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One considers theoordinates of the line in spat¢e be the relative values of the six
two-rowed determinants that are constructed from thedawettes of two points or two
planes. Between them, there exists identicallyatiosl of second degree:

R=0.

The fact that six arbitrarily chosen quantities thatisfy this equation can be regarded as
coordinates of a line is to be expected from the wayth®atine coordinates came about
as the coordinates of two points or planes, and thetHat the line coordinates can be
considered to be autonomous homogeneous variables tlatdaatisfy an equation of
second degree.

A further equation of second degree between them:

Q=0

determinedine complex of second degree.

This suggests the problem of converting the two equafbasd Q into two other
equations that only include the squares of the variableslibgar substitution. Such a
conversion is known to always be possible, and inqust way, if one assumes that the
values of the roots that one obtains when the determafahe formQ + AP is set equal
to zero and solved fot are all different from each oth& The geometrical sense of this
transformation shall be discussed in what followdnsofar as we exclude from
consideration those complexes of second degree for wiechonversion that we spoke
of is not possible, we shall henceforth think of the farmsR andQ as being given in
the simplified form.

It is also emphasized that this form of equation igre&t importance, not only for the
complexes of second degree as such, but also fautfeces of fourth order and fourth
class with 16 double planes and 16 double platieg are closely related to these
complexes.

) Excerpts previously published in the Géttinger Nachrictit869, Session on 9 June, pp. 258.

3 In my Inaugural Dissertatiortjber die Transformation der allgemeinen Gleichung zweiten Grades
zwischen Linienkoordinaten auf eine kanonische Form, Bt8®8 (Abhandlung | of this collection), |
have treated the algebraic nature of this transformafidrere, | likewise brought under consideration the
case that was excluded from the present paper of comptéxescond degree, and presented the
corresponding equation of the canonical form.
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When the new variables that were introduced in pla¢keobriginal line coordinates
are set equal to zero they represent linear compleaesdh be grouped with each other
in a distinctive way. In regard to this, one arrangedities in space into systems of 32,
while the planes and points in it can be arranged yatems of 16 planes and 16 points,
respectively. The relationship of the 16 planes and 16 pofrgsich a system to each
other is the same as that of the 16 double plane and 16 doutie @oany surface of
fourth order and fourth class.

The fundamental meaning of these linear complexes hercomplex of second
degree is that the relationship with the complex of s@abegree is the same for all
elements that are associated with each other by noédahe linear complex. The same
statement that is true for the complex of second degrigee for the surface of fourth
order and fourth class that it determines. A serigbaxfrems follows for any complex,
as well as for these surfaces.

The algebraic representation of the picture that geserfrom these geometric
considerations is fashioned quite simply. In particuthg family of complexes of
second degree that belong to the same surface of forndr and fourth degree is
represented by an arbitrary parameter in the same waygstem of confocal curves or
surfaces of second degree.

Let it now be remarked that we shall mostly draw upoe of two mutually
reciprocal theorems without expressly referring to tihermoone.

l.
Preliminary considerations.
1. Let the coordinates of two points of a line be techdy:

X1, X2, X3, X4,
Y1, Y2, Y3, Ya,

and the coordinates of two planes through the same line by:

U1, U2, Uz, Ug,
V1, V2, V3, Va.

One then considers the coordinates of the line todddterminants:

Pk =X Yk —VYi X,
or the determinants:
Ok = U Vk—Vi Uk .
One then has:
Pk +Pi =0, Ok +0k=0.

Following Plicker, one calls the coordinafgsray coordinatesand the coordinates
Ok axis coordinates.
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If we understandr, S, y; oto be the numbers 1, 2, 3, 4 in an arbitrary sequence then
we have the following identities:

P = Pag Pys+ Pay Pas + Pas Psy = O,
Q=0up 0wt daydep+ Jas sy = 0,

which may collectively be denoted by the symbol:

R=0.
In this notation, one has:

0 oP
,ODikZ—Q, '
aik

wherep means a proportionality factor.
A line whose coordinates ap§”, g™ will be denoted byr(?) in what follows. We

will write r{” instead ofp{”, g\ in those cases where the difference between ray and
axis coordinates is irrelevant.

2. Assuming these notations, one can write the comdibo two lines ), (r') to
intersect in the following equivalent forms:

oP' oP
E ., —— =0, E  —— =0,
p|k aplyk p|k aplk

oQ , 0Q
E L ——=0, E L —= =0,
q|k aqiy O q|k aqik

k

Z P d =0, Z Py G = 0.

Three lines 1), ('), (r") that intersect each other have either a point oraaepin
common. Depending upon whether the one or the othetisih exists, the second or the
first factor of the four products:

> 0,0, B D% Bs B B,

will vanish, respectively, products that can be represkint any of the following forms:

D PPy B D% 0, 4, s
200, D %4, 4, 4y,
Ziqw%ﬂqf’fy Ei 9/5 Qi(f gfy'

If (r), (r"), (r") are lines that go through a point in the same plane afleof the
coordinates of the same three-rowed determinants defingddayish, and one can set:
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Fik = Al + 40 .

Let (r), (r"), (r") be lines that lie in a plane or go through a point. ddwrdinates of
an arbitrary line r) that lies in that plane and goes through the same poihbe
representable by:

m

Mk = /]rik TG UG

3. When the coordinates of a line in the expresR@me replaced with the constants
that enter into the equation of a complex of first degkvhat results is an expression that
does not generally vanish, which might be called ithariant of the complex. The
vanishing of it expresses the idea that the complex swssithe totality of all lines that
cut a fixed line whose coordinates are the constantseofdmplex, so the complex is a
so-calledspecialcomplex.

Let the termsimultaneous invariant of two linear complexeger to the expression
that arises when one introduces the constants ofihearl complexes into the bilinear
expressiorR.

The vanishing of the simultaneous invariant of two cexgpd expresses a
relationship between them that might be referred towadution

If two linear complexes are special then the vanishithesimultaneous invariant is
the condition for the lines that represent them tersect. If only one of the two
complexes is special then the vanishing of the simudtasénvariant expresses that the
lines that represents the one of them belongs to biee complex.

In the following, let it be assumed that none ofd¢bmplexes under consideration is a
special one.

