Generalization of the Welerstrass excess formulasaleduced
from the Hilbert-De Donder independence theorem

by JULES GEHENIAU, Aspirant F.N.R.S)(

Abstract. — In this note, we deduce the Weierstrass formula,nwddended to the case af
independent variables m unknown functions, from the Hilbert-De Donder indepergetheorem.

1. Extremal equations. Let:
F= F(X,y,y) i=1,..n a=1,..m (1)

be a function ofn independent variableg, m functionsy”, and their first partial
derivatives:

d

y @

WE G

The differential equations of the extremals of:

ol Fdid, ..., x") =0 (3)
are:
OF _
By 0. (4)

The canonical variablep), that are conjugate to tiy€ are given by:

o =OF
a ayla :

®)

These canonical variables are thus expressed, thank} @&s (functions of the, y,
and yj” (=1, ...,n). We also write the Hamiltonian function:

—F+ 220y (6)
If the Jacobian:

{a,l[}:]_,...,m (7)

i,j =1---n

ay,"ayﬂ H

() Presented by Th. De Donder.
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then, thanks to (5), the functigit may be considered as being expressed as a function of
thex, y* and p, . Equations (4) then take the canonical fotyn (

d OH
dy” _ o (8)
dX op,
dp, oH
Y= ©)
—~ dx oy
2. Jacobi’s theorem extended to the case windependent variables. Let:
Vi) = Vi(X, y7, C%) (10)
be a complete integral)(of the partial differential equation:
oV, . GAVA
D4y X,y ,—2|=0. 11
ol [ v j 1)
TheC“ aremnarbitrary constants. Set:
. 9V (12)
P = PV
and consider the equations:
Py = Py » (13)
av(i) — i
PR Claj - (14)

The Cgm. are new integration constants or functions ofdhe.., X" such that:

dc,,
—F=0.
~ dx

It results from the extended Jacobi theor&nin(the case ofi independent variables
that equations (13) and (14) represent an integral of equdé@pasid (9). This signifies
that from thesenr? equations (14) one may deduce théunctionsy” of thex, ..., X",
theC®, and the other constants that were introduced byZ[U]e.

Take the total derivative of (14) with respecttand sum over the indéx One may
deduce from the equations thus obtained that:

() TH. DE DONDER,Théorie invariantive du Calcul des Variatiod€30, Paris, Gauthier-Villars and
Co. See § 32 especially.
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Y _ven, . (15)
dx

We remark that the compatibility conditions:

ay’ _ dY’

dxi  dY

(16)

will be satisfied. On the other hand, we remark #&th of theser” will be well-
defined at any pointd, y*) that is taken in tha + m-dimensional domain considered.

3. Hilbert-De Donder independence theorem-a) One knows that % the
canonical equations (8), (9) admit the relative integradriiawnt:

fe = Z P, dy dX=0). (17)
It then results, as Th. De Donder has provgdtfat the 1-uple integral form:
iy = 2 Pady (18)
is an integral invariant of the immediately integrabkal differential equations:
dy’ = ZYi” dx . (19)

b) In the cited work?), it is likewise proved that in order for theuple form in the
m + n-dimensional space af, ..., X%y, ...,y":

T=2 3P, A0t Y K R XY B ) d% ™)

(20)
to be an exact differential-uple, it is necessary and sufficient that tfje be exact

differential 1-uples.
One has set:

F=FX, ¥y, Y). (21)

@ Loc. cit., form. 216.

() Loc. cit. Chap. VIII; see § 36 or: TH. DE DONDER e théoréme d'indépendence de Hilbert,”
C.R. Ac. Sc., Pari$56 (1913), pp. 609 and 868.
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4. The Weierstrass excess functior. a)
THEOREM: The formm Is always an exact differential.

Proof. — Thanks to (12):
it = Z Oay (22)

thus:
jiy = d' V. (23)

b) By virtue of this latter theorem and the independeheerem I, § 3), then-uple
form (20) is an exact differentigtuple. One will thus have, upon lettikg denote a
closedn-uple manifold in then + m-dimensional space of, ..., X", y*, ..., y™

¢ 7=0. (24)

n

c) Let ¢, be a portion of the extremal manifold defined by (14hatTportion of the
extremal manifold will be bounded by the closed 1-uple manifoldg,-; . LetV,

denote anarbitrary n-uple manifold that passes through-; , and is analytically
represented by the equations:

v =y, LX), (25)

As we remarked at the end of § 2, i will have well-defined values at each point
of V. Here, relation (24) will give:

jvnj+ ¢nj=0. (26)

However, one immediately sees, upon referring to (2@j; t

J, 7=, Fd(x..X); (27)
thus:
LT+ j¢f‘d(>&,.--,>e)=o. (28)
Finally, let:
[ FdOe, %) (29)

be an integral taken ovér, . The functionF is defined by (1); the derivatives that
appear in it are obtained by differentiating the functi¢@S). We denote these
derivatives byy”. Set:
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AIE.[V}"d(%,~~-,>d“)+.[¢fd()%,---,)?). (30)

By virtue of (28), one will have:

A= [ [Fd(K, ) =1, (31)

or, furthermore, upon referring to (20):

Al :jvgd(xl,.--,x“), (32)

with:
E=F-F=22p(f -Y).

This is the Weierstrass formula extended to tise cdn independent variableéand
m unknown functiong®. We have assumed that the functi®depends only upon thé
they”, and the first derivatives of th& with respect to th&. The general case, where
the functionF depends upon derivatives of arbitrary order, iditawh, will be treated in

the next article.
Institut belge de Recherches radioscientifiques.



Generalization of the Welerstrass excess formulasaleduced
from the Hilbert-De Donder independence theorem

by JULES GEHENIAU, Aspirant F.N.R.S.
(Second communicatip()

Abstract. — By using the Hilbert-De Donder independent theoremextend the Weierstrass excess
formula to the case of variables<, m functionay”, and their derivatives up to arbitrary order. We remark
that in the case where= 1- i.e., where there is only one functipa that extension is immediate.

1. Extremal equations. Let:
F= ]:(Xi,ya,yzuik) a=1---m (1)

be a function ofi independent variable§ m functionsy”, and their partial derivatives:

akya
7 = —— 7 2
y'l""k ox"t...0x«x ( )
The extremal equations of:
ol Fdid, ..., x") =0 (3)
are:

OF
=0. 4
5y (4)

akya

o = Y @)

These equations possess the relative integral invgtjant

=YY Y YRy, (X =0) (5)

a k=l i iy
where:
s 07 (8)
i,

() Presented by Th. De Donder.

() TH. DE DONDER,Théorie invariantive du Calcul des Variatioraris, Gauthier-Villars, 1930, pp.
40.
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The Hamiltonian function is defined by:

e Fr R T T Q

2. Two theorems of Th. De Dondef®). —a) If equationg4), (4) are satisfied by
the mn functions:

V= (X, YY), ihj=1,...n; a,pB=1,..,m @)

one may deduce from the integral invarignjt[see (5)],a relative integral invariantT('i)
of the immediately integrable total differential equations:

dy” = > yrx. (8)

The relative integral invarianf;, may be written:

T = ZnﬁZZZ zw'““ dy. ©)

i=2 i, i
where: _
d’xX =0. (10)

The horizontal bars indicate that we have replagedy,’ ; by the functions (7) and
the ones that one derives from them; for example:

0 e
23y

y|

(11)
b) Set:

V=g eSSy 12

k=1 i, [

and consider the-uple integral formj in the f + m)-dimensional space of y*:

j_ZZN d(¥.-- Xty X &)+[f—ZZT\WJ dx- . (13)

() Loc. cit. Chap. VIII; see § 36 or: TH. DE DONDER e théoréme d'indépendence de Hilbert,”
C.R. Ac. Sc., Parig56 (1913), pp. 609 and 868, afitiéorie invariantive du Calcul des Variatiorchap.
VIII.
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In order forj to be an exact differential n-uple, it is necessary and suffidietthe
Jii, be exact differential-uples.

In particular, if m = 1 then the expression (13) wdllways become an exact
differentialn-uple.

3. The generalized Welierstrass excess formula.a) Case where m 1. — LetF,
denote a closed-uple manifold in the { + m)-dimensional space of thé, y°. It
immediately results from the two theorems that wst jtecalled that in the case
consideredri= 1):

<ﬁF j=o. (14)

n

By reasoning as in our preceding Not® (ne will arrive at thegeneralized
Weierstrass excess formula:

S:f—f—;izﬂl,(yr'—v). (15)
b) Case where m is arbitrary- Now, let {):
Viy =V, (X, ¥, ¥, . CL L) (16)
be acompletantegral of the generalized Jacobi partial difféi@requation:
ov., aV.

m Mo %W |-
Z ( ’ya’%“"k’aw v 0. (17)

. R c
The C% C7J, aremn ) D arbitrary constants; the symb@l™represents the
k=1

number of combinations with repetitions of thelementk — 1 withk — 1. Set:

i av(i) o aV(i) .
pP,=—, and e E with 1=2,...,c (18)
ay oyi
and consider the equations:
pII2 |k — pII2 k (19)
aV(i) — gy —
m— ql’j , k—l, 2,...C (20)

() Bull. Ac. roy. Belg.t. XXI, pp. 385.
() TH. DE DONDER, loc. cit., ch. VII.
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where theC' ™ are functions of the', ..., X" that satisfy:

o
ZT_ 0. (21)

Recall that the integral (16) will be calledmpletaf one may deduce from equations

(20) them)_ Dy functions y/ , (k= 1, ...,c), which satisfy thenrf > D)™ equations
k=1 k=1
(20).
One will have, in addition:

i’i2""!ik1j ,j byt J = Ln
a,ﬁ:]_,... ,m.

oV,

0]

——| #0,
aCJZ{'I'kay'[:“ik

(22)

It results from the generalized Jacobi theorenm dupations (19), (20) represent a
solution of equations (4), (4 Let:

YSZ...ik = YSZ...ik (XJ, C, C*) (23)
be such a solution, whe@and(C" stand forC?, Cif_i_ik ,and qij;zj~-ik .

We show explicitly how one may deduem functions (7) from (23) that satisfy (4),
(4'). From (23), one infers thatkf= 1 then:

yi=ys (X, C,C). (24)
We remark that:
0“ys
yDl'Z""k ox'2...0xx ( )

and that ik > 1 then the derivations will Eermutable.
Now, suppose that th&, ¢’ depend upom parameter”, in such a way that one
may write:

" y' =%, ph, (26)
with:
H% 0. (27)

Solve (26) with respect to tipé; so: |
=X, y). (28)

Introduce thesef into (23); we obtain théeld equations:
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k=1, ...,C. (29)

Yoi,ei, = Yo (¥, ¥)

21k

In particular, one will have for tHe'st partial derivatives:
vyl =yi(X, ¥), ,j=1,...ma B=1,..,m). (30)
Thesey” indeed represent a solution to (44); in other words, ohdavie:

OF
oy’

0 (31)

identically in the kXand ¥ the bar serves to reiterate that in the variatideaivative one
has replaced the/, ..., y;; , with their values expressed as functions of #igx, y°)

and their derivatives are also expressed in terms of thedy” (j = 1, ...,n; £=1, ...,
m). _

Totally differentiate the two sides of (30) with redptxthex’; thanks to (20) and
(25), one will have:

gy = Doy Xy (32)

oxi Gay

which is nothing but (11).
On the other hand, by virtue of (18) and (19):

oV

=iy - . 33
e (33)
Introduce (33) into (12). One then sees that:
_ oV,
N, = —-, (34)
ay

whereVj; is nothing but th&/;; that appears in the right-hand side of (16), and in which
one has replaced thﬁ:_._ik with the VIZ’ that are given by (29).

Ik

Upon taking (34) and (9) into account, one will have:
7=dV, d’X =0). (35)

From this, by virtue of the theorems recalled in parag@pih results that thej

given by (13)is an exact differential n-uple in tlfe + m)-dimensional space of the .
Upon preserving the notations of our preceding Note, wewnite:
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T=IF+ IR0 YN d ke 9. (36)

However, by virtue of (6), (17), and (34):

T AN aVi
Fo2 20N =2 = (37)
thus, thanks to (34) and (37):

7= za_x() e, .., X, (38)

where one has set:

dv. ov. oV,
_(_') = —,') + —(') .” . 39
rVEr I ay ) (39)

Finally, upon always preserving the same notatiansl referring to our first Note,
one will have:

<ﬁp f=0, (40)

as well as the generalized Weierstrass excess formula:

5:f—f—zz(yf—y“)N;. (41)

Institut belge de Recherches radioscientifiques.



On the geodesic fields of the calculus of variati@n

By Th. H. J. LEPAGE’)

(First communicatior).

1. When one seeks to extend the Legendre and Jacobi icoadithe Hilbert
invariant integral, and the Weierstrass excess funt¢tianultiple integrals that depend
upon severalunknown functions one encounters difficulties ofpgcal character that
were indicated a long time ago in a memoirQ@ébsch(}) that was dedicated to a
generalization of the transformations that were pevéal by Jacobi on the second
variation of integrals.J. Hadamarddiscussed these difficulties in two notes that were
published 1902 and 1905 in tBalletin de la Société Mathématique de Frandotably,
he observed that the quadratic form that appears in gression for the second variation
is not necessarily positive definite in the case ofimimum, but it suffices that it become
so when one combines with certain alternating bilifieans in an arbitrary mannef)(

In the course of recent years, various authors haeaded the Hilbert independence
theorem and the theories of Weierstrass and Hamioobi to the case that | just
recalled. Now, it is curious to observe that the teghkt were obtained differ, although
they all reduce to the classical results when one segpibat the number of unknown
functions is equal to one. For example, whereaD®mDonder {), Gehéniau¥), and
Hermann Weyl ), the excess function is linear, for Caratheoddjytife functionE,
which generalizes the classical Weierstrass functonpt, and the Legendre condition
that is introduced by that author differs from the Legeradmdition that was considered
by the previous authors. Quite recently, H. Bérrighas completed the results of C.
Caratheodory on an important point. When applied to IBasi¢heory of characteristics
it shows that any sufficiently small portion of antrexal may be incorporated

Presented by Th. De Donder.

A. CLEBSCH, Uber die zweite Variation vielfachatdgrale. Journal de Crette1859, 122-148).
J. HADAMARD. Sur une question du Calcul des Variatiof®ull. Soc. Math. Francel902, pp.
253-256).

G) TH. DE DONDER, Sur le théoreme d'independence de Hil@R. Acad. Sc. Parig. 156, pp.
609-611, Feb. 24, 1913, pp. 868-870, Mar. 17, 1913B)¢orie invariantive du Calcul des
Variations 2" ed., Paris, Gauthier-Villars (1935). Book II, pp. 95-170, esfigath. X and ch.

NSNS
NS

XI.

*) J. GEHENIAU, Généralisation de la formule d’excés Weierstrass déduite du théoréme
d’'indépendence d’Hilbert-De DonderBull. Acad. Roy. BelgCl. des ScXXI, 1935, pp. 385 and
504.)

C) HERMANN WEYL, Observations on Hilbert's Independefdeeorem and Born’s Quantization
of Field Equations, pp. 505-508Hys. Rey vol. 46, second series (193#nnals of Math. 36
(1935).)

©) C. CARATHEODORY, Uber die geometrische Behandlung Etrema die Doppelintegralen
(Verh. d. Schw. Natur. Ge4917); Uber die Variationsrechnung bei mehrfachen Integyrpje
193-216. Acta Szeged4 (1929)); Variationsrechnung und partielle Differentialgleichungen
erster Ordnung Teubner, Leipzig (1935).

() HERMANN BORNER, Uber die Extremalen and geodatische Fetdder Variationsrechnung
der mehrfachen IntegraleMéth. Ann, 112 (1936), pp. 187-220.)
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(einbetten in a geodesic field surrounding that extremal, at le&sin a certain quadratic
form is positive definite (Legendre condition).

A notion that plays a role in the Caratheodory thebay is analogous to that of the
Weierstrass extremal fielidr simple integrals is that ofgeodesic fieldalong a portion
of an extremal manifold. However, contrary to theation in the following two cases:
1) one independent variable and several unknown fungtia2)s several independent
variables, but one unknown functjoa geodesic field is not, in general, comprised of a
family of extremals that uniformly cover a certain mgof space. In other words,is
not always a field of extremalsHowever, as Boerner has remarked, this fact has no
importance because in order to achieve a theory of conslifor an extremum it suffices
to understand geodesic fields.

On the other hand, treating the same problem, De DamteH. Weyl introduced
fields that likewise lead to Hamilton-Jacobi theoryevirtheless, these latter fields are
not geodesic fields in the Caratheoddbysense.

The reason for this difference obviously stems froendifficulty that was brought to
light by Clebsch and Hadamard. In what follows, seetongccount for this difference, |
am led to propose mew definitionfor the fundamental notion afeodesic field This
notion has the advantage of subsuming that of Carathgoa® well as the fields of De
Donder and H. Weyl, in the sense that one obtains theopthe other upon specifying,
in a suitable manner, certain indeterminate elem@pthat present themselves in the
differential systems of a geodesic field.

In order to achieve this goal, | use the method of #fheutus of symbolic differential
forms €); | think that they permit us to represent all of theary in a simpler manner.

To fix ideas, and also to simplify the notations samet, | consider a double integral
in the calculus of variations:

- 0 0z, 0z, 0z
I i = f ) ; 1...1 1_1...1_1_1...1_ d dl
@ =[[ (xya o ox T ay sz

in which x, y are independent variables, ..., z, are unknown functions, ana > 1.
However, the following method immediately extends todhse of a triple integral, i.e.,
to the case in which the independent variables numbes than one.

2. First of all, consider the symbolic quadratic form:

(2.1) w=1tX Y, z, ..., Zo; P1y -+, Pn; Uy .-, On) AX dy

@) Except obviously, in the two extreme cases that wenetqub out above, for which the two
theories coincide with the classical Hamilton-Ja¢bbbry.

) E. CARTAN, Lecons sur les invariants integrausParis, Hermann, 1922. TH. DE DONDER,
Théorie des invariants integrauxParis, Gauthier-Villars, 1927. E. GOURSATecons sur les
probléme de PfaffParis, Hermann, 1922, especially, chap. Ill. E. KAHLERfihrung in die
Theorie der System von Differentialgleichungétahburger mathematische Einzelschrefte@®
Heft., Teubner, Leipzig, 1935).
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in the 31 + 2independentariablesx, y, z, pi, G. We suppose thétis a function that is
several-times-differentiable in a certain domaiof the spacex(y; z, ..., z,), and for all
of the finite values that are attributed to the variapleg; .

We introduce thea linearly independent Pfaff forms:

(2.2) w =dz —p dx — qdy, i=1,2,..n.

The total symbolic derivative of a form will be denoted by the notatiodg.
Therefore, the differential of the formawill be the cubic symbolic form:

(2.3) dw = f,dz dxdy+ f dp dxdy .f dq dxc
=f,dxdye +( f, dp+ f dg) dxd. ()

Similarly, for the Pfaff differential formg one will have:
(2.4) daw =dx dp +dy dq =12, ..n

Recall that the differential of the symbolic produgtey of the two linear formsu
and « is the cubic form:

(2.5) d(ww) = da) 0y ~ @ (da).
Now let:
(2.6) a=X dx+Yidy+Ajq, i=1,2,..n,

be n Pfaff forms, whereX;, Y;, A; are differentiable functions ok(y, z, pi, g) that are
chosen arbitrarily, moreover.

It is obvious that the quadratic form:
(2.7) Q =fdx dy+ 4 w,
is the most general form that is congruertda dy(modulo w):

Q=w(modaw, ..., @).

Furthermore, we may suppose that one has:
(2.8) Aj+A; =0

Given this,determine all of the forn@ that give rise to congruences:

(2.9) dQ =0 (moda, ..., @).

(*%) To simplify the notation, one agrees to wite3 for Zaiﬁ. andF; Oy for Z F @, -

i=1 j=1
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In order to accomplish this, since tBeare differential forms we have, by virtue of
(2.7):
(2.10) dQ =df dx dy+ (d@)w — 4 (dw),

which becomes, upon taking (2.6) into account:

(2.11) dQ =f dx dy+ (dX dx+dY, dy)aw — (X dx+Y; dy) dw
+d(A; ) T — Ay @@ Odaw).
or, by virtue of (2.3) and (2.5):
dQ = f,dxdyw +( f, dp+ f{ dg dxd
(2.12) + @X dx+dY dy)w — (X dx+Y; dy)(dx dp + dy dq)
+d(A; T) D — Ay @@ Odaw).
Observe that the set of terms that do not depend uporf #my factorsa, ..., a Is:
(f,dp + £, dg) dxdy-( X do- Yep dxc

This then implies the following remarlAmong all of the forms:

Q=w(modaw, ..., @),
the ones for which one takes:
(2.13) Xi=f,,
with the remaining f\arbitrary, give rise to the congruence:

dQ =0(moda, ..., @).

Henceforth, we suppose that we have made this chaidedd;, Y;, and we further
write:

(2.14) Q =fdx dy+ (f,dx— f, dyw+A @ @

We thus have:

(2.15) dQ =(f,dxdy+ df dx df dyw,+ dAmw + A &y -a( @)} .

REMARK. — If n = 1 then the expressio does not contain anf;; coefficient
because all of the symbolic produetsq are identically null. It is no longer true that
the number of variables s greater than one Here is an important fact that will show
up in all of what follows: in the case = 1, and only in this case, the folinthat is
congruent td dx dy(moduloa, ..., ap) is unique. It is the form:

(2.16) Q =1f(x,y,z p, q) dx dy+ (f;dx—f, dy)(dz —p dx-q dy).
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3. The rank of the forn®. If n = 1 then the rank't) of the formQ is always two
because one has, upon assumingftiad:

(3.1) Q = [f dx + ,(dz — p dx- q dy)] [Jf dy + fq (dz — p dx- g dy)].

On the contrary, ih > 1 then the rank of the for@ is no longer necessarily of rank
two, unless, as we have seen, we attribute certaincplartivalues to the particular
coefficientsA; .

One knows that a quadratic form of rank two has a syimbquare that is zero, and
conversely. Furthermore, the valuesAgffor which the corresponding forf is of rank
two are solutions to the symbolic equation:

(3.2) 0%=0,
ie.:
(3.3) 10°=f g wdx dy+ 4 § w g =0.

Upon taking (2.6) and (2.13) into account, developing the produdte left-hand
side of equation (3.3), following the rules of symbolic matation, and finally annulling
all of the coefficients of distinct termsi.e., the coefficients of the monomials:

(34) dxdyww, dxwygaw, dywagaw, wag was, i,j,ks=12, ..n

we obtain:

oo
(3.5) A-,-:i{”' ”‘}, i,j=1,2 ..n

Hence, we have the propositioAmong all of the form& = w(modulo a, ...,a,) such
that 2 = 0 (moduloa, ...,a) there exists one and only one of them whose rank is two
(*. It has the form:

f, f

Gi ]

* 1 fp. fy
(3.6) Q =fdxdy+(f,dx- f, dy)a)+T 'ww..
Therefore, the rank — which is necessarily even — of all of the other fofns- in
particular, those for which all of thejAre null— is at least four:
4<r<3n+2.

The formQ’, being of rank two, is the symbolic product of two lineanigependent
Pfaff forms. Moreover, one has, as one shows bypls verification:

) Therank of a symbolic form is defined to be its rank as annamy algebraic form. For example,
see E. GOURSATIpc. cit,, chap. lIl.
(**)  The minimum rank for a quadratic form that is is@ntically null.
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1
(3.7) Q :T[f dx+ f, L] D f dy+ f Lev] .
One observes that there is an analogy that preesterm as the form (3.1) wher= 1.

4. All of the foregoing may be immediately extendedhe case of a form of degree
m= 2:
4.1) w="1f(X1, ..., Xm; Z; Pais P2i, -+, Pmi) dXa ... A%, i=1,2,..n.

One sets, as above:
(4.2) W =dz —pgi dxg, i=1,2,..n,a=1,2,..m

Among all of the form$2 = w(modulo a, ...,a) there exists one of minimum rank
m such that one has:
(4.3) dQ =0 (moda, ...,w).
It is the form:

(4.4 Q" =

1
fm_l(f dX1+ f]jlafl)"'(fd)& + tnim qu),

in whichf, denotes the partial derivative fofvith respect tq,; .

5. In the preceding section, we assumed xhgtp;, g are independent variables, and
we denoted a partial derivative with respect tovidueablesz, pi, or g by an indexz, p,
or g . Now, we shall consider thp, g to be 2 differentiable functions of the
independent variables,(y, z, ..., zn), and in order that there be no fear of ambigthty
partial derivatives with respect to the variabbesy, z will now be exclusively
represented by the symbols:

92 9 0
ox'dy ' oz

With this convention, we have, lettikgdenote a function of, y, pi, g

a_F:F +F %.}-F a_q

ox X Poax 9 oax’

oF op, 0q
5.1 —=F +F —+F —,
( ) ay y R ay q ay

Frp Pp 9 k=12 n
0z "oz %0z
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At each point of a domaif in the spacex(y, z, ..., z,) the functiongi(x, vy, z, ...,
Z), G(% Y, z, ..., z, define arelement(x, y, pi, g) of a field[p;i g]. We let[Q], [a], [f],
etc., denote the quantities that the expressfona;, f become wheone evaluates them
in the field[p; q; i.e., when one replaces tiy qi] with their values as functions of the
XV, z1, ..., Zn).

The field is calledntegrableif the Pfaff system:

(5.2) il =0, i=1,2,..n

is completely integrable. In order for this to beetriti is necessary and sufficient that one
has (Frobenius theorem):

(5.3) [ Oy O.. Ty (de)] =0, i=1,2, .0,

which may also be written:

.. 9P oq , 0q .
5.4 —' —Q=—+— i=1,2,..n).
(5.4) oy aquk ox oz P> ( )

6. The expression for[f]. Suppose we are given a vector figld= pi(x, v, z, ...,
Z), g =q(x Y, z, ..., Z,), which may or may not be integrable, and let us propmse t
calculate the expression for the symbolic differendfathe form R]. It is a cubic form
in the differentialsdx, dy, dz that we may represent by a development of the following
type:
(6.1) diQ] = Qi[dx dya] + Qix[w g dX + Qiy[aw oy dy] + Qix[aw & adl,

in which Q; denotes the coefficient of the term oix[dy w)] in the development ad[Q],
and similarly,Qjx denotes the coefficient of the monomiai [y d, etc.
In order to calculate all of these coefficientssuiffices to develop the symbolic

differential of the form ], while taking (2.15) and (5.1) into account and eliminating
the differentialdz in the result by means of the relations:

(6.2) [w] =dz —pi(X, Y, z1, ..., Z) AX—G(X, V¥, Z, ..., Z,) dy, i=1,2,..n.

Moreover, one has:

(6.3) d[Q]=

folo|+af dd)&af dz d x, d il
[f,]dxdy oy y oz any X a_% dz d¥fy]

+aﬂ[dxww]+a—p"[dy w]+a—Aj[d 1[4 A0 & o-q¢ d)
o a1+ wal+—- 1 0y . 2 .

However:
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(6.4) [da)as— @ (da)] =

o . .on aq . 0q 9 0
{dx[ayolwa4 dgj+ dEax dxa% q%}[wj]—[aﬂ{ {ay dya—%

It then results from this that one has:

(=

©
Q_%_/
o

0z

(6.5)
d[Q] =
of, of, of,  of op, dq op _ 9q
f -2 Tn Tag RPRYND B R R § dxd
{‘ dy O0x 0z 47 6; '+A'){6y 9 X a;q akzqu Yxdyg]
of, _Ofy oA aA P, 5 0P,
+_6_ZJ. 37 ox pk Aq A&E Pdxw w]
[of, of,  9A oq, . , 09
+_az"j-a;’ Aj+a;+q e A k+Ak %k Mdyw w]
OA L 0A L 0A
+_62k + 27 +64 Tww @]

Upon comparing (6.1) and (6.5), one immediately obtaineetpeessions fof;, Qix ,
etc:

of, af of . of .
Q=1 -| — o} —L2+_Fp + A %_aql op, q_aq R
(6.6) ! 6x 62 : ox 9z oy ax dz" 0z

ijx

Observe that if the fieldd] g] is integrable then the expressidassimplify, since, by
virtue of conditions (5.4) the coefficiemtg are null in that event. Observe further that if

n = 1 then all of the coefficien@;y, Qjy, Qj, are null, and the coefficienf3; reduce to
only one, namely:

6.7) . of, 6f 6fp +6f
' | ox 62 Pi 7| ax 07 P
since all of the); are null (remark in sec. 2).

7. Geodesic field relative to the forfth

DEFINITION: Any field[pi g], whether integrable or notpr which the forn{Q] is
an exact (symbolic) total differentiali.e., for which one has:

(7.1) dQ] =



Lepage - On the geodesic fields of the calculus of vanigtio 217

will be called ageodesic field relative to the forth
By virtue of the results of the preceding section, ethad[Q] is null if:

(7.2) Qi = Qi = Qjy = Q5 = 0,

and conversely. Therefora field is geodesic relative to a fof, which corresponds to
an arbitrary choice of A moreover, if the functions; g of the field[pi q] verify
conditions(7.2),and conversely.

A geodesic field will be callethtegrableif, along with conditions (7.2), conditions
(5.4) are satisfied.

One easily assures oneself that a field that is gaoéter a certain fornf () is not
geodesic forll formsQ. Indeed, consider, for example, the two fol@(®) andQ(A),
the first of which is obtained by annulling all of tig, and the second of which is
obtained by attributing a value# O to theA;. If the field is geodesic for bo®(0) and
Q(A) then the form:

[Q(A) - Q(0)] = Aj[ @ &, Aj =4

13)

is an exact total differential, and conversely. Hosveit is obvious that one may always
choose a that would make the latter form not be an exact toti@rdntial.

The following propositions, which we limit ourselves tcerely stating, result
immediately from known results on differential forms

I. For any field that is geodesic relative @the hypersurface integral:
(7.3) [[.1a1,

when extended to any closed regular manikgla null, and conversely.

From this, in the following sections we shall deeluhe extension of the Hilbert
invariant integral theorem and its various conseqas: the Weierstragsfunctions, the
Legendre condition, and the Hamilton-Jacobi equatio

II. The associated system[fo] is completely integrableand one has:
(7.4) Q]=dSdS+dSd§ + ... +dSg1 1Sy,

2y being the order of the associated system, andSth#éenoting % differentiable
functions in thex, y, z, ..., z, that are mutually distinct. The numbey 2 called the
classof the form R].

lIl. In particular, for every field that is gecsle relative to the forn®" of rank two
one has:

(**)  Thus, for certain choices of the functiohs.
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y=1

(7.5) { *
Q'] = dS 0dS

The system associated @[ is the system of two Pfaff equations:

fldx+[ f, ] =0,
7.6) {[ Jdx+[ f, &

[fldy+[ f,a] =0.

IV. The converse of proposition Il is true: In otherds, any field qg] that gives
rise to the identity (7.4) is geodesic. From this, theseilts another way of writing the
differential equations of a geodesic field relative foran Q.

Indeed, taking into account the identities:

(7.7) dS=(S.+$S RB) d¢( 5+ S ¥ dy B, i=1,2,..n
the expression in the right-hand side of (7.4) may ktemr

(7.8)

_ oA, _0A, Sq 3
;damd$+l—§{Ak cedy ST ] - J}@Lm sK+1J“"‘”']’

in whichz indicates a summation ovkrE 1, 3, 5, ..., Z— 1, and one sets:
k

(79) Ak: SKX+S<§ H §y+ % g .
S<+1x+3<+14 B Rt %1; 4

Upon taking the preceding remark into account, along with)( (7.8), and the
expression (2.14) foc]], one gets:

[f1=) A=A
_9 _9
(7.10) [fﬂ]-api, [ f,] o
S
1= k=1,3,5,--,2-1
[A]] ;{Smlq SK+1;} a/

This system is entirely equivalent to the différansystem (7.2) of a geodesic field
relative toQ.
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In particular, if the field is geodesic relative to toem Q" of rank two then the
preceding system simplifies beautifully because, endtiie hand/= 1, and, on the other
hand, one has (sec. 3.5):

o8 oA
A= L] fal 10 O |8 Sy
Sl f| Ajoa s, s,
og  0q,
so that the equations of a field relative to the férnare:
St g, t+ 3
[f]:LZjL%J R §y+ & JEA
(7.11) 3 R 3t 3
0A oA .
[fp']za_pi’ [fq]:a, i=1,2,---,n.

(To be continuedl.




Mayer fields in the calculus of variations for muliple integrals

by ROBERT DEBEVER, Licensee in physical sciencgs (

1. One knows the objective of the Weierstrass-Hilbegthadd and the role of the
independent integrat)(

By systematically appealing to the algorithm of symbdlfterential forms, Lepage
(®) has developed a theory of the independent integral fdtipte integrals and the
notion of geodesic field that is necessarily introduceitheé Weierstrass-Hilbert method.

