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Introduction

There can be no doubt that the kinetic theory ofg@secomplete to the extent that
its methods admit no extension to the case of solitkbodts most important theorem —
namely, that that all gases that exchange heat Wwe&hatmosphere through walls will
possess the same number of molecules in a unit volanmiiad same pressure — can be
proved only as long as the processes in the walls theessate drawn into the sphere of
consideration. However, the results of the thedryases also make the success of such
efforts quite probable from the outset. On the onelhtre theory of gases has found
such a multitude of confirmations that it can probablydgarded as having been proved.
On the other hand, laws flow from it — such as the &wentropy and the law of
temperature equilibrium — that are conformed for the entmaterial world without
exception, so that we gain from that knowledge a certainfidence that thermal
processes can be mechanically-based for solid bodiesgth Moreover, one will not
appeal to this or that theory, since only the most gémeechanical principles would be
appropriate, corresponding to the great generality ofates of experiment. One can



Hertz — Mechanical foundations of thermodynamics 2

then see no idle musings in the workGbbs (), since one must confer an unconditional
degree of truth to it.

It is hardly possible to find a fundamental formwa & basic idea in these questions
that was not already obtained in the workGabbs. Thus, the current presentation will
also not bring anything new with it, but only ease thesitam to a theory that is known
already ).

In fact, it is by no means easy to arrive at arad@aception of that study. Above all,
the concept of the total system leads to great diffeslin understanding. A given
system possesses a well-defined state. However, weotd&now it, but only how
probable it is that the bodies before us are found in paskible state. These state
probabilities shall now determine the entropy and temperadf the system. When
regarded that way, th@ibbs definition will seem downright absurd. How can a qugntit
that pertains to a body depend, not upon the statet thas,i but on the one that it might
possibly have, and the probability that it might haa gtate? A small deviation might
then lead back to a definition that is possible from dhéset. An ensemble will be
fabricated mathematically, and a function for its distributitrat is defined up to an
arbitrary constant will be chosen, but whose constwmhosen in such a way that the
mean energy of the fabricated ensemble will be equiddeg@ne that is given in reality.
One will then arrive at definitions of the temperaturd antropy of real bodies by means
of the constants that determine that funct®n (These functions will then depend upon
the actual state of the body at their basis. Oneataobject to anything in this process to
begin with, since this way of defining the concept seemtéical, and one will
understand it only afté?lanck mixes simplicity and relevance into ).(

It is probably much simpler for one to consider onbtest that are actually chosen
from systems. One will then arrive at the totalifyalh systems temporally, and from the
phases that they go through, teenporal ensemblelt was the contribution dEinstein
(°) to start with that physically-valuable concept, whiehldter abandoned, howevéy. (
The concept of a temporal ensemble also appeaibibs (*), but somewhat in the
background in comparison to the independent systems.

Here, we shall attempt to return the temporal ensetoltlee foreground. However,
the individual phases that belong to such an ensemhlergturally possess the same
energy. Thus, we shall consider only ensembles ofeghagh equal energy — the so-
called microcanonical ensembleswhile Gibbs preferred the canonical one$he goal
of this paper is then to start with the temporal ensemble and microcanonieainstead
of the independent system ensemble and the canonicalv@belater on, that will lead us

() J. W. Gibbs, Elementary principles of statistical mechanibiew York, 1902; German version by
Zermelo: Elementare Grundlagen der statistischen Mechanlkeipzig, 1905. In order to cite page
numbers, the ones in the German edition will be givgraientheses here.

() The present paper can perhaps serve to provide anl iovgaview of statistical mechanics.
Whoever is reading with that intent would do well to skip 88 7&nd

() M. Planck, Boltzmann-Festschrifpp. 117.

() Loc. cit, pp. 121.

() A. Einstein, Ann. d. Phys9 (1902), 417:11 (1903), pp. 17014 (1904), 359. In the sequel, these
shall always be cited as I, II, 111

(®) When he considered canonical ensembles (cf., betdw)l, pp. 181, “an assumption that has only a
formal meaning.”

() J. W. Gibbs, pp. 169 (174); pp. 180 (185).
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to glimpse a perfectly legitimate concept that reltdebe independent system ensembles
that can actually not be avoided. That is bettetdeifts proper place in the discussion.

On the contrary, it seems difficult, if not impdssi to arrive at a physical meaning
for the canonical ensemble. In its favor, it shdaddmentioned that it is easy to deal with
than the microcanonical one, and since the formanatgly differs from the latter only
slightly, the former can be replaced with the lattgr It is also clear why the canonical
ensemble seems simpler. That lies upon the samedsadis fact that a space element is
a simpler invariant than a surface differential. Hosvewt will now be shown that the
laws of microcanonical ensembles can still be derivedhe same way as those of
canonical ones. The tool for that is multidimensiay@dmetry, of which extensive use
will be made.

Although the transition from the approximate to the nags treatment demands no
advanced mathematical complications, on the other hamdll indeed be required by
the demands of the theory. A canonical ensemblenchaed yield a microcanonical one
in the limit, and it can thus be replaced with one.e @il then find the same distribution
of phases over the energy surface in the microcanoais@mble that prevailed in the
canonical one. By contrast, the law of the energdigra (which is then perpendicular
to the energy surfaces) will drop out under the passagjgeetomit. However, that law
determines the “modulus” of the canonical ensemble, which deems to me to
correspond to no physical meanify (

Now, these considerations also influence the standpmhtwe assume in regard to
the theory of independent ensembles. In connectioh wiat, Gibbs found an
explanation for the increase in entropy. Now, I, irt,faold that the objections that have
been raised against that to daleare unjustified; however, it seems conceivable to me
that in order to verify that th&ibbs expression is actually entropy, the modulus must
amount to temperature, although | can glimpse no physicalepgd in that. Therefore, |
maintain that the theory of microcanonical temporaéemsdes, which likewise goes back
to Gibbs, has been completed) (

In any event, it seems desirable to give a presentttanfirst of all, begins with a
presentation of the temporal ensemble and, above ajplogsn the microcanonical
ensemble exclusively; that was the first viewpoint for phesent paper. Secondly, the
means shall be given here to single out the theori@®kZmann, Gibbs, andEinstein
collectively in the investigations that follow, and sbow that they have basically the
same content. That verification will be carriedt @$ soon as one introduces some
assumptions about the behavior of certain functioas dhe characteristic of the bodies,
which are assumptions that do not refer to the it¢ydical structure, but only to the
behavior of its maximum. It can be easily shown thase requirements will be fulfilled
by ideal gases. However, on the basis of such asgmsptve will now infer a rigorous
proof of the validity of the law of heat equilibriunm addition, that, as th&ibbs book
shows, cannot be carried out without such assumptiomsnally, some simpler

() H. A. Lorentz, Gesammelte Abhandlungeh pp. 286gt seq,. Atti del 4 Congr. dei Mat. Roma 1,
(1908), pp. 152.

(® Aslong as one s, in fact, dealing with a completéesysct., theEinstein papers.

() Cf., pp.7,rem.8.

() still, it does not seem to me that the aforementiayap will be filled in.
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derivations of some laws that are known already wWw#él given by appealing to
multidimensional geometry.

Part |
Thermal processes
(The law of heat equilibrium)
§ 1. Mechanical foundationg)

We assume that many bodies can be considered in regdairtthermal behavior, as
well as purely mechanical systems, and restrict our iedion to them. The kinetic
theory of gases already shows that one and the shs®vable state can correspond to
many molecular states that deviate by unobservablerafifes. We would like to
assume that they will be traversed in sequence. Any\aide state will then belong to
a sequence of true states — viz., a state sequence. b$bevable state and the state
sequence can be changed by external influences — e.g., & stipgelat. However, the
mechanical laws that the individual states of the sempuéllow will still be the same.
In that case, we say that the mechanism remains the simwan first be converted in the
actual sense of mechanical operations — e.g., changinglitne, when one is dealing
with a gas ) — and we then say that the system now possessdserma¢chanism, or
also, when the word “mechanism” applies to not onlyghaperties of the system, but
also to the system itself, another mechanism will eeist. There are then three kinds of
changes to consider:

1. Changes in the true mechanical state, which amgebkahat collectively define a
state sequence.

2. Changes of the state sequence.

3. Changes of the mechanism.

The true mechanical state of the systems will bero@ted by its generalized
coordinatesy,, tp, ..., gy, and the generalized velocitigg, q,, ..., ¢,. The energyis a

function of them. We refer to the differential quotee

1 h=—
(1) p 2,

() J. W. Gibbs, § 1. — This paragraph brings nothing new with it, sinaecludes only a review of the
longest-known laws. However, it might be of use as ansépo for what follows.