All lines that belong to two linear complexes simoéiausly intersect two fixed lines,
namely, thedirectrices of the congruence that is determined by the two coaspléxhe
two complexes lie in involution then any two points tbatrespond to an arbitrary plane
in them will be harmonic to the two points at whick fflane cuts the two directrices. If
one lets a plane rotate around a line that is commdotio complexes then the point-
pairs that correspond to the plane in its various postare in involution on this line.
Each of the two points that are determined by the twoptexes in an arbitrary plane
then corresponds to yet a second plane by them. This isléine same for both points.

The planes and points of space can be arranged into groups of two planes and two
points that lie on the intersection of them by means of two linear egespthat lie in
involution.

By means of three linear complexes that are mutually in involutiomlémes and
points in space group together into tetrahedra that are conjugate to each othiara¢b
the surface of second degree that is determined by the three lipdeges1 The three
points that correspond to a face of such a tetrahedron in the three complexdse
three corner points of the tetrahedron that lie in them; convertedythree planes that
correspond to a corner point are the three faces that go through it.

4. The line coordinates, represent the moments of the line that is to be hted
with respect to the six edges of the coordinate tedralmewhen they are multiplied by
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certain (not completely arbitrary) constants. We aslatwhe meaning might be of a
general linear transformation of the line coordinates.

The introduction of linear functions of the line coordinates in place ofethes
coordinates comes down to considering the determining data of a line to im@thents
of it relative to the six given linear complexes when theynau#tiplied by arbitrary
constants?)

When one introduces the new variables that come aboatlibgar substitution into
the identity that exists between the original line dimates, one obtains a new
expression of second degree in these variables that baghtice more denoted Byand
whose vanishing is the necessary and sufficient conditiat six, otherwise arbitrarily
given, values of the variables can relate to a straime.

This expressiorR has entirely the same meaning as the one that isedeby the
previous coordinates. Everything that was true for the queviay and axis coordinates
is now true for the new coordinates and partial diffded quotients oR that one takes
with respect to them.

The form ofR immediately gives us information about the types @mntual positions
of the complexes that are at the basis of the coatelitletermination.

In particular, it is clear that wheR includes only three terms, as would be the case
for the original coordinates, the new variables woukkngally be the moments of the
line that they determine relative to the edges of altettron.

.
The system of six fundamental complexes.

5. The detailed normal form for equation for the cometerf second degree that
was mentioned above leads to the examination of thoearlfunctions of the linear
coordinates in which the equation of condit®s O can be written as the sum of squares
that are multiplied by suitable constants. When setetm, they represent six linear
complexes that can be callde six fundamental complexes.

Let them be denoted by:

X =0, X2 =0, X3 =0, X4 =0, Xs = 0, X6 =0

and the symbat is thought of as being multiplied by constants suchttte@equation of
condition can be written in the following form:

(1) X+ + X+ X+ X+ X=0.

The system of variables depends upon 15 constants.

%) [The formulation in this paper has been altered sdmeim hindsight, corresponding to the remarks
that were added in the beginning of the next Abhandlungtilich we point out here. K]
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The invariant of a linear complex:

aXgtaXo+...+ax%=0
is represented in it by:

a12 + az2 .o 4 aé,
and the simultaneous invariant of two linear complexes:

X taX+ ... +agXs =0,
bixg+boXxo+ ... +bgXs =0
is represented by:
ab+ab,+ ... +agbs.

It next follows from this that the multipliers dfex can be chosen in such a way that
the invariants of all fundamental complexes equal tisitige unit. It further follows that
the simultaneous invariant of two arbitrary fundamectanplexes vanishes.

Any two of the six fundamental complexes lie in involution.

The equation of condition:
R=0,

that one finds to exist between the original line cootdmaubsumes the three products
of any two of the six variables when they are grouped pigie-wif they are transformed
by means of aeal linear substitution in such a way that it includes ong shuares of
the variables then one must find just as many positivenagdtive squares among them.
Insofar as the sum of the squares of two conjugateimaagexpressions is equivalent to
the sum of a positive and a negative real square, thisytie¢ following®)

There can be an arbitrary (even) number of the six fundamental comphlexese
imaginary.

The symbols x that correspond to real fundamental complexes are chcseshia
way that half of them include real coefficients and half of them,ipaginary ones.

From this, one gets:

The real fundamental complexes subdivide into two equally numerous grobps.
complexes of the one group are right-handed and those of the other are left-anded

The six fundamental complexes may be denoted simpthdyumbers 1, 2, ..., 6,
and it remains undetermined whether one finds imaginanesg them or not.

% [In the presentation of this paper, it is not sigfitly clearly expressed that only such linear
substitutions should be considered for which the compleyugates enter into the newly introduced
expressions at the same time.]

®)  Pliicker,Neue Geometriao. 47.
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6. The directrices of the congruence of the two funddaaiecomplexes (1, 2)
obviously have the coordinates:

pPX1=1, PXo =%, PX =0, PX =0, PX =0, PX=0.

The directrices of the congruence of two fundamental complexes beloig to t
remaining four fundamental complexes.

The totality of lines that cut an arbitrary one & tivo directrices is represented by:
X+ =0,
or, what amounts to the same thing, by:
XK+ X+ K =0,
The six fundamental complexes determings&2 = 15 linear congruences, whose 30
directrices are correspondingly grouped into a distiactvay. When the directrices of
the congruence (1, 2) belong to the complexes 3, 4, He§, will be cut by the 12

directrices of the 4B/2 = 6 congruences that are determined by them.

Any two of the 30 directrices that are grouped together will be cut bgf iBe
remaining ones.

The directrices of one of the three congruences (1324), (5, 6) will be cut by each
of the directrices of the other two congruences.

The directrices of such three congruences that together depend upon all six
fundamental complexes define the edges of a tetrahedron.

In harmony with this, the equation of condition:
R=0
when it is written in the following variables:

Y1 =X 41X, Y3=Xs+ | X4, Y5 = X5 +1 X,
Yo = X1~ i Xz, Ya=Xg— i Xa, Y6 = X5 — I Xs,

which, when set to zero, represent the directrices istmun takes the characteristic form
for the edges of a tetrahedron:

YiY2 +Ya3Ya+YsYes=0.

