 
gives a fixed positive lower limit: ∆ ≥ e−ca, c being an upper bound to c(t) in that interval.  
One easily infers now that a certain neighborhood N0 of z0 = 0 in a z0-space is put into 

one-to-one correspondence with a neighborhood Nt of z = 0 in z-space by means of the 

relations (36) for every fixed t in the interval – a ≤ t ≤ a. 
 Thus, one succeeds in building up the correction si that is to be added to Legendre’s 
approximation 2

is  in order to get an exact geodesic field. 

 
 § 21.  The method of power series.  One can hardly avoid a feeling of discontinuity 
regarding this whole process of solving the Jacobi-Hamilton equation – an equation that 
served as a tool for the theory of extremals – by means of its characteristics, which are 
something much akin to, but not quite identical with, the extremals.  Furthermore, one 
ought to understand better why everything goes smoothly once the existence of the first 
approximation is granted. 
 Anyhow, I thought it worthwhile to carry through also the second, more direct, 
method: the application of power series whose convergence has to be secured through 
simple dominant series.  Here, the reason becomes perspicuous: the subsequent 
approximations depend on linear equations only, whereas Legendre’s equations for the 
first approximation are of the quadratic Ricatti type. 
 For our present purpose, one must assume at the outset that H is analytic in z and p, 
and is thus given as a power series in terms of all these variables zα and ipα .  The 

expansion begins with the quadratic terms H2 only.  Starting with a given solution ( )i ks tαβ  

of Legendre’s equations, we make use of the same trick as in § 20, and thus are able to 
assume H2 to contain no products zα zβ.  Let us subtract from H the part bilinear in z and 
p: 
(42)    H = ( ) i

iC t p zα β
β α + H*, 

 
and put the first term on the left side of our equation (12).  Our solution si should be a 
power series in z, the terms of which we arrange by increasing order: 
 
   si(t, z) = 3 4

i is s+ + … 

 

   ( , )is t zα = 11
1

1

!
( ; )( ) ( )

! !
nnin

s n n t z z
n n

νν
ν

ν
∑ ⋯ ⋯

⋯
 (n1 + … + nν = n) 

 
is the totality of all terms of order n.  The lowest order occurring is 3.  The coefficients of 
the nth approximation i

ns have to satisfy equations of the type: 
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(43)  1( ; )
( )

i

ii

ds n n t
C t

dt
αν
β

β
−∑

⋯
nβ ⋅ si(… nα+1 … nβ – 1 …; t) = F(n1 … nν; t). 

 
 The si in the second term on the left side contain the same indices n1 … nν as the first 
term if β = α; the same holds for β ≠ α, except that nα is increased and nβ diminished by 
1.  The right-hand side becomes a known function after the preceding approximations of 
order lower than n have been computed.  This was the reason for our shoving over the 
first part of H in (42) to the left side of our equations. 
 
 § 22.  Solving and majorizing the differential equations for the approximations.  
At this stage, we introduce again our assumption of the cylinder-like topological nature of 
G, enabling us to put s2 = … = sr = 0 and to forget about the variables t2, …, tr.  (43) are 
changed into ordinary differential equations: 
 

(44)  1( ; )
( )

ds n n t
C t

dt
αν
β

β
−∑

⋯
nβ ⋅ s(… nα+1 … nβ – 1 …; t) = F(n1 … nν; t), 

 
which we want to solve under the initial conditions: 
 

s(n1 … nν; t) = 0 for t = 0. 
 
The coefficients ( )C tα

β are the same as in § 20. 

 One knows how the solution is effected explicitly by an infinite series.  One first 
combines the differential equations with the initial conditions into an integral equation: 
 

s(t) =
0 0

( ) ( ) ( )
t t
F t dt C t s t dt+∫ ∫ . 

 
s stands here for all those s(n1 … nν ; t) for which n1 + … + nν has the prescribed value n  
≥ 3, arranged in a single column; F has the same significance, while C(t) is the matrix of 
the linear transformation occurring in (44): 
 

s(n1 … nν ) → ( )C tα
β

β
∑ nβ ⋅ s(… nα + 1 … nβ – 1 …). 

 The solving series: 
s(t) = s(0)(t) + s(1)(t) + s(2)(t) + … 

 
is computed by successive integrations according to: 
 

s(0)(t) = 
0

( )
t
F dτ τ∫ ,  s(h+1)(t) = ( )

0
( ) ( )

t hC s dτ τ τ∫ . 

 
 This was mentioned for the purpose of deducing from it the majorizing property: if 
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(45)  | ( )C tα
β | ≤ ( )tα

βΓ , | F(n1 … nν ; t) | ≤ Φ(n1 … nν ; t) 

 
then the corresponding solution σ of the equations with Γ and Φ, instead of C and F, 
dominates s: 

| s(n1 … nν ; t) | ≤ σ(n1 … nν ; t). 
 
 Let us assume, in particular, that we are in possession of upper bounds: 
 
(46)   | ( )C tα

β | ≤ Γ,  | F(n1 … nν ; t) | ≤ An ⋅ e(n−2) At, 

 
involving certain constants Γ, A, An, and valid throughout the interval 0 ≤ t ≤ a.  It is 
essential that neither Γ nor A depend on n.  A bound like Γ can be assigned a priori, 
whereas the proper choice of A and An is to be kept open for later decision.  With these 
dominants, (46), instead of (45), all the elements of our column s(n1 … nν; t) become 
equal. σn(t) and the majorizing system (44) reduces to the simple equation: 
 

nd

dt

σ − nΓ ⋅ σn = An ⋅ e(n−2) At, 

with the solution: 

σn = 
( 2)

nA

n A n− − Γ
{ e(n−2) At − enΓt}. 

 If: 
1

3
A – Γ = B 

 
is positive then the denominator (n – 2)A – nΓ will be ≥ nB > 0 for n ≥ 3.  Thus, one is led 
to the estimation: 

(47)   | s(n1 … nν ; t) | ≤ 
1

nB
⋅ An e

(n−2) At. 

 Consequently: 

s(t, zα) is dominated by 
3

n

n

A

nB

∞

=
∑ ⋅ zn e(n−2) At, 

 

pα =
s

zα
∂

∂
is dominated by 

3

n

n

A

B

∞

=
∑ ⋅ zn-1 e(n−2) At, 

 
(z = z1 + … + zr). 

 
 § 23.  Recursive formula for the upper bounds.  In order to determine an upper 
bound of the desired form (46) for F(n1 … nν; t), we first have to majorize the given 
Hamiltonian H(t, zα, pα).  Such a dominant may obviously be chosen in the form: 
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2( )

1 ( )

M z p

R z p

+
− +

− Mz2, 

 
since the products zα zβ in the quadratic term H2 of H are missing. p stands for p1 + …+ 
pν , just as z stands for z1 + … + zν.  The factors R and M are constants valid throughout 
the whole interval – a ≤ t ≤ a.  Γ = 2M is then a proper upper bound for the ( )C tα

β , and 

H* is dominated by: 

(48)     
2( )

1 ( )

M z p

R z p

+
− +

− M(z2 + 2zp). 

 
 We now replace p by its dominant as given at the end of the last section; that is, by z ⋅ 
f(ζ), where: 

(49)     f(ζ) = 2

3

n
n

n

A
B

ν ζ
∞

−

=
⋅∑  

 
depends only on the combined argument ζ = z ⋅ eAt.  The dominant (48) is still enlarged 
when one replaces R in the denominator by R ⋅ eAt; it then takes on the form: 
 

(50)    
2 2(1 ( ))

1 (1 ( ))

Mz f

R f

ζ
ζ ζ

+
− +

− Mz2(1 + 2f(ζ)), 

 
 The coefficient of zn herein is an upper bound for F(n1 … nν; t) provided that the 
inequalities (47) prevail for all orders less than n.  Because (50) equals z2 times a 
function of ζ = z ⋅ eAt, that upper bound is precisely of the form (46).  In this way, we 
have arrived at a proof of (47).  The factors An are determined by the following recurrent 
equation for the generating function (49): 
 

2 2(1 ( ))

1 (1 ( ))

Mz f

R f

ζ
ζ ζ

+
− +

− Mz2(1 + 2f(ζ)) =
3

n
n

A
∞

=
∑ zn e(n−2)At 

or 

(51)    
2(1 )

1 (1 )

f

R fζ
+

− +
− (1 + 2f) =

B

Mν
⋅ f. 

 
 § 24.  The auxiliary quadratic equation.  Final conclusions.  The recurrent 
computation of the coefficients An of f(ζ) guarantees that they are positive, whereas the 
solution of the quadratic equation (51) for f will show that the series (49) is convergent in 
a circle round the origin.  This settles the convergence for our successive approximations. 
 But let us be a little more explicit!  On putting: 
 

Rζ = u,  1 + f = ϕ, 
our equation becomes: 
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2

1 u

ϕ
ϕ−

= 2 1
B B

M M
ϕ

ν ν
   + − +   
   

. 

 
 Hence, we choose a constant α > 2, take β = α – 1, and consider the equation for ϕ: 
 

ϕ2 = (αϕ – β)(1 – ϕu). 
 If 
(52)     ϕ = a0 + a1u + a2u

2 + … 
 
is its solution with the initial coefficient a0 = 1 then the inequalities (47) will hold with: 
 

B = νM(β – 1), 
1

3
A = M[ν(β – 1) + 2], 

 
An /B = an−2R

n−2. 
 We find: 

(53)   ϕ =
2( ) ( ) 4 (1 )

2(1 )

u u u

u

α β α β β α
α

+ − + − +
+

. 

 
 The square root must be taken with the minus sign at u = 0 in order to have the 
expansion (52) of ϕ start with the term 1.  The quadric under the square root: 
 

(βu – α)2 – 4β = β2(u – u1)(u – u2) 
has two positive roots: 

u1, u2 = (a ( )1
2α β

β
∓ . 

 
 Cauchy’s integral formula gives the following expression for an: 
 

an = 1

1 ( )

2 nk

u du

i u

ϕ
π +∫ . 

 
The integral extends over a small circle k about the origin.  The function ϕ(u) is regular in 
the complex u-plane to be slit along the line u1 ≤  u ≤ u2 .  It has no pole, since the 
numerator in (53) vanishes for u = − 1/α, where 1 + αu = 0, and it is finite at infinity.  For 
negative real values of u the square root in (53) is positive, so that the value of ϕ at 
infinity equals β/α.  Thus, K may be replaced, for n ≥ 1, by a path closely surrounding the 
incision.  One adds together in the usual manner the contributions from the opposite 
points on the two borders of the slit, and thus arrives at the formula: 
 

(54)    an =
2

1

2 1
1

( )( )

2 (1 )

u

nu

u u u u
du

u u

β
π α +

− −
⋅

+∫    (n ≥ 1) 
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which proves anew the positiveness of an .  In the case n = 0 one has to add to the path 
around the slit an infinitely large circle K whose contribution will be: 
 

1

2 K

du

i u

β
α π

⋅ ∫ =
β
α

. 

 
 Since a0 = 1 and 1  − (β/α) = 1/α one finds here: 
 

(55)    
1

α
=

2

1

2 1( )( )

2 (1 )

u

u

u u u u
du

u u

β
π α

− −
⋅

+∫ . 

 
(55) yields the following bound for (54): 
 

an ≤ 
1

1 1
nuα

⋅ =
1

2

n

β
α α β
 
  − 

. 