() However, as long as one includes the piston and its ftenergy in the system, its displacement
will not imply any change in the mechanism. In ttee, no new coupling of the parts will come about as
a result, but only a new configuration of the parts #eues. Here, as in all cases, the concept of
equilibrium of the mechanism is a relative one (cfl1}
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as the impulse, and from now on, we would like to detegntine state of the system by
the 2 state variables, Oz, ..., On, P, P2, ..., Pn - One refers to the totality of the
guantitiesqs, .... pn as aphase Energy is also given by the phase; igds a function of
thequ, ....pn.

We can distinguish three kinds of changes in regatidetdehavior of the energy

1. gandp change, while remains constant.
2. echanges, while remains the same function@fndp.
3. ¢becomes another function of thendp.

Now, these three cases correspond to the threavénatjust listed:

1. Left to itself the system will continually assume other valgesdp; i.e., it will
run through other phases continually. Nevertheless) thee law of energy, the quantity
£ will be conserved Each of these phases will be characterized by the quantities g and p
The phases of equal energy that are traversed in tiyathva#l be called phase manifold
or aphase surface

2. One can devise a new phase manifold, another ersrdyhus, a new observable
state by means daxternalinfluences— namely, the supply of heat — without basing it
upon the mechanical coupling).( Any phase manifold or any observable state is
determined by ethus remains constant under these processeg (oup) is still the
same function.

3. One can bring about a new mechanism by means of astghhnical operations
(®).  Any mechanism is characterized by the functén p) ().

Since all changes can be reduced to ones of the firgt(}j we must first have laws
for them. Now, it is known that one ha (

0 o€
2) % - 9F
ot op,

() Itis clear that different energies will also capend to different observable states. Conversely, as
long as the mechanism is the same, a change in thevablgestate will be possible only in conjunction
with a change in energy. The fact that the phase suidaaso given by the energy is the content of the
hypothesis that was introduced in the second paragraph.

(® At this point, one treats the second part. It mesbice more emphasized that the differences that
are being considered are only of the relative kind.loAg as the externally-influenced systems are drawn
into the sphere of consideration, there will be afiginges of the first kind.

() The fact that the mechanical laws, and thereftre niechanism, are known when one is given the
function € (g, p) follows from equations (2) and (3).

(" & 10. The changes of the second kind must generally be reucrds of the third kind to begin
with. (8 9).

() E.g.J.W. Gibbs, § 1.
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0 €
3) Po-_0¢
ot 0q,
from which, it will follow that:
0 d 0 d
(@) y &, 2
oq, dt odp, dt

These equations show that the changes that a sysf@arssare independent of the past
history.

We will now address the first two kinds of changes, ammblingly consider &ixed
mechanism However, we will also deal with thermal changesart One, and thus
changes of the second kiny.( It is therefore not preferable to restrict thesideration
to the phases that possess one and the same energgtHaut one must draw one’s
attention to all possible phases of differing energa®l their changes. These
considerations define the content statistical mechanics However, in order to
conveniently illustrate the laws of statistical mewhs, we appeal to a tool and find it in
thegeometry of n-dimensional spaces.

We imagine a 2 = mdimensional “phase space.” We represent each stdteeo
system by that point whose = 2n coordinates and impulses have the vatyesyp, ...,
On, P1, P2; ---, Pn, O, @s we would also like to writg, X2, ..., X, . A path curve then goes
through each point of phase space. The path curve tleatthoough a point is then
independent of the past history. That is, if changabkefirst and second kind take the
system back to the same phase then the sequence @firfigliphases will also be the
same.

We imagine armdimensional regiorg in phase space. We choose a tinand
assign each pointy, X, ..., X, of g with the pointx, X,, ..., X, which represents a

system at time that possesses the phasex,, ..., X, at time zero. Thus, the poinks,

!

X,, ..., X, that arise in that way will fill up am-dimensional domainy. We ask how

the two domains relate to each other.
The answer is given blyiouville’s theorem From equation (4), which can also be
written as:

(5) > oo,

10X,

it follows from a hydrodynamical argument that both dem are equal, so:

(6) jg dxldg...d);h:jg, dx dx,... d% .

() In order to bring this about, a change of the third kind teigterformed, if only temporarily.
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§ 2. The microcanonical temporal ensemblé)(

We restrict our consideration to systems whose codedinaannot increase beyond
all bounds. From a theorem that was provedPbincaré (°) and Zermelo (%), after a
finite time, such a system (most probably) must come eerse to a previously-attained
phase. It will then always assume the same phasesjndeed each of the ones that
come under consideration, with a completely-definedueecy. Such an ensemble of
phases that can run through a mechanism cyclically, wabla well-defined frequency,
is called atemporal ensemblehat belongs to a mechanism. It will be characteriay
giving the frequency of its phases. Many temporal ensentdesbelong to one
mechanism.

One might wish to consider other ensembles. One thagines a set of mutually-
independent systems that are combined by some well-definedppejrall of which have
the same mechanism, and follow its ensuing destiny. aNeefer to such sets astual
ensembles Now, it is clear, with no further discussion, ttleay temporal ensemble can
be assigned to a virtual one. We need only to imagiset of systems, and as many of
each phase as would correspond to the frequency of riiotal ensemble®). These
associated virtual ensembles possess a very remarkalgertygroas is immediately
apparent. The number of systems that belong to a gikase does not change in time.
If a virtual ensemble possesses that property thenauwddwike to say that it is found in
statistical equilibrium and we can then say thdihe virtual ensemble that corresponds
to a temporal ensemble is in statistical equilibrium.

One would like to make the virtual ensemble the swarpoint of the kinetic
considerations®]. Since most formulas refer to the case of stegisequilibrium, one
requires a theorem whose effect is to say that emsitrary €), virtual ensemble will go
to a statistical one. Attempts to prove that theof@nmave led to many contradictions
(®), which seem unjustified to me. By contrast, if omarts with the concept of a
temporal ensemble then that theorem will be unnecesddrg provable theorem of the
recurrence of phases and the determinacy of their fregqaseaccomplishes the same
thing for the theory that is constructed from the conadptemporal ensemble as the
theorem of statistical equilibrium should accomplistthie theory of virtual ensembles.
That will imply a substantial simplification when@places the temporal ensemble at the
center of attention, as in tlnstein process.

() A. Einstein, I, § 2; Il, § 2. Cf., alsd. W. Gibbs, chap. 10, pp. 169 (174), pp. 180 (185);
Boltzmann, Gastheorig2, pp. 98.

() H. Poincaré Acta mathematica,3 (1890), 1-270.

() E. Zermelo, Wied. Ann.57 (1896).

() If an observable state belongs to one and only onpdethensemble (cf., below) then one will
obtain the virtual ensemble very simply in the follogviway: One takes a large number of bodies of equal
observables states. From the laws of probabilityh g@tase will then be attained as often as would
correspond to its frequency in the temporal ensemble.

() J. W. Gibbs, § 1.

() A virtual ensemble that is not in statistical eduilim does not correspond to any temporal
ensemble.

() J. W. Gibbs, chap. 12H. A. Lorentz, Gesammelte Abhandlungesp. 290.

() E. Zermelo, Jahresbericht der deutsch. Mathematiker-Vereinighig(1906), 238; P. and T.
Ehrenfest, Wiener BerichtEl5 (1906).
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That is still not the decisive factor. It is nowvadus at first what sort of relationship a
virtual ensemble can have to the individual bodies, It is of no concern to us, so we
assume that it is the image of its temporal ensembles fact that the observable state
depends upon the sequence of phases that were traversadeistandable with no
further explanation. However, the fact that it d@ determined by the frequency of
phases that are not in the system considered, but cappesded in some way, seems
absurd at first. Thus, it would ease our understanding ajshirwve were to begin with
the temporal ensemble. Later on, we will see thatvirtual ensemble is surely quite
indispensible, and that working with it possesses an golwyaical sense.

