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88§

Poincaré has proved that in general it is not passibittach a tangent vector to each
point of a continuously differentiable, closed, boundas/Bgface of genus in such a
way that the resulting vector field is everywheratganious. He has shown that the sum
of the “indices” of the singularities that thus appearthasvalue 2 — 2 from which it
follows that forp # 1 discontinuities must always be presBnt Brouwer has extended
this theorem tan-spheres. Here, as well, the sum of the indiceh@fsingularities is
independent of the special choice of vector field; # fer even-dimensional spheres and
0 for the spheres of odd dimensi6h These facts may follow from a roughly
simultaneous unproved theorem of Hadamard that is anwbgeneralization the work
of Brouwer on the subject, that fanyn-dimensional, closed, boundaryless manifold that
lies in (0 + k)-dimensional K > 1) Euclidian space the sum of the indices of a tandentia
vector field is atopological invariant of the manifold, such that, e.g., for the
determination of the numbers that Brouwer gave for sphéne consideration apecial
vector fields suffices). (As Herr Brouwer has informed me, the work of Brouaed
Hadamard came about piecemeal from an exchange ofudeasen the two authors.)

During an examination of theurvatura integrafor closed hypersurfaces, | arrived at
a proof of the theorem proposed by Hadamard for the dage=ol %); since, as he
likewise discussed, not evenydimensional closed manifold can be regularly embedded
in the f + 1)-dimensional Euclidian space, he therefore treatdda special case of the
previous assertion.

In the present work, it will now be proved completelyhe theorem will thus be
sharpened in two directions: the one — inessential — shagpeansists in the fact that
one can always make an embedding of the manifold in a sfakgher dimension,
which comes about easily for a suitable definition oftee field, in particular, the
interpretation of a vector field as a “small transforiorat The second, however, will be

) Sur les courbes définies par les équations différéegjeB. parties, chap. 13, Journ. de Math.1(4)
(1885).

2 Uber Abbilding von Mannigfaltigkeiten, Math. Aniil (dated July 1910).

% Note sur quelques applications de l'indice de Kronecker im@y, Introduction & la théorie des
fonctions d'une variable 11,"2 ed. (1910), no. 42. — In this, the work of Poincaré, Dgck] Brouwer was
cited; in the questions that arose in the treatisebeasfet three authors, Poincaré and Brouwer treated the
special cases mentioned above, while Dyck indeed provestdtiff versions of the theorems, but not the
theorem formulated by Hadamard.

*) Uber die Curvatura integra geschlossener Hyperfladfiath. Ann. (1925).
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the one that actually makes the sum of the indices dppear to be a topological
invariant: It is equal to thBuler characteristioof the manifold, which was already to be
expected from its present determination in the speciakcabhus, singularity-free vector
fields are possible only when the characteristic is Ohe Guestion arises whether
conversely a singularity-free vector field can alwdys constructed in the case of
vanishing characteristic, thus in the case of a closedndaryless manifold of odd
dimension®). This question is answered in the affirmative by shgwhat the desired
construction comes down to the solution of a certagufidlary-value problem for vector
distributions” that | have treated in connection witther things®). One of the
consequences of these facts is the theorem: “A mdnéfdimits arbitrarily small fixed-
point-free transformations into itself when and onlyewtts characteristic has the value

0.” In particular, any boundaryless, closed manifold of odehedsion admits
transformations of that sort, while that is neverthse for manifolds of even dimension,
in general.

A comparatively broad class of spaces (88 1, 2) must péoged for the discussion
of the — mostly known — concepts and facts that cormamplexes, manifolds, and their
representations. The connection between the indexoduhe singularities of a vector
field and Euler characteristic will be essentiallgated in 8§ 3; thus, then(— 1)-
dimensional structure that leads one back to the pfoofsien-dimensionaimanifoldsis
no longer a manifold, but ‘@omplex:” the boundary complex of the manifold. This
situation makes it necessary that in a complex onenadanger speak of the continuity
of a vector distribution, so one must introduce a newcept: that of thé‘complex-
continuous vector field.”In § 4, a proof of the auxiliary construction that wasdmin §

3 will be added, and in 8 5 the theorem will be given itsnakte formulation; It will be
regarded, in the aforementioned way, as a fixed-poitréme for small transformations
and conversely, on the basis of the solubility of ‘heundary-value problem” in the
likewise aforementioned way; furthermore, it will beogim that the numbers that appear
as the “total curvatures” of closed hypersurfadpscan be interpreted as Euler
characteristics in many cases.

§ 1.
Complexes and their representations.

1. In ordinaryn-dimensional space, I’ simplexesT; [V' =1, ..., "] be given; let
their k-dimensional boundary simplexes be denotedThy[V* = 1, ..., #]. The T

define a “complex representatio®" if, between the points of certa‘ll"vﬂ , which will be

said to be “linked to each other,” associations of thewiotlg sort exist:
Let T.", T, be linked to each other; there are then two simpld@¥esT, [0 <k <n]

that belong tor,", T,'whose points are related in a one-to-one and continnayssuch

®) See, e.g., B. H. Tietze, Uber die topologischen iaméen mehrdimensionale Mannigfaltigkeiten,
Wiener Monatsch. fir Math. u. Phy® (1908), § 8.
®) Abbildungsklassen-dimensionaler Mannigfaltigkeiten, Math. Ar@6.
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that eachT,”[0 < p< K] of T corresponds to &’ of T, while two pointsA; , A, of T,",

T, that do not belong td@, T, are not associated with each other. This associ&ion
transitive— i.e.: if, on the one handy; , A;, and on the other hand; , A; are associated
points of T,", T,)(T,', T;', resp.) them\; andAs are associated with each other.

As a result of transitivity, we can, for egehi0 < p < n], divide the#’ simplexesT
into @ groupsg’, [A" =1, ...,a" 1< d® < /), such that thd® that belong ta® are
associated with each other, and analogously the pAioés be collected into the groups
a. We call the groups the “points” and the groupg?,, the “simplexes” of the

n»

“complexC" that is represented I8",” and say that two points (simplexes, resp.pdf
that belong to the same group are “identical’lri

2. If one hasg‘= g for eachk for two complex representatior®;, D) and one
does not distinguish them with regard to the groupngsof their simplexes, but only
with regard to the point associations within the simplei(f:is then we call them

“isomorphic;” two complexe<', C; that can be represented isomorphically®jy, ©7,

resp. , may be mapped to each other in a one-to-onecemithumus way such that
dimensional complexes correspond to each other,@sssribed by the isomorphisth
and we consider them to be indistinguishable from edur .ot

To each representati@! there is an “affine” representation that is isomorgbii —
i.e., one such that the maps between two associatpteges to each other are affine; in
order to obtain such a representation, one must, feryewo simplexesTV'i , perform

only such affine maps that are uniquely determined by theetmder the association
prescribed by means @f".