 

 Let us put β = γ2, α = γ2 + 1, and replace by 
1

3
A in the final result.  We then find pa = 

∂s / ∂zα to be dominated by: 
2

3 | |
2

11 1

n

A t

n

z
Rze

γ
γ γ

∞

=

   ⋅   + −   
∑ , 

where: 
z = z1 + … + zν, A = M[ν(γ2 − 1) + 2]. 

 
 The number γ > 1 may be chosen at random, whereas M and R are fixed by the nature 
of the Hamiltonian H(ti, zα, ipα ) and the solution ( )is tαβ of Legendre’s equations.  A 

reasonable choice for γ would be γ = 2. 
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Introduction 
 

 The calculus of variations for multiple integrals – viz., several independent variables 
and several desired functions – exhibits some characteristic difficulties, as long as one 
wishes to proceed from the derivation of the Euler differential equations to the statement 
of necessary and sufficient conditions.  For that reason, from the earliest times onward 
only a few first steps towards the presentation of a “Legendre condition” were suggested 
1).  Caratheodory wrote the first comprehensive work 2).  His methods in the calculus of 
variations 3), which consequently made use of the connection between the Hilbert 
“independent integrals” and the Hamilton-Jacobi partial differential equation, have also 
proved fruitful in overcoming the initial difficulties in precisely this case. In between 
these two approaches, there is the notion of a “geodesic field,” which one obtains as one 
does in the special case of ray optics as the wave surfaces (i.e., the eikonal) of the rays.  
Carathéodory’s “Legendre condition” and “Weierstrass E-function” have appeared to be 

something other than one suspected up to now.  As a particular lemma for the mastery of 
geodesic fields he devised a sort of generalized Legendre transformation that reduced to 
something different from the ordinary one in the case of line integrals. 
 The algebraic and analytical properties of this Legendre transformation, which has 
very little to do with the calculus of variations, took up the most space in Carathéodory’s 
treatment.  Thus, a representation would be welcome in which the variational problem 
appears at the outset and remains in the foreground; it will be given in the first chapter of 
the following work, which will likewise serve for its generalization in the second.  It also 
shows that one may make many things much simpler when one has it at one’s disposal.  
Thus, I will first derive the E-function and the Legendre condition with few calculations, 

and then the write down the comprehensive system of formulas for the Legendre 
transformation that I will need for later purposes.  In the beginning, I choose the path that 
Carathéodory followed in his book 4), which truly represents the most elegant, and 

                                                
 1 ) Clebsch, Crelles Journ. 56 (1859), pp. 122-148; Hadamard, Bull. Soc. Math. de France 30 (1902), 
pp. 253-256; 33 (1905), pp. 73-80; McShane, Ann. Math. 32 (1931), pp. 578. – Prange treated, inter alia, 
the case of two independent and two dependent variables in his Diss. (Gött. 1915); he employed a Legendre 
transformation as a means of integrating the Euler differential equations. 
 2 ) Carathéodory, Acta Szeged 4 (1929), pp. 193-216. 
 3 ) Carathéodory, Variationsrechnung und partielle Differentialgleichungen erster Ordnung, Leipzig 
and Berlin 1935. 
 4 ) pp. 197, et seq.  He gave it for the first time in his lectures on geometrical optics in Summer 1934. 
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likewise simplest, path to all of the basic formulas of the calculus of variations.  Here, 
one may convince oneself that one brings a difficult problem to its solution in an 
exceptionally quick and compelling way by this means. 
 However, this theory is still incomplete in one essential point: One has shown that 
any surface that is intersected transversally by a geodesic field 1) is a solution of the 
variational problem when the Legendre and Weierstrass conditions are satisfied, 
moreover, and it has been proved that any such surface is an “extremal,” i.e., it satisfies 
the Euler differential equations.  However, in order to prove that these three conditions – 
viz., those of Euler, Legendre, and Weierstrass – when formulated in a particular way, are 
necessary (sufficient, resp.), one must be able to “embed” each (sufficiently small) piece 
of an extremal in a geodesic field, i.e., to find a geodesic field that intersects it 
transversally.  The second chapter of this work is dedicated to the proof of this 
embedding theorem. 
 In the case of a single desired function there is nothing to prove: One needs only to 
construct more extremals in the neighborhood of the given extremal; here, any extremal 
field is a geodesic field.  The theorem is also very easy to prove in the case of a single 
independent variable; in that case, any geodesic field is an extremal field, and the 
extremals are the characteristics of the Hamilton-Jacobi equation. 
 Things are different in the general case.  However, one also arrives at the proof here 
with the help of the theory of characteristics.  Namely, the geodesic fields will be still be 
obtained as the solutions of a single partial differential equation, in such a way that one 
can choose the system of functions that one uses to treat it with here up to an arbitrary 
function.  When one does this in a particular way – as I show – then each characteristic 
curve of the partial differential equation that contacts the extremal surface lies completely 
within it.  One thus needs only to choose the Cauchy initial values suitably in order for all 
of the characteristics that begin in the extremals to lie completely within them, and then 
they will, in fact, be transversally intersected by the geodesic field. 
 In general, the geodesic field will intersect no other extremals transversally, and is 
therefore not indeed an extremal field.  However, that is also completely unnecessary, 
and precisely this circumstance pushes the use of the notion of a “geodesic field” into a 
brighter light.  In order to be able to write down the Weierstrass formula, one needs, in 
fact, precisely a geodesic field and nothing more 2). 
 In the third chapter, I give the beginnings of a theory of discontinuous solutions for 
multiple integrals.  Here, as well, the latter viewpoint plays a decisive role, namely, that 
one does not necessarily have to construct a field of discontinuous solutions.  The 
geodesic fields in canonical variables prove to be, moreover, the most convenient for the 
presentation of the generalized Erdmann equations. 
 

                                                
 1 ) For the definition of this notion, cf. sec. 2 of this work. 
 2 ) Recently, Weyl [Phys. Rev. 46 (1934), pp. 5050; Ann. Math. 36 (1935), pp. 607] has made a new 
attempt, and likewise, with some modification, an extremal goes through a geodesic field that likewise 
obeys the Hamilton-Jacobi method, and seems much simpler than what is presented here.  Weyl’s formulas 
are all linear, as in the simple problems, whereas for us determinants of linear expressions always appear.  
However, it also happens that the Weyl theory is not in a position to answer all of the questions that one 
can pose in the calculus of variations.  Namely, transversality can only be defined by nonlinear formulas in 
the general problems, and therefore it follows that in the Weyl theory, simply stated, it is impossible to 
compare surfaces that do not possess the same boundary. 
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First Chapter 
 

The geodesic field and the Legendre transformation 
 

 1.  n functions: 
(1.1)      xi(tα) 
 
of µ variables 1) define a µ-dimensional manifold in the n + µ-dimensional space of the xi 

, tα .   
 Their derivatives, which we briefly denote by: 
 

(1.2)      ix

tα

∂
∂

= piα , 

 
shall be piecewise continuous and differentiable.  If Ψ(xi , tα) is an arbitrary function in 
space then we can replace the xi with the functions (1.1), in particular; i.e., we consider 
the function to be defined on our surface, in particular.  We then denote its derivatives on 
the surface by the plain d 2); one thus has: 
 

(1.3)     
d

dtα

Ψ
= i

i

p
t xα
α

∂Ψ ∂Ψ+
∂ ∂

 3). 

 
 We will employ this differential operator when the piα are defined, not on a surface 
(1.1), but, for example, as functions in space.  In particular, if these functions belong to a 
family of surfaces (1.1) that cover a piece of space simply then they satisfy the condition: 
 

(1.4)     idp

dt
α

β

= idp

dt
β

α

 

everywhere. 
 Let f(xi, tα, piα) be a positive function that is analytic in its n + µ + nµ arguments.  We 
denote its derivatives by indices and introduce the abbreviated notation πiα =

ipf
α

. 

 If G1 is a region in the space of the µ variables tα in which the functions (1.1) are 
defined then one can consider the integral 4): 
 

(1.5)     
1

( , , )i iG
f x t p dtα α∫ . 

 

                                                
 1 ) Latin indices always range through the numbers from 1 to n; Greek indices range from 1 to µ . 
 2 ) Total derivatives of a variable first appear in the second chapter, and there they will be denoted by 
a dot, so there should be no danger of confusion. 
 3 ) Any doubled index in a term is to be summed over. 
 4 ) We will consider only µ-fold integrals and thus we will briefly write ∫ … dt, instead of ∫ … ∫ … dt1 
… dtα . 
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The variational problem reads: How must the functions (1.1) be chosen in order for the 
integral (1.5) to possess a smaller value than the same integral when it is taken over any 
other surface ( )ix tα′ ?  For this, the class of surfaces to be compared must be made 

somewhat more precise.  In general, we will assume that the boundary of the surface is 
given, i.e., that we always integrate over the same region G1 and the functions ( )ix tα′  shall 

agree with (1.1) on the boundary of this region. 
  
 2.  In order to answer this question, with Carathéodory 1), we embark upon the 
following path: 
  A surface (1.1) is apparently a solution of the variational problem when the 
following is true:  In a region of space that contains the surface there exist functions 
piα(xi, tα) that satisfy (1.2) on the surface – on the contrary, (1.4) need not be valid outside 
the surface, at all – and for these functions one has f(xi, tα, piα) = 0 everywhere; on the 
other hand, f(xi, tα, ipα′ ) > 0 when ipα′  ≠ piα .  Our function f does not possess his property 

– indeed, we have assumed that it is always positive.  However, we can seek to construct 
an equivalent problem that does possess it. 
 Two problems are called equivalent when any solution of the one is likewise a 
solution of the other.  This is especially the case when the integrals differ from each other 
by a “path-independent” integral; i.e., one that possesses the same value on two surfaces 
that agree on the boundary.  One arrives at such an independent integral in the following 
way: 
 We introduce µ functions Sα(xi, tβ) that shall possess continuous derivatives up to 
second order.  The equations: 
(2.1)     Sα(xi, tβ) = λα  
 
represent a µ-parameter family of n-dimensional surfaces.  If one replaces the xi with 
functions of tα then equations (2.1) define a one-to-one map from a region Gt to a region 
Gλ in the space of the tα in the case that the surface xi(tα) goes through the manifolds (2.1) 
without touching them.  In this case, the functional determinant: 
 

∆ =
dS

dt
α

β

= | Sαβ + Siα piβ | 
2) 

 
is non-zero.  In the event that it is positive, the integral: 
 

      
tG

dt∆∫ =
G

d
λ

λ∫  

 
represents the volume of the region.  If one therefore considers any other 
functions ( )ix tα′ then one has: 

(2.2)     
tG

dt
′

′∆∫ =
tG

dt∆∫ , 

                                                
 1 ) Variationsrechnung und partielle Differentialgleichungen erster Ordnung, pp. 197, et seq. 
 2 ) Here, as in the sequel, we have set ∂Sα / ∂xi = Sαi and  ∂Sα / ∂tβ = Sαβ. 
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as long as the regiontG′ is mapped to the same region Gλ as Gt .  Furthermore, this is 

certainly the case when the functions ( )ix tα′ agree with the xi(tα) on the boundary of Gt , 

and one takestG′  = Gt. 

