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 One considers the coordinates of the line in space to be the relative values of the six 
two-rowed determinants that are constructed from the coordinates of two points or two 
planes.  Between them, there exists identically a relation of second degree: 
 

R = 0. 
 

The fact that six arbitrarily chosen quantities that satisfy this equation can be regarded as 
coordinates of a line is to be expected from the way that the line coordinates came about 
as the coordinates of two points or planes, and the fact that the line coordinates can be 
considered to be autonomous homogeneous variables that have to satisfy an equation of 
second degree. 
 A further equation of second degree between them: 
 

Ω = 0 
 

determines line complex of second degree. 
 This suggests the problem of converting the two equations R and Ω into two other 
equations that only include the squares of the variables by a linear substitution.  Such a 
conversion is known to always be possible, and in just one way, if one assumes that the 
values of the roots that one obtains when the determinant of the form Ω + λP is set equal 
to zero and solved for λ are all different from each other 2).  The geometrical sense of this 
transformation shall be discussed in what follows.  Insofar as we exclude from 
consideration those complexes of second degree for which the conversion that we spoke 
of is not possible, we shall henceforth think of the two forms R and Ω as being given in 
the simplified form. 
 It is also emphasized that this form of equation is of great importance, not only for the 
complexes of second degree as such, but also for the surfaces of fourth order and fourth 
class with 16 double planes and 16 double planes that are closely related to these 
complexes. 

                                                
 1) Excerpts previously published in the Göttinger Nachrichten, 1869, Session on 9 June, pp. 258. 
 2) In my Inaugural Dissertation: Über die Transformation der allgemeinen Gleichung zweiten Grades 
zwischen Linienkoordinaten auf eine kanonische Form, Bonn, 1868 (Abhandlung I of this collection), I 
have treated the algebraic nature of this transformation.  There, I likewise brought under consideration the 
case that was excluded from the present paper of complexes of second degree, and presented the 
corresponding equation of the canonical form. 
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 When the new variables that were introduced in place of the original line coordinates 
are set equal to zero they represent linear complexes that can be grouped with each other 
in a distinctive way.  In regard to this, one arranges the lines in space into systems of 32, 
while the planes and points in it can be arranged into systems of 16 planes and 16 points, 
respectively.  The relationship of the 16 planes and 16 points of such a system to each 
other is the same as that of the 16 double plane and 16 double points of any surface of 
fourth order and fourth class. 
 The fundamental meaning of these linear complexes for the complex of second 
degree is that the relationship with the complex of second degree is the same for all 
elements that are associated with each other by means of the linear complex.  The same 
statement that is true for the complex of second degree is true for the surface of fourth 
order and fourth class that it determines.  A series of theorems follows for any complex, 
as well as for these surfaces. 
 The algebraic representation of the picture that emerges from these geometric 
considerations is fashioned quite simply.  In particular, the family of complexes of 
second degree that belong to the same surface of fourth order and fourth degree is 
represented by an arbitrary parameter in the same way as a system of confocal curves or 
surfaces of second degree. 
 Let it now be remarked that we shall mostly draw upon one of two mutually 
reciprocal theorems without expressly referring to the other one. 
 

I. 
 

Preliminary considerations. 
 

 1.  Let the coordinates of two points of a line be denoted by: 
 

x1, x2, x3, x4, 
y1, y2, y3, y4, 

 
and the coordinates of two planes through the same line by: 
 

u1, u2, u3, u4, 
v1, v2, v3, v4. 

 
One then considers the coordinates of the line to be the determinants: 
 

pik = xi yk – yi xk , 
or the determinants: 

qik = ui vk – vi uk . 
One then has: 

pik + pki = 0, qik + qki = 0. 
 

 Following Plücker, one calls the coordinates pik ray coordinates and the coordinates 
qik axis coordinates. 
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 If we understand α, β, γ, δ to be the numbers 1, 2, 3, 4 in an arbitrary sequence then 
we have the following identities: 
 
     P ≡ pαβ pγδ + pαγ pδβ + pαδ pβγ  = 0, 
     Q ≡ qαβ qγδ + qαγ qδβ + qαδ qβγ  = 0, 
 
which may collectively be denoted by the symbol: 
 

R = 0. 
 In this notation, one has: 
 

ρ pik = 
ik

Q

q

∂
∂

,  qik = ρ 
ik

P

p

∂
∂

, 

 
where ρ means a proportionality factor. 
 A line whose coordinates are( )

ikp α , ( )
ikq α  will be denoted by (r(α)) in what follows.  We 

will write ( )
ikr α  instead of ( )

ikp α , ( )
ikq α  in those cases where the difference between ray and 

axis coordinates is irrelevant. 
 
 2.  Assuming these notations, one can write the condition for two lines (r), (r′) to 
intersect in the following equivalent forms: 
 

ik
ik

P
p

p

′∂
′∂∑ = 0, ik

ik

P
p

p

∂′
∂∑ = 0, 

ik
ik

Q
q

q

′∂
′∂∑ = 0,  ik

ik

Q
q

q

∂′
∂∑ = 0, 

ik ikp q′∑ = 0,  ik ikp q′∑ = 0. 

 
 Three lines (r), (r′), (r″) that intersect each other have either a point or a plane in 
common.  Depending upon whether the one or the other situation exists, the second or the 
first factor of the four products: 
 

p p p p p pαβ αγ αδ γδ δβ βγ′ ′′ ′ ′′± ⋅ ±∑ ∑  

 
will vanish, respectively, products that can be represented in any of the following forms: 
 

p p p q q qαβ αγ αδ αβ αγ αδ′ ′′ ′ ′′± ⋅ ±∑ ∑ , 

q q q q q qγδ δβ βγ αβ αγ αβ′ ′′ ′ ′′± ⋅ ±∑ ∑ , 

q q q p p pγδ δβ βγ γδ δβ βγ′ ′′ ′ ′′± ⋅ ±∑ ∑ . 

 
 If (r), (r′), (r″) are lines that go through a point in the same plane then all of the 
coordinates of the same three-rowed determinants defined by it vanish, and one can set: 
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r ik = ik ikr rλ µ′ ′′+ . 

 
 Let (r), (r′), (r″) be lines that lie in a plane or go through a point.  The coordinates of 
an arbitrary line (r) that lies in that plane and goes through the same point will be 
representable by: 

r ik =  ik ik ikr r rλ µ ν′ ′′ ′′′+ + . 

 
 3.  When the coordinates of a line in the expression R are replaced with the constants 
that enter into the equation of a complex of first degree, what results is an expression that 
does not generally vanish, which might be called the invariant of the complex.  The 
vanishing of it expresses the idea that the complex subsumes the totality of all lines that 
cut a fixed line whose coordinates are the constants of the complex, so the complex is a 
so-called special complex. 
 Let the term simultaneous invariant of two linear complexes refer to the expression 
that arises when one introduces the constants of two linear complexes into the bilinear 
expression R. 
 The vanishing of the simultaneous invariant of two complexes expresses a 
relationship between them that might be referred to as involution. 
 If two linear complexes are special then the vanishing of the simultaneous invariant is 
the condition for the lines that represent them to intersect.  If only one of the two 
complexes is special then the vanishing of the simultaneous invariant expresses that the 
lines that represents the one of them belongs to the other complex. 
 In the following, let it be assumed that none of the complexes under consideration is a 
special one. 
 All lines that belong to two linear complexes simultaneously intersect two fixed lines, 
namely, the directrices of the congruence that is determined by the two complexes.  If the 
two complexes lie in involution then any two points that correspond to an arbitrary plane 
in them will be harmonic to the two points at which the plane cuts the two directrices.  If 
one lets a plane rotate around a line that is common to both complexes then the point-
pairs that correspond to the plane in its various positions are in involution on this line.  
Each of the two points that are determined by the two complexes in an arbitrary plane 
then corresponds to yet a second plane by them.  This plane is the same for both points. 
 