The totality of lines that lie in a face of the &dtedron or go through a corner point of
it is represented by:
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K+ =0,
K+ X2 0,
K+ =0,

When one divides six elements in 15 different ways thtee groups of two, the 30
directrices define the edges of 15 tetrahedra. The é&strahmay be called the
fundamental tetrahedraThe corner points and faces of these tetrahedralladifferent.

Any two directrices of the same group belong to thretheffundamental tetrahedra
as opposite edges. The twelve directices that cutvbien question are the remaining13
4 edges of this tetrahedron. These three tetrahedramitetesix pair-wise grouped
points on each of the two directrices. When the fundémheomplexes are mutually in
involution, two arbitrarily-chosen pairs of the threee mutually harmonic. An
analogous statement is true for the six faces ofainattedron that intersect an arbitrarily-
chosen one of the two directric®s

If one is given any of the 15 fundamental tetrahedra the remaining fourteen of
them divide into two groups of six and eight. The tettha of the first group have two
opposite edges in common, while those of the second gmuaptd

7. The six directrices (1, 2), (3, 4), (5, 6), which defan¢etrahedron, have the
following coordinates:

XX X X X X
[ 1 0 0 0 0
€.2) .
|1 - 0 0 0 0
n |0 0 1 0 0
(3.4) .
vV | O 0 1 - 0 0
V| o 0 0 0 1
(5.6) .
VI | 0 0 0 0 1 -

Which of these three mutually intersecting dirieets have a point in common and
which of them have a plane in common can only lmadee when the explicit expression
for the variablesq, ..., Xs is given in the original line coordinates. Ifrpaps, I, lll, V go
through a corner point of the tetrahedron theiM] VI lie in the opposite face. Whether
three mutually intersecting lineg, (X, xX") have a point or a plane in common is then

® It emerges from this that the three tetrahedra tha haw opposite edges in common can never be

real. Relative to the reality of the picture that emte here, one must above all make the following
remark: Either all of the six fundamental complexesraed or two, four, or all of them are imaginary.
Corresponding to these assumptions:

18, 10, 6, 6
are the 30 directrices and:

6,2,1,1
are the 15 real fundamental tetrahedra.
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determined, as described the above, according to whethérsther the second of the
following two expressions vanishes:

XTI XF X, X+ iXg

XHiK, XHiX, At X,
XX, XtiX, Xt iX

X - in X~ iX4 X5~ ixe
X —iX, X-iX, X%-iX].
X=X, XX, X— Xy

One then has to change the sigmiofany two columns simultaneously.
One obtains similar criteria relative to each leé fourteen remaining fundamental
tetrahedra.

8. Through each of the 60 corner points of the 15 fundarmssttahedra go, in
addition to the three associated faces, 12 more of tHad®3, which are divided into
three groups of four that intersect relative to onthefthree directrices that goes through
the corner point. Each of them intersects one ®fthinee faces that are associated with
the corner point in a new line. The point at whicantounters the directrix that lies on
the third of these faces is one of the 59 other commiety

One such line is the following:

Xk X XK X X%
O 0 1 i 1 i°

It is the connecting line between the two corner points

(X1 + Xz, X3 + X4, X5 + Xg),
(X1 — iXz, X3 + iXa, X5 + iXg),

and the intersecting line of the two face planes:

(X1 — iXz, X3 + X4, X5 + Xe),
(X1 + Xz, X3 + iXq, X5 + iXg).

Such lines go through twelve of the assumed corner politere are then:

12060 _ 360
2
of them, in all.
The 12 face planes, which go through one corner poirgddfition to the three
associated ones, and which are divided into three bunéifesir, intersect any three of
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the 16 remaining lines that include two corner points intaahdto the assumed one. In
fact, the line:

X XK X X X X%
1 i 1 i 1 i
includes the three corner points:

(X1 + Xz, X3 + X4, X5 + Xg),
(X1 + iXa, X3 + iXe, Xs +iX2),
(X1 + X, X3 + iXz, X5 + Xa),

and lies in the face planes:

(X1 + Xz, X3 + iXe, X5 + iXs),
(X1 + iXa, X3 + iXz, X5 + Xg),
(X1 + X, X3 + Xa, X5 + iX2).

There are 1650 / 3 = 320 such lines.
In the foregoing considerations, the words “corner poamt “face plane” can be
exchanged everywhere.

The 30 directrices of the 15 congruences that are determined by the 6 futalame
complexes are the edges of 15 (fundamental) tetrahedra.

15 face planes go through each of the 60 corner points of the fundamental tetrahedr
15 corner points lie in each of the 60 face planes.

There are 360 lines that include two of the 60 corner points of the fundamental
tetrahedra. These lines define the intersection of any two tdicbelanes.

There are 320 lines on which lie any three of the 60 corner points diridamental
tetrahedra. Any three of the 60 face planes intersect along tinese li

The 30 directrices of the 15 congruences that are determined bix thendamental
complexes include any six of the 60 corner points and are the intersettmy six of
the 60 face planes.

The six corner points, as well as the six face planes, are groupedeach other
pair-wise. Any two pairs are mutually harmonic.

9. Any three of the fundamental complexes — for example2, 3 — determine a
surface of second degree by means of the lines of theigenerator. The directrices of
the congruences (2, 3), (3, 1), (1, 2) are lines of tleersk generator. Since these
directrices belong to the complexes 4, 5, 6, it is dlearthe complexes 4, 5, 6 determine
the same surface of second order by means of the liitssother generator.

60504 1

The six complexes may be divided into two groups adehn D?EBG_Z = 10 ways.

Any two associated groups determine the same surface of second lolegresans of
their different generators.
The ten surfaces thus defined may be called theutretamental surfaces.
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Any two associated directrices of the 30 total belondotor of the fundamental
surfaces as generators. The pair (1, 2) of directtiwas lies on the surfaces (1, 2, 3), (1,
2,4), (1, 2,5), (1, 2, 6). As for the remaining six fundatal surfaces, the directrices (1,
2) are mutually conjugate polars.

The fundamental surfaces divide into two groups relatvene of the fundamental
tetrahedra. The six surfaces of the one group include @anydf the six tetrahedral
edges, so the tetrahedron is conjugate to itself relatitiee surfaces of the other group.

In order to represent the fundamental surfaces — a8, 8)= (4, 5, 6) — one can use
the condition that says that a line must contact tinfase; in other words, the complex
equation of the surfac®.

