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INTRODUCTION 
 

 In any branch of geometry that touches upon the most essential points of all of the 
other branches, and whose development has been crucial to the evolution of science 
during the entire first part of this century, it would seem quite difficult to give the name 
of the inventor with any certainty.  It is to Plücker that one generally attributes the glory 
of that invention, and meanwhile neither the idea of a congruence of lines nor likewise 
that of a complex has received its first proper acknowledgment.  The entire world 
recognizes that the properties of congruences go back to the early research in geometrical 
optics; however, as far as complexes are concerned, one seems much too disposed to 
forget that Malus was the first to conceive of them in his Traité d’Optique, and that one 
will arrive at a proposition of paramount importance in this subject that was ultimately 
mentioned by Chasles in an interesting Mémoire de Transon on the grouping of lines in a 
complex into congruences of normals to a surface.  It is very remarkable that the 
proposition of Malus strongly touches upon another line of thinking that we will have 
occasion to speak of, and which has been developed in a magisterial fashion by Sophus 
Lie. 
 One will find the exact citations that corroborate the current beliefs later on in the 
historical part.  Nevertheless, it is to Plücker that goes the immortal credit for having 
foreseen the role of the line in geometry and having, if not practiced, then at least 
indicated, a method for grouping the great principles of projective geometry that Chasles 
called homography and duality under more advanced laws. 
 However, Plücker was not given the honor of reaping the fruits of his discovery.  The 
task of making them prosper and ripen fell on no less than the great talents of a 
universally esteemed geometer whose was just as celebrated in analysis.  Klein has 
recalled the ideas of Plücker by appealing to the methods of modern algebra.  The 
symmetry and elegance of his results, notably as far as quadratic complexes are 
concerned, makes him justly deserving of the admiration of geometers. 
 We will have occasion, in the course of this study, to mention other names that are 
very justly worth of being cited; however, the work of Sophus Lie on that branch of 
geometry deserves especial mention.  That illustrious geometer has established the closest 
links between the geometry of Plücker and the theory of differential equations; he has, in 
a sense, transported a doctrine that might appear, on first glance, to be almost exclusively 
algebraic to the transcendental domain. 
 I will stop with the names that I just cited in this introduction, in order to not 
duplicate the historical notice that accompanies this memoir.  It is certain that line 
geometry owes much to Cayley, Sylvester, Möbius, Chasles, and Battaglini, but the three 
names of Plücker, Klein, and Sophus Lie characterize, in a sense, three phases of the 
doctrine of the straight line, and this is why I have placed them at the forefront of the 
present study (1). 
 

                                                
 (1) This work is a partial reproduction of a course that I taught in 1887-1888 at the Collège de France. 
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 1.  In the beginning of his research, Plücker himself insisted on the double dualistic 
and projective character of the space of lines. 
 One may consider only the points that comprise a figure in geometry.  By 
transforming it homographically, one obtains an analogous figure that is defined 
immediately by its points.  This is what one expresses by saying that the homographic 
transform of a point-like figure is another point-like figure. 
 On the contrary, if one considers the planes that converge to generate that figure then 
one will have a planar figure; its homographic transform will be another planar figure.  
One can summarize these remarks by saying that the point-like space and the planar 
space are transformed into spaces of the same type, respectively, under any homographic 
transformation. 
 Now, perform a dualistic transformation − for example, a transformation by 
reciprocal polars.  Any point-like figure will be changed into a planar figure and any 
planar figure, into a point-like figure. 
 One may summarize that double remark by saying that the point-like space and the 
planar space are transformed into spaces of the opposite type, respectively, under any 
dualistic transformation. 
 However, one must remember that duality was placed next to homography by Chasles 
in the first quarter of this century, and that the subsequent progress has served only to 
accentuate the importance, and at the same time, the similitude of these two fundamental 
transformations.  One then understands that there will then be some interest in finding a 
conception – i.e., a mode of definition – of the figures that remain unaltered as a result of 
one or the other of these transformations. 
 If we consider not just the points that comprise a figure, nor even the planes that 
generate it, but in fact the lines that enter into its construction then we will obtain a new 
mode of definition that we will characterize by saying that the figure is ruled.  The ruled 
figure must then be placed alongside the point-like and planar figures.  However, the 
advantage of this mode of definition appears immediately if one observes that a line has a 
line for its transform under duality, as well as homography, since it results immediately 
that the transform of a ruled figure, whether by duality or by homography, is another 
ruled figure, which is what one expresses by saying that the ruled space is transformed 
into a space of the same type by homography, as well as by duality. 
 The theory of ruled figures is therefore, in a sense, the supreme expression of the 
grand evolution of geometry that was inaugurated by Poncelet, Gergonne, and Chasles, 
and which, if one does not stop, tends, on the contrary, to penetrate almost into 
transcendental geometry. 
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 Any theorem concerning a figure that is point-like, planar, or ruled, resp., may be 
called point-like, planar, or ruled, resp.  It is clear that any theorem that is not ruled gives 
rise to a conjugate proposition, namely, the one that one deduces by reciprocal polars.  
From this, one derives the name geometry in a double role that serves to recall the habit 
that some geometers have of associating any non-ruled theorem with its conjugate 
theorem.  This double meaning disappears when one uses lines, so one of them will 
suffice for both propositions.  One immediately sees an example of this in the geometry 
of the spray (gerbe) and in that of the planar system. 
 In order to make the dominant idea of this paragraph as clear as possible, consider a 
curve in space.  One might first regard it as a set of points that depend upon one 
parameter, namely, the points of the curve.  One might also regard it as a set of planes 
that depend upon the same parameter, namely, the osculating planes.  Finally, one might 
regard it as a set of lines that always depend upon that same parameter, namely, the 
tangents to the curve.  The knowledge of any arbitrary one of these sets will suffice to 
define all of the other ones by means of differential operations that are simple to execute.  
Nevertheless, a detailed study of geometric transformations has shown that there is good 
reason to distinguish one from the other, and to direct one’s attention, depending on the 
case, to either one of them or the other, although they are, in fact, inseparable.  Thus, 
provisionally represent the set of points of a curve, the set of osculating planes, and the 
set of its tangents, by Ep, Eπ, Ed, respectively.  If one performs a homographic 
transformation then each of these sets will be transformed into another such set pE′ , Eπ′ , 

dE′ , resp.  On the contrary, performing a dualistic transformation on Ep will change it into 

a system Eπ′ , and Eπ will change into the system pE′  that is attached toEπ′ ; however, by 

comparison, the system Ed will change into the systemdE′ .  Therefore, the advantage of 

defining the sets attached to a curve by means of the set dE′  of tangents is that the 

definition preserves its character under duality, as well as under homography.  Any 
theorem concerning a system Ep, for example, will have a corresponding theorem in a 
system Eπ ; however, if one translates the theorem in such a way that the system Ed 
(which is attached to Ep) figures only in its statement then the proposition will be found 
to coincide with the conjugate proposition. 
 One may similarly define a surface, not only by its points or its tangent planes, but by 
its tangent lines; one is then led to new properties that show the advantage of the method. 
 
 
 2.  A line itself possesses two modes of generation: It is the locus of a point and it is 
also the locus of a plane that turns around it.  Plücker used the term ray to describe the 
line in question as a locus of points and axis when it is regarded as the locus of planes.  
The word “axis” is employed in both senses, and, on the other hand, the distinction is so 
inessential that we shall find no advantage in elaborating upon these locutions.  To be 
honest, it makes no difference whether a line is regarded as a locus of points or planes; it 
is naturally the one or the other, and it is not up to line geometry to establish such a 
distinction in every case.  Even more, it might be vain, since it remains indifferent to any 
dualistic transformation.  The distinction that was established by Plücker thus points to 
the imperfection in his method, which never liberated him from the encumbrance of 
considering point-like spaces and planar spaces.  One finds no such thing in the work of 
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Klein.  All of the elements that one encounters there are dualistic in themselves − i.e., 
they transform into the same type of elements under duality – and this must be our 
preoccupation from the outset when we define the coordinates.  It will seem at first that 
we have discarded that rule, but we shall not hesitate to come back to it. 
 
 
 3.  Consider a point-like space that is referred to point-like homogeneous coordinates.  
Let x1, x2, x3, x4 be the coordinates of a point x, and let: 
 
(1)     ξ1 x1 + ξ2 x2 + ξ3 x3 + ξ4 x4 = 0 
 
be the equation of a plane.  The quantities ξ1, ξ2, ξ3, ξ4 will be the homogeneous 
coordinates of that plane, and equation (1) expresses the notion that the point x and the 
plane ξ are united; i.e., the point is in the plane. 
 Take two planes ξ, η; these planes intersect along a line D, and if one sets: 
 
(2)      ρ pik = ξi ηk – ηi ξk , 
 
where ρ is a coefficient of proportionality, then the planes that are guided by the line D 
and by the summits of the tetrahedron of reference will have the equations (in the current 
coordinates Xi ): 

(3)     

12 2 13 3 14 4

21 1 23 3 24 4

31 1 32 2 34 4

41 1 42 2 43 3

0,

0,

0,

0.

p X p X p X

p X p X p X

p X p X p X

p X p X p X

∗ + + + =
 + ∗ + + =
 + + ∗ + =
 + + + ∗ =

 

 
 If one develops the zero determinant: 
 

0 = ∆ = 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

ξ ξ ξ ξ
η η η η
ξ ξ ξ ξ
η η η η

 

then one will find: 
(4)     ∆ = 2(p12 p34 + p13 p42 + p14 p23) = 0. 
 
 Conversely, take six quantities p12, p13, p14, p34, p42, p23 that are linked by equation (4) 
and form equations (3) by agreeing that pki = − pik .  One verifies by a simple calculation 
that, by virtue of (4), the four planes (3) intersect along a common line D.  One further 
verifies quite easily that if one makes two planes ξ, η pass through this line then the 
binomial (ξi, ηk – ηi ξk) will be proportional to pik .  Therefore, six quantities: 
 

p12, p13, p14, p34, p42, p23 , 
 



Chapter I.  The coordinates of the straight line.  Generalities.                             5 

which are linked by the equation: 
 
(5)     p12 p34 + p13 p42 + p14 p23 = 0, 
 
will completely define a line by means of equations (3), where it is intended that pki = − 
pik .  However, we must hesitate to adopt these six quantities p for coordinates of the line 
due to the absence of any dualistic character in the definition of these quantities.  Indeed, 
we have obtained them by means of equations (2) and (3), by regarding the line D as the 
intersection of two or more planes. 
 In order to eliminate the difficulty, it will suffice to appeal to the correlated definition. 
 Take two points x, y on the line: Any point of that line will be represented by the 
coordinates: 

zi = l xi + m yi , 
 

where l, m are two parameters.  We seek the trace of that line on the plane zα = 0; upon 
setting: 
(6)      σ qik = xi yk ∓  yi xk , 
 
where σ is a factor of proportionality, we will find that the line cuts the plane zα = 0 at a 
point with the coordinates: 
 

qα1, qα2, qα3, qα4   (one sees that qαα = 0); 
 

one will thus have the four points: 

(7)      

12 13 14

21 23 24

31 32 34

41 42 43

(0, , , ),

( , 0, , ),

( , , 0, ),

( , , , 0);

q q q

q q q

q q q

q q q








 

 
upon developing the zero determinant that is analogous to ∆: 
 

      

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

x x x x

y y y y

x x x x

y y y y

, 

 
one will confirm that the following expression is zero: 
 
(8)     q12 q34 + q13 q42 + q14 q23 = 0. 
 
 Conversely, take six quantities q12, q13, q14, q34, q42, q23 that are linked by equation 
(8); a simple calculation proves that, thanks to the one condition (8), the four points (7), 
where one assumes that pki = − pik , will bee on the same line D. 
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 4.  We are therefore now in the presence of a new system of coordinates q for the line, 
where that line is now considered to be a locus of points. From what we said above on the 
character of duality that must be preserved in our exposition, we do not, however, have 
the right to choose the system of coordinates q like the system of coordinates p.  
However, it is fortunate that we nevertheless do not have to choose, since these 
coordinates are found to be identical. 
 Indeed, start with the line D, as represented by equations (3), and express the fact that 
the line contains the points x and y; we will have: 
 

p12 x2 + p13 x3 + p14 x4 = 0, 
p12 y2 + p13 y3 + p14 y4 = 0; 

from this, one will conclude: 
 

12

3 4 4 3

p

x y x y−
 = 13

4 2 2 4

p

x y x y−
 = 14

2 3 3 2

p

x y x y−
; 

i.e.: 

12

34

p

q
= 13

42

p

q
= 14

23

p

q
. 

One will likewise have: 
p21 x2 + p31 x3 + p24 x4 = 0, 
p21 y2 + p31 y3 + p24 y4 = 0, 

so: 

21

3 4 4 3

p

x y x y−
= 23

4 1 4 1

p

x y y x−
 = 24

1 3 1 3

p

x y y x−
; 

i.e.: 

12

34

p

q
= 23

14

p

q
= 42

13

p

q
. 