A representatioD" is called “reduced” whea” = £ in it — i.e., when associations
are given only for boundary points, but not for intepoints ofTV'l. One may “reduce”
any representation by omitting certdifi, and we regard the complex represented by the

reduced complex as not being distinct from the origored. In general, we shall focus
on reduced, affine, complex representations in the sequel.

3. The @ - 1)-dimensional boundary simplexé’vﬁgl of ®" define, by maintaining
the association prescribed F, an f— 1)-dimensional complex representatof’. If
D" is affine ther®" ™ is also affine, although, in general™* is also not reduced for a

reduced®". We call the complexC " that is represented b®"* the “boundary
complex” ofC".

") H. Kneser, Die Topologie der Mannigfaltigkeiten (Anhang), stbericht der Deutsch. Math. V&,
1 — 4, Heft (1925). — There, only manifolds were considesedthe validity of the argument remains
unchanged for complexes.
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4. If one subdivides eac}ﬁv'l of ®" into finitely many sub-simplexes in such a way

that the variousTka [1 < k < n] of the resulting decomposition, as long as they are

associated with each other, are “identicalClli with each other then what results “by
subdivision” of ®" (C", resp.) is a representaticd] of a complexC/. As is well-

known,C" and C have the same “Euler characteristic;” in the abovgtion forC" this
n

is defined to bez (-1)*a* . Under the decomposition carried out on Tiewhat results
k=0

at the same time by subdivision ®"* (C"™?, resp.) is a representatid; ™" of the
boundary complexC;™ of C;.

Let 2" be an affine representation. Thus, any representdhat results from
subdivision 2] is also affine. One can perform an arbitrarilynske subdivision of a
given affine representatio” as follows: Letm be an arbitrarily large whole number.
One divides each edg@vll into m equal parts, and through each such pdintone

intersects planar spaces that are parallel to th83ethat belong to the sanie", but do
not includeA. In this way, eaci® will be divided into finitely many arbitrarily sriia
convex polyhedré, and these decompositions Bf are “identical inC™ with each
other. One now further divides ti® into simplexes, and still further, while observing
the association that is present, such that a sisimtivof C" results®). — Thus, the
following remark is important for a later applicati We refer to two polyhedra as
indistinguishable from each other in “shape anditjpms when they can be converted
into each other by means of a dilatation and astaion — Thus, in anx{, ..., X,)-
coordinate system, by a transformatignh=c x, + a, [v = 1, ...,n] — then in shape and

position onlyfinitely many polyhedra come into consideration for Eigindependently
of m. In fact, if we introduce an affine coordinatestgym into — e.g. ", whose sides

areT,"™, ..., T, such that the corner that is opposite the 3jfi¢ is the null point, the
edges are the axes through it, and the remamiz@yners are the unit points on the axes,
then aP" that belongs tdl," is a part of a “parallelepiped? whose edges are parallel
and proportional to the unit line segments of therdinate system — namely, of length
1/m - thus, we have a structure that is independertafes and position ofi; indeed P"

is one of the pieces ¢t that one obtains when one intersects the plaragesfhrough
each corner of1 that is parallel toT;", which are likewise determined in shape and
position from now on. Now, let this decompositmfrthis P" into simplexes in shape and
position likewise be prescribed from now &n — This consequence is true for each

individual TV”n; thus, one shows that one can give a represemt&tlp of A" by an
arbitrarily dense subdivision (i.e., a subdivisiovith arbitrarily large m), whose

8 Hadamard, loc. cit., no. 10, footnote 2).
%) One links the center of mass of e&®2 < k < n] with each corner oP* and with the center of mass
of eachP' [2 < | < K] that belongs to the boundary®f
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simplexes are henceforth restricted in regard to shageosition to finitely many given
possible cases, which are determined fahalone.

5. Let T," be a simplex o®" and letT,"™ [k > 1] be a boundary simplex af".
T,"* belongs tck simplexesT" ™[« = 1, ...,K]; the planar 1§ —k)-dimensional space"
that includes thd,"™ is the intersection of thie(n —1)-dimensional planar spacés™
that include theT"™. EachE}™" decomposes the-dimensional space into two parts:
We call the one that contaifi§' the “positive side” ofE}™". We call the intersection of
the positive sides oE]™ [« = 1, ...,K] the “interior” of the k-fold angleW,"™"” defined
by E™* whose vertex i€"™; the interior, when one includes the boundary, is‘ttesed
angle spaceW,'. (Thus, one understantlg" to mean the positive half of the space that
is determined by &™) EachW" will be bounded by closed angle spaces)";',
which belong to the representati®fi™ of the boundary comple@™* defined byD".

6. Let2" be a reduced affine representatiorC8f 2", the associated affine (non-
reduced) representation of the boundary comp@8%, and 27, a reduced affine
representation of" in a planar space™™. Let E' be the planar space that includes
the boundary simpleX,;"*of 2", P, a point of T,"™, andr;, a ray of E/"that emanates
fromP, . If T, ..., T""are boundary simplexes 9f that are identical wit[,"™ in C"
and P, ..., P, are the points of them that are identical withthen the raysvo, ..., to,
that begin aP, and lie in theE)™ are defined by means of the affine association between
the T)*[p =1, ...,r] that are included irE)™. Ther rays defined i(" correspond in
27, by means of the affine and transitive associatioprecisely onev™ of F"™, which
emanates from the poiptof the simplex"™* of 21, that corresponds 8, which is the
image of theT;'l. If P, and; simultaneously belong to mang ¢ 1)-dimensional
boundary simplexe$ "™ of 2" then the rayv; and the rays., ..., tom [Mm=r] of A" that

are identical with them ilC" correspond to many rayg*, which therefore all lie in
boundary spaces of(]™ and are mapped to each other by means of the affine and

transitive relation between the boundary spatgs.

7. Letk=1, letT"* be a boundary simplex 8, P, a point ofT"*, E"™*, the planar
space that includeE'™, W, thek-fold angle that belongs 6" as a vertexy, a ray that
is based aP and directed into the interior Y, u, the ray diametrically opposite tQ
and €’, a two-dimensional half-plane spannedibgnd 1. € intersects each of the
boundary space&™ [« =1, ...,K] that includeE"* in a rayr, . If T are the
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boundary simplexes that belong to Eje' then eachl"™ corresponds to a simpleg™
of A", and on each of them there i$'d that is the image 6F"™*, and to each”“there
is an angle(w)?), of A™; at eacht’™ there is an image poi of P, and eachwv
corresponds to a ray. of P"! based ap. . We consider the directions of these

more closely; there are two cases to distinguish:
I. (Main case)g” has only the poin® in common with any two of tHe'™; each of

the rayst, then belong to only on&™™; thus, now; lies in a o — 2)-dimensional
boundary space dii; ™. If one rotates in €’ into the positiorix then letro; be thefirst
intersection with anE™; vy is then theonly 1, that belongs to the boundary ¥f",
since all otherv, point to theexteriorof W,". Thus,w, points to thenterior of (W7),,