This will be:

X4+ % =0,
or, what is obviously the same thing:
X+ K+ %= 0.

10. The lines of space and the planes and points in it may be grouped into closed
systemselative to the six fundamental complexes, in a way ithaimilar to the way that
was the case for the planes and points relative todwthree complexes that lie in
involution.

Now, let a line be given whose coordinates are:

ai, a, ..., a6 .
Therefore:

aiz+azz+...+a§ =0.

Since this relation remains fulfilled for any arbitraryoice of signs of the coordinates,
one finds that each of thé 2 32 sign combinations:

ta,xta, ..., ta

corresponds to a line. The relationship between the 32 dind each other is obviously
mutual.

The lines of space group together into 32 groups relative to the six fent&Em
complexes.

7) If 3, fo, f3 are three linear complexes,;, Ay, Ags, their invariants, andy;, etc., their simultaneous
invariants then the complex equation that they determitiee hyperboloid:

0 f, f, f
fi An A A
fo Ap Ay Ay
fa3 Ay A Ag

0=
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When one forms the two-rowed determinants accorairtge schema:

XX %K% X X %
ta, *a, ta, *a *g *

and then sets them equal to zero, one foresees imelgdlzt of the 32 lines:

2[115 (?) 16 belong to a complex,
420 (?) 8 belong to a congruence,
815 (?) 4 belong to a surface of second degree,

from which, each of the 32 lines lie on 15 of the comEe®€ of the congruences, and
15 of the surfaces of second degree.

The 32 lines divide into two groups of 16, according tothéretheir coordinates
possess an even or odd number of equal signs, respectivéhen a plane curve is
generated by a line of one of the two groups, an analogtusien prevails for the
remaining 15 lines; the 16 lines of the other group generaescon

By means of an arbitrary line of the one group, theslinghe other group divide into
ones that are its conjugate polars relative to théusidamental complexes and the ones
that are its conjugate polars relative to the ten fundéahsurfaces. The coordinates of
the former six differ from the coordinates of the s line by a change of sign, and
those of the latter ten, by three.

When the six fundamental complexes are found frongaaten of sixth degree, the
equation of degree 32 by which one determines a system sf Boeh as we have
considered here, requires only the solution of equatibssamnd degree.

The system of 32 associated lines simplifies as lormpa®r more of the coordinates
a are equal to zero. In particular, the lines that nussociated pair of the 30 directrices
correspond to 8, those that are generators of one déth&indamental surfaces, to 4,
and finally the 30 directrices themselves, to 2.

11. Let the equation of the projection of a point intcadnitrarily chosen plane of the
complex:
X=0
that corresponds to one in the coordinate planes be:

au+bv+aow=0.

Then, as a result of the equation of condition:

)(12 + X22 oo )é: 0
the expression:

Y (au+hv+ g W
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vanishes identically. Therefore, the following determinan

a ¥ ¢ hbg ga afy
a, ¥ ¢ bc ca ay

aa ¥ ¢ hg ¢a al

also vanishes, which says that the six points 1, 2, .ie,dhla conic section:

The six points that correspond to an arbitrary plane in the six fundamesmtgllexes
lie on a curve of second order.

The six planes that correspond to an arbitrary point in the six fundanm=nmtadlexes
envelop a cone of second class.

When the arbitrarily chosen plane goes through onkeo60 corner points of the 15
fundamental tetrahedra, the hexagon that is defined f five points that correspond to
the fundamental complexes will become a Brianchon dmxa A tetrahedral point
becomes a Brianchon point. The hexagon includes thwedt resp.) Brianchon points
that lie in a line when the arbitrarily chosen planatains 360 (320, resp.) of the lines
that belong to the system of fundamental tetraheditae number of Brianchon points
becomes four when the plane is laid through one 038@elines and one of the 320 lines
that intersect it.

When the arbitrarily chosen plane contacts one etéh fundamental surfaces then
the six points that correspond to the fundamental cexagl lie in such a way that three
of them lie on each of two linesnamely, the two generators of the fundamental surface
that includes the plane. If the plane goes through otieeo30 directrices then four of
Six points move onto the directrices, while the otiagr come together at the intersection
point with the associated directrix. Finally, if thane overlaps one of the faces of the
fundamental tetrahedron then the six points move paewnto three associated
tetrahedral points.

12. Let the six points that correspond to a given plan¢he six fundamental
complexes be denoted by:
1,2, 3,4,5,6.

Each of these points corresponds to five planes, iniaddd the given one. As long as
the plane that corresponds to Xiragrees with the plane that belongs to % jrthere are
15 new planes in all that cut the given one along theohfexrting lines of the six points
with each other. The three planes (2, 3), (3, 1), (IntB)ysect (cf., no. 3) at the pole of
the given plane relative to the fundamental surface2(13). Since this surface is
identical to the surface (4, 5, 6), the planes (5, 6), (§44p) intersect at the same point.
The six planes that correspond to this point in théusidamental complexes:
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X1, X2, X3, X4, X5, X6
coincide with the planes:

(2,3), (3, 1), (1, 2), (5. 6), (6, 4), (4, 5),

which in fact envelop a cone of the second class, asivesnérge from the consideration
of the hexagon 123456.

Relative to the fundamental complexes, the planes and points of space gooup int
closed systems of 16 planes and 16 points. Six of the 16 points liehirofetde 16
planes, and six of the 16 planes go through each of the 16 points. The sixrpaints
plane lie on a curve of second order, while the six planes through a poihb@aveone
of second class.

When one of the 16 planes is given, one finds the 16pwainén one constructs the
points that correspond to it in the six fundamental dergs and the poles that are
conjugate to it relative to the ten fundamental surfaces.

The system of 16 double planes and 16 double points of the surfaces of fourth order
and fourth class that Kummer investigated is of the type that is eveditiere’).

If one of the 32 lines that are associated relativehéofundamental complex lie in
one of the 16 planes of such a system then the 15 lirtbatcsame group distribute onto
the 15 other planes and the 16 lines of the other grouglmntts points. In particular, if
the chosen line contacts the conic section that li¢seiplane in question then one finds
it among the 15 lines of the same group, and the 16 line® aithier group are faces of
the cone that go through the 16 points.