 
From the third of equations (3), one will likewise deduce that these equal ratios are 
further equal to p34 / q12 , so one will finally have: 
 

(9)     12

34

p

q
= 13

42

p

q
= 14

23

p

q
= 34

12

p

q
= 42

13

p

q
= 23

14

p

q
, 

 
and upon combining formulas (2) and (6), and changing the coefficients of 
proportionality slightly, we can write: 
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(10)    

12 1 2 1 2 3 4 3 4

13 1 3 1 3 4 2 4 2

14 1 4 1 4 2 3 2 3

34 3 4 3 4 1 2 1 2

24 4 2 4 2 1 3 1 3

23 2 3 2 3 1 4 1 4

( ) ( ),

( ) ( ),

( ) ( ),

( ) ( ),

( ) ( ),

( ) ( ),

r x y y x

r x y y x

r x y y x

r x y y x

r x y y x

r x y y x

ρ ξ η η ξ σ
ρ ξ η η ξ σ
ρ ξ η η ξ σ
ρ ξ η η ξ σ
ρ ξ η η ξ σ
ρ ξ η η ξ σ

= − = −
 = − = −
 = − = −
 = − = −
 = − = −


= − = −

 

 
and it is these quantities r ik , which are susceptible to a double meaning, that we will 
adopt for the coordinates of the straight line; these coordinates verify the quadratic 
relation: 
(11)   ω(r) = 2(r12 r34 + r13 r42 + r14 r23) = 0. 
 
 This quadratic form ω(r) will play an essential role.  We shall establish that fact by a 
proposition that is of the greatest importance. 
 
 
 5.  We seek the condition that the two lines r, r′ should meet; for this, if we start with 
equations (3) then the line r will be the intersection of the two planes: 
 

(12)    12 2 13 3 14 4

12 1 43 3 24 4

0,

0,

r X r X r X

r X r X r X

+ + =
 − + + =

 

 
and the line r′ will be the intersection of the two planes: 
 

(12′)    12 2 13 3 14 4

12 1 43 3 24 4

0,

0,

r X r X r X

r X r X r X

′ ′ ′+ + =
 ′ ′ ′− + + =

 

 
Eliminate X1 and X2 from (12) and (12′).  We will then find that: 
 

 13 12 13 12 3 14 12 14 12 3( ) ( )r r r r X r r r r X′ ′ ′ ′− + −  = 0, 

23 12 23 12 3 24 12 24 12 3( ) ( )r r r r X r r r r X′ ′ ′ ′− + −  = 0. 

 
The necessary and sufficient condition that they should meet is then: 
 
(13)  13 12 13 12 24 12 24 12 14 12 14 12 23 12 23 12( )( ) ( )( )r r r r r r r r r r r r r r r r′ ′ ′ ′ ′ ′ ′ ′− − − − −  = 0, 

 
which may be written: 
 

2 2
12 13 24 14 23 12 13 24 14 23 12 12 13 24 13 24 14 23 14 23( ) ( ) ( )r r r r r r r r r r r r r r r r r r r r′ ′ ′ ′ ′ ′ ′ ′ ′ ′− + − + − − + +  = 0. 

 
However, one has: 
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r12 r34 + r13 r42 + r14 r23 = 0, 
 

and r24 = − r42, moreover.  One will then have: 
 

r13 r24 – r14 r23 = r12 r34 , 

12 24 14 23r r r r′ ′ ′ ′− = 12 34r r′ ′ , 

and equation (13) will become: 
 

12 12 12 34 12 34 13 42 13 42 14 23 14 23( )r r r r r r r r r r r r r r′ ′ ′ ′ ′ ′ ′+ + + + +  = 0. 

 
 Our calculations supposed that r12 and 12r ′  were not zero, which is a hypothesis of no 

importance.  The desired condition will then be written: 
 
(14)   12 34 12 34 13 42 13 42 14 23 14 23r r r r r r r r r r r r′ ′ ′ ′ ′ ′+ + + + +  = 0. 

 
However, if one refers to the expression for ω(r): 
 

ω(r) = 2(r12 r34 + r13 r42 + r14 r23) 
 

then the left-hand side of equation (14) may be written: 
 

12 13 14 23 34 42
12 13 14 23 34 42

1 ( ) ( ) ( ) ( ) ( ) ( )

2

r r r r r r
r r r r r r

r r r r r r

ω ω ω ω ω ω ∂ ∂ ∂ ∂ ∂ ∂′ ′ ′ ′ ′ ′+ + + + + ∂ ∂ ∂ ∂ ∂ ∂ 
. 

 
One generally represents that expression by the symbol: 
 

ω(r, r′) = 12 23
12 23

1

2
r r

r r

ω ω ∂ ∂′ ′+ + ∂ ∂ 
⋯ ; 

 
the condition that they meet will then be expressed by the equation: 
 
(15)     ω(r, r′) = 0. 
 
 Therefore, if one constructs the POLAR FORM ω(r, r′) relative to two lines r, r′ then 
the vanishing of that form will express the intersection of the lines r and r′. 
 This fact has the greatest importance: Thanks to it, we may henceforth free ourselves 
of all considerations of point-like space or planar space that have served us up to now as 
intermediaries for arriving at this quadratic form ω and the remarkable properties of its 
polar form.  All that we need to retain here is the fact that if one chooses six arbitrary 
quantities r12, r13, r14, r34, r42, r23 that are coupled by the equation: 
 

ω(r) = 2(r12 r34 + r13 r42 + r14 r23) = 0 
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then one will find that they define a line (it is less important for the moment how the 
construction of the line might result from that definition) and that, moreover, the 
intersection of the two lines r, r′ is expressed by the equation ω(r, r′) = 0. 
 It is assuredly quite worthy of interest that this simple notion of the form ω(r) suffices 
to enlighten all of line geometry, and with no further assumptions. 
 
 
 6.  Our primary concern shall be to give a broader picture of this form ω.  If we 
express the parameters r ik as linear functions of the six new parameters xi : 
 
(16)    r ik = Aik, 1 x1 + … + Aik, 6 x6 
 
then nothing will prevent us from taking x1, x2, …, x6 to be the new variables, since the 
determinant of the linear substitution (16) is non-zero.  These new variables will be 
linked by a homogeneous quadratic relation ξ(x) = 0, where the form ξ(x) is the transform 
of the form ω(r). 
 As for ω(r, r′), its transform will be, after a well-known property of quadratic forms, 
the polar form ξ(x, x′).  Here is, in addition, the proof of this fact: Let (r12, r13, …, r23), 
( 12r ′ , 13r ′ , …, 23r ′ ) be two systems of values of r and let (x1, x2, …, x6), ( 1x′ , 2x′ , …, 6x′ ) be 

the corresponding systems of values for x.  The system (x1 + 1xλ ′ ), (x2 + 2xλ ′ ), …, (x6 

+ 6xλ ′ ), where λ is arbitrary, will correspond to the system (r12 + 12rλ ′ ), (r13 + 13rλ ′ ), …, (r23 

+ 23rλ ′ ), and one will have, in turn: 

ω(r + λr′) = ξ(x + λx′), 
so: 
(17)   ω(r) + 2ω(r, r′) λ + ω(r) λ2 = ξ(x) + 2ξ(x, x′)λ + ξ(x)λ2, 
 
and, upon identifying the coefficients of λ2, λ, 1, one will find, apart from two obvious 
relations, the relation that we needed to find, namely: 
 

ω(r, r′) = ξ(x, x′), 
 

where, from formula (17) itself, one will have: 
 

2 ξ(x, x′) = 1 2 6
1 2 6

x x x
x x x

ξ ξ ξ∂ ∂ ∂′ ′ ′+ + +
∂ ∂ ∂

⋯ . 

 
 The particular form that we found for the quadratic form ω(r) is not essential; a linear 
transformation of the parameters permits us to convert that form into an arbitrary 
quadratic form in six variables (which is arbitrary if one does not shrink from a linear 
transformation with imaginary coefficients) whose discriminant is non-zero.  One may 
then state the following theorem: 
 
 To any system of six variables x1, x2, x3, x4, x5, x6 that are linked by one quadratic 
relation ξ(x) = 0 whose discriminant is non-zero, one may associate a well-defined line in 
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space, the correspondence having such a character that the equation ξ(x, x′) = 0 
expresses the notion that the lines x, x′ meet. 
 
 Now that we have given all due weight to the fundamental quadratic form ξ(x), we 
may penetrate further into the theory by employing only the dualistic and projective 
elements from now on. 
 
 
 7.  The first of the elements that we shall appeal to is the plane pencil of lines – i.e., 
the set of lines that issue from a point in a plane.  We call that point and the plane the 
supports of the pencil of lines. 
 A pencil is defined completely by two of its lines a and b; all of the other ones will 
have coordinates of the form: 
(18)     xi = λ ai + µ bi , 
 
where λ, µ are parameters.  Indeed, one first has: 
 

ξ(x) = ξ(λ a + µ b) = ξ(a) λ2 + 2ξ(a, b) λµ + ξ(b) µ2, 
 
and since ξ(a) = 0, ξ(b) = 0 and ξ(a, b) = 0, due to the intersection of the lines a and b, it 
will then result that: 

ξ(λ a + µ b) = 0. 
 

Therefore, ξ(λ ai + µ bi) are the coordinate of a line x; that line is part of the pencil (a, b).  
Indeed, if one lets d be a line that cuts a and b then one will have: 
 

ξ(a, b) = 0, ξ(b, d) = 0, 
and consequently: 

ξ(λ a + µ b, d) = ξ(a, d) λ + ξ(b, d) µ = 0. 
 

 The lines represented by the formula (18) thus cut any line d that cuts a and b; this 
will happen only if these lines x are in the plane (a, b), as one sees by taking d to be an 
arbitrary line of that plane.  Likewise, by taking d to be an arbitrary line that issues from 
the point (a, b), one sees that all of the lines (18) must pass through the point (a, b).  All 
of the lines (18) then define part of the pencil (a, b).  I add that, conversely, any line of 
the pencil (a, b) is representable by formulas (18).  In effect, take an arbitrary line d that 
cuts an arbitrary line z of the pencil (a, b).  There is only one line of this pencil that cuts d 
(one does not suppose that d is cut by all of the lines of the pencil), and that unique line is 
the line z.  Now, one may determine λ, µ in such a way that x cuts d; it suffices to verify 
the equation: 

ξ(x, d) = ξ(a, d) λ + ξ(a, d) µ = 0. 
 

There is then a line (18) that cuts d, and since all of the lines (18) define part of the 
pencil, that line (18) that cuts d and belongs to the pencil may only be the line z that one 
took arbitrarily in the pencil (a, b); therefore, any line of the pencil (a, b) is identical to 
one and only one line of the system (18). 
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 In summation, if one refers to formulas (18) then to any value of λ : µ there will 
correspond a line of the pencil (a, b), and conversely.  Formulas (18) will thus realize the 
representation of the plane pencil (a, b). 
 However, there is more, since λ : µ and the lines of the pencil correspond uniquely – 
i.e., since any line of the pencil corresponds only one value of λ : µ, conforming to the 
principle of correspondence in its simplest form, it will then result that if one takes four 
lines α, β, γ, δ of the pencil, and lets ρ, σ, τ, υ be the corresponding values of λ : µ then 
the anharmonic ratio (α, β, γ, δ) of the four lines will be equal to the anharmonic ratio (ρ, 
σ, τ, υ) of the corresponding ratios: 
(19)     (α, β, γ, δ) = (ρ, σ, τ, υ). 
 
 For example, the lines (λai + µbi) and (λai − µbi) form a harmonic pencil with the 
lines a and b. 
 
 8.  Two lines that intersect define a plane pencil; three lines that intersect form a 
triangle or a trihedron.  If they form a triangle then any line that cuts them generates the 
system of lines of a plane (planar system).  If they form a trihedron then any line that cuts 
them passes through their common point, and the set of these lines generates what one 
calls a spray of lines; i.e., the set of lines that issue from a fixed point.  The geometry of 
sprays and the geometry of planar systems are reciprocal.  It should then not surprise us 
that line geometry has the same language for both of them and is incapable of 
establishing a distinction between them.  On the contrary, one must see that as a sign of 
the perfection of line geometry that I have already alluded to. 
 Thus, let a, b, c be three lines that intersect: We say that all of the lines that cut a, b, c 
form what we call a hyper-pencil, because it is repugnant to opt for one or the other of the 
expressions spray or plane pencil if they both have the same status.  The word “hyper-
pencil” should shock no one, and is indeed appropriate to those systems that enjoy, as one 
just saw, a representation that is analogous to that of the pencil.  Let a, b, c be three lines 
of a hyper-pencil: I say that the set of lines of the system is represented by the formulas: 
 
(20)     xi = λ ai + µ bi + ν ci , 
 
where λ, µ, ν are arbitrary parameters.  The proof is analogous to the one that we made 
use of for the case of a pencil.  I will thus not repeat the details here.  One first confirms 
that: 
 

ξ(λa + µb + νc) = ξ(a) λ2 + ξ(b) µ2 + ξ(c) ν2 + 2ξ(a, b) λµ + 2ξ(b, c) µν + 2ξ(a, c) λν 
 

is identically zero, which proves that the quantities xi are the coordinates of line.  
Consequently, one will confirm that this line x cuts a, b, c, and, as a result, belongs to the 
system; finally, one will prove that any line z of the system is a line (20), by showing that 
two arbitrary lines d, e that cut z are always cut by a line (20) that is unique, in general. 
 