That is again connected with the fact that all phaesroensemble possess the same
energy. If we denote the value of energysbyhen all points on the path will satisfy the
equation:

(7) £(Q1, %, ..., On, PL P2, -2 Pn) = &,

i.e., it is found on ar2l-dimensional surface inn2dimensional space. That surface is
briefly called the surface = £, or even more briefly, the —surface From the great
complexity of the system, it is, with no further dissios, plausible to assume that the
curve almost completely describes that path in a plelinterlacing of the entire surface
patch, and exhibits a behavior that is similar to ttiahe Peanocurve ). A subset of
the surfaces = £ will then be filled by the temporal ensemble. Nowe #urfaces of
mathematical analysis are not very tractable as spamad the expression for the
differential of volume is far simpler than that thie surface differential. Therefore, an
ensemble that is distributed over a space will be mucpleirthan one that is distributed
over a surface.Gibbs preferred such canonical spatial ensemble in his prememtat
However, no physical sense can be ascribed to thetraslbeen said that they are only
an analytical gimmick?. In fact, the canonical ensembles differ only gligfrom the
ones that are distributed over surfaces, and since tieegasier to deal with, for the
reasons that were given, one can appeal to them im rakerive these laws. We will
see that we will not require such a method, and thaareeeapable of deriving laws that
are true for surface ensembles from geometric coradidas directly.

It would be convenient to introduce some simplified hypsgbe Our temporal
ensemble (we must assume) fills up a subset of tharface. WittEinstein (%), we now
make the assumption that it covers the entire sugface. That is a hypothesis that we
will actually first require in the second part of our igetions, but which we might
introduce here already in order to work with specific cacsions. The system will then
run continually through all phases of the surface €. Therefore, the temporal
ensemble will be determined completelydy Furthermoreg is given naturally by the
observable state, and conversely, when all externahanézal coordinates are fixed, the
observable state will be determined by The observable state, energy, and phase
surface then correspond to each other.

() ThePeanocurve goes through each point of the surface exactlyorieethat is considered here
comes arbitrarily close to each point.

() H.A. Lorentz, Ges. Abh.pp. 286 and 287, Atti del 4. Congr. dei Mat. Ral{a908), pp. 152.

() A. Einstein, II, § 1.
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In order to have a complete knowledge of the ensemelanust know the frequency
that corresponds to each point of the surfaces. We then next define the concept of
frequencyor probability precisely. Letdo be an element of the surfage= £ that
surrounds the point under scrutiny. We consider the rsysteer a very large time
interval T. All time intervals inside of during which the system assumes a phase that is
found indo might collectively yield the value Therefore:

T
8 o= —
(8) w =

should give the probability for a phase to exist in thdase element in questior)(
Another definition that is consistent with that rea@ensider the system &t different

points in time, so it will be found ido atn of them, and we will further have:

n
8 w o= —.
(8) -

Finally, one can consid& systems that all have the same observable $)até pne
finds z of them in a phase that is insidedafthen one will also have:

z
8" w o= —=.
(8") 5

Figure 1.

It is easy to ascertain. We consider systems in all possible phases aribjeind
do, (Fig. 1) be two elements of the surface ¢ that go to each other — i.e., after a
certain time, one might find those and only thoseesgstindo, that were initially indo; .
Our system will run througtlo; as often as it does throudhy; i.e., one will have:

() A. Einstein, II, pp. 172.
() wis a function ofy andp that does not depend upon only the mechanism, but alkée abservable
state of the surface= ¢



Hertz — Mechanical foundations of thermodynamics 10

9) wy oy = ws, [Mo,.

We now imagine the surface= £ + & that neighbors the -surface, where¥ is a
small quantity. Letlo; be a surface element be a surface elemeatof + J¢ in the
vicinity of do;, and suppose thatg goes todo, during the time interval in whicto,
goes todo, . The skew cylindedo, do, then goes todg dd,, and therefore, if we

understandlv; (dw, resp.) to mean the perpendicular distance betweenvthsurfaces
at the location oflo; (do, , resp.) then, frorhiouville’s theorem (6):

da do, = dv; dw,
or

(10) dq(%) = do, (%j :

In combination with (6), that equation will yield the pooton:

(dvj_ .(dvj
W — [ =W, | — .
de ), de ),

(11) W=Cﬂ,
de

One then has, in general:

in whichC is a constant that depends upon the mechanisra and
The probability for the phase of the system tobglto a regiowy is then:

(12) W, =C ng do%.

If we apply that formula to the entiga-surface then it will follow that{:

(13) 1=CO udoﬂ,
= de
or, when written more briefly:
dv
13 1=C0| do—.
(13) L“ de
If one, withEinstein (%), finally sets:
* dv
14 w(E) = do—
( ) ( ) .Lzs“ de

then, from (12) and (13), one will have:

() Integration over 8-1-dimensional manifolds shall be suggested by an integralwefule integration
over Ah-dimensional ones shall be suggested by two integrals.
() A. Einstein, Ill, pp. 365. Cf., also |, pp. 176; II, pp. 422.
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(15) W= lﬂ,
wde

and the probability that a phase is foung imill amount to {):

1, dv
16 W,=—| —do.
(16) A wjgdg

We will use yet another expression far If one, withGibbs (%), sets the total
volume of all phases whose energy is less thamual toV (£), so:

(17) [ Jdx---dx, =V (),
for which, one can also write:
(17) [* [y, =V (&),
then, from (14):

dv
18 ="
(18) pps

An ensemble of states of equal energy whose disivibudver all phases of that
energy is given by the formulas (15) and (14) [(15), (170, @®8), resp.], is called a
microcanonicalensemble. As we already mentioned, we will thenceom ourselves
with only the microcanonical ensemblé (

If uis an arbitrary function of phase then a given systall take on other values af
during its continual travels about phase space. Onestawtzat the mean valug of u
would be, which is, at the same time, a mean valdkemicrocanonical ensemble, and
from (16), is given by:

(19 u=—|,u do.

A different form of the equation is often more comest. One imagines the surface
£= € + &, which is infinitely close to the -surface. Therefore:

doﬂds:dod/
de

() A. Einstein, loc. cit.

() J. W. Gibbs, formula 265.

() In the derivation of (15), we cannot restrict ourseteethe surface, but must appeal to space. To
that extent, we are dealing with a spatial ensemble. eMenyonce that derivation has been made, we will
consistently remain on the surface. In that proaghgh corresponds to the method that was developed by
Gibbs [pp. 116, (117)], no assumptions are made about the depenaleticy system density upon the
energy, and that dependency will not be regarded as chastictef the ensemble. One can therefore not
speak of a “canonical ensemble” in any proper sengeeqgdhirase.

() J. W. Gibbs, formula 374.



Hertz — Mechanical foundations of thermodynamics 12

is the small cylinder that lies between two surfaced,vehose basis do. One then also
has:

(20) a= L

C()|]§E’D ~Lu<£<g“+ds.[u d)& d)& !
or more briefly:

(20)

wl]ﬁgm.[gﬂig.[um)i d)&

in which the integration is taken between two surfgtes

8 3. Mean value of a scalar product.

Kinetic energy is of especial importance for thermwayics, and we, witlsibbs,
will denote it byg, . We seek to determine its mean value. Since ithsnaogeneous
guadratic function op, and since the potential energy is independept ohe will have:

(21) p——anp

K

We thus have to concern ourselves with the meare\ait

Zmap

K

We now generalize the statement of the problenbtaide the m state variableg, X,
.., Xm INt0 two groups: ¥ v, ..., ¥s and 3, 2, ..., Z,, where s+ c=m. Find the mean
value:

: 0
Z yK_g
k=1

oy,

We make some special preparations for that prabEnst, we determine:

K

(22) H=Yx 2
k=1 XK

which is an expression that includes all of theestariables, and for which, from (19),
the relations:

(23) H=—h,

() A. Einstein, |, pp. 420; II, pp. 174.u is defined only on the surface, but it can be chosemeas
the surfaces arbitrarily as a continuous interpolation.
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do & o0¢
24 h= X —
(24) J‘dtsldv; “ox

will be true.

Here, we can apply the vector calculus only symhtdy. We understandlg to
mean a vector im-dimensional space with the componedys/ 0x, , and understandto
mean a vector with the componerts (which is then the ray that goes from the origin

the field point); we suggest the absolute valuesdayical lines and scalar multiplication
by parentheses. (24) then takes on the form:

(25) h= L:gmlgz (5.02).

However,Ue/ | Og| is a vector of magnitude 1 that has a dirediat is perpendicular
to the surface elemedb. If one denotes it by, then one will have:

h= LDdO(t,ev),
or, more briefly:
(26) h= LDdOtV .

This integral can now be converted into a “volumiegral” that is extended over
space that the —surface encloses usirgauss’stheorem. Ifd7r denotes the “volume
element” then it will follow from (26) that:

h= j j (dive)dr .
However, since:
dive =m,
one will obtain, from (17):
(27) h=mDV.