 The planes and points of space can be arranged into groups of two planes and two 
points that lie on the intersection of them by means of two linear complexes that lie in 
involution. 
 By means of three linear complexes that are mutually in involution, the planes and 
points in space group together into tetrahedra that are conjugate to each other relative to 
the surface of second degree that is determined by the three line complexes.  The three 
points that correspond to a face of such a tetrahedron in the three complexes are the 
three corner points of the tetrahedron that lie in them; conversely, the three planes that 
correspond to a corner point are the three faces that go through it. 
 
 4.  The line coordinates r ik represent the moments of the line that is to be determined 
with respect to the six edges of the coordinate tetrahedron when they are multiplied by 
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certain (not completely arbitrary) constants.  We ask what the meaning might be of a 
general linear transformation of the line coordinates. 
 
 The introduction of linear functions of the line coordinates in place of these 
coordinates comes down to considering the determining data of a line to be the moments 
of it relative to the six given linear complexes when they are multiplied by arbitrary 
constants. 3) 
 
 When one introduces the new variables that come about by a linear substitution into 
the identity that exists between the original line coordinates, one obtains a new 
expression of second degree in these variables that might be once more denoted by R, and 
whose vanishing is the necessary and sufficient condition that six, otherwise arbitrarily 
given, values of the variables can relate to a straight tline. 
 This expression R has entirely the same meaning as the one that is defined by the 
previous coordinates.  Everything that was true for the previous ray and axis coordinates 
is now true for the new coordinates and partial differential quotients of R that one takes 
with respect to them. 
 The form of R immediately gives us information about the types and mutual positions 
of the complexes that are at the basis of the coordinate determination. 
 In particular, it is clear that when R includes only three terms, as would be the case 
for the original coordinates, the new variables would essentially be the moments of the 
line that they determine relative to the edges of a tetrahedron. 
 
 

II. 
 

The system of six fundamental complexes. 
 

 5.  The detailed normal form for equation for the complexes of second degree that 
was mentioned above leads to the examination of those linear functions of the linear 
coordinates in which the equation of condition R = 0 can be written as the sum of squares 
that are multiplied by suitable constants.  When set to zero, they represent six linear 
complexes that can be called the six fundamental complexes. 
 Let them be denoted by: 
 

x1 = 0,  x2 = 0,  x3 = 0,  x4 = 0,   x5 = 0,  x6 = 0 
 
and the symbol x is thought of as being multiplied by constants such that the equation of 
condition can be written in the following form: 
 
(1)      2 2 2 2 2 2

1 2 3 4 5 6x x x x x x+ + + + +  = 0. 

 
The system of variables depends upon 15 constants. 

                                                
 3) [The formulation in this paper has been altered somewhat in hindsight, corresponding to the remarks 
that were added in the beginning of the next Abhandlung III, which we point out here. K] 
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 The invariant of a linear complex: 
 

a1 x1 + a2 x2 + … + a6 x6 = 0 
is represented in it by: 

2 2 2
1 2 6a a a+ + +⋯ , 

 
and the simultaneous invariant of two linear complexes: 
 

a1 x1 + a2 x2 + … + a6 x6 = 0, 
b1 x1 + b2 x2 + … + b6 x6 = 0 

is represented by: 
a1 b1 + a2 b2 + … + a6 b6 . 

 
 It next follows from this that the multipliers of the x can be chosen in such a way that 
the invariants of all fundamental complexes equal the positive unit.  It further follows that 
the simultaneous invariant of two arbitrary fundamental complexes vanishes. 
 
 Any two of the six fundamental complexes lie in involution. 
 
 The equation of condition: 

R = 0, 
 
that one finds to exist between the original line coordinates subsumes the three products 
of any two of the six variables when they are grouped pair-wise.  If they are transformed 
by means of a real linear substitution in such a way that it includes only the squares of 
the variables then one must find just as many positive and negative squares among them.  
Insofar as the sum of the squares of two conjugate imaginary expressions is equivalent to 
the sum of a positive and a negative real square, this yields the following 4) 
 
 There can be an arbitrary (even) number of the six fundamental complexes that are 
imaginary. 
 The symbols x that correspond to real fundamental complexes are chosen in such a 
way that half of them include real coefficients and half of them, pure imaginary ones. 
 
 From this, one gets: 
 
 The real fundamental complexes subdivide into two equally numerous groups.  The 
complexes of the one group are right-handed and those of the other are left-handed 5) 
 
 The six fundamental complexes may be denoted simply by the numbers 1, 2, …, 6, 
and it remains undetermined whether one finds imaginaries among them or not. 
 

                                                
 4) [In the presentation of this paper, it is not sufficiently clearly expressed that only such linear 
substitutions should be considered for which the complex conjugates enter into the newly introduced 
expressions at the same time.] 
 5) Plücker, Neue Geometrie, no. 47. 
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 6.  The directrices of the congruence of the two fundamental complexes (1, 2) 
obviously have the coordinates: 
 

ρ x1 = 1, ρ x2 = ± i, ρ x3 = 0, ρ x4 = 0, ρ x5 = 0, ρ x6 = 0. 
 

 The directrices of the congruence of two fundamental complexes belong to the 
remaining four fundamental complexes. 
 
 The totality of lines that cut an arbitrary one of the two directrices is represented by: 
 

2 2
1 2x x+  = 0, 

 
or, what amounts to the same thing, by: 
 

2 2 2 2
3 4 5 6x x x x+ + +  = 0. 

 
 The six fundamental complexes determine 6 ⋅ 5/2 = 15 linear congruences, whose 30 
directrices are correspondingly grouped into a distinctive way.  When the directrices of 
the congruence (1, 2) belong to the complexes 3, 4, 5, 6, they will be cut by the 12 
directrices of the 4 ⋅ 3/2 = 6 congruences that are determined by them. 
 
 Any two of the 30 directrices that are grouped together will be cut by 12 of the 
remaining ones. 
 
 The directrices of one of the three congruences (1, 2), (3, 4), (5, 6) will be cut by each 
of the directrices of the other two congruences. 
 
 The directrices of such three congruences that together depend upon all six 
fundamental complexes define the edges of a tetrahedron. 
 
 In harmony with this, the equation of condition: 
 

R = 0 
 

when it is written in the following variables: 
 
    y1 = x1 + i x2 ,  y3 = x6 +  i x4 ,  y5 = x5 + i x6 , 
    y2 = x1 − i x2 ,  y4 = x3 − i x4 ,  y6 = x5 − i x6 , 
 
which, when set to zero, represent the directrices in question, takes the characteristic form 
for the edges of a tetrahedron: 

y1 y2 + y3 y4 + y5 y6 = 0. 
 