 
 9.  We shall make incessant application of these notions, after we have nonetheless 
made known some general notions on ruled systems. 
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 A line depends on four absolute parameters, so the lines in space that are subject to 
one condition preserve three parameters, and the set of them constitutes a COMPLEX.  
Two conditions leave only two parameters, and the line then generates a 
CONGRUENCE.  Three conditions to one parameter, and the line then generates a 
RULED SERIES; a ruled series does not always form a surface, because the tangents to a 
plane curve, for example, might not be regarded as forming a ruled surface, properly 
speaking.  There is, moreover, another time when it is inconvenient to speak of ruled 
surfaces: The hyperboloid, as a surface, serves to support, in fact, two ruled series, and it 
would be a real inconvenience for us to not separate these two series by confusing them 
with the same name of surface or hyperboloid.  Finally, four conditions determine a line 
or, to say it best, A SET OF LINES.  There is a great inconvenience to saying, as one 
often does when one speaks of an arbitrary geometric element that depends upon n 
parameters, that n conditions define one element.  That locution is vicious and amounts to 
denying the theory of binary forms.  In reality, the n conditions – which are four, here – 
define a set of lines that is generally finite, and these elements enjoy the interesting 
property that one will lose the notion if one contents oneself to saying that four 
conditions define one line.  To give the simplest example of this that is drawn from 
another school of ideas, one knows that two plane cubics define a set of nine points that 
enjoy special properties and that two curves of order m and n intersect at mn points, the 
set of which presents some general properties that are sufficiently removed from the 
properties of a unique point that the properties of a curve of order mn will be the same as 
those of a simple straight line. 
 For these reasons, we thus consider five types of ruled systems.  First, the ruled 
space, or the set of all lines in the space, and then, the complexes, or systems with triple 
indeterminacy.  Next, one has the congruences − or doubly indeterminate systems − the 
ruled series with simple indeterminacy, and finally the sets of lines with zero 
indeterminacy. 
 
 
 10.  The condition for a line to belong to a plane pencil is equivalent to three 
conditions, since the lines of such a pencil constitute a ruled series; likewise, the 
condition of belonging to a hyper-pencil is equivalent to two conditions. 
 Consider, from now on, a complex of lines; it is these lines that belong to a plane 
pencil that constitutes a set of indeterminacy zero.  The number of lines of that set is what 
one calls the degree of the complex. 
 On the contrary, the lines of a complex that belong to a hyper-pencil form a ruled 
series.  If the hyper-pencil is a spray then one will have all of the lines of the complex 
issuing from a point.  Their set obviously forms a cone, which we shall call the cone of 
the complex. Any point of space is therefore the summit of a cone of the complex.  If, on 
the contrary, the hyper-pencil is a planar system then one will have the lines of the 
complex situated in one plane and enveloping a curve: the curve of the complex.  Any 
plane thus contains its enveloping curve of the complex.  However, note that this curve is 
defined by its tangents and might nevertheless degenerate into one or more points; we 
will soon have some examples. 
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 THEOREM. – The degree of any cone of a complex and the class of any planar curve 
that envelops the complex are equal to each other and to the degree of the complex. 
 
 Take a point O.  In order to get the degree of the cone of a complex with summit O, 
one must cut this cone with a plane Π that goes through O and count the number of lines 
of intersection.  The set of generators thus obtained is nothing but the set of lines of the 
complex that are contained in the pencil (O, Π).  The number of these lines is then 
precisely equal to the degree of the complex. 
 One can apply the same reasoning to the enveloping curve relative to a plane Π.  In 
order to get the class of that curve, one counts the tangents that one may pass through a 
point O of Π.  However, the set of these tangents is nothing but the set of lines of the 
complex that are contained in the pencil (O, Π).  Therefore, the class of the curve is 
precisely equal to the degree of the complex. 
 I will return to these general questions later on.  For the moment, the theorem will 
suffice for me. 
 
 
 11.  Now take a congruence.  Passing through a point is equivalent to two conditions 
for a line; similarly, being in a plane is equivalent to two conditions.  Therefore, the lines 
of a congruence that issue from a point form a set of indeterminacy zero.  The number of 
lines of that set is the degree of the congruence.  Likewise, the lines of a congruence that 
are in a plane form a set whose number is called the class of the congruence. 
 
 
 12.  If a ruled series is given then one will call the number of lines in the series that 
cut an arbitrary line the degree of the series.  If the lines form a ruled surface then this 
degree will properly be that of the surface.  If they envelop a planar curve then its degree 
will properly be the class of that curve. 
 Finally, one may call the number of lines that comprise a finite set of lines its degree. 
 I shall begin by studying the complexes of first degree, as well as their common 
systems. 
 

________ 
 

  
 
  
  
 



CHAPTER II. 
 

LINEAR COMPLEXES OF LINES.  
 

Pole and polar plane. – Pencils of complexes. – Conjugate lines. – Distribution of poles and polar planes on 
a line of the complex. – Normal correlation of a complex. – Properties of conjugate lines. – Reciprocal 
polars with respect to a linear complex. – Analytic representation. – Special complexes. – Klein 
invariant. – Conjugate lines. 

______ 
 
 
 13.  A complex is called linear when it is of the first degree – i.e., when, among the 
lines of an arbitrary pencil, there is only one of them that belongs to the complex.  The 
cone of the complex will then reduce to a plane, and the enveloping curve in a plane will 
reduce to a point (i.e., a locus of class 1).  This gives the double theorem: 
 
 The lines of a linear complex that issue from a point P generate a plane that one calls 
the POLAR PLANE of the point. 
 
 The lines of a linear complex are traced in a plane that passes through a fixed point 
of that plane – viz., the focus or POLE of that plane. 
 
 There thus exists an infinitude of pencils in space whose lines all belong to the 
complex: They are the pencils that are defined by a point and its polar plane, or, what 
amounts to the same thing, by a plane and its pole.  We call these pencils the pencils of 
the linear complex (2). 
 
 
 14.  One may deduce the properties of a linear complex from a unique proposition 
whose proof is quite simple. 
 
 Consider the set of a plane Π and a point O in that plane: The pole O′ of the plane Π 
is in the polar plane Π′ of the point O. 
 
 In other words, if a point O and a plane Π are UNITED (see no. 3) then their 
corresponding polars in the complex will be a UNITED plane Π′ and a point O′, resp.  
Indeed, the line OO′ will belong to the complex, since it will pass through the point O′ 
and will be in the polar plane Π to that point. However, it must then be contained in the 
plane Π′, which will be the polar of the point O of that line.  The plane Π′ will thus 
contain the point O′.   Q. E. D. 
 
 Suppose that the line d does not belong to the complex, that O is a point of that line, 
and that Π is a plane through that point.  From the preceding theorem, the pole of Π will 
be in the polar of O.  However, since O is an arbitrary point of the line d, and Π is an 
                                                
 (2) One may compare this with what we shall call the pencil of the complex later on in the general case 
of an arbitrary complex. 
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arbitrary plane through that line, one may conclude that the poles of all the planes 
through a line will be situated in the polar planes to all of the planes of that line. 
 It then results immediately that: 
 
 1.  The polars to all of the points of a line d are the planes that cut it along the same 
line d′. 
 
 2. That line d′ is the locus of the poles of the plane through the line d. 
 
 The pole of a plane through d is then the point where it pierces d′, and the pole of a 
plane through d′ is the point where it pierces d.  The lines d and d′ are then in a reciprocal 
situation with respect to each other; one calls them conjugate lines. 
 The following remarks are used frequently: 
 
 Any line x that cuts two conjugate lines d, d′ belongs to a complex. 
 
 Consider the plane Π(d, x) through d and x, so the pole of that point is its intersection 
with d′ − i.e., at precisely the point P(d′, x) of intersection of x and d′.  The line x of the 
plane Π(d, x) is thus found to pass through the pole P(d′, x) of that plane; it is therefore 
implicit that it belongs to the complex. 
 
 Any line of the complex that cuts a line d also cuts its conjugate d′. 
 
 Indeed, consider the plane Π(d, x) that one passes through d and x, by hypothesis.  
The line x in that plane that belongs to the complex must pass through a pole of that 
plane.  Now, that pole is the trace of the plane on the line d′; the line x will then cut d′ at 
that point. 
 
 Two pairs of conjugate lines form four lines that are carried by the same quadric. 
 
 Indeed, let a, a′ and b, b′ be two pairs of conjugate lines, and consider the quadric that 
is generated by a line x that leans against a, a′, b.  The generators x of that quadric belong 
to the complex since they cut a and a′, and, since they cut b they must also cut b′.  
Therefore, a, a′, b, b′ are four generators of the second system. 
 In general, suppose that the generators x of a system of a quadric belong to a linear 
complex.  Consider a generator y of the second system and let y′ be its conjugate; that 
conjugate will necessarily be another generator of the same system as y.  Indeed, all of 
the generators x cut y, and, since they belong to the complex, they must cut y′.  We thus 
arrive at the result that if a quadric is generated by the lines x that belong to a linear 
complex then the generators of the second system will be found to be associated pair-
wise as pairs of conjugate lines.  We give the name of quadrics of the complex to these 
quadrics. 
 In concluding this section, we make the following remarks: 
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 We supposed to begin with that the line d did not belong to the complex.  If it does 
belong to the complex then it will be its own conjugate, because it is the locus of poles of 
its planes and the envelope of the polar planes of its points. 
 If a line d does not belong to the complex then it will be impossible that it cuts its 
conjugate d′, since if P is the point of intersection then any plane through d will have its 
pole at the point P, and the line d that passes through P and is traced in this plane will 
belong to the complex. 
 
 
 15.  Consider four planes Π1, Π2, Π3, Π4 through a line that do not belong to a 
complex, and let P1, P2, P3, P4 be the poles of these planes.  One obtains these poles by 
cutting the pencil of the four planes by the line d′ that is conjugate to d.  The anharmonic 
ratio of the four poles is therefore equal to that of the four planes. 
 It is interesting to prove that this proposition further extends to the case of planes 
passing through a line that belongs to the complex. 
 Indeed, let d be a line of the complex and let a, a′ be two conjugate lines that do not 
cut d.  Consider the quadric that is generated by a line x that leans on a, a′, and d.  That 
quadric will be a quadric of the complex since x cuts the conjugate lines a and a′.  Pass a 
plane Π through the line d; that plane cuts the quadric, not only along d, but along a 
generator x that must cut d at the point of contact P of the plane Π with the quadric.  
However, two lines of the complex pass through P that are contained in the plane Π, 
namely, d and x.  Therefore P is the pole of the point Π.  From this, one infers the 
consequence: The pole of a plane through d is justly the point of d where that plane is 
tangent to the quadric. 
 However, one knows the beautiful theorem of Chasles on the distribution of the 
tangent planes along a rectilinear generator of a quadric.  The anharmonic ratio of four 
planes through that generator is equal to that of the four points of contact of these planes 
with the surface. 
 It then results from this theorem, when combined with the preceding remark, that if 
one passes four planes through a line d of a complex then the anharmonic ratio of the 
poles of these planes will be equal to that of the planes themselves.  From the theorem, 
any linear complex defines a homographic correspondence on each of its lines between 
the points and planes of that line (3).  Such a correspondence is frequently found in ruled 
figures, and I believe it would be useful to attribute a special name to it, which is an 
anharmonic correlation, or simply, a correlation. 
 We might then say that any linear complex defines a correlation on each of its lines, 
namely, the one that relates a point of the line to its polar plane, and to distinguish that 
correlation from all of the other ones that one might imagine on that line, I will give it the 
name of the normal correlation of the complex (4). 
 
 
 16.  In the preceding section, we have seen that a linear complex is provided by 
means of a transformation under which a point transforms to a plane, a plane, to a point, 

                                                
 (3) I will henceforth call any plane through a line the plane of the line. 
 (4) One will verify an extension of that notion to the case of an arbitrary complex later on. 
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and a line to another line.  We shall extend this remark and thus obtain a result that is 
important in several aspects. 
 First of all, recall the theorem that was proved in no. 14: 
 
 I. If a point O and a plane Π are united then their corresponding elements will be a 
plane Π′ and a point O′ that will also be united. 
 
 Here are some other theorems in which lines figure: 
 
 II. If a line d passes through a point O then its conjugate d′ will be traced in the 
plane Π′ that is polar to O, and conversely. 
 