From (22), (23), and (20), one will then also have:

1 e+ m o€
28 — X — | dxg ...d%n=mYV
(28) Ot e I(; ”axkj Lo G
and
h & o€ V
29 H=—=)x — =m—
(29) w KZ:; “ox, w

We now calculate:

(30) ﬁ:zyka—‘g.
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If we again imagine the two neighboring surfagese ande =€ + J¢ then, from (20),
we will have:

(31) ) L
h=_— 2 \dv--- dv dz--
5" I&I [1 Ye aykj Yoo dy dz-- d

We would now like to consider a fixed variable canabion of thez that allows them to
vary over a well-defined rangiz, dz, ..., dz,. Let it be chosen in such a way tlzat
varies by a quantity that is small compareddo under all possible fluctuations. We

denote the magnitude that we obtain for the inlg@® with these restrictions bgiﬁz;
we then have:

(32) dh, =dz ... dz, o j“&uj[ZyK Kjdzl dys.

Hence, ally are admissible that yield anbetweens and& + & (always with our
special choice of thB. However, from (28), one has:

J.H&HJ. [ZYK j dys... dys —SI .[dyl .dys,
SO
dh, =sdz..dz [ [ dy..dy.

When we consider all possible combination ofzhee will get:

h :sjdzl... dz,;dz... dys.
SO

(33) H =
or, more thoroughly};:

S o€ sV
(34) dDYe— =—.

() Here, if we wished to connect with tEénstein method of proof then we would have to go over to
space. One can avoid that, but one will then needelreoof the geometry oFdimensional spaces that
are immediately obvious, due to their analogy with ordinaygsry, but would still require a special
proof.
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8 4. Kinetic energy and temperature.

The goal of our developments was to give an expredsiothe mean value of the
kinetic energy. From (21), it is:

— . o€
35 g =1 —
( ) P 2 ; pK apK
hence, from (34)Y:
— _nVv
36 £ =
(36) P 2w
or
— N
(37) fp = E t,
where one sets:
(38) (=Y
w
From (18), one can also write:
1 dinVv
39 == :
(39) t dég”

The component of the kinetic energy that is assatiatiéh the degree of freedom then
amounts to:

t 1V
2 2w
If we further set:
(40) w=-3gq, 2%
= 0g,
then, from (34) and (35), one has:
(41) W+2¢, =0.

The expressiofV can be referred to as thigial. (40) will then agree with the quantity
in the theory of gases that is referred to by thatd in the case for which all points of
the system are uncoupled, and one appedBattesian coordinates, and (41) will go to
the equation that is known ther®. ( Likewise, whergy is an arbitrary coordinate, from
(34) and (38), one will have:

(42) O

o
aq,

N =

A mixture of two gases can be considered to bieglessystem. Ify, andgk are the
coordinates of a molecule in the first and secaagkg, respectively, then, from (42), one
will have:

) J. W. Gibbs, formula (377).
() L. Boltzmann, Gastheorie2, pp. 142.
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o€ o€
43 — =g —.
(43) o 3, Ok 39,

Therefore, since one can choosedtte beCartesian coordinates, the meatis vivasof
the molecules in each kind of gas will be eqdjl (
We would next like to address the relationship:

(37) £, ==t

NS

That equation says that the mean value of the kinetigge proportional to, firstly, the
degrees of freedom, and secondly, a certain fun¢tadrihe total energy. Therefore, the

mean values can then refer to a temporal or a virtual ensemlgie; ane can track one

and the same system to very many time points (or oven@ time) or observe an
ensemble of systems of equally-observable states at-defieed time point. Now, (37)
corresponds completely to the equation betweasrvivaand temperature that is known
from the kinetic theory of gases. We then expectnimeanore find the temperature that
we know from experience in the functibnbut we must first verify the validity of that
suspicion.

In order to do that, it will be necessary to clarihe concept of thermal contact.
From Gibbs (?) and Einstein (°), two system<; andZ, are in contact when they are
combined into a syster of following mechanisms: The coordinates Dfare the
coordinates of both; andX,. Up to higher-order infinitesimals, the energy thalbngs
to a phase di is equal to the sum of the energ&ande, that would belong to the same
coordinates inX; andZ, if they were free (and one can also ascribe them bomund
state). One then has:

(44) E=&6+68&5.

In the uncoupled state, the first (second, resp.) systémthe impulseg, p2, ..., Ps
(Ps+1, Pst2, ---» Pstar F€SP.), Would possess the kinetic energy:

5\ 0€ 5, 0&
1 1 1 2
= E — Py = E Pessy FESP.|.
2 k=1 ap/( [2 k=1 ap;(+3 j

We also ascribe this kinetic energy to a subsystem. ti@mehas:

S 0€,
gl:l pK_ll
P 22‘1 op,

but, from (44), one has:

t Boltzmann, Gastheorie 1, pp. 51;2, pp. 100, 124.

A L
() J. W. Gibbs, pp. 121 (122).
() A. Einstein, |, pp. 420; II, pp. 174.
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=
(45) 1 pa
% E
. =1
p2 2; pK+S apK+S
It then follows, from (34) and (38):
(46) gpl + £p2 = gp,
— S
‘gpl = Et,
(47)
— O
£ =S

The kinetic energy per degree of freedom also amoutitsazéor any subsystem.

We can then prove that when two systems with tineedaare combined, a system
with the same will result, so we can likewise show that both sgbsys will possess the
same meanis vivaafter the combination that they did before (becausentimber of
degrees of freedom remains the same), and it would beckehe that the observable
state would also not change by such a combination.

However, something that is very important about theeolable state follows
immediately from the theorems that were just cdojed. Namely, we can think of an
ideal gas as being composed of bodies that have a veillysémeain comparison to the
usual ones and are in a state of constant pressuras i icontact with an ordinary body
then, due to the smallness of the gas, the combinedrsysile include quantities that
were previously present in the larger body. On therokand, t will make itself

noticeable in a gas by way of the observable stateilldse shown later). The gas will
then also serve to make the functiahat belongs to the larger body observable, and will
thus be called ghermometer?). Thus, if the theorem that was just assumed weee tr
then it would give a measurable and immediately-obsévaroperty of two bodies that
would not be changed when they are brought into contabeyf are both the same in
regard to it.

We then come to the derivation of the theorem (Caatimn Theorem):

If two bodies have the samebefore contact then they will have the satrefter
contact

We now put that next to the following, no-less-impott&eparation Theorem:

@) §10.
() A. Einstein, |, pp. 425; II, pp. 176.
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If a system that consists of bodies in contact is separated intontpanents then
both of them will keep the samthat the combined system possessed previously.

Now, if two bodies with equat are brought into contact temporarily and then
separated again then they will also have the daafter separation. However, sineés

supposed to be a single-valued function of t, the energgtimbodies will be the same as
before, and likewise, from the assumptions of 8§ 1, tHathe observable state.

Temporary contact between two bodies with the samdl thave no effect upon the

observable state as a result. From the proofs ofCiwnbination and Separation
Theorems, we can thus referttas theeemperature.

Einstein (*) sought to make both theoreniy flausible. However, what he put forth
cannot actually serve as a proof of plausibility, bytlies a repudiation of the principles
that he himself used as a basis. He sought to proveegaation theorem, although he
regarded it as obvious that the gradual decomposition of g Wwodld provoke only
minor changes in the state of a body that was maw with part of it. Moreover, any
subdivision would imply the creation of a nemechanismand it is not clear what sort of
connection should exist between the states beforafterdthe separation in a system that
is coupled with part of the body that was cut awiy Neither is it justified to regard the
validity of the Combination theorem as a logical copsace of the Separation theorem
just because the process that applies to both of thenvestible (). The following
consideration will show that the Separation Theoredithe Combination Theorem have
nothing whatsoever to do with each other to begin with.

We first ask how the combination problem is really éorbgarded then. We then
start with the intuition that is a single-valued functiot(¢) of £ in any body, and

() A. Einstein, |, pp. 426; II, pp. 177.

() In other words, the theorems in his theory that spaed to the two above.

() ForEinstein, a thermometer possesses a well-defined state pribpéhitt would be given, e.g., by
the temporal ensemble of phases that is runs through. dowtbat state probability would not be given
by the phase at an exact time point, but would depend updeliaeior of the body during a time interval.
Therefore, even if the phase is not changed by the sepatatd the latgphasedollow continuously from
the previous ones, ttghase ensemblean still become something different suddenly (cf., Ejgone might
imagine a metronome whose weight was suddenly displaced.)