 We thus obtain an equivalent problem when we replace the function f with f – ∆, and 
a solution of the variational problem in the previously suggested sense, when the family 
(2.1) possesses the following property: At every point the minimum of the function f – ∆ 
is zero under variation of the piα .  A family (2.1) with this property is called a geodesic 
field.  To a geodesic field there then belongs a system of functions piα (xi, tα) that satisfy 
the equations: 

(2.3)     πiα =
ipα

∂∆
∂

 

and: 
(2.4)     f = ∆. 
 
Moreover, one says that the surface element that is defined by these piα will transversally 
intersect each surface of the family (2.1) that goes through these points. 
 Now, if these functions piα satisfy equations (1.2) on a surface (1.1) then this surface 
is, in fact, a solution of the variational problem.  Then, if ( )ix tα′  is a comparison surface 

with the same boundary then due to (2.4) and (2.2) one has: 
 

(2.5)    
t tG G

f dt f dt′ −∫ ∫ = ( )
tG

f dt′ ′− ∆∫ , 

and this is positive. 
 (2.5) is the Weierstrass formula, and the function f′ – ∆′, which defines our equivalent 
problem, is nothing but the Weierstrass E-function for our problem.  From (2.4) and (2.3), 

it follows that it vanishes and is stationary for ipα′  = piα .  That one is really dealing with 

a minimum when the E-function is therefore positive for ipα′  = piα must then be introduced 

as a special condition.  However, if this is not satisfied then our surface, which intersects 
the geodesic field transversally, actually provides a “strong” minimum for the integral 
(1.5); for the comparison surfaces, one needs to assume nothing more than that they lie in 
the field. 
 We would now like to derive another expression for this E-function.  We will see that 

one can define this function without the use of a geodesic field and express it in terms of 
only the functions piα and ipα′ . 

 
 3.  In order to do this, we summarize some formulas from the theory of determinants 
that we will need incessantly in the sequel. 
 If ψαβ are the elements of a non-singular matrix with µ rows and µ columns then we 
denote its determinant by ψ, and the algebraic complement of ψαβ in this determinant by 

αβψ .  One then has ψ ≠ 0 and: 

(3.1)    αβ βγψ ψ = ρα ρβψ ψ = δαβ ψ, 
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and thus, from the multiplication theorem for determinants: 
 

(3.2)     αβψ = ψµ – 1. 

 
 If the ψαβ are functions of any other variables then one has: 
 
(3.3)     dψ = dαβ αβψ ψ . 

 
 Occasionally, we will also need the derivatives of the αβψ .  From (3.1) and (3.3), it 

follows that: 

i dα ρσ ρσδ ψ ψ = δiα dψ  = d dλµ αµ αµ λµψ ψ ψ ψ+ , 

 
and when one contracts this with αβψ (i.e., multiplies with αβψ and sums over λ) one 

obtains, with a simple conversion: 
 

(3.4)    d αβψ =
1

( )dαβ λµ αµ λβ λµψ ψ ψ ψ ψ
ψ

− . 

 
What appears here as the coefficient of dψαβ on the right-hand side is likewise naturally 
the algebraic complement of ψλµ in the sub-determinant αβψ . 

 
 4.  Now, we would like to calculate the quantity ∆′ as a function of the piα and ipα′ .  

To that end, we denote the elements of the determinant ∆ by cαβ .  Then, from (2.3), we 
calculate: 
(4.1)     πiβ = iS cρ ρβ . 

 
Furthermore, from (2.4), it follows that: 
 

δαβ f = c cρα ρβ = i iS c S p cρα ρβ ρ α ρβ+ = i iS c pρµ ρβ α βπ+ . 

 
 If we now introduce new quantities aαβ by way of: 
 
(4.2)     aαβ = δαβ f − piα πiα  
then we have: 
(4.3)     aαβ = S cρµ ρβ . 

 
 Now, we contract the elements of ∆′ with cρβ .  Due to (4.3) and (4.1), one obtains: 

 
( )i iS S p cρα ρ α ρβ′+ = aαβ + ipα′ piβ = δαβ f + ( ipα′ − piα) piβ . 

 
 For the determinant, this means, from (3.2) and (2.4): 
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(4.4)    ∆′ = 1

1

f µ − | δαβ f + ( ipα′ − piα) piβ | . 

 
 The E-function is, as saw, the quantity f′ – ∆′.  We thus have to set: 
 

(4.5)  E(xi, tα , piα , ipα′ ) = f′ – 1

1

f µ − | δαβ f + ( ipα′ − piα) piβ | . 

 
 5.  We are now also in a position to give the Legendre condition for our problem.  
Thus, we develop the E-function in powers of ipα′ − piα .  To that end, we calculate the 

derivatives of ∆′ with respect to ipα′ at the location piα , or, what amounts to the same 

thing, the derivatives of ∆ with respect to piα with the use of (2.3) and (2.4) afterwards. 
 We have already calculated the first derivative; it is: 
 

i i
i p p

p
α αα ′ =

′∂∆
′∂

= πiα . 

 
 In order to obtain the second derivatives, we must differentiate iS cλ λα  with respect 

piβ .  With the use of (3.4), we obtain: 
 

2

i jp pα β

∂ ∆
∂ ∂

= ( )i jS S
c c c cλ µ

λα µβ λβ µα−
∆

 

and due to (4.1) and (2.4): 
2

i i
i j p p

p p
α α

α β ′ =

′∂ ∆
′ ′∂ ∂

=
1

f
( πiα πjβ − πiβ πjα) . 

 
 If one thus considers the development of E then, as one sees, no terms of null or first 

order appear; the terms of second order define a quadratic form with the coefficients: 
 

(5.1)    qiα, jβ =
1

( )
i j i j i jp p p p p pf f f f f

fα β α β β α
− −  

 
in the n ⋅ µ variables ( ipα′ − piα).  The Legendre condition consists in the requirement that 

this form shall be positive definite.  Surface elements that satisfy this condition are called 
regular.  If it is satisfied then the E-function is certainly positive when ipα′ differs slightly 

from piα .  It therefore guarantees the existence of a “weak” minimum.  In fact, one can 
indeed set: 
(5.2)    E = , ( )( )i j i i j jq p p p pα β α α β β′ ′− − , 
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where one has to define the coefficients of the quadratic form for a value piα + θ( ipα′ − 

piα) on the connecting line from ipα′ to piα . 

 
 6.  We have seen that one can express the quantities that are important for the 
variational problem in terms of only piα and f without the use of the functions Sα .  
Furthermore, in fact, a certain arbitrariness indeed underlies the choice of these functions. 
Two geodesic fields are already regarded as identical when only their surface elements 
agree at each point.  That prompts us to introduce a system of values that are connected to 
precisely these surface elements in a one-to-one manner, and we will see very soon that 
these quantities yield the must useful canonical variables for our variational problem. 
 We think of an n-dimensional surface of the family (2.1) that goes through a point as 
being given by functions tα(xi) in the neighborhood of this point and set: 
 

i

t

x
α∂

∂
= − Piα . 

 
 We would now like to consider those families of surfaces for which this is possible; 
thus the determinant of Sαβ must be non-zero for given functions Sα, and therefore we 
calculate the functions Piα from the equations: 
 
(6.1)     Siα = Piρ Sαρ . 
 
 We next introduce the quantity F by means of: 
 
(6.2)     F ⋅ | Sαβ | = 1 . 
 
 Analogous to the differential operator (1.3), we can now introduce the symbol: 
 

(6.3)     
i

d

dx
= i

i

P
x tρ

ρ

∂ ∂−
∂ ∂

; 

 
(6.1) then simply reads dSα / dxi = 0. 
 As differential quotients, the Piα must satisfy a system of differential conditions, 
namely: 
 
(6.4)    [i jα] = 0 (i, j = 1, …, n; α = 1, …, µ), 
where we have set: 

(6.5)     ji

j i

dPdP

dx dx
αα − = [i jα] . 

 
 A further condition shall likewise be derived next.  If one totally differentiates Sαβ 
with respect to xi then one obtains, with the use of (6.1): 
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i

dS

dx
αβ = iP

S
t

ρ
αρ

β

∂
∂

 1). 

 
 When one thus differentiates the determinant | Sαβ | = 1/F from (3.3) one obtains (cf., 
(3.1)): 

1

i

d
F

dx
=

1 iP

F t
ρ

ρ

∂
∂

 

or: 

(6.6)      i

i

PdF
F

dx t
ρ

ρ

∂
+

∂
= 0 . 

 
 From the theory of partial differential equations of first order it follows that (6.4) and 
(6.6) are the only conditions to which one must subject the functions Piα and F; thus, 
there are functions Sα that satisfy (6.1) and (6.2). 
 All of this is valid for families of n-dimensional surfaces.  Now, we again consider a 
geodesic field, in particular, and look for the relations that exist between µ-dimensional 
surface elements piα  that will make it intersect them transversally.  Our notation is 
completely symmetric: The µ-dimensional surface element will be spanned by the µ 
vectors: 

(piβ , δαβ), β = 1, …, µ, 
 
and the n-dimensional element that is perpendicular to it by the n vectors: 
 

(−δij  , piβ ), i = 1, …, n; 
 
by contrast, the element that is transversal to it is spanned by the n vectors: 
 

(−δij  , Piα ), i = 1, …, n . 
 
For any simple problem, where the notions of “orthogonal” and “transversal” agree, one 
has Piα = piα  2). 
 However, in the general case, it is also easy to calculate Piα and F from piα and f with 
the help of equations (2.3) and (2.4) for geodesic fields.  From (4.3), it follows with the 
use of formula (3.2): 
      a = | Sαβ | f

µ – 1 . 
Hence: 

(6.7)     F = 
1f

a

µ −

, 

 

                                                
 1 ) One observes that one has ∂Sαi / ∂tβ = ∂Sαβ / ∂xi , ∂Sαρ / ∂tβ = ∂Sαβ / ∂ tβ  . 
 2 ) For the problem of the shortest arclength or the smallest surface area, one has indeed F = f.  
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in the case a ≠ 0, which we will assume from here on, and when one substitutes (6.1) in 
(4.1) one obtains: 
(6.8)    πiβ = Sρα Piρ cρβ = Piρ aαβ . 

 
If one contracts that with aαβ / a then one obtains: 

 

(6.9)      Piα = i

a

a
αβ

βπ . 

 
 In the future, we will define Piα and F by means of formulas (6.7) and (6.9).  
Equations (6.1) and (6.2) are then completely equivalent to (2.3) and (2.4) and, at that 
point, these equations will serve as the definition of geodesic fields.  Our “generalized 
Legendre transformation” is, however, still not finished: We must see whether we can 
solve (6.9) for the piα , and thus calculate F as a function of the Piα , namely, as a 
“Hamiltonian function.” 
 
 7.  Before we do this, we briefly develop the algebraic relations between the lower-
case and upper-case notations.  The symmetry of our transformation will clearly emerge, 
and we will later need the majority of these formulas, anyway. 
 We write all of the formulas in the form where the elements of the determinants 
appear without overbars: By contracting components, one can succeed in solving each 
formula in terms of the variables that appear on the right. 
 As a starting point, we recall the previously-developed formulas: 
 
(7.a1)     aαβ = δαβ f – piα πiβ , 
(7.a2)     πiα = Piρ aρiα , 

(7.a3)     F =
1f

a

µ −

. 