 This theorem is an immediate consequence of the definition of the conjugate lines. 
 
 III. If two lines a and b intersect then their conjugates a′, b′ will also intersect. 
 
 Indeed, since a and b pass through the same point O then, by virtue of the preceding 
theorem, their conjugates a′, b′ will be in the same plane Π that is polar to O. 
 It results immediately from this that the lines of a pencil then correspond to the lines 
of a pencil; any of the planes and lines through a point O correspond to points and lines 
that are traced in the plane Π′ that is polar to O. 
 We have already said that one gives the name of spray to the set of planes and lines 
that issue from a point and that of planar system to the set of points and lines in a plane.  
One may thus say that a spray corresponds to a planar system, and conversely. 
 Consider, in general, a figure F that is composed of points, lines, and planes, so by 

taking the corresponding elements to all of the ones in the figure F, one will generate a 

figure F′, which we say will be the reciprocal of F.  To the points of a straight line in F 

there will correspond planes in F′ that pass through a line, and conversely, to the lines 

that issue from a point, the lines in a plane, and conversely, and to the planes through a 
point, the points of plane, and conversely, etc. 
 To a polyhedron P there will correspond a polyhedron P′ in which: 

 1.  The edges will be conjugate to the edges of P. 

 2. The summits will be poles of the planes of the faces of P. 

 3. The planes of the faces will be the polars to the summits of P. 

 
 To a non-developable surface S in the figure F, when considered as a locus of points 

O, there will be a surface S′ in F′ that is defined to be the envelope of the plane Π′ that is 

polar to O, and the point of contact O′ of Π′ with the surface S′ will be pole of the plane 
Π that is tangent at O to the surface S, in such a way that the surface S′ will also be the 
locus of poles of the tangent planes to S.  One may further remark that the pencil of 
tangents to the surface S at the point O will have the pencil of tangents to the surface S′ at 
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O′ for its reciprocal.  One may thus further define the surface S′ to be the envelope of the 
lines that are conjugate to the tangents of the surface S. 
 Now, let C again be a curve that one might define to be either the locus of a point O, 
the envelope of the tangents d at that point, or the envelope of the osculating planes Π at 
O.  The locus of the pole O′ of the plane Π will be a curve C′: Consider three osculating 
planes Π, Π1, Π2 to the curve C that are infinitely close, and let O′, 1O′ , 2O′  be their poles, 

which are three points of C′, so the plane of these three points will be the osculating plane 
to the curve C′ at O′, and its pole will be the point of intersection of the three planes Π, 
Π1, Π2 ; i.e., the point O. 
 One may thus again define the curve C′ to be the envelope of the polar planes of the 
points of the curve C. 
 Finally, take two neighboring points O, O1 on the curve C.  The line d – or OO1 – has 
for its polar, the intersection d′ of the planes Π′, 1′Π  that are polar to the points O and O1, 

and which are both osculating planes that are close to the curve C′.  The line d′ is then 
tangent to the curve C′.  From this, one has the following theorem, which implies a third 
definition of the curve C′: 
 
 The polars d′ to the tangents d of a skew curve C envelop a skew curve C′. 
 
 It is in this case that one must recall the distinctions that were made at the end of no. 
1.  It is clear that if one considers the systems Ep, EΠ, Ed of the curve then they will 
transform into the systems EΠ′ , pE′ , dE′  of the reciprocal curves.  I will henceforth call 

the set Ed of tangents to a curve − which may be skew or planar, or even reduce to a point 
– developable, as in the case of the cone. 
 To summarize the material in this paragraph, we say that a linear complex permits us 
to realize a dualistic transformation of space. 
 This process did not escape Chasles in his beautiful memoir Sur la dualité et 
l’homographie, which terminated his Aperçu historique.  The mechanical form in which 
that illustrious geometer presented that transformation is of the greatest importance, and 
because of that we shall return to it in detail later on.  We also verify in the applications 
how that same transformation has found a very fertile place in graphical statics, thanks to 
the ingenious research of Maxwell. 
 
 
 17.  Before going further, it is convenient to express the results that we just obtained 
analytically. 
 Let ω(x) be the fundamental quadratic form, and let: 
 
(1)     f(x1, x2, …, x6) = f(x) = 0 
 
be the homogeneous algebraic equation in x1, x2, …, x6, which, when combined with: 
 
(2)      ω(x) = 0, 
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represents the linear complex considered. 
 I would like to prove that f(x) is linear in x1, x2, …, x6 .  Indeed, let a, b be two lines 
that intersect.  One has seen in no. 7 that the xi of the straight line of the pencil (a, b) are 
of the form ai λ + bi µ, where λ : µ is arbitrary.  Upon expressing the idea that the line x 
of that pencil belongs to the complex, one will have: 
 

f(a1λ + b1µ, a2λ + b2µ, …, a6λ + b6µ) = 0. 
 

 That equation must be of first degree in λ : µ because only one line of the complex 
belongs to a given pencil; one must have, as a consequence: 
 

f(x) = A1 x1 + A2 x2 + … + A6 x6 . 
 
 Conversely, any linear equation in x obviously represents a linear complex. 
 
 
 18.  The condition for a line x to cut a line z is expressed by the linear equation: 
 

0 = 2ω(z, x) = 1 2 6
1 2 6

x x x
z z z

ω ω ω∂ ∂ ∂+ + +
∂ ∂ ∂

⋯ . 

 
The set of lines that cut a fixed line z thus forms a linear complex.  However, one easily 
recognizes that this is not the most general linear complex.  Indeed, identify an arbitrary 
linear function of x with ω(z, x); we will have: 
 

(3)     1

1

z

A

ω∂
∂

 = 2

2

z

A

ω∂
∂

= 3

3

z

A

ω∂
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A

ω∂
∂

. 

 
 One will infer from these linear equations in z1, z2, …, z6, the values of those 
quantities − or rather, their ratios − and, by substituting these values into ω(z), that form 
will be become a homogeneous, quadratic form in A1, A2, …, A6 : 
 
(4)      ω(z) = Ω(A); 
 
this form Ω(A) will be the adjoint form to the form ω(z). 
 Therefore, if the zi are the coordinates of a line z then one must have that Ω(A) is zero. 
 If Ω(A) is zero then, from (4), the values of zi that one deduces from equations (3) 
will be the coordinates of a line, and from equations (3), that line will be cut by all of the 
lines of the linear complex: 

∑ Ai xi = 0. 
 
 One gives the name of special complex to such a complex, and the line z will be the 
called the directrix or axis; however, the word “axis” has been employed with many 
meanings in that same theory of lines, so the word “directrix” seems preferable. 
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 When the expression Ω(A) is non-zero, the linear complex will possess no directrix; 
however, the consideration of the form Ω(A) does not become less interesting.  Klein 
called it the invariant of the complex.  The name of “invariant” is justified by the 
following remark: 
 If one performs a linear transformation on the variables xi then the coefficients Ai of a 
linear form on xi will be found to transform, as one knows, by the reciprocal 
transformation, and the form Ω(A) will be what one calls a contravariant of the form 
ω(z); this signifies that Ω(A) will be reproduced, but multiplied by a power (viz., the 
second) of the determinant of the direct substitution. 
 If, for example, one has reduced the form ω(x) to the Plücker type: 
 

ω(x) = 2(x1 x4 + x2 x5 + x3 x6) 
 

then the form Ω(A) will be the following one: 
 

Ω(A) = 2(A1 A4 + A2 A5 + A3 A6). 
 

 On the contrary, if one has reduced, as we verify that Klein did, the form ω(x) to a 
sum of squares, namely: 

ω(x) = 2 2 2
1 1 2 2 6 6K x K x K x+ + +⋯ , 

then one will have: 

Ω(A) = 
22 2
61 2

1 2 6

AA A

K K K
+ + +⋯ . 

 
 At the beginning of this chapter, we were not preoccupied with the case of the special 
complex.  It is clear that in this case the lines of the space will all have the same 
conjugate − namely, the directrix − and that all of the properties that relate to the 
transformation by reciprocal polars will be found to be invalid. 
 
 
 19.  Therefore, suppose that one is dealing with a non-special complex, and let z be an 
arbitrary line; we seek its conjugate u.  To that effect, I observe that of the three 
equations: 

∑ Ai xi = 0, ω(z, x) = 0, ω(u, x) = 0, 
 
one of them must be a consequence of the other two, because any line of the complex that 
cuts a line will cut its conjugate and any line that cuts two conjugate lines will belong to 
the complex. 
 In order to arrive at this result easily, I observe that one has identically (5): 

                                                
 (5) Indeed, if one sets Zi = ∂ω / ∂zi then from the definition of the adjoint form, one will find that: 
 

ω(z) = Ω(Z); 
it will then result that: 
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i iA x∑  = 
i iA x

ω∂Ω ∂
∂ ∂∑ , 

 
and the three equations that we have to consider may be written: 
 

i iA x

ω∂Ω ∂
∂ ∂∑  = 0, i

i

z
x

ω∂
∂∑  = 0,  i

i

u
x

ω∂
∂∑ = 0. 

 
From the remark that was made before that they must reduce to two, one can find two 
quantities λ, µ such that: 

(5)      
iA

∂Ω
∂

 = λ zi + µ ui . 

 
 If one expresses the idea that u1, u2, … are the coordinates of a line then one will find 
that: 

z
A

ω λ∂Ω − ∂ 
 = 0 

or: 

                                                                                                                                            

dω = dΩ = i
i

d
dZ

dZ

Ω
∑ . 

However, one will also have: 

dω = i
i

d
dz

dz

ω
∑ = i iZ dz∑ , 

and, since ω is homogeneous: 

2ω = i
i

d
dz

dz

ω
∑  = i iZ dz∑  

Hence: 

2 dω = ∑ Zi dzi + ∑ zi dZi , 
and finally, by subtraction: 

dω = ∑ zi dZi . 
 

Upon identifying dω = i
i

d
dZ

dZ

Ω
∑ , one will then have: 

zi = 
( )

i

Z

Z

∂Ω
∂

= 

i

z

Z

ω

∂Ω ∂Ω ∂ 
∂∂
∂

, 

and, as a result, we will have precisely: 

i i
xA∑ = 

i

i

z

Z

A ω

∂Ω ∂Ω ∂ 
∂∂
∂

∑  = 
( )

i i

A

A x

ω∂Ω ∂
∂ ∂∑ . 
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2 ,z
A A

ω λω∂Ω ∂Ω   −   ∂ ∂   
 = 0, 

 
upon remembering that ω(z) = 0.  One has, moreover: 
 

A
ω ∂Ω 
 ∂ 

= Ω(A), 2 ,z
A

ω ∂Ω 
 ∂ 

 = i

A
z

Ai

ω

ω

 
 
 

∂Ω∂ ∂
∂∂∂

∑ = i iA z∑ ; 

one must then have: 

(6)      Ω(A) – λ ∑ Ai zi = 0. 
 
 Equation (6) gives us λ, and equations (5) furnish the coordinates of the line u that is 
conjugate to z. 
 This calculation supposes that ∑ Ai zi is not zero; i.e., that z does not belong to the 
complex. 
 The symmetric form of equations (15) indeed exhibits the reciprocity between the 
lines z and u. 
 It is simple to find an algebraic proof of the various properties of conjugate lines that 
were already established geometrically when one starts with formulas (5); we leave this 
to the reader. 

 
 

________



CHAPTER III. 
 

SYSTEMS OF LINEAR COMPLEXES. 
 

Correspondence between the points and planes of a line.  Inverse pairs. – Homographic correlations on a 
line. – Anharmonic ratio and angle of two correlations. – Involution of two correlations. – Singular 
correlations. – Pairs of conjugate lines common to two linear complexes. – System with two terms. – 
Linear congruence. – Singular linear congruence. – Case of decomposition. – Invariant of a 
congruence. – Anharmonic ratio of two linear complexes. – Linear complexes in involution. – Linear 
systems of linear complexes. – Complementary systems. – Systems with three terms. – Lines common 
to three complexes. – Semi-quadrics. – Complementary semi-quadrics. – Case of degeneracy. – 
System with four terms. – Lines common to four complexes. – Invariants of systems of linear 
complexes. – General form of these invariants. 

 
________ 

 
 

 20.  I will preface the study of linear systems of complexes of first degree with 
several remarks of a general nature concerning the correspondences that might exist 
between the points of a line x and the planes through that line. 
 Let u be a parameter that fixes the position of a point M on the line x, in such a way 
that to a point M there corresponds only one value of u and conversely.  Likewise, let t be 
a parameter that uniformly corresponds to the positions of a plane π through x.  For 
example, u is the distance from M to a fixed point of x, t is the tangent of the angle 
between the plane π and a fixed plane through x. 
 A relation between u and t: 

f(u, t) = 0 
 

defines a correspondence between the points of x and the planes of x according to a 
certain law.  If f is of degree m in u and of degree µ in t then one may say that this 
correspondence is of class m and degree µ.  If m = µ = 1 then one recovers the 
homographic correlations that were introduced in no. 15. 
 Two correspondences of degree m and m′ and of class µ and µ′ will have, in general: 
 

µ m′ + µ′ m 
 

common pairs if one calls the system that consists of a point M and the corresponding 
plane π a pair of a correspondence. 
 For example, two homographic correlations will have two pairs in common, in 
general. 
 This is why if one is dealing with two Chasles correlations relative to a line common 
to two ruled surfaces then the two pairs will be the two pairs of agreement of the two 
surfaces. 
 