N\
N

Figure 2.

Einstein imagined that the separation would be gradual. Howeverwiheseparate systems cannot
amount to a unified mechanism, since they contradacindition thatEinstein himself expressed (11, 8§ 1,
final theorem). Thus, the mechanism will not changalgally, but two new mechanisms will appear in
place of it at the moment of the complete separation.

() A. Einstein, |, pp. 426.
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similarly, € is a single-valued functiog(t) of t. If the two system&; andX, possess the
same temperature t before the union then they wilecolely have the energs(t') +
&(t). Therefore, ift12(€) denotes the temperature in the combined sy&tema function
of its energy then the temperatdtehat arises after the combination will be given by:

(48) t" =t {a(t) + &(t)}.

The solution of the problem of calculatifigfrom t' is rigorouslysingle-valuedand will
lead to a proof of the Combination Theorem when the equatio

(49) " =t { El(t') + Ez(f')} =t
can be shown to be correct.

Things are completely different for tleeparation Theorem The energy of the
combined system will oscillate continually between tthe parts. The subsystems will
keep the same energy after the separation that theé\byahance at the moment of
separation. Its temperature is then determined from fHa¢ problem is thenot single-
valued in full rigor. One cannot speak ohetemperature for the separate bodies, but
one can only ask what would be most probable one. ladae from that fact that the
processes of combination and separation are compléfédyent from each other, and
that deducing the one from the other would not be pernmessibl

8 5. First attempt at a proof of the theorem of heat equilidum

Since we regarded thermal contact in the previous gghgras the combination of
two subsystems into a new one, we must next presem formulas that expressas a
function Vi(€) of the energy in the combined system as long as ¢hneesponding
functions are known for the subsystems. We would &k choose the additive constant
that generally appears in the energy function in suchyathat the smallest energy that a
mechanism can be assigned will possess the value zean #te grounds of continuity,
one will have:

(50) V(0) =0,

and the definition o¥ will directly imply the equations'Y:

a) V(&) =[ w@)Vye-a)a,

b)  Vi(e) =[ w(e-a)Vy(a) da,
(51) i
0 V,(e)=| V(m)wle-a)d,

d) V(&) =[ Ve-a)wya) a,

() J. W. Gibbs, loc. cit, formulas (315) and (316).
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which can go to each other by changing the notation an@lpategration with the use
of (18) and (51). By differentiating and applying just thepgagions, one will get:

8 @, = we-awla)da,
(52)

b) = w(e)wle-a)da.

If t1 (t2, resp.) denotes the quantitythat is assigned to the first (second, resp.)
mechanism as a function af (&, resp.) then one will have, from (38) and (51b):

: 1
Vio = jovl(g—a)vz(a) da,

tl(g_a)

and from (38) and (51d):

Vio = | Ofvl(a—a)vz(a) tz(la) da .

If one takes the mean of the two integrals thavilitfollow that:

(53) Vi2 = .[08\/1(5 —a)V,(a) f;ff(; fi,;:z((g)) da,

and from (38)and (55):

(54) w2 = [ V(e - a)Via)——

—— da

t(e-a)t,(a)

This integral cannot be evaluated, in general. él@ns, we remark that, from (50), the
function:

(55) f(a)=Vi(e-a) V2 (a)

will possess a maximum. Call the place where ltagpensr, .

fIM=y

a=0 a=an a=c¢

Figure 3.
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We would now like to assume that the maximum iseswély steep; i.e., whehis
divided by its maximunM, it shall drop to an exceptionally small value as sasam also
exceeds a small, and thereforey = f / M shall yield a curve of the kind that is
represented in Fig. 3 geometrically. It will then be pesihie to replace thedependent

factor a with an in (53) and (54). Namely, if one understapds mean the factor:

_ t(e-a)+t,(a)
2t (e-a)t,(a)

P
then one can set:

e f
VlzquOV,Oda’.

However, sincé / M differs froman, essentially by zero, one can set:

(56) Viz =M ;- o (ar) dar

but that is:

(57) Viz=p(aw) [ f(a)da,

or

(58) = WA L) [y (o )V, (a) o

2tl(£_am)t2(am)
One likewise has:
1
(59) o=
tl(“;_a’m)tz(a,m) '[
Now, it follows from (38) that:

V(e -a)V,(a) da .

0

(60) t12 (&) = 3 [t12 (€ — am) + ta2 (am)],
or when one sets:

a) &-a,=¢&,
(61) b) a, =&,

C) &+&,= €,

that:
(62) t12 (&) = 5[tz (&) + ta2 (&)].
However,an is defined by:

ﬂ =0 :

dals-q.

that is, from (55):
(63)
or, from (18):

d

Aue-av@},, =0
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V1 (€ —am) @ (am) = @ (€ — am) V2 (am),
or, from (38):
(64) t1 (£ —am) =t2 () .
From (61), we can write this as:
E+E,=E.
It then follows from (62) that:
(66) tiz () =t (&) =t (&) .

In order to then find the value &fx(¢&) that corresponds tg one must solve the
system of equations (65), and then obtainfrom (66); i.e., one must divideinto two
parts, such that the functienfor one of them is equal to the functigrfor the other one.
Physically speaking: One must distribute the energy owdr systems in such a way that
they both get the same value tof That will then be the that is assigned to the total
mechanism.

Now, if two mechanisms with the samiare given, and one sets:

at)y+et)=¢
then&(t') and&(t') will satisfy the conditions (65) that relategosince one has:

tl{ El(t')}: t = tz{ Ez(f')} .
Thus, from (66), one will have:

t" =ti{ &a(t) + &)} = ti{ a(t)} = t{ &(t)} = t;

i.e., (49) is proved. If one combines two mechanisms with the s@mato a new
mechanism then it will likewise possess the same

One resolves the problem of decomposition in a difteveay. As long as the two
bodies are coupled, the energy will continually oselfaom one to the other. Therefore,
the probability that the two bodies possess an enéajyis betweerr and a + da will
amount to:

v(ia)da=w (6-0a) a (a) da,
so, from (38) and (55):
1

-1 1
©D M o

We assume that the second system possesses themsamg after the separation that it
had immediately before the separation. No welingef energy that the second body
would have to possess can then be given with amgiot. By contrast, one can

determine the most probable energy value that tthatsecond system would assume.
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That value will give the functiom that is defined by (67) its maximum; however, when
the maximum of the factdrthat enters into (67) is exceptionally steep (cf., Figtt®)
desireda will also give a maximum fof; i.e., it will coincide with thean, that is
determined by (61) and (62). If we assume that really ¢bersl body possesses the
energyan after the separation, and the first one, the energyr, then, from (38), one
will have t; (€ — am) = t2 (aw); i.e., both bodies possess the same valug afd from

(64), that would be equal to the valuetdhat prevailed before. Hence, if one divides a
mechanism into two sub-mechanisms then each of thdintaké on a value of that

existed before in the total mechanism.

At this point, we will first make use of the fact tithe ensembles in question are
temporal or virtual ensembles. Namely, if one defi¥e® be the space of all phases
whosee < € then, without assuming that all phases of equalll actually be reached
eventually, and without making any sort of assumptionscamgdentions on the motion
of the system, (51) must nevertheless be true, and wisedefined by (38), instead of

(837), so must (49). The combination theorem is therefmte at all a mechanical
theorem; things are different for the separation thmor€or it, one must assume that all
phases of the combined system will be reached eventaaity,that will allow one to
estimate the most probable phases in which the ssmivvill take place.

Moreover, appealing to probability will lead to the cept of a virtual ensemble by
itself. What does the probability that the eneagywill come about in two bodies after
separation mean then? It means nothing but the faclvehahould repeat the experiment
of separation very many times; in other words, thatsheuld think in terms of an
ensemble of independent system pairs and decompose edmmnof According to our
theorem, the second body will take on the enargyn the vast majority of pairs. We
then have virtual ensembles. We now come to the disiwib law in it. We have
ascertained it here when we regarded it as the imathe éémporal ensemble. Another
theory of Gibbs proceeds in a different way. He presented generdist&tal laws for
system ensembles. At the moment of union, the bligion function can be computed
from the distribution functions for the individual systemsyould not be at all necessary
to examine how the distribution functions of the indial systems are arrived at.
However, some theorems must now be introduced, fromhywbige can derive how the
phase densities of the virtual systems change continuouiig amoment of union. One
sees that one is not dealing with contrived concepts, ibutowes that are consistent with
the nature of things. We shall go into that on anotherasion. For now, the
presentation that was given above is probably more omve

§ 6. Ideal gases.