The 32 associated lines are distinguished by the sigiiseaf coordinates. This
remark immediately gives the notation for them inmrof five indices that are chosen
from two different values. The 16 planes and 16 pointseo$yistem considered here can
be denoted in a similar way. The 16 planes corresponbetdines of the one group,
while the 16 points correspond to the lines of the otheremerges from this that the
equation of degree 16 that determines the 16 planes igdistied from the equation of
degree 32 that we just considered only by the fact that aestpiat in it is assumed to be
known.

If one of the 16 points of the system considered hesarniene of the 16 planes of an
arbitrary system, then an analogous statement is aruéhé remaining 15 points, and
each of the 16 planes includes one of the 16 points ckitend system.

The 16 planes of a system intersect i 16 / 2 = 120 lines, which are likewise the
connecting lines for the 16 points. They divide into I&ugs of eight each. The lines of
one group belong to the same two fundamental complerdstlaus both of the
corresponding directrices have common transversalbis Jives one the means to
construct the 30 directrices and the 15 fundamentalhedra from the system of 16
planes and 16 points.

The 16 planes of the system intersect in three oR#fepoints, which lie on six of
the 120 lines of intersection, in addition to the 16 podfitéhe system. Likewise, there

8 Monatsberichte der Berliner Akademie, 1864.
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are 240 planes that include three of the 16 points of tersy They intersect in six of
the 120 lines of it.

If one of the 16 planes of the systems has a disshgdiposition with respect to the
six fundamental complexes then an analogous statemenieisfor the remaining 15
planes and 16 points. We especially emphasize thensyhtd arises when one of the
planes includes one of the 60 corner points of the fundametrahedra. Then, four of
the 16 planes go through the corner points of the tetrahie question and four of the 16
points lie in the faces of them. The system becotnessystem of singularities of a
tetrahedroid®). The equation of degree 16 that determines the plané® msystem is
algebraically soluble here, since all that is require I the solution of a biquadratic
equation and several quadratic ones.

The Kummer surface and its connection with complexes
of second degree.

12. Let the following equation be given as the equatiothefcomplex of second
degree to be examined:

) k$ + kX +-+ kX = 0.
Therefore, one has:
(1) )(12+X22+---+)§:0,

such that the complex remains unchanged when one ggneridisk, + A instead ok, .
The four constants that are thus included in equationo@@ther with the 15 constants of
the fundamental complex, give the 19 constants ofdhgplex of second degree.

The for of equation (2) says ththe given complex and all of the geometric structures
that immediately depend upon it correspond to each other relative toystersof six
fundamental complexé$.

Therefore, the lines of the complex then group intbesys of 32. 16 complex curves
and 16 complex cones belong together, etc.

From this last theorem, one derives the theoremwiibtliscussed in the sequel on
the basli§ of the properties of the complexes of skcmyree that were developed by
Plucker™).

14. Those points whose complex cone decomposes into a p&in— the so-called
singular points— define a surface of fourth order and fourth class witddifble points

®)  Cayley, in Liouville’s Journal, 11 (1846). (Coll. Pager. |, 302-306.)

9 This mutual correspondence can also be regarded beingtetedly the ten fundamental surfaces,
instead of the six fundamental complexes.

) Julius PliickerNeue Geometrie des Raumes, gegriindet auf die Betrachtung der geiralerals
RaumelementB. G. Teubner, Leipzig, 1868, 1869.
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and 16 double planes. This surface will be envelopedimyular planeswhich are
planes whose complex curve has resolved to two piitke syster?).

Such a surface shall be calledkammer surfacan what follows. It is called the
singularity surfacan relation to the complex.

The reasoning that follows immediately examines themker surface as such,
regardless of its relation to the given complex.

A Kummer surface corresponds to itself relative to the systesix dindamental
complexes.

Let the relevant fundamental complex8sbe denoted by, %, ..., Xs, @s before.
An equation of fourth degree serves to determine tlgetdial planes that go through
a line:
adi, dg, ..., 36

on a given Kummer surface. That equation can include trdysquares of the
coordinatesa *%). Therefore, the four tangential planes that goubh any of the 32
lines:

iala ia21 ---1ia61

are all determined by the same biquadratic equation.

The four tangential planes, which can go through tiergiines that lie on the
surface, are reciprocally associated by the surfacethatfiour intersection points of any
of the 16 lines of the other group. It follows from thisd the foregoing that the same
equation determines the tangential planes that go throughnegngnd the intersection
points that lie on it.

»
)

Plicker,Neue Geometrieo. 311, 320.
For the Fresnel wave surface, which is derived frioenetlipsoid:

2R+ +EZ =1,
the fundamental complexes are the following ones:

(yZ —y2) +aJ-1 (x-x) =0, ¥Z-y2) - aJ-1 (x-%) =0,

(zX —2x) +bV-1 (y —y) =0, X —2x) - bv-1 (y-y) =0,

(Xy —Xy) +c/-1 (z-2) =0, &y —Xy)— cJ-1 (z-2 =0.
% This assertion is true in its own right, althoughaismot established in the present article. The basis
for it must be derived tediously form the algebraic dgumlents in section 1V, so it is omitted here. — |
originally proved the theorem of the equality of anharmoaios, to which the argument is directed, by
the same method that was later developed by A. Vottwitreatise: “Uber Komplexe und Kongruenzen,”
Math. Annalen, Bd. 9 (1876), and then went on to show that, (8nto (10), pp. 79, an arbitrary line
belongs to one (and, in turn, four) complexes of secondeddfat have the same singularity surface. In
my note: “Uber Pliickersche Komplexflache” (see Abhangllhof this collection), | gave another proof
that connects up with the properties of the general coowlrfaces that Plicker himself found in a more
elementary way. — As for the discovery of the theonmmreover, this brings up the fact that v. Staudt has
presented a similar theorem for the tetrahedron, arccan regard the tetrahedron (as the totality of four
planes and four corners) as the most degenerate cas€uafimer surface. K]
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The anharmonic ratio of the four tangential planes that can go through a line on a
Kummer surface is equal to the anharmonic ratio of the four intecsepiints of that
line with the surface.