It appears that there exists, in general, an infiniefdadependent integrals, and by
that fact itself, an infinitude of excess functions the¢ each attached to a particular
differential form. Lepage then characterized, inrapé¢ manner, the differential forms
that correspond to the excess functions that weeady known to De Donder-Weyl, on
the one hand, and Carathéodory, on the other.

The principal problem in the theory of geodesic fields st®sin proving the
existence of a field, relative to a form, that “incomgges” a given extremal. This
problem was studied by Wey) (and Boernerj for the fields that related to the forms of
De Donder and Carathéodory, respectively.

The method that was developed by Lepage permits us toligistthe existence of
Mayer fields for multiple integrals. We may then agmio the problem of incorporation
in a different spirit from that of the preceding elgs.

2. Suppose that a problem in the calculus of variationbéas posed relative to the
n-uple integral:

|= [ FOL Y o) die dX { 1=1ee, (2.1)

a=1:-,m.

Suppose that there locally exists raparameter family of extremals of claSs of
the problem (2.1):

y =y, XA, LA™, (2.2)
such that:
6(yi~- ) 20, (2.3)
(A - A™)

We are now in a position to definevelocity field().

() Presented by Th. De Donder.
() HILBERT, D. Gesammelte Abhandlungesd. Springer (1935), vol. lil, pp. 35-55.

) LEPAGE, TH., “Sur les champs géodésiques du calcul deatieas,” Bull. de I'’Acad. Roy. de
Belg., Cl. de Sc. (1936), pp. 716-729 and 1036-1046.

() WEYL, H., “Geodesic fields,” Ann. of Math36 (1935), pp. 607-629.

() BOERNER, H., “Uber die Extremalen und geodatischen Felleder Variationsrechnung der
mehrfachen Integrale,” Math. Annalét? (1936), pp. 187-220.

() DE DONDER, TH. Théorie invariantive du calcul des variatigr@authier-Villars, new ed., 1935),
pp. 137.
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~ Indeed, we may solve (2.2) with respect to Afiewe obtainm uniform functions of
X, y7:
M= DP(x,y). (2.4)

A velocity field will be defined by thenn functions of the, y:

0 oy’
V(% Y) {ayi j (2.5)
X AP=2F(x,y)

that one obtains by replacing thé with their values (2.4) in the partial derivatives of
they” with respect to th& that are given in (2.2).

3. Consider the differential form:

Q, —Fdx .- dxX" —(—1)i]fyqaf’ d()-(-1)* ,@ﬂaf’w" d(i j), (3.2)
where theAQﬂ are undetermined functions of they (°) and we have set:
of =dy’ - yTdX.

We propose to see whether it is possible to chtfuessge functions in such a manner
that the formQQ,, becomes an exact differential in the varialeswhen one replaces the
argumentsy’ that appear iF and fy . with functions of thex, y that are defined by

(2.5).

When one studies the question in its full gengraline considers a differential form
(3.12) that contains the terms:

A}Ellzka)ala)akd(hlk)

with k = 1, 2, ...,n, but it suffices here to take= 2 and annul all of th& with k > 2
identically.

We shall perform the calculations upon substigutthe variablesx, A with the
variablesx, y using formula (2.4). It is then equivalent to @ewiing that (3.1) be an
exact differential inx, A when one substitutes the functions (2.2) for tlggiaents and
the partial derivatives of these functions withpesst to thex for the y” .

The formQ,, will be written in terms of the variablesA as:

(®) Unless indicated to the contrar(yZZ ) the summations of the typ,égﬁanf’ﬁ are extended over
i B

all simple combinations of pairs of letters ana letters taken fronm andij, respectively.
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[Qr] =B dX ... dX' - (-1) B, dA” d(i) — 1) B, dx” dx (i, ), (3.2)
where:
B=[7], (a)
B, =LA 2L (@)
B!, =[A A", y)
=[Ay AT AP’ (@)

the symbols between brackets being the functionthek, A that one obtains by the
substitutions that we spoke of.
The equations of the problem:
d[Qn =0, (3.3)

is equivalent to the following system:
0B _ 0B

= a . a

A% ox (@)
oB!. 9B OB
af _ (24 B

— = - , a:

ax A" 9A° (@)
98}, 0B, 9H,

/Ny /A =0. o

A AT a)NF @)

We now study this system of partial differentiguations in the unknown functions
ij,ﬂ. The equationsd;) are satisfied identically; indeed, they exprdsg the functions
(2.2) are extremals.
Let (17, A% denote the right-hand sides of the equatiomg; (they are unknown
functions ofx, A:
o7yl 0y" _dFy] oy’
- : (3.4)
047 9A*  0AF 0A°

(A% ) =
By virtue of the identitiesd:), they enjoy the following property:

(A7, AP)
Z—ax‘ =0, (3.5)

a property that will permit us to determine solototo the systemag), (as) by
guadratures. It suffices to take:

_ 1 a i a J
_E{I()I A9) X = [ (A7,27), dx} (3.6)



Debever - Mayer fields in the calculus of variatiomsrhultiple integrals. 223

One verifies immediately, upon taking (3.5) into accpuhat these are indeed
solutions.

To find the corresponding values of tl[leh.”ﬂ], one must then solve the Cramer
system ). It ultimately suffices to replace thkin the result with their values (2.4) in
order to obtain thé as functions of th&, y and thus achieve the determination of a form
Q, that becomes an exact differential when one subestitilie velocity field (2.5) for the
y”. One then says that the field (2.5y@ndesidor the corresponding differential form
and that the extremal field (2.2) idviayer field. We thus see théieing given a family of

extremals that uniformly covers a certain region of space, it ifyswpossible to
determine a form for which it constitutes a Mayer field for a pleltintegral.

REMARKS:
1. In general, a given family does not constitute a évidield for a given form

(when theA are given), in particular, for the De Donder-Weyl fomhere all of theA
are identically null, or for the Carathéodory form:

Fy' Fy
Fy] Fy,

i 1
o= _—
AM, 7

where the relationsag) will not be satisfied.

2. Ifm=1andn > 1, the function#\ and the expressions (3.4) are identically null; in
this case, it ensues that any one-parameter fashigxtremals that uniforms covers a
certain region of space constitutes a Mayer field.

3. Contrary to what happens for multiples integjrédr simple integrals(= 1 andm
> 1) one must impose some conditions on the fa(@i). Since all of thé are null, it
is necessary that the expressions (3.4):

a 4 IFYT oy dFy] oy
(% A = A% 9AF  9AF aA° (3.7)

are identically null. This is the well-known cotidn that one imposes on the “Lagrange
brackets” (3.7). Observe further that the prop€Bi$) expresses here the property that
the Lagrange brackets must preserve a constardg afdag any extremal.

4. Instead of starting with a given form, as Weyl &@wkrner did, and searching for
a geodesic form that “incorporates” a given extrerhauffices for us to possess a family
of extremals such that (2.2) includes it.

Indeed, let there be an extremal with equations:

y = yi(x,-, X) (4.1)
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0
and a family (2.2) that includes (4.1) tb= A:

;”: Yy, XA AT, (4.2)

The extremal (4.2) will then be “incorporated” into tedocity field (2.5); indeed,

one has identically ix:
0
O A
Y (xy) = —yi :
0x

and furthermore we know that we may always find a ftamnwhich (2.5) is geodesic.
Remark 3.1 shows us that the velocity field (2.5) will bet in general, geodesic in
the sense of either De Donder or Carathéodory.

5. Suppose that, upon starting with the extremal (4.1),ave ksonstructed a family
(2.2) and a form for which (2.5) is geodesic. We are ih@ossession of an independent
integral, and we may easily find) the value of the corresponding excess function:

Y-y ¥-Y

, 5.1
-y Y -Y &4

Sty Yy ¥)=F- f—ﬁa(m”_yﬂ)_ Ag[;

in which the barred symbols indicate that we haeaced they” with the y* in the
field (2.5).

We pass over the actual statement of the suffi@endition for a strong minimum
that is given by the functiof to conclude by giving the value of the quadrabinf that

one obtains upon limiting the development of thecfionS in powers of:

u =y -y
to the quadratic terms.
Calculated on the extremal:
0
0 . a a
y'=y* so  y=L,

ox

it has the following value:

0 0
2= D> (Fyy-Alpud. (5.2)
a B i

() LEPAGE, TH., “Sur les champs géodésiques du calcul deatioms,” Bull. de I'Acad. roy. de
Belgique, Cl. des S@ (1936), pp. 1039.
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0 0
Observe that thé\ are obtained simply by makidg= A in the result of the solution
to the systemds).
It sufficesthat this quadratic form be positive-definite for a giegtremal to realize a
weak minimum.




The infinitesimal contact transformations
of the variational calculus.?)

By ERNST HOLDER in Leipzig

With 1 figure

1. In the following, | would like speak on the implicats that the concept of a one-
parameter group of contact transformations, as welasinfinitesimal transformations,
has in the calculus of variations — and also for thé&iphei extremal integrals with many
desired functions. For one-dimensional extremal integtiae relation to the geometry of
contact transformations — which is already implicitiamilton’s %) optical works — are
well-known, if they are, however, perhaps not alwayffigently discussed in the
textbooks.

Lie %), without referring to Hamilton, has stated severalesinthat the simplest
example of a one-parameter group of contact transfarnsativas given by the wave
motions, and that the group property of all dilatatiores intimately connected with
Huygens’s principle. In a similar way, the images @luaface under aarbitrary one-
parameter group of contact transformationan be regarded as originating in a wave
process in a permanent regime that satisfies Huygpnsaiple of ray optics. An initial
wave surface,, which after a time® becomes a certain wave surfaces To 2o (by
means of a contact transformation) has, at the ®@meo’, the positionle+o 2o = Te Z,
which originates from the new initial locatién after the time®': To+o = To 7o; the
time © is the canonical parameter.

The partial differential equatiorof first order for the wave process is obtained from
the assumption that the infinitesimal contact trameégion, by way of its Lie
characteristic function, (essentially) gives the rarvelocity of the wave for each
direction of the wave normal at every point. If @oes a distance from the origin that is
equal to the normal velocity at a certain point foradale normal direction, as well as the
plane that it is normal to it, then this enveloppait structure: theay surfaceat the
point considered. From this, one obtains, by a simdduction of 1 tod® in the time
incrementdd, the ‘elementary wavethat is produced at each of the individual points of
the surface elements and, as they vary, gives theogevelf the infinitesimally close
wave surface. With this envelope construction (whichkeswise also valid for finite
contact transformations), one has outlined the scopleipdgens’s principle.

1) A somewnhat extended version of a presentation thatjivas to the Baden-Baden meeting of the D.
M. V. (Sept., 1938).

2) W. R. Hamilton, Third Supplement to an Essay on theofjhef Systems of Rays (1832). In
particular, articles 2, 26, Math. Papers I, Cambridge 1931h{encf., also the remarks of the eds. A. W.
Conway and J. L. Synge, pp. XXI, 189), as well in theeyiedited by G. Prange: Uber W. R. Hamiltons
Abhandlungen zur Strahlenoptik, Leipzig 1933, as welhaddotnote on this, in particular, pp. 168, et seq.
cf., Prange, Nova Acta (?) Acad. (?) (1923), No. 1. Enzdkinath. Wiss. IV, 12 and 13, No. 13.

%) Cf., Lie and Scheffers, Geometrie der Berilhrungswamsftionen, Bd. I, Leipzig 1896, pp. 966. (?),
as well as Lie, Die infinitesimalen BerUhrungstransiationen der Optik, Ges. Abh., Bd. 6, pp. 615-617.
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By means of this wave picture, the notion of a onespatar group of
transformations resolves to a “particle picture.” Thisuble aspect represents, in
Hamilton’s theory, a bridge across the dualism of Huggewave theory and Newton’s
emission theory that led Hamilton to make the tramsifrom applying his method to
optics to applying it to mechanics, and which was the stisnfiir Schrédingef) a
hundred years later that led up to the new physical systbhewave mechanics.

In this particle picture one focuses on freghs of the individual surface elements
under the transformations of the group, which aredkig optically speaking. They lead
from the contact point of the elementary wave togheelope and are given by certain
ordinary differential equations/hose right-hand side is derived from Lie’s charadieris
function of the infinitesimal contact transformation.

There now exists the fundamental connection thap#ths of the group are, at the
same time,extremals (minimals) of a variational problem — the one in whitie
indicatrix is given by the ray surface: The rays sgtfigrmat’s principleof shortest time.
Correspondingly, in mechanics the paths satisfy theiple of least action (in the Jacobi
form) when the energy constant is fixed.

I would like to briefly derive this connection anew on thasis of the very
penetrating examination of Vessiot (which is independent of the optical aspects),
simply from Lie’s notion of a one-parameter group oftachtransformations. Thus, |
will use the inhomogeneous formulation by singling outas, as opposed to the most
commonly used homogeneous representation that is ofte&blsuin the beginning —
particularly, when one goes to the multi-dimensionailatmmnal calculus.

~ By singling out &-axis, we thus consider transformations of a spaceafmatest(
X) that take thesurface elemertt, X, P') to another surface element, and that taka-an
dimensionalunion of surface elementdt + P, dx = O into another such union. The
position coordinateB; are thus-0t/dx =P; .
We now treat ane-parameter group of contact transformations:

(1) t=9txP,0), x=g(xP,0), R=htx,P;,0),

o, %, R)
at,x;, )

This has the functioR(t, x, P;) # O as theLie characteristic function of the infinitesimal
transformation;it makesF A9 the infinitesimal displacement of the surface edamin

*) E. Schrodinger, Abhandlungen zur Wellenmecharifke@., Leipzig 1928, pp. 489 et seq.

®) E. Vessiot. a) Sur l'interpretation des transfations de contact infinitésimales, Bull. Soc. math. de
France34 (1906), pp. 320-269. Vessiot also treated a time-varyirdjume b) Essai sur la propagation par
ondes, Annales de I'Ec. Normale sup. 28)(1909), pp. 405-448. For the corresponding questions for the
Lagrange problem, cf., Vessiot, ¢) Sur la théorie deftipticités et le Calcul de Variations, Bull. Soc.
math. de Francd0 (1912), pp. 68 to 139; d) Sur la propagation par ondesrde gprobléme de Mayer,
Journal de Math. (6) (1913), pp. 39-76.

Further representations are given for the case ofdimensional ray surface by T. Levi-Civita and U.
Amaldi, Lezzioni di Meccanica razionale Il, pp. 456-469l@na 1927), L. P. Eisenhart, Continuous
groups of tansfromations (Princeton 1933), p. 263-273 and ®t, Mécanique analytique et mécanique
ondulatoire, Mémorial Sci. Math. Fa®88 (Paris 1937).
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the direction of the-axis if @ is the canonical parameter of the group. The pathiseof
group:
2) t=g(t’, %, F"0), x=g(t',x.F"0), P=h(t"x,F0)

obey the differential relatiorfy:

9G, _

3 dt+ P dx =F dO + G, dg,
(3) X h G, 30

Fi [Gn,

in which ¢, means an arbitrary parameter upon which the initial va?ueé, Pjodepend;

perhaps one can set= X} and fixx’andP’. Just liket, x;, P, F andG then depend

upon®, ¢, ¢z, ... One then has:

oF
4 & R E
“) e

Conversely, ar2parameter family:

(5) t=t(c, C2, ...,Cn; @), X =X(C, C2, ...Con;0), Pi=P(cy, 2, ...Con; O),

with:
o(x,R)

(6) ~—

0(Ce++,Cy)
is characterized by the differential relatiom(3along with (3) , as the family of paths of
a one-parameter group of contact transformations.

Z0

®) From the system of differential equations for ththp:

—= F-RR, =-0

dt
doe
(3a) ax _ F, -n
doe '

dR -k +pF

doe

X it

that are associated with the infinitesimal conteamigformation and the canonical param@eit follows
that there is agreement between the coefficientd@fon the left-hand and right-hand sides of the
differential relation (3) which thus defines the quantiti€; in order to do this, one then calculates the
derivative (3) .

Herglotz, in particular, treated the differential tiglas (3) in his seminar on continuum mechanics,
Gottingen 1925/26. — There, one will also find the basitsfatray optics derived from the second-order
differential equations of continuum mechanics. He #ilsats the general case of variable regimes, which
leads into the Mayer problem:; cf., Vessiot, loc. 3itb) The specialization to permanent regimes produced
the ordinary variational problem in homogeneous forkheglotz has treated a one-parameter group of
contact transformations in the plane in his semimadifferential equations, Géttingen Summer 1928, in
which the paths were treated as extremals in a varatiproblem, and are denoted by the same
independent variabbeas the transversals in inhomogeneous form.
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In order to go from the group of contact transformatito the associated family of
canonical transformations, one writes:

]7i'
(7)

=o(t, %, 1),

M|+~ T|-o

from the first equations, under the assumption @hat O, theP; may be represented as
expressions in the new variables (impulsg<), which will then be substituted inF™.
When one substitute® for t by means of (3)and substitutes in (5) , under the same
assumption tha® # 0, formula (5) now gives the family:

(8) X = 5(01, ..., Con ; t), T= /7i(Cl, ..., Con ;t),
with:
(9) o(x.77) _0(x.7) 9%.P) _ 4

9(C,.Gy)  9(x,P)a(G,,G,)"

for which, (3), after dividing by, yields:

") They are, in fact:

o 1 o | _F"t @
—_— = ~F—Pil'l-, det| —- | = F—Pil'li ==
5@ ) (ap_ o € )=

an ]

| then compute the differential:

1 R 1
d¢ Fz{FthF,S dx+ FP.( Fd?'— FFﬁdEH ,

— _ R Fx
-®dp=(F-PM)dg= L dt+ ' dx +N dr.
F2n F 1 i 1

Combining this with the Legendre transformation (13) gjive

=v)

—_ -_1 =_M -f
(7a) f=-1, p=-1, P m=2,

that Haar presented (in another connection: Uber adjttegiVariationsprobleme und adjungierte
Extremalflachen. Math. AnrL00(1928), pp. 487 et seq.) and Carathéodory, loct}itl) pp. 194 et seq.
has used in a definitive formulation of his generalizegelnelre transformation; we shall discuss this in no.
2. The formulas with one independent variable that onsesutently needs are naturally much easier to
prove.
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(10) —¢gdt+7dx =dO +C, dag,, %zo
However, the differential relation (10) characterid®, with (9), as the family of
solutions of the canonical system:

(12) R=y,, T=-g

with the Hamilton functiorg(t, x;, 7).
With no further restrictions, the family of canonit@nsformations is then also given
by:
x=x0¢, 750,  m=m. ).

With this, we have the bridge to the variational peail
(12) j f dt=min for the curves = x(t)

(for given endpoints), whose extremals are the pattibe group. Its basic Lagrange
function f(t, x, pi), with pi = dx /dt, goes over, in a well-known way, by using the
Legendre transformation:

(13) pi=9,, f=-¢+pm,

to the Hamilton functio and thus to the Lie characteristic functi®f).

The value of the extremal integral along a path segmseequal to the associated
canonical parameter incremedt

Our representation allows us to immediately recognia¢, tonversely, the entire
path of the variational problem can also be obtainedn fthe family of canonical
transformations as one runs through the one-parametap gfccontact transformations.
The transformation of the desired functions is nander the assumption thiatlp # 0),
from (7):

R=-y

14
F=-1
¢

8) Here, we restrict ourselves the case in which #ssldn determinant satisfies:

Fn+2
Zz 0.

(132) b =

7 RR

(_q))n+2

In other cases, one is led to a Lagrange problemVessiot, loc. cit®), pp. 81, 107, as well as more
recently in the textbook of Carathéodory, loc. ti}, a), pp. 354 et seq., and also BoerHgrpp. 201,
second formula from the top, where the first twodesbn the right must b&)?** ",
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in which (similar to (7) in rem.”)), under the assumption thiag 0, the first equation
(14, can be solved for the (on this, cf., also Carathéodory, loc. &f), pp. 358) and its
expressions irt, x, P; can be substituted in (14)as the independent variable, one
introduceqd f dt = © along the extremal. If (8) and the differential rielas (10), as well
as (9), are true for this situation then the diffeadntlation (3), as well as (6), follows
for (5), which characterizes (5) as the path of a oneametex group of contact
transformations.

In the variational calculus, one says that a surédement {, x;, P)) intersects its path
(with the line elementt(x; , pi)) transversally. With the addition of the impulsg the
transversality is expressed by (7), ((14, resp.).

If one then takes an initial surface (unioW) ’and subjects it to the contact
transformationTe of the group® then on any image surface (unidvl) the canonical
parameter will, in a certain neighborhood, describenatfon of positior?):

(15) O =4t x).
The family ofeo* My; St, x) = © = const. is called geodetic field it intersects the paths
transversally (and together with them defines a complete figure in ¢bhase of

Carathéodory).

For S, x), one has the partial differential equatidn

) This is true under the assumption that 0, which we have already madg.= O represents another
first-order partial differential equation, namely:

F (t,x,—,—:;]: 0,

for onesurfacet = t(x) in the samé, x space by which it is determined that it includes théasarelement
with F = 0 that lies on an—1-dimensional manifold. This surface has the propertyithaurface elements
are displaced intthemselvesinder the one-parameter group of contact transfoonstiso any surface
element withF = O will be displaced to an infinitely close element isainitedwith it on the characteristic
strip that is determined by the initial element. Cf.l.i8, Ges. Abh. IV, pp. 287, as well as pp. 591, VI, pp.
636, as well as footnote pp. 905; furthermore, see thadtest of Engels in Bd. Ill, pp. 615, and Theorie
der Transformationsgruppen Il, pp. 256 (Leipzig 1890). In teegresentations, in the construction of the
integral surface as the characteristic strip, misstly not emphasized that it can be described by a one-
parameter group of contact transformations on theeespiace of integral elements.

| remark that the paths that appear here (as anoméihe elements) at@undary curveswhich
can be either minima or maxima of the variational fmwb Cf., Vessiot, loc. cif) c), pp. 69, as well as
Carathéodory, loc. cif) a), pp. 283.

Different formal considerations are presentedlits tase by M. Herzberger, Theory of transversal
curves and the connections between the calculus oftigadaand the theory of partial differential
equations. Proc. Nat. Acad. Scien2dg1938), pp. 466-473.

%) OnM,, one has:
(15a) Stdt + S)q d>i<= 0, dt+ P, dx =0.

Furthermore, one has:
(15b) S-D) + Syﬁ |‘|i =1.
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(16) SF=1.
The equation:
(17) S =R S

then exhibitsP; as an expression in the derivativesSf By means of (7), this also
makes:

(18) S+ ¢ =0,
with:
(19) T=S,,

which is the first-order differential equation of HamitJacobi.
The extremal integral over aawrbitrary comparison curve that runs through the
geodetic field is:

(20) [fdt=@+]&dt

where © is the difference between ti#value at the endpoint of the arc and at the
starting point. If thee-function > 0 here then one obtains the minimizing priypefthe

extremals (paths).

We have derived the complete connection betweenotteeparameter group of
contact transformations and the variational problem somewhat different manner from
that of Vessiot, and in the (inhomogeneous) formulatiwoughout, which represents a
one-dimensional case of the general formulas disdubye Carathéodory for multi-
dimensional variational calculus. In the stated spease, we added the interpretation
of Carathéodory’§ as the Lie characteristic function.

In the new representation that Carathéodrgave in his textbook on the variational
calculus, as well as in his Geometrische Optik, forfolhen of variational calculus — | am
speaking, at the moment, of a line integral — will, in @age, from the outset, be
regarded as a certain embodiment of both the prinogflésrmat and Huygens; thus, the
selfsame origin in the group viewpoint is not completelylized here. The
representation — without the apparatus of the contansformations — will therefore be
briefly unsurpassed, and, what is extremely importaneyhe didactic advantage, it is
suitable for the generalization to multiple extrenmatiegrals (with many unknown
functions) that Carathéodory has based his theory on.

2. If we now consider a variational problem for a npiéiintegral:

(21) [fdt ...dt,=min.,

From (15a), one deduces (17), and then from (15b), by mé&se)o also (16).

) C. Carathéodory, a) Variationsrechnung und partielilef®ntialgleichungen erster Ordnung.
Leipzig 1935. b) Geometrische Optik, Erg. d. Maths. IBerlin 1937. Cf., above all, also C. Carathéodory,
c¢) Les transformations canoniques de glissment et ledicafpn a I'optique géométriques, Rom. Linc.
Rend. (6) 12 (1930} , pp. 353-360, in particular, pp. 357 et seq. Die mehrdimeasion
Variationsrechnung bei mehrfacher Integralen, Acta Sr@g€1928-29), pp. 193-216. Cf., also the
representation of H. Boerner, Uber die Extremalen undigeschen Felder in der Variationsrechnung der
mehrfachen Integrale. Math. Annaléh2 (1936), pp. 187-220.
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in order to define the basic function:

f=1f(ta, X , Pia)
for a ~dimensional surface:
(22) X = Xi(ta),

that lies in the spacR,., of the variabled,, X (o =1, ..., i =1, ...,n), while we
definepi, = 0% / 0t, to be its surface element. This is to be integrated a regiorG; in
thet-space, and the comparison functions shall be givehe@bdundary o6, . Let the

desired extremal surface Bg: x =xi(to).

Carathéodory now takes a family ofdimensional surfaces that depend ugon
parameter®; , ..., 0, thus:

(23) oo M : St , %) = Oq = const.

(which will then be the family of surfaces that ar@nsversal to the geodetic field) and,
with the help of the basic functidnconverts to aequivalentf — A, which is associated

with the same extremal surfaég . Therefore, the integral ovér must depend only

upon the boundary of the comparison surface segment;h€adatry defined to be the
determinant:

3s,

(24) A= P

=|Sa+Sappl =Ats, X , Pia),
14

Saﬂ: Sm,,’ Sa:sﬂ&-'

The family ofM, shall now be chosen in such a way thabreg particular point {; ,
x) the differencd — A, which is regarded as a function of fhe, possesses a null:

(25) f-A>0;

thus, the equality symbol shall obtain for a certairfasgr elementtf , X , pia), Which
will “ transversally intersedhe geodetic famil{23) at the point in questioh.

A family that is geodetic any point of a certain region in the spaRe, is called a
geodetic field That is the fundamental notion that Carathéodorgpdhtced. The family
that is geodetic at one point is only an auxiliary cartsion that | introduce in order to
later on realize the covariance of the notion ahsversality simply and independently of
the (yet to be constructed) geodetic field.

The analytical condition for the family (23) to be detic at a point is obtained by
the same considerations that Carathéodory has applibd geodetic field, if they indeed
always relate to jusinepoint. We writeM, in the formt, = t4(X ; ©p) and set:

(26) - —+=Pia, S = Sap Pip,
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in other words, such that it expresses, in the eventthigatamily (23) in {, , %) is
geodetic, the surface elementy (X, Piy) in terms of only the transversally intersecting
(ta, X, Pia) (in term of onlyty , %, 774, resp., whereg, = f, )9

aaﬂ
a

In this condition for theu-dimensional surface element ( X , pig) to be transversally
intersected by the-dimensional surface elemertt, ( x , Pis), one similarly defines the
Hamilton function to be:

(28) P(to, X, Pia) =—F+pia e with 77, = fna )
(29) —agp=—T dup* Pia 713, a = det@uy)

and g, is the algebraic complementads in (aqy).

Carathéodory then introduced a construction Fofthat is similar to the one-
dimensional case, namely:
frt
(30) F= :
a

which proves to be a functidf(t, , X , Pig), when one expresses thg in terms of the
7T, and these, in turn, in terms of tAg, by means of the transversality condition (27).
One then has the further condititt

(31) |Sep | LF =1

12) From the property (23), it follows for the minimumijtlw the introduction of the algebraic

complementéaﬁ to C,3=Syp — Sii P, that:

f=A=|Cqpl, Ma=1, =4, .

from which:

Mg =S Cpﬁ

=T Oup—Pia Tp= cmépﬁ - pmspi‘cpﬁz Saﬁépﬁ.
If P, were introduced by way of (26fhen this would make:

TT3=Poag;

moreover, one haa = | Sy | 71, hence, withF, (30), one also hasS,; | F = 1. By generalizing the
considerations that pertained to (14) one sees: Equat&f)safe soluble in terms of the; ; the
expressions for the in terms of the, , X , P, will be substituted in (30) on the right. Cf., Boarriec.
cit. '), pp. 200 et seq. We shall not require the detailed forionlaf the Carathéodory transformation
here.
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for the geodetic field. Thus, by way of:

the P, are expressed in terms of the partial derivatBgs, S, of the S, (under the
assumption that$,z | # 0) and substituted inte. One thus obtaionefirst-order partial
differential equation for th&, ; this characterizes the geodetic fiély

With the help of the geodetic field, Carathéodory preskthe “Legendre condition”
and the “Weierstras§-function” for multiple integrals; they do not appearane would

presume. The most important thing is the fact thatfinctionsS, of the geodetic field
drop out: All that remains are th®, or theP,,. Nonetheless, it is important to the
construction of the theory, as well as the establisitinoé a strong minimum (for a
positive &-function), for a given extremad, to be embedded in a geodetic field that
transversally intersects it.

Before | go into that, | remark that above all tlation of the geodetic field, and
likewise that of being transversally intersected, igioally defined by (25) in manner
that isindependent of the choice of variableghat is only meaningful relative to the
extremal integral that was givarpriori.

We transform this to new independent varialijgswhich are functions df, andx; :

oT, .
ot

(33) t,=Tdts, %) with |Tges|#0, Top=

B

the x; will remain the same. This transformation is arrangach that a comparison
surface (lying in the neighborhood of the extremal in qaeski = xi(t,) intersectshe -
parameter family ofi-dimensional coordinate manifolds= const. in such a way that for

the assembled function:
(34) t,= Ttz X(tg)
the functional determinant is:

d(f) aT T, df
34 d=U) g0 050, dg=Zesllep -Cb
(34x d(tﬂ) | ap | aB Otﬂ ox. Pig dtﬂ

J

If one solves (34) fotz then one obtains the following for the surface:

13) In addition, the indicated consideration shows: To givemerical value®,, one can always very
easily determine geodetic family at the poirit, , %), which has arM, that goes throught4, x) with
precisely the positioR,: One chooses tHgzat(t,, x) arbitrarily, except that the determinant satisfies:

]
S0 1= R

and then determines tiss by means of (32) at the poirit, ( x). The functionsS, (tz, x) must then have
the computed first derivativesz , S; only at €, , x).
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5 e dt
35 = X (t), p.=—2,
( ) Xl |(ﬂ) pm dtﬂ

and from the identity; :Xi (Tats, %(tp), it further follows that:
(36) Pia= P,d,,

whered,, depends only upotg, X; , piz , such that, with the algebraic complemel_pgin
the determinand, the new expressions:

_d
(37) Pis=

Pa

d pia

will be expressed in terms of ortly, X , pia
Moreover, it follows from the required invariance bétextremal integrals that were

given a priori, i.e., from the demand thétdt... dt, = fdf..-df,, which gives the

transformation character of the basic funcfienf (4, hence:
(38) f=1f,

where on the right-hand side theare expressed in terms of thand thex; , pis in terms
ofthet,, x , p,— simply by switching the roles ¢f andf, .

The “path of the independent integraltd®; ... do, also allows one to convert the
t_, where the invariant integral is represented by (3%)the conversion equations for
the family (23) read:

(39) S,(%, X)=0a
then one will have:

(40) [do: ..do,= [Adgdf, wih A= =[5,+5,5)|
B

since, on the other hand, this integral is:

(41) Jdo, ...do,=[ndy ...dt,= [AGdE-- o,

one then has:

(42) A= 1a,

which one can also verify directly quite easily.
Under the transition to the new variables, one aherely multiplies the left-hand
side of the fundamental relation (25) bg 2/0; one has:
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(43) f-A=1(f-A)=0

when and only wheh—A > 0O is true, resp.: The geodetic field retains the prophat t
the same is true for a family that is geodetic atiatpand thus an-dimensional surface
element that is transversal toguedimensional surface element also remains transversal
after the coordinate transformation — relative to tiamsed basic function of oura(
priori given) extremal integral. The position coordinates @@ equations of the family

of surfaces (23) are naturally to be converted, but tlagyac relations (27), (30), (31),
(32), which are obvious consequences of the fundamental itgq@&), arecovariant
They have the old form with regard to the unconverteit fasctionf .

| further remark that in the recent work of Finsler aratt&n* such invariance
considerations are presented in terms of the geome#rgdce whose metric is based on
the multiple extremal integral (with only one unknowndtion).

3. All that remains is the problem of embedding a giveneexalE, (at least in the

small) in a geodetic field that intersects it transaklys Boerner'®) has given a
construction in the spaces of Carathéodory’s thetmyconclusion, | would like to show
how, when one is given an infinitesimal contact transhtion of a family ofn + 1-

dimensional manifolds- which must only be transversal & - the production of a
geodetic field that is transversaldp can lead back to the aforementioned construction of

line integrals.
For the construction of a geodetic field, one mustesaolnly one first-order partial
differential equation (31) foonefunction S, in the event theg, , @ = 2, ...,/ is given

arbitrarily; thus theéP;, in F are to be replaced with their expressions in teritheofirst
derivatives of thes, that one computes from (32). However, it is, aboljenakessary

for the field to be transversal to the given extrengls Boerner'®) thus takes the
functionsS, (t;, x) in such a way that the:

(44) P =N S, (4. %)= ©, = const.

is transversal t&, , i.e., it includes the transversaldirectionsP, that are transversal to
the surface elemept, of £, .