In the previous paragraphs, we neglected something in covmewutith the
assumptions about the character of the fungionf / M. There are three ways of doing
that. Firstly, we must make the assumptions thatntreduced before in an entirely
indeterminate way more precise. That formulation cabmtain such a way that the
propositions that were to be proved actually followed@ssequences of mechanics and
the assumed stipulations. The second problem then afaderiving the laws of heat
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equilibrium mathematically on the basis of our speajgiotheses. However, thirdly, one
would have to verify that such a stipulation is actuadblized in nature.

This last proof must obviously be linked with great diffiies, since the actual
mechanism of the system is not known. We shall testrict ourselves to carrying it out
for ideal gases. Now, one must also prove the laheat equilibrium directly for these
bodies, and we thus seem to have achieved nothing by nsidecations. However, that
is not true. We have still shown by our investigatioat tthe validity of those laws
follows, not only from the special analytic charaatéthe functions that appear in them,
but also from certain ratios of magnitudes, and thdbdés not suffice to assume that the
characteristic functions of the other bodies are kguthose of gases precisely, but only
that the form of their peaks should correspond to th&ve. next provisionally show that
the ideal gases satisfy our requirement in the indebatsnipicture of the previous
paragraphs.

If we choose the generalized coordinate®f the ideal gas to be its Cartesian
coordinates, then understamdo mean the true mechanical quantities of motion, alid ¢
the mass of the molecula then the energy, which consists of kinetic exclusively)(
will be given by the formula:

1 n
68 £= — 2
(68) Zm;pk

We now ask what volume the phases whose enertgsisthans assume. Ifv
denotes the volume of the container then any vier@gbwill be likewise restricted to the
volumev (%). If n denotes the number of degrees of freedom, /sB denotes the number
of molecules, then the positions of all molecuidsup a multidimensional space of size
V"3, From (68), the obey the condition:

() That is true only approximately. In order to considherinfluence of the walls, it will be necessary
to introduce the potential energy between the wall andniblecule into the calculation. In the limit of
rigidity, that can be regarded as a function that wittdoee extremely large when the molecule comes
close to the wall. Nevertheless, the potential eneagybe neglected in the formula above. In any event,
its magnitude will increase in proportion to the sugfacea of the container, and that of the kinetic energy
will increase its volume, so the latter will predom@appreciably for a sufficient size of the container.
We assume that this size of container has been attalnenany case, it can be preferable (§ 10) to choose
some coordinate system besides a Cartesian one.

() As long as we prescribe no upper limit for the eneagy, coordinate in infinite space is admissible,
strictly speaking. Now, if is chosen to be the upper limit on the energy themiiecule can approach
the wall only so closely that the potential energy:

* 1 2
<g->
zZmp'

will be produced by it, in which the sum includes three tetims;wall can therefore be penetrated only
very slightly. They, of the volume that is available will then differ franby only infinitely little.
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i.e., they fill up the volume of amdimensional sphere of radiu£2m£D . Such a sphere
will possess the magnituda{ 2m£DJ , In which €, means a constant that depends
upon onlyn. Therefore, one will have:

(69) V=ce2\y'3

when one denotes a constant that depends uporthentype of gas and the quantum of
gas byc and writes simply;, instead of .
One then has:

(70) InV:Inc+DIn£+DInv,
2 3
so, from (39)J):
n
71 £= —t.
(71) 5

Now, heat equilibrium already follows from this eqjon for twoequalideal gases. The
expression; { t1(¢ — a) + to(a)} that appears in (53) is equal €d1(&) = 1 tx(¢) for all a,
So it can be taken out of the integral. (58) &%) (hen yield:

= %tl(é‘) = %tz(é‘),
SO
t" =t{al) + &)} = tf2a(t)} = tif a(t)} = ¢.

However, we now come to the form of the functiothat was introduced in the
previous paragraphs, which shall be the exemplatHe character of that we shall
assume in the general case. If we then considedtfferent ideal gases with degrees of
freedomn; andny, resp., constants [formula (6% andc,, resp., and volumes andv;
then we will have:

(72) f(a) =Cw (e-a)*a™,
in which we have set:
(73) Cio=c1 [ Vlnl/3 ﬂ/;zlg,
A=1
(74) 2
A, =2
2

However,an is given by:

() M. Planck, Boltzmann-Festschrifpp. 101.
(® One will also get this from (37) when one consideesfact that;, is continually equal te.
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(75) Al = i,
£-a, a,
an =~ 12)1 £,
(76) 1 2
— Al
£-a_ = £
A+ A,

One will further have:

7 v M (‘g_amj [Eamj .

If one now sets, to abbreviate:
(78) —==4,

then it will follow that:
ll/‘l
E-a a
o|Ex) 2] |
E-a, )\ a,

If we assume thgts is a well-defined, finite number, whilé; increases beyond all
limits, then ¢ will be indeed be equal to unity far = an, while the expression that is
found in the square brackets in (79) will become a prapetion whena also deviates
only slightly fromam, so ¢/ will be quite small. The functiog will then have the form
that is depicted in Fig. 3 for larg& and finite .  The maximum of the curvkis
infinitely thin for an infinitely large number of degree$ freedom. We see that the
requirement that the functidnis subject to in the indeterminate picture of the previous
paragraphs is fulfilled. A more precise formulatiorttedt condition will be given in the
later investigation.

In the meantime, we must still evaluate the integyral

(80) 3= f(a)da

and

(51¢) Vi = [ V(@) we-a),
(51b) wo= [ w@) w(e-a).

Partial integration then generally yields:

€ ac¢b — a € _ a-1 gh+l
fo w=rgtde = [ u=9)Ede
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Therefore:
£ alb!

1 _o\acghb = a+b+l
(81) Jo umorerds = =t
Now, from (72), (80), and (81):

— /]1! /]2! M+ Ap+1
(82) J=Cpp3——=_¢gh""
(A + A, +1)!

and from (51c), (69), (18):
Vi =2 ¢ V2P v?’gj; (e-a)"a’da.
which is, from (73) and (81):

=), [Ty 1! (Az _1)| g/llwlz

(A +A)!
SO
AL .
(83) Vip=Cpp 3222 ghth
(A +A)!

Likewise, from (52b), (69), (18), (73), (81), onash

— A =DHA, =D yena
= Cpp N N2 2 gntiT
a2 12 LA1 LA2 A+ A, —1)!

AL o,

84 = Cp e
(64) RS AT

such that, from (38), one will get:
£

A+,

tio=

If n means the number of degrees of freedom in the i@alsystem then, from (74):

E= t1o.

NS

This equation, which in turn, can be derived fr@%)(immediately, can also serve as the
proof of heat equilibrium. Namely, from (48), omes:



Hertz — Mechanical foundations of thermodynamics 28

, , njit t ,

t" =t {£,(t) +£,(t)} ZE E‘*? =t
1 22
2 2

§ 7. Requirements on certain functions that are connectagith the mechanism ¢).

We would now like to present the conditions thahust satisfy in order for us to
prove the law of heat equilibrium. Later, we shall shbwat the functiorf is, in fact,
guaranteed to satisfy these conditions for ideal gasegill then be shown that one does
not necessarily need to assume a corresponding aaalygbavior for the functiofi It
is sufficient to have a correspondence in regard tpreortions.

The ratio of two quantities shall be quite small, amtked, that shall come about
under the assumption that the number of degrees of fresdeeny large. However, the
concept of “quite small” should probably not be takenhmatatically. We then propose
that we are considering a large number of system péinsaw ever-increasing number of
degrees of freedom, although the ratio of their degredseefiomn, / n; = y shall

possess the same value through all of that. Eachnsysae¢ S™, S™ is associated

with functionsV,"™ V™ | resp., and a functioh™, wheren means a quantity that will

become infinite along with;, n; (e.g.,n1), and one can ask what the limiting value is that
will be approached by a certain ratio that is defined byelenctions when increases.
One must then still further assume thdtas already attained the required magnitude for
the systems and system pairs that nature commandist@e

We first give the requirement fénin an imprecise fashion. If we set the factors that
appear in (53) and (54) equal to:

(85) o(a)

_1(e-a)+i,(a)
2 fe-a)t,(a)

1
(e M= e

then we will arrive at:

() & 7 and § 8 include mathematically-specialized explanatmreswould be better skipped over by
those who would seek a provisional orientation in siedisinechanics.