 The totality of lines that lie in a face of the tetrahedron or go through a corner point of 
it is represented by: 



Line complexes of first and second degree.                                            8 

      2 2
1 2x x+  = 0, 

      2 2
3 4x x+ = 0, 

      2 2
5 6x x+ = 0. 

 
 When one divides six elements in 15 different ways into three groups of two, the 30 
directrices define the edges of 15 tetrahedra.  The tetrahedra may be called the 
fundamental tetrahedra.  The corner points and faces of these tetrahedra are all different. 
 Any two directrices of the same group belong to three of the fundamental tetrahedra 
as opposite edges.  The twelve directices that cut the two in question are the remaining 3 ⋅ 
4 edges of this tetrahedron.  These three tetrahedra determine six pair-wise grouped 
points on each of the two directrices.  When the fundamental complexes are mutually in 
involution, two arbitrarily-chosen pairs of the three are mutually harmonic.  An 
analogous statement is true for the six faces of the tetrahedron that intersect an arbitrarily-
chosen one of the two directrices 6). 
 If one is given any of the 15 fundamental tetrahedra then the remaining fourteen of 
them divide into two groups of six and eight.  The tetrahedra of the first group have two 
opposite edges in common, while those of the second group do not. 
 
 7.  The six directrices (1, 2), (3, 4), (5, 6), which define a tetrahedron, have the 
following coordinates: 

 

1 i 0 0 0 0 

x1 x2 x3 x4 x5 x6 

I
(1,2)

II

III
(3,4)

IV

V
(5,6)

VI













 

1       − i 0 0 0 0 

0 0 1 i 0 0 

0 0 1       − i 0 0 

0 0 0 0 1 i 

0 0 0 0 1       − i 
 

 
 Which of these three mutually intersecting directrices have a point in common and 
which of them have a plane in common can only be decided when the explicit expression 
for the variables x1, …, x6 is given in the original line coordinates.  If, perhaps, I, III, V go 
through a corner point of the tetrahedron then II, IV, VI lie in the opposite face.  Whether 
three mutually intersecting lines (x, x′, x″) have a point or a plane in common is then 

                                                
 6) It emerges from this that the three tetrahedra that have two opposite edges in common can never be 
real.  Relative to the reality of the picture that enters in here, one must above all make the following 
remark: Either all of the six fundamental complexes are real or two, four, or all of them are imaginary.  
Corresponding to these assumptions: 

18, 10, 6, 6 
are the 30 directrices and: 

6, 2, 1, 1 
are the 15 real fundamental tetrahedra. 
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determined, as described the above, according to whether the first or the second of the 
following two expressions vanishes: 
 

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

x ix x ix x ix

x ix x ix x ix

x ix x ix x ix

+ + +
′ ′ ′ ′ ′ ′+ + +
′′ ′′ ′′ ′′ ′′ ′′+ + +

, 

 

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

x ix x ix x ix

x ix x ix x ix

x ix x ix x ix

− − −
′ ′ ′ ′ ′ ′− − −
′′ ′′ ′′ ′′ ′′ ′′− − −

. 

 
One then has to change the sign of i in any two columns simultaneously. 
 One obtains similar criteria relative to each of the fourteen remaining fundamental 
tetrahedra. 
 
 8.  Through each of the 60 corner points of the 15 fundamental tetrahedra go, in 
addition to the three associated faces, 12 more of the 60 faces, which are divided into 
three groups of four that intersect relative to one of the three directrices that goes through 
the corner point.  Each of them intersects one of the three faces that are associated with 
the corner point in a new line.  The point at which it encounters the directrix that lies on 
the third of these faces is one of the 59 other corner points. 
 One such line is the following: 
 

1 2 3 4 5 6

0 0 1 1

x x x x x x

i i
. 

 
It is the connecting line between the two corner points: 
 

(x1 + ix2, x3 + ix4, x5 + ix6), 
(x1 − ix2, x3 + ix4, x5 + ix6), 

 
and the intersecting line of the two face planes: 
 

(x1 − ix2, x3 + ix4, x5 + ix6), 
(x1 + ix2, x3 + ix4, x5 + ix6). 

 
Such lines go through twelve of the assumed corner points.  There are then: 
 

12 60

2

⋅
 = 360 

of them, in all. 
 The 12 face planes, which go through one corner point in addition to the three 
associated ones, and which are divided into three bundles of four, intersect any three of 
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the 16 remaining lines that include two corner points in addition to the assumed one.  In 
fact, the line: 

1 2 3 4 5 6

1 1 1

x x x x x x

i i i
 

includes the three corner points: 
 

(x1 + ix2, x3 + ix4, x5 + ix6), 
(x1 + ix4, x3 + ix6, x5 + ix2), 
(x1 + ix6, x3 + ix2, x5 + ix4), 

 
and lies in the face planes: 
 

(x1 + ix2, x3 + ix6, x5 + ix4), 
(x1 + ix4, x3 + ix2, x5 + ix6), 
(x1 + ix6, x3 + ix4, x5 + ix2). 

 
There are 16 ⋅ 60 / 3 = 320 such lines. 
 In the foregoing considerations, the words “corner point” and “face plane” can be 
exchanged everywhere. 
 
 The 30 directrices of the 15 congruences that are determined by the 6 fundamental 
complexes are the edges of 15 (fundamental) tetrahedra. 
 15 face planes go through each of the 60 corner points of the fundamental tetrahedra; 
15 corner points lie in each of the 60 face planes. 
 There are 360 lines that include two of the 60 corner points of the fundamental 
tetrahedra.  These lines define the intersection of any two of the face planes. 
 There are 320 lines on which lie any three of the 60 corner points of the fundamental 
tetrahedra.  Any three of the 60 face planes intersect along these lines. 
 The 30 directrices of the 15 congruences that are determined by the six fundamental 
complexes include any six of the 60 corner points and are the intersection of any six of 
the 60 face planes. 
 The six corner points, as well as the six face planes, are grouped with each other 
pair-wise.  Any two pairs are mutually harmonic. 
 
 9.  Any three of the fundamental complexes – for example, 1, 2, 3 – determine a 
surface of second degree by means of the lines of their one generator.  The directrices of 
the congruences (2, 3), (3, 1), (1, 2) are lines of the second generator.  Since these 
directrices belong to the complexes 4, 5, 6, it is clear that the complexes 4, 5, 6 determine 
the same surface of second order by means of the lines of its other generator. 

 The six complexes may be divided into two groups of three in  
6 5 4 1

1 2 3 2

⋅ ⋅ ⋅
⋅ ⋅

 = 10 ways.  