1) Cf., E. Cartan, Les espaces de Finsler, Actuaditéant. et ind. no. 79. Paris 1934; Les espaces
métriques fondés sur la notion d'aire, id. no. 72, P&&31

15) H. Boerner, loc. cit'?), pp. 203-213. On the basis of another definition of thelegic field, H.
Weyl gave a field construction in: Geodesic fields in tiaéculus of variations for multiple integrals,
Annals of Math.36 (1935), pp. 607-629. Th.-H.-J. Lepage considered the two daiisivithin a unified
viewpoint in: Sur les champs géodesiques du calcul desiwagaBull. Acad. Roy. Belg. (532 (1936),
pp. 716-729 and pp. 1036-1046. Boerner has recently explained howartithé@dory theory is indicated
within this general Ansatz (talk at the Marburger 6allium, Feb., 1939).

18) cf., loc. cit.™®), pp. 209, footnote 23.
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However, we immediately convert tHi%.1 to (n+1-dimensionallcoordinate planes
S, = t,= 0, Dby the introduction of new independent variables, which gagnadenoted
by t, '*); t, =t can remain trué®).
] A family of o' M, must be completely contained in
Rn+1 ] each Ry.1 for the n-dimensional surfaced, of the
geodetic field to be constructed. Ak therefore has the
n-directionP;; =P;, P, = 0.

| now allow theM, in R.+1 to go over to each other
under a one-parameter group of contact transformations
whose infinitesimal contact transformation has the
following Lie characteristic function:

(45) F%t, % ,P)=F(t 02, ...,0,,%,P,0,...,0),

i.e., the Carathéodory function that is specializety te ©, = const.P,y=0. Thus, let a
surface be chosen in eah; to be the initial surfadel ?, and which is transversal to the

(one-dimensional) intersection curgeof £, with R,.1 — relative taF% in Ry .

First, the totality of alb“ M, (in all R ;1) defines a geodetic field in any caseMif
has the canonical paramet®r = © = t, x) = S(t, ©2, ..., ©4, ) under the group®
then the original partial differential equation (16) isidrdor the function of positior§t,
) on Ru:1 , which is still independent of the parame®y, only with F® instead ofF,
hence:

(46) SF=1 with SP=S .

If one then again introduces the quantities with the isdicet; , ©y=t;,S=5 ,P, =
Pi1 , and observes the special form of $e by means of which (32) gives 0Pr; , then

) The fact that the properties of the transformatlmtl , fa, = Sﬂ, (t 5% ythat were required above in

(33) and (34 are satisfied can be gathered from the previoustgtdibotnote in Boerner’s work: Let; #
0 (possibly achieved by a suitable transformation thptaduced abnestarting point of the extremeiz_g[7 =

0), and then assume that tbae(tﬁ) are independent of .

'#) One can seek to carry out the suitable transfoomati=x (t) + X , 77, = 77 ) + 7, that brought

about a great simplification in Weyl, loc. cif) in the spaces of Carathéodory’s theory, as well k thie
intention of applying the contact transformation witile necessary foresight to convert the new Lagrange

function f', which vanishesalong the initial extremak = >'(|(tﬁ), Mo =77,(t;), along with its first

derivatives, and convert the likewise-obtained new iamfunctiong into f =f+ 1,5 = ¢ - 1.

One then arrives at certain surfaagg(t,X) = const., which do not, however, yield the transversa
surfaces of the original problem in the original spdogply by conversion; these are, moreover, other
surfaces that are given I8(ts, x) = const., whereS,(ts, ) = S,(t, X (9)+ 77, (9 x+0,(1,%). —

Furthermore, it seems to me that in Weyl, pp. 621, on¢ atlssthe (negative Hamilton functih= — ¢
in formula (35) and the sum on the right-hand sidéefforegoing one.
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one recognizes, with no further assumptibfisthat one can write the formula (46), just
as well as the differential equation (31)Rn, .

Now, we still have to show that this geodetic fielteisects the given extremg) .
As one then realizes, that already suffices in otdeprove that allM, in R, are
transversal to the intersectiéh (of £, with R..1) — relative toF°, which is therefore the

curve&; defined by the total evolution of a surface element oéutice group=’.

Above all, one haB,= 0 for then-direction that is transversal t§, , since, by

assumption, it indeed lies in a coordinate plRRa. Hence, the system of equations (32)
must be satisfied fo’ = 2, ..., i by the special functior§y =ty .
From (27), one then also conclud®s7z, = 0 on&, .

The Euler partial differential equations 6y, which are written canonically as:

d_x: dni-”
d, "% dt,

(47) =- ¢,

with the Hamilton function (28), yield, sincgy = 0, a canonical system ordinary
differential equations with independent variables= t for x, and the canonically

conjugate impulseq; = 77

(48) d_)g =¢° d_” 0

o g

thus, the Hamilton function is:
(49) Po(t, % , M) = @(t, 02, ...,0,,% , 7,0, ..., 0)

which the general Hamilton function (28), when speaaliio 77, = 0.

19) Under certain assumptions relativeRtdhat guarantee the differentiability §f with respect to the

parameter®,, .
20) From (29), (27), under the assumption that:

Yap= Oupt Pia Pp= %(a% +8,7, R,) =
the relation follows:
fRo= Oap 7p -
ForPi»= 0, one hagyz= dypandry = 0.
Moreover, frommis =P, a,3, one obtains:

=Py a1 =P (f - pi1 1) = Pu(-9).

. -4 0 -
since a=|ag| o 5 .. ; from (29).

0o -

Thus, one has:

—h
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On the grounds of the formal remarks that were madeoiméte®) (that forP;, = 0,
7Ty = 0, the Carathéodory formulas (27), (30) go over to theesponding one-
dimensional formula (14)), the Hamilton functigfi is associated with the Lie function
F° = - 1/¢°, in the sense of the first section, i&,is a path, relative t6°, and indeed

consists of those surface elementsvbfthat, by construction, interse€t transversally.
Under the transformations of the grokpin R..1, the image of this initial element,
which is displaced alon&, is always transversal t3. The formula:

(50) T=—¢,

which is valid on anyt; and expresses this transversality relafifen Rn.1, is the full

content of Carathéodory’s transversality condition (Zmce&, possesses the location
T = 1T, Tip = 0, and theM, (lying in R.+1) possess the locatidh, = P, Piy = 0. From
footnote?®), due to the unique solubility of the same, the surfémmentP;, is therefore
transversal to the surface elemeptsof £, alongé&, in the space of all variabld%, =

P -
The property of the~parameter familyNl,) that is thus proved in order to construct a
geodetic field — viz., that the extrem§l intersects it transversally does not depend

upon the variables used, but has an invariant meaning foattaional problem.

(Received on 2/5/39)




Calculus of variations from Stokes’s theorem
By

Hermann Boerner in Munich
Presently with the Weather Service for the Reich

In the following, the most important formulas foetbalculus of variations for simple
integrals will be presented in a novel way, namely, asresequence of the use of the
calculus of alternating differential forms.

One of the results of this calculus, which represents certain sense, the natural
generalization of the integral calculus to severalaes, is the fact that all of the
general theorems of partial integration — the theorehSauss, Stokes, etc. — can be
summarized in on simple formula:

[ w=]dw

where the left-hand side involves a differential formd athe right-hand side, its
differential, resp., which is integrated over a manifaid @&s boundary, resp.; this is the
generalized “Stokes theorem.”

Partial integration is used in the calculus of vawmtin various places: in the
derivation of Euler’s differential equation, in the bélt independent integral. These
otherwise distinct topics — one of which is associatatth the classical calculus of
variations of the 18 Century, and the other, to the modern theory of Weass — appear
here, as it were, in a unified formalism. From iheoobtains a particularly simple
derivation of the transversality condition, and Legeisinecessary condition may also
be effortlessly arrived at.

These developments take on a special meaning by thénddhey make possible a
much more convenient derivation for multiple integraétthe one that has usually been
employed up to now. The Belgidrepagefirst made use of this calculus in order to
present a field theory with the aid of the Hilbert gred that summarized the various
theories that existed up to that point in time. Incakithat appeared at the same time as
the present one on multiple integrdisin which | had hoped to further clarify a mystery,
| also set down on paper the consequences of the use chtbulus in all aspects of the
calculus of variations there.

It seems expedient to me to first present a naturaltgplicated treatment of this
relatively straightforward topic, in which preciselyeeything appears that will later be
generalized. However, it might also be of interedthtoreader for its own sake, and be
useful in giving those who are not familiar with the don@pjuick orientation; therefore,
nothing will be assumed.

1) H. Boerner, Uber die Legendresche Bedingung und die Beithen der Variationsrechnung der
mehrfacher Integrale, Math. Ze#6 (1940), pp. 720-742.
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Since the calculus of alternating differential formsnot yet widely known, in the
first section | have summarized everything that we bélbusy with latef).

1. Rules of calculation for differential forms. The summation sign will be omitted.
Simple sums, e.g., overgo from 1 ton. For a double sum oveyj, the indices andj
range from 1 ta independently of each other; if anything else is sumnved then the
summation sign will be used: e.g,

i<j

For differential forms ady , etc., whose coefficients are functions of the iapat
coordinates y;, the coefficients shall be skew-symmetric and théferéntials
anticommutative:

dy: dy = —dy; dy: .
For example:
(1) w=) a;dy dy= & dydy.

i<j

is a differential form of degree two; here, one &as — a@; . The coefficients (“scalars”)
are interchangeable with the differential forms. m®rof degree one are call&faff
forms.

Theproductof two forms will be defined by juxtaposition, and is ipdadent of the
order of the factors, in general.

Thedifferential of a scalaa is the form:

oda
da=—d
oy Y

In order to define the differential of any form, onetesithe coefficients to the left
and puts al in front of them. E.g., one has:

0a 0a
d(a dy) = da dy = —-dy. d dyd
(a dy)) = da dyi oy y; dy= E{ayj ayJyy

1<]

Theintegrationof a Pfaff form over a curve is well known. In orde integrate the
form (1.1) of degree two over a two-dimensional pigcef a surface, one relatgs

(possibly piecewise) to the parameters (in those termsg will be orientedas follows:
the positive sense of traversal goes from the doeaifu to v); one then has:

J"” JZ@,dde IZQ, ;Z’J y]) du dv, 3)

I<]

2) One finds a thorough presentation and proofs indEir&at, Lecons sur le probleme de Pfaff, Paris
1922, Chap. Ill. Incidentally, on pp. 21, et seq., of thiskbone already finds a hint of the calculus of
variations, but only in a particular, and basicaliyial, variational problem.
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where the right-hand side is an ordinary integral dkierregion in they, v)-plane that
corresponds tds. Thus, the value of the integral is independent of dheice of
parameters; its sign depends upon the orientation.

One hasStokes’s theorepwhich we will need only for a Pfaff forma

J'%a):jsda);

here,’R means the boundary of the two-dimensional surface gie@ehen traversed in
the positive sense. The boundary curve may therefore d@wers and the surface piece
may have kinks; in order to avoid such jumps, we assume&hat follows that all
tangents and tangent planes exist and are continuous.

We would ultimately like to make use of the well-knotheorem that the integral of
acomplete differentiali.e., a formwsuch thatlw= 0, is “path-independent,” i.e., (in the
case of degree one) it only depends upon the starting pudinth@ end point of the
integration curve. Indeed, this follows from Stokessottem, or the even simpler well-
known fact that a complete differential (of degree)asehe differential of a scalar. For
higher dimensions, corresponding statements are valid.

2. The Euler equations. One deals with the integral:
(2.1) JC:'[f(t,Xi,X)dt

over a curveC: x(t) in the @ + 1)-dimensional t( x)-spacefR..1; the integral shall,

perhaps, give a minimum for given endpoiRisP, of C. The basic functiofi(t, x, p;)
shall be continuous, at least in all of the denxest that appear in what follows, which
are essentially the first derivativesfaind f , .

We consider the form:
w=1(t, x, p;) dt

in the (2 + 1)-dimensionalt( x;, p))-spaceRan+1 , and along with it, tha Pfaff forms:
w =dx —p dt.

Instead of (2.1), we take the integfadvin fRona to be extended over an integral

curve of the “Pfaff systeméy = 0, which one obtains when one takes any funation
for x; and setgi(t) = X . Indeed, one always has:

®) Due to the summation convention, one can als@whi right-hand side ;1%1] oy, %; dudv: one
ou ov
observes that from (1.1), one thus has:

a; dy dy =23 %% du dv
u ov

with the factor 2.
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Jc :La),

if ¢ is the curve iM,n+1 that corresponds 1G.
In the classical calculus of variations one consi@decurveC that solves the problem
and a nearby comparison curé:X(t), and embeds them both in a one-parameter

family Cg: (6, t), that makes, say; correspond t@= 0 andC to 8= & InRons1, this
gives us a two-dimensional surface piece:

Fix =x(6,1), pi:%,

that is referred to the parametéld, and is therefore oriented. Its boundary consists of
the curves® and¢ that correspond te€C and C, and two further curve segments
(corresponding to the end valuest; andt =t,), along which, one has:

(2.2) dt=0 and w=0.

With consideration for the orientation, and due to (SR)kes’s theorem gives:
(2.3) J'Ea) _ch: sgnsj'gda).

If a curve C solves the problem then this difference must be posiovean
arbitraryC, and, in particular, for an arbitrary sign ©fas long a€is sufficiently close
to C; i.e., is sufficiently small.

Obviously, one does not change the problem and its soliim one replace&
with another fornQQ with Q = w(mod w) in all of the computations, i.e.:

Q=w+Alt, %, p) @ .

For the calculations in terms of the parametktsone has:

a)ﬂ 4
2.4 = —dJ.
(2.4) W= )

It will therefore be convenient to choo&ein such a manner that:
dQ =0 (w) .

For this, one must sé& = fH : one will then have:

*) Hence,w = & along the curv€ (6= 0) in the classical variational calculus.
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(2.5) Q=fdt+f,w=F-pf,)dt+f, dx
and:
dQ =(df, - f, d)w.
Now we can compute the “variation” (2.3); due to (2.2), gets:

Jo-d=[ w-[ w=] Q-] Q= sgngj'sdQ

= sgne [ (df, - f,dt)w = sgne j[ f, —%}%dﬁdt
e ool . df, Yox
=] dﬁ{J: {f% —T:jﬁdt} .

Here,d/dt denotes the partial derivative with respect tog@sameter tor, what amounts
to the same thing, the derivative along the family ovesr

For sufficiently smalls, the last expression has the same sign as thentermtthe
curly brackets whe# = 0, as long asis positive; for negative, it has the opposite sign.
Thus, a minimum can occur when these quantities vanislarfotrary variationsox;,
from which one concludes the existence offlder equations

_dfp. _

(2.6) TS

0

in a well-known way. The solutions of these difféi@nequations are callegiktremals
5

).

3. Transversality. It is possible that the starting poft is not fixed, but moves on
an arbitrary manifold. The starting point of our fan@y: x(&, t) of comparison curves
then lies on an oriented curve:

St=t@, x=x(9=x(619).

The equations of the previous section are then modi§iddllaws:

j@Q—LQ+sgn€j@Q :sgngj'sdQ.
Now, one has:
o= sgnej;{(f -pf,)t+ 1, X} ds,

and for a smalk this has the sign of:

®) This is the usual terminologyCarathéodondefined extremals otherwise; see Variationsrechnung
und partielle Differentialgleichungen erster Ordnung. Leiagin 1935, pp. 190 et seq.
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(f -p f,)E(0)+ £, X(0).

One next concludes the existence of the Euler eqsaarce families of curves with
fixed endpoints, hendé=x" = 0, are indeed also permissible, and then the relation

(f-p f,)0)+ f, x(0)=0,

because otherwise the new terms that appear would chigngeith £ for smalle. Since
t'(0), x'(0)are the components of an arbitrary tangent vectoretordmifold on which the

starting point must lie, the solution cur@ must satisfy the followingransversality
condition The vector with the components:

(3.1) f-pf f

b’ b

must be perpendicular to its starting point on this foéthi One then says: the curve will
cut the manifold transversally.

4. Legendre’s necessary conditiof). We consider a line elemeft®, x°, p°) of a

curveC, in whose neighborhood the tangent to the curve israamts (i.e.C shall have
no corners at the locatid?). For this line element, let the quadratic form:

(4.1) fop Uil

pp 1T

be either positive definite or positive semi-definitieere are thus numbeygs with the
square-sum 1, such that:

fwjpipj:—k<0.

We then construct a comparison cu@¢hat agrees witle for [t —t° | > 7, and for |t
—1t%|< 7 it is described by:
X(M=x1) +ep(rxtF t),

in which, as in the following, the upper sign is to be tafce t < t° and the lower one for
t>1°.
We embed it in the family:

Co:x(6, 1) =x(t) + Ga(rxt F V), 0O<f<e
hence:
pi(a, ) =pt) £ 0 .

®) The following proof is only a minor modification tiie proof that one finds in Carathéodory’'s
book that was cited i) on pp. 193, et seq., which is shortened somewnhat by thieatjapi of our method.
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Let £> 0 andrp > 0 be chosen so small that for all of the valuethefarguments df
for the Cyin the interval | —t° | < 7 < 1o, the subsequent derivatives lie under a fixed
limit and:

k
fﬁpjloiloj = _E-

Let the surface piece that is determined by the fagylin 2,1 be denoted bg.
We then obtain:
Je—Je :J'Sda)zj'g(f&dx + f. dp) dt

:jspi{ f, (Txt5t)+ 1, }dodt.
| assert that this expression is negative for a safftty smallz.

In fact, there is a numbéd;, > 0 that is independent ofsuch that the value of the
first summand is smaller than:

M, & 72 .
In the second summand, we set:

£, (X3, p, 0, 1)=
fo 6X(3.0, 0@, 0)- f, t.x &, 1), g OOF f Ex €.0).p €.1)
=, (t° X%, pO)+ f, (£, pP).

The last summand obviously contributes zero to the iategfhe preceding difference
goes uniformly to zero witlin 8. The associated integral will thus be estimated by:

Mx(7) €1,

wherelirr(l) M, = 0. For the first difference we finally writepm the mean value theorem:

where the circumflex denotes a certain associatshraalue in our value domain. In the
corresponding part of the integral there is alwayssign. Its value is thus negative and
its absolute value greater than:
1871k,
One sees that by a suitable choice ohe can achieve:
Je—J. <0.

For any line element, a solution curve therefaves
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fop Uity 20.

One calls a line elememegular if the quadratic form is positive definitsingular
when it is positive semi-definite, and in all other casesgular. (If one would also like
to treat maximum problems then one calls only the lieeneht with an indefinite form
irregular and distinguishes positive- and negative-regiatngular, resp.) elements.)
The solutions of the minimum problem include no irregulaments.

5. In order to obtain &eld of curves, we consider an ¢ 1)-dimensional “surface”
pi = pi(t, %) In Ran+ 1. By integrating the system of equations:

% = pi(t, %)

one finds integral curves of the Pfaff systemn= 0 that lie on this surface. The
corresponding curves iR, + 1 define a “field,” i.e., they cover a piece of this gpac
simply and completely.

The replacement of the in a functionF(t, x;, p;) by functions oft andx; will be,
when necessary, suggested by square brackets. The deroasuch a functiond] on
PRn + 1 Will be denoted by the rourdland the derivative along the field curves (in accord
with § 2) by the plaird:

dF _oF N oF

a ot ox

6. In § 2, the differential of2 was considered. The Euler equations resulted, in
which this differential was assumed to vanish along a ¢cwaweat were. One arrived at
sufficient conditions for a minimum when one consaerfields that made this
differential vanish in a region @t,. 1. One called a field geodesic field) whend[Q] =

0, i.e., whenQ] is a complete differential. One has:

dQ] =(df, - f, dhw

—af”dt+af“(w+ dy— f dt
] ot ax TP L dtrag

J

af, _of,

df
= A f dtw+ )| - waw .
dt " T\ ox  ox :

We must therefore expect that the field curvesfyathe equations (2.6), hence, they
are extremals, and that the-{ 1n/2 equations:

") Naturally, the notion has been known siki¢eierstrass The name originated witBarathéodory
but the simple definition that is given here is dukdpage
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of, of
(6.1) — -_P=9

0x ax,.
are valid.

If C is now a field extremal ar@lis any comparison curve with the same endpoints
that extends entirely within the field then one has:

Jo :.[éw :.[C[Q] :.[E[Q] :
and thus, when one substitutes from (2.5):

Je=Jc =[ X, p. B)
wherep; are the field functiongy are the line elements Gf, and:

&%, py B) =1t %, b)) =1t %, p) — (B —-p) T, (X, p)

is theWeierstrass excess function.

It is sufficient for astrong minimum (comparison curves in a sufficiently small
neighborhood with arbitrary directions) that on@ eanbed all of the extremals in a
geodesic field), and that for the line element %, pi) of the field and allp one has:

(6.2) &%, p, p)>0.

For aweakminimum (comparison curves have the same directiansufficiently small
neighborhood), the same is true for any line elénodrihe field for thep in a certain
neighborhood op; . (6.2) is theNeierstrass condition.

Since the development éfin powers of p — pi begins with fnp,- (P-P)P-1n)
(in the case where only the second derivativeswaith respect to th@; exist, one uses
Taylor's theorem) one can replace the conditio2)(6r the weak minimum with the

condition that the quadratic form (4.1) be positldinite. This is “Legendre’s sufficient
condition.”

7. The meaning of conditions (6.1) becomes cleamvdree writes down the fact that
[Q] is a complete differential in the form:

(7.1) ] =dS

8) The possibility of embedding a sufficiently small gieaf an extremal in a field follows from the
way that one derives the Hamilton-Jacobi differerggalation in the theory of first order partial differehtia
equations; cf., chapter 3 in the textbook of Carathéodotyidsmentioned in rem). The question of the
possibility of embedding thentire curve will be answered in the theory of the seconétran.
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whered(t, x) is a function ofiy:1 . One has:

5=+ 95y =951+ 95,
ot 0X, dt 0%

and when one equates this with (2.5), one writes either:

(7.2) =5 M=
or:
(7.3) [fn1=§—f, =P 1,12,

Carathéodory first placed the equations (7.2) at thefrtomt of the calculus of
variations. The geometric meaning of (7.3) shows thepaoison with (3.1)Extremals
of the field will be cut transversally by the n-dimsional surfaces S const.
Furthermore, one sees that the equations (2.6) and {@k#)) together are nothing but
the integrability conditions for the-dimensional surface elements that are transvessal t
the field curves to fit together into a one-parameterilfaof surfacesS = const. in a
certain way’).

8. The relation:

(8.1) [.11 =] [

is valid not only for two arbitrary curves that rtirough the geodesic field whose
starting points and endpoints agree. Indeed, ase h

[0 = [os=5-s.

whereS; andS, mean the values of the functiGrthat belong to the starting point and the
endpoint ofC, and for the validity of (8.1), it thus sufficesr fthe starting points and the
endpoints of andC to lie on the same surfaGs= const. The theorem that is implied by
this, thatfor a geodesic field the surface Senst. (“geodesic equidistantsiip the field
extremals pieces give equal values for the intedgal(equal “geodesic length”), is a

) If one would expect only that the transversals wseréace elements that belonged to a farBity
const. then the derivatives & would only be proportional to the left-hand side of (7.3).heT
“normalization” of the gradients, which is somewhat expe by the last of equations (7.3) (the others are
then satisfied automatically) may generally be aclidwe a transformatio® = ¢(S) only for a point of
each surface. This last equation, as one must expeddition, is, when one carries out the Legendre
transformation, nothing but the Hamilton-Jacobi padifierential equation of the problem. Example: The
orthogonal trajectories of an arbitrary family of suelclefine a geodesic field for the variational problem

of shortest length with the basic functibr,/1+p p (for which transversal = orthogonal) when and only

when the length of the gradients is constant on sadace; the orthogonal trajectories are thus straight
lines then and only then. (For this, confer the thearef8.)
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generalization of a well-known theorem about geodise&s on surfaces and normal
congruences, and they will thus be referred toKagser transversals®). For
Carathéodory, an extremal field, together with its gewmdéransversals, hence, the
geometric structure for which the Kneser theorem iglyahd therefore gives an answer
to all of the questions that arise from the variaioproblem, is called acbmplete
figure”

9. Furthermore, one again finds the transversality comdaf 8 3 here effortlessly.
We consider the simplest case: Let the starting pintnove on amn-dimensional
surface, while the endpoift is fixed. We take the surface to be the surfaeeS of a
geodesic field; the poirP, may lie in the field and the Weierstrass conditi6r2) is
satisfied. It is then clear that of all of the curtest run through the field, only the field
extremal that goes throudh is a solution of the problem. In particular, an emtal that
runs through the field that connects any point of the se8a= S; with P, can certainly
not be a solution when it does not intersect this serti@nsversally.

A system of sufficient conditions for this case thesads: Euler equations,
transversality, possibility of the field constructicand the Legendre condition for the
weak minimum, the Weierstrass condition for therggrminimum.

If the starting point moves on a surface of lowerahsion then one lays ansurface
over it and proceeds in precisely the same way. Thavim becomes complicated
when both endpoints are variable. Here, let us suggesthengimplest casé; shall lie
on ann-surface,P,, on any surfac&, and the conditions mentioned above are satisfied;
moreover, lef > 0. Obviously, a minimum actually occurs when thererhentioned
field construction gives a surfaée in the neighborhood d?, that lies completely on
oneside of the surfac® = const. that goes throudh, and indeed on the opposite one,
throughP;.

(Received on 1 May 1940.)

19) A. Kneser, Lehrbuch der Variationsrechnung, pp. 4@&uBschweig 1900.



On the Legendre condition and field theory in the
calculus of variations for multiple integrals

By

Hermann Boerner in Munich
Presently at Weather Service for the Reich

In the calculus of variations for multiple integrals several independerdnd
dependent variables — one runs into noteworthy diffesilin the presentation of the
Legendre condition, whicHadamardwas the first to point out in his study of the works
of Clebsch?®). It takes the form of being given, not jusbte but arbitrarily many
sufficient conditions (although it is sufficient totisy any one of them), whereas the
necessity of any of them is indeed implicit, but meaonghing more. Surprisingly,
Carathéodory’gyeneralization in the form of his theory of “geodesitfé ) thus led to
a completely well-defined sufficient Legendre conditibat (with the> sign) indeed
seems to be necessary, in a certain sense, fronh wic possibility of embedding a
given extremal in a field was proven by Me One finds formulas for field theory that
are completely different from the (relatively coiopted) ones of Carathéodory written
down in the book bype Donderin a purely formal way), and the same theory was
developed byVey| who also proved the possibility of embedding in a figldhis theory
leads to another, likewise uniquely determined, suffidi@gendre condition. However,

the Weierstras§-functions are different in the two theories.

The BelgianLepagehas brought both theories under one roof (and into agete
with Hadamard’s Legendre condition), by regarding thenba@s special cases in an
entire family of theories that depend upon a large numberbitrary function$).

In the following, | will show that one is inevitablyddo one theory in particular —
namely, that of Carathéodory — when one places thei@ualitdemand on the field
theory that it be applicable to all problems, and theeeto the ones withmoving

1) J. Hadamard, Sur un question de calcul des variatiBol. Soc. math. de Fran@ (1902), pp.
253-256; Sur quelques questions de calcul des variatibials 33 (1905), pp. 73-80.

2) C. Carathéodory, Uber die Variationsrechnung bei raeheih Integralen. Acta Szeged
(1928/29), pp. 193-216.

%) H. Boerner, Uber die Extremalen und geodatischen Fefdeder Variationsrechnung der
mehrfachen Integrale. Math. Anhil2(1936), pp. 187-220. A very interesting group-theoreticatrnent
of the proof was recently given b. Holder: Die infinitesimalen Berihrungstransformation der
Variationsrechnung, Jber. D. M. ¥9 (1939), pp. 162-178 — cinfra, rem.?).

*) Th. De Donder, Théorie invariantive du calcul desatamis, 10 treatises in the Bull. Acad. Roy.
Belg. v.’s.15(1929) andL6 (1930). New edition, Paris 1935.

) H. Weyl, Geodesic fields in the calculus of variatidor multiple integrals. Annals of MatB6
(1935), pp. 607-629.

) Th.-H.-J. Lepage, Sur les champs géodesiques du calcuhriasons. Bull. Acad. Roy. Belg. v.
22(1936), pp. 716-729, 1036-1046.
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boundaries’). In a truly elementary example | will show thhe tsufficient condition of
Hadamard or Weyl is thus included, in fact.

Lepage devoted himself in his work to the calculus @fradtting differential forms —
whose use is, in fact, suggested when one is concernbdintggrals that are “path-
independent.” However, the calculus is not only of seruncthat context, it shows, in
addition, that one can arrive at the entire calcolugariations for multiple integrals in
the most convenient way.

In the first chapter, | will show the necessaryditans. | derive the Euler equations,
and obtain the transversality condition that one agparently find nowhere, at present,
and which is essential for the further consequencesdsol give the first complete proof
of Hadamard’s necessary conditfn

The second chapter is then dedicated to the promisetbdment of the field theory,
and indeed we operate on arbitrarily many variables fraamotitset (Lepage confined
himself to two).

In a simultaneously-appearing work | have likewise &@dhe calculus of variations
for simple integrals by the calculus of differentiatrhs, and thus brought a number of
things into one unified formalisf. It includes precisely everything that was previously
generalized, and while it is also sensibly independentdhénere is much that becomes
easily understandable that one has read about in tine aéthat which is well-known.

First chapter

The necessary conditions

1. Rules of computation and theorems on differential forms Greek indices run
from 1 toy, Latin ones from 1 to. The summation sign will be omitted. Summations
over several different indices are assumed to be imdeme of each other, as usual,
except when a summation sign is present that would dkotherwise.

One finds the rules of computation for alternatingedéntial formsa; dy , etc.,
whose coefficients are functions onmspace ¥;) in “St” previously. The coefficients
will be appropriately called “skew-symmetric.” For degtieee one has, e.g.,:

dik =~ aikj = Aki = ~ djik = &ij = — i »
and one sums only over triples of numbers, and writes:

w= " a,dydy dy (= Lay dy dy dy).

i<j<k

") This result was already shown by me in a talk thatvega February 1939 in Frankfurt and
Marburg under the title of “Probleme der Variationbremg in mehreren Veranderlichen.”

8) Hadamard showed this only for three independent and thpeadient variables in his book “La
propagation des ondes,” Paris 1903, on pp. 253.

°) H. Boerner, Variationsrechnung as dem Stokeschen Bath, Zeit. 46 (1940), pp. 709-719.
Denoted by St,” in the sequel.
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In the construction of thategral J'f wof a formwof degreg over a piecer of a

p-surface one must consider @gentation One can regard any sufficiently small piece
of F in terms of parametets, ..., Uy, and thus as a regid@ in the “(y, ..., uy)-plane.”

An orientation is nothing but alass of parameter representationsvo parameter
representations, ..., U, andvs, ..., Vp provide the same orientation (i.e., belong to the

- .a l...lu - -, . -
same class) when the functional determln\s(\Mls positive, and have opposite
Vl’.“’vp
orientations when it is negative. Thus, there aexipely two orientations. We shall
assume that all surfaces are orientable in the seqelthat they shall be covered by
parameter representations like roofing tiles, in suskag that neighboring parameter
representations in the same part of the surface are pdowitlle the same orientation.

The sign of the integral, which will be constructedresdrdinary integral of:

0y, Y,)

= dnwdw ... d
yp a(ul,...,up) . Lb

over G, thus depends on the orientation, though its value is indepenf the choice of
parameter representation.
One hasStokes'’s theorem:

Jyw=] o

whereR is the p-dimensional) boundary of the (hergi+{)-dimensional) piece of the
surface¥, and one suitably orienf8 andF with respect to each other. From now, one
understands the following: One considé&ré the neighborhood of a piece Bfin terms
of parametersy, ..., Uy In such a way thati; is constant oR and is smaller on the
interior of F; theu,, ..., Up+1 then produce the,, ..., up+1 for a suitable orientation of
(R, resp.).

The surfaces that figure in Stokes theorem may hawekski i.e., they might
decompose into regions on whose boundaries the tangeetspiaend.” In the sequel,

we shall assume that all manifolds possess continaogent planes with no such kinks.

From Stokes’s theorem, one concludes that the intefal‘complete differentidl
i.e., a formwwith dw = 0, is independent of the path: its value depends upon loaly t
boundary of surface portion over which it is integrated.

By therank of a differential form, one understands that to nmdgs@nsmallest number
of Pfaff forms (i.e., forms of degree one) by which @a@& represent it. The smallest
possible rank of a form of degrgeis obviouslyp, so it is therefore a product of linear
forms:

W= @ ... & .