 
 21.  Consider two pairs (M, π), (M′, π′) along a line.  We call the pairs that one 
obtains by exchanging the points their inverse pairs; the inverse pairs will then be: 
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(M, π′), (M′, π). 
 
 
 22.  Consider two homographic correlations H, H′ on a line x, and let (F, Φ), (F′, Φ′) 
be their common pairs.  If a plane π turns around x then the homologues O and O′ of π 
under these two correlations will correspond homographically, and F, F′ will be the 
double points of that homography.  From a well-known property of homographies, the 
anharmonic ratio: 

(O′, O, F, F′) = k 
will be constant. 
 Likewise, if a point O moves along the line then its corresponding planes π and π′ 
will describe two homographic pencils whose double planes will be Φ, Φ′; here again, the 
anharmonic ratio: 

(π, π′, Φ, Φ′) = k 
will be constant. 
 I add that k1 = k. 
 Indeed, let π be homologous to O in H, and let π′ be homologous to O in H′, so we 
will have: 

(π, π′, Φ, Φ′) = k1 . 
 

 Let O′ be homologous to π′ in H; the plane π′ will have the point O′ for its 
homologue in H and the point O in H′, so one will have: 
 

(O, O′, F, F′) = k. 
 

 Now, under homographic correspondences the anharmonic ratio of four elements will 
equal that of its four correspondents.  Therefore, since O, O′, F, F′ corresponds to π, π′, 
Φ, Φ′ in H, one will indeed have: 

k1 = k. 
 

This ratio k will be called the anharmonic ratio of the two correlations. 
 Ever since Laguerre saw fit to define angles by an anharmonic ratio, one has often 
attached an angle to an anharmonic ratio by setting: 
 

V =
1

log
2 1

k
−

. 

 
 In the case of two planes, for example, if k denotes the anharmonic ratio that they 
define by the two isotropic planes through their common line then, according to 
Laguerre, V will be found to be precisely equal to the angle between these two planes. 
 In order to indicate an immediate application of that notion of angle between two 
correlations, suppose that they are the two Chasles correlations of two ruled surfaces 
along the common line x.  Suppose, moreover, that by means of a homographic 
transformation one has arranged that the planes Φ and Φ′ of the pairs of agreement are 
two isotropic planes.  V will then be the angle of two tangent planes at the same point O 
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on two surfaces, and since that angle is constant, one sees that the transformed surfaces 
will intersect along their common line with a constant angle. 
 
 
 23.  A particularly important case of the angle between two homographic correlations 
is the one in which the angle is a right angle, which amounts to the same thing as the case 
where one has: 

k = − 1. 
 
We will then say that the two correlations are in involution. 
 One sees that in this case the pairs of points O, O′ that correspond to the same plane π 
will correspond involutively; the same will be true for the planes that correspond to the 
same point. 
 Here, the notion of inverse pairs that I have already spoken of intervenes. 
 Let (M, π) be a pair for a homographic correlation Π, let H′ be a homographic 
correlation in involution with the first one, and let (M, π′) be a pair of H′, in which the 
point M is common with the first pair.  Let M′ be the homologue of π′ under the 
correlation H, in such a way (M, π), (M′, π′) will be two pairs of H.  It is clear that since 
(M, π′) is a pair of H′, (M′, π) must be another one.  Indeed, M and M′ correspond to the 
same plane π′ in H and H′, respectively.  Therefore, due to the characteristic symmetry of 
the involution, the points M and M′ must be homologous to the same plane H and H′, 
respectively, and since π′ is homologous to M′ in H, it must be homologous to M in H′.  
Therefore, the pairs (M′, π), (M′, π′) that are inverse to the pairs (M, π), (M′, π′) will 
belong to H′. 
 The proof itself proves that conversely: If a correlation H′ admits two pairs that are 
inverse to a pair that belongs to a correlation H, then the homographic correlations H and 
H′ will be in involution. 
 
 
 24.  It will be useful to put the preceding results into an analytical form. 
 The equation that relates to a homographic correlation will have the form: 
 

aut + bu + ct + e = 0. 
 

That equation will depend upon three parameter a : b : c : e. 
 In a paper that dates to 1882, I indicated a mode of representing homographic 
correlations by means of a plane in space, by considering a, b, c, e to be the coefficients 
of the equation of a plane.  I will not refer to this representation, which says nothing 
essential to this discussion (6). 
 Observe that if: 

a′ut + b′u + c′t + e′ = 0 
 

                                                
 (6) At almost the same time, Stephanos published a representation of binary homographies in the 
Mathematische Annalen that presented several ideas that were common to the ones that I alluded to here. 
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is the equation of another homographic correlation H′ then the homography that relates to 
homologous planes at the same point may be written: 
 

(ac′ − ca′) tt′ + (ae′ − b′c) t + (bc′ − a′e) t′ + (be′ − b′e) = 0. 
 

The condition of involution will then be: 
 

ae′ − b′c − bc′ + a′e = 0. 
 
 If one sets: 

θ(a, b, c, d) = bc – ae, 
 

for the moment, then this condition can be written: 
 

a b c e
a b c e

θ θ θ θ∂ ∂ ∂ ∂′ ′ ′ ′+ + +
∂ ∂ ∂ ∂

 = 0. 

 
This expresses the notion that the elements (a, b, c, e), (a′, b′, c′, e′) are conjugate with 
respect to the quadratic form θ(a, b, c, e). 
 The correlations for which one has: 

bc – ae = 0 
will be called singular. 
 Singular correlations present a peculiarity that is quite remarkable.  Their equation 
may be written: 

(at + b) (au + c) = 0, 
or further: 

(t – t0) (u – u0) = 0, 
upon setting: 

t0 = − 
b

a
, u0 = − 

c

a
. 

 
 Under a singular correlation, a given point O will correspond to all planes and a given 
plane π, to all points.  Such a correlation will then be characterized and defined by a pair 
(O, π), and the pairs of the correlation will be divided into two classes: One of them is 
obtained by associating O with an arbitrary plane on the line, and the other one, by 
associating the plane π with an arbitrary point of the same line.  The pair (O, π) will 
belong to both of these classes at once; we shall then call it the singular pair of the 
singular correlation. 
 
 
 25.  What does the analytic condition of involution actually signify when one of the 
two homographic correlations is singular? 
 One has: 

ae′ − b′c − bc′ + a′e = 0, 
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and if the correlation H′ is singular then one can set: 
 

a′ = t,  b′ = − t0, c′ = − u0, e′ = u0 t0 , 
 
where u0, t0 are the parameters of the singular pair.  The condition of involution will 
become: 

au0 t0 + bu0 + ct0 + e = 0; 
 

it expresses the idea that that the singular pair belongs to H. 
 Therefore, we shall continue to say that a homographic correlation H is in involution 
with another one H′ − where H′ is singular – when the singular pair of H′ belongs to H. 
 Likewise, two singular correlations will be said to be in involution if their singular 
pairs have either the point or the plane in common. 
 Consider all of the homographic correlations that admit two given pairs (u0, t0), (u1, 
t1); their equation can be given the form: 
 

0

1

u u

u u

−
−

 = λ 0

1

t t

t t

−
−

, 

 
where λ is arbitrary.  Upon developing, this will become: 
 

(1 – λ) ut – (u1 – λ u0) t – (t0 – λ t1) u + t0 u1 – λ t1 u0 = 0. 
 

 The condition of involution with another correlation (a′, b′, c′, e′) will then be 
written: 

e′(1 – λ) − c′(λ t1 – t0) − b′(λ u0 – u1) + a′(t0 u1 – λ t1 u0) = 0, 
or further: 

(e′ + c′ t0 + b′ u1 + a′ u1 t0) – λ(e′ + c′ t1 + b′ u0 + a′ u0 t1) = 0. 
 

Therefore, consider two correlations that admit the common pairs (u0, t0), (u1, t1); these 
correlations will correspond to two values λ = a, λ = b of λ, and the condition that the 
correlation (a′, b′, c′, e′) be in involution with each of them will give: 
 

(e′ + c′ t0 + b′ u1 + a′ u1 t0) – α(e′ + c′ t1 + b′ u0 + a′ u0 t1) = 0, 
(e′ + c′ t0 + b′ u1 + a′ u1 t0) – β(e′ + c′ t1 + b′ u0 + a′ u0 t1) = 0; 

i.e.: 
e′ + c′ t0 + b′ u1 + a′ u1 t0  = 0, 
e′ + c′ t1 + b′ u0 + a′ u0 t1 = 0. 

 
 These equations express the idea that the inverse pairs (u1, t0), (u0, t1) belong to the 
correlation (a′, b′, c′, e′).  One thus has the theorem: 
 
 If two correlations H, H1 have two pairs in common then any correlation H′ that is in 
involution with H and H1 will contain pairs that are inverse to the first two, and 
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conversely, any correlation that contains these inverse pairs will obviously be in 
involution with H and H1 (no. 23). 
 
 As one sees, this theorem defines the correlations that are in involution with two 
given correlations, since these two correlations will generally have two pairs in common. 
 
 
 26.  One fact dominates the theory of systems of linear complexes, and it is the 
following one: 
 
 Two linear complexes will generally have a pair of conjugate lines in common. 
 
 One may give a geometric proof of this theorem: 
 
 Let A and B be two complexes, let ∆ be a line that does not belong to either of them, 
and let ∆′, ∆″ be the conjugates to ∆ in the two complexes.  First, exclude the case where 
∆′, ∆″ are in the same plane.  ∆, ∆′, ∆″ ωιλλ then define a quadric Q, which will be the 
locus of the lines X that cut ∆, ∆′, ∆″.  The lines X will belong to the two complexes, 
since they will cut the pairs of conjugate lines (∆, ∆′), (∆, ∆″) (no. 14).  Consider a 
generator Y of Q that is from the same system as ∆, ∆′, ∆″.  We know (no. 14) that the 
conjugates Y′, Y″ of Y in the two complexes A and B will also be generators of Q of the 
same system as ∆, ∆′, ∆″.  Moreover, the principle of correspondence proves to us that Y′, 
Y″ will correspond homographically, because Y′ and Y″ will be in one-to-one 
correspondence.  From that, one seeks the lines Y that are traced on Q by the system ∆, 
∆′, ∆″, which have the same conjugates in the two complexes. 
 One must express the idea that Y′, Y″ are coincident; there are generally two positions 
of coincidence 1Y′ , 2Y′ .  Take 1Y′ , and let Y1 be its conjugate in A.  By hypothesis, 1Y′  will 

also be the conjugate to Y1 in B.  Therefore, Y1, as well as 1Y′ , will have the same 

conjugate under the two complexes, and since only 1Y′ , 2Y′  enjoy that property among the 

systems of generators ∆, ∆′, ∆″, one must have that Y1 will coincide with the second line 

2Y′ .  The lines 1Y′ , 2Y′  will then be conjugate to each other in the two complexes. 

 
 I will not discuss this geometric proof.  The analytical proof that I will give leads to a 
discussion that is much more reliable (sûre), and which will provide us with some useful 
formulas. 
 Take the two linear complexes: 
      A = ∑ ai xi = 0, 
      B = ∑ bi xi = 0. 
The six equations: 

(1)     
( )

i

a

a

∂Ω
∂

 = ρ zi + izρ′ ′  
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express the idea that we learned in the final number of the preceding chapter that the lines 
z, z′ are conjugate in the complex A.  Denote the coefficients of the two special 
complexes whose axes are z, z′ by c1, …, c6, 1c′ , …, 6c′ .  As we saw, one has: 

 

zi = 
( )

i

c

c

∂Ω
∂

, iz′ = 
( )

i

c

c

′∂Ω
′∂

, 

 
and equation (1) may be written: 
 

( )

i

a

a

∂Ω
∂

 = ρ ( )

i

c

c

∂Ω
∂

+ ρ′ ( )

i

c

c

′∂Ω
′∂

, 

or also: 
( )

( )i i i

a c c

a c c

ρ ρ
ρ ρ

′ ′∂Ω − −
′ ′∂ − −

 = 0  (i = 1, 2, …, 6). 

 
 Since the discriminant of the form Ω is not zero, these six equations will demand that 
one must have: 
(2)     ai – ρ ci − icρ ′ ′  = 0  (i = 1, 2, …, 6). 