Any two associated groups determine the same surface of second degree by means of 
their different generators. 
 The ten surfaces thus defined may be called the ten fundamental surfaces. 
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 Any two associated directrices of the 30 total belong to four of the fundamental 
surfaces as generators.  The pair (1, 2) of directrices then lies on the surfaces (1, 2, 3), (1, 
2, 4), (1, 2, 5), (1, 2, 6).  As for the remaining six fundamental surfaces, the directrices (1, 
2) are mutually conjugate polars. 
 The fundamental surfaces divide into two groups relative to one of the fundamental 
tetrahedra.  The six surfaces of the one group include any four of the six tetrahedral 
edges, so the tetrahedron is conjugate to itself relative to the surfaces of the other group. 
 In order to represent the fundamental surfaces – say, (1, 2, 3) ≡ (4, 5, 6) – one can use 
the condition that says that a line must contact the surface; in other words, the complex 
equation of the surface 7). 
 This will be: 

2 2 2
1 2 3x x x+ +  = 0, 

 
or, what is obviously the same thing: 
 

2 2 2
4 5 6x x x+ + = 0. 

 
 10.  The lines of space and the planes and points in it may be grouped into closed 
systems relative to the six fundamental complexes, in a way that is similar to the way that 
was the case for the planes and points relative to two or three complexes that lie in 
involution. 
 Now, let a line be given whose coordinates are: 
 

a1, a2, …, a6 . 
Therefore: 

2 2 2
1 2 6a a a+ + +⋯  = 0. 

 
Since this relation remains fulfilled for any arbitrary choice of signs of the coordinates, 
one finds that each of the 25 = 32 sign combinations: 
 

± a1, ± a2, …, ± a6  
 
corresponds to a line.  The relationship between the 32 lines and each other is obviously 
mutual. 
 
 The lines of space group together into 32 groups relative to the six fundamental 
complexes. 

                                                
 7) If f1, f2, f3 are three linear complexes, A11, A22, A33, their invariants, and A21, etc., their simultaneous 
invariants then the complex equation that they determine is the hyperboloid: 
 

0 = 

1 2 3

1 11 12 13

2 21 22 23

3 31 32 33

0 f f f

f A A A

f A A A

f A A A

. 
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 When one forms the two-rowed determinants according to the schema: 
 

1 2 3 4 5 6

1 2 3 4 5 6

x x x x x x

a a a a a a± ± ± ± ± ±
 

 
and then sets them equal to zero, one foresees immediately that of the 32 lines: 
 
     2 ⋅ 15 (?) 16 belong to a complex, 
     4 ⋅ 20 (?)   8 belong to a congruence, 
     8 ⋅ 15 (?)   4 belong to a surface of second degree, 
 
from which, each of the 32 lines lie on 15 of the complexes, 20 of the congruences, and 
15 of the surfaces of second degree. 
 The 32 lines divide into two groups of 16, according to whether their coordinates 
possess an even or odd number of equal signs, respectively.  When a plane curve is 
generated by a line of one of the two groups, an analogous situation prevails for the 
remaining 15 lines; the 16 lines of the other group generate cones. 
 By means of an arbitrary line of the one group, the lines in the other group divide into 
ones that are its conjugate polars relative to the six fundamental complexes and the ones 
that are its conjugate polars relative to the ten fundamental surfaces.  The coordinates of 
the former six differ from the coordinates of the chosen line by a change of sign, and 
those of the latter ten, by three. 
 When the six fundamental complexes are found from an equation of sixth degree, the 
equation of degree 32 by which one determines a system of lines, such as we have 
considered here, requires only the solution of equations of second degree. 
 The system of 32 associated lines simplifies as long as one or more of the coordinates 
a are equal to zero.  In particular, the lines that cut an associated pair of the 30 directrices 
correspond to 8, those that are generators of one of the ten fundamental surfaces, to 4, 
and finally the 30 directrices themselves, to 2. 
 
 11.  Let the equation of the projection of a point into an arbitrarily chosen plane of the 
complex: 

xk = 0 
 
that corresponds to one in the coordinate planes be: 
 

ak u + bk v + ck w = 0. 
 
Then, as a result of the equation of condition: 
 

2 2 2
1 2 6x x x+ + +⋯ = 0 

the expression: 
2

1 6

( )k k ka u b v c w+ +∑
⋯
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vanishes identically.  Therefore, the following determinant: 
 

2 2 2
1 1 1 1 1 1 1 1 1
2 2 2
2 2 2 2 2 2 2 2 2

2 2 2
6 6 6 6 6 6 6 6 6

a b c b c c a a b

a b c b c c a a b

a b c b c c a a b

i i i i i i i i i

i i i i i i i i i

i i i i i i i i i

, 

 
also vanishes, which says that the six points 1, 2, …, 6 lie on a conic section: 
 
 The six points that correspond to an arbitrary plane in the six fundamental complexes 
lie on a curve of second order. 
 The six planes that correspond to an arbitrary point in the six fundamental complexes 
envelop a cone of second class. 
 
 When the arbitrarily chosen plane goes through one of the 60 corner points of the 15 
fundamental tetrahedra, the hexagon that is defined by six of the points that correspond to 
the fundamental complexes will become a Brianchon hexagon.  A tetrahedral point 
becomes a Brianchon point.  The hexagon includes two (three, resp.) Brianchon points 
that lie in a line when the arbitrarily chosen plane contains 360 (320, resp.) of the lines 
that belong to the system of fundamental tetrahedra.  The number of Brianchon points 
becomes four when the plane is laid through one of the 360 lines and one of the 320 lines 
that intersect it. 
 When the arbitrarily chosen plane contacts one of the ten fundamental surfaces then 
the six points that correspond to the fundamental complexes lie in such a way that three 
of them lie on each of two lines − namely, the two generators of the fundamental surface 
that includes the plane.  If the plane goes through one of the 30 directrices then four of 
six points move onto the directrices, while the other two come together at the intersection 
point with the associated directrix.  Finally, if the plane overlaps one of the faces of the 
fundamental tetrahedron then the six points move pair-wise into three associated 
tetrahedral points. 
 
 12.  Let the six points that correspond to a given plane in the six fundamental 
complexes be denoted by: 

1, 2, 3, 4, 5, 6. 
 

Each of these points corresponds to five planes, in addition to the given one.  As long as 
the plane that corresponds to 1 in x2 agrees with the plane that belongs to 2 in x1, there are 
15 new planes in all that cut the given one along the 15 connecting lines of the six points 
with each other.  The three planes (2, 3), (3, 1), (1, 2) intersect (cf., no. 3) at the pole of 
the given plane relative to the fundamental surface (1, 2, 3).  Since this surface is 
identical to the surface (4, 5, 6), the planes (5, 6), (6, 4), (4, 5) intersect at the same point.  
The six planes that correspond to this point in the six fundamental complexes: 
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x1, x2, x3, x4, x5, x6 
coincide with the planes: 

(2, 3), (3, 1), (1, 2), (5, 6), (6, 4), (4, 5), 
 

which in fact envelop a cone of the second class, as would emerge from the consideration 
of the hexagon 123456. 
 
 Relative to the fundamental complexes, the planes and points of space group into 
closed systems of 16 planes and 16 points.  Six of the 16 points lie in each of the 16 
planes, and six of the 16 planes go through each of the 16 points.  The six points in a 
plane lie on a curve of second order, while the six planes through a point envelop a cone 
of second class. 
 
 When one of the 16 planes is given, one finds the 16 points when one constructs the 
points that correspond to it in the six fundamental complexes and the poles that are 
conjugate to it relative to the ten fundamental surfaces. 
 