By theclassof a form, one understands that to mean the smallesber of variables
(as arguments of the coefficients and underdtk@gn), with whose help the form can be
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represented by coordinate transformations. In genéelclass will be larger than the
rank. We thus have the theorem:
For a complete differential the rank and class agf¢e

2. The Euler equations. We consider thg-fold integral:
_ ox 11
Je=| f [ta,x ,Ej(dt) )

to be taken over g-surfaceE: x = x(ty) in the (+n)-spaceR .+ of the variables,, x; .
The basic functioffi(t,, X , pio) Shall be continuous in a certain regiorf., and for all
Pia, at least up to its first derivatives and the firsivdgives of thef , .

In order to derive necessary conditions for the mimm when given a fixed
boundary, we consider a comparison surfacs =X (t,), where the functionx (t,) are
defined in the same regida of the ‘t,plane” as the(t;) and agree with them on the
boundary ofG. If Eis a solution of the problem then the “variatiod; — J. will be
positive for an arbitrarfg that is sufficiently close

We embedE andEin a one-parameter family of comparison surfaEgshat all
possess the same boundary:

(2.1) Eo: X =%(6, ta); x(0, ta) =Xi(ta), X(& ta) =X ().

In the 7 + n + tm)-spaceR +n+m Of variablest,, X, pio We consider thg~degree
form:
w=1(ta, X , pig) dt.

When one lets¥, denote the surfaces in this space that correspond t&sthy the
relationspi, = 0x; / 0t, then one has:
Je, = %a).

Such surfaces i +n+mare, when one introduces théfaff forms:

9y E. Goursat Lecons sur le probléme de Pfaff, Paris 1922, pp. 135. d@enerally finds
approximations to the notions of “rank” and “clasisérie on pp. 126-139W. Maakhas given a modern
definition of the surface integral for very generatfaces and without the use of a parameter representation
by the method of integral geometry: Oberflachenintegradl Stokes-Formel im gewohnlichen Raume.
Math Annalenl116 (1939), pp. 574-597. For the purposes of variational calcwtuste one always has
suitable parameter representations on hand and must makseponding restricting assumptions on the
surfaces, the reduction to the volume integral that isrgin the text will generally suffice.

) Here, we are already using the abbreviatiipfor the productlt, ... dt, that we shall later see
makes the overview of computing with differential forms meesier. dt), meandt, ... dt,; dts, ... dt,
, and @t),zis defined analogously.
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w = dx —pig dig,

integral manifolds of the “Pfaff systemy = 0. Since we shall only integrate over
surfaces, we can replaecgwith any form that is congruent to it (mag):

Q=fdty ... dt, + Ay dty ... dtzg @ dtgey ... dt, +
+ z Ay st At dl,,-- di_ g df, o df+-o

i<j.a<p
As in “St”, we determine& in such a way that:
dQ =0 (w).

In this, one must replace only, = f ; All of the other functionsi4jz remain arbitrary
and may chosen to be fixed, anyhow. We thus have:

(22) Q=fdt..dt,+ f, db.. di;s @ dtp...dt,+
+ z Ay st At dl,,-- di_ g df, e df+- 12

i<j.a<p
From Stokes’s theorem, one now has:

(2.3) JE—JEzjéQ—LQ:sgnsjsdQ,

since one ha® = 0 on the rest d§. Here,§ is the {#+1)-surface that is composed of the
points of all of the®,, and (2.3) is correct when we establish its oriemabip the choice

of parameters;, ..., t, for ¢ and €and 6, ti, ..., t, for §. The calculation otlQ is
simplified when we compute in exactly these paramet®rse then has:

:%dﬁ,
0

and all terms with more one factor af — in particular, all of the ones that were not
written down in (2.2) — drop out. One has:

Q=f(df) + (1) df, w(da+ D (DA, @@ (dt),, e,

i<j.a<p

One thus obtains:

12y For the computations of this chapter one can oesinieself to the terms that are lineazin We
have nevertheless just now written the most genenal §bthat figures in the Lepage theory, by which one
may convince oneself that the further terms playa® in these computations.
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dQ = f, @ (dt) + (- df, (D), +
+ 3 (CNTPA, 5 (de g - o Tt )(d), +

i<j.a<pB
+ z (‘Dmﬂ_ldAa,jﬂa? m‘), (dt)aﬂ +
i<j.a<pB
dpys _ Ao |[ 0%
2.4 —Pa g _ d9( dt
(2.4) { at, ;}Aam{ dgj}aﬁ (df)
d 0X 13
= f, - dJ(dt
{ ot jaﬁ (dy )
We ultimately have:
df. o
Je=Je=sons [ | 1, - a); dd(dt)

—_(¢ df, ox
_jo dﬂ{jG f, . E(olt)}

For sufficiently small positive, this has the same sign as the contents of tHg cur
brackets wher@ = 0, and the opposite one for negat&ze An extremum can therefore
only come about when this quantity vanishes, ane wuthe arbitrary nature of the
“variations” dx; / a6, one concludes in a well-known way the existenté¢he Euler
equations:

(2.5) dfy, f =0
' de. %

a
The solutions of the variational problem, in thernf of the integrals of these
differential equations, are thus teetremalgshat we seek.

3. Transversality. The boundary of the desired surface may now bdonger
assumed to be fixed; rather, it can move on a ok of dimensionu—1 +p (1<p<
n). We again consider a family (2.1) pfsurfaces whose boundaries now no longer
necessarily agree, but lie ¢h We letS denote the totality of all of these boundary

points, and le© denote the correspondipgsurface iR .+, . On the left-hand side of
(2.3), a new term appears:

13) The derivation with respect to tparameter §, i.e., along the surfadg,, is denoted by the plain

_dp, _ d%x
dt di,  dtdt,
reference to andj is omitted; here, one sums over these two indicgspendently and one defindg, iz
for j > byAig' i = _Ajg' iB-

d; naturally, one h One observes that in the last summation sign2gf) (the
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(3.1) jGQ 14,

Since the surfack, in any case, must also give also a minimum faxedfboundary
the results of the previous section must remain trwghoutthe new term — and we must
therefore place the same demands on this bgritselfas we did on the last integral of
the previous section.

We regard the boundary Bf in terms ofy/ — 1 parameteré, , ..., §, and sett, = 6,

such thatd, , ..., g, yields a parameter representatiorsd®, resp.):
(3.2) o=t 6, % —X%(6) =X( t{ 69),
_ 0%
o= 5 (@t (6,)-
To abbreviate, we write:
ot, -
06, ¥

The derivatives with respect #, which characterize the “boundary displacement,”
will be written by means of &

ot ox% _ 0x
=] and —=—+poala.
59, a 59, 96, Pia lm

One convinces oneself that one also has:

23
=—-dJ,
“= 09,

now.

Now, we can compute (3.1). If we denote the algiebcomplement ofsz in its
determinant by an overbar then we can write:

(dt)—l(dé)— |1(d79) ),

9
dts ... dtg-1ca dtges ... dty = ﬁdtl dt,_,dd,dp, - di,= glal(dﬂ)

1

One thus obtains:

%) The sign of this term, thus the orientatior€ofis irrelevant for our purposes.
) @t =dt ... dt, and 09 =dé, ... dg
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[.e= J[ o, aﬁjm(dﬁ)
. ol
(3.3) -16{ g;” [% b, 5;}} 4(d9)

ot 5)(| _
— 0
_J.G[apﬂ 5 + fpm Ej Ial(dﬁ) '

1
with the notation that Carathéodory introduced:
agp= Oapf—pia
We first integrate oveé,, ..., §,, and must state from the outset the demand lieat t

result must vanish whefA = 0. One must then have, when one denotes thedboy of
the extremak by R:

ot b)
(3.43) IR[amgfi” &gjl dg,---dg,= 0
or:
(3.4b) Z(—l)”’lj.R(am%+f adetl -dt_.dt,, - L‘O;

the parameters no longer appear in (3.4b).
From (3.4), it follows that there is a “transvdityarelation” between the surfadé
and the extremd. It reads like this: any vector with the compaisen

(3.5) @its, dx)

that is tangential tél at a point oR (“displacement vector”) must satisfy the equation:
(3.6) (a0t + f, 6%)1,=0.

Otherwise, one could define a famity such that (3.4a) is not valid.
In order to better formulate this condition geomcally, we call a direction (3.5)
transversalto E when it satisfies thg equations:

apada"' fHa d(]_: 0 .
We solve this foit, and write:

(3.7) Az +Pia X =0,

with the notation that was likewise introduced bgr&théodory (in connection with the
Legendre transformation):
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(3.8) S
a

Pig "

The symmetry of the notation becomes clear whentakes into consideration that the
direction that igperpendicularto the extremak is distinguished by:

da + pia d(i = 0
There aren linearly independent transversal directions to any serrédementpi,,
e.g.:
(39) Pia, d]) (i =1, ...,n).

In general, we assume that they, together withtteections:

(9, Pip) B=1...4)

that span the surface element, definen linearly independent vectors.
Condition (3.6) now reads like thigie (¢ — 1 +p)-dimensional surface element of H
which naturally includes thg — 1 directions:

at” a_x' =
(3.10) (aﬁy’aﬁyj =2, ...,

that span the boundary elementinust at the same timdye included in th¢y — 1 +
n)-dimensional element that is spanned by them and thensversal direction§3.9).

In fact, relation (3.6) is necessary and sufficitar the vector (3.5) to be linearly
independent of the — 1 +n vectors (3.10) and (3.9). One first has, jfer2, ...,/

ot X j_ o, — _ . ot —
( “99, 93, LYY 33,

and then, for =1, ...,n:

(=8, B+ 1,9 by =(=1p, + T )1 = 0.

|

Together with (3.6), this is a linear relation beén thecolumnsof the determinant that
is constructed out of all of the vectors (3.5),103, and (3.9) asows from which the
assertion follows, due to the linear independeri¢cheovectors (3.10) and (3.9).

4. Hadamard’s necessary Legendre conditionThe condition, whose necessity for
the minimum shall be proved in this section, reads:

(4.2) Foup,s PP A A2 0
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for all pi, ..., o, A1, ..., pu . The biquadratic form in (4.1) is nothing but the quadratic

form:
Fow by Uia Ui

that is defined for such values of the variahigsvhose rectangular matrix has rank 1.

| assume that (4.1) is not satisfied for a certainaserelement of the surfaég in
whose neighborhood its tangential plane is continuoustettare therefore certain
numbersg andA, such thajp o = 1,4, A, =1, and:

(4.2) fﬁapmpipj/]a/]ﬂ:—k< 0.

Under these assumptions, | will construct a comparsariaceE such that the
integral takes on a smaller value thanEbnThis surfac& will possess kinks, which we
have indeed ruled out for all of the surfaces considerddpi,, P,are its surface
elements on both sides of one such kink then thesestiface elements have- 1
linearly independent directions in common; from this, it lofek that the
matrix(p, — B,) has rank one, and conversely.

For the proof, only the differences— x , p,— pio play a role; in this section, we
would like to employ the notational simplification thhe surfacd be determined by the
equationsg = 0. In addition, let the coordinate system be chgseh that point o that
was considered above has the coordingtesO, and that the surface element—a s,
which (for the moment, is assumed to be at the Qrigas the aforementionegd — 1
directions in common with thieplanex; = 0, intersects it along the/ 1)-planet; = O.
Thus, one has (with the Kronecké&symbol) A, = &, , hencepis = o o . Instead of
(4.2), one now has simply:

(4.3) (0,0,0)0 p = -k<O0.

fﬂlpjl
| consider the region in theplane:

44 TTSU ST,
(4.4) Q'—hstysh (y=2,--,u).

Q decomposes intot2sub-regions, existing on the points of the connectingfitora the
null point to the points of any one of thes Dboundary surfaces o, which are
characterized by the demand that in (4.4) the equal sighvesys valid at one location.
These 2 sub-regions are not all congruent, but all they pes$essame volume:

(4.5) 1 r(2h)? %
7]

| likewise construct a famili, that includes the surfawith the desired properties
for 6=£> 0. Letx = 8rp fort, =0 andx = 0 on the boundary @ and outside of it,
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whereasx; shall be linear on the line considered above. TR(8, t;) is everywhere
continuous andy | < 8r. Thep;, are constant in each of thg 8ub-regions. We denote
the two regions that belong to= ¥ £ by Q’, and the two regions that belongtje=F h
byQ;. One then has:

inQ: p,=%3,9p and x=589 (£t),

a I

(4.6) o _ r _oT
inQy: pa—ié'mﬁﬁ,a, and x—ﬁﬁ,o, (htt ).

The various signs belong to the two halves of eaclomegiassert thats, 7, and h can be
chosen such thal_ — J becomes negative.

Sinces > 0, one has:
Jo—k= jgdw,
whereg is defined by:
0<O<¢ (tz) In Q,

when we choosé, ty, ..., t,to be the parameters, as in § 2. {E’ets; denote the regions
of § that correspond tQ,Q;. One then has:

| de=] (f,dx+ £, dp,)(d)

=[ ot @rf ady+d [ Loff eyt bagay M,
5 ~J5h

where the upper (lower, resp.) sign is to be takehe two halves of each sub-region.
| chooses > 0,1ty > 0, andhy > 0 so small that for:

(47) O<r<ty O<h<h, |t|sz  |tlsh  [x|sen  |palsé

the contributions from all of the aforementionedighives off lie beneath a fixed limit,
and one has:

k
lelepipJ < _E’

moreover.
By means of (4.5), the totality of the first suimda of each integral will then be
estimated by:
M. € 72 h'u_l,

and for the second summands one finds the followstgnate org":

M- ETZh'u_Z.
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M; > 0 andM, > 0 do not depend onandh.
In the second summand 1 we set:

fnl(t”’ﬁpj (Titl)idm’?pi)
:{ fm(tﬂ’ﬁpj (Titi)1i51a79pj )= fpil t, !79,0J- (Titl),O)} +
H{ £, (t,.90, (T £1,),0)- f, (0,0,0)+f, (0,0,0.

Due to the opposing signs in the two part§'othe last summand contributes zero to the

integral. The second curly bracket converges wiimdh to zero uniformly ind. The
associated integral can be estimated by:

Ms(h, 1) er H1

with Iihm0M3 = 0. The first bracket is finally equal tadp; fpilpju where the circumflex

refers to certain intermediate values for the amgis outside of the region (4.7), and
thus delivers a negative value for the integral,sawalue that lies above a limit:

Ms(h, ) €1 H1

whereM, > 0 again does not depend upoandh.

One immediately deduces that it is possible tamsba andh in such a way that this
last term dominates all of the other ones; witls,tthie proof of our assertion is achieved
1

Second chapter

The sufficient conditions

5. In order to arrive at the sufficient conditionseomust pass through the theory of
geodesic fields.We speak of &ield when thepi, are given as functions dts( X;); one is
thus dealing with az{ + n)-surfaceR, + n + ,n . Therefore, the integrability of the
associated equations = 0 will not be assured, since, in general, onthéefore not
dealing with amn-parameter family ofm-surfaces irfR, + , that satisfy the differential

equations:

%) The “Weierstrass” necessary condition that is assmt with the necessary condition of
Hadamard, namely, that the De Donder-W&ylinction (cf., infra) must be non-negative for q‘rlila such

that the matrix P~ Pa has rank one, was recently proved in an elegant waly. biyl. Graves The
Weierstrass condition for multiple integral variatioroblems. Duke Math. Jourt(1939), pp. 656-660.
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0x _

o, Pe
(resp., the associatgdsurfaces that lie on the aforementiongd(n)-surface iR, +n +
m)- As in “‘St’, we denote by square brackets the function or fortjn , that results

from the replacement of the functiopg(ts, x). Moreover, with Lepage, we call a field
geodesicwhen K] is a complete differential; i.ed[Q] = 0. This notion therefore
depends essentially upon choice of arbitrary functlenss, etc., in (2.2): A field that is
geodesic with respect tone form Q is not generally geodesic for another form. (/A
surfaceE is said to beembeddedn a field when it is an integral of the associated
equationsw = 0; thus, these equations need to be integrable only #iengurface.

If E is embedded in a geodesic field aid is a second surface with the same
boundary that moves in the field then from Stokes’siti®, one has:

Je=[ 1] =[_[q]
and therefore:
(5.1) JE—JE:jE{f(dt)—[Q]}:jﬁg(dt).

In this, we have (obviously, one always needs tewip,, — p,) dt, instead ofa for Q):

(52) g(ta’ X, pim r)ia) = f__ f _(‘_)ia - na) fia -
“3A0i5(Re = R = Rp)- -

17).

It is clear that:
(5.3) E>0 for the (o, X, pig) Of the field and alp,,

represents a sufficient condition for a (stronghimum in the event that one has
embeddecE in a geodesic field. For a weak minimum (- pio sufficiently small), it is

sufficient that thec-function is positive fop, close topi,. For this, the quadratic terms

in the development of in powers of p,— pis (in the absence of absolute and linear
terms) defines a positive definite form. This fatiént condition of Hadamard” reads:

(5.4) (fo,p, ~ Aiajp) Uia Uip> 0.

The meaning of the fact that there is an arbitemsnin the choice oA, iz will be
discussed below?).

7y In the last term of (5.2) and (5.4) one must sum altdour indices independently, and therefore
one must assume that; jz is skew-symmetric, not only in theandj, but also in ther and 5, hence, forr
> [they are defined b, ;3= - Aiz jo . One observes that due to this skew symmetry the awilitierms
in (5.4) are null as long as the matrix of thghas rank one. Cf. (4.1)!
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Up till now, we have said nothing about the Euler equatiorthis section. Since a
system of sufficient conditions implies the satisitat of all that is necessary, one now
concludes: A surface that is embedded in a geodesic fieldsatigfies (5.4) is an
extremal. From this, it follows, as computation shotsy surface that is embedded in a
geodesic field is an extremal. From the equations thlatfdrom d[Q] = 0*), in order
to see this, one needs only to write down those things tie vanishing of the
coefficients ofa(dt) demand. Thus, one observes that for any fungtiohtheR, + n+ n

in the field, one has:

4] = a[;p] dx +‘M d,

ox, o,  ox Ot

:de,+{m+m }%_M 90y

wheredg /dtz means, in general, only an abbreviation for thdydorackets, which refer
to differentiation on an embedded surface. By tise of this formula, a similar
computation to (2.4) gives the coefficients thatspeke:

d d
ZAHJ[{ pjﬂ qa}

a a<p dta dtﬂ

From their vanishing, and due to integrabilitythtus follows that one in fact has on an
embedded surface:

Finally, we thus have the following theorem foe thufficient conditions that an
extremal give a minimum for a fixed boundary:

1. The Legendre conditior{5.4) for the weak minimum and the Weierstrass
condition(5.3) for a strong minimum that are associated with ény

18) At this point, let us mention the work Bf Debever(Les champs de Mayer dans le calcul de
variations des intégrales multiples. Bull. Acad. RoygBel 23 (1937), pp. 809-815), in which he showed
that in order to construct anparameter family of extremals for an arbitrary figle., a piece ofR, . » that

covers it simply), thé\, jz (only these; the higher terms can be null) canhimsen in such a manner that
the field is geodesic with respect ttus Q. If (5.4) is satisfied with thes&, ;s then one has a weak
minimum. Thus, one does not need to construct a geodesiclfut simply to provide such a family of
extremals and to compute the associ#gg; , which can come about by quadratures. However, all ®f thi
is valid only for a fixed boundary — cf., the following Seuq.

19) In Lepagé), one finds them written out in the cgse 2.
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2. The possibility of embedding in a geodesic field that is associittedhis Q °).

6. Inthe general theory of Lepage — and therefore #naylof De Donder-Weyl that
one obtains from it when one sets all arbitrary fumgito zero- that was developed in
the previous section, the notion of transversality dossappear. However, we know
that transversality is essential for moving boundarlesfact, the sufficient conditions of
8 5 are valid only for a fixed boundary; we shall not disahe possibility of displacing
the boundary for a complete differentialirdimensions, in general.

In order to obtain sufficient conditions for a movibgundary, one must investigate
how one is to obtain something like the “complete figuka simple integral. For this, a
generalization of the Kneser transversality theoramtrbe true. (Cf.,St” § 8) We ask
whether this can be managed by a particular choi€e(@€., of the arbitrary functions).

The geodesic field that is associated with €hisiust possess the following properties
(for the time being, we speak only of such fields that generally integrable hence,
ones that exist in amparameter family of extremals). There is a poinéwigap from the
individual extremals to each other such that associagibns always yield the same
value for the integrale — or, what amounts to the same thihfQ]. From that fact, the
latter integral also possesses the same value for dragyhi-surface piecé& that lies in
the field as for a piece of any of the field extrenthts one obtains when one “projects”
the points ofF by means of this map of extremals. (For the sake roplaity, we
consider only those surface pieces that intersect“pagjection ray” only once.)

The formulas that this requirement will imply demahdtf # 0. From now on, we
assume thdt> 0 (at least, for the surface element of the fielduestion).

We introduce the parametets ..., A, on any of the field extremals. As a result of
the map, the parameter representation carries ovitietother extremals in such a way
that associated points correspond to the same parawaters. One can, moreover,
choose the parameter in such a manner that on thengtaxtremal — and thus on all
other extremals and any surface piece in the field ntegnal that we spoke of becomes
equal to the volume of the surface in theplane™

(6.1) [[1Q1=dA; ...dA,.

For any point of the field, hence, as functionsRf .+ » (which we will assume
possess continuous derivatives), fhare defined by:

(6.2) Aa = Si(ts, %).

If one introduces them, along with the, as Gaussian coordinates in the field and
computesQ] in terms of these parameters then the fa@j dA; ... dA, gives the value
zero when it is integrated over any surface piece; tineshas:

(6.3) R]=dS ... dS,.

20) The possibility of embedding in a geodesic field fouficiently small piece of an extremal has
only been proved for the special cases that we steaition later’) °). To determine whether a given piece
of an extremal is “sufficiently small” is a matter thre theory of the second variation.
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This means nothing more than the fact tliAtif of classu (8 1). Conversely, when
[Q] is of classy, one can determine functiofs, ..., S, such that (6.3) is valid, and the
geodesic field satisfies all of our requirements.

Since R] is a complete differential, from the conclusion®1, one also has that the
rank of [Q] is equal toy, and this rank is not greater than thaof Thus, if one can
determine the arbitrary functions & in such a manner th& has ranku (hence, the
product of y Pfaff forms) then any geodesic field that is assediawith thisQ will
satisfy all of our demands and give sufficient coodii for problems with moving
boundaries.

This is, in fact, possible. However, one arriveshatdesired fornf) faster than by
using (6.3) when one takes into account the following consegue

We assume that in the field tBefunction is positive for the values of its arguments

that are in question, resp., that the Legendre condsisatisfied. One then knows that
the n-surface £= A, cuts the field extremals transversallyn fact, we take a field
extremalE and an arbitrary bounding domdon it that is a closeg/— 1)-surface. The
surfaceS, = A, which goes through the points Rfdefines ag — 1 +n)-“tube”. Sincef

> 0, the surface piece considered will solve the mininproblem for any boundary
conditions of the following formR shall be moving on a manifold that extends outside
of the tube.H then contacts the tube aloRgrom the outside and satisfies the necessary
transversality condition of 8 3, and with that, due te #rbitrariness of the normal
direction ofR onE, our assertion is proved.

This leads us to ultimately expect the following of tfendesic field (we do this
independently of whether th®, belong to a family of extremals or not): We can gave
family of surfaces (6.2) such that (6.3) is valid and tindases (6.2) cut the surface
elementp;, transversally.

From (3.9), the last requirement can be expressed byitimela:

oS, _,, 0,
ox 7oty

(6.4)

with theP;, that were described in (3.8). Thus, one obtainsCifir

_ 6%
Q]=ds ... d
R
S (S, 9)
NS - (dly + Ry =5 I e+ R0
a(sl 95, 3) (dt gf’f dxj
ot,--t,) 1, P
6(51 S, 9)

n_i;(apﬂdtp + £, dx)

o(t,,--.t,)
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s,
:Mil—l(f dt, + f, 0)')-
ot,--.t,) al, '”

(We actually must set square brackets around all expnssisiband its derivatives.)
Equating the coefficients aft; ... dt, here and in (2.2) shows that we must Haye

(6.5) 008, 9)_ & _
ALt [T

We heuristically write down the form:

_ 1

= T

(6.6) Q (fdt,+ f, @) (fdt, + f, @).

One also has the correct second term of (2.2),lwikiof ranky, and thus we have found
the form that we need.

The geodesic fields that belong to thisare the ones that Carathéodory introdujed
Since we have introduced transversality indepemgeritthis, we also define them as
follows: A field is called geodesic when it comgstthe surface element that is
transversal to it into a family @fsurfaces (6.2), such that (6.4) and (6.5) are true

Such a geodesic field defines a “complete figunethe Carathéodory sense when it
is part of a family of extremals. As for the cadea fixed boundary, in general problems
one needs, however, no complete figure whatsoeveorder to obtain sufficient
conditions for a minimum. Furthermore, the equaioy = 0 obviously need to be
integrable along the extremal under scrutiny timat lbas embedded in the field.

We write down the values of th#g,, js that belong to the form (6.6) that we found,
which indeed appear in the Legendre condition (&ldie:

it

(6.7) Aia,jp = o)
One also easily computes the associdkddnction. As before, one must compute

only the coefficients oditin f dt—Q, where one has replacegwith (g, - p,) dt,, this
time, in the expression (6.6) f&. One finds:

) In connection with his Legendre transformation, Caadiory?) set:

u-1

one then has:

(S .-
H88)
ot t,)

together with (6.4), as the Hamilton-Jacobi equation.

F 1,
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— = 1 -
(68) g(tm Xi, Pias pia) =f _m 5aﬂf +(pia - na) fpw :

A theorem of sufficient conditions for a problenittwmoving boundary is therefore
the following one: The extremal piece shall be isigffitly small*®) that a geodesic field
that belongs to the form (6.6) can be embeddesthall satisfy the Legendre condition:

(6.9) f

fp.ap,-,; _T(fnanp Tl pa) UgU,>0,

resp. (for a strong minimum), so tlk&function shall be positive. Furthermore, the

transversality condition for the boundary shall dagisfied, along with a “second order
transversality condition” that one can, since 0, formulate as follows: It shall be
possible to choose the geodesic field in such a teay the manifold on which the
boundary moves contacts the “tube” of geodesicstrarsals that goes through the
boundaryfrom the outside.

If the Weierstrass formula (5.1) is now valid faf comparison surfaces whose
boundary lies on this selfsame tube, and whichhés tfurther added to it, is positive,
sincef > 0. For the weak minimum, it suffices faio be assumed positive for the surface
element of the field.

7. The Legendre condition and the notion of regularity.For a simple integral, one
is careful to call a line elemerggular when it satisfies the Legendre condition with the
> sign. Carathéodory called a curve “extremal’yowhen each of its points had the
property: When one varies the curve in a suffityesmall interval that includes the
points, one increases the value of the integralchS curve must obviously satisfy the
Euler equations, as well as the Legendre necessamgitions (with the> sign). It is
sufficient that it satisfy the Euler equation armbgess nothing but regular line elements;
one can always embed a sufficiently small pieceuch a curve in a geodesic field.

For multiple integrals things are significantly macomplicated. One can now think
of each surface element as being called regulanwleatisfies the Hadamard condition
(4.1) with the > sign. However, with this definoii one only guarantees that one can also
really pass an extremal in the Carathéodory sdmseigh each regular surface element,
when it would follow from (4.1) that one can det@renthe skew-symmetric additional
term, hence, the arbitrary functiofs, s, such that (5.4) is valitf).

This is by no means always the case. Moreoves otly true as long¢< 2 orn< 2;
for 4> 2,n> 2, it is, on the contrary, fal3d.

22) Assuming the possibility of embedding in a geodesic fieldglwhas only been proved fér,, iB=
0°) and the quantities (6.7).

) F. J. Terpstra Die Darstellung biquadratischer Formen als Summen Qomdraten mit
Anwendung auf die Variationsrechnung. Math. Anndlé6 (1939), pp. 166-180. Cf., al$d Finsler,
Uber eine Klasse algebraischer Gebilde (Freigebil@)mm. math. Helv9 (1937), pp. 172-187. Uber
das Vorkommen definiter und semidefiniter Formen in Schauadratischer Formen. Comm. math. Helv.
9 (1937), pp. 187-191. The investigations of Finsler wereany case, originally proposed by
Carathéodory for the aforementioned purpose.
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The aforementioned requirement would be satisfied &f called a surface element
regular only when there are quantit®g, jz such that (5.4) is valid. This definition is,
however, quite complicated. It already opens a gap dmtw‘necessary” and
“sufficient,” and ultimately we may, as 8 6 and theragée of § 8 will show, not even
expect that the regular extremals in this sense aresalstions of the problem for
general boundary conditions.

Here, one draws one’s attention to a shortcomintp@fCarathéodory definition of
extremal, which, of course, nowhere makes an appeafansimply integrals: It is, to a
certain extent, only associated with fixed-boundary probfé). It thus seems divorced
from multiple integrals to make a similar definitiohdistance; | have myself therefore
always avoided the otherwise conventional terminolofgyalling any solution of the
Euler equation an extremal.

Furthermore, when one does not wish to introduce anyomooif regularity
whatsoever it seems to be most expedient, in theesehg 6, to define: A surface
element is called regular when it satisfies the Legencondition (6.9). This
comparatively simple definition gives sufficiency aade in each cas€). One must,
however, be clear on one thing: many solutions to manylgmes — certainly for moving
boundary problems — are not expected to be regular extramdiss sense.

8. The following example shall show that there actuisllg perfectly simple case in
which the Hadamard sufficient conditiasboes notsuffice because the boundary is
moving.

Let #= 2 andn = 2. We call the independent variabsesndt, the dependent ones
andy, and for the sake of greater clarity, we let the &rieglices vary through the
symbolss andt, while the Latin ones run throughandy. The basic function of the
variational problem is:

f:pfs+2p)2(t+2p§/s+

yt
Here, all 2-planes are extremals. We consider dreep
(8.1) E: X=-ty=2

and the field that consists of all the planes thatpamllel to this plane. This field is
given by the formula:

Pie= Py =0, pa=-1,  pe=2

%) In this context, Tonelli's notion of “estremahté.. Tonelli Fondamenti di calcolo delle
variazioni, 2 Band, Bologna 1923) is far-reaching, sinegth a certain extent, was dealing with the
boundary conditions of his era. It would, however, be d#ficult for the problem that is treated here to
present general theorems for the extremants that teltite Legendre condition.

%) In a certain sense, one may indeed assert that (@tB)the> sign, isnecessary From?), the
embedding in a geodesic field is also possible when tladrgtic form is indefinite; only the fact that its
determinant is non-vanishing is required. If one introdacegxtremal for a surface element in this case
then the “tube” bounds geodesic transversals that go thrtug boundary of a sufficiently small
neighborhood of the element, and also a surface geteeéighbors this extremal piece and gives a small
value to the integral. Cf., the example of § 8, wlilei®consequence is correct “in the large.”
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The various possible theories with a fixed boundarydatenguished from each other
by only onearbitrary coefficient in the forrQ:

Axs, yt= = Axt,ys= Ayt xs= = Ays, xt.-

If one assumes that this function, likedepends only upon tha, then Q] has
constant coefficients in the field considered above, this field is therefore geodesic
relative to all of thes€@. However, we watch how it behaves for variéusvith respect
to the Legendre condition and tBdunction.

One has:

3 T, p, Ui Ujp = Usg + 2U5 + 22U+ US

Hence, not only is the condition (4.1) satisfied witle t sign, but also Hadamard’s
sufficient Legendre condition: In the family of quadraforms there is one that is
positive definite, namely, the De Donder-Weyl one Wil y«= 0. We compute the

associated-function for the field considered as:
E= P t2(Pyt 1+ 2(p— 27 + T,

It is positive, not only in the neighborhood®mf , but also for allp,# p. Thus, our
extremal gives a minimum for a fixed boundary.

In order to examine the behavior for a moving boundary, finst compute the
formula for transversality. One obtains for fhgof our field:

a-SS:_61 ast:atS:01 a(t:6,a:_36,
sz:Pytzoy th:_%, Pys:—%.

Whereas the surface element of the field is spannedhéoywto vectors &z pip),
hence, by:
(8.2a) (1,0,0, 2 and (0,41, 0),

the transversal to it is determined byR; d;), hence, by:
(8.2b) (04,1,00 and £,0,0,1).

All four vectors are linearly independent.
It is very easy to write down two functios = S & =T that satisfy the relations
(6.4) and (6.5); e.g.:
S=4x-@&, T=4t-3s

Now, between them we have a “complete figure”; isexin the family of extremal
planes:
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X=X —t, Y=Yo+25
and the family of planes that is transversal to it:
Ax—@=A, 4t-2s=u.
One immediately computes that for the form (6.6) infald, one has, in fact:
[Q] = —28ds dt+ 22ds dx— 2 dt dy+2dx dy=dS dT.