15. Let a point of a Kummer surface be given. One dsrvsystem of 16 points and
16 planes from it by means of the six corresponding fuedéamhcomplexes. The points
are points of the surface and the planes are planesldkewise, the tangential planes to
the given points correspond to a system of 16 planed@mmbints of the surface. The
two systems have the reciprocal relationship that & pdione of them lies in each plane
of the other that is the associated contact poihtfollbws from this that the six lines
along which a plane of one of the systems will irdershe six associated contact points
in the planes of the other system, not only in allh@f common points but will also
contact one of those six points that correspondsdahiosen plane in the fundamental
complexes. These lines are also double tangents sutfaee. This yields the following
theorem:

Once the fundamental complex that is associated with a Kummer susface
determined by an equation of the sixth degree, one can rationally dericedrginates
of 32 points, 32 planes, and 96 double tangents to the surface from the coordirates
point (or plane) of the surface.

The six tangents that can be drawn from the contact points of a plame Kkummer
surface to the intersection curve that lies in it contact ithat $ix points that lie on a
conic section that corresponds to the chosen plane in the six fundamentah@smnple

The 28 double tangents to any plane intersection curve of a Kummer sdifaize
into two groups of 16 and 12. The double tangents of the first group are thseati@ns
of the plane of the curve with the 16 double planes of the surface.1ZTdeuble
tangents of the second group separate into groups of two. The six poifilattve
various pairs intersect relative to the lines are the six poimas lie on a conic section
that corresponds to the curve in the six fundamental complexes.

The double tangents of a Kummer surface define six different congrusintes
§econd order and second class, each of which belongs to the six fundamentake®mple

16. Distinguished among the systems of 16 points and 16 plahéhe Kummer
surface that are associated with the six fundamentaplexes is the system of 16 double
points and 16 double planes of the surface. In this daseystem of 16 contact curves
and 16 contact cones enters in place of the asso@atemhd system. The 96 double
tangents will be replaced with the 96 bundles of lin@s ¢o through one of the double
points in one of the double planes.

The determination of the singularities of a Kummer surface depends upsoiutien
of an equation of sixth degree and several quadratic equatfpns

% Cf., Kummer, Abhandl. der Ber. Akad., 1866.
%) C. Jordan in Crelle’s Journal, Bd. 70 (1869).
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In order to find the fundamental tetrahedra from thegudarity system of a Kummer
surface, one must construct the 30 lines that cut eigiftecf20 intersection lines of the
16 double planes.

The surface may be constructed when one of the doubteglaf the Kummer
surface is known in addition to the six fundamentahplexes'’). Then, when all of the
16 double planes of the fundamental complex and the coruagts in them are given,
one knows, by the construction of any plane intersectiowe of the surface, 16 double
tangents and the contact points on it.

If the given double plane contains one of the 60 copo@nts of the fundamental
tetrahedra then the associated Kummer surface becotagalaedroid.

A tetrahedroid is characterized by the fact that the six double pointdi¢hat a
double plane define a Brianchon hexagon.
The singularities of a tetrahedroid are algebraically determinate.

17. We now return to the consideration of the completesecond degree.

Those lines that are the intersection lines of ttamgs into which a complex cone
has resolved, or what amounts to the same thinghose lines that are the connecting
lines of two points into which a complex curve decomppaee thesingular linesof the
complex. They define a congruence of fourth order andHaclass. The singular lines
contact the singularity surface of the complex. Th&taxt point is called thassociated
singular pointand the contact plane is thssociated singular planeThe complex cone
whose center is the associated singular point restividee two tangential planes of the
singularity surface that go through the singular line, initexdto the doubly counted
associated singular planes. Correspondingly, theplexmcurve decomposes in the
associated singular plane of the system into two ptinatisare common to the singular
Iligue and the singularity surface, along with the doubly tediassociated singular points

).

The complex curve that lies in an arbitrary planatacts the intersection curve of
fourth order of the plane with the singularity surfacdoiur points. Common tangents to
both curves at these points are the four singular timeslie in the plané®).

Which of the tangents to the singularity surface givan point of it belongs to the
given complex as a singular line is not determined bystineace itself. It can be chosen
arbitrarily from the simple infinitude of tangents asigular line; this would then leave
an associated complex uniquely determined. From the aesbsmgular planes, one
derives a system of 16 singular planes by means oftHersiamental complexes. As
long as the two points into which the complex curve dgmuses for a singular plane are
determined by solving a quadratic equation, the correspondingspoithe remaining
planes are known. Six of the complex lines that gougih one of the intersection points
of three of the 16 planes are then given, and for tlzesorethe complex cone for these
points is linearly constructible. When these intersecpoints lie on six of the 120

) If one lays the double plane through one of the 328 linat include three of the 60 corner points of
the 15 fundamental tetrahedra then one obtains a sutfat corresponds to the model in the Kummer
citation (Monatsberichte der Berl. Akad., 1864).

18 PliickerNeue Geometrigo. 317.

%) PliickerNeue Geometrieo. 318.
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intersection lines to two of the 16 planes, one knowsctiraplex surfaces that are
associated with these lines. By the construction ofcthraplex curve that lies in an
arbitrary plane, one can then have 240 tangents at dispgsal.

If a Kummer surface and a line that lies on it are given then one carrucina
unique complex of second order that has the surface for its singularipceuwshd the
line for its singular line.

A Kummer surface is the singularity surface for a simply iafifatnily of complexes
of second order.

A Kummer surface depends upon 18 constints

If the given line is a double tangent to the surface tienassociated complex
degenerates into the doubly counted fundamental linear eantpat belongs to the
double tangents.

The doubly counted six fundamental linear complexes also belong to the family of
complexes of second degree that have a given Kummer surface feinglodarity
surface. One can regard the double tangents of the surface that associhtetickhi a
complex as its singular lines.

18. Among the singular lines of the given complex, thesothat osculate the
singularity surface are distinguished. The tangentega@dntact points all belong to the
given complex.

If a Kummer surface and a line that contacts it is given then theraraegldition to
the complex that was just constructed, two more complexes thatthesirface for
singularity surface and include the line (but not as a singular line). Sangjokes at the
contact point with the given surface are the two principal tangents apdimg for this
complex.

From the construction of such a complex, one can detdrmine the two principal
tangents at the contact points by a quadratic equatide tWo points into which the
complex curve resolves in the associated singular glenthen given linearly.