while every othemv! is directed to thexteriorof its (W7), .
Il. (Boundary case)e has, in addition t&®, another point in common with some of
the E]™, hence, a ray; thus, not all of the are distinct from each other. Tkeaystv,

can be collected intbgroups [ <Kk) in such a way that the rays of one group overlap in a
ray w'| [j =1, ...,i]. For thew), the facts that were established for thein case |

remain correct. Ifv) is thefirst intersection of the rotated raywith a E'™ and tv] is
identical with only onav, then the result of the argument in case | remain umggthn
that of thew [« =1, ...,K] precisely one of them namely, r;— points into thenterior
of its (W3), , and every othemo. is directed to theexterior of its (W3]). By
comparison, ifro; is identical with somev, then this fact must be modified in such a
way that certainv, — say, vy, ..., (namely, the ones that corresponchp) — have
boundarieghat belong to theifw]?), , and indeed in such a way that they are mapped to
each other by means of the affine, transitive assoniatefined in2™, while every
otherr; [k=m+ 1, ...,K] points to theexteriorof its (W), .

Before we utilize the facts thus established we rimsstconsider a special complex.

§ 2.

M anifolds and their representations

1 A cornerTV% of a reduced representation@Tis called a regular corner when the

Tvkk [k = 1, ...,n] that contain it, along with the points @f' that are identical to it, are

associated with each other like the adjacent simplex@ boundary simplexes of a
certain simplex star of the-dimensional Cartesian space. Thus, we understand a
simplex star to mean an elemé&itcomposed of finitely many simplexes in such a way
that all simplexes of a corner hadein common, while all other corners lie on a sphere
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aroundA 9; TV% is called and “interior corner” or a “boundary corneccording to

whetherA lies in the interior or on the boundary®f
A complex that possesses only regular corners — whigttieeior or boundary corners

— and is, in addition, “connected,” — i.e., one in whicle can get from any;" to any
other T,' along a chain that links eadH to the ones that follow — is called a (closed)

“manifold” M". If M" has only interior corners then one calls it “boundasié’); if M"
also has boundary corners then all “boundary points’hdedi finite number of closed
boundarylessn(— 1)-dimensional manifold¥); thus, a point is called a boundary point
of M" when it belongs to a boundary simplex such that undeh easociation of
simplexes, the simplexes of a simplex Sacorresponds to a simplex constructed from
the boundary points &' .

A complex whose representati@] comes about by subdividing a representafidn

of a manifoldM" is, as would follow from the definition, itself aamifold. It gives us
nothing different fronM".

2. We consider theimultaneousnap of some simplexes of a representatioh’n
that are bound together to a subset of an element iesiartspace: First, 18t} be the

simplexes of an affine representatidi of M", T, a corner, an8}, the associated
simplex star. The association that exists betweek—Eh'mpIexesZE (0Osksn)of §,

on the one hand, and the simpleigis, on the other, as long as it is defined, may then be

refined into amapin which one carries out that uniquely defined affine mamfeach
simplex Z; of § and theTVi that is associated with it under the associationhef t

corners ofZ; to those ofT ; in this way, § will be mapped in a one-to-one and
continuous manner to that subget of M" that is represent #" by all of the cornerd
or a simplexT." that contains the cornd}® that is identical to it itM".

3. The subsef] of M" that is thus constructed in a piece of Cartesianesipatudes

all simplexes that define the neighborhoogboiint, namely, the ones representedTdy,

we now seek an analogous map of the entire neighborhdéod simplex of a
representation df1"; we define:

An affine representatio®(] of M" is called a “neighborhood representation” when
each of its simplexe$,' gives rise to an elemefi; of ordinary space with the following
properties: 1fQp is the “simplicial neighborhood of” — i.e., the subset d¥1" that is
represented by the simplex&$ [i = 1, ...,m] in 2] that are linked td;'— then E; can

19 This definition of simplex star deviates inessentifiityn the one that was given by Brouwer in the
reference cited if).

) Obviously,M" then has nothing but “interior” points in the ordinary sem this, cf., the report of
H. Kneser cited if).

3 Hadamard, loc. cit., no. 16.
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be decomposed intm + 1 simplexesz;; [i = 0, 1, ...,m and mapped td; in a one-to-
one and continuous manner, such tiatis affinely related ta," [i =0, 1, ...,m| ™).

We show that one can present a neighborhood reprasarf@mt eachM™: Let 2" be
the aforementioned affine representation, relativevibach one has been given tfﬁ;e
and =, for the map described for a singfelv° = 1, ..., £’]. We present a representation
217 of M" by subdivision by dividing each one-dimensional e(]’geinto n+ 1 equal
parts: Lay a planan(— 1)-dimensional space that is parallel to the fa'gﬁéthrough the
dividing points, and decompose the resulting convex polyhedtorsimplexes. I, is
a simplex of the representatic and, say,T;' is the simplex of(" that belongs td;
then there is am(— 1)-dimensional face of;' that has no point in common witfy. In
fact, if we introduce (as in § 1.4) an affine coordingt®emé, ..., & into T,', whose

null point is the corner of,' that also intersects the facé§™, ..., T"™, whose axes are
the edges that emanate from the null point, and whogepaimts on the axes are the
remaining corners off' then the coordinates of each point of the simplexeshef t

representatior®l] that has a point in common with each of the faggs, ..., T"*
satisfy the inequalities:

1
n+1

&< [[=1,..,n]; Zn:fi<1;

this simplex thus possesses no point in common withether sideT "' of T, which is

n+l

defined by the equatioEEi =1. Thus, tat] there is a face of,' —e.g., T, - thatt]

i=1
has no point in common with. [ is the corner point o, that is opposite td,™*
andS) is the simplex star that belongs Tg then one can clarify the aforementioned
one-to-one and continuous piecewise affine relation &etg' and the simplexes &f"
that contain the corner that is identical wiEf in M" in t, as well as irany simplex of
20! that is linked tot, and is therefore in the “simplicial neighborhoad; of t; —i.e.,
27 is a neighborhood representation.
We can now directly employ the aforementioned ssiamﬂ;z;nyﬂn in place of thet;n

for the representation &fl", and thus, when we henceforth SR%I#F T:n, in order to
revert to our previous notation, obtain a neighborhopdesentation that is as follows:

") In general, Z, .then denotes the sub-simplex that is the imagd of when the elements]

represents the simplex neighborhoodl'él]r,



Vector fields inn-dimension manifolds 9

To each simpleil'; 1%, one attaches simplex@n =1, .., mﬂn] to those boundary
simplexes that do not represent any boundary poitlpfwhich, together withT:n,

define an eIemenE;n , the one-to-one image of the simplex neighborhmf}ld of T;n in

n

M"™ thus, any two simplexesz;n 0 L that belong to two different elements

E;n : E;n , and which likewise correspond to the piecaV3fthat is represented ng,”n =

z;n . by the mediation of1", are affinely mapped to each other.