However, if one looks into the formula of the Caéaidory theory further then one
sees that the sufficient conditions of 8§ 6 for aimum are not satisfied for a moving
boundary; indeed, one can easily give boundary condisook that the extremal (8.1)
satisfies all of the transversality conditions aedartheless is not a solution at all. This

surface is not, in fact, regular in the sense of § 7.
In fact, from (6.7), one takes:

4
Axs, yt= T (Pxs Pyt — Pet Pys)

hence, in our field, wherfe= 10, one has:

— 16
Axs,yt—f-

The quadratic form reads:
2 2 2 2 _ 16 _
Uy + 2uxt + 2uys+ uyt 5 (uxsuyt uxtuy)'
Foruxs = Uyt = U, Uy = Uys = O it is equal to:

_ 61,2
U <0,

and foru, = pA, it is naturally positive, hence, indefinite; it®tdrminant is#z O.
Appropriately, theg-function:

g = r')fs + 2(T)xt + 1)2 + Z(T)ys_ 2)2 + T)yt_l_SG {_pxs_pyt_ (_pxt+ 1)(_ ys_ 2)}
is negative for the values that neighborgn
r)xs: r)yt: ‘9’ r)xt: - 1’ r)ys: 2’

namely:
E=-2£.
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In order to simplify the expressions, we considerdtfime transformation that takes
the four vectors (8.2) to the four unit vectors ofaa 1 & r)-space. In this space, we
consider coordinate plar® 7 (which corresponds to the plane (8.1)) in which therees th
circle & + 7 = 1, and in space, it is the “cylinded® + 7* = 1. If we take as our
boundary condition that the boundary curve shall lighencylinder that corresponds to it
in the original space then the extremal (8.1) determinesiinonum. If one takes the
plane:

E:x=es-ty=2+4a
for a comparison surface then the differente- Je is an integral with the integrand

- £ £, hence, negative.

We had not really expected an actual minimum at atabse we assumed that the
boundary was moving on the tube of geodesic transversatswewdr, suppose we
consider, instead of the cylinder, a hyperboloid:

G+ P-af+P)=1 a>0)

that contacts it from the outside along the circled we allow the boundary curve to
move on the corresponding hyperboloid in the originatepd he differencel; — Jg will

now be larger, and indeed adds to the former integeairttegrand 10 + £ over an
annular integration region whose volume, when developgowers ofs, begins with a
term of the form consta - €. One clearly needs to chooséo be sufficiently small in
order to obtain a boundary condition on which the extr€tha) represents no solution
of the problem, although all of the transversal coadgiof § 6 are satisfied.

(Received on 1 May 1940.)



On the geodesic fields of multiple integrals

By Th. LEPAGE ()

1. The perusal of two important memoirs of C. Carathepdmd H. Weyl {) that
establish the sufficient conditions for a weak or grdotal extremum for a multiple
integral whose value depends upon several functionsedamé to observe®)(that on
deeper analysis the difference between the resultsatbig obtained by these authors
stems from a simple algebraic fact: Wheims greater than 1, any alternating form of
degreeu > 1 inu + n indeterminates is, in general, of rank greater giadand similarly
greater thap/ +1).

The method that was followed by the authors citedusided upon the determination
of conditions that permit us to express the variatioth® extremal integral by an integral
that is extended over a portion of the surface beinigdant is thus the classical method
of Weierstrass fields, but the geodesic fields of @e@dory and Weyl exhibit profound
differences. They are not, in general, generated byliésnof extremals, and the
existence of transversal manifolds, which is preservedC&ratheodory fields, does not
subsist for the Weyl fields. Besides these field® omst mention the extremal fields
that were considered long ago by Th. De Donder (

The method that | followed shows that the algebral@rnating differential forms
and its integral aspect — that of facilitating multipkegrals — whose importance one
recognizes in other domains of analysis, the theory diapaifferential equations, and
notably topology, may likewise be of service to thecwlals of variations. All of this
calculus is, in reality, nothing but a chapter in thelymig of alternating forms®). In
particular, upon recognizing the relationship between the notibimgegrable form and
geodesic field, | have been led to extend the definitiotheffield for multiple integrals.
The existence of distinct Caratheodory and Weyl fisddebvious when one observes
that the sum of two integrable forms is an integrabtenf Moreover, in each case, it is
found to be established by the presence of nondegenerats io a certain sheaf of
ordinary quadratic forms. One may then introduce aesysif canonical variables that
permit, as in the cases that were studied before, tthectien of the problem of
constructing a field that encompasses a portion of@ngaxtremal to the integration of a
first order partial differential equations that doescuttain any unknown variables.

Whenn > 1, one knows that a family of extremals does moistitute a field for a
simple integral. It is necessary, moreover, thaedain supplementary condition be
satisfied (the nullity of the Lagrange brackets). t@a contrary, for > 1,n > 1 any
family of extremal multiplicities is a geodesic fielout the converse is not true.

() Presented by L. Godeaux.

*) C. CARATHEODORY Variationsrechnung bei mehrfachen Integral@cta Szeged1929]); H.
WEYL, Geodesic Field¢Ann. Math, [1935], pp. 607-629.).

) Th. LEPAGE,Sur les champs géodesiques du Calcul des VariatBul. Acad. Roy. Belg22
[1936], pp. 716-729)

G) Th. DE DONDERSur le théoreme d’independance d’HilbéZtR., Paris [1913], t. 156, pp. 609-
611 and pp. 868-870.)

*) Th. DE DONDER;Théorie des invariants integrauRaris, 1927Théorie invariantive du Calcul
des VariationsParis, 1935.
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Throughout this study, one is concerned with local problein the sense that one
operates in a certain neighborhood of the initial valwestact point or element) in
which certain conditions are found to be satisfied. oAgithese conditions, we mention
the following ones: All of the functions envisioned &domorphic, analytic, or, at the
very least, continuously differentiable in the neighloadh of the values considered.
These conditions are the ones that one habitually adopise theory of alternating
differential forms. The problem of knowing to what degtbe rules of the calculus of
differential forms persist under conditions that ass leestrictive than these is yet to be
resolved. However, several results that have bétained along this path justify the
consideration of more general geodesic fields. This pdmiew is closely related to the
work of Haar on certain systems of first order partiativatives that generalize the
Cauchy-Riemann equations.

Among all of the possible fields, the Caratheodoridéieoccupy a privileged place,
which essentially stems from the fact that they farend to be defined by integrable
forms of minimum class. For several reasons, theypaesented as the most natural
generalization of the fields that are studied in thenamyicaseg=1,n=>1 andy > 1,n
=1). The existence of these fields, when incorporateah extremal field, which was
originally established by Bérnet)( has been recently established by E. HoI8eby an
elegant method that is founded upon the theory of commtawtformations. Likewise, this
result may be deduced from certain properties of integfabies.

2. First of all, we recall several properties of intdge forms and indicate the
notational conventions that shall adopt.
The Greek indiceg, S, yvary from 1 tox and the Latin ones j, k vary from 1 ton.

The functionL(t4, X, Xi4) denotes a function of the+ n + ny variabled,, xi, X , which
are holomorphic in a certain neighborhood of a ppjfi, x°) in a space of + y

dimensions, and for any system of finite values that tanewted to the variables,. &
denotes the set consisting of a pginand a systenq,, of values forx,. The symbolga

will denoten linear forms in thelx, dt,, namely:
(2.1) @ =dx —Xqdty,

in the left-hand of which, one adopts the usual converthanrelates to the summation
over repeated indices. The symb@Isl1 denote alternating forms in the differentials
dt,, dx. Their coefficients will be holomorphic in a neighbood of the elemers, .

These forms are the elements of a hypercomplex mysteor algebra — that is
constructed over a linear — @ector — space of linear forms in thdt,, dx whose
coefficients are holomorphic & . In this algebra, addition and multiplication satidfe
usual rules of associativity and distributivity; additisrcommutative, but multiplication
is alternating. If¢ and 7 denote linear forms then, by virtue of distributivityeith
product is obtained from following the rule for an ordinpargduct, but agreeing that:

C) H. BORNER Math. Ann.112(1936).
®) E. HOLDER,Jahr. der deutsch. Math. Ve1939).
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dt, dx + dx dt, = dx dx + dx dx = dt, diz+ dtgdt, = O,

from which, it results that:
én+né=0.

Any element of this algebra is a linear combination wifomorphic coefficients of
the products:

(2.2) dt, --dt, dx - d .

Two elements are equal, up to sign, if they are odtlhifnom each other by a
permutation of the factordt,, dx . Any monomial is null whenever it contains two
identical factors, from which it results that its degisk + p, i.e., the number of its
factorsdt,, dx is at most equal te + n. The algebra thus possessesasisthat is
composed of a unity element and all of the monomials:

dt, ---dt, dx---dx, 1< pr kspu+ n
(2.3) a, <a,<--<a,, i, <i,<--<i
a=12,... u, i=12,..n.

p!’

By definition, a formQ of degreep is a sum of monomials with holomorphic
coefficients that are also of degrnee If Q and[l1 denote two forms of degreeandq,
respectively, then we have the following rule for thggwduct:

(2.4) Qr = -1 NQ.

All of the monomials (2.3) for the basidtf, dx) are linearly independent, which is
an immediate consequence of the product law and thehfaictite monomiadit, ... dt,
dx ... dx, of degreen + wis non-null. It results from this that a form of degp, 1<p <
n cannot be null unless all of the coefficients of dietinct monomials are null.

We say that a form isormal when all of its terms are distinct monomials and the
coefficient of an arbitrary monomial is antisymmetwéh respect to the indices that
appear in the expression for the monomial. Obviously, tide of representation is
always possible, and is unique. In what follows, welsterlote a form of degreg by
Q. Since it will be assumed to be normal, it is tertin the form:

(2.5) AlZ...,u dt ...dty +A12 010 a4l yd'[l oty dx dtger ... dty + ...

Alz..al—ljlnl+1,..a2— T, @+ 1,.dt1”' dtnl— 1d)|(1 dIvfr i dcil-l— quz CLIT 3t

in which theA coefficients are antisymmetric in the indices, swatiom is over all of the
combinations of th@ + windices takeru at a time, andr=1, 2, ...,., 1 =1, 2, ...,n.
Therefore, any substitution of the symmetric group of éegr+ u leaves each term
unchanged, and as a result, the fém
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Two normal forms are equal when the coefficients oir tb@rresponding terms are
equal. To simplify, the right-hand side of (2.5) may éten:

(2.6) Adb..dt,+Afa-1,dx, a+1)+...+A, .. (a,-Ldx,00+1-)+ ...

OrderQ in terms of distinct monomials of degrge- 1. Their coefficients are linear
forms, the set of which goes by the name ofabssociated systefor the formQ. The
number of linearly independent forms in the associatetesyis called theank of Q. It
is the minimum number of linear forms with which itpsssible to express the form; it
may not be less thaa nor equal toy + 1. If it is equal tou then the form is called
simple and in this cas€ is, up to a factor, the product of tpelinearly independent
forms of the associated system Al O then the associated system is:

(2.7) L=Adl +A,dx,
and one will have:
(2.8) Q:Fnlnzmnﬂ.

In order for a form to be simple, it is necessarg aufficient that the coefficien&s

n+
of the normal expression verify the quadratic relatigrEs a jz 0 that one obtains by
Y7,

annulling the producQ [z in which the factor/r denotes an arbitrary form in the
associated system. Upon considering Ahéo be the homogeneous coordinates of a

: . (n+u . n+u :
linear space of dlmensnﬁn j—l, the equatlonsg( j: 0 define ay On-
H H
dimensional homogeneous rational variety; hencs, devoid of singular points. It may
+
not be the complete intersectionEJq a j— 1 —nu hypersurfaces, except whars 2,n
U

= 2, when the variety corresponds to the lines in a 3+broeal space (the Pliicker-
n+

Klein hyperquadric). The variet;g( ’uj: 0 admits a transitive continuous group of
Y7,

projective transformations into itself that correspotashe group of transformations of
the basisdt,, dx).

3. If the A are continuously differentiable functionstgfandx then the differential
of the formQ is the form of degreg + 1:

(3.1) dQ =dAdt ... dt, +dAs(a—-1,dx,a+1)+ ...
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that one deduces fro@ by differentiating all of theA coefficients and then developing
the productslA dt ... dt,, etc. If it is normal for the monomials of degpee 1 of the
basis (2.3) thedQ may be written:

(3.2) dQ = Qi dty ... dp dx + Qigdty ... dtys ... dt, dx dx + ...,

in which theQ;, Qi,, ... denote homogeneous linear expressions in the partiehtiess
of the A with respect to the, andx; .

A form Q is calledintegrablewhen its differential is null; therefore, when aflthe
coefficientsQ;, Q;, are null.

In the theory of multiple integrals the integrablenis of degreeu > 1 enjoy
properties that are analogous to those of total diffedenin the theory of curvilinear
integrals. These expressions occur notably in the geraiah of the classical formulae
of Green and Stokes for ordinary spaces. \Lgt be au+1-dimensional manifold in the
space ot,, X ; i.e., a sum of continuously differentiable image&o€lidian simplexes;
the integral ofdQ over V.1 then possesses a well-defined value. If we denote the
frontier of V.1 by f(V,+1), which is therefore the algebraic sum of the frostief the
simplexes o¥,.1, then the formula that generalizes that of Stokes is

Iwa = ijvwdg,

in which the sign is fixed by the convention that one md&eshe orientation of the
frontier.
If Q is integrable then one will have:

[,a=0

for any closed manifol&, that is the frontier of &+ that is completely contained in a
domain around the poinft,x°). Under the same conditions, one establishes the
existence of grimitive formfor Q; i.e., a forml of degreex — 1 with holomorphic
coefficients in the domain of the po(tf, x°) such that:

dn =Q.

Furthermore, this primitive form is not completely detmed. Indeed, under the
conditions that we are imposing (viz., there is a mmeaghood of the point that is
homeomorphic to a Euclidian space) there is an idelityeen the integrable forms and
the exact differentialsi.e., the forms of degreethat are differentials of forms of degree
1 — 1. Therefore, the two relations:

drn =Q, dQ =0

are entirely equivalent. Upon normalizing the left-haiags we thus obtain two systems
of relations between the coefficients, the secondvioith expresses the compatibility
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conditions for the first system, in which the coaénts of the fornf1 are regarded as
unknown functions.

In order to construct an integrable fofinof degreeu it will therefore suffice to take
a forml of degreer — 1 with holomorphic coefficients and s#il = Q. We give two
simple examples that will be useful in the sequel. &e%, ..., S, be i functions ofx; ,
ty, and let:

|_|1:S_|_ngd$,, I'I2:Sadt1...dta_ldtml...dt,,
be forms of degreg — 1 that give the following two integrable forms:

:?;” dt---dt, +a—§’(a—1, dx,a+1),

Q;=dS dS ... dS,, Q, x

a

respectively.

The rank of an integrable form depends upon thescl The associated system is a
completely integrable Pfaff system whose integratmmounts to looking for an
expression that contains the minimum number ofakdes; this number is equal to the
class, moreover.

4. One establishes without difficulty that all oe#e results are independent of the
system of coordinates that was adopted to frameelghborhood of the poip. This is
a property that is especially important in the gtud the integrable forms that are
attached to a manifold, in which one may introdiooal systems of coordinate9.(

For our purposes, it will be useful to study thie& of a change of basis. For the
basis (2.3) that is defined by thi,, dx we substitute the equivalent basis that is
generated by thg + n linear forms:

(4.1) dtz, @ =dx—Xgdty,
in which thex, denoteny new variables. If we denote the forms that araiobd from

(2.6) when it is normalized according to the ba&e8) and (4.1) by2(dx) and Q(a),
respectively, then we have:

(4.2) QdY) =Q(e) =D dty ...dt, +Di(la— 1, w,a+ 1)+ ...
in which:
oD
Dig = :
Tox,
and:

(') G. DE RHAM,Thése Paris (1931), andbh. Math. Sem. Hans. Uni{1938).
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(43) D:A+AiaD(ia+Aajﬂ|:))§a :ﬂ}+_“
ia iB

D is a function whose coefficients are linear in the minors, and all have the same
order as the matrix(). Obviously, if¢ =1 orn =1 then (4.2) reduces to two primary
groups of terms. In this ca€®,has ranky, and the functiol is of first degree in the,

In a general manner, @ has ranku then we have, upon normalizing the expression
(2.8) and supposing that that the elengms such thaD(ep) # O:

(4.4) Q=D'""& & ... &,
upon setting:
45 ¢, =Ddt, - D, =(9,,D- Dl¥,)dt; + D, [y,
(45) 0., =0 fora # g andj,, = 1.

We further set:
(4.6) agp = 0gpD —Dig Xip and a = determinant of
Agp -

Upon comparing (2.8) with (4.4) one then obtains:
a(ey) —A D* Y(ep) 2 0.

We further observe that no matter what the rank)pfand for any value that is
attributed tax, , one has the two congruences:

4.7) Q=Ddt ... dt,, dQ =0 (modulow).

On the other hand, it is easy to obtain the geneshitisn to this system of
congruences. ltis given by the family of forn@3}{that take the form:

(4.8) Qi+Aga-1l,w,a+1,-1,4q,B+1)+A (a,-lw,a,+1:-- )+ ...

it o1 -
in which we have set:
(4.9 Q:=Ddt ...dt, + Difa—-1,w, a+ 1),

and theA denote arbitrary quantities that are holomorphic in aht@ighood of the
elementey .

Consider a form of the family(i}, and normalize it according to the bases (2.3) and
(4.1), respectively. Between the systems of coefftsief the two expressions there exist
very simple relations that stem from the fact thatunimodular substitutiom{, , dx) —

(dts, w) transforms the one into the other homographicallythéncase where the form
considered has minimum rank. Hence, when the coeffxi®f anyx, are the
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. . : [ n+ :
homogeneous coordinates of a point of the rational vag{t ’ujz 0 one obtains a
Y7,

remarkable result:

First of all, observe that no matter what the rahkhe form (2.6) the family Q}
contains a unique form of ragk We suppose that the elemepsatisfies the following
two conditions:

(4.10) D(ep) 20, a(ep) 2 0.

The second condition implies that in a neighborhood,dhe associated system to
any form of the family 2} is composed of at leagtlinearly independent forms:

(4.11) Za:Ddta+Diaa?:aaﬁdtﬂ+Diad)ﬁ .
On the other hand, sin€{ep) # 0, the form:

(4.12) D™ [[](Ddt, + D)

a=

belongs to 2}, and it has ranlg; it is the unique form of this rank. Indeed, daym
that has ranks and belongs toQ} is, up to a factor, the product pfforms (4.11), and
this factor is, as one easily seB3$; .

5. The conditiona(ey) # 0 permits us to express the form (4.12), when atired
according to the basisltg, dx), in a very simple form. This has been done aldov¢he
form (2.6) under the hypothesis that the latter masimum rank precisely, with the
condition thatA # 0. Consider, in a general fashion, a form of rank

u

(5.1) fl’”EI_l(fdtaHTmcq), with @ =dx —pig dts,

in whichf # 0 and they, denote quantities that make the determinant:
(5.2) a=|0pf-appl

different from zero. Normalizing according to thasis (t,, dx), it is obviously a form
of rank 4, which may be written as:

U
(5.3) —[1(dt, +P,dx),
with:

(5.4) F=f"a Pa=t T8,
a
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in which 3,,denotes the algebraic complementagf in the determinang. Next,

introduce the quantities:
(5.5) @, P, Mig
by means of the defining relations:

fr2

(5.6) f+ ¢=piola, niU:T P B F+®=P;i,.

These two systems of quantities have been considefedebby Caratheodory’)(
who showed that one passes from one to the other byicmalainvolutive contact
transformation, namely:

FH?
A

FAt

1 —
) Pia :Zniﬂpbﬂa Tia _—PiﬂAyﬂl

(5.7) X

f_
F

in which A denotes the determinant s F — P, LIMi,. Moreover, one verifies the
relation:

(5.8) F(df + 75dpp) +f(AF +MizdPy = 0.

6. Let L(ts X, Xo) be a holomorphic function of thg, X, X, (sec. 2), and consider
the family {Q} of forms in thedt,, dx such that:

(6.1) Q=Ldt ... dt,, dQ =0 (modulow).
A simple calculation gives the general solution:

Q=Ldt--dt, +L, (a-lLu,a+D)+r,
(6.2) _oL
ia 6Xm,

in which 7 denotes the most general form of degresuch that each monomial term in
dt,, dx contains at least two factoss. One thus has:

(6.3) 1= Ajqda-1, w, a+l; -1, 4, B+1) +Aikepla -1, w, a+1;, -1, @, B+1) +...,

in which theA denote arbitrarily-chosen holomorphic functions.

If a formQ in the family (6.2) is integrable then the conditd{d = O entails that the
coefficients ofQ(dx), when normalized according to the bagi, ( dx), will all be
independent ok, . Therefore, in this case is a functionD that is linear in the minors

(¢) C.CARATHEODORY loc. cit, pp. (?) to (?). [page numbers missing in original].
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of (Xi4), and the coefficientd satisfy integrability conditions, moreover. For tbenfs,
Q; andQ, of sec. 3 the corresponding functidhsre:

a(s--- ds
(6.4) D, :M, D, :d_%+...+_”’
d(t-t,) dt, dt,
respectively, with:
dS 0S
a — + RVA - a
dat, Sop+ Sii X5 So a,

The general expression for a functibnthat corresponds to an integrable form of
degreeu is obtained immediately by virtue of the identiti)) = Q. Any functionD of
this space will be called aaxact derivative This expression is justified when
considering thex, to be the derivative®x /0t, of the x, which are interpreted as
functions of thet, — one observes tha(t,, %, 0x /dt,) is a rational function that is
completely composed of expressions sucSagot,.

7. Now, suppose that the functighis not an exact derivative. Thus, the famiy}{
of the preceding section does not contain any integrabe. f We suppose, in addition,
that # > 1 andn > 1. Hence, the family @} effectively contains indeterminate
coefficientsA.

It may happen that when tlg in a certain fornf2 are replaced by functions:

(7.1) Xia = Yhollar %),

which are holomorphic in a neighborhood of a pom(t’, x°), the form becomes
integrable. In this case, we say that the functionatesy (/) that is given by (7.1)
defines ageodesic field for the functiofiin a certain neighborhood of the pogat.

A geodesic field is thus found to be defined by the data matrix ) and the
coefficientsA which are holomorphic gy, these elements being such that the value,of
which we denote b (¢, 1), gives rise to the identity:

(7.2) dQ(¢, A) = 0.

8. Since any integrable form is an exact differensat( 3), it is possible to write the
differential equations for geodesic fields in two comglietequivalent forms: The first
one expresses the fact that thg and thed are functions of thé, and thex, such that
Q(y, 1) possesses a null differential, and the second xpresses the fact that this same
form is the differential of a certain holomorphic foof degreez— 1. On the one hand,
on normalizing the expressiod® anddll —Q, first according to the basidtf, dx) and
then according to the basudt{, «w), one obtains two equivalent differential systems for
defining geodesic fields.
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Practically, it seems that the equatiad¥(¢, A) = 0 are advantageous when it is a
guestion of verifying that a system of functiapisA define a field. This is what we shall

do below in order to show that any family of extrenfafsthe “variational problent” is

a geodesic field. The equatiodid = Q will be useful in the problem of determining the
sufficient conditions for the existence of a fieM/hen written in the basisl{,, dx), the
equations take on a simple form. In that case, thrgiyceeto only one (first order) partial
differential equation in the coefficients of the primat form M. The results that one
obtains in this way are a natural generalization ofttie®ry of the integration of the
canonical equations by the method of Hamilton and Jacobi.

9. The differential of the form (6.2), in which thg, and theA are regarded as
holomorphic functions of the,, x in a neighborhood of a poipb, will be normalized
according the basisl(;, a). We denote the coefficients B, Qs , Qikas, €tc. Q; is the
coefficient of the monomial (1, 2, . 4, w), Qi+ is the coefficient of the monomial (1, 2,
oa-1la+1, .., wa), and so on.

To fix these ideas, we suppose that 2 andn > 1. In this case, the form (6.3)
reduces to its first term. All of what follows petsisvithout modification in the general
case, so it will suffice to limit the expression folo its first term.

We thus have the following expressions @y, A) anddQ (¢, A):
©.1) {i9=£mﬂyw44m—4p@w+qu,

dQ=0Q1L2u)+tQ,; @.w .« *Q @ 4 K )
in which we have set:

Q=4 -thg, | 220 |
dt, ot, ot
oA oA
(92) Qaij = : +¢’ka 41 +Akj awka +Aik awkﬂ +i‘qy _i[’ja’
ot, 0 0X ox 0% 0 X
ik = a/]ij +a/]jk + a/lki .
T 0x 0x

We will make the following hypotheses about thechions ¢ «(t,, %): The functions
 are holomorphic in a neighborhood of a pgnt the system:

(9.3) W=dx —Ygdty=0

is completely integrable, and the expressions:

(9.4) Li-—L
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in which thex i, are replaced with th&,, are all null. This hypothesis amounts to
assuming that for the systergif) all of the coefficient€2; are null for any arbitrary
functions/; . Therefore, the form:

(9.5) Qij(a, ww) + Qix(waga)
is integrable for any arbitrary; .

We propose to look for a system of functidnshat are holomorphic atgpand are
such that:
(96) Qaij = Qijk =0.

For such a system of solutions, the maftix,) will therefore define a geodesic field for
the function’.

First of all, observe that the equatiddg; = O are linear in thd;; and their first order
derivatives. If the system (9.6) is homogeneous,ifi.all,of the quantities:

0 0
9.7 — -—L
©.7) 0x, Lo ax

are null, then one can taldg = 0, so the equatiort3j = O will obviously be verified, and
the matrix (/) will define a field that makes the form:

(98) L dty dt, + ([,iz dt; — Lix dtz)a?
integrable.

We thus suppose that the syst@m = 0 is not homogeneous. The equations of this
system are found to resolve into the derivatives efitivith respect to the variablég.
The right-hand sides are linear in thand their derivatives with respect to the This
system is completely integrable, or in involution, i thense of Riquier. This is a
consequence of the following fact: For atjythe form:

(9.9 M =Qqi(a, W) + Qik(waua)

is an exact differential. Indeed, upon developing the igedifl = O one gets:

(9.10) din =Mw;j(12, wa) + Naix(a waar) + Nia(@aaka) = 0.
Hence:
|-|12ij = ... :I'Ii,-k| =0.
In particular:
0Q,. 0Q.
(911) rllZij — 2ij 4j Q a[)[Ikz +Q a[)[Ikl +Q 6k¢/l—Qlk: 0,

at, at, Tk X 2jk % 2k ax
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in which theA;; denote arbitrarily chosen functions of theindx . One remarks that the
0Q,;/0t; — 0Q4;/dt, are homogeneous linear combinations ofhe.
Thanks to the identities (9.11), we shall establishalewing proposition:

Let Aj(x) be a skew-symmetric matrix @kn — 1)/2 holomorphic functions in a
neighborhood of the systelfx’). The equation,; = 0 possess a unique system of

solutions:
(9.12) Aij = Nij(ta, %),

which is holomorphic in a certain domain surrounding thetgmift’, x°), such that:
(9.13) Ay (t9.%) = Ay(x).

PROOF: - Arrange the equatiofs; = 0 along the following lines:
(9.14) Qlij = 0, QZij = 0, i,j =1, 2, g

Let A (t,,x) be the system of solutions to the equati@ps= 0, in which we have
replacedt, with tJ, solutions that are subject to the constraint thay tleduce to the

functionsA;(x;) for t, =tJ. This system of solutions exists and is unique, by viofue

classical theorem of Cauchy-Kowalewsky.
Now consider the systefdy; = 0, and let:

Aijz(tl’tw)ﬂ ) = Ni(ta, X)
denote the solution such that:
AX(t %) = A, %) -

The system\;(ts X) satisfies the conditions that were imposed and weerithe
equations),; = 0. | say that it likewise verifies the equatiddhg = 0. To show this, let
[Q.j] denote the functions o, t, that are obtained by replacing thein Q4 with A(t,
X). We must therefore establish that all of thesentjtias are null.

First of all, the {25;] are identically null, so it thus remains for us t@wtthat the
same is true for the&)y;]. In order to do this, we remark that these quantatiesnull for
t, =t7. Now use the identities (9.11), which reduce to:

o[Q,.
(9.15) %z homogeneous linear combinations of tQg;].
2

Therefore, theQ;] are solutions of a normal system of homogeneousrliegaations.
Since these solutions are null for=t?they are null identically.
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In conclusion, the system(ts X) IS precisely a solution and is the unique solution
of the equation) 4 = O that satisfies the conditions that were imposetgover.

It now remains for us to establish that it is alwpgssible to choose the functions
Aij(X) in such a fashion that the corresponding solutidfdikewise verify the second
group of equations (9.6).

Now, for A; = A the formdl1 reduces to the integrable form:

ON, ON, .
(9.16) 14 ey Oy W@ -
ox,  0x 0%
On the manifold, = t?, it becomes:
o. a. .
(9.17) R+ %o O | gy iy dig
ox, 0% 0%

and remains integrable. From this fact, choosé;{Rein such a manner that one has:

o, a0,

(9.18) —
ox, 0% 0x

:O’

which one may do in the following manner: One is gimdrlomorphic functions(x),
[(X), ..., 1n(X) of thex , and one takdg = dl;/0x; — dl;/0x; .

| say that the corresponding functiokgsverify the equationQ;yx = O.

Indeed, the expression (9.16) is integrable, so upon diffetieg and normalizing it
one has homogeneous linear identities indjeand thedQx / ot,. These identities thus

express the fact that since Qg are null fort; = t, t, =tJ they are identically null.

In summation: When the matrixg(x, ts)] satisfies the conditions that were
indicated in (9.3) and (9.4)n order to construct an integrable form it sufficéo
determine the function;;, which are solutions to the systé = 0,a=1, 2, ...,4, i =
1, 2, ...,n. Fort, =1, they reduce to the functiohs= 0l; /0x — dl; /0x; , in which the
li(x) denote arbitrarily chosen functions that are hotwphic in the neighborhood of
().

The classical Mayer transformation:

tp =t° + 1, ty=to+ 0y,

which replaces the variablés with 7,, permits us to write the equations in a simpler
form:

oA

—L = g1 + Pijo o

or,
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It thus suffices to determine the solutidr(x;, ts) of this system that reduces db
0% — 0l;/dx; for 1, = 0.

Therefore, the integration of the system (9.3) isimbispensable for the construction
of a geodesic field. If this system is integrable — ifat,possesses a family of integral
surfaces that uniformly satisfy the system on a certatp-dimensional domain
surrounding the point?, x°) — then R. Debever has observéythat the construction of

a field requires only quadratures.

() R. DebeverBull. Acad. Roy. BeldClass des Science& 937), pp. 809-815.



Stationary fields, geodesic fields, and integrablirms
TH. LEPAGE ()

(First communicatioh

1. - If L(ts X, po) denotes a definite regular [I, le) function of the elemeru(t, X,
p) then we can associate an alternating f@knof degreeu with it [l, 6], which is a
solution to the congruences:

(1.2) Q=Ldtidb ... dt,, dQ =0 (modaw), w = d¥% — pia
dt, .

This form is well-defined fopz = 1 or forn = 1. In any other case, it depends upon
the undetermined coefficiens To simplify the notation, we denote the fo@mwhen it
is limited to the first two and the first three groupsesms, byQi andQ,, respectively:

oL
Q =Ldt---dt +L (0d-1lw,a+1l), g = »
(1.2) p b dh L (@ le ) " op.,

Q,=Q,+A, ,(@-La.a+LB-1n B+1).

The formQ; is, moreover, identical witk when x or n does not exceed two. The

: . n . .
latter group of), is comprised O(Zj[ a j distinct monomials, so we assume that the

=2
indeterminategd give rise to the following relations:

(1.3) Aiaip=Aigia == Aia,ip=~ Aigja-
If, in a neighborhood of the elemestone has:

(1.4) L(e) Ca(e) # 0, a=|0pL—-Liapgsl,

then the other Pfaff equations:

(1.5 L dty + Lig @ = (OupL — Lia Pip) dig+ Lig dX = agpdtz+ Lip dx = 0,
a=1,2, ... 4 i=1,2,..n

(') Presented by L. GODEAUX.

(*) This work makes reference to the Note entitl&dirles champs géodésiques des integrales
multiple;’ that was published in this Bulletin (1941), pages 27-46. |pvilserve the same notations, and
the references are denoted by the Letter “I” followedh®gysection number. Nevertheless, here | shall call
a field such as the ones that were defined in [§t&jonary the qualifier “geodesic” being reserved for the
fields that render the minimum-rank foi@ of the family [I, 6.2] integrable.
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are linearly independent, they belong to the associattdmyfl, 2, page 32] of the form
Q, and:

H H
(1.6) Q" =L (s ol * L, d>.<)=% (dlt, + P, dx),
where: ) )
u-1 a
(17) F:L ; Pia:LﬂLiﬂa [I! 5]'
a a

is the unique form of minimum rankin the family (1.1). Obviously, foz =1 orn =1,
one will haveQ” = Q. In any other cas®” may be deduced fro®@ upon determining
the A by means of:

1
Aia,ip =L (Lia Lig— LigLja),

2. — The invariant character of the differentiationtlee form [l, 3 and 4] confers a
significance to the congruences (1.3)that is independent of any transformatigyt,p)
- (X,t,p)that preserve the term:

(2.1) Ldt ... dt,= Ldf--df,

and transforms the Pfaff systeaninto the system:
(2.2) w=dx -, di, i=1,2, ..n

This property appears again when one consi@ets be a surface integral element
that is extended overzamanifoldE, in the space ot(x) [l, 3].