 
Likewise, six equations such that: 
 
(3)     bi – ρ ci − icσ ′ ′  = 0 

 
will express the idea that the lines z, z′ will be conjugate in the complex B. 
 Now, observe that ρσ′ – ρ′σ will not have to be zero, since otherwise, from equations 
(2), (3), the complexes A, B would not be distinct, because one deduces from these 
equations that: 

ρ bi – σ ai =    (ρσ′ – σ ρ′) ic′ , 

ρ ′bi – σ′ai = − (ρσ′ – σ ρ′) ci . 
 

Since ρσ′ – σ ρ′ is not zero, one has, after dividing by that binomial: 
 
(4)      ci = α ai + β ai , 
(5)      ic′ = α′ ai + β′ ai , 

 
which are equations that are equivalent to (2) and (3). 
 In order to solve the problem, all that remains then is to calculate α : β and α′ : β′.  
One will arrive at this upon expressing the last condition that remains for us to write, 
namely, that the complex C = ∑ ci xi = 0 must be special, and a similar statement must be 
true for C′ = ∑ i ic x′  = 0.  One must then write: 

 
Ω(α a + β b) = Ω(c) = 0, 
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Ω(α′ a + β′ b) = Ω(c′) = 0, 
or, upon developing this: 
(6)     Ω(a) α2 + 2Ω(a, b) αβ  + Ω(b) β2 = 0, 
 
and a similar equation must be true for α′ : β′. 
 This equation will give us two values of α : β, and, after substituting one of these 
values in (4) and the other one in (5), we will indeed have two special complexes C, C′ 
whose axes z, z′ will be conjugate under the two complexes, since equations (4), (5) are 
equivalent to equations (2), (3), which express precisely the fact that z and z′ are 
conjugate under A and B. 
 The theorem is thus established. 
 
 The imaginary character of the roots of (6) is not an obstacle; however, the proof 
breaks down if equation (6) in α : β has equal roots; i.e., if the expression: 
 
(7)     Φ(a | b) = Ω(a) Ω(b) – [Ω(a, b)]2 
 
is zero.  We shall return later on to the hypothesis that Φ is zero, which is exceptional. 
 
 
 27.  We immediately deduce a consequence of the result that we just obtained.  
Consider the linear complexes that are defined by the equation: 
 

λA + µB = ∑ (λ ai + µ bi) xi = 0, 
 
where λ : µ is an arbitrary parameter.  We say of these complexes that they define a 
pencil, or better yet, a system of two terms. 
 
 The lines z, z′, which are conjugate to both A and B at once, are conjugate with 
respect to any complex of the system with two terms (A, B). 
 
 From the last lines of no. 19, in order to prove this proposition, it will suffice to prove 
that one might find − λ, µ being arbitrary − two quantities τ, τ′ such that: 
 

( )

( )i i

a b

a b

λ µ
λ µ

∂Ω +
∂ +

 = τ zi + izτ ′ ′ , 

 
or furthermore, what amounts to the same thing [see the way that one passes from (1) to 
(2)]: 

τ  = λρ + µσ,  τ′ = λρ′ + µσ′. 
 
 Therefore: Any of the complexes of a system of two terms (A, B) will have a pair of 
conjugate lines in common. 
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 Now, among the complexes of the system (A, B), there will be two of them that are 
special, because if one expresses the idea that the complex λA + µB = 0 is special then 
one will be led to write: 

Ω(λa + µb) = 0, 
 

an equation that is nothing but equation (6), when λ replaces α and µ replaces β.  At the 
same time, one recognizes by this means that the lines z, z′ will be precisely the 
directrices of these special complexes.  Therefore: 
 
 In any system of linear complexes (A, B) with two terms there will bre two complexes 
that are special; the directrices of these special complexes will be the two lines that are 
conjugate to each other in all of the complexes of the system. 
 
 
 28.  One calls the set of lines that are common to two linear complexes a linear 
congruence. 
 It is clear that the congruence that is common to two complexes of a system of two 
terms is composed of lines that belong to all of the complexes of the system.  Indeed, the 
equations A = 0, B = 0 imply that: 

λ A + µ B = 0. 
 

 In particular, the lines of that congruence belong to the special complexes, and, as a 
result: 
 
 The congruence that is common to two linear complexes A, B will be composed of 
lines that simultaneously cut the lines z, z′ that are conjugate to each other in the two 
complexes. 
 
 For that reason, one gives the name of directrices of the congruence to the lines z, z′. 
 In order to  find the line of the congruence that issues from a point P, one takes the 
intersection of two planes that pass through P and the two directrices.  That line will be 
unique.  It will meanwhile be indeterminate if the point P is taken on one of the two 
directrices. 
 In order to trace the line of the congruence that is situated in a plane Π, it will suffice 
to join the traces of the two directrices on that plane.  There is only one solution; 
however, the problem will be indeterminate if the plane Π passes through one of the two 
directrices. 
 In summation, the linear congruence that is common to two complexes of first order 
will be of first order and first class, a result that one can, moreover, state a priori.  
Furthermore, two linear complexes will have an infinitude of plane pencils in common 
that one will generate by associating a plane Π that goes through a directrix of the 
common congruence with the point P where that plane cuts the other directrix. 
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 29.  We now arrive at the singular case that we left aside, in which the expression Φ(a 
| b) is zero.  Since the two roots of (6) will be equal, the previous reasoning will break 
down. 
 We first exclude the case where all of the linear complexes included in the system 
with two terms λA + µB = 0 are special; i.e., we exclude the case where: 
 

Ω(λa + µb) = Ω(a) λ2 + 2Ω(a, b) λµ + Ω(b) µ2 
 

is identically zero, which would demand that: 
 

Ω(a) = 0, Ω(a | b) = 0,    Ω(b) = 0. 
 
 Equation (6) will then possess a double root, which I shall denote by α : β, and there 
will be only one special complex in the system with two terms, namely: 
 

αA + βB = 0. 
 

 I further represent the coordinates of the directrix of the complex by zi, and finally, I 
consider an arbitrary complex: 

λ0 A + µ0 B = 0 
of the system with two terms (A, B). 
 One first has, by hypothesis: 

Ω(α a + β b) = 0. 
In addition, form: 

Ω(α a + β b | λ0 a + µ0 b). 
 
 λ0 , µ0 figure linearly in that expression, and likewise, α, β.  One must then write: 
 
   Ω(α a + β b | λ0 a + µ0 b) 
    = Ω(α a + β b| a) λ0 + Ω(α a + β b| b) µ0 , 
    = Ω(a | a) α λ0 + Ω(b | a) β λ0 + Ω(a | b) α µ0 + Ω(b | b) βµ0 . 
 
 However, Ω(a | a) = Ω(a), Ω(b | a) = Ω(a | b), Ω(b | b) = Ω(b).  One may then write: 
 
    = [Ω(a) α + Ω(a | b) β] λ0 + [Ω(a | b) α + Ω(b) β] µ0 ; 
 
i.e., this equals 0, since, because α : β is a double root of (6), one will have: 
 
     Ω(a) α + Ω(a | b) β  = 0, 
     Ω(a | b) α + Ω(b) β  = 0. 
 We will thus have: 

Ω(α a + β b | λ0 a + µ0 b) = 0, 
 
no matter what λ0 and µ0 are.  This can be written: 
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( )

( )i i

a b

a b

α β
α β

∂Ω +
∂ +∑  (λ0 bi + µ0 bi) = 0, 

 
or again, taking our notations into account: 
 
(8)      ∑ (λ0 bi + µ0 bi) zi = 0. 
 
 From this, we will get the theorem: 
 
 When Φ(a | b) = 0, or, more precisely, when equation (6) has a double root and is not 
an identity, the system with two terms (A, B) will contain a unique special complex, and 
the directrix of that special complex will be a line that is common to any complex of the 
system. 
 
 It is clear that any line that is common to two complexes of the system will belong to 
all of the other complexes of the system, as in the general case.  The linear congruence 
that is common to all of these complexes is therefore composed of lines that cut all of the 
directrices z of the unique special complex that belongs to the system.  However, this 
condition is insufficient to define the congruence. 
 It is easy to complete this definition.  Indeed, let ∆ be a line of that congruence, let P 
be the point where it cuts the line z, and let Π be the plane through ∆ and z.  Consider the 
plane pencil (P, Π).  Two lines of that pencil − namely, the line z and the line ∆ − will 
belong to an arbitrary complex of the system.  Therefore, the point P will admit the plane 
Π as its polar plane in all of the complexes of the system (A, B).  The pencil (P, Π) will 
belong to all of these complexes (no. 13).  From this, it will result immediately that any 
complex of the system (A, B) will determine the same normal correlation (no. 15) on the 
line that is common to them.  Therefore, the linear congruence will admit the following 
definition here: 
 
 In order for a line ∆ to belong to the congruence, it is necessary and sufficient that: 
  1.  It must cut the fixed line (directrix z). 
  2.  The plane (z, ∆) through z and ∆ and the point (z, ∆), which is the intersection 
of z and ∆, must be two corresponding elements of a homographic correlation that is on 
the line z, a priori. 
 
 One may interject a remark here: 
 Consider a general linear congruence that admits the two directrices z, z′.  Consider 
an arbitrary quadric Q through z and z′.  The congruence will be composed of lines that 
cut the quadric Q at two points, one of which will be situated along z, and the other of 
which will be on z′.  Since z′ will approach z infinitely closely, the congruence will be 
nothing but the set of lines that meet the quadric at two infinitely close points, one of 
which will be situated on z; i.e., the set of tangents to the quadric at the various points of 
its generator z.  The correlation that figures in the definition of the congruence wills 
therefore be nothing but the Chasles correlation that establishes the correspondence 
between the points of z and the tangent planes at these points. 
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 The reader will easily recognize that the singular congruences that we just defined 
will be of first order and first class, moreover. 
 
 
 30.  What remains is the case where equation (6) is an identity.  The complexes of the 
system with two terms (A, B) will all be special.  We seek the locus of their directrices. 
 Let one of these complexes be: 
 

λ A + µ B = 0, 
 
and let y be its directrix, so one will have: 
 

yi = 
( )

( )i i

a b

a b

λ µ
λ µ

∂Ω +
∂ +

, 

 
and since the right-hand side is linear and homogeneous in λ, µ, one may write: 
 

yi = 
( ) ( )

i i

a b

a b
λ µ∂Ω ∂Ω+

∂ ∂
. 

 
 One then recognizes that the directrices of the complexes of the system (A, B) (all 
special) will define a plane pencil.  We then state the theorem: 
 
 When all of the complexes of a system with two terms are special, their directrices 
will define a plane pencil. 
 
 What is the congruence that is common to these complexes?  The answer is simple: 
Any line of the congruence must cut all of the lines of the pencil of the directrices.  Such 
a line must then either be in the plane of the pencil or pass through the center of the 
pencil.  In a word, the congruence is found to decompose here into two hyper-pencils, 
one of which is the set of lines in the plane of the directrices, and the other of which is the 
spray of lines that issue from the point of intersection of the directrices. 
 Therefore, here is an example where the congruence that is common to two 
complexes decomposes into two of them: The one, which forms a planar system, is of 
order zero and class 1; the other, a spray, is of degree 1 and class zero.  The sums of the 
classes and that of the degrees are equal to 0 + 1 = 1 + 0 = 1; i.e., to the product of the 
degrees of the complex. 
 We will have to recognize the generality of this fact for arbitrary complexes later on.  
It is interesting to note that it is present in the linear congruences. 
 Our linear congruence degenerates here into an infinitude of directrices that define a 
pencil (A, α).  Let x be a line of that pencil.  In the case of a singular congruence, a 
correlation on the directrix x will serve to define the congruence.  It is clear that here that 
correlation will be, in turn, singular, because if one lets (O, Π) be any pair of that 
correlation – i.e., one such that any line of the pencil (O, Π) belongs to the congruence, O 
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is on x, and Π is a plane of x – then one must either have that O is at A, and Π is then 
arbitrary, or that Π coincides with the plane α, and O is arbitrary. 
 From the definition of the pairs (O, Π) of the correlation, one may then conclude that 
it will be singular, and that (A, α) will be its singular pair. 
 
 
 31.  We have seen that the expression Ω(a) is an invariant of the complex ∑ ai xi = 0.  
Likewise, the expression: 

Φ(a | b) = Ω(a) Ω(b) – [Ω(a | b)]2 
 

is an invariant of the congruence that is common to the two complexes A and B.  That 
invariant is of the type that one gives the name of combinant to.  If one performs a linear 
transformation of the variables xi then it will be reproduced, only multiplied by the fourth 
power of the determinant of the substitution, and, because of that, it will be an invariant.  
However, if one replaces the two equations: 
 

A = 0,  B = 0 
with these: 

λ A + µ B = 0,  λ′ A + µ′ B = 0 
 
then Φ(a | b) will be reproduced, but multiplied by (λµ′ – µλ′)2.  Indeed, one will have: 
 
 Φ(λ A + µ B | λ′ A + µ′ B) 
  = Ω(λ A + µ B) Ω(λ′ A + µ′ B) – [Ω(λ A + µ B | λ′ A + µ′ B)]2 
  = [Ω(a) λ2 + 2 Ω(a | b) λµ + Ω(b) µ2] [Ω(a) λ′2 + 2 Ω(a | b) λ′µ′ + Ω(b) µ′2] 
   − [Ω(a) λλ′ + Ω(a | b)(λµ ′ + µλ′) + Ω(b) µµ′] 
  = [Ω(a) Ω(a) − Ω(a | b)]2 (λµ ′ + µλ′)2. 
 