() One can, e.g., decompose a homogeneous body into \&ry small pieces, and then put them
together them step-by-step. One then gets a sequence o6 laodi a family of functions™ for an
increasing number of components. The number of degrdesedbm would be a multiple of and would
become infinite withv. Obviously, one has the recursion formula for\ffe

VD = 5 V(e -a) i \Y (1)(0')] da.
da

It would be worthwhile to examine whether this chaivfalways satisfies the conditions that were posed
in the text for an arbitrary starting functisfP.
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1. The maximum of will always become steeper with an increasing number of
degrees of freedom.

2. The maximal values gf and y are not so very different from the ones that they
have foram, .

3. The steepness pfand y shall stay within measurable limits whebecomes ever
steeper.

We now give these demands a mathematical form. Bfesbin; = A; ; m = A2 = A1 4,
and infer that:

1. For every pair of (still small) numbehnsandb, there is a numbek that has the
following property:am can be surrounded by a region | of dazevhile Il is understood to
be the remaining region, such that foral> A the inequality:

(87) [ f@d@ <h[j; f(a@)da

will be true. That is, for a sufficiently large mber of degrees of freedom, the integral
can be obtained, up to a sufficiently small remamdby integration over an arbitrarily-
small interval around the maximum.

2. There is a numbep that is independent of; such that for all;, one has the
inequalities:
(88) X (@) <QELY (am),
(89) p(a) <Qp(am).

3. There is a numb&that is independent al such that for ald; anda one has the
inequalities:
(90) X’ (a) <SCx (am),
(91) p’(a) <Skp (aw).

We would like to show that heat equilibrium wit fulfilled to any desired precision
by a sequence of system pairs that satisfy thesdittans. Leth andb be arbitrarily-
chosen numbers, and lat be the quantity that corresponds to them from timmd1.
We then divide the interval O tinto the regions | and Il that were mentionedhie first
condition, and set, from (54), (55), and (86):

(92) w2 = | (@) x(a)da =K.
0

We then decompose:

(93) K =K;+K>,

(94) Ky = | f(a)x(@)da,
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(95) Ku=[, f(@)x(@)da.

All of the functions that appear here depend upon the indexHowever, ford; > A, A,
> Ay, one will have:

ku<Qf, f(a)x(a,)da,
and when we once more set:

(80) j f(a) x(a)da =3,
from condition | (87):

Ki <)((0'm) EQh 1,

ie..
(96) K =12 Oy (am) 0Q [,
(97) n2< 1.

Moreover, from the mean value theorem of integrilutas, one will have:

(98) Ki=x(am+¢) | f(a)da,
where

(99) |{] <b.

Since:

(100) j f(@)da =(1-hm)3,
where one should have:

(101) m<1,

one will get the relation:

(102) Ki=x(am+ ) (1 -hny) J.

Now, one has:
X(@m+)=x(am) +{OY (am+m ),

so from conditions 3 and 2, and from (99):

X@am+{)=x(am) [1+mb Y,
where one should have:

<1,

Na < 1.
Due to (102), one then has:

(103) Ki=(Q-hm) @ +7.bDRQ S x(am) .

Therefore, from (93), (103), (96):
1+h [ﬂQ72 _/71]1
(104) K=J0x(am) ¢ +b[7,QY,
-b h[/71/74 Q S

30
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Now, since, from condition Ty andb can be chosen to be as small as one desires in
order to insure a sufficient magnitude forone will have:

im K= J 0 (am) ,
or, in more detail:
(105) Wy’ = x‘””(am){f V™ (e-a)V5™ (a) da} [1+87),
0
(1086) lim g = 0.

In exactly the same way, one can show that:

(107) Vi, = p‘””(am)D VY (- a) Vi (a) da} [1+y™),
0
(108) lim y® = 0.

However, from (85), (86), and (64), it follows fraims that:
(109) 6 = t57(a,)[1 + o),

(110) lim o™ =0,

n=co

or, more briefly:

Now, conditions 1 and 3 that were posed abovenatdooth fulfilled in the case of
ideal gases. Indeed, conditions 1 and 3 will applthat case, but not the second one,
since the functiong and p become infinite at the points 0 aadand there will be no
finite maxima for those functions. However, ona pase extended conditions that gases
also satisfy and which essentially say that thedtmms that were posed up to now are
still true, except at critical points, but on thtaer hand, the influence of those points on
the integration is not significant.

In fact, the presence of such critical points a¢ at all questionable physically. It
would then have to almost completely exclude thssiility that the energy would be
found completely in one or the other subsystenoatespoint in time. However, one will
arrive at the aforementioned condition when onémedes the probability of such an
event to be extremely slim.

In general, it is undeniable that we have goneobdythe scope of what we did up to
now with that presentation. Up to now, we posepiirements on only the functiofsy;

and p, and their integrals, but not on the integ&aﬂ (¥ Oda, because that would be
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something that would indeed have to be developed, and any desgarding it would
seem to be a kind gdetitio principii. However, one will admit that basically verylatt
was assumed here besides that a complete shift afyefnem one part into the other one
would happen only quite rarely.

We alter the integraM;, and ai, when we set:

(111) J(& K) :T f(a)da,
(12 K(ER=] 1@ x@)da,
(113 L(eR)=] f@)pa)da,

in which we understangto mean a positive number.
Moreover, we pose the extended system of requirements

1. The condition 1 that was stated on pp. 29 shall bd fal the interval from O to

2. Conditions 2 and 3 that are stated on pp. 29 shall béotraay regiork up to& —
K, the (for every, there will be anothe® and anotheg).

3. One has:
K" (gk) _
x=0 K™ (g:0)
(n) .
lim = (&) _
«=0 |V (g:0)

independently of the number of degrees of freedonhthus, of n

Loosely speaking, that means: By excluding thigcalipoints, one will always obtain
a region for which the previous conditions aredialOne can then come arbitrarily close
in the integration of the total integral by redugihe excluded region.

It needs to be shown that heat equilibrium wilcabe true with these assumptions.
Let o be a small number. We impose two conditions ugam regard to its smallness.
Firstly, let ¢):

(114) j f(a)da = (1+%5H f(a)da .

K

[ 7] <1l

() From condition 1, that will be possible.
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Secondly, we chooseto be small enough that for all one will have:
(115) K(9=K(50)=K(5 R [1+1m4d.

It follows easily from the conditions | on pp. 29 andtB&t the quotient of the two
integrals:

J(& K =T f(a)da
and '

J(£0)= j f(a)da

0
can be made as close to 1 as one desires for a sutfficierge choice of (*). On the
other hand, ifb is an arbitrary quantity, and | is again understood to nzeaegion
surroundingar, that has the size 1 then since:
Ji<J (g K) <,

and those integrals are positive, one will have:

. J;
lim =
k= J(&;K)

Therefore, the first condition of our previous teys of demands is true for the
interval K to € — k, and from the second condition on pp. 32, theagtte conditions, as

well. Thus, all of the arguments that were presgrefore for the region 0 tocan be
repeated, and one choassuch that the relations:

KO (g ) = “ f(a)da}x(am)[“%?s}

K

<1

exist. From (114) and (115), one then has:

(116) K™(e) = [1 +5774] { | f(a)da}x(am)
0

<1

Sincedis subject to no restriction, that means:

() One needs for the quantiythat was spoken of in condition 1 on pp. 29 to take the \ahsefor a
moment. The aforementioned interpretation will tfelow easily.
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lim K™(9) =x(a,) ] f(a)da.
0
Likewise:

lim L™(e) = p(am)f[ f(a)da.

It then finally follows from this that:

One then dispatches with the proof of the separatheorem very easily. There
exists a probability of:

(117) V(o ) = iT w,(e-a)w,(a)da

2 a

that of two mutually-coupled subsystems, the seamawill possess an energy between
the limitsa; anda» . The probability that the body will have a temgiare betweek, (&
— ) andt; (¢ — a») by the separation will be just as large.

If we again choose two numbdrandb and the interval | that belongs to condition 1
(pp- 29) then the probability that a lies in | will be:

)
_ Kl

Vi = K(n) .

It now follows from (116) and (103})(thatv, can be made arbitrarily close to unity
by a suitable choice df andb and theA that is associated with them. For sufficiently
largen, the probability that; andt, will equalt’ after the separation will come arbitrarily

close to a certainty; as we might say briefly, ¢éheation:

tl - t"
will also be true for the case of separation.

8 8. Proof that the requirements that were posed above arelfilled for ideal gases.