Two cases are distinguished: In the first case fuhctionL is linear in the minors of
all orders of the matrixx,), and we denote them B(t,, X, pia) [I, 4].

The results are well known, and amount to an exsenof the classical Gauss-Green-
Stokes formula®. The corresponding form@ are characterized by the following
properties: A certain form of the family (1.1) kalbof the coefficients independent of the
Pio; in particular, when/= 1 orn = 1, it is the unique forr,;, normalized according to
the basisdt,, dx) [I, 2 and 4] The set of function® corresponds to the set of forms of
degreeu in thedt, anddx whose coefficients are functions of omlgndt.

In the second case, the coefficient<pfwhen normalized according tdt(dx), do
depend upon thp,. Therefore, when considered to be the surfasgiat element, the
form Q will depend upon not only the contact elemesftsx, dx; /0t,) to the portion of
the surfacee,, , along which the integration is performed, bsbalpon the quantitigs,

() As well as to conditions (1.4) and to the form ofiimium rank (1.6).
() E. GOURSATJ. de Liouville t. | (1915), and.econs sur le probléme de Pfafspecially chapter
lll: Formes symboliques de différentie]lBgris, 1922.



Lepage — Stationary fields, geodesic fields, and integfaites. 291

that define gu-dimensional planar elementor p-vector- that is attached to the point
(ta, %) Oof E, .

In a general manner, we [EL, E, denote the portions of the surface in the space of
(t, X) that are defined by the systems:

(2.3) X = X(t, ..., 1), X=X (t,t,), i=1,2, ..,

which have frontierd(E,), f(Eﬂ), and assume that thety), X (t,) are continuously

differentiable when the pointg describes two cylindrical regiors, G. One supposes
that the pointsx t),(X,t) belong to a certain open connected redrasf the space oft|

x) for which all of the coefficients of the forms \esioned will be continuously
differentiable.

One arrives at the notion of a field upon considethepi, to be functions that are
continuously differentiable oR. We agree to say that the fighd(t, X) envelopsE,
when, taking into account the primary equation8)(2ne has:

0X
(2.4) Pia(Xi(ta), tg) = o
for any point ofG.
With these conditions, the surface integfjl (

(2.5) () =], [

iS, up to sign — this sign being fixed by the cloaf orientation fof(E,) — the value of
the 1-fold integral:

(2.6) I(E,) :jEuL[ta,x,g%j dt--- dt, .

The portion of the surfacE;, being varied will not, in general, be envelopedtiy
field (piz). The formula (2.6) is therefore invalid ﬁ;, but instead one will have:

(2.7) I(E;,):J.EH[Ql] :jGL(t,x,a—):j dt+J'E” Ei(t, X, pa_i(j dg--- df,
in which:
(2.8) EtXx pP=LEtXP)-LLX P~ L (R~ R

One will obtain an analogous formula upon replgd€i] with [Q], which is an
arbitrary form of the famil2, when referred to the fielghi¢), and thed denote arbitrary

(*) We denote the result of the substitutiop= p;d(t, X) by brackets [ ].
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chosen functions of the and x. Nevertheless, in this case, the functieBnmay be
replaced with the expression:

~ Ra p/]__pﬂ

T)ia
29 E:E —Aia" ,t — _
29) ' A )E{pja_ Pe Bz~ Rps

One observes that lif is linear, hence, of typB, then the functiong, E; are either
identically null or they go to zero for all values pf p for which the matrix:

(2.10) (Po ~ R.)

has rank one’).
Taking (2.5), (2.6), and (2.7) into account, we obtainetkgression for the variation

of 1(E,) - I(E,):
(2.11) Al=1(E,)- () = |, [Q1=[ [Q +[, Edt--d.

3. — Stationary and geodesic fields$f a certain form Q] is integrable when referred
to the field (i) and corresponding to a choiceAthen formula (2.11) gives:

(3.1) Al :jE E(t, X, p%j dt--- df,

upon supposing thdi, andE# possess the same frontié). (In this case, we say that the

field envelopingE, is stationary.

It is obvious that a stationary field does not render any form of the famiy
integrable no matter what the when considered as functionstaedndx. There will be
reason to consider, in particular, the fields ttesider either the forr;, the formQ, or
the form of minimum rankQ" integrable; we denote them by the symh8isé&,, &,

respectively. The field§ will be calledgeodesic They are nothing but the fields that

were introduced by C. Caratheodory in order torekt® multiple integrals his theory of
equidistant geodesicé)(in which he made systematic use of various duesthat touch
upon the Calculus of Variations for simple integral

() One observes that the conditid? = 0 (modc) entails that the functiors have the property of
being of second orderinthg, -, .

() Since the frontier is variable this formula pessisthnen the integrable fornQ)] possesses
characteristics. cf. infra, sec. 9).

(") C. CARATHEODORY, Uber die diskontinuerlichen Lésungen in der Variationsrechnung
Dissertation,Géttingen 1904. Uber das allgemeine Problem in der Variationsrechnur@étt. Nachr.
1905. Die Methode der geodatische Aquidistanten und das Problem von Lagraoge Math. (47)
(1926). Variationsrechnung und partielle Differential gleichungen erster Ordnuregjpzig, 1937.
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4. — In order to calculate the principal partmfwhenEﬂ ranges over a family that

depends uporr and reduces t&, when 7 = 0, one may follow the path that was
indicated by E. Goursaf)( which brings out the role of the two tensorial opensd and

e (the interior product, or contraction of an altemgtiensor with a vector). If one
considers the coefficients of the fofnto be the components of an alternating covariant
tensor, and if: _

(4.2) AT X, a=1,2, ... 44i=1,2, ..0n

denotes a contravariant vector, then the two altiexgndorms:

0Q . 00
+ X' —,
a(dt,) o(dx)
0(dQ) , 1 (dQ)
a(dt,) o(dx)

e (Q) =T
(4.2)
e (dQ)=T"

in which 0Q/a(dt,), ..., d(dQ)/0(dx) denote the coefficients at, anddx in Q anddQ,
which have degreg — 1 andy, respectively. The same is true for the alterngong of

degreeu.
(4.3) AQ = d(exQ) + en(dQ).

We interpretA as being a deformation vector fig;, . We letE,(7) :Eﬂ denote the

portion of the surface that is described by the pointsatesituated along the family of
trajectories of the differential system:

(4.4) a9 _ gy,
To X

and correspond to the pointsEf (7= 0) for eachr = const.
From Stokes’s formula:

(4.5) IEyAﬂzL(Eﬂ)eAQ +'[Eu%(cn).

This is the expression for tliest variation of |(E,) (). One observes that only the
first two groups of terms i, which is normalized according to the basis (), appear
in the right-hand side of (4.5). Therefore, the fumtiationd has the expression:

Geometrische OptikErg. d. Math. 1V, Berlin, 1937. Geodesic fields for nplét integrals are introduced
in: Uber die Variationsrechnung bei mehrfachen Integral@ota Szeged (1928), pp. 193-216.

() E. GOURSAT. Sur certaines systtmes d’equations aux différentielles toktlesur une
généralisation du probléme de PfafAnn. Fac. Sc. Toulouse, 1918.econs sur le probléeme de Pfaff.
Paris, 1922.

() P. V. PAQUET Les formes différentielle@, dans le Calcul de VariationsBull. Acad. Roy.
Belg. 1941, pp. 65-84.
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(4.6) d=[ a0l e,
in which the quantities:
[eAgl] =( LO" + L’m B«{(A)) d; dL—l dgﬂ"' dﬁ,
-[4d, _ot
(4.7) e,[dQ] = [ i " o jcqm) dt--- d,
Q@) =X -2

are calculated aloni, .
One may deduce that any surfd€gthat is enveloped by a stationary or geodesic
field is a solution of the following system (Euler-Lagge equations)Q):

(4.8) 4, 9,
dt, 0x%

If the first variation is null then if the frontievaries with 7 — i.e., under the
deformatiom — then one will necessarily have:

(4.9) Q1] = (LT + Lig w(A)) dty ... dtgy ditges ... dty = 0.

This supplementary condition expresses the notion ttietvectorA belongs to a
planar element defined by the contact elenf€Bf), and by the multivector whose
components verify the firstz equations (1.5) of the associated system for the farm
For 1 =1 it is thetransversality condition We agree to say that any vector that belongs
to the multivector that is defined by (1.5) tiensversalto the element,) that is
attached to the same point. If conditions (1.4) anefsat at each point d&, then all of
the vectors that are transversal to the contacheate at a point oE, belong to am-
vector that is defined by the system of quantifigq1.7) at this point.

(*°) One may further verify this follows: In a fielifor an integrable& let D be the corresponding
exact derivative function [l, 6]. One has:

[Q]=Ddt;...dt,+Dif(a— 1, w, a+ 1) +Digidaw, @) + ...

such that : L=D, Liz=Di,,
but: i[)_ _a_Dz 0,
dt, ' 9x

which gives formula (4.8).
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5. —Remark. By the prior construction of a fielfl that envelop£&,,, the preceding
method reduces the integféE,) to a surface integral whose eleme®t [s an integrable
form. In order to apply Stokes’s theorem in the tramsé&dion of the first variation and
obtain the expressions of the preceding sectionsntlispensable that we assume that
is of classC? (*Y), and that the fiel&is of class at least®. The same is true as far as the
calculation of the functiof is concerned. For this calculation one only appeatbdo
property of the integrable for@ that it gives rise to the equality:

(5.1) jEQ :jEQ

whenE,, Eﬂ possess the same frontier. Ipei(t, X) be a system of° functions onR

such that one has (2.4), in addition, and suppose, morebaethese values pf,, when
introduced into the coefficients of a certain fagive:

(5.2) [ [@a=[

for any portions of the surfac&and V that have the same frontier. We then say that
[Q] is aC® integrable form. Formula (3.1) persists and the principal term on thit+i
hand side of (2.11) is null for = 0, but this time one may no longer transform the
expression by the use of Stokes’s theorem, 9ih@¢ no longer has any meaning, as the
coefficients of 2] are no longer differentiable. However, one may, ugeneralizing a
lemma of A. Haarf), deduce thaE, is a solution of a first order partial differential
equation that reduces to the system (4.8) vilheis C* (V).

6. — The discriminants of a for2. The problemL = L + D. Denote the Jacobians
with respect tqig of the systems of coefficients of the group of tem&, which are

normalized according talf,, «) and @t dx), respectivelyby A(L), D(Q), with:

9°L
op,,0p;

on,
p

(6.1) A(L) = , D(Q) =

iB

6.2) {Q:Ldtl...dtﬂ+ga(@)+4w(@a{)+m

:‘Cdtl'“dt,u+7Dia(d)|()+/\ia,j/](d?( djx)+

(') A function whose derivatives of orderre all continuous in a domain is said to be of ofss

there. ItisCif it is only assumed to be continuous, is C* if the x(t) are C

(**) A. HAAR, Zur Variationsrechnung Abh. Math. Sem. Hamburg Unig,(1930).
TIBOR RADO, Bemerkung iiber die Differentialgleichungen zweidimensionalen Variptinpisme
Acta Litt. Sc. Szege@ (1925).
TIBOR RADO, On the Problem of Plateatrgeb. der Math. (2) (1933.

(**) P. GILLIS, Sur les formes différentielles et la formule de Stoki&smoires in-& Acad. Roy.
Belg., 1942.
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One has:
(6.3) A(L) =D(), D(Q) =D(Qy).

D(Q) is the discriminant of the ordinary quadratic formmjpandeterminate$;, :

(6.4) Lia, js (Uia Ujp = Aig,jp (Uia Ujp— Uja Uip).

Let D(t, X, p) be an exact derivative [l, 3], i.e., a linear fuantthat corresponds to an
integrable formdsz where /7 denotes a form of degree — 1 whose coefficients are
functions of only theg, t,. Consider the function:

(6.5) L=L+D.
Foru=1orn=1 one will have:

(6.6) A(L)=A(L) =D(Q),

but these expressions will differ, in general, foe thther values ofr and n. We
let Q denote the form:

(6.7) Q=Q +drx
On the other hand, we have that:
(6.8) D(Q) :D(ﬁ).

It is obvious that since the sum of two integrable forsnan integrable form any
stationary field that envelogs, for the problerrL does the same for the problem as
well, and for any arbitrary functioB. This is no longer the case for geodesic fields
Indeed, the addition of a foravr will alter the rank of an integrable form®( and its
associated system, in general. If one refers theesgjpn of the first variation in the case
where the frontier is variable then one confirms that boundary terms2[Q] (sec. 4,
formula (4.7)) are found to be modified, in general, uporsipgsfromL toL. The
directionsA that are transversal to the elemgmt)(vary from one problem to the other.
Thus, a field that is geodesic forwill no longer be geodesic for the problemit will
behave like an ordinary field.

7. — The reduction of an integrable for®@. Characteristics. To simplify the
notation, we set:

In any field€ there exists at least one integrable f@nwhich we represent by:

(**) Except in the casgs= 1 orn = 1, when the sum of the two forms of rgmkas ranky, although
the remark persists nonetheless because the assayistieths still differ.
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(7.2) Q=A_ dx--dx, =12, ...N,

"

in which theA are alternating in thg andi indices.
The integrability condition:

(73) dQ :'Ail'“iﬂixﬁldxl o d?(uu: O
is equivalent to the system:
oA OA., oA,
(74) -A]| - vl 4 2 /Ju+1+”.+ T u—1:O’
1 et a)g,m axl a)l(u

where the minus sign relates to only the case oftodd

With this notation, the associated systertis the Pfaff system:
(75) Al"'iu—ld)l(: 0, il, ceny i/,_l =1, 2, ,N

The properties of integrable forms may be deduced fronfollmving proposition
(*): Any integrable form whose coefficients are regitiaa neighborhood of a poirfk)
is transformable into a form with constant coeéfids in the domain of this point.

It then results that two integrable forms that afindd at the same point and possess
all of the properties that are required for algebrgigivalence there will be transformed
from one into the other. From this, we immediatedgulce the following useful result:

First of all, the systen(7.5) is completely integrable Indeed, it is equivalent to a
system for which all of the coefficients are conttan The numbero of linearly
independent equations of this system is the rank of the @hrand it is, moreover, the
minimum number of variables that it takes to expressfdh®. TheN-p-dimensional
integral multiplicities are theharacteristicsof the formQ; the system (7.5) sometimes
takes the name of theharacteristic systerof the form. The covariant character of the
associated system shows that its integration isecklad the search for a reduced
expression, since the variables that figure in such an &sipre— viz., theeduced or
characteristic variables- necessarily constitute a complete system of fitegials of the
system (7.8).

Observe that for any field that envelopsg, the associated system to the

corresponding integrable form comprises the firgquations of (1.5), which define the
transversaln-vector. Therefore, all of the characteristic nmlitities of a field are
tangent to the transversadvector alongE, . In particularfor a geodesic field the
characteristic system may be identified with thg&tesy ofy equations(1.5). It is thus
completely integrable when it is referred to the funmifis) or (Pis) that defineS’. The

n-dimensional characteristics uniformly cover a donithat surrounds ank,. They
are transversal to the elemept,) of the field at each pointx(t). Nevertheless, this

(*) CL. M. CRAMLET, Note on the integrability conditions of implicit differentiajuations;
Differential invariant theory of alternating tensor8ull. Amer. Math. Soc. (1938).
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property does not completely characterize a geodesichigeause the system (1.5) might
not be completely integrable for a certain field Evidrich the corresponding form (1.1)
is not necessarily of minimum rank, and the precedamglasions persist in this case. In
order to completely characterize a fi&d in addition to the integrability condition for
the associated system (1.5) it is necessary to introthedollowing condition:the
function F* (sec. 1)is a multiplier of the system

8. — Another consequence of the proposition that was sgtdte beginning of the
preceding section concerns the type of reduced expretsadma form will take for
various values that are attributeda@ndn. These expressions will be useful to us in the
study of the differential systems of the fields.

The proposition that was invoked boils down to the proldérfinding the distinct
algebraic types of the alternating forms when theand dt are regarded as the
indeterminates, in the algebraic sen§g (

We have three cases to distinguish, namely:

(8.1) @ u=1lorn=1, ((b)u=2o0on=2, (c)uandn>2.
In the first cases, (a) and (b), the knowledge ofaié& p suffices to fix the type o the

reduced form. This is no longer true for the forms ¢&fept whenp = u (for a formQ”
of minimum rank) t').

For (a), the form is a monomial since the rank is equine degree. For (b), 4= 2,
n = 2 then the rank is necessarily even:

(8.2) P=2y,

indeed, it the rank of the alternating mat(i§ ; ) . By a non-singular substitution of the
indeterminates of the form it may be reduced tar@onical expression:

(8.3) L&+ ELY .. &1 by,

(**) The method that is followed here is obviously sdbmate to the hypotheses that were made to

establish the proposition of sec. 7. Cramlet haslestal it by basing it on the general existence theorems
for differential systems in involution — hence, on @euchy-Kowalevska theorem — when the given data
are analytic and regular. However, the proposition gisrsinder less restrictive hypotheses, at least in the
case where the knowledge of the rank determines the tfpesluctions; it suffices to suppose that the
forms are of clas€?. It might be interesting to establish the propositiofull generality with hypotheses

of this nature.

(") It is not without interest to observe that thissslfication appears again in the study of the
elementsd) in relation to the character of the ordinary quadrfatim (6.4), For (a), an element is called
regular, singular,or irregular (Cf.,, C. CARATHEODORY,Variationsrechnung according to whether
(6.4) is definite, semi-definite, or indefinite. For @m)d (c), the elements)(are classified according to the
character of the form (6.43jnce theU;, are related by the condition that the mat(i,) have rank one
For (b), if the form (6.4) is definite with the indiedtconditions then there will exist at least one systé
values for thel, jz such that (6.4) is definite. This is no longer true &r (
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in which theé denote ¥linearly independent forms of the associated systene. gfdup
of automorphisms of this form depends upg(2+ 1) parameters and presents obvious
analogies with the orthogonal grodf)(

Forn=2,u> 2 the rank igzor 4+ 2. It cannot bg/ + 1 since the rank of a form of
degreeu in 1 + 1 indeterminates is necessarily equaluto The (reduced) canonical
expression may be obtained by passing tatmplementary forrof degreen = 2.

In a general manner, the complementary form of:

(8.4) A &E i=1,2 ...\,

which has degreg in thex indeterminates, is the form of degide- 1/ =n:
(8.5) A4,
in theN indeterminateg that is deduced from (8.4) by setting:

(8.6) A, TEA,

.4.|/1

and taking the + or — sign according to whether thenptation:

(8.7) iy i i1 in

is even or odd relative to the principal permutation 18l....
One sees without difficulty that if one performsubstitutionS (& — &) on theé,

and, at the same time, the adjoint substituBé — ¢ ) on the( that preserves the
bilinear form:

(8.8) LG+ EG+ L Endn

then the complementary form will thus be reproduced multiplied by the determinant
of the substitutiors.

Having done this in order to obtain a reduced form, it suffice to determine a
reduced form for the complementary form. In the ¢haewe are considering, the latter
is quadratic, and we may suppose that it amounts to tlemicahform (8.3). As a result,
the canonical form for & 2, 4> 2is:

(8.9) GG N+ 08B T (e (y2 (e

The rank of this form is equal td — 2 = when (8.9) is reduced to only one
monomial; otherwise it is equal o+ 2.

Contrary to what happened in the preceding case, onaataay anythinga priori,
about the rank of an alternating form o> 2 andn > 2. Observe further that far= 1

(** ) HERMANN WEYL, The Classical Groups. Their Invariants and Representatiddsap. VI.
The symplectic groygrinceton 1939.
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orn=1, and foru = 2,n > 1, the algebraic equivalence of the two formsdsured
whenever the rank is the same, which always makes $&@ns > 1 andn = 1, moreover.
This is no longer always true for= 1, ¢ > 1 wheneve exceeds three. For example,
for = 4,N = 6, one has two distinct types of rank 6:

(8.10) €& + &) 568 (& + && + &)

In order to assure the equivalence it will therefa@enbcessary for the two forms to
possess the same number of linear divisors. Theefiygtession in (8.10) has the two
linear divisors& andé&; the second one has none.

The preceding results translate immediately for natelg forms. For example, any
integrable quadratic form amounts to the canonical fortharcharacteristic variabl&s,

o Sy
(8.11) dS dS + ... +dS,-1dS,.

For 1= p, in particular for all of the forms (a), one with¥e the expression:
(8.11y ds ... dS,.
For 1= 3,n= 2, one will have the following two expressions:

(8.11)" dS dSd$, dS(dS dS +dS dS);
Foru=4,n= 2, one will have the three distinct expressions:

(8.121jV dS dSdSdS, dSdS +dS$dS)dSdS, @dSdS + dS dS + dS
dS)’,

in which theS, denote, in each case, the distinct first integralhefassociated system
for the integrable fornQ.

9. — Characteristics of the form€] and transversality Let £ be a stationary field

that envelopg£, for which the form Q] is integrable. If the ranj of this form is less
thann + 1/ — hence, if the variables, t, are not characteristic — then there will existH(
L — p)-dimensional characteristic multiplicities such tkiag¢re will be one and only one
of them at each point of a domain. We suppose, moretharthe domaim (sec. 2) is
uniformly covered by thig-fold family of multiplicities.

A linear elementdt, , dx) — or if one prefers, a vectom{, X|) — that issues from a
point (, X) will be calledcharacteristicif it verifies the associated system f6X][ Thus,
there exisin + 1/ — p linearly independent characteristic elements at eacit pobR, the
set of which constitutes the characteristict(x/ — p)-vectorl ., Of the form [2]. Any
characteristic element verifies the figgtequations (1.5) of the associated system, from
which it results that it is a transversal elementhi® field @i;). In particular, at every
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point of E, where conditions (1.4) are assumed to be sati§fiecl, belongs to the-
vector that is transversal to the contact elempn} 0f E,. In this case, thesfold
family of n-dimensional characteristic surfaces:

(9.1) Si(t, X) = Sulto, Xo)

that issue from the point§,(x,) of E, provide an image of the fielfl. Fory =1, this
image is completed by the fact that the trajectorighebrdinary differential system:

(9.2) a = dx —p(t;, x) dt =0, i=1,2,..n

are extremals. The field is generated byndald family of extremals that is intersected
transversally by a countably infinite family efdimensional characteristic surfaces

(waves). In any other case, one may no longer satyatfield€ or £ is generated by a
family of extremals because, in general, the Pfadtean:

(9.3) w =dx —pit, x)dt, =0, i=1,2,...n,a=1,2, ..U

will not be completely integrable. However, contreoywhat happens when> 1,n> 1,
any n-fold family of extremalsE, is a stationary field [I, 9]. A field of extremalbat
renders integrable a forfx with characteristics — which is always true when 1,n =1,

M >1.nodd,u=p-is connected at more than one point to the figureilffavshwaves
transversal to an extremal) that realizes any statyofield wheny = 1. Notably, we
show this for the situation that relates to the extensif formula (3.1) to the case in
which the surfaceEﬂ being varied has a frontier that is distifrotm f(E,).

10. — Let A(T? X) be a characteristic vector. Time+ u functions T% X are
continuously differentiable iR so they verify the linearly independent equations:

(10.1) A, X'=0, i=1,2,...N, N=n+y,

1=

where, as in sec. 7, we have set:

X :ti, X, =t ,
o2 o
We obviously suppose that the figlds endowed with characteristics, i.e.<n + L.

R is traversed by a family of trajectories (or chagastic curves) of the differential
system:

(10.3) L. R i=1,2, ...N.
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A characteristic curvgrthat issues from the poirik’) is obviously completely contained

in the characteristic multiplicity ., that issues from that point. Follow along the
characteristicsyj that issue from the points Bf, , and consider an arbitrary sectI?J#mf

this family. The value of the integra{k,) is equal to the surface integral:

(10.4) I(E,) =], [,

where, as abovg(Q] denotes the integrable form of fiefd¢hat envelops E .
Now, one has (sec. 3):

(10.5) Al =1(E,) - I(Ey) :jE [Q]—jE[Q] +jE E dt---dt,
so, by (10.4):
(10.6) Al :j Elt,x R X dt-- df,

' e ot '

Therefore,if Q is the integrable form of the fielf that envelops Ethen formula

(3.1) persists when the frontierS(Eﬂ) are found to all be situated on the manifold that

is generated by a family of characteristic curves that issue finenpoints of the frontier
f(EL).

Formula (10.4) is a consequence of the fact ddjay be expressed with the aid of
the n++ p characteristic variables and their differentialsnalotaking into account the
invariance of the differentiation of the form and ttteange of variables rule for surface
integrals t9).

Remark. If one interpretd as the symbol of an infinitesimal transformation:

(10.7) Af =X o

0x
then the tensorial relation (sec. 4.3) gives:
(10.8) AQ = 0.
The form R] is called (cf., E. CartarfQ) invariantfor the differential system (10.3).

Relation(10.8)further persists whem® is an integrable form without being nulin
this case, the vectdk is no longer characteristialthough (10.6) persists nonetheless

(*°) [Ambiguous reference to footnotes in original.]

(*°) Following the terminology of E. GOURSAT (cProbléme de Pfafchap. V, sec. 60-62)[Q] is
an integral invariantthat is“attached to the trajectories’df the system (10.3), andcamplete integral
invariant in the sense of E. CARTANLécons sur les invariants intégrgux When R] = drz [7is a
relativeinvariant attached to the trajectories.
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under the condition that we take a section of the family of trajecttrasssue frorrEﬂ
for 7= constto be the surface that is varie®ne may further say that the integral:

(10.9) jEu[Q]

is an integral invariant for the infinitesimal transfation Af (or a Poincaré integral
invariant for (10.3)). Such transformations always eistan integrable form, but they
are no longer determined by purely algebraic operationthegsare for characteristic
transformations. The set of all of them containgstesn of infinitesimal transformations
that is isomorphic to the+~dimensional translation group. The knowledge of these
transformations may simplify the problem of the intéigraof the associated system to
[Q] since the formenQ, e, (g Q), etc., are all invariant.




On the De Donder-Weyl fields and their construction
by the method of characteristics

by LEON VAN HOVE ()

1. Consider theg+uple integral from the calculus of variations:
(1.1) = [ Lt %, R, dt--- df, a=1, .. i=1,..n,

where thex(t,) are unknown functions and tipg, are their derivativegx; / dt, . One
knows the utility of the notion dfeld in the study of the extrema of (1.1).

For multiple integrals with several unknown fuoeti(h and i = 2), this notion was
introduced by Th. De Donder in 1913, (and was reprised in the same form by Hermann
Weyl in 1934 ). Meanwhile, in 1929 Carathéodory @efined geodesic fields that were
distinct from the preceding ones that have a reatdekgeometric significance. In 1936,
Th. Lepage showed the existence of an extendedyfarhfields; those of De Donder-
Weyl and Carathéodory are only special ca¥esRecalling the terminology adopted by
Th. Lepage in his last note, we call all of thdd#eof the familystationary We use the
notation adopted by Carathéodory and Lepage.

Stationary fields are introduced as follows fag groblem (1.1). One sets:

(1.2) @ = dx% —pio dty Pe=L, .

and one considers the alternating differential ®nh of degreey that satisfy the
congruences:

Q=Ldt...dt, (moda, ..., a), dQ =0 (moda, ..., w).

It is given by the formula (one always sums oveeeted indices):

() Presented by Th. DE DONDER.

() DE DONDER, Th. -Sur le théoréme d'indépendance de Hllbe@.R. Acad. Sci. Paris, t. 156,
1913, pp. 609-611 and 868-870.

— Théorie invariantive du Calcul des Variatiqri§' ed., Paris 1930, new edition, 1935.

GEHENIAU, J. —Sur la generalization de Th. De Donder du théoréme d’'indépendartdibeet, C.R.
Acad. Sci. Paris, session on 6 July 1936. pp. 32-34.

() WEYL, H. —Observations on Hilbert's Independence Theorem and Born’s Quantizftibreld
Equations PHYSICAL REVIEW, vol.46, 2" ser., 1934, pp. 505-508.

- Geodesic FieldsANN. OF MATH., v.36, 1935, pp. 607-629.

() CARATHEODORY, C.- Uber die Variationsrechnung bei mehrfachen Integral&CTA
SZEGED/4 (1929), pp. 193-216.

() LEPAGE, Th. -Sur les champs géodésiques du Calcul de VarigtBuls de I'Acad. R. de Belg.,
CL. DES SCI., XXIlI, 1936, pp. 710-729, 1036-1046.

— Sur les champs géodésique des integrals mulfijidies, XXVII, 1941, pp. 27-46.

— Champs stationaires, champs géodésiques et formes integtates XXVIII, 1942, pp. 73-92 and
247-265.
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+Amwdt1 | Y73 No | PRI dt;ch dtﬁq d'[/, + ...

TheAigAty X, Pxy) and the coefficients of the unwritten terms (camtey more than
two factors ofw) are arbitrary.

Let pio(ty ) be a field. It is stationary for a forfx of the congruence (1.3) when
if [Q] denotes what the form becomes i = pioft, X) — [Q] IS integrable; i.e., when
dQ]=0.

A stationary field envelops a manifol) whose equations are= xi(t,) if it satisfies:

0X
1 t, (t =_1
Piolts Xi(ta) o,

on this manifold.

One knows thaV, is thenextremal If the x(tg) have second derivatives then they
satisfy theEuler-Lagrange equations:

_drm,
o dt

a

(1.4) L = 0.

Meanwhile, the stationary fields are not composed fainaly of extremals, except
when the systenyj] = 0 is completely integrable.

Among the stationary fields, one obtains Bbe Donder-Weyl fields upon annulling
the arbitrary coefficients i(1.3); they correspond to the form:

(15) Qo=Ldt ... dty + 77, dty ... dtpea diger ... dty .

As for the Carathéodory fieldsthey are given by the simple for@" of the
congruence (1.3).

In 1935, Weyl {) constructed a field of the first type that envelopsrttamifold x; =
0, which is assumed to be extremal. A year laterriBzef) enveloped an arbitrary
extremal in a geodesic Carathéodory field; like Weyl,ueed the method of Cauchy
characteristics, but the calculations are long. Ho{@esimplified the construction of
Boerner by a change of variables. He showed that anesdown to the construction of
a field for a simple integration problem. Th. Lepageently showed % that this
reduction, which is just as valid for De Donder-Weyld&hs it is for geodesic fields, is
the consequence of a simple property of integrable forms.

In what follows,we construct a De Donder-Weyl field that envelopsagbitrary
extremal with the aid of the method of charactersstWe will show in a later article that

() WEYL, H. —Geodesic Fielddoc. cit.

(®) BOERNER, H. —-Uber die Extremalen und geodatischen Felder in der Variatenfsiung der
mehrfachen IntegraleMATH. ANN., bd. 112, 1936, pp. 187-220.

() HOLDER, E. - Die infinitesimalen Berilhrungstransformationen der Variationsrechnung
JAHRESBERICHT DER DEUTSCH, MATH. VER., bd. 49, 1939, pp. 163:

() LEPAGE, TH. -Champs stationnaires, champs géodésiques et formes intégtablest., pp. 262-
265.
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the change of variables that was indicated by Holder redtlee construction of a

geodesic field to the present construction. To apprettiatdomain of application of the

method of characteristics, we discuss the classetdsficonstructed. To that effect, we
will have to use the following proposition:

If a manifold of class Os enveloped by a field of classCthen it has class £°).

Indeed, on the manifoldl, the derivative®x; / 0ty = pi(ts, X(tg)) have clas€,, so
V. has clas€, , and by induction, class, .

In what follows, we assume thhathas clas<Cx and the extremal is enveloped by a
field of classC, . All of the constructions that we make will be losa& place ourselves

in the neighborhood of an elemesy(t’, X, ) that is tangent t¥/,, .

2. De-Donder-Weyl field. Replace they in the Qg by their values in (1.2); (1.5)
then become:
(2.1) Qo= —@dty ... dt, + 77, dty ... dty dX digeq ... dt,, Q= TTaPia— L.

Assume that in a neighborhoodegfone has:
(2.2) IL, p, |#0.
One may then solve the equations:
(2.3) o= L, (t5, X, Pip)

with respect to th@i, . The change of variables that replacespghevith the 77, is of
classCy-1 . The functiong(Hamilton function) is expressed by the aid of the c&ad
variables, , X , pie - One immediately finds upon differentiating it that:

(2.4) @=L, 4=-L,. & =Pa

It is therefore of clas§, like L.