 We introduce the matrix: 
(7.g1)     gαβ = δαβ f + Piα piβ , 
 
with whose application many other particularly simple things may be written down.  One 
immediately arrives at the simple connection between gαβ and aαβ when one subtitutes 
(6.9) in (7.g1) and observes that piα πiβ = δαβ f – aαβ .  One finds that: 
 

      gαβ =
f

a
a αβ , 

and from this, it follows that: 
(7.g2)     gαβ aβρ = δαβ f, 
and conversely: 
      gαβ = aαβ F . 

 
 For the determinant, (7.g2) then yields, because of (7.a3): 
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(7.g3)     g = f F . 
 
From (7.a2), it follows, when one contracts with gαβ , and due to (7.g2), that: 
 
(7.g4)     f Piα = πiρ gαρ  . 
 
 One can also switch the roles of the Greek and Latin indices 1).  We introduce the 
matrix: 
(7.h1)     hij = δij + Piα piα . 
 
 When one substitutes aρα into (7.a2), one sees immediately that: 
 
(7.h4)     f Piα = πrα hir  . 
 
 In exactly the same way, it follows conversely from (7.g4), when one introduces: 
 
(7.b1)     bij = δij f − piα πjα , 
that: 
(7.b2)     πiα = Prα bri . 
 
 (7.h4) and (7.b2) are constructed in precisely the same way as (7.g4) and (7.a2).  
Therefore, one must also have: 
(7.h2)     hir bjr = δij f . 
 
 Now, the determinants h and b are still missing.  However, one immediately sees that 
h = g.  Namely, both of them are equal to the n + µ-rowed determinant: 
 

ij i

j

p

p
β

α αβ

δ
δ
−

 2). 

 Thus, one has: 
(7.h3)     h = f F , 
 
and therefore it follows from (7.h2) that: 
 
      f F b = f n, 
hence: 

(7.h3)     F =
1nf

f

−

 3). 

                                                
 1 ) Cf., C. Carathéodory, Math. Ann. 86 (1922), pp. 272. 
 2 ) Cf., the previous citation.  Usually, it follows from the non-vanishing of this determinant that the 
mutually transversal surface elements piα and Piα that were considered in the previous section do not touch 
each other. 
 3 ) If a ≠ 0 then one also has b ≠ 0; this is indeed the case when one can also show directly that fn a = 
fµ b. 
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 The system of formulas is, however, still incomplete, as long as the analogous one 
relating Πiα to piα is missing.  We must introduce these quantities in such a way that 
when f is a function of piα and F is a function of Piα the relations piα = 

ipf
α

and Πiα = 

iPF
α

are mutually implicit.  To that end, we next assume that all of our quantities depend 

upon arbitrary parameters, and construct the differential of equation (7.g3): dg = F df + f 
dF.  From formula (3.3), one obtains, due to gαβ = F aαβ : 

 
dg = F aαβ dgαβ = F aαβ (Piα dpiα + piα dPiα) 

 
and finally, due to (7.a2) and (7.a3): 
 

     F(df – πiα dpiα) +
2

i i

f
f dF a p dP

a

µ

αβ β α

− 
− ⋅ 

 
= 0 . 

 We must therefore set: 

(7.a4)     Πiα =
2

i

f
p a

a

µ

ρ αρ

−

, 

and then one has: 
(7.*)    F(df – πiα dpiα) + f(dF – Πiα dPiα) = 0. 
 
 If one regards f as a function of xi, tα , and piα, and F as a function of xi , tα , and Piα , 
and if πiα = 

ipf
α

and Πiα =
iPF
α

then (7.*) implies the following important formulas: 

 
(7.**)    

ixF f = −
ixf F ,  tF f

α
= − tf F

α
. 

 
 However, we must still complete the system of algebraic formulas.  Had we 
calculated dh instead of dg above, then we would have found, in place of (7.a4): 
 

(7.b4)     Πiα  =
1n

r ir

F
p b

b α

−

. 

 
From (7.a4) and (7.b4), it follows upon contracting with gαβ (hij, resp.): 
 
(7.g5)     F piα = Πiρ gρα  
and: 
(7.h5)     F piα = Πrα hri  . 
 
 Now, the solution of the system of formulas (7.a2-4) or (7.b2-4) for the upper case 
symbols, without taking into account the remark, yields that the formulas (7.g3-5) or 
(7.h3-5), from which one can derive everything else, are symmetric in the lower case and 
upper case symbols.  In fact, (7.g3) and (7.h3) remain unchanged when one switches the 
lower case and upper case symbols; (7.g4) and (7.g5) will be switched, as well as (7.h4) 
and (7.h5).  Clearly, we thus still need to introduce the matrices: 
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(7.A1)     Aαβ = δαβ F – Piα Πiβ 
and: 
(7.B1)     Bij = δij F – Piα Πjα , 
 
and then we simply rewrite the previous formulas with the exchange of lower and upper 
case quantities: 
(7.A2)   Πiα = piρ Aρa ,   (7.B2)  Πiα = prα Bri , 

(7.A3)   f =
1F

A

µ−

,   (7.B3)  f =
1nF

B

−

, 

(7.A4)   πiα = 
2

i

F
P A

A

µ

ρ αρ

−

,  (7.B4)  πiα =
2

r ir

F
P B

B

µ

α

−

. 

 
 From gαβ = F aαβ it finally follows that: 

 
(7.***)     F aαβ = f Aβα . 
 
 Finally, we introduce the quantities ϕ and Φ by way of: 
 
(7.ϕ)     f + ϕ = piα Πiα 
and: 
(7.Φ)     F + Φ = Piα Πiα . 
 
 If one rewrites (7.***) in detail and identifies a and b then one obtains: 
 

F piα πiα = f Piα Πiα 
or: 

F(f + ϕ) = f(F + Φ). 
One thus has: 

(7.****)     
ϕ
Φ

=
F

f
. 

 
 8.  As a first application, we write the E-function in canonical variables.  If one 

substitutes (6.1) in: 
∆′ = | Sαβ + Sαi ip β′ | 

and observes (6.2), then one obtains: 
(8.1)     F ∆′ = | δαβ + Piα ip β′ |. 

 
 Here, the right-hand side remains invariant when one simultaneously exchanges the 
primed and unprimed notations, along with the lower case and upper case ones.  Thus, 
instead of (4.4), one can also write: 
 

∆′ = 
1

| ( ) |i i i

f
F P P

F F αβ α α βµ δ−

′ ′ ′ ′+ − Π , 
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and obtain for the E-function, in place of (4.5): 

 

(8.2)    
F

f ′
E = F −

1
| ( ) |i i i

f
F P P

F αβ α α βµ δ−

′ ′ ′ ′+ − Π . 

 
 If one develops this in powers of Piα − iPα′ then one obtains for the second order terms 

a quadratic form with the coefficients: 
 

(8.3)   Qiα, iβ =
1

( )
i jP P i j i jF

Fα β α β β α− Π Π − Π Π , 

 
which are to be constructed at the locationiPα′ , here. 

 
 9.  However, we have anticipated this.  Indeed, we still do not know whether one 
really can solve (6.9) in terms of piα , and, in that way, calculate F as a function of Piα . 
 Instead of (6.9), we start with formula (7.a2), which has the same effect, and take the 
differential of this equation in general, which we will need another time in another 
context later on.  We obtain: 
 

aαρ dPiα = dπiρ − Piα daβρ = dπiρ − Piρ df + Piβ πjρ dpjβ + Piβ pkρ dπkρ . 
 
 From (7.h1) and (7.h4), one can thus also write: 
 

(9.1)   aαρ dPiα = hik{ dπkρ – 
1

f
(πkρ df − πjρ πkβ dπjβ)}. 

 
 We would like to differentiate this with respect to piβ ; hence, one has df = πjβ dpjβ .  
We next contract with gαβ and obtain, due to (7.g2) and (5.1): 
 

i

j

P

p
α

β

∂
∂

= ,
ik

k j

h g
q

f
αρ

ρ β . 

 
 The determinant of this µ ⋅ n-rowed matrix is: 
 

(9.2)     i

j

P

p
α

β

∂
∂

= Fn µ | qiα, jβ | 
1). 

 
 This is certainly non-zero when the Legendre condition is satisfied.  In this case, there 
therefore always exists the possibility of introducing canonical variables. 
 Had we started from (7.A2) instead of (7.a2) then we would have found: 
                                                
 1 ) One sees that the determinant of the µ + n-rowed matrix hij gαβ has the value hµ gn as follows: We 
have, as we easily see, | hij δαβ  | = hµ and | δij gαβ | = gn , and one has hij gαβ  = hir  δαρ δrj gαβ . 



Boerner – On extremals and geodesic fields in the calculus of variations.              177 

 

i

j

p

P
α

β

∂
∂

= ,
ki

k j

h g
Q

F
ρα

ρ β . 

 
 The matrix that appears on the right-hand side is thus the reciprocal of the one that we 
previously wrote down, and for the determinant, one has: 
 

1 = fnµ Fnµ | qiα,jβ | | Qiα,jβ | . 
 
 10.  The method of Lagrange provides the Euler equations for the extremals of our 
variational problem: 

(10.1)     
i

i
x

d
f

dt
ρ

ρ

π
− = 0 . 

 
 One then easily calculates that a surface that intersects a geodesic field satisfies these 
equations 1).  Under general assumptions, one has an identity that makes understanding 
the connection between fields of extremals and geodesic fields clear, and which we 
would now like to derive. 
 We assume that we are given the quantities piα , f(xi, tα , piα), and Piα , F(xi, tα , Piα ) as 
functions of space, and that the relations that were written down in section 7 are valid 
between them.  We then use equation (9.1) in order to obtain a relation in which the 
quantities dπiρ / dtρ appear: 
 

idP
a

dt
α

αρ
ρ

=
1 jk

ik k j k

dpd df
h

dt f dt dt
βρ

ρ ρ β
ρ β ρ

π
π π π

   − −   
   

. 

 
 Here, we calculate df / dtρ , using (7.h4), and obtain: 
 

( )
k

i
i t k x

dP
a P f p f

dt ρ

α
αρ ρ ρ

ρ

+ + = ( )1 jk
ik k j j k

dpd
h

dt f dt
βρ

ρ β ρ β
ρ ρ

π
π π π π

  − − 
  

. 

 
 However, one has Piρ pkρ = hik – δik .  Thus: 
 

   
k

i i
j i t x

i

dP dP
a p P f f

dt dx ρ

α α
αρ ρ ρ

ρ

 
+ + −  

 
 

                                                

 1 ) One has i
d

dt

ρ

ρ

π
= ( )

i

d
S c

dt λ λρ
ρ

.  Since cλβ =
dS

dt
λ

ρ
, the divergence 

dc

dt
λ

ρ
 vanishes; hence one has 

id

dt
ρ

ρ

π
= idS

dt
c λ

λρ
ρ

.  However, if one has idS

dt
λ

ρ
= j

j
i i

pc
S

x x
λ

λ

∂∂
−

∂ ∂
 then id

dt
ρ

ρ

π
= j

j
i i

p

x x
ρ

ρ
π

∂∂∆
−

∂ ∂
= j

j
i i

pf

x x
ρ

ρ
π

∂∂
−

∂ ∂
=

xi

f . 
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=
k

k j j jk
ik x

dp dpd
h f

dt f dt dt
ρ β ρ σρ

ρ σ ρ

π ππ   − + −   
   

. 