 The system of 16 double planes and 16 double points of the surfaces of fourth order 
and fourth class that Kummer investigated is of the type that is considered here 8). 
 
 If one of the 32 lines that are associated relative to the fundamental complex lie in 
one of the 16 planes of such a system then the 15 lines of that same group distribute onto 
the 15 other planes and the 16 lines of the other group onto the 16 points.  In particular, if 
the chosen line contacts the conic section that lies in the plane in question then one finds 
it among the 15 lines of the same group, and the 16 lines of the other group are faces of 
the cone that go through the 16 points. 
 The 32 associated lines are distinguished by the signs of their coordinates.  This 
remark immediately gives the notation for them in terms of five indices that are chosen 
from two different values.  The 16 planes and 16 points of the system considered here can 
be denoted in a similar way.  The 16 planes correspond to the lines of the one group, 
while the 16 points correspond to the lines of the other.  It emerges from this that the 
equation  of degree 16 that determines the 16 planes is distinguished from the equation of 
degree 32 that we just considered only by the fact that a square root in it is assumed to be 
known. 
 If one of the 16 points of the system considered here lies in one of the 16 planes of an 
arbitrary system, then an analogous statement is true for the remaining 15 points, and 
each of the 16 planes includes one of the 16 points of the second system. 
 The 16 planes of a system intersect in 16 ⋅ 15 / 2 = 120 lines, which are likewise the 
connecting lines for the 16 points.  They divide into 15 groups of eight each.  The lines of 
one group belong to the same two fundamental complexes and thus both of the 
corresponding directrices have common transversals.  This gives one the means to 
construct the 30 directrices and the 15 fundamental tetrahedra from the system of 16 
planes and 16 points. 
 The 16 planes of the system intersect in three of the 240 points, which lie on six of 
the 120 lines of intersection, in addition to the 16 points of the system.  Likewise, there 
                                                
 8) Monatsberichte der Berliner Akademie, 1864. 
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are 240 planes that include three of the 16 points of the system.  They intersect in six of 
the 120 lines of it. 
 If one of the 16 planes of the systems has a distinguished position with respect to the 
six fundamental complexes then an analogous statement is true for the remaining 15 
planes and 16 points.  We especially emphasize the system that arises when one of the 
planes includes one of the 60 corner points of the fundamental tetrahedra.  Then, four of 
the 16 planes go through the corner points of the tetrahedra in question and four of the 16 
points lie in the faces of them.  The system becomes the system of singularities of a 
tetrahedroid 9).  The equation of degree 16 that determines the planes of the system is 
algebraically soluble here, since all that is required here is the solution of a biquadratic 
equation and several quadratic ones. 
 
 

III. 
 

The Kummer surface and its connection with complexes  
of second degree. 

 
 12.  Let the following equation be given as the equation of the complex of second 
degree to be examined: 
(2)     2 2 2

1 1 2 2 6 6k x k x k x+ + +⋯  = 0. 

Therefore, one has: 
(1)           2 2 2

1 2 6x x x+ + +⋯  = 0, 

 
such that the complex remains unchanged when one generally writes kα + λ instead of kα .  
The four constants that are thus included in equation (2), together with the 15 constants of 
the fundamental complex, give the 19 constants of the complex of second degree. 
 
 The for of equation (2) says that the given complex and all of the geometric structures 
that immediately depend upon it correspond to each other relative to the system of six 
fundamental complexes 10). 
 
 Therefore, the lines of the complex then group into systems of 32.  16 complex curves 
and 16 complex cones belong together, etc. 
 From this last theorem, one derives the theorem that will discussed in the sequel on 
the basis of the properties of the complexes of second degree that were developed by 
Plücker 11). 
 
 14.  Those points whose complex cone decomposes into a plane pair – the so-called 
singular points – define a surface of fourth order and fourth class with 16 double points 

                                                
 9) Cayley, in Liouville’s Journal, 11 (1846).  (Coll. Papers, v. I, 302-306.) 
 10) This mutual correspondence can also be regarded being mediated by the ten fundamental surfaces, 
instead of the six fundamental complexes. 
 11) Julius Plücker, Neue Geometrie des Raumes, gegründet auf die Betrachtung der geraden Lineie als 
Raumelement.  B. G. Teubner, Leipzig, 1868, 1869. 
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and 16 double planes.  This surface will be enveloped by singular planes, which are 
planes whose complex curve has resolved to two points in the system 12). 
 Such a surface shall be called a Kummer surface in what follows.  It is called the 
singularity surface in relation to the complex. 
 The reasoning that follows immediately examines the Kummer surface as such, 
regardless of its relation to the given complex. 
 
 A Kummer surface corresponds to itself relative to the system of six fundamental 
complexes. 
 
 Let the relevant fundamental complexes 13) be denoted by x1, x2, …, x6, as before. 
 An equation of fourth degree serves to determine the tangential planes that go through 
a line: 

a1, a2, …, a6 
 
on a given Kummer surface.  That equation can include only the squares of the 
coordinates a 14).  Therefore, the four tangential planes that go through any of the 32 
lines: 

± a1, ± a2, …, ± a6, 
 
are all determined by the same biquadratic equation. 
 The four tangential planes, which can go through the given lines that lie on the 
surface, are reciprocally associated by the surface with the four intersection points of any 
of the 16 lines of the other group.  It follows from this and the foregoing that the same 
equation determines the tangential planes that go through any line and the intersection 
points that lie on it. 
 
                                                
 12) Plücker, Neue Geometrie, no. 311, 320. 
 13) For the Fresnel wave surface, which is derived from the ellipsoid: 
 

a2 x2 + b2 y2 + c2 z2  = 1, 
 
the fundamental complexes are the following ones: 

 
(yz′ – y′z) + a 1−  (x – x′) = 0, (yz′ – y′z) –  a 1−  (x – x′) = 0, 
(zx′ – z′x) + b 1−  (y – y′) = 0, (zx′ – z′x) –  b 1−  (y – y′) = 0, 
(xy′ – x′y) + c 1−  (z – z′) = 0, (xy′ – x′y) –  c 1−  (z – z′) = 0. 

 
 14) This assertion is true in its own right, although it was not established in the present article.  The basis 
for it must be derived tediously form the algebraic developments in section IV, so it is omitted here. – I 
originally proved the theorem of the equality of anharmonic ratios, to which the argument is directed, by 
the same method that was later developed by A. Voss in the treatise: “Über Komplexe und Kongruenzen,” 
Math. Annalen, Bd. 9 (1876), and then went on to show that, from (8) to (10), pp. 79, an arbitrary line 
belongs to one (and, in turn, four) complexes of second degree that have the same singularity surface.  In 
my note: “Über Plückersche Komplexfläche” (see Abhandlung XI of this collection), I gave another proof 
that connects up with the properties of the general complex surfaces that Plücker himself found in a more 
elementary way. – As for the discovery of the theorem, moreover, this brings up the fact that v. Staudt has 
presented a similar theorem for the tetrahedron, and one can regard the tetrahedron (as the totality of four 
planes and four corners) as the most degenerate case of a Kummer surface. K] 
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 The anharmonic ratio of the four tangential planes that can go through a line on a 
Kummer surface is equal to the anharmonic ratio of the four intersection points of that 
line with the surface. 
 