4. This “distinguished neighborhood representationMdf which we would again
like to denote by", is suitable for the investigation of certaiansformationsof M":

A single-valued continuous map M" onto itself or a subset of itself is called a
“neighborhood transformation” of1", relative to2(", when each point of1" that is

represented by a point Glfjn goes to a point of the simplex neighborho@f}i{n of T:n :

For example, suppose that the transformatipase a series of transformatiofiasf,,
... that converge uniformly to the identity in all Bf' as neighborhood transformations,

relative to any arbitrary distinguished neighborha®t with a certain index that is

independent of("; we occasionally express this by saying that an “arbitramall

transformation” ofM" is a neighborhood transformation, relative to anyirtisiished
normal neighborhood.
If f is a neighborhood transformation relative2tt then one defines, in a unique

manner, a single-valued and continuous nf%p of each simplexT:n onto a point set
that belongs to the eIemeEgn . We assume théthas at most finitely many fixed points
and that they correspond to oiherior points ofT:n . If we now attach to each point

of T;n the vectoro(P) that points to the poinlfﬂn(P) then this vector fields is, in a

certain sense, single-valued and continuous infal", except for the fixed points). It
has, by the use of the notations of § 1, the fatligwproperties, among others:

A. B is single-valued and continuous on each individ[{al[,d" =1, ..., except

for at most finitely many points that lie in itsémnior.
B. LetPo be a boundary point of that belongs to a boundary simpl&X* [1 <k

<n]. Let T;'k [p=1, ...,r] be the boundary simplexes of the otffg;r that are identical
to Ty, Py, the points ofT)™ that are identical witf® , and let(W,"),, [0 =1, ....1],
thek-fold angle whose vertex iE;'k. Then, one of the following two cases will appear

14)

. Thus,//" now denotes an index that runs from hipjust as/" did in § 1.
)

From on, we shall, unless expressly stated to theargntonsider only the continuity of direction,
but not the length of the vectors; zero loci of theamefield then amount to singularities.
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I. (Main case): Of the + 1 vectorsv(P,), precisely one of them points to the
interior of its (W,") ,, while all others are directed to the exterioo$their (W,") , .

Il. (Boundary case): Someof the v(P,) are attached to thboundariesof their
(W) ,, and are constructed by means of the affine and tramsitisociations that exist
between the boundary spaces, while remainingo(P,) pointto the exteriorsof their

(\Nkn)p .

As one knows, case Il appears when and only vigeandfy(Pg) belong to the same
boundary simplex.

§ 3.
Complex-continuous vector fields

In the formulation of properties A and B of the vedield 8 that was given in the

conclusion of the previous paragraph, no use was madheofact that we have a
neighborhood representationf a manifold before us. If we have a reduceffine

representatio!” of an arbitrarycomplex € then none of the aforementioned properties

will become meaningless when we replatewith C". We may therefore define:
An associatios of vectorso(P) to the pointd of the reduced, affine representation

2" of the complexC" is called a tomplex-continuousgector field onC" (relative to")”

when it satisfies the requirements A and B. [Seé€Alppendix” at the conclusion of this
paper.]

1. Of the properties of complex-continuous vector fidltgt we will be occupied
with in the sequel, let us first establish: 2f' is a complex representation that comes

about by subdivision df" then®3 is also complex-continuous relative 2, assuming
that no singular point dB lies on a boundary simplex of the representatifn One
convinces oneself of the validity of this assertion siaklishing thats has property B,
not only, as assumed, on the boundaries of the repatisen?(;, but also on the new

boundaries that come about by subdivision, on whicls continuous in the ordinary
sense.

2. A second important property of the complex-continu@asor fields concerns the
“projection of the complex-continuous vector fietklonto the boundary complex.” One

understands this to mea@", 2", and®8 have the meanings as all along, but2&t* be
the non-reduced representation of the boundary con@léxthat is defined fof(", let
A be a reduced affine representatiorC8t, let Tk [k=0, ...,m =1, ...5 8 =
a"] be the simplexes(", and lett’, [k=0, ...,n-1; =1, ..,y ™ = a""] be the
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simplexes of(]™. On the boundary of ", let there be given a fieldl , of vectorsu(P)
with the following properties:

a) u(P) is directed into the interior of | .

b) If P lies on ar"2 then the directions(P) andv(P) do notagree.

c) There are at most finitely many poiftsat which the directions af(P) andv(P)

do agree.
We shall postpone for a moment the discussion of venesuch vector fieldsl ,

always exist.

On eachr™™* of TV'Q, we now focus on the poinBsat whichv(P) is either directed to
the positive side of the planar sp&%e" that containg " or lies inE™™ — in whicho(P)
thus belongs to the “closed angle sp&g@” in question — and project theséP) from
u(P) ontoE "™ i.e., we present those vectaw$P) at whichE™™ will be intersected by
the half-planes’ that is spanned by th€P), v(P), and the vectoiii(P) thus, the stated
sequence of vectors @ is always the following one, v, 1o, . This construction will
be possible only at the poinBsconsidered at which(P) andv(P) agree, which are at
most finite in number. The vectar(P) now corresponds to either (cf., 8 1.6) precisely
one vectono’ in 207 or it corresponds to sevenal that lie in the boundary spaces of
2" and are affinely mapped to each other. We callttitality 25" of the vectorse”
thus produced inA]™ a “projection of the fieldB” and assert that it represents a
complex-continuousector field onC™™. In fact: Tha?l" possesses the properties A and

B that are characteristic of complex-continuoustaedields follows from described
construction oR25°, as well as the fact that the demand B®iis fulfilled for k = 1, in

particular. Tha®l possesses property B for evérys n — 1 is obtained from the fact
that B possesses this property for every k' + 1, as well as the behavior of projected
vectors that was discussed in § 1.7, by whichairiqular,ro” belongs to its closed angle
spacew > when and only whetv is thefirst intersection of the vectar rotated intoe”
with a boundary spacé™" of W, and therefore, whem belongs to the closed angle
space .