 
 (In the last term on the right, we implicitly made a renaming of the summation 
indices.)  Now, we introduce the upper case notation everywhere on the left, in which we 
use (7.***), (7.a4) with (7.a3), and (7.**).  The left-hand side becomes: 
 

i

i i
j x i t

j

P Pf
A F P F

F t x ρ

α α
ρα α ρ

ρ

 ∂ ∂ + Π + − ∂ ∂  
 

     =
i

i i i
j j x i t

j

P P Pf
F P F P F

F t x t ρ

α α α
α ρ ρ

α ρ

  ∂ ∂ ∂ + Π − + −   ∂ ∂ ∂   
, 

 
and with the notations (6.3) and (6.5): 
 

ji i
j

i j i

PP Pf dF
F

F dx t x x
αα α

α
α

  ∂∂ ∂ + + Π −   ∂ ∂ ∂   
= [ ]i

j
i

Pf dF
F i j

F dx t
α

α
α

α
 ∂+ + Π ∂ 

. 

 With: 

(10.2)     [i] = [ ]i
j

i

PdF
F i j

dx t
α

α
α

α∂+ + Π
∂

 

 
we obtain the desired identity when we contract (7.h2) with bij : 
 

(10.3)   
k

k j j jk
x

dp dpd
f

dt f dt dt
ρ α ρ σρ

ρ σ ρ

π ππ    − + −        
 = [ ]ikb

i
F

. 

 
 In a geodesic field (6.4) and (6.6) are true, hence, [i] = 0.  If the geodesic field 
intersects a surface transversally then this is true on the surface (1.4), and thus it follows 
from (10.3) that such a surface satisfies the Euler equations (10.1). 
 Conversely, if one has field of extremals, i.e., of solutions to the Euler equations, then 
it follows from (10.3) that [i] = 0, however, in order for a geodesic field to be present one 
must have that all [i j α] = 0, from which (6.6) follows.  In this case, one has what 
Carathéodory called a complete figure and what the Americans call a Mayer field (in the 
case of a simple integral). 
 There is no method of embedding a given extremal in a field of extremals that defines 
a complete figure.  We have, however, already seen that this is completely unnecessary.  
One needs no field of extremals whatsoever to apply the Weierstrass theory.  In order to 
construct a geodesic field, it is completely sufficient that the given extremals (and 
possibly no others) intersect transversally.  In the next chapter we will show how one can 
make this happen; thus, it will likewise be proved that the extremals are solutions of the 
variational problem. 
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 11.  Now, a word about transversality.  For a simple problem in the calculus of 
variations transversality ordinarily enters in connection with the boundary conditions, and 
indeed only when the boundary of the given curve or surface is not assumed to be fixed.  
Also, for the aforementioned general problem one easily arrives at such transversality 
conditions by the theory of geodesic fields.  One needs only to show that the integral ∫ ∆′ 
dt has the same value for all “permissible” comparison surfaces, or, what amounts to the 
same thing, that all such surfaces map the region Gt that is determined by its boundary to 
the same region Gλ 

1).  In case the boundary is assumed to be fixed, this is, as we have 
seen, unavoidably the case.  We assume, as an example, that a part of the – usually 
assumed fixed – boundary of a ν-dimensional manifold H (ν ≥ µ) can move freely!  A 

surface Sα = λα goes through each boundary point.  In order for our condition to be 
satisfied, all of the boundary points of all of the permissible comparison surfaces must 
necessarily lie on these same surface Sα = λα .  Therefore, the manifold H must be 

contained in the n + µ – 1-dimensional manifold that is defined by these surfaces. 
 On thus obtains the following transversality condition: If a part of the boundary of the 
desired surface moves freely on a n-dimensional manifold (ν ≥ µ) then any solution of the 
problem on this manifold must intersect it transversally.  Thus, an m + µ – 1-dimensional 
surface element (1 ≤ m ≤ n) that has µ – 1 directions in common with the extremal is 
called transversal to it when it contains precisely m linearly independent transversal 
directions (i.e., ones that are contained in the previously-defined n-dimensional 
transversal surface element). 
 In particular, an n + µ – 1-dimensional that is represented by the equation S(xi, tα) = 
const is called transversal to an extremal when the equations: 
 
(11.1)     

ixS = t iS P
ρ ρ  

are satisfied. 
 

Second Chapter 
 

Construction of a geodesic field that intersects a given extremal transversally 
 
 12.  Carathéodory has remarked that in order for one to obtain any geodesic field one 
has to solve just one partial differential equation of the first order.  The equations that one 
has to satisfy indeed read like: 
(12.1)     Sαi = Piρ Sαρ , 
(12.2)    [ Sαβ | ⋅ F(xi, tα, Piα) = 1. 
 
 One merely needs to solve (12.1) for Piα and substitute the result in (12.2).  One can 
therefore choose µ – 1 of the functions Sα arbitrarily, and then (12.2) is a partial 
differential equation of first order for the µth function. 
 In order to examine this closer, we introduce some new notations.  We denote an 
index that ranges through the numbers from 2 to µ with a primed Greek notation: α′, β′, 
etc.  The index 1 that will frequently appear is always a Greek one: α = 1. 
                                                
 1 ) Cf., section 2. 
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 We choose the functions Sα′  arbitrarily and denote the derivatives of the desired 
function S1 = σ(xi, tα) by: 

S11 = σ11, S1α = σα . 
 
 All of the elements in the matrix Sαβ , except for the ones in the first row − hence, the 
sub-determinant1Sα in particular, as well − are now known functions of xi and tα .  Since 

we would like to satisfy (12.2) and since one has: 
 
(12.3)     | Sαβ | = 1Sα ασ , 

 
at least one of these sub-determinants must be everywhere non-zero.  We assume that in 
the region that we consider one has: 
(12.4)     11S  ≠ 0 . 

 
 By solving (12.1) for Piα and introducing the known functions Sα′1, Sα′α, one obtains 
the Piα as functions of xi , tα , σi , σα , which we will denote by: 
 
(12.5)    (Piα) = Piα(xi , tα , σi , σα) . 
 
Correspondingly, let (F) = F(xi , tα, (Piα)) and (Πiα) = ( , , ( ))

iP i iF x t P
α α α . 

 Finally, we set: 
(12.6)    1 ( )S Fα ασ ⋅ ⋅ − 1 = M(xi , tα , σi , σα), 

 
and then our partial differential equation (12.2) becomes: 
 
(12.7)     M(xi , tα , σi , σα) = 0 . 
 
 
 13.  Recall the following facts from the theory of characteristics for first order partial 
differential equations: One can give the function σ on an n + µ – 1-dimensional manifold 
(“hypersurface”): 
(13.1)     t1 = τ(xi, tα′ ) 
arbitrarily: 
(13.2)    σ(xi, τ, tα′ ) = Σ(xi, tα′). 
 
 From (13.2), it follows by differentiation, when we denote the derivatives of τ and Σ 
simply by the symbols i and α′: 

(13.3)     1

1

,

.
i i i

α α α

σ σ τ
σ σ τ′ ′ ′

= Σ =
= Σ =

 

 
 If one substitutes this in M then (12.7) can serve for the calculation of σ1 in the event 
that the derivative with respect to σ1 is non-zero: 
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(13.4)    
1 i iM M M

ασ σ α στ τ
′ ′− − ≠ 0. 

 
 One then calculates σi  and σα′ from (13.3).  With the initial values for for σi  and σα′  
thus obtained, we integrate the equations of the characteristics: 
 
(13.5)    tα

ɺ =M
ασ , ixɺ =

1
Mσ , 

(13.6)    ασɺ = − tM
α
, iσɺ = −

ixM  1). 

 
By this, one obtains σi  and σα′  as functions in space and from them, by a quadrature, the 
desired function σ = S1 and thereby, the geodesic field. 
 Instead of (13.4), one can now also write: 
 

1 i it t xα ατ τ′ ′− −ɺ ɺ ɺ ≠ 0, 

 
i.e., the characteristic curves shall not touch the surface (13.1).  It will therefore cover a 
certain region of space simply. 
 One can read the proof that the functions σi , σα that we found satisfy the required 
integrability conditions in Carathéodory 2). 
 
 14.  Our aim is to show that these methods provide a geodesic field that intersects a 
given extremal transversally, in the case where one is given the functions Sα′ and the 
initial values for S1 (on a hypersurface that the extremal goes through) in a certain way. 
 For this, we must examine the characteristic equations closer.  We begin with (13.5).  
From (12.6), these equations read: 
 

(14.1)    
1 1

1 1

( )
( ) ( ) ,

( )
( ) .

i
j

i
j

i

P
t F S S

P
x S

α
α α γ γ β

α

α
γ γ β

σ
σ

σ
σ

∂= + Π
∂

∂= Π
∂

ɺ

ɺ

 

 
 The functions (Pjα) are obtained by solving the equations: 
 
(14.2)     σj = Pjρ σρ , 
(14.3)     Sα′j = Pjρ Sα′ρ , 
 
for Pjα .  We differentiate these equations with respect to σα : 
 

− Pjα  =
( )jPρ

ρ
α

σ
σ

∂
∂

, 

                                                
 1 ) The dot means the derivative with respect to a parameter τ by which we represent the 
characteristics. 
 2 ) Variationsrechnung und partielle Differentialgleichungen erster Ordnung, Chapter 3. 
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     0 =
( )jP

Sα ρ
ασ ′

∂
∂

, 

 
and obtain, by solving for the differential quotients: 
 

(14.4)    1

( )jP
S β

γ γ
α

σ
σ

∂
∂

= − 1( )jP Sα β . 

 
 In the same way, one obtains: 
 

(14.6)   1 1 1

1

( ) ( )( ) ( ) ,

( ) .
j j

t i

t F S P S A S

x S
α α α β β αβ β

β β

= − Π =
= Π

ɺ

ɺ
 

 
 
 15.  For the following section we give σ1 and σα to be arbitrary functions in space, 
between which the equation (12.7) exists.  Likewise, functions in space originate from 
(12.5) that we denote by *iPα , F*, etc. 

 One can also first give the functions*iPα .  They must satisfy only the equations (14.3): 

 
(15.1)     Sα′i =

*
iP Sρ α ρ′ . 

 
 There are still µ – 1 of the σ that can be chosen entirely arbitrarily; e.g., σα′.  One 
always obtains σ1 uniquely on account of (12.4) from: 
 
(15.2)     1S Fγ γσ ∗⋅ = 1 

(viz., (12.7)), and then σi from: 
(15.3)     σi = iPρ ρσ∗  

 
(viz., (14.2)).  The relation (15.2) allows us to replace 1Sγ γσ with 1/F* . 

 The equations: 

(15.4)     
1

,i

i i

t A S

x S
α αβ β

β β

∗

∗

=
= Π

ɺ

ɺ
 

 
(viz., (14.6)) define a particular family of curves in space.  It is noteworthy that this 
family, when one proceeds in the manner that was previously described, does not depend 
upon the choice of the functions σα′, at all.  It is easy to clarify the geometric meaning of 
the curves.  With the use of (14.3) and (7.A.1), one computes: 
 
(15.5)     i iS x S tα α α α′ ′+ ɺɺ = 0, 
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and when one letsipα
∗ denote the µ-dimensional surface element that is associated 

with *
iPα by means of the Legendre transformation one finds, due to (7.A2): 

 
(15.6)     ixɺ = ip tα α

∗ ɺ . 