 15.  Let a point of a Kummer surface be given.  One derives a system of 16 points and 
16 planes from it by means of the six corresponding fundamental complexes.  The points 
are points of the surface and the planes are planes of it.  Likewise, the tangential planes to 
the given points correspond to a system of 16 planes and 16 points of the surface.  The 
two systems have the reciprocal relationship that a point of one of them lies in each plane 
of the other that is the associated contact point.  It follows from this that the six lines 
along which a plane of one of the systems will intersect the six associated contact points 
in the planes of the other system, not only in all of the common points but will also 
contact one of those six points that corresponds to the chosen plane in the fundamental 
complexes.  These lines are also double tangents to the surface.  This yields the following 
theorem: 
 
 Once the fundamental complex that is associated with a Kummer surface is 
determined by an equation of the sixth degree, one can rationally derive the coordinates 
of 32 points, 32 planes, and 96 double tangents to the surface from the coordinates of a 
point (or plane) of the surface. 
 The six tangents that can be drawn from the contact points of a plane in the Kummer 
surface to the intersection curve that lies in it contact it at the six points that lie on a 
conic section that corresponds to the chosen plane in the six fundamental complexes. 
 The 28 double tangents to any plane intersection curve of a Kummer surface divide 
into two groups of 16 and 12.  The double tangents of the first group are the intersections 
of the plane of the curve with the 16 double planes of the surface.  The 12 double 
tangents of the second group separate into groups of two.  The six points at which the 
various pairs intersect relative to the lines are the six points that lie on a conic section 
that corresponds to the curve in the six fundamental complexes. 
 The double tangents of a Kummer surface define six different congruences of the 
second order and second class, each of which belongs to the six fundamental complexes 
15). 
 
 16.  Distinguished among the systems of 16 points and 16 planes of the Kummer 
surface that are associated with the six fundamental complexes is the system of 16 double 
points and 16 double planes of the surface.  In this case, the system of 16 contact curves 
and 16 contact cones enters in place of the associated second system.  The 96 double 
tangents will be replaced with the 96 bundles of lines that go through one of the double 
points in one of the double planes. 
 
 The determination of the singularities of a Kummer surface depends upon the solution 
of an equation of sixth degree and several quadratic equations 16). 
 

                                                
 15) Cf., Kummer, Abhandl. der Ber. Akad., 1866. 
 16) C. Jordan in Crelle’s Journal, Bd. 70 (1869). 
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 In order to find the fundamental tetrahedra from the singularity system of a Kummer 
surface, one must construct the 30 lines that cut eight of the 120 intersection lines of the 
16 double planes. 
 The surface may be constructed when one of the double planes of the Kummer 
surface is known in addition to the six fundamental complexes 17).  Then, when all of the 
16 double planes of the fundamental complex and the contact curves in them are given, 
one knows, by the construction of any plane intersection curve of the surface, 16 double 
tangents and the contact points on it. 
 If the given double plane contains one of the 60 corner points of the fundamental 
tetrahedra then the associated Kummer surface becomes a tetrahedroid. 
 
 A tetrahedroid is characterized by the fact that the six double points that lie in a 
double plane define a Brianchon hexagon. 
 The singularities of a tetrahedroid are algebraically determinate. 
 
 17.  We now return to the consideration of the complexes of second degree. 
 Those lines that are the intersection lines of two planes into which a complex cone 
has resolved, or − what amounts to the same thing − those lines that are the connecting 
lines of two points into which a complex curve decomposes, are the singular lines of the 
complex.  They define a congruence of fourth order and fourth class.  The singular lines 
contact the singularity surface of the complex.  The contact point is called the associated 
singular point and the contact plane is the associated singular plane.  The complex cone 
whose center is the associated singular point resolves to the two tangential planes of the 
singularity surface that go through the singular line, in addition to the doubly counted 
associated singular planes.  Correspondingly, the complex curve decomposes in the 
associated singular plane of the system into two points that are common to the singular 
line and the singularity surface, along with the doubly counted associated singular points 
18). 
 The complex curve that lies in an arbitrary plane contacts the intersection curve of 
fourth order of the plane with the singularity surface in four points.  Common tangents to 
both curves at these points are the four singular lines that lie in the plane 19). 
 Which of the tangents to the singularity surface at a given point of it belongs to the 
given complex as a singular line is not determined by the surface itself.  It can be chosen 
arbitrarily from the simple infinitude of tangents as a singular line; this would then leave 
an associated complex uniquely determined.  From the associated singular planes, one 
derives a system of 16 singular planes by means of the six fundamental complexes.  As 
long as the two points into which the complex curve decomposes for a singular plane are 
determined by solving a quadratic equation, the corresponding points in the remaining 
planes are known.  Six of the complex lines that go through one of the intersection points 
of three of the 16 planes are then given, and for that reason the complex cone for these 
points is linearly constructible.  When these intersection points lie on six of the 120 

                                                
 17) If one lays the double plane through one of the 320 lines that include three of the 60 corner points of 
the 15 fundamental tetrahedra then one obtains a surface that corresponds to the model in the Kummer 
citation (Monatsberichte der Berl. Akad., 1864). 
 18) Plücker, Neue Geometrie, no. 317. 
 19) Plücker, Neue Geometrie, no. 318. 
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intersection lines to two of the 16 planes, one knows the complex surfaces that are 
associated with these lines.  By the construction of the complex curve that lies in an 
arbitrary plane, one can then have 240 tangents at one’s disposal. 
 
 If a Kummer surface and a line that lies on it are given then one can construct a 
unique complex of second order that has the surface for its singularity surface and the 
line for its singular line. 
 A Kummer surface is the singularity surface for a simply infinite family of complexes 
of second order. 
 A Kummer surface depends upon 18 constants 20). 
 
 If the given line is a double tangent to the surface then the associated complex 
degenerates into the doubly counted fundamental linear complex that belongs to the 
double tangents. 
 
 The doubly counted six fundamental linear complexes also belong to the family of 
complexes of second degree that have a given Kummer surface for the singularity 
surface.  One can regard the double tangents of the surface that associated with such a 
complex as its singular lines. 
 
 18.  Among the singular lines of the given complex, the ones that osculate the 
singularity surface are distinguished.  The tangents to the contact points all belong to the 
given complex. 
 
 If a Kummer surface and a line that contacts it is given then there are, in addition to 
the complex that was just constructed, two more complexes that have the surface for 
singularity surface and include the line (but not as a singular line).  Singular lines at the 
contact point with the given surface are the two principal tangents at this point for this 
complex. 
 
 From the construction of such a complex, one can next determine the two principal 
tangents at the contact points by a quadratic equation.  The two points into which the 
complex curve resolves in the associated singular plane are then given linearly. 
 In addition to the four doubly-counted singular lines, the complex curve in an 
arbitrary plane has 2 ⋅ 4 ⋅ 3 – 2 ⋅ 4 = 16 tangents in common with the intersection curve of 
fourth order of the singularity surface that lies in the same plane.  The contact points of it 
with the intersection curve of the singularity surface are those points at which the chosen 
planes of the curve will be cut by those points of the singularity surface at which the 
associated singular line coincides with a principal tangent. 
 