3. We now relate the indices of the singularities 2fto the indices of the
singularities oRY". Let s, be the sum of the indices of those singularitie®dhat lie

a"

in TV'Q and lets' = stn then be the sum of the indices of all singulariteds?;
vh=1

furthermore, leg"™ be the sum of all indices of all singularities2t, let a, be the sum
of the coincidence indice$ of the two maps of the boundary 76Vt onto the sphere of
directions, which will be mediated k¢ , and the boundary fiel@ , associated withs
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(in this sequence!), and let = Zavn be the sum of all of these coincidence indices.
V=1

Now, the number may be determined in two ways: A singularity®f exists where

and only wheret , andB , have coincidence loci. The index of such a coincidésce

equal to the index of the singularity of the field of pctgel vectorsv, and thus, also

equal to the index of the singularity 86, assuming that one orients the £ 1)-

dimensional boundary spaB&™* that the point considered belongs to in such a wayatha
positively oriented system of axesB¥*, together with a vector oft , as thelastaxis,

defines anegativesystem of axes fon-dimensional spac¥); in our case, however, the
indicatrix of E "™ is determined to be the boundary indicatrix'EV)rI; l.e., ann-fold

system of axes that is defined in the manner just descishgositively oriented?). It
follows that the coincidence index &f , and B , is equal and opposite to the index of

the singularity oR¥" at the corresponding point, and is therefore:

(1) a=-s %

On the other hand = Z a, is to be determined in the following wag, is the sum of

vh=1
the coincidence indices of maps of the boundary bfonto the sphere of directions that
is mediated byl , andB ,. The map mediated by , has the degree-1)", since all

n

vectorsu(P) are directed into the interior of ;, and it is thus continuous when one
establishes that its starting points go to vectorspbatt to a fixed interior point. The
map mediated by , has the degres,. Thus, one has the equatfon

2) a,=(-1)"'O-1)"+s,=-1+s,,

and from this, what follows upon summing is a second Valua:
an

(3) a=>Ya,=-a"+s"
=1

Comparing the two values afgives:
(4) s"=g"-g"t,

4. We now begin the proof of the following theorem:

%) For the proof, cf., the paper cited*)rof § 1.
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Theorem I. The index sum of the singularities of a complex-continuous vector field
on C'is equal to the Euler characteristic of @wultiplied by(-1)".

We give the proof by going from— 1 ton.

First, letn = 1. C" = C! is therefore a system af' line segments whose corners are
composed ofr° groups; the corners that belong to the one group areddeimtiC* and
represent a point of this complex. (We can think ¢f ithentification as being carried
out in — say — three-dimensional space by fastening tlogmttier.) The complex-
continuous vector field consists of vectors that lietha lines that the line segments
belong to and possess singularities in the interioreofitle segments with the index sum
s'. At each of thex® points of the complex that are represented by3theorners of the
line segment it exhibits precisely one line segmentighdirected into its interior. Thus,
if —a'’) is the number of all corner vectors that are digatéo the interior of the line
segments then one has:

(1%) a=-a°

We determinea in a second way, in which we consider each of theslémnents‘l’vll

individually: A singular location for the 1-dimensionakter fieldB is — in a reasonable

application of the definitions that pertainedntdimensions — to be understood as having
the index + 1 in the event that all of the vectorgsnneighborhood point outward, the
index — 1 in the event that all of the vectors in itgmeorhood point inward, and the
index 0O in the event that all vectors in its neighbocthbave the same direction (and the
singularity is therefore removable). Singularitieshwother indices do not occur far=

1. Lets, be the sum of the indices of all singularities®fon Tvl1 and let- a, the
number of corner vectors that point into the intledevll; one then has,=-1, 0, or +
1, according to whethera, =2, 1, or O, resp. In any case, one thus has:

2) a,=-1+s,.
Summing gives:
(3%) a=a +s,

and from this, it follows, by comparison with (1*), that
(4%) s=a'-d’=-("-a").

Forn =1, this is the relation that we asserted in ounri®. We now assume that it
has been proved far — 1. Then, ifC" is a complex and3 is a complex-continuous

vector field on it, such that one can construct aoreftld 4 . with the properties a), b),
c) stated above in 2, then, sif is complex-continuous and the theorem is true for the
boundary comple€™™, since one must have:

) Notations and signs are chosen by specifying theeagget with the-dimensional case.
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gﬁ—l — (_1)n—l Dnz_l (_1)kak ,
k=0
the stated relation follows from (4):
(5) S'=a"- (—1)r“1§(—1)kak = (—1)r‘§(—1)kak :
k=0 k=0

Thus, we do not know whether one can always coctsthe field L[ ,. However, since

the complex that arises by subdivision @f has the same Euler characteristicCis
Theorem | is proved completely, as long as theditgliof the following Lemma is
proved, which will happen in the next paragraph:

If A" is a reduced, affine representation of the comg@exand B is a complex-
continuous vector field on it then one can, by $widihg 21", present a representati®y
of 2" and a complex-continuous vector figltlin B" whose singularities are identical
with those of5 relative to position and index, in such a way thatector fieldtl , can
be constructed in eachdimensional simplex:n of B" that possesses the properties a),
b), c) relative tap.

§ 4.

Completion of the proof of the theorem on the index sum of the
singularities of a complex-continuous vector field

In order to preserv&" and®3 in the desired manner, we first remove the veabrs
B that are based in the interiors of the simplekgsof 2", and replace them with a new
vector fieldP3 that has the same boundary fi€kl, and the same singularities with the
same indices a®, but isanalyticin a certain neighborhooQ(P,) of the singular point
P,— naturally, it is itself removed; the fact thiaéte is such g will be shown in another
place*®). P is complex-continuous of", since has the same boundary field as the
complex-continuous fieldB; B is therefore (from 8§ 3.1) also complex-continuamnis
each complex representati®i that arises by subdivision 8f", as long as none of the
singular points lie on a boundary simplex Bf. Now, if yis an arbitrary positive

number then we present a representaf®fiiy) by subdivision of" that fulfills the
following conditions, except for the aforementiorehsideration of the singular loci:

18§ 5, problem 4, supplement to the work citef)in
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B"()) is a sufficiently fine decomposition that 1. Eachmmlex t" of 8"()) that

contains a singular poif, lies completely in the analytic neighborhoQ(P,). 2. The
fluctuation of the vector direction @ at each" that does not lie completely inG(P,)

is smaller thary, when 1 is already satisfied, condition 2 is alwayléilied by further
subdivision, as a result of the uniform continuitydoutside ofQ(P,). 3. B"()) shall

have the property that each of the simplekesoincide with one of finitely many
simplexes in shape and position (§ 1.4), which is herttettatermined by!"; that the

fulfillment of 3 is compatible with an arbitrary refinemt of the subdivision was shown
in§1.4.
We now prove that for a sufficiently smadbne can attach a vector field , to the

boundaries of the:n in the desired manner. In order to determine sugwe first focus

on a simplexr?; let E"™* [v =1, ...,n + 1] be the planar spaces that bourjd whose

positive sides are defined as in § 1.5. We understand thseptthe negative star of

directionsg, of 7,” to mean a system of+ 1 unit vectorsi, attached to a fixed poi@
of space, which are directed such thafv = 1, ...,n + 1] does not point to the positive
side of E/™*; thus, it either points to the negative sideEjf* or it is parallel toE)™.
The g, define anif — 1) [(n + 1)-dimensional closed s&; . Among thein On + 1)

angles between each two directions ofathere is a largest on@(o,); thus, angle
quantities must be measured so that they always lieekeet® andz inclusive. m(gp) is
always positive. If one haah(g,) = 0 then that would mean that all vectaysof a g,

overlap in a single vectar, and that this vector a would be directed to the postide
for no E)™; however, that is impossible, since an oriented liné ithparallel toa and

goes through an interior point ojj is directed to the positive side of thEf™, through
which it entersz;. One therefore always hagg,) > 0. On the other hand) ) is a

continuous function on the closed &t so it attains its lower limiy, at some point;
hence, one also hgs> 0.