 
 The curves under consideration thus lie on the surfaces Sα′ = λα′ and contact the 
surface elementsipα

∗ .  In the case whereipα
∗ belongs to a family of µ-dimensional surfaces 

that intersect the (n + 1)-dimensional surfaces Sα′ = λα′, they are simply the intersection 
curves of these two families of surfaces. 
 16.  Under the assumptions that were introduced in the last section, we now come to 
grips with the other half (13.6) of the characteristic equations.  Due to (14.4) and (14.5), 
one has: 

    jP

t
β

α

∗∂
∂

 =
( ) ( ) ( )j j ji

i

P P P

t t t
β β β ρ

α α ρ α

σσ
σ σ

∂ ∂ ∂ ∂∂+ +
∂ ∂ ∂ ∂ ∂

 

     = 1

( )j j
j

P
F S P

t t t
β ρ

β ρ
α α α

σ σ∗ ∗∂ ∂ ∂ 
+ − ∂ ∂ ∂ 

 

 
(one always observes (15.2)!), or, when one takes into consideration equation (15.3), 
differentiated with respect to tα : 
 

(16.1)    
( )jP

t
β

α

∂
∂

= 1
j jP P

F S
t t

β ρ
β ρ

α α

σ
∗ ∗

∗∂ ∂
−

∂ ∂
. 

 One obtains precisely: 

     
( )j

i

P

x
β∂

∂
= 1

j j

i i

P P
F S

x x
β ρ

β ρσ
∗ ∗

∗∂ ∂
−

∂ ∂
, 

 
and therefore also, with the operator (6.3), in which we take Piρ = iPβ

∗ : 

 

(16.2)    
( )j

i

d P

dx
β = 1

j j

i i

dP dP
F S

dx dx
β ρ

β ρσ
∗ ∗

∗− . 

 
 With the help of (16.1), we calculate tM

α

∗ (i.e., the derivative of the function (12.6) 

with respect to tα , in which we then substitute the given functions σi and σα) and obtain: 
 

(16.3)   

1

1
;

j j ji
t t i

ji
t j

P PS
M F F F S

t F F t t

PS
F F x

t F t

α α

α

β β ρβ
β β

α α α

ββ
β β

α α

σ

σ σ

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗

∗
∗ ∗

∗

 Π ∂ ∂∂
= + + −  ∂ ∂ ∂ 

∂∂
= + −

∂ ∂
ɺ
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here, we have used (15.4).  In the same way, one computes, with (16.2): 
 

(16.4)   
ix i tM P M

ρρ
∗ ∗ ∗− = 1 1 j

j
i i i

dPdS dF
F x

dx F dx dx
ββ

β βσ σ
∗∗

∗
∗+ − ɺ . 

 
 Now, we must carry out the differentiation along the curves (15.4).  If Ψ(xi, tα) is any 
function in space then, from (15.4), one has: 
 

Ψɺ = i
i

x t
x t α

α

∂Ψ ∂Ψ+
∂ ∂

ɺɺ = 1i i i
i

x F S P x
x t tα α

α α

∗ ∗∂Ψ ∂Ψ ∂Ψ+ −
∂ ∂ ∂
ɺ ɺ  

or: 

(16.5)     Ψɺ = 1i
i

d d
x F S

dx dtα
α

∗Ψ Ψ+ɺ . 

 
 A further auxiliary formula gives the derivatives of1S β .  With the help of (15.1), one 

obtains: 

i

dS

dx
α α′ = i

i

S S
P

x t
α ρ α ρ

σ
σ

′ ′∗∂ ∂
−

∂ ∂
= i

i

S S
P

t t
α α σ

σ
ρ ρ

∗′ ′∂ ∂−
∂ ∂

 = iP
S

t
σ

α σ
ρ

∗

′
∂
∂

, 

 
and therefore the formula (3.4) gives us: 
 

(16.6)    1

i

dS

dx
β = 1 1

i iP P
S S

t t
ρ β

β ρ
ρ ρ

∗ ∗∂ ∂
−

∂ ∂
. 

 
in which, since α = 1, we may use a primed index for λ. 
 We go on to the differentiation of equations (15.2) and (15.3) along the curves (15.4), 
which we write as: 

(16.7)    1Sα ασɺ = 12

F
S

F β βσ
∗

∗− −
ɺ

ɺ  

and: 
(16.8)    i iPρ ρσ σ∗−ɺ ɺ = iPβ βσ ∗ɺ . 

 
 From (16.3) and (16.7), we calculate the quantities 1 ( )tS M

αα ασ ∗+ɺ and then use 

formula (16.5), first for Ψ ≡ F*, and then for Ψ ≡ 1S β , and then formula (16.6).  Most of 

them go away, and what remains is: 
 

(16.9)   1 ( )tS M
αα ασ ∗+ɺ = −

2

j j

j

x PdF
F

F dx t
α

α

∗∗
∗

∗

 ∂
+  ∂ 

ɺ
. 
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 Likewise, we calculate the expression ( )
ii x i tM P M

ρρ ρσ σ∗ ∗ ∗+ − +ɺ ɺ from (16.4) and 

(16.8), where we again use (16.6) and (16.5) for Ψ = iPβ
∗ .  One obtains: 

 
(16.10)   ( )

ii x i tM P M
ρρ ρσ σ∗ ∗ ∗+ − +ɺ ɺ  

     =
1 ji i

j
i j i

PP dPdF
F x

F dx t dx x
ρρ β

β
ρ

σ
∗∗ ∗∗

∗
∗

   ∂∂
+ + −     ∂ ∂   

ɺ  

     = 1

1
[ ]i

j
i

PdF
F S i j

F dx t
ρ

α α β
ρ

σ β
∗∗

∗ ∗ ∗
∗

 ∂
+ + Π  ∂ 

. 

 
 In order to further put this into another form, we remark that due to (15.1) a close 
connection exists between 1Sα and [i jα] *.  Namely, from (15.1), it follows that: 

 

ji

j i

dSdS

dx dx
αα ′′ − = [ ]i j

j i

dS dS
P P i j S

dx dx
α ρ α ρ

ρ ρ α ρρ′ ′∗ ∗ ∗
′− + . 

 
 One only needs to write out the differentiations and use the facts that iSα ′ andSα ρ′  are 

the derivatives ofSα ′ with respect to xi and tρ ; everything else goes away, and what 

remains is: 
[i j ρ]* Sα ρ′  = 0. 

 
 These µ – 1 equations for [i j ρ] * are the same ones that the quantities 1S ρ satisfy.  

From this, it follows that for any pair of numbers i, j the µ numbers [i j ρ] * are 
proportional to 1S ρ , which one can write as: 

 
(16.11)     [i j α]*

1S β = [i j β]*
1Sα

 . 

 
 One thus ultimately finds from (16.10), with the use of the abbreviation (10.2): 
 

(16.12)    ( )
ii x i tM P M

ρρ ρσ σ∗ ∗ ∗+ − +ɺ ɺ =
[ ]i

F

∗

∗ . 

 
 
 17.  Let there be given an extremal, i.e., a surface (1.1) that satisfies the Euler 
differential equations (10.1).  The piα for the surface follow from (1.2).  Let the 
determinant | qiα, jβ | (cf., (9.2)) be non-zero, such that one can calculate Piα and the 
function F(xi , tα , Piα) on the surface from (6.9) and (6.7).  We shall show that one can 
choose the functions Sα′ and the functions σ1, σα that were introduced in section 15, in 
such a way that one has iPα

∗ = Piα on the extremal. 
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 The Sα′  obviously need to satisfy, in addition to the inequality (12.4), only equations 
(14.3) on the extremal; i.e., the surface Sα′  = λα′  must intersect the extremal 
transversally.  From this, one can conclude that it is always possible to give such 
functions 1).  Now, in order to also find suitable functions σ we again first give ourselves 
the iPα

∗ .  These functions must satisfy (15.1) everywhere and agree with the Piα on the 

extremals (which indeed satisfy the same equation).  The σα′  remain completely 
arbitrary, as before, and the remaining σ will be calculated from them, as in the previous 
section. 
 Once we have determined all the functions in this way, we consider the µ – 1-
parameter family of curves, in which the surfaces Sα′  = λα′  go through our extremal.  
Due to (15.5) and (15.6), these curves belong to the family of curves that we considered 
in the previous section, and can therefore be represented by functions: 
 
(17.1)    xi(τ, u1, …, uµ−1), tα(τ, u1, …, uµ−1) 
 
that satisfy equations (15.4).  Now, we determine the µ − 1 arbitrary functions σα′  in 
such a way that they satisfy the µ – 1 differential equations: 
 
(17.2)     †

tM
αασ

′′ +ɺ = 0 ; 

                                                

 1 ) We show this by actually writing down such functions.  Through each point 0t
α

, 0

i
x = 0

( )
i

tx
α

of the 

extremal, we pass an n-dimensional plane that is transversal to it; it will be given by the equations: 
 

(1)     tα = tα (xi , 
0

t
α

) = 0
t

α
 − Piα(xi −

0

i
x ). 

 
 A certain neighborhood of the extremal will covered by these planes simply.  If the derivative of the 

functions (1) with respect to 0t
β
is δαβ + Piα piβ = gαβ the functional determinant g is, from section 6, non-

zero.  For that reason, one can solve equations (1) for 0
t

α
and obtain certain functions 0

t
α

(xi , tβ). 

 Now, we choose µ – 1 arbitrary functions sα , 0
)(t

α
, and determine the functions Sα′ in such a way that 

they have the following values: 

(2)      0 0
( ( ), )

i
x t tS

α α α′
= 0

( )ts
α α′

, 

on the extremal, and are constant on any plane; i.e., we set: 

Sα′ (xi , tα) = sα′ (
0

t
α

(xi , tβ)). 

 These functions satisfy (14.3) on the extremals.  Therefore, by differentiating (2), with the use of the 
prior abbreviations, one obtains the relation: 

Sα′ρ gρβ = cα′β 
(here, the cα′β are the derivatives of sα′), which allows us to calculate the derivatives of the Sα on the 

extremals from those of the sα′ .  For
11

S , one finds: 

11
S =

1 1

1
g c

g α α
. 

The sα′ must therefore be chosen in such a way that this is non-zero; (12.4) is then satisfied on the extremal 
and thus in a neighborhood of it. 
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here, the new notation means that intM
α
one expresses σ1 and σi in terms of σα′  by means 

of (15.2) and (15.3), and shall thus substitute the functions (17.1).  The values that the σα′ 
assume outside of the extremal are immaterial. 
 We likewise write the system of functions σi, σα′ thus obtained in the form: 
 
(17.3)    σi (τ, u1, …, uµ−1), σα (τ, u1, …, uµ−1). 
 
These functions, together with (17.1), define a (µ − 1)-parameter family of characteristics 
of the differential equation M = 0. 
 In fact, one has (Piα) = iPα

∗ = Piα on the extremal.  Thus, the functions (17.1) satisfy 

not only (15.4) (as we said), but also (17.3), together with (14.6), i.e., (13.5).  
Furthermore, due to (17.2), one has: 
(17.4)     tM

αασ
′

∗
′ +ɺ = 0. 