In addition to the four doubly-counted singular lines, tlenglex curve in an
arbitrary plane has 4 [B — 2[4 = 16 tangents in common with the intersection curve of
fourth order of the singularity surface that lies in $hene plane. The contact points of it
with the intersection curve of the singularity surfacethose points at which the chosen
planes of the curve will be cut by those points of tingwgarity surface at which the
associated singular line coincides with a principal tangen

The curve of the singular point whose associated singular lines osculate the
singularity surface is of order 16.

19. Let a Kummer surface and an arbitrary line be giveour Blanes of the surface
go through the line and four points of the planes lieheriine. The biquadratic equation

2 This agrees with the enumeration that was giveKuymer.
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that determines the four planes is the same as theéhah&etermines the four points.
Correspondingly, one can associate the four plandsthé four individual points, and
indeed, in four different ways. One deduces which typessd@ation one should choose
in one of the planes by the contact point with the Kuem surface and the associated
point of a line. The complexes that have the given Kemsurface for the singularity
surface and the line that was constructed for their &Enigg line obviously include that
given line.

One may construct four complexes that have a given Kummer sudiad¢keir
singularity surface and which contain a given line, moreover.

The two points that lie on the singular line thus tmma$ed can be linearly
determined when one of them is known to be an inteosepbint of the given line with
the surface.

If the given line contacts the singularity surface tihen of the four previously
constructed complexes merge together into ones thatthewgven line for singular line.

The tangents of the singularity surface are the lines for which the biquadrat
equation that determines the four complexes that are associated wittpearlines has
a double root.

The complex equation of the singularity surface has the form ofrandisant.

20. The simply-infinite family of the complexes of sedoorder that are associated
with a given Kummer surface determines a system of cestions in each plane of
space that contact the intersection curve of fourthraytithe Kummer surface with the
plane four times. The system is of fourth classac&ithe degenerate conic section can
be regarded as the six corresponding points of the fo@dil complex with their pairs
of double tangents, the system is of orde#2- 6 = 2.

A system of conic sections of fourth class and second order isndetdrby means of
a Kummer surface in any plane of space.

21. The lines of the complexes that run inside afoable planeof the singularity
surface intersect at a point of the contact curvleyTare all singular lines. This point
can be chosen arbitrarily on the contact curve; sso@ated complex is then linearly
determined. If one lets the point go to one of the six @opbints that lie along the
contact curve then the complex degenerates into thosmtamental complexes that
belong to the bundle of lines that go through the doublet poithe chosen plane. In a
similar way, eacldouble pointof the surface corresponds to a plane that contacts the
tangential cone at the double poift

The 16 points and 16 planes correspond to each othavedlatthe six fundamental
complexes.

In general, the lines of the given complexes are aablg tangents of the singularity
surface. This is the case only for the 96 bundles ragjusar lines that go through a
double point inside of a double plane of the surface.

2 Pliicker Neue Geometriano. 321.
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Those 16 singular lines that lie in a double plane ofittgutarity surface and contact
the contact curve of the double plane are the only comjies that contact the
singularity surface at four points. The 16 correspondingugar lines that go through the
double points of the singularity surface are the only cerphes that possess the
dualistically reciprocal property.

22. One of the lines corresponds to a second line golds relative to a complex of
second order. It has a double relationship with the Jatgamely, first, it is the geometric
locus of the poles of the first line with respect tacarves that are enveloped by the lines
of the complex in the planes that go through therd,s&eond, they are enveloped by the
polar planes of the first line relative to all conéattare composed of lines of the
complex at the points of it. This relationship betweles two lines is therefore not
invertible. Except for the lines of the complex tha polar conjugates to themselves,
there is only a finite number of lines that are agaéngolars of their polar).

The polars of the diagonals of the quadrilateral thatefined by the four singular
lines that lie in an arbitrary plane intersect eatieioat a point. This point will be called
the pole of the plane with respect to the complex. It calasiwith the pole of the plane
relative to the singularity surface. — In a similaryyaach point corresponds tgpalar
planerelative to the complex.

The pole of a singular plane is its contact poinhwite singularity surface, so the
polar plane of this point is generally the given singplane.

However, in general, the relationship between plaareb poles, points and polar
planes is not an invertible one. Except for the singplanes and points, it exists for
only a finite number of planes and poifits

23. A given complex of the second degree can be refaiwedny of the 15
fundamental tetrahedra. Its equation then assumdslithing form #%):

qunf + 2A rap T 5+ 2B 1oy lag+ 2C 15t = 0,

wherer refer to either ray or axis coordinates.

If the equation of the given complex of second degree were writtee asordinate
tetrahedron relative to one of the 15 fundamental tetrahedra then, in additidreto t
squares of the variables, only the products of those variables that teldahe opposite
edges of the tetrahedon would appear.

It is easy to see that this form of an equation Fer fundamental tetrahedron is
characteristic. One further deduces:

If the given complex relates to an arbitrary coordinate tetrahedron anchen t
corresponding equation two variables that refer to the opposite edges of tlteneder

2 Pliicker Neue Geometrieno. 299.

2 Pliicker Neue Geometrieno. 3238, 330, 337.
#y Cf., no. 6.
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tetrahedron appear only in the opposite connection except as squares, theelgdsein
guestion are two associated ones from the system of fundamental tetrahedra.

The foregoing form of the equation shows that the oppamiges of the basic
tetrahedron are mutually corresponding polars relatiteeaiven complex.

Of the 30 edges of the fundamental tetrahedra, the ones that are assosliatied to
the complex correspond reciprocally as polars.

The 30 edges of the fundamental tetrahedra are, except for lines ohtb&eges, the
only lines that possess these properties.

From this, one infers:

Of the 60 corner points and 60 faces of the fundamental tetrahedra, the associat
ones correspond reciprocally as poles and polar planes relative to the comple

Except for the singular points and planes, there are no other points and planes that
are reciprocally associated relative to the complex.

Insofar as the behavior of planes, poles, points,pata planes can be regarded as
mediated by the singularity surface, the foregoing tworémas may also be regarded as
expressing properties of the Kummer surface.

24. Investigations that are similar to the foregoing already contained in the
treatise on complexes of second degree by Batt&gliniHowever, the assumptions that
he based it on are generally not sufficient. If wdarstand i to mean either ray or axis
coordinates then he gave the complex of second degree fojiteng equation:

D.a=0,

which possesses three terms less than the previousnombich the complex relates to
one of the fundamental tetrahedra. In fact, it castanly 17 constants, while the
complex depends upon 19 constants. Correspondingly, twtheofsimultaneous
invariants vanish that can be derived from them and theieguatcondition that exists
between the line coordinates.