 The properties of the invariant Φ will thus correspond to those of the linear 
congruence taken by itself, independently of the choice of coordinates, as well as the 
choice of the two linear complexes A, B by means of which one defines it; from this, one 
understands why the name “combinant” is given to that invariant. 
 
 
 32.  If two linear complexes A, B are given then one can separate the properties of the 
two collectively into two groups: One of them belongs to the their common congruence 
and remains the same if one replaces A, B with two other complexes from the system of 
two terms (A, B): To these properties, we attach the invariant Φ(a | b), whose vanishing 
expresses the idea that the congruence is singular. 
 However, aside from these properties, it is the other group of properties that belongs 
to the two complexes A and B exclusively.  That is why if one is given two spheres then 
their common circle will belong to all of the spheres of the pencil, whereas their angle of 
intersection will belong to these two spheres, in particular. 
 These are the properties of that order that we shall envision for the two complexes A, 
B. 
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 Consider the complex: 
A + k B = 0; 

 
when k varies, this complex will run through all of the systems of two terms (A, B).  Let ∆ 
be a line of the congruence that is common to the complexes of that system, let Π be a 
plane through ∆, and let Pk denote the pole of the plane Π in the complex A + k B = 0.  
When k varies the point Pk will describe the line ∆.  I say that Pk will correspond to the 
values of k in a unique fashion.  Indeed, if k is given then Pk will be perfectly determined.  
In the second place, if one is given Pk as the pole of the plane Π in a complex A + k B of 
the pencil then it will suffice to find the value of k in order to write that a line z through 
Pk in the plane Π will belong to the complex, which will give: 
 

A(z) + k B(z) = 0, 
 
which is an equation in k that is of the first degree. 
 One sees that one excludes the case where the complexes of the system (A, B) 
determine the same normal correlation on ∆.  In this case, and only in this case, A(z) and 
B(z) will be zero for any position of the point Pk along the line ∆.  Moreover, the 
congruence will then be singular, and ∆ will be its directrix. 
 Since Pk and k correspond uniquely, it will then result, from the principle of 
correspondence, that the anharmonic ratio of the four values of k will be equal to that of 
the corresponding Pk .  On thus has this theorem: 
 
 Let there be four complexes of the system that are obtained by taking: 
 

k = α, β, γ, δ, 
 

and let ∆ be a line of the common congruence.  The poles in the four complexes of a 
plane through ∆ will define an anharmonic ratio that is equal to the anharmonic ratio of 
the quantities α, β, γ, δ. 
 
 This anharmonic ratio is then constant from two standpoints: First, it remains constant 
when the plane turns around ∆, and second, , it remains constant when ∆ is displaced in 
its congruence. 
 The same reasoning leads to the following theorem, which is the transform of the 
preceding one under reciprocal polars. 
 
 Let four complexes of the system be given, which are obtained by taking: 
 

k = α, β, γ, δ, 
 
and let ∆ be a line of the common congruence; the polar planes of an arbitrary point that 
is taken on ∆ in the four complexes will define a pencil whose anharmonic ratio will be 
equal to that of the quantities α, β, γ, δ. 
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 These two theorems still persist when the two directrices of the congruence coincide. 
 They will likewise preserve their raison d’ètre if all of the complexes of the system 
are special; in that case, the anharmonic ratio will be equal to that of the four directrices 
of the complex, which will define a plane pencil. 
 
 
 33.  Now, argue under the hypothesis that the two directrices of the congruence are 
distinct.  If two complexes: 

A + ρ B = 0, A + ρ′ B = 0 
 
are given then add to them the special complexes of the system: 
 

A + k B = 0, A + k′ B = 0, 
 
in such a way that k, k′ will be roots of the equation: 
 
(8)     Ω(b) k2 + 2Ω(a | b) k + Ω(a) = 0. 
 
 Let ∆ be a line of the congruence that consequently intersects the directrices z, z′ at 
two points F, F′.  If one draws an arbitrary plane Π through ∆ then F and F′ will be the 
poles of that plane in the two special complexes (k) and (k′); they will remain fixed when 
the plane turns.  By contrast, the poles Pρ , Pρ′ of that plane Π in the complexes (ρ), (ρ′) 
will vary, but, with F, F′ they will define an anharmonic ratio: 
 

(Pρ , Pρ′ , F, F′) = (ρ, ρ′, k, k′), 
 

which will be constant.  They will thus describe a homography on ∆ whose double points 
will be F, F′ and whose anharmonic ratio will be (ρ, ρ′, k, k′). 
 One likewise verifies that if one takes an arbitrary point P on ∆, and if Πρ , Πρ′ are the 
polar planes to P in the complexes (ρ), (ρ′), while Φ, Φ′ are the planes through ∆ and z, 
then ∆ and z′ will be the planes polar to P in the special complexes (k), (k′); they will be 
fixed.  The anharmonic ratio of the four planes Πρ , Πρ′ , Φ, Φ′ will be equal to: 
 

(Πρ , Πρ′ , Φ, Φ′) = (ρ, ρ′, k, k′); 
 

it will be constant and will have the same value as the first one. 
 When P is displaced along ∆, only the planes Πρ , Πρ′ will vary, and they will then 
describe two homographic pencils around ∆, where Φ, Φ′ will be the double planes, and 
(ρ, ρ′, k, k′) will be the constant anharmonic ratio. 
 This anharmonic pencil is easy to calculate; let ε denote it.  We have: 
 

  ε  = :
k k

k k

ρ ρ
ρ ρ

′− −
′ ′ ′− −

 = 
( ) ( )

( ) ( )

k k

k k

ρ ρ
ρ ρ

′ ′− −
′ ′− −
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  = 
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2( ) ( )( ) ( )( )

kk k k k k

kk k k k k

ρρ ρ ρ ρ ρ
ρρ ρ ρ ρ ρ
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ρρ ρ ρ
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and since k, k′ are roots of (8), this will become: 
 

1

1

ε
ε

+
−

 =
( ) ( | ) ( )

( ) ( | )

b a b a

a b

ρρ ρ ρ
ρ ρ
′ ′Ω + Ω + + Ω
′ − −Φ

. 

 
In particular, set ρ′ = ∞, and then set ρ = 0, so the two complexes considered will then be 
A and B, and we will have: 

1

1

ε
ε

+
−

 = 
( | )

( | )

a b

a b

Ω
−Φ

. 

 
 It will suffices to refer to what we said above on the subject of homographic 
correlations on a line in order to see that this constant anharmonic ratio ε will be equal to 
that of the two normal correlations of the complex along any of their common lines.  The 
angle of these two normal correlations will be what we, along with Klein, shall call the 
angle between the two complexes. 
 If one sets: 

V =
1

2i
 log ε 

then one will easily find: 

(9)    cos V = 
1 1

2
ε

ε
 + 
 

 = 
( | )

( ) ( )

a b

a b

Ω
Ω Ω

. 

 
 Although it is not necessary for us to insist upon this fact, one sees that if V = π / 2 or 
ε = − 1 then the normal correlations will be in involution, and the two complexes will 
also be said to be in involution or orthogonal. 
 The condition of involution for the two complexes A and B is, moreover, the 
following one: 

Ω(a | b) = 0. 
 
 

 34.  Let us examine some particular cases. 
 The notion of involution that we just gave breaks down if one of the complexes A, B 
is special.  However, we may continue to say that two complexes are in involution 
whenever the simultaneous invariant Ω(a | b) becomes zero, or likewise if a and b are 
both special. 
 In addition, suppose that B is special, and let z be its directrix.  The equation: 
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Ω(a | b) = 0 
can be written: 

i
i

a
b

∂Ω
∂∑  = 0, 

because, since: 

zi = 
ib

∂Ω
∂

, 

one will have, upon summing: 
∑ ai zi = 0. 

 
 Therefore, a special complex will be in involution with any complex that contains its 
directrix, and conversely. 
 
 More particularly, if A itself becomes special then, by an application of this theorem, 
one will see that two special complexes will be in involution under the necessary and 
sufficient condition that their directrices agree. 
 
 One may present the notion of complexes in involution from another viewpoint. 
 Suppose one has a complex: 

∑ ai xi = 0. 
 
The condition for two lines y, y′ to be conjugate in the complex is written, as one knows, 
in the form: 

1 ( )

2 i

a

a

∂Ω
∂

 = ρ yi + iyρ′ ′  (i = 1, 2, …, 6), 

 
where ρ, ρ′ are two parameters. 
 Suppose that the line y describes the complex: 
 

∑ bi yi = 0. 
 The equation: 

1 ( )

2 i
i

a
b

a

∂Ω
∂∑  = Ω(a | b) = i i i ib y b yρ ρ′ ′+∑ ∑  

will give: 
Ω(a | b) = i ib yρ′ ′∑ . 

 
 If we seek, moreover, the condition for the line y′ to describe the complex B, as well, 
then we will find: 

Ω(a | b) = 0. 
 
However, if y belongs to a complex B at the same time as y then this would signify that B 
is its own reciprocal polar with respect to the complex A. 
 One will thus arrive at the following theorem: 
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 If two linear complexes are in involution then each of them will be its own reciprocal 
polar with respect to the other one. 
 
 If one of the complexes is special then one will find the property of the lines of a 
complex that they must coincide with their conjugates with respect to that complex. 
 
 
 35.  The consideration of complexes that are in involution plays the most important 
role in the geometry of the straight line.  It is closely linked to the theory of linear 
systems of complexes of the first degree. 
 We have given the name of system with two terms to the set of complexes that are 
contained in the equation: 

λ A + µ B = 0; 
 

likewise, let A, B, C be three linear complexes that are not contained in the same system 
with two terms.  We shall give the name of system of three terms to the set of complexes 
that are represented by the equation: 
 

λ A + µ B + ν C = 0. 
 
 Furthermore, consider four linear complexes A, B, C, D that are not contained in the 
same system with three terms, so the linear complexes that are represented by the 
equation: 

λ A + µ B + ν C + ρ D = 0 
will define a set of four terms. 
 Finally, upon taking five linear complexes A, B, C, D, E that are not contained in the 
same system of four terms, the equation: 
 

λ A + µ B + ν C + ρ D + σ E = 0 
 

will represent a system of five terms. 
 There is good reason to observe that the equation of a linear complex: 
 

∑ ai xi = 0 
 

will contain six coefficients and, as a result, five parameters.  If one takes six complexes: 
 

 A = ∑ ai xi = 0, 
 B = ∑ bi xi = 0, 
 C = ∑ ci xi = 0, 
 D = ∑ di xi = 0, 
 E = ∑ ei xi = 0, 
 F = ∑ fi xi = 0, 

and one forms the expression: 
 

λ A + µ B + ν C + ρ D + σ E + τ F = ∑ ui xi  
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then one will have: 
(10)   ui = ai λ + bi µ + ci ν + di ρ + ei σ + fi τ (i = 1, 2, …, 6). 
 
 If the determinant: 

∆ = || ai  bi  ci  di  ei  fi || 
 

is not assumed to be zero then one might not find values of λ, µ, ν, ρ, σ, τ other than zero 
that annul all of the ui .  There might not exist a linear relation of the form: 
 

λ A + µ B + ν C + ρ D + σ E + τ F = 0 
 
then, and the complexes A, B, C, D, E, F would not belong to the same system of five 
terms. 
 On the contrary, if ∆ were zero then such a linear relation would be meaningful, and 
the six complexes would belong to the same system of five terms, or even a smaller 
number of terms. 
 If ∆ is not zero – i.e., if A, B, C, D, E, F do not belong to the same system of five 
terms or to a system of less than five terms − then equations (10) can be solved with 
respect to λ, µ, ν, ρ, σ, τ, and as a result, any linear complex: 
 

∑ ui xi = 0 
 

can be represented by an equation such as: 
 

λ A + µ B + ν C + ρ D + σ E + τ F = 0. 
 
 One thus has the theorem: 
 
 If the six linear complexes A, B, C, D, E, F do not belong to the same system with five 
terms or to the same system with a number of terms that is less than five then the equation 
of any linear complex can assume the form: 
 

λ A + µ B + ν C + ρ D + σ E + τ F = 0. 
 
 In other words, a system of six terms comprises all possible linear complexes.  Later 
on, we shall have to make use of this theorem in the context of the transformation of 
coordinates.  For the moment, we do not rule out the linear systems, which are the object 
of our present study. 
 