We now definey'to be the smallest of thenumbers)y , ..., ¥ and must prove that
one can construct a vector fiekdwith the properties a), b), c) (cf., § 3), after esshiohg
the subdivision8"()) either (Casez) on each simplex”, on whose boundary?) the
fluctuation of 3 is smaller thany, or also (Casgd on each simplex”, on whose
boundary} is analytic.

We begin with Caser. t; thus has the property that the angle between any two
vectors that are attached to the gastof 3 that is found on its boundary is smaller than
¥, we then assert that there is, among its boundaresgst', ..., F'', at least one of

n+l ?

them such thaall vectors of3y are directed to its positive side. Otherwise, thisitdo

9 It suffices to considels on the boundary of th&
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allow one to define a negative direction stafor t; from the vectors of3o, and this
would likewise be a negative direction star for thiatthat agrees withy in shape and
position; one would then hawve(o) = J, = y; contrary to the fact that the fluctuationd§

is less thary: Therefore, let all vectors 88, be directed to — say — the positive side of
F"™". LetA be an interior point of the boundary simplex&s of t; that belong to
F""and letg be a ray that emanates frofmand is directed into the interior ¢f; let
t2™*, ..., t"7 be the remainingn(— 1)-dimensional boundary simplexestpf let 5, be
the part of3, that belongs to itM, the (possibly empty) set of pointsgin whichg will

be cut out from the rays determined by the vectogof A does not belong tbl, since
otherwise the ray off, that containsA would not be directed to the positive side of
F"™. M is, however, closed; thus, there are pointg amthe interior oft] that do not
belong toM; let B be such a point. We now next define the figddo be constructed on

the boundary of] from thet)™, ..., t". by the demand that these vectors all go through
B. It then certainly fulfills conditions a), b), c)atte if it is everywhere directed to the
interior of t and has no point of coincidence at all wiflj. We must now construgt

at the interior points of the simplexés*, on whose boundary, it is already established.
If we considertly as pointing to the positive side &' on this boundary an@, as
pointing to the positive side d&"™ on all oft] then we can determiri#, at the interior
points of t/™ by the following prescription: I is an interior point oft]™ that is

different fromA then letP be the intersection point of the rAy with the boundary of
t". Let p(P), p(P), u(P) be the vectors of3o (Lo, resp.) attached tB (P, resp.),

q(P), the projection of the vectas(P) from the vectoru(P) onto E"* (i.e., as before,
the intersection of with the half-plane spannedu§?), p(P), and the vectofi(P) that
is diametrically opposite tai(P)), and letq(P) be the vector that is attached Rcand
parallel toq(P). The vectoru(P) to be defined shall now be the vector of the two-
dimensional angle between 0 armdhat is spanned by(P) andq(P), this angle being
divided up such that the angle ratio{p(P), u(P)}: <« {u(P), q(P)} is equal to the
product of the angle ratiec { p(P),u(P)}: «<{u(P), q(P)} and the line segment ratio
AP: AP; atA itself, one shalii((A) = p(A). Moreover, the fieldly that is defined on the
entire boundary of] satisfies all requirements: It is continuous, evemsreldirected into
the interior, and has a single coincidence pAintith 3, .

Caseaq is therefore dealt with, and we then go on to gadey assuming thaid, is
analytic on the boundary df . LetK" be a solid ball that lies completely in the interior
of t;. There then exists a positive andlsuch that every angle is greater tl@amhose
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vertex and one side belong to the boundart} ofwhile the other side contains a point of
K". We divide the boundary simplex¢¥*, tr; into sub-simplexes™* that are

RS

small enough that that fluctuation 6 at each individual is smaller thanthen, ifone
vector of3y that belongs to a point cﬂ;'l points to a point oK" thenall Bo-vectors of
s;‘l point to thenterior of t;. The rays that are established by the vectof3.dhat are

attached to then(— 2)-dimensional boundary simplexey™ of s)* define a finite

number of aanalytic, (n — 2)-dimensionalhypersurface pieces; thus, there are certain
points inK" that do not lie on any hypersurface; @tbe one such point. If we then

definetlo on thes)? by the demand that the vectai®) point toC then no coincidence
point with B, is present there. We encounter this definition fosehsg'l in which no
ray that belongs t@3 points to a point oK"; in the remainings;'l all vectorsu(P) point

to the interior oft; , and the same is true for the vectorsigthat are already attached to
its boundary. Thus, in each one of them, by the proeedith which we treated the
simplex in case& we can construct vectongP) that go inward from them and which are
continuously linked to the vectors d§ that are already present on the boundarg’of,

and coincide with the fiel@3, at precisely one point in the interior djl.

Thus, caséS is also dealt with, the validity of the lemma forlated at the end of the
previous paragraph is shown, and Theorem | is proved caatyplet

§ 5.

Fixed points of small transformations and singularities of
continuous vector fieldsin closed manifolds

We now make some applications of Theorem | and cesiurselves exclusively to
the case in whicf" = M" is a closed manifold (with or without boundary).
Let each poinP of M" be associated with a neighborhdd¢P) such that it will be

entirely represented in eadE\;n that is the image of the simplex neighborhood of the

simplexes that contai® when one establishes a definite “distinguished neigluoath
representation?(" of M" — in the terminology of § 2; this condition is certgifulfilled

for sufficiently small neighborhoodd(P). Now, letf be a single-valued and continuous
map ofM" onto a point set that belongsNt and is “small” enough thd, as well as the
imagef(P), belongs to the neighborhoa#{P); moreover,f has no fixed points on the
boundary, in the event tham" has a boundary. Theh is a “neighborhood
transformation” relative t®" and generates a complex-continuous vector field whose

singularities, which, since they are interior pointdyf we may assume appear only in
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the interior of‘l'; 20y are identical with the fixed points b position and index. From
Theorem |, it then follows that:

Theorem Il. The sum of the indices of the fixed points of a sufficiently small
transformation of the closed manifold"Nhto itself is, assuming that at most finitely
many fixed points appear, equal to the Euler characteristic"aftiplied by(-1)".

From this, one obtains:

Theorem lla. Any sufficiently small transformation of a manifold with an Euler
characteristic that is different frofinto itself possesses at least one fixed point.