The complex that Battaglini examined is specifiedH®y/fact that for it the quantities
ki, ko, ..., ks, when augmented by a suitable constant, are equal and tepfm&iach
other. As a result, one of the fundamental tetrahézithe one on which the complex
takes on its simplest form, so it is distinguished frtbwn other ones, and the singularity
surface becomes a tetrahedroid that belongs to thedhéetron (no. 16).

%) Atti della Reale Accademia di Napoli, 3 (1866), as wellGiornale di Matematiche, Napoli, v. 6

(1868).
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V.
Algebraic representation.

25. Let the given complex be determined, as before, bgdbation:

2 kX + kX% -+ + kX =0,
where:
(1) x12+)(22+...+)§:0_

By means of equation (1), it is permissible for the gtiask to increase by an arbitrary
constant with changing the complex.

The singular linesof the complexes are then represerff@dby (1), (2), and the
following equation:

(3 kX +IGg+ -+ kg = 0.

Let (x) mean an arbitrary singular line, so the coordinagg®f( any line that goes
through the associated singular point in the singulareplaat is associated witk)(will
have the form:

4) PYa= Ko+ 0) Xq,

where p is a proportionality factor an@r means a constafdt). The lines that are
represented by (4) may be called #ssociated lineso the singular linexj). The totality
of associated lines to all singular lines coincides \thih totality of all tangents to the
singularity surface.

If the singular lineX) is determined in such a way that the associated lielesg to
the given complex (2) then it osculates the singylasitirface. One then finds the
representation of thesculating singular linesn not only (1), (2), (3), but also the
equation:

) kX +IGx 4+ g% = 0.

The line surface that is defined by the osculating sindirles is of order 16 and class
16.

The 32distinguished singular lineshat lie in one of the double planes of the
singularity surface and contact it along the contacvectinat is contained in it, or go
through a double point of the singularity surface and arergemes of the tangent cone at
it, are determined by the condition that their assediaingular lines are themselves
again singular lines. Their coordinates thus satisfydditan to equations (1), (2), (3),
(5), also the following equation:

(6) kix+ IG5+ + kg5 = 0.

25 Pliicker Neue Geometriano. 300.
2 Pliicker Neue Geometriébid.
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Upon solving this, one finds that:

1
7 2 = ,
) 2% oK)k k) (- )

C.

26. If x4, X2, ..., X6, and o refer to arbitrary parameters that are subje@dations
(1), (2), (3) then an arbitratangent to the singularity surfadge given by equation (4).
By elimination ofxy, Xy, ..., X, this yields:

(8) % +y: +ot Ve =0,
2 2 2
9) Y + Y2 TS EE 0,
k. +o k, +o k,+o
2 2 2
(10) yl + y2 .o+ y6 — 0

(k+0)°  (k +0) (k+0)°

Equation (9) is an equation of fourth degree lier determination of. Equation (10)
says that the differential quotient of equationW@) respect tar vanishes.

The complex equation of the singularity surface is the discriminant ofiexqy8)
with respect tao.

As it must be, this complex equation is of dedi2e

If we understando to mean an arbitrary quantity then equation (Presents a
complex of second degree. It has the singulattfase in common with the given
equation (2). The system of equations (8), (9) ¢(hen remains unchanged wHhenis

generally replaced bﬁl—
a + 0- .

Equation(9) represents the system of complexes of second degree that istassoci
with the singularity surface of the given complex.

Equation (9) is completely analogous to the eguatthat appear in the determination
of confocal curves or surfaces of second order.

If (y) means a given line then equation (9) determineddur associated values af
Of them, two will be equal to each other whghi¢ a tangent of the singularity surface.

The principal tangentsto the singularity surface are characterized gy fdct that
three roots of equation (9) are equal; they are tipgen by (8), (9), (10), and the

following equation:
2

(11) ylz 5+ Y2 3+...+—y§ -=0
(k+o) (k+0) (ks +0)
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Finally, the lines that envelop the contact curves indihgble planes of the singularity
surface, relative to the contact cone at the doublegptiat generate it, are determined
by (8), (9), (10), (11), and the following equation:

2

(12) A Ve oy Ye -0
k+0)  (k+0) (k.+0)

Let any value otrthat corresponds to the system of equations (8), (9), (1D, (12)
be obtained. The lines in the corresponding complethé@)are associated with the lines
thus determined are themselves again singular lines. @bsaciated lines defirthe
totality of the lines that lie in the double planes of the singulattyaces and go through
the double points of themThe coordinates of such a line may then be writtethen
form:

(13) pM=[A H v jn,

+ +
k,*o (k +0)

wherey, is a solution of the equations (8), (9), (10), (11), (12his form remains
unchanged for any value ofthat one might ascribe to it.

It remains for us to determine tdeuble tangentef the singularity surface. For the
six congruences defined by it, one obtains from (9) and (@n one sets equal to
—k1, —ko, etc., in turn:

2 2
y, =0, Y +.. 4 Yo =0,
K, ~k, k=K

(14)
le+ ..+y—§:0

6201 .
7 -k Tk-k

In the same equations, one arrives at (4) whenseteo equal to ki, — ky, etc., and
eliminatesx, from (1), (2), (3).

The conversion of the complex equation that wasurmasd in the foregoing
considerations is, in many cases, not possible ognthe complexes that were excluded
here are the ones that Th. Reye considered, whoss hkre the intersection of
corresponding planes of two collinear spatial syst€®). Such complexes are
distinguished by the appearance of double linespdrd points, and excluded plarids
| think that | will give an overview of the casdsat were distinguished by him at the
soonest opportunity.

%) Reye,Die Geometrie der Lage&. Rimpler, Hannover, 1868.

29 Pliicker Neue Geometriao. 313.
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[Perhaps it would be useful to abstract the following fidm the formulas of section 1V:
While the individual complexeE kx* remain unchanged when one setskifegjual to anyk’ =ak; +
b, the entire family of complexes, and therefore, the Kemsurface that is associated with it, remains
aKk +p . K]
+J

unchanged when one likewise replaceskhavith any sort of linear functions of thke k' = &

Gottingen, 14 June 1869.