 The curve of the singular point whose associated singular lines osculate the 
singularity surface is of order 16. 
 
 19.  Let a Kummer surface and an arbitrary line be given.  Four planes of the surface 
go through the line and four points of the planes lie on the line.  The biquadratic equation 
                                                
 20) This agrees with the enumeration that was given by Kummer. 
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that determines the four planes is the same as the one that determines the four points.  
Correspondingly, one can associate the four planes with the four individual points, and 
indeed, in four different ways.  One deduces which type of association one should choose 
in one of the planes by the contact point with the Kummer surface and the associated 
point of a line.  The complexes that have the given Kummer surface for the singularity 
surface and the line that was constructed for their singularity line obviously include that 
given line. 
 
 One may construct four complexes that have a given Kummer surface for their 
singularity surface and which contain a given line, moreover. 
 
 The two points that lie on the singular line thus constructed can be linearly 
determined when one of them is known to be an intersection point of the given line with 
the surface. 
 If the given line contacts the singularity surface then two of the four previously 
constructed complexes merge together into ones that have the given line for singular line. 
 
 The tangents of the singularity surface are the lines for which the biquadratic 
equation that determines the four complexes that are associated with four given lines has 
a double root. 
 The complex equation of the singularity surface has the form of a discriminant. 
 
 20.  The simply-infinite family of the complexes of second order that are associated 
with a given Kummer surface determines a system of conic sections in each plane of 
space that contact the intersection curve of fourth order of the Kummer surface with the 
plane four times.  The system is of fourth class.  Since the degenerate conic section can 
be regarded as the six corresponding points of the fundamental complex with their pairs 
of double tangents, the system is of order 2 ⋅ 4 – 6 = 2. 
 
 A system of conic sections of fourth class and second order is determined by means of 
a Kummer surface in any plane of space. 
 
 21.  The lines of the complexes that run inside of a double plane of the singularity 
surface intersect at a point of the contact curve.  They are all singular lines.  This point 
can be chosen arbitrarily on the contact curve; an associated complex is then linearly 
determined.  If one lets the point go to one of the six double points that lie along the 
contact curve then the complex degenerates into those fundamental complexes that 
belong to the bundle of lines that go through the double point in the chosen plane.  In a 
similar way, each double point of the surface corresponds to a plane that contacts the 
tangential cone at the double point 21). 
 The 16 points and 16 planes correspond to each other relative to the six fundamental 
complexes. 
 In general, the lines of the given complexes are not double tangents of the singularity 
surface.  This is the case only for the 96 bundles of singular lines that go through a 
double point inside of a double plane of the surface. 
                                                
 21) Plücker, Neue Geometrie, no. 321. 
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 Those 16 singular lines that lie in a double plane of the singularity surface and contact 
the contact curve of the double plane are the only complex lines that contact the 
singularity surface at four points.  The 16 corresponding singular lines that go through the 
double points of the singularity surface are the only complex lines that possess the 
dualistically reciprocal property. 
 
 22.  One of the lines corresponds to a second line as its polar relative to a complex of 
second order.  It has a double relationship with the latter, namely, first, it is the geometric 
locus of the poles of the first line with respect to all curves that are enveloped by the lines 
of the complex in the planes that go through them, and second, they are enveloped by the 
polar planes of the first line relative to all cones that are composed of lines of the 
complex at the points of it.  This relationship between the two lines is therefore not 
invertible.  Except for the lines of the complex that are polar conjugates to themselves, 
there is only a finite number of lines that are again the polars of their polars 22). 
 The polars of the diagonals of the quadrilateral that is defined by the four singular 
lines that lie in an arbitrary plane intersect each other at a point.  This point will be called 
the pole of the plane with respect to the complex.  It coincides with the pole of the plane 
relative to the singularity surface. – In a similar way, each point corresponds to a polar 
plane relative to the complex. 
 The pole of a singular plane is its contact point with the singularity surface, so the 
polar plane of this point is generally the given singular plane. 
 However, in general, the relationship between planes and poles, points and polar 
planes is not an invertible one.  Except for the singular planes and points, it exists for 
only a finite number of planes and points 23). 
 
 23.  A given complex of the second degree can be referred to any of the 15 
fundamental tetrahedra.  Its equation then assumes the following form 24): 
 

2
ik ika r∑  + 2A rαβ rγδ + 2B rαγ rδβ + 2C rαδ rβγ  = 0, 

 
where r ik refer to either ray or axis coordinates. 
 
 If the equation of the given complex of second degree were written as the coordinate 
tetrahedron relative to one of the 15 fundamental tetrahedra then, in addition to the 
squares of the variables, only the products of those variables that relate to the opposite 
edges of the tetrahedon would appear. 
 
 It is easy to see that this form of an equation for the fundamental tetrahedron is 
characteristic.  One further deduces: 
 
 If the given complex relates to an arbitrary coordinate tetrahedron and in the 
corresponding equation two variables that refer to the opposite edges of the coordinate 

                                                
 22) Plücker, Neue Geometriȩ no. 299. 
 23) Plücker, Neue Geometriȩ no. 3238, 330, 337. 
 24) Cf., no. 6. 
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tetrahedron appear only in the opposite connection except as squares, then the edges in 
question are two associated ones from the system of fundamental tetrahedra. 
 
 The foregoing form of the equation shows that the opposite edges of the basic 
tetrahedron are mutually corresponding polars relative to the given complex. 
 
 Of the 30 edges of the fundamental tetrahedra, the ones that are associated relative to 
the complex correspond reciprocally as polars. 
 The 30 edges of the fundamental tetrahedra are, except for lines of the complexes, the 
only lines that possess these properties. 
 
 From this, one infers: 
 
 Of the 60 corner points and 60 faces of the fundamental tetrahedra, the associated 
ones correspond reciprocally as poles and polar planes relative to the complex. 
 Except for the singular points and planes, there are no other points and planes that 
are reciprocally associated relative to the complex. 
 
 Insofar as the behavior of planes, poles, points, and polar planes can be regarded as 
mediated by the singularity surface, the foregoing two theorems may also be regarded as 
expressing properties of the Kummer surface. 
 
 24.  Investigations that are similar to the foregoing are already contained in the 
treatise on complexes of second degree by Battaglini 25).  However, the assumptions that 
he based it on are generally not sufficient.  If we understand r ik to mean either ray or axis 
coordinates then he gave the complex of second degree by the following equation: 
 

2
ik ika r∑ = 0, 

  
which possesses three terms less than the previous one, in which the complex relates to 
one of the fundamental tetrahedra.  In fact, it contains only 17 constants, while the 
complex depends upon 19 constants.  Correspondingly, two of the simultaneous 
invariants vanish that can be derived from them and the equation of condition that exists 
between the line coordinates. 
 The complex that Battaglini examined is specified by the fact that for it the quantities 
k1, k2, …, k6, when augmented by a suitable constant, are equal and opposite to each 
other.  As a result, one of the fundamental tetrahedra is the one on which the complex 
takes on its simplest form, so it is distinguished from the other ones, and the singularity 
surface becomes a tetrahedroid that belongs to this tetrahedron (no. 16). 
 