 
 Now, we consider the identity (16.9).  Due to (10.3), all [j]* = 0 on the extremal (here, 
we use the fact that it can be treated around an extremal), which one can write (cf., 
(10.2)): 

j

j

PdF
F

dx t
α

α

∗∗
∗ ∂

+
∂

= − [ ]k j kβ β∗ ∗Π . 

 
 Thus, for the right-hand side of (16.9) we can write: 
 

2
[ ]j

k

x
j k

F β β∗ ∗
∗ Π
ɺ

, 

 
or also, due to (16.11) and because 11S ≠ 0: 

 

1

2
11

[ 1]j
k

x S
j k

F S
β

β
∗ ∗

∗ Π
ɺ

=
2

11

1
[ 1]j kx x j k

F S
∗

∗
ɺ ɺ . 

 
 This is, however, null because the coefficient of [j k 1]* is symmetric in j and k, but [j 
k 1]* itself is anti-symmetric.  The left-hand side of (16.9) thus vanishes on the extremal 
and from this it follows, from (17.4): 
(17.5)     

11 tMσ ∗+ɺ = 0. 

 
 Now, we consider the identity (16.12).  Here, the right-hand side also vanishes on the 
extremal, and since all tM

αασ ∗+ɺ = 0 there already, one must also have: 

 
(17.6)     

11 xMσ ∗+ɺ = 0 . 
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 Since (Piα) = iPα
∗ , we can write (17.4) to (17.6) in just the same way without stars.  In 

fact, all of the equations (13.6) are also satisfied, which was to be proved. 
 
 18.  A characteristic is uniquely determined by the values of σi and σα at one of its 
points.  Under the assumption that the Sα′ satisfy (14.3) on the extremals, we have thus 
proved the following: 
 At a point of the extremal one determines the σ in such a way that (Piα) = Piα 1), and 
integrates the characteristic differential equations with these initial values.  All of the 
characteristics thus determined remain on the extremal and one has (Piα) = Piα along the 
entire curve. 
 We would like to see whether one can choose the initial values that were spoken of in 
section 13 in such a way that all characteristics that begin on the extremal have these 
properties. 
 We deduce nothing else from the hypersurface (13.1) – it is called F – except for the 

fact that it goes through the extremal and the curves Sα′  = λα′  on it (which will indeed be 
characteristics).  The intersection is a (µ – 1)-dimensional manifold F : 
 
(18.1)    t1 = ( )tατ ′ɶ , xi = ξi(tα′) . 

 
 This manifold thus lies on F: 

 
(18.2)    τ(ξi(tα′), tβ′) = ( )tατ ′ɶ , 

and on the extremal: 
(18.3)    xi ( ( )tατ ′ɶ , tβ′) = ξi(tα′); 

 
here, the functions (1.1) appear on the left-hand side. 
 On this manifoldF , we must likewise satisfy, along with (13.3), the equations: 
 

(18.4)     1Sα ασ = 
1

F
 

and: 
(18.5)     σi = Piρ σρ  
 
((12.7) is then also satisfied naturally).  We can eliminate all σ from these µ + 2n 
equations, in total, between which there exist n relations between the Σ.  The simplest 
expressions that one defines from (13.3) are the linear combinations Σi – Piα′ Σα′ and 

1Sα α′ ′Σ ; by the use of (18.4) and (18.5), one obtains: 

 
Σi – Piα′ Σα′ = σi – Piα′ σα′ + σ1(τi – Piα′ τα′) = σ1(Pi1 + τi – Piα′ τα′), 

                                                
 1 ) In this, the σα′ are still completely arbitrary at this point; in fact, we still do not have the 
integration of (17.2) for the initial values at our disposal. 
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1Sα α′ ′Σ = 1 1 1S Sα α α ασ σ τ′ ′ ′ ′+ = 1 11 1

1
( )S S

F α ασ τ ′ ′− − , 

 
and one then eliminates σ1 from them 1): 
 

(18.6)  1

1
S

F α α′ ′
 − Σ 
 

(Pi1 + τi – Piβ′ τ β′ ) – (Σ1 – Piα′ Σα′) 11 1( )S Sβ βτ ′ ′− = 0 . 

 
 I assert: When the initial values Σ on the manifold F satisfy the n relations (18.6), 
there is always one system of solutions σi , σα of the equations (13.3), (12.7) that belongs 
to Piα , i.e., that satisfies (18.4) and (18.5). 
 This is almost self-explanatory.  Since, from (18.4), we do not need to worry about 
(12.7), we have to concern ourselves – in contradiction to the general case in section 13 – 
with linear equations, and clearly need to verify that their determinant does not vanish.  
We would like to make it into something else, and in place of the (µ + n)-rowed 
determinant, consider a (µ – 1)-rowed one.  Namely, we remark that one can already 
calculate all of the σi and σα on this manifold from their initial values onF : 
 
(18.7)    ( , , )i tασ ξ τ ′ɶ = Σ(ξi, tα′) = α ′Σɶ . 

 
 In fact, we know indeed that on it only the σα′  are freely at one’s disposal.  We 
differentiate (18.7) with respect to the tα′ : 
 

1i iα α ασ ξ σ τ σ′ ′ ′+ +ɶ = α ′Σɶ , 

 
and substitute the values 1i ip pα ατ ′ ′+ɶ  that follow from (18.3) for the ξiα′ in this equation, 

and for σi and σα , the expressions that are calculated from (18.4) and (18.5) in terms of 
σα′ .  By the use of the abbreviation (7.g1), we obtain, from an easy conversion: 
 

(18.6)   { }11 1 1 1 11
11

1
( ( )S g g S g g

S β α β α β α α βτ τ σ′ ′ ′ ′ ′ ′ ′+ − +ɶ ɶ  

      = 1 11
11

1
( )g g

FSα α ατ′ ′ ′Σ − +ɶ ɶ . 

 
 One can calculate σα′  from these µ − 1 equations in the event that their determinant is 
non-vanishing.  In order to establish this, we contract its matrix with Sρ′β′  and use the 
relations S1β Sρ′ β = 0 and Sρ′β  gβ α′ = cρ′ α′ , in which the second one follows immediately 
from the first one when one uses (14.3) (cf., also rem. 23).  Contraction yields the matrix: 

                                                
 1 ) One easily convinces oneself which relations must appear in place of (18.6) when 

11 1
SS

α α
τ

′ ′
− or all 

of the Pi1 + τi – Piα′ τ α′ vanish.  One can conclude that one or the other condition enters in, as a geometric 
argument shows.  Cf., below. 
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1c cρ α ρ ατ′ ′ ′ ′+ ɶ =
1

dS dS

dt dt
ρ ρ

α
α

τ′ ′
′

′

+ ɶ . 

 
 Its determinant is nothing but the functional determinant of the Sα′  with respect to the 
tβ′  on the surface (18.1), which is non-zero by our assumptions.  The same is true for the 
determinant |Sρ′β′ | = 11S , and thus one can calculate the desired determinant from both of 

them, and this is likewise non-vanishing. 
 One can choose the initial values Σɶ on F arbitrarily.  From (18.7), it follows that: 
 

Σi ξiα′  + Σα′ = α ′Σɶ , 

 
and these equations, together with (18.6), define a system of u + µ – 1 equations for Σi 
and Σα ′ .  These equations will be satisfied for the values that follow from (13.3) once 
one has calculated σ from (18.8), (18.4), and (18.5). 
 The geometric meaning of the equations (18.6) is that of guaranteeing that the surface 
S1 = const. intersects the extremal at the points in question.  This is easy to see when one 
takes F to be such a surface S1 = const. and asks what sort of restriction one must then 

subject the orientation of F to.  One would thus like to choose Σ = const., so that all Σi 

and Σα′ shall vanish, and it would thus follows from (18.6): 
 

Pi1 + τi − Pβ ′τβ ′ = 0. 
 

τi − 1,τβ ′ are, however, the components of the normal to F, so these equations then say 

nothing more than the fact that this hypersurface must be transversal to the extremal, as 
we expected (cf., 11.1). 
 We can summarize the result whose proof sections 14-18 were dedicated to in the 
following way: 
 In order for a given extremal to be embedded in a geodesic field, one must give 
functions Sα′(xi , tα) such that the surface Sα′ = λα′ is transversal to the extremal.  One 
then gives the initial values for S1 on a hypersurface that goes through the extremal, and 
on it, the curves Sα′ = λα′ , such that they satisfy the equations (18.6) on the extremal, and 
integrate the partial differential equation (12.7) with these initial values.  The geodesic 
field that is thus obtained intersects the extremal transversally. 
 
 

Third Chapter 
 

Discontinuous solutions 
 

 19.  Let two functions F(xi, tα, Piα) and F′(xi, tα, iPα′ ) be given.  We would like to 

construct a geodesic field, on the one side of which, a hypersurface F is given by the µ + 
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n – 1 parameters ui , uα′, that belong to F and, on the other side, to F′, in such a way that 
the functions Sα are continuous.  That is, on F the following equations shall be valid: 

 
(19.1)      Sα =Sα′ , 

(19.2)    Sαi = Piβ Sαβ ,  1Sα′ = iP Sβ αβ′ ′ , 

(19.3)    F | Sαβ | = 1,   F′ | Sαβ′  | = 1. 

 
From (19.1), it follows by differentiation with respect to the parameters that: 
 

j
j

i i

x t
S S

u u
β

α αβ

∂ ∂
+

∂ ∂
= j

j
i i

x t
S S

u u
β

α αβ

∂ ∂
′ ′+

∂ ∂
, 

j
j

x t
S S

u u
β

α αβ
α α′ ′

∂ ∂
+

∂ ∂
= j

j

x t
S S

u u
β

α αβ
α α′ ′

∂ ∂
′ ′+

∂ ∂
. 

 
 That means that the µ vectors with the components: 
 

jSα′ − Sαj , Sαβ′ − Sαβ , 

 
all point in the direction of the normal to F, whose components we denote by vi, vβ .  That 

is, there are µ functions ρα on the hypersurface such that: 
 

(19.4)     
,

.
j j jS S

S S
α α α

αβ αβ α β

ρ ν
ρ ν

′ − =
′ − =

 

 
 
 20.  Now, we assume that we are given the quantities Piα and iPα′  on a (µ – 1)-

dimensional manifold: 
(20.1)    t1 = τ(tα′),  xi = ξi (tα′). 
 
 It shall be possible to construct a geodesic field through each hypersurface F that goes 

through (20.1), such that the equations (19.1) to (19.4) are satisfied and whose surface 
elements agree with the given ones on (20.1).  What conditions must these quantities 
therefore satisfy? 
 From (19.2), it follows by subtraction that: 
 
(20.2)    ( ) ( )i i i i iS S P S S P P Sα α β αβ αβ β β αβ′ ′ ′ ′− − − − − = 0 . 
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 One now chooses the hypersurface F especially such that at a point of (20.1), one has 
1): 
(20.3)     vi − iPβ βν′ = 0 

 
It then follows from (19.4) and (20.2) for this point that: 
 
      ( )i iP P Sβ β αβ′ − = 0 

and therefore, since | Sαβ | ≠ 0: 
(20.4)     iPα′ = Piα . 

 
 Instead of (20.2), one now has at the point in question: 
 

( )i i iS S P S Sα α β αβ αβ′ ′ ′− − − = 0. 