It would be desirable to show that the requiremehat were posed in the previous
paragraphs are fulfilled by the systems that erigtature. However, since we do not
know their true mechanisms, a solution to that jemmbmust be ruled out. Moreover, one
can think of carrying out the corresponding probaeries of homogeneous bodies on
the basis of the formulas that were stated in teeipus paragraphs (pp. 28, rem.). That

() The derivation of equation (103) indeed employs only ciandit2 and 3 on pp. 29, but only for the
region I. However, from the condition 2 on pp. 32, theytrbagrue in the interior of I.
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is also not possible. We would therefore like to setose modest goal and seek to show
that our requirements will be legitimate for ideal gasd herefore, we are well aware
that our considerations will achieve nothing new, siiegecase of ideal gases has been
treated already in simpler ways (8 6). However, a passblrce of doubt will be
omitted from the outset: The proof that we shall givena$ sufficient to support our
theory, but it is necessary for it to be valid.

From (71), (74), (85), (86), and (78), one has:

_ | H 2
(118) p(a) = _m}h :
_[a+ule-a)

Now, if k is an arbitrary finite number then the expressiorthe square brackets in (118)
and (119) will remain within a limit that is independentigfso condition 2 on pp. 32 is
fulfilled.

We now address the first condition on pp. 29 (pp. 32, re¥ye) pick a small number
oand consider the length of the interval in wHichMd (¢ > J). In order to do that, we
must solve the equatiaggi= . We now substitute:

(120) a—am=¢

in (79) and get:
=)
E-a, a.,

One then has to solve the equation:

S—O'm_Z{l_*_ijﬂ: oA

£-a, a

m

In the even that is small in comparison tay, (we will confirm that this is the case

later on), we will get:
[f—a’m _Zj(l_*_,U_Zjﬂ: U4
E-a, a

m

or

- +Z[ L —ij:1—51“1.

a.(e-a,) E-a, a

However, from (75) and (78), one has the relation:
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1
E—-q

(121) _H _p
am

m

so one will get:

7%= a'm(i;am) (1_51//11) ’

2 anzq il

U

If ddenotes the size of the region in whichM Jdthen one will obtain:

(122) b= 29%1/1—51“1 ,

or, from (76) and (78):

(123) b= 25 [1-5"" .
1+ u
However, for largel;, one will have:
O = @b/ = q +i|n J
A
So:
(124) _ 2 | —-Ino
1+ u A
or
(125) b=r N9
Al
in which we have set:
(126) L
1+ u

36

If we understand | to mean the region in which M ¢, Il, to mean the region in

whichf <M ¢, and understand andJ, to mean the corresponding intengiE{a) da,
while J means the integr&lf(a) da when it is taken over the entire region Gtohen we

will have:
(127) Ji <O0M [k
From (82), one has:
A +A,+1
(82) J=C 12 ehtht

O+ A, +)!
so, from (72) and (76):
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M =Cy, (et ﬂ
(A + )
Therefore, from (121)

A A |
I+ pp+1) A _AirA)
J ATAL (A + A1) h

However, fromStirling’s formula, it will follow for largeA; and Ay, if one neglects 1 in

comparison tol; + Ay, that:
S O (A1 +A2) A*4,
J 2T A,
i< %) (Al +A2)3
J 2AA,

or

so, from (78):

J @+ p)
128 <o A,
(128) J 2mu \/7
or
(129) Jicp

J
(130) h=oms0/A,
(131) S= M

2mu

It then follows from (125) and (130) that:

(132) b=r D\/%{In s=In h+3In A} .

1

This equation represents a dependency betwesrdb. h is arbitrary in it. It will be
associated with a numbbrthat has the following property: If one unders&hdo mean
an interval that surrounds, symmetrically, and Il to mean the remaining redioen:

(129) Jy <h .

We once more recognize the relation (87) in theuadity (129). We further see that for
aparticular Ay, a very largeb will belong to a very smah (). By contrast, ih is fixed

() Equation (132) gives only an upper limit for the length efréegion | that enters into requirement 1.
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(let it still be chosen to be small) then one can gedhatb is as small as one desires by
increasingl;. Briefly, the larger that, is, the more that the integration involves only the
immediate neighborhood of the maximum. Condition 1 [pp(@® 32, resp.)] is then
fulfilled.

We shall now address the proof that the third conditian was posed on pp. 32 is
also fulfilled. For that, we consider the integrhiattwere defined by (112) and (113). In
them, we will encounter the difficulty that the fat o and y that appear in them possess
no upper limit that is common to &l However, if we are dealing with an ideal gas then
we will not necessarily have to deal with the individdattors in those integrals
separately, but we can employ the expression for thecong®sed product that was
given previously. Thus, from (92), (52b), (69), (73), (B)will be the integral of the
function:

f=CioA 1> (5 —a)”l’la”fl
or
(133) f=Cpu A (e-a)* " a*™.

It can now be shown thdtalso satisfies the conditions (1) (pp. 29 and pp. 32) in the
interval 0 ands. We only need to alter the proof that was given on sligttly. If M
denotes the maximum &fwhich is assumed to be at the locatmn, then we will get

the formulas:

(134) b=r |NO
A -1
(135) = %
1+-2
-1

in place of (125) to (126). They associate eaghth a quantityb with the property that
the inequalityf < OM is true outside of the symmetric region Il aroungwith the sizeb.
When one assumes thatis large, one can set:

-Inod
Al

(136) b=

(137) N
1+ u
One modifies the second part of the proof simila®ne finds:

K
138 —L<h,
(138) "
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(139) h=00/A -1,

(140) s=

in place of (129) to (131). For large, that will yield the system:

(141) h=osA,
2
(142) G
2mu

It will then follow once more from this that:

(143) b=r \/Ai(lns—ln h+1In4,) ,

1

which then shows that the integrdnaf K also satisfies the first condition (pp. 32).
We now choose an arbitrarily small numlber From (138) and (143), a pair of
numberd andn can be found such that for all >n / 2 orn > n, one has:

ﬁ<h

K
or
1-Sicn
K

Now, if k1 is a number such that | lies completely in theaedetweernx; and & — x1
then when one applies the relation (112) one vanlen

_ K"(g4)
for alln >n.
One then hag fortiori:
_ K& k)

K™ (&;0)
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for alln > n and allk> k.. The number of functior™®, K@, ... up tok®™ is, however,
finite. Due to the continuity df", one can also find a number such that:

_ K& k) -
K™ (&;0)
for all k< k1 and for alln <n.
If k3 denotes a number that is smaller thkaand . then one will have:

n .
_ K& k) <h
K™ (&;0)
in which x < k2, andn is arbitrary.

However, the quantith can be chosen to be as small as one desirese $0 \hll
satisfy the third condition that was posed on pgh. 2 corresponding statement will be
true for theL. The ideal gas will then satisfy all of the ragunents that were stated on
pp. 32.

With that, we have proved that temperature equuitb will be true for them. We
have not needed that proof. However, it was tred gbour considerations to show that
for solid bodies, one does not need to demand agmetewith gases in regard to certain
functions that are associated with them, but ohigt they behave similarly at their
maxima.

8 9. Isopycnic processes.

At the start of our analyses, we considered théome that an autonomous system
can perform. They are distinguished by the faat they lead to only phases of equal
energy. With the addition of external heat, howgewe second kind of variation is
possible: The system can be transferred to angthase manifold. As long as such
changes are permissiblewill cease to be constant, but it will still beetkame function
of gandp. That is, the observable states will change nbtithe mechanism.

Strictly speaking, the second case is possiblg bylvarying the mechanism. We
must temporarily couple the given system with aaptbtne and then imagine that this
coupling is resolved again)( The mechanism will then be the same at theripéng and
the end of the process in question, but not aintleemediate times. The investigations of
the previous paragraph show that the can very piglzdnange during such processes; in
fact, that would always be true when a second systéth a different temperature is
used. Since we can now ignore the intermediatsgshave can regard the process as
being one that assigns a set of energies to themywhile keeping the mechanism
constant. Processes for which energy is suppdiest tvithdrawn from one and the same
unchanged mechanism are calsabycnic(?).

A great number of times, the energy of a mechamiambe changed in that way. If
that happens often enough and very slightly eaok then one can propose that the

() A. Einstein, Il, pp. 179.
() A. Einstein, loc. cit.

> >
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that is added to the fixed mechanism will vary continuaudhaturally,V will also vary
with €. From (39), for two corresponding change¥@ide , one will have:

O
dinV= de. :
t
or ():
O
(144) InV = deg + const.

(To be continued)

(Received on 25 May 1910)

() J. W. Gibbs, formula (485).