This being the case, suppose that one has a De Dongeffigle that envelops the
extremalV, , whose equations are= x(t,). With the aid of (2.3), it provides one with
functions (g, X) that verify onV, :

ox;
(25) Tig = me tﬂ,Xj(tﬂ),aT .
B

It renderK), integrable:

() Recall that a continuous function is of cla&sand that a function is of clag3, when its J"
derivatives exist and are of claSs.
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d[Qo] = - M+6[n] dxdt---dt, + d 72,] dx dt-- df, dx gt dt=0
0X ot, 0x,
or:
agd _ ol7,] _ o, _ol7,l
ox  ot, 0 0x, 0%
There thus existz functionsSy(tz, ;) that satisfy the equations:
0S 0S
2.6 — =g —+[d =0,
(2.6) ox = [77d], o [4
or equivalently:
(2.7) Qo =dS dty ... dt, + ... +dty ... dtp-1 dS dtgey ... dt, + ...

+dt; ... dty_l ds, .

From (2.6), it results that tt& satisfy thepartial differential equation:

(2.8) 95, ¢(t X. asﬂj =0,

which is nothing but theeneralized Jacobi equation that was introducedThy De
Donder(*°)

The problem to be solved is the following one:d~the solutions of equation (2.8)
that satisfy the equalities:

(2.9) R T I
' axl '8 Pia ﬂ’ J ﬂ ’atﬂ
onv, .

From (2.6), one then obtains the field by set{ing] = 0S, / dx; and imposing the
conditions (2.5). If th&, are of clas€, then the field obtained is of claGs; .

3. Construction. Chooseu — 1 functionsSy(tg ny), (& = 2, ..., ) that satisfy (2.9)
onV, . We indicate how one obtains them in the follogvsection, where we discuss the
class of the functions being used. (2.8) become=gaation ir§; :

(*® DE DONDER, TH. -Réduction de la variation secondeGénéralization du théoréme direct de
Jacobj BULL. AC. R. BELG., CL. DES SC.,"5session, t. XVI, 5 April 1930, pp. 436-445.

- Théorie invariantive du Calcul des Variatiorsp. cit., ' edition, pp. 85, eq. 444; new edition, pp.
120, eq. 711.
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9S  0S, S 9S
3.1 2+ gt X, 2,2 |=0.
G o ot, w(ﬂ " ox; " ox j

It possesses Cauchy characteristics along whiehthare constants and which one
may refer to the parameter; their equations are:

dx drz
3.3 —=q,, —L==-q.
(3.3) at, @, @

dt

a

The curves » = constin V,, are the characteristics.
Indeed, equations (1.4) become, in canonical bkrsa

dx drz
3.3 — =g , —L=-gq.
(3:3) dt, < dt %

a

Like theSy that satisfy (2.9), along the curves = const. these equations give:

dx _ dm, _ d oS,
- G i
dt, dt, dt, 0x
9°s, 0°S.
- g w _ 0" 9

e xax oot
These are nothing but equations (3.3).
Having said this, take a functis(ty , X) such that one has:

E = ni-l(to’ta’)

at the points o¥/, wheret; = t?, and integrate equations (3.2) with the initiahdibions:

0

0s
tl:tl, td:le Xl 6 ]Tl:_(ra"a)

0¢;

From Cauchy’s theorem, the characteristics obtladefine the solutiois; of (3.1),
which reduces tsfor t; = t; these characteristics consist of the cutyes const. oV,.

OonV,, S thus satisfies:

o=
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The construction is thus achieved. One may show #ftat; choosing th&, the
determination of is equivalent to the construction of a field for agenintegral. It is a
consequence of a property of differential forr. (

4. Class of the field constructed As we said before, we assume thas of class
Ck andV, is of classC, , without being of clas€,1 . From the proposition that was
established at the end of notlie field may have class at most{C We seek to find the
class of the field constructed above. We use thetrésuh the theory of Cauchy
characteristics: For a first-order partial differah®quation of clas€, (q = 2) and initial
conditions of clas€y, the solution is of clags, . For the function§y of no. 3, one may
choose the functions to be of cla&s; if k= p.

Sa(ts X) = X —=X(tg)] 7, ().

Equation (3.1) is of clas€,> in its argumentds x, 0S, / dt;, 0S, / 0% . Upon
choosingsto be theC,-; function:

S(td ) XJ) = [X| - )g(tlo’ta)] ni-l(toita')i

one obtains a function of cla€g-> for S, at least ifo— 2= 2.

The field thus constructed has classsCunder the condition thatX p.

The method is applicable onlyaf> 4.

A different choice o5y ands, may, in certain cases, ameliorate this resulthdfS,
are functions of clas€, ands is aC,-1 function, withk = p — 1, p = 3, then the field
obtained is of clas§,-. If theS; areC,1 functions and is aC, function, withk = p =
2, then it has clags,; .

() LEPAGE, TH. -Champs stationnaires, champs géodésiques et formes intégtablest., no. 22,
pp. 263.



On the Carathéodory fields and their construction
by the method of characteristics

Note by LEON VAN HOVE ()

1. In a preceding noté)( we gave the construction of a De Donder-Weyl fiélak t
envelops an arbitrary extremal with the aid of the hmetof characteristics. That
construction was given for a particular extremal.

In the present note, we recall, following Lepage, hdw geodesic fields of
Carathéodory are introduced with the aid of the altergalifferential forms. We then
consider a change of variables (dependent and indepenaahthhen we show that with
the aid of the algorithm of differential forms one @mtablish the invariance of geodesic
fields and the conditions that their existence assuwid®ut long calculations. To
conclude, we show that a change of variables due to HE)eeduces the construction
of a Carathéodory field to the one that we alreadyiethrout for a De Donder-Weyl
field.

Recall that the integral:

ox .
(11) 1= L(t,.%, B,)dt-di,, pm:aT)‘, a=1, . i=1,..n

Lepage has associated the family of differentatis ¢):
which are defined by the congruences:

(1.3) Q=Ldt...dt, (moda, ..., ap),
(1.4) dQ =0 (moda, ..., a).

A field pists x) is calledstationary for a form Q of the family if Q becomes
integrable when one makps = pi«(ts, X). LetV, be a manifold = x (ts) of classC (|

() Presented by Th. DE DONDER.

() VAN HOVE, L. — Sur la construction des champs de De Donder-Weyl par la méthode des
caractéristiquesACAD. R. DE BELG., CL. DES SC., 7 August 1945, t. XXXl

() HOLDER, E., Die infinitesimalen Beriihrungstransformationen der Variationsrechnung
JAHRESBERICHT DER DEUTSCHE MATH. VER., bd. 49, 1939, pf2-178.

(3) One has setq, = me , @ =dx —p,dt,. The unwritten terms contain at least two factof w

and have arbitrary coefficients.

Cf., LEPAGE, Th.Sur les champs géodésiques du Calcul du Variati®didLL. DE L’ACAD. R. DE
BELG. CL. DES SC., XXIl, 1936, pp. 710-720, 1036-1046.

- Sur les champs géodésiques des intégrales multipids XXVII, 1941, pp. 27-46.

— Champs stationnaires, champs géodésiques et formes intégrhlales<{XVIIl, 1942, pp. 73-92, 247-
265.
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> 2) and lepi(ts, X) be a field — stationary or not — of class at l€&sthat envelop¥/,
(). We assume thaf(t, , X , pio) is of clasCy (k= 2). Let Q] denote what a forr® of
the family (1.2) becomes when one makes= pi«(tz, X). An immediate calculation
gives:

(1.5) dQ] = [L&

drz
_ ltzaj chtl...dty (moda,l, W, a3, ..., Gh-1, aﬁ)

a

at the points oY/, .
The parentheses contain the left-hand sides of thier-Eagrange equations.
Therefore, iV, is enveloped by a stationary field then it is extrenfal5) then becomes:

(1.6) diQ]=0 (moda, ap, @, ..., Gh-1, G)

for a field that is or is not stationary.

2. Geodesic field of Carathéodory.Suppose thdt # 0 for the contact elemeng
whose coordinates aré?,x’, p%), and agree to remain in a neighborhood of that

element. The associated system of any form (1.2)dbesists of form& dt, + pi, w (a
=1, ...,4); as a consequence, the family contains one and oalgiople form, which is
written:

1
(.

1
(e

(2.1) Q' = —[]Ld, +7,@)

u
U{(Laaﬂ_ﬂi-apﬂ)dtﬂ'*'@ad)l(} :

Lepage has confirmed that the Carathéodory fiatdsthe ones that make this form
integrable ).
To simplify the expression (2.1), with Carathégdee set:

(2.2) agy = L 557,8— T8a Pig
and make the hypothesis that for the elenegnt

(2.3) a=lag|20.
We may then pass from the variablgs, L to the variabled?,, F (canonical
variables of Carathéodory) by the transformation:

LAt

a

(2.4) TTa = Pigaga, F

() le., one hasdx / 0ty = pifts, X(th] onV,,.

() CARATHEODORY, C.,Uber die Variationsrechnung bei mehrfachen Integra®8TA SZEGED,
4 (1929), pp. 193-216.

LEPAGE, Th. — Cf., pp. 23X
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The formQ" becomes:
o =
(2.5) =
=gl ]

In order for the Carathéodory transformation to ifpeertible we shall make the
hypothesis that the JacobiBr= | 0P,/ 0pjz | must different from zero. This will permit
us to expres§ as a function of,, X, P, . In the determinant (2.3), |8tz denote the
algebraic minor oh,s divided bya. One obtains by differentiating the first relatim
(2.4):

gpp'j‘; =Aa(d1L +Pippy) L, Pigt PigPia—Pii Aa 75
However:
Pig Pla =Pia Aap 7=~ %Aaa (A1 + Pip i) (710 75— 7 7a).
Thus f):
= 1Add + PR T1L, = T (e 7= 710 730 |
(2.6) = Waa 16+ PPt L, = = (T o= 7 o) |

Now, one has the identities:

| g +PioBip| | L= Pia 7Ta| =L",
| dap + Pia Pp| |L Oap— 5o Ba | =L .

SinceL # 0, they entail the inequalities:
(2.7) 19 +PioPip|# 0,  |duptPiappl#0.
The conditiorD # 0 finally reduces to:

1
Lo p, ~ E(ﬂa Tip= Tip 7§a) | # 0.

The Carathéodory theory is therefore based ofotlmaving three hypotheses, which
we assume to be satisfiedeat

1
(C) L#0, az0, o0, = | (e 5= 785 730) | # 0.

() The first two determinants of (2.6) have the omigl, where the rows carry the indidesr and the
columns, the indices .
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If the functionspi(tg, X;) define a geodesic field then they t@ninto a simple integrable
form [Q]. One knows that there then exist functi®és X), (o = 1, ..., 1), which
satisfy:

(2.8) R1=ds @S ... ds,,
or, by identification {):

(2.9) ISes| L F [ =1,
(2.10) Sy = [Pid Sup -

These functions are solutions of a first-order pariifigbntial equation that we will not
have to utilize: indeed, we can reduce it to the equé&bioDe Donder-Weyl fields.

Once more, recall the geometric significance of thasformation (2.4): It makes an
n-dimensional elemeri(t,, X, Pig) at a point correspond to thedimensional element
e(ta, X, Pig) that is attached to the same point and defined by theiegsia

One callsk the elementransverseo e. E ande have no common direction, which is a

result of (2.7).

3. Change of dependent and independent variablesSince the construction of a
geodesic field is based on a change of variables, weailin this paragraph how a
point-wise transformatioi:

(M ta=7,(%.%), X =& (t,%),

is prolonged to a contact transformatitnthat acts on thg-dimensional elemerd(t,,
X, Pia) and an analogous transformatidga that relates to the-dimensional elements
E(ta, X, Pig).

We assume that the transformatibnwhich is of clas<Cq (q = 1), has a non-zero
Jacobian at the poir%(tg,)ljo). In a neighborhood d%;, it admits an invers& *, which

we write:
(T L=ntx),  X=&(x).

As above, we sety = dx —pip dt,, and analogousi, = dt, + P, d% . Likewise:
@ =dx-R,df, Q,=di+R,dx.
We may now establish the following proposition thddtes to the elements

If one has:

(7) Cf., for example, GOURSAT, B.econs sur le problén e de Pfdfaris, Hermann, 1922, Chap Il
One sets: Saﬁ—GSalatﬁ, S =0S,/0x%; .
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or, T,
+

Pz
ot, 0x !

#0

(3.1)

in a neighborhood of the elemeef(t’, X, B, )then one may prolong T into one and only
one contact transformation. Tfor which:

o[98 o NPT AR
(32) 2 _(GX- P axl ja)] ! W (ax Pia a)_(‘ ja)] :

(3.3) %—Em% 20, %_pm% £0,
0X, 0 X, 0x,
ara +6Ta 5 ¢O, a(E)ia) O
atﬂ an ! a(pjﬂ)
We set, to abbreviate:
0& or or, 01, _
Xj=— m_a Top= — “Pis
o0& 0& _ - o8& _ 0T
3.4 ia= —+—DP,, X, =—-Dp z,
(3-4) ot o, Pia ' ax Pa ox
- 0T, 0T - _0& 0& _
T =——a+—ap | X =242 F
b oty ox T, ox e
One has identically:
(3.5) dt,= T, dt, + e g
0X;
(3.6) @ = >zijc‘)j +(Xﬂ_pa1_;ﬂ) d};,
3.7 @= X, @ +(X ;= R Tp) I

Since (3.1) is in effect, we may make the elen&h X, pis) correspond to the
elemente(t,,%, |, )that is given byT) and the supplementary equations:

(Te) xiﬂ: f’mfap .
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One then makeg = 0 in (3.6); one then hag = 0. Substituting these values in
(3.7), we easily obtain, with the aid of (3.5):

(To) Xip= Pia Tap .

(3.6) and (3.7) thus reduce to equations (3.2). They obvioutdyl grat X, >_(J.k = O,
from which, the first two inequalities (3.3) result, antte (Te) may be also written:

_or, 0% _

pia -
a, o,

u pJﬂ !
B
the transformatioi, is bijective.

On the other hand(T,) is equivalent to ). We have already shown thalc)
implies (T.); one likewise shows thafT.) implies (Te). Since the transformation is

bijective, one will also have thafl},z | # 0, which is the third inequality in (3.3). The
fourth one is a consequence of the equations:

OPa
aply

X, [5,,=

By T

that one obtains by differentiatingef with respect tq;, .

Finally, one easily sees with the aid of (3.2) tharansforms a manifol&/, with
equationsg = X(to) and tangent elements neaiinto a manifoldV,, that admits equations
X = X(i,) of the same form, and that the elementg, , dx / dt;) and
(t,,x,0% /dt,)correspond undeffe . The transformatiorTe is therefore a contact

transformation in fact. It is the only contact sormation that prolong$ and relates
the elements, as (3.6) shows when one makes @ = 0.

We have an analogous proposition for the elentents will suffice for us to state:

If one has:
04 0k
ox. ot, '

J

(3.8) £0

in a neighborhood of the elemegf(t’, x°
one contact transformatione for which:

P°)then one may prolong T into one and only

' Via

— oT 0¢, or ¢ | =
3.9 Q =| -« Q.. Qu=|—2+P,—1|Q,.
(3.9) a {a% matj F ” {a% 'a%j £

One has, moreover, in a neighborhood et E
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LA PP TS 4

o, ot o, ot
(3.10)

I P (GO R

ox, ot o(Py,)

We finally remark that ifl is of classC, thenT. andTe are of clas€y-1 .

4. Transformed variational problem. Consider the integral (1.1) in a
neighborhood of the elemesj(t’, X°, i) and apply a change of variablE¢no. 3) to it,

where we assume only that it satisfies the cond{f®oh) in a neighborhood @f . As we
have seen, there then exists a well-defined contawtftnanationT, that prolongsd. The
problem (1.1) is then transformed into another one whusgrand becomes, by means
of the transformatioie:

or, 071, _
+
ot

4.1 L(T,X,n.)=L(ty X, Pia .
(4.1) (t,, X, R, ) = L(ta, X, Pia) ) aijp“”

SinceQ is a form of the family (1.2) attached ko it satisfies the congruences (1.3) and
(1.4). However, they are linear combinations of th@g in (3.2). The transforn® of Q
by T thus satisfies the congruences:

Q =Ldn ...d7, = Ldt---di, dQ =0 (modd...@,)

and, for that reason, belongs to the analogous fahdlyone may attach to. Thus, the
latter is the transform unddr of the family (1.2), and field that is stationary for L is
transformed into a field that is stationary ot

SinceV, is an extremal fot., the relation (1.6) is valid at all of its points antya
field that envelops it; the transformation gives:

d[Q] =0 (mod@@, B&,,... @, ,@,)

The transformed manifolﬁﬂ is therefore extremal fol .

We now assume that satisfies the condition€} on which the Carathéodory theory
(no. 2) is based in a neighborhoodepf, and that the transformatioh satisfies (3.1)
aroundey and (3.8) around the elemdfthat is transverse ® . We are then assured of
the existence of. andTe , and we may utilize the inequalities (3.3) and (3.9). Wppl

T to the formQ” (2.1), we obtain a simple forr®" that, from the preceding discussion,
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belongs to a family attached to. Since, from (4.1)L # 0 in the neighborhood & @
that form must be written:

(4.2) 0" = [Tt +7,@) =[] G o +7,0%),

where we have set:

,= L, A, =LOy—T,P-

However, one may also obtafd” by starting with (2.5); one then obtains, with #ie of
Te:

ra 65
ot, o ot,
F

(4.3)

'|'|||
M| -

Upon identifying (4.2) and (4.3), one find%: (

i

M| -

S0 = Rad

The first inequality givesa# 0. The second one shows thae ind E are transversal
relative to the problem then the transformed elemergésand E are also transversal
relative toL . One finally has:

0(R,) _ 0(R.) (R P(R,)
a(p,.)  9(R,) 9(R,) 9(R,)

Thus, from the calculations that were made in nibr&sults that the condition:

is likewise satisfied.L thus satisfies the conditioii€) and a field that is geodesic for L
is transformed into a field that is geodesiclfar

If Cqis of class ofT, Cy, that ofL, C;, that of a manifold/,, andC; , that of a field
Pt %) then the classes df, V, , and the transformed field will b€, , Ci, andC,

respectively, with:

@) &, denotes the transformed elemengqpf
() adenotes the determinant pfaﬁ |
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(4.4) k’=mink, g-1), I’=min(,q), r’=min(r,q-—1).

5. Construction of a geodesic field. In order to satisfy equation (2.8), which
characterizes geodesic fields, one is giwenl of the function§, — say,S, (a’'= 2, ...,
L) — arbitrarily and one seeks to determine the remainingtitn S, . S, is the solution
of a first-order partial differential equation. One nsayve it directly by the methods of
characteristics *f); however, the question is simplified considerably byhange of
variables that is due to Holder (cf., refereefp. 1), which consists of settirig= S,

U=,

Equation (2.8) then becomes:

(5.1) [Q7 =dSdi- df .

It may be solved upon remarking that in the left-hadé ghere must appear a linear form
multiplied by dt,---dt,. This linear form must be integrable when one consitgers.,

t, to be constant parameters. The problem is thus égoivéep the construction of a

field for a simple integraf'}).

One may also comment upon the similarity between (&nt) the equation of De
Donder-Weyl fields ¥) and how it reduces to that construction; this isrtrethod that
we shall pursue.

Let there be an extremd], with equations; = xi(t,). Suppose that condition€)(are
satisfied in a neighborhood of an elementt’, X, ) that is tangent t&/,, and let
Elta, X(tg), Pia(tg)] be elements transversal to the elementisat are tangent t¥,, ; in
particular,Ep be the element that is transversaéjo To construct a geodesic field that
envelopsV, , we chooseu — 1 functionsS,- (tz, X), (@’ = 2, ..., 1) that satisfy the
inequalities:

(5.2) ISp| 20
(5.3) 1Svs +Sej Pl |20

at the pointP,(t2, x°), and satisfy equations (2.10) ¥, which may be written:

(5.4) Srj=Pidt) (Brp

on it; later on, we shall point out a means of consitigsuch functions. The point-wise
transformationl with the equations:

(5.5) t=t, L =S{.%, X =x

(*% BOERNER, H.,Uber die Extremalen und geodétischen Felder in der Variationsrechnung der
mehrfachen IntegraldMATH. ANN., bd. 112, 1936, pp. 187-220.

(Y Cf., for example, referencd ©n pp. 1, eq. (2.7).

(*) LEPAGE, Th.,Champs stationnaires, champs géodésigeedormes intégrablesBULL. DE
L’ACAD. R.DE BELG., CL. DES SC., XXVIIl, 1942, pp. 263.
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has a non-zero Jacobian; it verifies (3.1#aénd (3.8) aEy . The results of no. 4 thus
apply, andT replaces. with a problemL for which the manifoldV, , which is the

transform ofV, , is extremal.
If we applyTe to the functions «(tg) then we obtain functionB,, (t;), and one finds,

upon transforming (5.4), the equations:

(5.6) P, (%,)=0.

Substitute this in the relatior, = B, 3, ; at the point o/, it becomes:
7,(3 +P, M) =0, V=2 .4,

and from (2.7),77, = 0. This being the case, the latter conditiGp (vhen realized for
the elemeng,, reduces to:

# 0.

‘Lpapjﬂ

That inequality is precisely the hypothesis that serveleapoint of departure in the De
Donder-Weyl theory (cf., pp. 1, referencd, (no. 2). Thus, envelop7ﬂ with a De

Donder-Weyl field, while taking the arbitrary functioss, ..., §ﬂ to be identically null
(this is permissible, sincg,, = 0 on\Z,). The field thus obtained satisfigg)(

[Q,] =dS di-df .

and since the forniQ,] is simple, it must be equal {®"], the only simple form in the

family (no. 2). The field obtained is thus likewise gesicle If we revert to the old
variables then it remains geodesic, but generally ceéad®sa De Donder-Weyl field.

6. Discussion of the class of the field constructedSuppose that the functidnis
of classCy and the extremaV, is of classC; . We know (cf., pp. 1,%, no. 1) thata
geodesic field that envelopg Yas class at most.G.

Let C, be the class of the transformation (5.5). As we samo. 4, the classes af
andV, areCc andCi, respectively, wittk’= min(k, g — 1),1"= min(, ).

Recall the discussion that concludes the preceditey (b, pp. 1, referencé)(no. 4)
in the particular case of the De Donder-Weyl field carcded above. The class of the
equation that determine§ isk’.

(** Cf., reference’} on page 1, nos. 2 and 3.
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To evaluate the class of the initial conditioH$, Wwe remark thafz, is of classCs on

V., withs”= mink’- 1,1"- 1); the initial conditions are also of that clasBne field
constructed thus has cla€s-; if s” = 2. Now, return to the old coordinates. The
geodesic field will have the cla€s with:

r=min(@-1,s"-1) =min{ — 2,q-3)
if we assume thdt=1.
In summation, the class of the field thus construdsggends on — i.e., the choice of

functionsS, (ts, X;) that were in question in no. 5. To make this choice,raay use the
following method, which was pointed out by Boerng).(Lett}, x* =x , (1) denote

the coordinates of the points\gf and solve the equations:
ta = t; =Ry (t)(% = X)

with respect to the> . This is possible, since the Jacobian of the systeheisecond
determinant of (2.7). K= then theP;(tp) are of clas€i-1 , and we obtain functions:

t; =t (tz, X),

which are of the same class. Ifthﬁ(t},), (a’= 2, ..., ) are functions of clas§-; then
the functions of the same class:

(6.1) S (ts, %) = 8, [ (5, X)]

satisfy (5.4) oV, , as one easily confirms.
On the other hand — always ¥p— one has:

ot otk ot?
O+ P £ =0, L4+ =0,
(%5 + Pia pip) a, Y a, o Pip = OB
ot
|Sa’,8’| = Sa’pat_ﬂ ) ‘Sa’ﬂ’ + %’i ﬁi‘
Y4

ot, ot;
=18y, —t— R |-
””(atﬂ, at, Mo

() Cf., the functiors(t,, ;) in reference (1) on pp. 1, no. 4.
(*® ...and which must satisfy (5.2), (5.3), and (5.4).
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= _ at},j (at; ot j _
From the former equalities, the matriges~ | and| —~+—= p., | have the maximum
ot, ot, ox, *

rank . From the latter, one may choose the functispsn such a way that the
conditions (5.2) and (5.3) are satisfied.

The functions (6.1) thus chosen have cldss Thereforeg=1—-1andr =1 - 4.
The conditiors” > 2 become$> 5. The result is the following:

If k=1 = 5then the construction provides a geodesic field of clags C

The direct construction, without the change of vargbleas the advantage of
providing a field of clas€; if k> | > 4. However, it necessitates long calculations (cf.,
pp. 9, reference").



Calculus of variations, differential forms, and gedesics fields

By Paul DEDECKER (Brussels)

1. Introduction. — The theory of geodesic fields, which was introduced by
Weierstrass in order to study the conditions that agbagreninimum or maximum of a
certain integral, introduces the manifold of contact {zoloy the “canonical” method that
is attributed to Hamilton and Jacobi, as well as H. &oi#hand E. Cartan. The extension
of the results of Weierstrass to the case of maltiptegrals is accomplished by two
approaches. The first one, which was discovered by Hifberthe case of a double
integral of an arbitrary function, was extended togéeeral case gif-fold integral ofg =
n — parbitrary functions by de Donder, Hadamard, Volterra, ldn@ilVeyl. The second
one, which is due to the work of Caratheodory, has thvardgage that it is possible to
interpret the “independent variables” and “arbitrary fioms” on the same basis. The
use of the exterior differential forms of E. Cartaalgled Lepage to show that, in reality,
there exists a continuous family of possible generatimatithat includes both of the
preceding cases as particular examples. The Lepagednetsodeveloped by Boerner,
Debever, Holder, Van Hove, Wagner, and the author.

Here, one begins to construct a “universal generalizabf the Weierstrass theory
whose context is that of a fiber bundiethat has the manifol’ of p-dimensional

contact elements to a manifol@ as its base and a numerical space as its fiber, which
reduces to a point whgn= 1 orp = n -1, moreover. The manifol is given a globally
defined differential formw of degreep that characterizes the celebrated expression for
the integral invariant of E. Cartanw = p; dd — H dt all of the obvious Lepage
generalizations lead back to sections of the manifbldanonically. There exists a
distinguished closed subsét] E, which is analogous to the set of “irregular” contact
elements in the classical problem £ 1). For the points oE, one locally defines
(instantaneous) canonical coordinates, a Hamiltonianctifon, and the exterior
differential equations of Kahler-Cartan, which generalmee Hamilton-Jacobi equations,
except that their indeterminate is a differential favfndegreep —1. There exists an
indicatrix manifold | that is submerged in the manif@ftbf simple vectors o, and a

figuratrix manifoldF that is submerged in the maniftld of arbitraryp-covectors irvi,.
If one takes the intersectiorig,andFo, of | andF with the fibers, Ao OV.PandA, OU P,

over a pointg[1V, then the duality betwee andF, is further complicated since one
uses an arbitrarg, includingp = 1 andp = n —1. The manifold~, is derived from a
linear manifoldL that is isomorphic to the fibers Bf It is, moreover, developable, i.e.,
it is swept out by the tangent hyperplanes that are fatedg each generatrix. A
generatrixL (or the corresponding hyperplane) corresponds to each pofi 1o, and a
hyperplane that is tangent tg at p corresponds to each poitc]L. There exists

canonical mapl: E - F that sendZ onto the edge of regressionBfwhich is a local
iIsomorphism outside d+.
The present exposé intersects the memoir of Wagnerifi38gveral points. An

essential difference in its intrinsic viewpoint igthhe parametric Lagrangian functign
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is defined uniquely o{”, and not on the manifold® of arbitrary covectors. There are
equally many points of intersection with the exposéedlirat this colloquium.

2. Definition of the variational problem. — In order to begin our considerations, we
need an infinitely differentiable manifold,. On any open seA in V, we define the
algebra of infinitely differentiable singular cubic chain#\ (%).

Recall that aifferentiable singular cube (in the sequel, “differentiable” will always
mean “infinitely differentiable® (°)) u if dimensionp in A is the restriction td® (I
denotes the closed interval [0, 1] of the number Ripef a differentiable map of a
neighborhood/(1?) ORPinto A: u: V(IP) — A. The support ofi is the imageau(V(IP)) O
A. A cube will be calledegular if the map that defines it is of ramkeverywhere. It
will be calleddegenerateif the map ¢, ..., t%*) — u(t}, ..., t") O A does not depend upon
t'. A differentiable singular cubic chain is a formal finite linear combination of
singular cubes with real coefficients. It is stadhave dimensiop or to be a (regular,
degeneratep-chain if all of the cubes with non-null coeffictisnare of dimensiom
(regular, degenerate). To a cubene associates tha B — 1)-cubes:

Au @ . P Ut T 0 L T
Bu: (t}, ...t ) > uth, ...t Lt L P,

which are called th&acesof u, and the chain:
du=) (-1 (Au- Bu,
i=1

which is called the boundary af For 71, we further leu; denote theg—1)-cube:
uz (8 LD b ou(r B Y,

and we call it theslice of heightr of the cubais. The chairu; —uy —ou will be notated by
Au (thelateral part ofu), and finally, y;u denotes theeduced p-cube:

yu: (8 P B ou(eth B Y.

The operators, A, A, Bi, y5, andu — u; are then extended to chains by linearity, and
one hag(oc) = 0 for all chaing. A differentiable homotopy of a differentiablg-chain

! For the notion of a manifold, see C. Ehresmann [15] @nchevalley [10], ch. Il (the latter
considers the analytic case, but the modifications #natneeded in order to consider the infinitely
differentiable case are immediate). For the notioa dffferential algebra, see C. Chevalley [10], ch. V,
?nd H. Cartan [7]. For the notion of a cubic chain,JsBe Serre [25], ch. II.

3 Moreover, the word “differentiable” will be often be ittad when there is no possible cause for
confusion.
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c is a differentiable chairt such thatAc =¢, = ¢. This homotopy is calledestricted

if AT is degenerate.

For anyp-form wof V, and anyp-vectorX, we notate th&alue of won X, by <
Xy> and letd,, denote the functio®(X,) = <aw Xy>. If x¢ is ak-vector that is tangent
to V,, atg then one refers to theterior product of wby x, which is notated byvL xy,
when one describes the—)-form on the tangent spaceVp atq that is defined by:

< wl X, &+ = < X" &>,

for all (p—K)-vectorsé,« that are tangent td, atq. Therefore, agk)-form wL xc onV,
corresponds to evekyvector fieldX, onV, (*).
To every (differentiable) differentigform wonV, there corresponds a functidn,

on the manifol&/ ?of simple p-vectors onV,; likewise, everyp-cubeu of V, may be
canonically prolonged to p-cubedinV,". When we compose the mawith ®, we
obtain a function® — R whose integral, in the elementary sense:

[ (@0t - dp

yields (by linearity) the definition of the integd’aa)of the p-chain wover thep-chainc,

which is a bilinear function af andw This definition gives is Stokes’s formula:

.[acw:.[cdw

for any p+1)-chainc and p-form « as well. IfV, and W, are two differentiable
manifolds anda is a differentiable mapr. V, - W, then to everyp-chainc in V, there
corresponds an imagechain ac in W, and to everp-form wonW, there corresponds
an inverse imagp-form aa. One has the properties:

a(dc) =d(ac) d(wa) = dwya

J o=

The pair ¥,, a) is anembedded manifoldin W, and if wa = 0 then one says that
(Vn, @) is anintegral manifold of the formw Eachp-cubeu in V, transforms each-
form wonV, into ag-form «u onV(IP), and if s = 0 then one says thatis anintegral
cubefor a these notions extend to chains immediately.

* For the notion of an interior product, see N. BourbakiAlgebre, Livre Il, ch. Ill, pp. 105, and H.
Cartan [7]. (Among these authors, the value pfflarm won ap-vectorx, is notated by x,, «> instead of
< Xy>. As a result, the interior product that we notateh@nright is notated on the left by them.) See
also E. Cartan [6], pp. 83-84.



Dedecker. — Calculus of variations, differential forieusd geodesic fields. 325

Definition. — Let wbe a differentiabl@-form on the manifold/,. One uses the term
variational problem to describe the study of differentialjpechainsc that satisfy the
following condition: for any restricted homotopyf c the derivative of the function:

(0 =] w

is zero forr = 0. The chains that satisfy this condition areechtheextremal chainsof
the problem. On the other hand, if one starts withidmal / in A(V,) then the

variational problem {V,, a U} consists of the study op-chains that satisfy the
condition when and only when each slicef the homotopy annihilates the idéali.e.,
it is an integral manifold for each form in the idégl These chains are said to be

extremal modulo/. A p-manifold (A, @) that is embedded M, is called arextremal
manifold when for every-chainc of W, thep-chainac in V, is extremal. The problem
{V,, a} is calledfree and the problemY,, a, U} is calledbound.

The bound problem may be formulated in the following fowhich does not seem to
be more general on a paracompact differentiable manibait,is, in fact, when one
replaces differentiability with analyticity. Lét; (i 1) be an open covering & and for

eachU; let there be given an idef O A(Ui), in such a manner that &y =U; nU; the
idealsl/ andl4 generate the same idégj U A(Uj). Let there be given prform @ in
eachU; such that one has — « O U; in Uj;. If we notate the families (i U 1) andU;

@i 01 by (o) and {4), and ifc is ap-chain that makess zero in eachJ; then one gives
an obvious meaning to the symtfycc(ku). This results in the notion of the variational

problem {V,, (&), U)}. In the sheaf language of Leray-H. Cartan We are dealing with
the sheaf-algebrg of germs of differentiable forms owW,. TheU; define a subsheaf
ideal A in G, and thew define a section of the quotient shgafl. We then can define
the notions of the variational probleiw{ « A} and extremals modulo a sheaf idedl
in G.