 
 However, one can choose the hypersurface such that (20.3) is not valid.  Due to 
(19.4), one can then satisfy the latter equation only with iSα′ = Siα and Sαβ′ = Sαβ , and it 

then follows from (19.3) that: 
(20.5)     F′ = F . 
 
 The given quantities must then satisfy equations (20.4), (20.5). 
  
 21.  Now, we consider an extremal that possesses a “kink” along a manifold (20.1).  
Its surface element is represented by piα on one side of (20.1) and on the other, byipα′ , 

such that on the kink one has ipα′ ≠ piα .  One is then dealing with a special case of the 

previously treated problem, and therefore equations (20.4) and (20.5) must be satisfied on 
the kink. 
 From (20.4), it follows that one cannot operate on both sides of the kink with one and 
the same Legendre transformation (otherwise, it would then follow from iPα′ = Piα that 

ipα′ = piα  
2).  Here, one therefore also has to deal with two different Hamiltonian 

functions, and (20.5) is not a consequence of (20.4). 
 When written out in detail, the generalized Erdmann corner conditions read like: 
 

(21.1)     i

a

a
αβ

βπ = i

a

a
αβ

βπ
′

′
′

, 

                                                
 1 ) Thus, - cf., (11.1) – it is “transversal to 

i
p

α
′ “ in the event that the “lower case” quantities are 

defined. 

 2 ) We will likewise see that E(xi , tα , piα , 
i

p
α
′ ) = 0.  Now, if the E-function is usually positive, and 

one writes it in the form (5.2) then one sees that the quadratic form is singular in the point of the connecting 

line from piα to
i

p
α
′ that is denoted by the circumflex, and thus the determinant (9.2) vanishes. 
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(21.2)     
1f

a

µ −

=
1f

a

µ−′
′

. 

 
 
 22.  One arrives at a system of equations that is equivalent to the Erdmann equations 
in the following way: We consider an extremal, and around it, a neighborhood in which it 
is “strong,” i.e., where E > 0 for ipα′ ≠ piα .  If we fix our attention on a particular 

boundary point of this neighborhood then the following is obviously valid there: We have 
E ≥ 0; however, there is at least one system of values ipα′ ≠ piα for which one has: 

 
(22.1)     E(xi , tα , piα , ipα′ ) = 0 . 

 
 A surface element with this property may be called “semi-strong.”  We would still 
like to deduce for the semi-strong surface elements that there is a neighborhood of the 
system of values ipα′ ≠ piα in which the E-function does not vanish for ipα′ ≠ piα .  In other 

words: Semi-strong surface elements shall be regular (sec. 5).  In particular, the 
determinant is then | qiα , jβ | ≠ 0. 
 If piα is a semi-strong surface element then there is a system of values ipα′ ≠ piα  that 

satisfy equation (22.1) and therefore, the µ n equations: 
 

(22.2)      
ipα

∂
′∂
E

= 0 . 

 If we set: 

qαβ = δαβ + i i
i

p p

f
α α

βπ
′ −

 

then, from (4.5), we can write: 
(22.3)      f′ = q f 
and: 
(22.4)      iαπ ′ = iqαρ ρπ  

for (22.1) and (22.2). 
 We show that equations (21.1) and (21.2) follow from (22.5) and (22.4), and 
conversely; thus, the Erdmann equations have a solution on semi-strong surface elements.  
In fact, it follows from (22.4) that: 
 

aαβ′ = δαβ f′ − i ipα βπ′ ′  = δαβ f′ − i ip qα βρ ρπ′ , 

 
and from this, one calculates, due to (22.3), and because: 
 

f qαβ = aαβ + ipα′ πiβ , 

that one has: 

(22.5)    aαρ′ qρβ = qρβ  f′ − ipα′ q πiβ =  
f

f

′
qαβ . 
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 If one defines the determinant here then one finds that due to (22.3) one has: 
 

f
a

f

′ ′= f
a

f

µ

µ

′
, 

 
hence, (21.2).  However, if one contracts the rows of (22.5) with /a aαγ , /q qαβ , 

and /a aσρ′ ′  then one obtains, due to (22.3): 

 
a

a
σγ =

a
q

a
σρ

ργ′
, 

 
and when one multiplies this by πiβ and observes (22.4) then one obtains (21.1). 
 In order to prove the converse, we use (8.1) and derive from this formula that: 
 

(22.6)    E = f′ − 
1

F
| δαβ + Piα ipα′ |. 

 
 When (21.1) and (21.2) are valid − i.e., when (20.4) and (20.5) are true – then the 
elements that enter into the determinant (22.6) are equal to gαβ′ , and then, on account of 

(7.g3), one has: 

E = f′ − g

F

′
′
= f − f F

F

′ ′
′

 = 0. 

 
Furthermore, when one differentiates (22.6) with respect to ipα′ , and then sets Piα = iPα′ , F 

= F′ , one obtains: 

ipα

∂
′∂
E

= 
1

i ig P
Fα ρα ρπ ′ ′ ′−

′
 = ( )i i

g
g f P

F f
ρα

β ρβ ρπ
′

′ ′ ′ ′−
′ ′

= 0, 

due to (7.g4). 
 
 23.  Two surface elements at a point0 0( , )ix tα , piα , and ipα′ that satisfy the Erdmann 

equations with each other, satisfy, as we just saw, equations (22.1) and (22.2).  Since the 
Erdmann equations are symmetric in the primed and unprimed variables we must also 
have the validity of the equations that arise from (22.1) and (22.2) by exchanging primed 
and unprimed; we can also see this directly.  Namely, we remember that in section 2 of 
chapter I we introduced the quantities: 
 

f − ∆ɶ ɶ = 0 0( , , , )i i ix t p pα α αɶE , 

 
for the E-function, which possess an extremum with the value 0 for ipαɶ = piα , in any case.  

From (22.1), (22.2) it follows that an extremum 0 also exists at the location ipαɶ = ipα′ ; the 

considerations of the second section then show that one can also set: 
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f − ∆ɶ ɶ = 0 0( , , , )i i ix t p pα α α′ ɶE . 

Hence, for all ipαɶ one has: 

(23.1)    0 0( , , , )i i ix t p pα α αɶE = 0 0( , , , )i i ix t p pα α α′ ɶE . 

 
 From this, it follows with no further conditions: If there are two surface elements at a 
point that satisfy the Erdmann conditions with each other and one of them is semi-strong 
then the other one is always semi-strong, as well. 
 A further consequence of (23.1) affects the second derivatives of the E-function, 

which we will likewise need.  Namely, one must have: 
 

(23.2)     
2 0 0( , , , )i i i

i j

x t p p

p p
α α α

α β

′∂
′ ′∂ ∂

E
= ,i jqα β′ , 

 
i.e., it is equal to the numbers that were defined by (5.1), which were constructed for 
the ipα′ .  In particular, the µ n-rowed determinant of these quantities is non-zero since we 

have assumed the regularity of semi-strong surface elements. 
 
 24.  We would now like to present the condition for an extremal to be isolated on a 
manifold where the Erdmann equations possess a solution.  We thus consider the 
Erdmann equations on an extremal, i.e., we express xi and piα in terms of tα .  We can 
then perhaps write these µ n + 1 equations as: 
 

( , )it pρ α′Ψ = 0,  ( , )j it pβ ρ α′Ψ = 0. 

 
 When these equations possess a solution at a point (tα) then – and only then − this 
point obviously belongs to a well-defined µ – 1-dimensional manifold of points with the 
same property when the matrix: 

(24.1)     

j

i i

j

p p

t t

β

α α

β

ρ ρ

∂Ψ ∂Ψ
 ′ ′∂ ∂ 
 ∂Ψ∂Ψ
  ∂ ∂ 

 

 
of µ n + 1 rows and µ n + µ columns has the rank µ n + 1. 
 This condition can now be written in a particularly simply manner when one starts 
with the Erdmann equations in the form (22.1), (22.2).  Namely, at the point in question 
the matrix (24.1) looks like: 
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2

2

0
i j

j

p p

t t p

α β

ρ ρ β

 ∂
 ′ ′∂ ∂ 
 ∂ ∂
 
 ′∂ ∂ ∂ 

E

E E
 1). 

 
 If the surface elements in question are semi-strong then, from the previous section, 

the determinant
2

i jp pα β

∂
′ ′∂ ∂
E

 does not vanish.  Thus, the matrix (24.1) has rank µ n + 1 

when and only when the numbers ∂E / ∂tρ do not all vanish; i.e., when the E-function 

possesses a gradient at the points in question. 
 The condition (24.1) for a semi-strong surface element to be an extremal will thus 
mean the same thing as saying that this surface element belongs to a µ – 1-dimensional 
manifold of surface elements of the extremal such that on it a “strong” neighborhood of 
one of them splits into “weak” ones. 
 Along the boundary of a strong neighborhood, which may be represented in the form 
(20.1), a solution of the Erdmann equations whose surface elements ipα′ are semi-strong is 

thus determined, and thus one obtains no broken extremals in this way.  Therefore, if it is 
entirely possible to construct an extremal with the initial values ipα′  then it must satisfy 

the condition that we would now like to present, and which is not satisfied, in general. 
 
 25.  Namely, if piα and ipα′ are functions on (20.1), and they belong to a µ-

dimensional surface that this manifold contains then they satisfy the equations: 
 

(25.1)    i

tα

ξ∂
′∂

= 1i ip p
t α
α

τ
′

′

∂ +
∂

, 

(25.2)    i

tα

ξ
′

∂
∂

= 1i ip p
t α
α

τ
′

′

∂′ ′+
∂

. 

 
This is what one calls a strip condition in the case of µ = 2.  If one starts with an extremal 
then (25.1) is satisfied, but (25.2) is not, in general. 
 On the other hand, there are always 2) “kinked strips,” i.e., manifolds (20.1) and 
functions piα and ipα′ on them that satisfy the Erdmann equations, along with (25.1) and 

(25.2).  If one is given (20.1) then one must determine 2µ n functions that satisfy: 
 

µ n + 1 + 2 (µ – 1) = (n + 2) µ − 1 
 

                                                
 1 ) The derivative of E with respect to tρ is naturally understood to mean that one also considers the 

dependency of the xi and piα on tρ .  
 2 ) Assuming that the variational problem is not regular for all surface elements (in which case, there 
are only strong surface elements). 
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equations.  Only for µ = n = 1 are there exactly as many equations as the number of 
desired quantities.  Thus, only in the plane does there exist the characteristic property of 
the ordinary theory of discontinuous extremals that one can uniquely determine a field of 
“corners” in a neighborhood of a corner.  If one lets µ increase then one obtains more 
equations than unknowns; e.g., one will find that on surfaces in space (µ = 2, n = 1) the 
curves along which a kink can be found cannot be specified arbitrarily.  By contrast, if n 
> 1 then one always has more unknowns than equations. 
 
 26.  If one has found a discontinuous extremal that satisfies the Erdmann equations 
with the condition (24.1) and it is strong on both sides of the kink then a sufficiently 
small piece of this surface provides a strong minimum, in fact.  In order to obtain a 
geodesic field that intersects the surface transversally one must only carry out the 
construction of the previous chapter on both sides of a hypersurface F that contains the 

kink.  One chooses the functions Sα′  in such a way that they remain continuous with all of 
their derivatives.  The initial values for σi , σα will then be the same on both sides, and 
therefore the Piα are continuous over the entire geodesic field. 
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