We now pose the question of whether there are thetmaarly small transformations
with at most finitely many fixed points in ahy”. One recognizes that this question can
be answered affirmatively as follows — always while Eyipg the notation of 8§ 2: Let

T, ..., T', be the simplexes di" and E, ..., E],, the elements that represent the
simplex neighborhoods &f",. On the boundary of,", one defines a continuous field of
non-vanishing vectors whose endpoints belongefg and which also determines the
lengths; by means of the affine maps that exist betweeisubsets of the varioUSZn

they correspond to vectors on certain boundary simplekeertain ofT,", ..., T". We

attach these vectors to the points that they betong such a way that now a subset of
the of the boundary simplexes @f, ..., T', possess vectors. We now attach a field of

vectors to theentire boundary of T, whose endpoints lie irE; and which possibly

includes ones that are attached to certain boundaryesie®ofT,’; that this attachment

of vectors is always possible was shown in the paper tdibgsklassem-dimensionaler
Mannigfaltigkeiten” 6) (§ 5.2, 5.3). We then proceed fior 3, 4, ...,a" until the
boundaries of aITr:n are completely possessed with vectors. We then em)psintPﬂn

in the interior of eacﬁ':n and associate each polf T;n that is different from it with
that vectorPP that is parallel to the vector of that boundary pdif T;n onto which
the P will be projected fromPﬂn, and whose length behaves in relation to the stated

boundary vector as the line segméptP does in relation to the line segmeﬁin;ﬁ; we

associate the poirR itself with a vanishing vector. In this way, a vectetd with the
singularities Pﬂn is defined. By the prescription that each point shallogthat point of

the vectorPP that divides the line segmeRP in the ratiot : 1 —t, a neighborhood

2 To each representatié' of M" there is a representation that is homeomorphic to the sense of

combinatorial topology- i.e., one that comes about by the decomposition an@lination of simplexes —
in which finitely many prescribed interior points BI" will be represented binterior points of then-
dimensional simplexes.
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transformationf; is defined for each between 0 and 1. The family &fconverges
uniformly to the identity whehapproaches 0; each of these maps has the |d6ﬂintand

only these points, as fixed points.

Thus, there are arbitrarily small transformationsMf with finitely many fixed
points. We infer a consequence from thisMf is a manifold that is homeomorphid"
— i.e., one that can be mapped oMb in a one-to-one and continuous way — then a
transformation with finitely many fixed points can benstructed ifM" such that each
point moves so slightly from its starting point thdtist map is a neighborhood
transformation, not only relative to a representafdnof M", but also relative to a

representation2l] of M. Now, since the index of a fixed point is a topolobica

invariant of the transformation in questi®n this yields, on the grounds of Theorem II,
the following well-known:

Theorem Ill. Homeomorphic manifolds have the same Euler chaiatitss.

This theorem is one of the classical and simplesirdms ofombinatorialtopology
5), in which one regards two manifolds as homeomorphic vwhein representations
possess subdivisions that are isomorphic to each athe8(1). The proof carried out
above is valid for topology in the broader sense in wline already designates two
manifolds as being homeomorphic when they can be mappedach other in a one-to-
one and continuous way. Theorem lIl has also been grbyeAlexander?) from this
general viewpoint.

We now pursue further the question raised above of tiséeexe of arbitrarily small
transformations with finitely many fixed points: Is itgsible to give an arbitrarily small
transformation that possesses fixed points with prestribdicesq;, ..., gm at the
prescribed interior location, , ..., Qm (m= 0), with only the condition that its sum be
equal to the characteristic bf" multiplied by £1)"? This is, in fact, always possit5f.
The pointsPy , ..., P, Q, ..., Qm may then be included in an eleménthat belongs to

M" %), and in it, a further elemef can be given that includes the stated points in the
interior. We now choose — with the notation abevesufficiently small that that the
image ofF; underf; lies completely ir-. LetF' be a topological image éfthat belongs

to ordinary spaceF,, the image of in it, and letR, ..., P, Q, ..., Q, be the

images ofPy, ..., P, Qu, ..., Qm, resp. The mafy corresponds to a mafy of F;' onto
a subset of'; its fixed points areRy, ..., P, the associated indices are, due to their

topological invariance, the same as the correspondingeisdinder the mafy . The
vectors that point from the boundary pointskJf to the image points under the mép

2y J. W. Alexander I, A proof of the invariance ofrizén constants of Analysis Situs, Trans. of the

Am. Math. Soc16 (1915). — There, the invariance of the Betti numberspraged for the topology in the
broader sense. Since the Euler characteristic is &sipte through the Betti numbers (cf., e.g., Tietze, |
cit.) Theorem Il is thus proved; cf., also H. Knedec. cit., footnote 2 on pp. 12.

) We assume that=> 2.

%) See the paper cited in footn&jeof § 2.
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thus define a map of the boundary®f onto the direction sphere whose degree-13"(]

c. On the grounds of the solubilif?) of a “boundary-value problem for vector
distributions” (see the paper on mapping classes citedeabd), § 5.4), we can, since

m
one also hasz q,= (-1)" ¢, extend these boundary vectors to a continuous véetar
H=1
that is defined in all o’ in such a way that its vectors vanish at @jg(v/ =1, ...,m),
and only there, and that the singularities of the doerdield at these points possess the
indicesq, . Above, all, we can choose the vectors of thiglfiel be so small that their
endpoints all lie in the interior &. By the prescription that each pointgf shall go to

the endpoint of the vector that is attached tdjt,will be mapped to a subset Bf in
such a way that this magp agrees withf, on the boundary and has fixed points at the
Q, with the indicesgy, , but is fixed-point free at the remaining points. Thaprg

corresponds to an analogous nggm F; . If we now replacé; with g in the interior of
F1, while we leavd; unchanged in the exterior and on the boundarfy pthen we have
constructed a map with the desired properties. We hasgeptioved:

Theorem IV. If Q1 , ..., Qn (M= 0) are arbitrary interior points if the manifold M
and q, ..., gm are arbitrary whole numbers whose sum is equal to theracteristic of
M" multiplied by(-1)" then there are arbitrarily small transformation$ M" into itself
that possess fixed points at the @ = 1, ...,m) with the indices g, but are fixed-point-
free at the remaining oné§.

A special case of this theorem is:

Theorem IVa.Any manifold whose characteristicGsadmits arbitrarily small fixed-
point-free transformations into itself.

Since the characteristic is 0 for angundaryleslosed manifold of odd dimension,
one has, in particular:

Theorem IVb. Any closed, boundaryless manifold of odd dimensaoimits
arbitrarily small fixed-point-free transformationsto itself.