 
 
 

                                                
 25) Atti della Reale Accademia di Napoli, 3 (1866), as well as Giornale di Matematiche, Napoli, v. 6 
(1868). 
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IV. 
 

Algebraic representation. 
 

 25.  Let the given complex be determined, as before, by the equation: 
 
(2)     2 2 2

1 1 2 2 6 6k x k x k x+ + +⋯  = 0, 

where: 
(1)            2 2 2

1 2 6x x x+ + +⋯  = 0. 

 
By means of equation (1), it is permissible for the quantities k to increase by an arbitrary 
constant with changing the complex. 
  The singular lines of the complexes are then represented 26) by (1), (2), and the 
following equation: 
(3)     2 2 2 2 2 2

1 1 2 2 6 6k x k x k x+ + +⋯  = 0. 

 
 Let (x) mean an arbitrary singular line, so the coordinates (y) of any line that goes 
through the associated singular point in the singular plane that is associated with (x) will 
have the form: 
(4)           ρ yα = (kα + σ) xα , 
 
where ρ is a proportionality factor and σ means a constant 27).  The lines that are 
represented by (4) may be called the associated lines to the singular line (x).  The totality 
of associated lines to all singular lines coincides with the totality of all tangents to the 
singularity surface. 
 If the singular line (x) is determined in such a way that the associated lines belong to 
the given complex (2) then it osculates the singularity surface.  One then finds the 
representation of the osculating singular lines in not only (1), (2), (3), but also the 
equation: 
(5)     3 2 3 2 3 2

1 1 2 2 6 6k x k x k x+ + +⋯  = 0. 

 
The line surface that is defined by the osculating singular lines is of order 16 and class 
16. 
 The 32 distinguished singular lines that lie in one of the double planes of the 
singularity surface and contact it along the contact curve that is contained in it, or go 
through a double point of the singularity surface and are generators of the tangent cone at 
it, are determined by the condition that their associated singular lines are themselves 
again singular lines.  Their coordinates thus satisfy, in addition to equations (1), (2), (3), 
(5), also the following equation: 
 
(6)     4 2 4 2 4 2

1 1 2 2 6 6k x k x k x+ + +⋯  = 0. 

 

                                                
 26) Plücker, Neue Geometrie, no. 300. 
 27) Plücker, Neue Geometrie, ibid. 
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Upon solving this, one finds that: 
 

(7)    2
1xρ  = 

2 1 3 1 6 1

1

( )( ) ( )k k k k k k− − −⋯

, etc. 

 
 26.  If x1, x2, …, x6, and σ refer to arbitrary parameters that are subject to equations 
(1), (2), (3) then an arbitrary tangent to the singularity surface is given by equation (4).  
By elimination of x1, x2, …, x6, this yields: 
 
(8)   2

1y   + 2
2y  +…+ 2

6y  = 0, 

(9)  
2
1

1

y

k σ+
 +

2
2

2

y

k σ+
 + …+

2
6

6

y

k σ+
 = 0, 

(10)   
22 2
61 2

2 2 2
1 2 6( ) ( ) ( )

yy y

k k kσ σ σ
+ + +

+ + +
⋯  = 0. 

 
 Equation (9) is an equation of fourth degree for the determination of σ.  Equation (10) 
says that the differential quotient of equation (9) with respect to σ vanishes. 
 
 The complex equation of the singularity surface is the discriminant of equation (9) 
with respect to σ. 
 
 As it must be, this complex equation is of degree 12. 
 If we understand σ to mean an arbitrary quantity then equation (9) represents a 
complex of second degree.  It has the singularity surface in common with the given 
equation (2).  The system of equations (8), (9), (10) then remains unchanged when kα is 

generally replaced by 
1

kα σ+
. 

 
 Equation (9) represents the system of complexes of second degree that is associated 
with the singularity surface of the given complex. 
 
 Equation (9) is completely analogous to the equations that appear in the determination 
of confocal curves or surfaces of second order. 
 If (y) means a given line then equation (9) determines the four associated values of σ.  
Of them, two will be equal to each other when (y) is a tangent of the singularity surface. 
 The principal tangents to the singularity surface are characterized by the fact that 
three roots of equation (9) are equal; they are then given by (8), (9), (10), and the 
following equation: 

(11)     
22 2
61 2

3 3 3
1 2 6( ) ( ) ( )

yy y

k k kσ σ σ
+ + +

+ + +
⋯ = 0. 
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Finally, the lines that envelop the contact curves in the double planes of the singularity 
surface, relative to the contact cone at the double points that generate it, are determined 
by (8), (9), (10), (11), and the following equation: 
 

(12)    
22 2
61 2

4 4 4
1 2 6( ) ( ) ( )

yy y

k k kσ σ σ
+ + +

+ + +
⋯  = 0. 

 
 Let any value of σ that corresponds to the system of equations (8), (9), (10), (11), (12) 
be obtained.  The lines in the corresponding complex (9) that are associated with the lines 
thus determined are themselves again singular lines.  Their associated lines define the 
totality of the lines that lie in the double planes of the singularity surfaces and go through 
the double points of them.  The coordinates of such a line may then be written in the 
form: 

(13)    ρ xα = 
2( )

y
k k α

α α

µ νλ
σ σ

 
+ + + + 

, 

 
where yα is a solution of the equations (8), (9), (10), (11), (12).  This form remains 
unchanged for any value of σ that one might ascribe to it. 
 It remains for us to determine the double tangents of the singularity surface.  For the 
six congruences defined by it, one obtains from (9) and (10), when one sets σ equal to 
−k1, – k2, etc., in turn: 

(14)    

22
62

1
2 1 6 1

22
51

6
1 6 5 1

0, 0,

0, 0.

yy
y

k k k k

yy
y

k k k k


= + + = − −




 = + + =

− −

⋯

⋯ ⋯

⋯

 

 
In the same equations, one arrives at (4) when one sets σ equal to – k1, − k2, etc., and 
eliminates xα from (1), (2), (3). 

__________ 
 
 

 The conversion of the complex equation that was assumed in the foregoing 
considerations is, in many cases, not possible.  Among the complexes that were excluded 
here are the ones that Th. Reye considered, whose lines are the intersection of 
corresponding planes of two collinear spatial systems 28).  Such complexes are 
distinguished by the appearance of double lines, excluded points, and excluded planes 29).  
I think that I will give an overview of the cases that were distinguished by him at the 
soonest opportunity. 
 

                                                
 28) Reye, Die Geometrie der Lage, C. Rümpler, Hannover, 1868. 
 29) Plücker, Neue Geometrie, no. 313. 
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 [Perhaps it would be useful to abstract the following rule from the formulas of section IV: 

 While the individual complexes 2
iik x∑  remain unchanged when one sets the ki equal to any 

i
k′  = a ki + 

b, the entire family of complexes, and therefore, the Kummer surface that is associated with it, remains 

unchanged when one likewise replaces the 
i

k′  with any sort of linear functions of the ki: i
k′  = i

i

k

k

β

δ

α
γ

+

+
. K] 

 
 Göttingen, 14 June 1869. 
 