3. Problems in fiber bundles.— In this case, a bound problem that one studeg m
be reduced to a free problem, in the following sen®©ne constructs a fiber bundde
over a bas&/, and ap-form 8 on E such that the extremals of the free probld &

(globally) project ontdv,, in extremals of the bound problerd{ «y A}. The preceding

construction is classically known by the name efrttethod of Lagrange multipliers
On a fiber bundl& with baseV, and projectionnrrwe use the subalgeb{E) < L(E)
that consists odemi-basicdifferential forms, i.e., ones that are locallypesssed in terms

® For the notion of sheaf (which was first introduced byaly), see H. Cartan [8], [9].
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of just the coordinate differentials of the basehalgh the coefficients may depend on
the local fiber coordinates (as well as the those efdise). This algebra is not closed
under the operatat. We also distinguish thgeneric p-cubesu of E, i.e., the ones for
which thep-cube 7 is regular, and finally, thgeneric embedded>-manifolds W, a),
I.e., the ones for which the magr has rankp everywhere. By the terrsgmi-restricted
homotopy of ap-chainc of E, we mean a homotopywhose projectioryrc onto the base
is restricted.

Definition. — Let w be a semi-basic form of degrpeon a fiber bundleE. The
variational problem and the notions of extremal chaind extremal manifolds, as
defined above, remain unscathed if one replaces if thdcted homotopies are replaced
with semi-restricted homotopies.

4. Fundamental properties.— Suppose that we have a homotoy a p-chainc
and ap-form won a manifoldv,. Stokes’s theorem gives:

(1) f(t) :jacu:jccu+jy6dw+ w

Ayc
and, if the homotopy is restricted:

2) f(t) :jacuz.[caﬁ dw.

The above formulas also hold in a fiber bundle foremisbasic form and a semi-
restricted homotopy.

Consider the positive unit vector fiell inR""that is parallel to the first axis. A
vector ¢, ..., ™Y at the origin is transported by p+{)-cubel onto a vectoiJ(t', ...,
t**1) that is tangent t&/,, which permits us to associate a culbe= X (U)in the fiber

bundleV'of vectors that are tangent ¥, with the cub& . In a similar fashion, one
associates slices &f, Uy =X(4), with sliced],; these notions extend by linearity to

corresponding notions on chains. On the other handach [§+1)-form ¢ 0 A(V,) we
associate the-form i OH (V') whose value foX 0OV, is the interior productyL X. If
we agree to symbolically set:

p+l

(3) Jew @ =] L%

I.e., to write the left-hand side as if it wereezdslly an integral over a chain ¥f then
one obtains:

Proposition 1.

The derivative of the function:
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F) =] v

is equal to:
dF _d

o T ahe? Tl X

This results from combining formulas (2) and (3).
Theorem 1.

In order for a p-chain c to be an extremal for the prob{&m «} it is necessary and
sufficient that ¢ nullifiegda) L X for all vector fieldsX on \,. The same condition
defines submanifol@\,, a) as extremal. On the other hand, if ¥ fibered and semi-
basic then this condition also determines extremals in the senbera$gaces.

Proposition 2.

For any homotopy, of ¢ one has, at t ©:

df

pm :%Lw :J'C(da))LXo +jacw L Xo.
t=0

Corollary.
If c is an extremal chain of the problgv,, ¢} then one has:

df
— =| w L X
dt =0 .[ac 0

conversely, if each sligg is extremal then one has:

Jla)—Jl w=| w.
Y % Je

The set of differential formsd¢) L X that correspond to each vector fieéddon V,
generates an ided(d«) O A(V,) that we call thdirst associated systenof daw Let
(Wp+1, a) be an embedded submanifold of dimenget inV,, and suppose that we are
given a foliation whose leavé, are of dimensiop. If each of the submanifold$\. 1,

a) annuls the ideaA(da) then the submanifold/p+1, @) is an integral manifold odw
One may define the" associated systend(dc) to be the ideal that is generated by the
forms da) L Xy that correspond to each field kivectorsXy on V,, and one has an
analogous property for a foliation with leawds. 1« of dimensiorp+1-k. One ha#\(daw)

= Ai(de). The former system corresponds to the classitalacteristic systems that one
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encounters in a completely integrable Pfaffian systemjatter one defines the Cartan-
Kahler system of exterior equations.
The idealA(da) does not have a finite set of generators, in gendsalideal Ay(da)
[0 A(V) is generated in each open Bedf V.. If U is the support of the local coordinates
x, ..., X, then one can expreskv in terms of these variables, ahd(da) will be
generated by the forms:
0(dw)

a(dx)
Proposition 3.

The extremal manifolds of a free problén),, «} are the integral manifolds of the
first associated system ofud

5. Geodesic section. Excess functior. Let wbe a semi-basip-form on a fiber
bundleE with baseV,, and projectiorrz A sections over an opetJ in the base (i.e., a
differentiable maps: U - E that gives the identity when composed withis called
geodesicelative to thewif the formas onU is closedd(as) = (da)s = 0. Ap-chainc
in E is calledembedded(or incorporated) in s if the image of/x is in U andsrc = c.
Sometimes one sageodesic fieldinstead of “geodesic section.”

Suppose we are given a geodesic field ancleta semi-restricted homotopy opa
chainc that is incorporated ia It is possible to express the difference:

A = -
¢ J.E! w .[cw
in the form of an integral that depends only ugerhaximal slicg,. Indeed, one has:

Iwzj' cuzj‘ a)szj‘fa)s—J:okus:J:a)s: W
c s7c mc e mc e gL

from which:
A, = IQW_J‘Q,@“’-

Let\7np (EP, resp.) denote the fiber bundle of simplgectors that are tangent Y6

(E, resp.), and IdE denote the fiber bundle with bage that is the inverse image
ofV Punder the projectiom E - V,. There exists a canonical magEdfontoE. Eachp-
cubeV(I”) - E canonically prolongs to p-cubeV(IP) - EP that defines g-cube o;:

V(IP) - EP when composed with the canonical nigp- E. Similarly, thep-cubesru
defines a cubex, . Let F denote the fiber bundle that is the inverse imafy¢he

diagonalA O V,xV, under the projection of the prodlitk E x R onto V,,xV,, which is

regarded as a fibration. The pai; § then corresponds to a cubg): (t%) — (ay(t9,
os(t9), 19 in F, and, by linearity, it is ap-chain ofE then the paird, § corresponds to
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a p-chains(c) of F. Conversely, to any semi-basic fornon E there corresponds the
function¢,, onF whose value abt(,, X', t%) O F is:

@a(Xp,X’p y ta) = a)L Xp - a)L X'p .

Proposition 4.

With the preceding notations, one has:

A, :ng_Icw: o, Codt! 0o Oelt”

The function¢,, is theexcess functiorthat is associated with the semi-basic farm

6. Classical problems— We begin with a differentiable manifold, to which we
associate the fiber bundl¢ of orientedp-dimensional contact elements ¥, and the

fiber bundle/?(V.”", resp.) of simple (non-null, resmp)vectors that are tangent 6.
One notates the projections\fandV onto the base manifold byr and7z, and the
canonical mapV,” - V,"by 7. ForX 0OV, the p-elementX, =/(X,)is said to be
subordinateto X .

To eachp-chainc of V, there canonically correspondgp&hainc”ofV and - if it is
regular — a generip-chain ¢ =n(c") ofVP. Similarly, to each regular oriented
submanifoldW, of V, there corresponds an oriented generic submanifpjdwhich is

defined by its oriented contaptelement. [fW, is not oriented then the corresponding
manifoIdW,: , along with7z defines a two-sheeted coveringWlf. Every submanifold of

this type inV.” — whether it is oriented or not — will be callediltiple. (It is necessarily
generic.)
Let ¢ be a local coordinate systea;n~--,x;, that is defined in an open dd} of V,,

and Ieﬁ; be the (open) set gkvectorsX ,Whose origin is inJ and whose composition
with ¢, namely,X**"®, is greater than zero; furthermoreUét= 77(U,,) be the (open) set
of subordinate contagtelements. EaclX, Du;contains one and only one system of
vectorséy, ..., & whoseg-coordinate matrix is:

(C/(crm) = (Jf ’Eirﬂ )i]zasgp,pﬂsisn (5;;7) =pxp Identlty



330 Selected Papers on Geodesic Fields

The(x; ,E‘@)constitute a local coordinate systernin U; . Itis clear that if® is the
set of local coordinate systems\dnthen the faminJ; (¢ 0 @) coverd/?P.
In the algebr#d (U;) : Ietcdé denote than —p Pfaffian forms:

W=, - £, 0

and letw)™ (1 < k < min(p, n-p)) denote thep-forms that are obtained by
replacingdx;®, ...,dx with «jj, ....a)in the expressionay = dx A ... ~ dX.
Thew,generate an ideall, inH(U,)and thew: " generate an idealJ,.
inU,,=U, nU,; this generates the idedlg, andJs,, respectively.

Proposition 5.

In order for any submanifold A of dimension ¥ fito be multiple it is necessary and
sufficient that it be generic and that its intersection withLa;We an integral manifold
for 14 or Jy.

In particular, this proposition contains the followingsult, which is used in the
ultimate proofs.

Proposition 6.

Any p-dimensional submanifold iA that is generic and integral forgJis also
integral for the ideal 4 (which is strictly larger than 4).

We propose to study the bound variational problem of ype {V°, Q4, Jg, in
which W, is a semi-basip-form onU, such thatQ, — Q, O Jgy inU,,. This problem

includes all of the classical problems: geodesics in an&mian space, Hamilton’s
principle in mechanics, minimal surfaces, etc.; thes#blems are usually presented as
free problems iv,,.

Remark. — The data thal, defines is equivalent to that of a subsh&adf the sheaf
H of germs of semi-basic forms gfi, andQ, defines a sectiof of the quotient sheaf
HIF.

To every semi-basip-form din an open sel; OV (i.e., to every function that

associates @-form &X) on the tangent space ¥, on 7£X) to everyX Du;) there
corresponds the function:
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L(@=LU, - R (U,=nU,))
L(X)=6(nX)LX .

The kernel of the map - £(6) is composed op-forms inJs. As a result, to every
family Q = Q4 (¢ O ®) such thaQ, — Q, O Jy4y there corresponds a functidi{Q) that
is well-defined oW. This function is positive homogeneous of degree ome, i.
L(aX) =aL(X)for every real numbe< 0. Conversely, to every positive homogeneous
function £ of degree one 0h°we may associate the functitgl), = Ly and the form
Q(L)y =Qy, which is defined ity , by:

L¢(/7)?)=L[%j, Qp = Ly(X)dx, O--- df.

The familyQ(£) = Q(L£)y (¢ U @) then corresponds tb, and one haQ(L(Q)) =
L(Q(L)) = L. Inconclusion, the set of famili€sand the set of functions are modules
over the ring of differentiable functions ¥fi, and the map® - L£(Q), £L - Q(L), are
inverse isomorphisms between the modules. For any probéfhm Qu, Jg} the

corresponding functionrC(Q) is called theglobal Lagrangian function, whereas the
function L4 that is defined in is called tHecal Lagrangian function. One notes that
L(Q) is uniquely defined for the simpfevectors onV,, but not for arbitraryp-vectors

).

7. The Lepage congruences and the fiber spacEs¢. — Considerp-formsQ on
any open set)” that satisfy the conditions:

(1) Q,=Q4 (modly),
which may be written:

Q,=Lydx O+ % ady
or:
(@) Q, =L+ Lya).

® In most work, the functiorf is assumed to be defined on the manifvﬂa of arbitraryp-vectors For
example, see R. Debever [11], A. Kawaguchi [21], V. Wa§p&. Our method eliminates, priori, the
mystery of the “indeterminate” partial derivatives o flanction£, which relate to the coordinates in the

fiber ofV.".



332 Selected Papers on Geodesic Fields

Z indicates a summation over the bebf symbolsm :Li;l'jji_;k forwhichar < ... << i1

m

< ... <ik(=k<s min(p, n —p)); theLmys are arbitrary functions (hh; :
If we represent the coordinates of a pdipt 1R™by Lns then formula (2) defines a
formQ,onU, x R™ to any formQo,s onU  that satisfies (1) there corresponds a section

Bo: U, - U, x R™ such thatQos = Q, 5. If ¢ and ¢ belong to® then the local

coordinate changfgﬁl,inu;ﬂ (from ¢ coordinates tay coordinates) may be canonically

prolonged to a coordinate chandg, such tha®, =Q,f, . With the canonical

projection &,:U,x R™ - U, one had,, &, =&, f,,. We identify a poinP; OU, x
R™ with a pointP, OU, x R™ if these points belong t, x R™ and the coordinate &,
are transformed into the coordinatesPgfby f,,. One verifies that these identifications
are consistent and therefore define a fiber burifliéhat has a bas", fiberR™,
projectiondg (which locally reduces @), and the affine group @™ for its structure
group (). The formsf_2¢induce a unique for®, which is globally defined o, of
degreep, and semi-basic relative 1@ = 7704 .

Proposition 7.

Suppose that ks a differentiable manifoldg is a differentiable map of F int,

and© is a p-form that is semi-basic relative td Ir, and that they satisfy the following
conditions:

1) At each point of Fhe rank ofa is equal to pn—p) = dimVv.".
2) For all ¢ OF one ha®d = Qge(mod| 4q) in a*(U},).

From these conditions there exists a unique @dp — E such that:
@P=a and 0O=Qf

LetJ, be the ideal that is generated Jyyin the aIgebrd\(U;). Consider the set of
semi-basicp-forms§_2¢ onu;l, that satisfy thé.epage congruences:

Q,=Qy dQ, =0 (modJ,),
which may be written:

" For the construction of fiber bundles from their lgoi@ces, see C. Ehresmann [15], pp. 6 (associated
fiber bundles) and N.E. Steenrod [25], pp. 14 (existence theorem)
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(3) Q _L¢%+65' ZL

in which Z indicates a summation that is restricted to the suMset M of symbolsm

=m0 M for which 2< k < min(p, n=p). If Amg (MO M) are the coordinates of point
Ny OR™ then formula (3) defines @formQ, ofU, x R™ that is semi-basic with respect
to 770k (@, denotes the canonical mzllp;j x R™ U;). Any local coordinate change

fsy may be canonically prolonged to a coordinate chdﬁge U;w x R™such that:

Q,=Q,fpy and f,a, =a,f,,.

By identifications that are analogous to the precedings one constructs a fiber
bundle¢ that has basdé’, fiberR™, projectiorty, (which locally reduces t@,; ) , and the

affine group oR™ for its structure group. The forrfl induce a unique for that is

globally defined ore, of degreep, and semi-basic relative @ = 70d,: € - V.
Proposition 8.

Let§ be a differentiable manifold, let be differentiable map @ intoV.”, and let®
be a p-form orF that satisfy the following conditions:

1) At each point off the rank ofa is p(n —p).
2) For all ¢ O @ one has: 0=Qy do=0 (modl,,)ina*(U,).

From these conditions there exists a unique #dp —» & such that:
@B=a and Q=Qf
Remark. — Forp=1orp = n-1, the formsﬁ¢ andf)¢ may be written as:

§_2¢: Ly, O---Odx + Iad,,
and

6L _
Q,=Lpap+—Ldd,,
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respectively. In these two cases the Métis empty, and the manifold is identified

withV.”. Moreover, forp = 1, f)¢ is nothing but the fornp dg — Hdt, which is the

relat

ive integral invariant of E. Cartan.

The manifold® is mapped bijectively and canonically onto the submanifoH that
is locally defined by the equations:

_6L¢.

a

i¢ _E

in the sequel¢ will be identified with this submanifold.

Theorem II.

1)

2)

3)

Every integral manifold of the free probldi, Q} is an integral manifold of 4} but
it may not be generic with respect & unless we have the (necessary) condition
that it be situated ir€.

Every extremaW'D of the free problerfE, Q} that is generic with respect @ may
be projected onto a “multiplicity” inV."that is an extremal of the bound problem
{VP,Q4, g}

Every submanifold on [0 € that has the property that the projection\&[, onto
V.’is an extremal of the bound proble(nvnp,§_2¢, Jg} is an extremal of the free
problem{E, Q} .

Denote the set of pairs @) by N. We calculatdQin ¢ and form theNxN matrix Ay
of the coefficients af&, Ow}, in local coordinates:

The points where this matrix is not regular will be edkxtraordinary points. This
notion is independent of the local coordinates, andg¢h®f extraordinary points is a
closed subset af. A submanifold of® —Z will be called arordinary manifold.

Theorem IlI.

1)

Every ordinary extremal manifold of the free prohlé ¢, Q}is an integral
manifold of $¢a,. If it is, moreover, generic, with respect 1 then it is
projected ontoV.” along an extremal multiplicity of the bound problém®, Q,

35
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2) Every submanifoIcWp of & with the property that its projection ontg’is an
extremal multiplicity of the bound problgv,”, Qg4, J4} is an extremal manifold
of the free problefre, Q} .

Let K be the set of sequence$ € (11, ..., p) in which 1<r, < n, ther, are all
distinct, and each sequence is always assumed to beidisbm a permutation of the

sequence 1, 2, ..p. LetK O K be the subset of strictly increasing sequences (, <

. <r1p). To each sequence) (J K one associates the increasing sequed(ck that is
obtained by permuting its elements and a numb)eéhét equals +1 or —1 depending upon

whether the permutation is even or odd, respectivelye damotes the coordinates of a
point inR* by:
Frry = Po((r) +K).

Instead of expressirfg¢ by using the set of semi-basic forah", ¢, as basis, as we did
in (3), we may use the basiz”, dX. The forrrf)¢ is then written:

Q,=-F,dx; O--- 0§ +§k: By .. ) 0§ OO dx

ag?
the setK andM’ n L have the same number of elements and that the Jacobian of

the functionB with respect td.,, Amg is regular at all ordinary points. One then
deduces the following:

in which theF; and theB4 are functions of;, Amg (MO MY). It may happen that

Theorem IV.

Let B be an ordinary point o€ and let p =75(Py) be its projection onto vV There
exists a neighborhoody (¢ U ®) of P, an open neighborhootﬂ¢ 0 ¢ —Zof P, an
open Qs OR*, a functionH, on Uy x Qys, and a differentiable isomorphism:

FgUpx Qg —-U,,
that satisfy the following conditions:
1) If 84 is the canonical map $Xx Qs — Uy then one has that:
Gp= 15 [Fy.

2) One has:
QF, =3 R, . ,dX 0--0d¥ - HdxO--- 0 dR.
k
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3) The function B satisﬂes first order partial differential equations that exprémss
fact that thep-vector X of R"whose components a¥é*® = 1:

9°H
a(rl,... r )

p

X (7o) =
is simple.

The mapF, defines a systeth, of local coordinateg;, Py, which are called the

canonical coordinatesthat are associated with the local coordinate syggemV,, and
at an ordinary point Py the functions Py :L]¢ - R, and the function

Hy EIFv,'l:L]¢ - R are called thenomentaand thelocal Hamiltonian function, resp., that

are associated with, .

When we apply theorem | we obtain the equations ofettteemals in canonical
coordinates. In order to facilitate writing them, weraduce the functions:

Ty = €000 Prgry (r) OK

inR*. The equations in question can then be written in ¢men f(the canonical
equationy:

oH
@;ﬁ'”rp):dx;l DDd)ép—aP £ d% g---0 dgzo

(r-1p)

2 dy0--0 d}

Qip = Ry, 0,y Obg; O Db = (p-1)—
¢

=0 (O)OK).

oH
0X

Consider the ideal, in the algebra\(Uy) that is generated by tE™"’, ©; it is,
moreover, a sub-ideal of the idegkhat is generated by tf®,,. One may show that
any p-dimensional manifoIUT¢that is integral folms and generic with respect to the map
7% is also integral fos, . This comes from the fact that the ideglis incomplete in the
following sense: the set\(L]¢) of differential forms that vanish on any genepe
dimensional integral manifold far, constitutes an idedl, that is strictly greater thary

and has the property thag U ay.

This property generalizes the well-known fact of atzdsnechanics that the “energy
equation” is a consequence of the other canonical equafldrep equations:

@a¢: O,

therefore merit the name oéfiergy equations.
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8. Indicatrix, figuratrix, transversality. — Let Lo be a global Lagrangian function
for the problem ¥, Q4, Js}. One calls the submanifold Gf” that is defined by the
equation, (X) = 1 theindicatrix J of the problem. One consid&8 to be the

manifold of simple non-zerp-vectors onV,, which is embedded in the manifdkf of

p
n

arbitraryp-vectors orV,. The latter has fibd{( ]and projectionz DP - V.

Assume that the functiofig is non-zero. There then exists a canonical/maff -
J that gives the identity or. Let Py be a point of¢ at which the forn@ defines a
form Q(F{)) on the tangent space YQ atpo = 78(Po), i.e., a linear form (or covectod)Py)
on the fiberA(po) = 7po) ODP . Similarly, one defines a differentiable mampf & into
the manifoldD” of p-covectors oV, which is a fiber bundle ovas#, whose fibers\ (po)
are isomorphic to the dual of and whose projectiort iD? - V,,. The manifoldJ is a

p
n

regular submanifold (R[ ]of dimensiorp(n — p).

Let po be a point ofi that has the projectior{po) = po. The hyperplanes in the fiber
A(po) overpo that are tangent tigpo) = A(po) N J atpo and do not pass through the origin
consitute a linear family.(po) that is isomorphic tR®™. Each of these hyperplanes
defines a linear fornH, on A(py) with the property that the statemenK;;D a’is
equivalent to the statementXs Q4 [Ugs> = 1.” The set of all of these hyperplanes that
is defined whem, varies oved is a submanifol§ O DP that is called théiguratrix of
the problem /", Qg4, Js }. The L(po) constitute isomorphism classes, but they are not
necessarily disjoint. One says thkais pseudo-fiberedby thepseudo-fibersL(po).

Letp,be a point of§ that projects ont®, =77 (p,), and letL(po) be a pseudo-fiber
that passes through(L(po) O A(po), po O §). The hyperplane in the fibé&(p,) n § that
is tangent tad=(po) =A'(p,) N § at each poim’ O L(po) defines a linear form oA'(po),

i.e., a pointp'of A(pg) that is eitherpy or the origin. In the first cage,is called
ordinary ; in the second case, it is calletraordinary .

Remark. — Here, one sees an apparent essential differenaedethe casgs= 1
andp = n -1 and the case of an arbitrgoy In the first case the indicatrix and the
figuratrix are n—1-dimensional hypersurfaces in ardimensional vector space. The
duality between these hypersurfaces may be expressed hptaigp® correspondence.
In the general case the indicattixs ap(n-p)-dimensional hypersurface in a Grassmann

n
conel at every point o¥/,, and the figuratri is a hypersurface of dimensi%nj— lin
p

n
a vector space of dimensiEBj. The duality between and F is expressed by a

correspondence between, on the one hand, poihtaraf hyperplanes that are tangent to
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n
F, and, on the other hand, hyperplanes that are tangdn(imothe{ pj—dimensional

vector space that is spanned Ibyand points ofr. On the whole, there are as many
hyperplanes tangent # as there are points éfand as many points &f as there are

n
hyperplanes tangent o If F wer{ j—l-dimensional andl were p(n—p)-dimensional
p

then this would result in the existence of submanifotthlE (which turn out to be linear)
along which the tangent hyperplane is fixed. In otherdsF is a “developable ruling,”

and the tangent hyperplane is indeterminate at certamspof each generatrix, which
form an “edge of regression” ¢n

Each covectqgr’' on V, at o, i.e., each poinp of D" in the fiber7' (p}) = po, may be
identified with ap-formQ(p") on the tangent space Y at po, and the map’ - Q(p) is a
semi-basic differentigd-form onD” .

Theorem V.

The mapA: ¢ - D”maps & onto the figuratrix § and takes an ordinary
(extraordinary) point of¢ onto an ordinary (extraordinary) point &. The fibers of¢
are taken to the pseudo-fibers®f A is a differentiable isomorphism in a neighborhood
of each ordinary point, and one h&= QA. In a fiber A [ D? that passes through a
point p 0§ the hyperplane that is tangent 6 =F n A'at is indeterminate ifp’is

extraordinary; in the other case it is identified with the paqirifi | (%) with the property
that p' O L(p).

For any pointPl € the elementi(P) [l § is said to bdransversalto P. A(P) also

defines a homogeneous(p)-vector(P) (i.e., ann-p-vector that is given up to a factor)
that is tangent t&, at 75(P). This f—p)-vector is also said to leansversalto P. By
abuse of language, one also says Mpat and A(P) or ((P) aretransversal, but the
correspondenck, — A(P) or t(P) is not unambiguous.

One verifies that the hypothesgls(X ) # 0 (X, =/7(X,)) implies the existence of one

and only one elemeify[] (Zg(xp)such thatA(Py) or 1(Po) is simple and the latter is thus

identified with an §—p)-dimensional contact elemeXit-, = /(Xy) that is tangent teo, at
7Xs). That elementX,-, = LX) is called theCaratheodory transversal contact
elementatX,. A(Po) is nothing but the intersection of the pseudefi{77(X ))) with the

Grassmann cone of simppevectors ofA'(7£Xp)) in A'(74Xy)). From this, one deduces
that the ifPo is ordinary then the mag, - UXp) is locally two-to-one and differentiable.

SI=1(m0") =5 n AT ).
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9. Geodesic fields and complete figures. The problem E, Q} is a problem on a
fibered manifold since the forfdis semi-basic with respect to the projectisn¢ — V.
It is useful to examine the particular case propositiolerdwhich each slicg of the
homotop)c is an integral chain ofy ¢, . First, one has the following property, in which
the word “multiplicity” is taken to mearpdimensional submanifold &,” which makes
the projection ontg Pis a multiplicity in the sense of sec. 6.

Proposition 9.

Let s be a geodesic field, relative(to on the manifold®, which is considered to be

fibered over the base,V Any multiplicity (or any generic integral chain of &,) that is
incorporated into the field s is extremal.

In order to define the excess function there is goodore#o consider the inverse
imageF of the diagonal o¥,xV, in the fibered manifold x & x R" with baseV,xV, (see
sec. 5). However¢ is provided with a canonical mgp€ - V Pthat makes the fiber

space the inverse image and has the projedién- V°. One let€™denote the set of
all ed¢"such thato[B(e) =7 /(6 , whereg’=p(V.""). It is clear thatg is identified
with ap-chain of¢™'for any generig-chainc that is integral fod, @, Converselysrzc

is not, in general, an integral chain ®fé,, and os7ec does not correspond to a chain

of ™, but to a chain af". We therefore consider the inverse imagef the diagonal of
VaxVy in €Px¢”xRPand identify the chaig, with a chain of F.  The

functionc, =&;|_, , which is the restriction f; to F', is called theWeierstrass excess

function for the problem ¥/, Qp, J4}.
Proposition 10.

Let s be a geodesic field of E, relativétpand le€ be a semi-restricted homotopy
of a p-chain c of Ehat satisfies the following conditions:

1) cis generic and integral forgla, .
2) cisincorporated into the field s

Under these conditions one has:

Jo-[0=] cqdtO.Odr.
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Each geodesic field over an opetJ [ V, defines not only a poird(x) [J & at each
point x(IU, but also a contagt-elementX(x) :st(x) and a homogeneous p)-vector
Y(X) = us(x), which both originate at. The pair of fields irJ, (X(x), Y(x)), is called the
complete figurethat is associated with the geodesic feeld

In the case = 1 the fieldX(X) is a vector field otJ, which defines a foliatiofi; with
one-dimensional leaves. The transversal fidl) is a field of contactn-1)-elements
that is completely integrable, by virtue of the condit{oif)s= 0. It therefore defines a
foliation of U, §1, that hasr{—1)-dimensional leaves that are transversal to tieeke of
31 0).

Wheneverp is arbitrary the fieldX(x) is a field of contacp-elements that is not, in
general, completely integrable, and, similarly, thédfi¢x) is not a field of contactn-
p)-elements; however, this is the case when the frim simple. The conditiofQ)s=
0 then implies tha¥(x) is completely integrable, and it therefore definesliation of U,
Sp, by (h— p)-dimensional leaves. One then says that the geodiedit s is a
Caratheodory field. When the fieldX(x) is completely integrable (witk(x) arbitrary) it
defines a foliation otJ, ¥, by extremalp-dimensional leaves (i.e., one for which the
corresponding multiplicities are extremal) that aesms$versal to the fieltl(x). One then
says that the field is aMayer field. If the geodesic fielé is both Caratheodory and
Mayer then it defines two foliation&, andgy, into transversal leaves of dimensipn

and n— p, respectively. The complete figure that correspondshéon is called the
Caratheodory complete figure.

Proposition 11.

When p =1, any geodesic field is both Caratheodory and Mayer.
When p = -1, any geodesic field is Caratheodory.

Upon conferring a result of R. Debever one obtainsfalewing property, which
roughly signifies that fop > 1 any foliation oV, into extremal leaves locally defines a
Mayer field.

Theorem VI.

Assume that p 1. LetT be a foliation of an open U V, by extremal leaves y\f.e.,
the corresponding multiplicitiewg are extremal) and let &) - V."be the section over U

that associated the p-dimensional contact element that is tangent ahg teaf that
passes through each point of MJ. Let U U’ be an open set in which the foliati@n

induces a fibratio¥ into fibers that are isomorphic to a p-dimensional ball. There then

° In the problem that occur in optics the leaved obnstitute a sheaf of trajectories of light rays, ard th
leaves off represent the successive positions of the correspondivefront.
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exists a Mayer field:4J’ - ¢ such that@, [$=s, i.e., such that the associated foliation
is nothing but the one that is induced®y

10. The Hamilton-Jacobi equation.— Let s be a geodesic field over an open
U OV, let xo be a point ofU such thatPy = s(xo) is ordinary, Iet]¢ be a canonical

neighborhood ofq such thatU, = zﬁ(U¢) 0 U is isomorphic to a ball and let, P(r),

and H be the canonical coordinates and the corresponding ltdaran function,
respectively. There then exists a different@lL{-formZ in Uy such thadX =Qs, and,

if we denote the coefficients df* O---dx®in dX by%then one sees tha&
XtP

satisfies the partial differential equation:

0z . 0
(4) axl...p'*'H(X ,szo 1, ....1p) OK,

which we call theHamilton-Jacobi equation — generalized to a canonical openﬂs;t

(One recovers the classical equation wpenl.) Conversely, |eX be a solution of that
equation such thatX( d=/0x™ O U xR*are the coordinates of a pointLb¢ffor each

point of =. The mapa: Uy — U x R*that is defined by(x) = (X, 02/0x™) defines a
geodesic field=F4 LoonUy.

Definition. — One calls a differentiapt1)-form = on U, that depends differentiably
on a pointa = (am) of an open se® OR" (in other words, it is a semi-basio—L)-form
on Uy x Q) a complete integral of the Hamilton-Jacobi equation (4) if it satisfiehe
following conditions:

1) The pointsxX, 2/0x™) belong toUs x Qs .
2) For everya [ Q the formZ(a) is a solution to (4).
2

3) At every point ofJsx Q thekx k matrix is non-singular.

ox"oa

m

Let X be such a complete integral. The map:
& (X, am) > (X ,a—zm(%,an))
ox
is a local isomorphism, and therefore defines leoalkdinatesx, am) on a neighborhood

Ug of every pointPy U Fy AU 4% Q) DU¢ . If one letsd, denote the exterior derivative
— but only with respect to the variables — of a form ody x Q then one has:
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do= =) B, Oda,,,
in which thef, are semi-basiqt1)-forms. For forms or; [ (Uo) one has:
dx=Q+> B, Oda, with Q= QF, 8.
Theorem VIl (generalized Jacobi theorem).

With the preceding notations, every extremal manifolg (WU, satisfies the
equations @, = 0. When p =1 it satisfies the equationsg = 0, as well.

Proposition 12.

Any extremal p-chain indsbatisfies the equation:
> B, 0da,=0.
Therefore, if p =1 for any extremal chain then one has:

(5) jQ = jdz where d=(F, 197 (dc).

Definition. — A foliation ® of & — Z by p-dimensional manifolds is callegeodesiaf
every leaf of® is a generic extremal of the probler&,{}. A &-primitive of is a
(p—1)-formZ* such that for anp-chainc that is situated in a leaf ¢f one has:

~ O
(6) J‘CQ :.[3(32 )
Theorem VIII.

Let® be a geodesic foliation @& —Z and letU be an open set @& —Z in which®
defines a foliation that is isomorphic to the ftla of a p-dimensional ball by balls
inR" P xR¥. There then exists &-primitive forQin U.

Remark. — A complete integral is semi-basic, but one du#smpose the analogous
condition on®&-primitives; the notions coincide in the case where 1. Furthermore,

any complete integral of &-primitive plays a universal role, in the sensd (b and (6)
are true for any extremal.
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