We now consider vector field that are continuous ie trdinary sense: In a
neighborhoodJ(P) of each poinP of M" , let a Cartesian coordinate system on a set be
distinguished in such a way that the coordinates of any d¢a@rdinates systems
(belonging to the same or different points) go oveedoh other on a common piece by
continuously differentiable transformations; boundary rodas of M" shall be
continuously differentiable in these coordinate systemsorder for the examination of
the indices of such vector fields to lead directlykbcthe consideration of our complex-
continuous vector fields, we must possess a reprementdtM"” in which the boundaries

of each individual simplexT:n also belong to a planar space relative to one of the
distinguished coordinate systemsMf . The existence of such a representation is, in
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itself, self-explanatory. We restrict ourselvesprider to avoid the difficulty thus hinted
at, to the special case in whidi" is a Riemannian manifold; i.e., at each point, a
symmetric matrix @) (i, kK = 1, ...,n) is given that depends continuously on the point
relative to any distinguished coordinate system, and evlassociated quadratic form

n

2 g, dx dx = ds’ is positive definite, and its values do not change wmengmes from
ik=1
one distinguished coordinate system to another onanyrnsuch Riemannian manifold,
each sufficiently small vector now corresponds tospldcement of the point to which it
is attached, and each sufficiently small displacene vector at the point in question.
With that, it follows from Theorems Il and IV:

Theorem V. The sum of the indices of a vector field in a Riemean manifold is
equal to the characteristic multiplied ify1)": one can alway&?) construct a vector field
with prescribed singularities and indices, as loag their sum is equal to the stated
number. A singularity-free vector exists when anty when the characteristic & in
particular, such a vector field can be attachedatty boundaryless, closed manifold of
odd dimension.

Among the Riemannian manifolds that are thus treated alkedet; e.g., the ones
that are embedded in the € k)-dimensional Euclidian spac& £ 0) in a differentiable
way. Thus, the cade= 0 includes the submanifolds of space that are bounded tafyfini
many continuously differentiablex{1)-dimensional closed, boundaryless hypersurfaces.
Moreover, it includes the Clifford-Klein manifolds, asliv@s many others in which a
Riemannian metric may be defined. As an example, let, pgrbi@de complex projective
spaceZ be mentioned; i.e., the totality of all ratias : ... : z of complex, not all
vanishing numbers. In it, a metric may be defiff¢avith the line element:

; L | 233 2 7hd
d — i=0 i=0

DL I

i=0

We linger for a moment on the case of submanifolds-dimensional space that
bounded by closed hypersurfaces; Et' be bounded by closed, boundaryless
hypersurfacéM™. The vectors of a field of the type considered mhgilag to all suctM"
are then, everywhere dv™?, directed either into the interior ®" or tangentially to
M". The map oM™ that these vectors provides has degrdd” (Ct on the direction
sphere, whea is again the characteristic @if. The map that is diametrically opposite to
this map, which will be mediated by a field of vectoratthre nowhere directed into the

2 In the paper cited ifj of § 5, | have given, in a simple manner, an arbitrariall transformation (a
vector field, resp.) ir, with the index sunk + 1, and, in addition, in a somewhat circumstantial,way
showed that the characteristic has the véttel; this determination of the characteristic is, eower,
superfluous, in the basis of Theorem V.
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interior of M" thus has the degreel()" 0(-1)" Oc = c. This degree is the “curvatura
integra” ofM" %). With that, we have proved:

Theorem VI. The curvatura integra of a continuously differentiable Jordan
hypersurface that lies in n-dimensional space and is bounded by an n-dimensional
manifold is equal to the characteristic of the bounding manifold.

| have previously only proved this theorem for the sperage that the bounding
manifold is anelement. Furthermore, | obtained in the stated place: Thdi@ensional
closed, not necessarily Jordan, continuously diffeaéfeinypersurfacen of the (X + 1)-
dimensional Euclidian space is a “model” for the tsided, closed, boundaryless
manifoldsM?; its curvatura integr&(m) is then a topological invariant 8%, and the
index sum of the singularities of each vector fieldgenial tom is, assuming that only
finitely many singularities are present, equal @r). From this, it follows, moreover:

Theorem VII. The curvatura integra of a closed, not necessarily Jordan,
continuously differentiable hypersurface {8k + 1)-dimensional space that is a model of
a two-sided, closed, boundaryless manifoltf  equal to one half the characteristic of
M

From this, one further deduces (cf., the many papeis edtdier), since the curvatura
integra is always a whole number:

Theorem VIII. A closed, boundaryless, two-sided manifold' Mith odd
characteristic possesses no continuously differentiable hypersurfacén i+ 1)-
dimensional Euclidian space as a model, not even when one allows gsidtitas.

The simplest example of such B is the four-dimensional manifold that is defined
to be the ‘complex projective plang; (cf., footnote 24).

An analogue of Theorem VIII is the fact that ladtmensional, closed manifold®
that defines the complete boundary of a closBti* always has awdd characteristic,
namely, twice the characteristic Bf“* %). An M* with odd characteristie thus, e.g.,
Z, — can therefore never be embedded in a simply-connectet, necessarily
homeomorphic to ordinary space, closel £21)-dimensional spad@®** — at least, not
in the sense of combinatorial topology, i.e., suchithatll be represented by a subset of
the boundary complex of a representationR3f* — since they will then define the
boundary of each of the two subsets into which theyt divisie R*** 26).

(Received on 11 August 1925).

%) This follows from the fact that the boundarylesk+D)-dimensional manifold that comes about

under the identification of corresponding boundary points of éxemplars ofM** possesses the
characteristic O; cf., Dyck, Beitrdge zur Analysis Situdath. Ann.37 (1890).

25 H, Kneser, Ein topologischer Zerlegungssatz, Koninklad v. Wetenschapen te Amsterdam Proc.
27, Sept. 1924,



Appendix

| will draw your attention to the fact that the cept of “complex-continuous vector
field,” upon the use of which the results of the papewvabrest essentially, is not defined
sufficiently clearly and has given rise to misunderdiag. | thus formulate this
definition again, but more thoroughly than before:

Let A" be a reduced, affine representation of the com@lexAn associatior3 of

vectorso(P) with the pointsP of 2l is called aC" (relative to2(") “complex-continuous

vector field” when the following conditions are fulkid:
A. B is single-valued and continuous in the inte@md on the boundargf each

individual T;n [/ =1, ..., B, except for at most finitely many points that lie et
interior.

B. LetPy be a boundary point o‘ﬁ:8 , and lefy' [1 < k< n] beanyboundary simplex
—not necessarily one of lowest dimensiothatP, belongs to. Leﬂ';‘k [p=1, ...,r] be
the boundary simplexes of the othElf8 that are to be considered to be identical with
Ty in C", P, , the points ofl)™ that corresponding tBy , and (\W,;"),, [0 =1, ...,1],

thek-fold angle whose vertex is the planar sp@é‘ to whichT;‘k belongs.

Then one of the following two cases enters in:
I. (Main case) Of the + 1 vectorsv(P,), precisely one of them points into the

interior of its (W,") ,, while all others are directed to the exterior of(#g’) ,.
Il. (Boundary case) One of the vecto(B,) — say,n(Po) — belongs to the boundary

of its (W,"),. Thus, among the vectors that correspond to the vectofPy) under the

affine and transitive association of the vectors thaitexetween the boundary spaces,
there can be one or more that likewise belonds.tdHowever, one does not need for all

of thesev” to belong toB — in contrast to the special case of the vectdd fim a
manifold that was continuous in the ordinary sensewlaat given at the end of § 2. All
remaining vectors(P,) that are not vectors of point to the exteriors of the(\") , -

(Received on 26 May 1926)