 
 36.  Consider the system with p terms: 
 
(11)    λ1 A1 + λ2 A2 +  … + λp Ap = 0, 
where: 

Aµ = aµ1 x1 + aµ2 x2 + … + aµ6 x6 . 
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 Let ∑ ui xi = 0 be a complex, and if we express the notion that this complex u is in 
involution with the complex (11) then we will have: 
 

Ω(u | λ1 a1 + λ2 a2 +  … + λp ap) = 0; 
i.e.: 

Ω(u | a1) λ1 + … + Ω(u | ap) λp = 0. 
 

 One then sees that if one writes: 
 
(12)   Ω(u | a1) = 0,  Ω(u | a2) = 0,  Ω(u | ap) = 0 
 
then the complex (u) will first of all be in involution with the complexes (a1), (a2), …, 
(ap), and, moreover, AS A CONSEQUENCE, it will be in involution with all of the 
complexes of the system with p terms (11). 
 The equations (12) may be written: 
 

1

1

( )
i

i

a
u

a

∂Ω
∂∑  = 0, 2

2

( )
i

i

a
u

a

∂Ω
∂∑  = 0, … 

( )p
i

pi

a
u

a

∂Ω
∂∑  = 0. 

 
 We have p equations between the ui; they are all distinct, because, if it were otherwise 
the one would be able to find quantities ρ1, ρ2, …, ρp that would not all zero and would 
verify the relations: 
 

1
1

1

( )( ) p
p

i pi

aa

a a
ρ ρ

∂Ω∂Ω + +
∂ ∂

⋯  = 0  (i = 1, 2, …, 6). 

 
 These relations may be written: 
 

1 1

1 1

( )

( )
p p

i p pi

a a

a a

ρ ρ
ρ ρ

∂Ω + +
∂ + +

⋯

⋯
 = 0  (i = 1, 2, …, 6), 

 
and, since Ω has a non-zero discriminant this will demand that one must have: 
 

ρ1 a1i + … + ρp api = 0 (i = 1, 2, …, 6). 
 

 What will then result is the identity: 
 

ρ1 A1 + … + ρp Ap = 0, 
 

and the complexes A1, …, Ap will belong to a system with (p – 1) terms or a lower 
number of them.  That would be contrary to our hypothesis that the system (11) is a 
system of p terms. 
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 Equations (12) are thus distinct and, as a consequence, they permit one to deduce p of 
the ui as functions of the 6 – p other ones.  The general values of ui that verify equations 
(12) will then have the form: 
 

ui = g1,i µ1 + g2,i µ2 + … + g6−p,i µ6−p = 0  (i = 1, 2, …, 6), 
 

and the g will be constant coefficients such that for any value of µ other than zero the ui 
can be annulled all at once.  From this, if one sets: 
 

G1 = ∑ g1,i xi ,  G2 = ∑ g2,i xi , … G6−p = ∑ g6−p,i xi  
 

then the (6 – p) complexes G can verify an identity such as: 
 

ρ1 G1 + ρ2 G2 + ρ6−p G6−p = 0, 
 
which signifies that these complexes do not all belong to the same system of 6 – p – 1 = 5 
– p terms or to a system with a lower number of terms.  The set of complexes in 
involution with all of the systems with p terms, a set that is represented by the equation: 
 

∑ ui xi = µ1 G1 + … + µ6−p G6−p = 0, 
 
will thus define a system with 6 – p terms. 
 From this, one will get the theorem: 
 
 The linear complexes that are not in involution with those of a system with p terms 
define a system 6 – p terms in their own right. 
 
 To abbreviate, we shall say complementary systems to describe two systems with p 
and (6 – p) terms whose complexes are in involution. 
 For example, take a system with five terms.  The complementary system will includes 
only one complex.  One will thus have the theorem: 
 
 The complexes of a system with five terms are orthogonal to a fixed linear complex. 
 
 
 37.  Let Σ, Σ0 be two complementary systems with p and (6 – p) terms, and suppose 
that p is equal to at least 2.  Then, among the complexes of the system Σ there is a special 
one, as one sees upon writing: 

Ω(a1λ1 + … + apλp) = 0; 
i.e.: 
 

Ω(a1)
2

1λ  + Ω(a2)
2
2λ  + … + Ω(ap)

2
pλ  + 2Ω(a1 | a2) λ1 λ2 + 2Ω(a1 | a3) λ1 λ3 + … = 0. 

 
 Now, the directrices of these special complexes must belong to each of the complexes 
of the complementary system Σ0 ; indeed, these special complexes will be in involution 
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with all of the ones of the complementary system Σ0 .  Therefore, from a theorem of no. 
34, their directrices will belong to these complexes.  Conversely, any line that is common 
to all of the complexes of the system Σ0 will be the directrix of a special complex in 
involution with all of the complexes of the system Σ0 ; this special complex will thus 
belong to the system Σ.  We thus state the theorem: 
 
 The directrices of the special complexes that are contained in a system Σ are nothing 
but the lines that are common to the complexes of the complementary system Σ0 . 
 
 We add the remark: 
 
 The lines that are common to the complexes of a system Σ will cut all of the lines that 
are common to the complexes of a complementary system Σ0 . 
 
 Indeed, these lines will be the directrices of special complexes that are in involution. 
 
 
 38.  The introduction of the notion of involution greatly simplifies the problem of the 
search for lines that are common to several linear complexes.  We have already treated 
the case of two complexes; what remain then are the cases of three and four complexes. 
 Let A, B, C be three complexes that do not belong to the same system with two terms.  
We then propose to look for their common lines. 
 In order to do this, consider the system of three terms: 
 

Σ = λ A + µ B + ν C = 0; 
 

the complementary system Σ0 will likewise be a system of three terms.  We seek the 
special complexes that are contained in the first system Σ.  We write: 
 

Ω(aλ + bµ + cν) = 0, 
when we are given that: 

A = ∑ ai xi , B = ∑ bi xi , C = ∑ ci xi . 
 

 Upon developing this, we will get: 
 

(13)  
2 2 2( ) ( ) ( ) ( )

2 ( | ) 2 ( | ) 2 ( | ) 0.

a b c a b c

a b a c b c

λ µ ν λ µ ν
λµ λν µν

Ω + + = Ω + Ω + Ω


+ Ω + Ω + Ω =
 

 I set: 

(14)    Ψ(a | b | c) = 

( ) ( | ) ( | )

( | ) ( ) ( | )

( | ) ( | ) ( )

a a b a c

b a b b c

c a c b c

Ω Ω Ω
Ω Ω Ω
Ω Ω Ω

, 

 
in such a way that Ψ will be the discriminant of the quadratic form (13).  This 
discriminant will be a simultaneous invariant of the complexes A, B, C.  However, there 
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is more: It will also be a combinant, like the function Φ(a| b).  Indeed, if one replaces A, 
B, C with combinations such as: 
 
     A1 = p A + q B + r C, 
     B1 = p′ A + q′ B + r′ C, 
     C1 = p″ A + q″ B + r″ C, 
where the determinant: 

p q r

p q r

p q r

′ ′ ′
′′ ′′ ′′

 

 
is not zero, then the function Ψ will be reproduced, but multiplied by the square of that 
determinant.  We observe, in passing, that if one replaces A, B, C with expressions such 
as A1, B1, C1, for which the determinant Σ ± p q′ r″ is not zero, then this will amount to 
performing a linear transformation of the form (13): 
 
     λ = pλ1 + p′µ1 + p″ν1 , 
     µ = qλ1 + q′µ1 + q″ν1 , 
     ν = rλ1 + r′µ1  + r″ν1 
 
on the variables λ, µ, ν.  One can profit from this remark to reduce the form (13).  
Therefore, if the invariant Ψ is not zero then the form (13) will be reducible to a sum of 
three squares or, what amounts to the same thing, a form of the type: 
 

λµ – ν2. 
 

 If Ψ is zero, but not all of its minors, then the form (13) will be the product of two 
factors, and one may suppose that the form is of the type: 
 

λµ. 
 

 If Ψ is zero, as well as all of its minors, then the form will be a perfect square, and 
one may suppose that the square is: 

ν2. 
 

 Finally, it might be the case that the form (13) is identically zero. 
 We thus have the four cases that might present themselves in the intersection of three 
complexes of first degree.  We examine them successively. 
 
 
 39.  In the first case, one must have: 
 

Ω(a) = 0, Ω(b) = 0, Ω(a | c) = 0, Ω(b | c) = 0, 2Ω(a | b) = − Ω(c) = 1. 
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 The first two equations show that the two complexes A and B must be special, and, 
since 2Ω(a | b) = 1, one sees that their directrices cannot intersect, since Ω(a | b) = 0 
would be the condition for them to meet.  The third and fourth equations show that these 
directrices must belong to the complex C. 
 Now, one verifies the following equation in the most general fashion: 
 

λµ – ν2 = 0, 
by taking: 

λ = t2,  µ = 1,  ν = t, 
 
where t is a parameter, in such a way that all of the special complexes of the system will 
be represented by the following equation: 
 

∑ (ai t
2 + ci t + bi) xi = 0. 

 
 The coordinates of the directrix z of one of these complexes will be: 
 

zi = 
2

2

( )

( )i t i

at ct b

a t c t b

∂Ω + +
∂ + +

, 

or further: 

zi = 2( ) ( ) ( )

i i i

a c b
t t

a c b

∂Ω ∂Ω ∂Ω+ +
∂ ∂ ∂

. 

 
 The locus of these directrices z will then be a ruled series, and in fact, a ruled series of 
second order, because if one seeks the number of lines of the series that cut the fixed line 
yi then one will be led to the equation of the second order in t: 
 

 0 = ω(y | z) = i
i

z
y

ω∂
∂∑  

   = 2( ) ( ) ( )

i i i i i i

a c b
t t

y a y c y b

ω ω ω     ∂ ∂Ω ∂ ∂Ω ∂ ∂Ω+ +     ∂ ∂ ∂ ∂ ∂ ∂     
∑ ∑ ∑  = 0. 

 
 A ruled series can be composed of the generators of a ruled surface, of those of a 
cone, or even of the tangents to a planar curve.  In the last two cases, the ruled series will 
be contained in a hyper-pencil. 
 Now, this is not the case here, since if this were true then the directrices of the special 
complexes A and B would have to intersect, since they belong to the same hyper-pencil.  
The expression Ω(a | b) would then be zero, which is not true. 
 One must then conclude that the directrices of our special complexes form a ruled 
surface, which is of second degree, since the ruled series of directrices is of second order. 
 One thus has this theorem: 
 
 The directrices of the special complexes of a system with three terms will generally 
constitute the rectilinear generators of a family of quadrics. 
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 To abbreviate, we say that they form a semi-quadric.  The generators of the second 
system of that quadric constitute what we will call the complementary semi-quadric to 
the first one. 
 It is now easy to obtain the lines that are common to the three complexes A, B, C.  
The set of these lines belongs to all of the complexes of the system of three terms: 
 

λ A + µ B + ν C = 0, 
 

and may be defined by taking three arbitrary complexes A1, B1, C1 of this system, 
provided that these three complexes do not belong to the same system of two terms.  
Now, this is precisely the case for the three special complexes A1, B1, C1 of the system; 
indeed, their directrices cannot intersect, since they are the directrices of the same semi-
quadric.  The system of two terms: 

ρ Ai + σ Bi = 0 
 
will then includes no other special complex besides A1 and B1, and, as a result, A1, B1, C1 
will not belong to the same system with three terms (this might no longer be true if the 
directrices of Ai and Bi intersect). 
 The lines that are common to the complexes of the system with three terms are 
therefore defined by the condition that they cut three arbitrary generators of the semi-
quadric Q that is the locus of the directrices of the special linear complex of the system.  

These lines will thus constitute the complementary quadric Q0 .  We then assert this 

theorem: 
 
 The lines that are common to three complexes A, B, C do not likewise comprise a 
system of two terms, and as a result the lines that are common to all of the complexes of 
the system of three terms: 

Σ = λ A + µ B + ν C = 0 
 

will define a semi-quadric Q0 that is complementary to the semi-quadric Q that is the 

locus of the directrices of the special complexes that are contained in the system of three 
terms. 
 
 One should not neglect to observe that the system Σ0 with three terms that is 
complementary to the system Σ will admit the semi-quadric Q0 as the locus of directrices 

of its special complexes, and that the lines of the semi-quadric Q will, on the contrary, be 

common to all of the complexes of the system Σ0 .  This will result from the corollary at 
the end of no. 37. 
 
 
 40.  Our reasoning assumed only that Ψ was not zero; now, assume that Ψ = 0.  We 
know that the form (13) can be reduced to λµ.  This would give us: 
 

Ω(a) = 0, Ω(b) = 0, Ω(c) = 0, Ω(b | c) = 0, Ω(c | a) = 0; 
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however, Ω(a | b) is not zero. 
 From the first three equations, the complexes A, B, C must be special.  The last two 
show us that, in addition, the directrix ∆C of the complex C must cut the directrices ∆A , 
∆B of the other two complexes; the latter two will not intersect, since Ω(a | b) is non-zero. 
 Let F be the point of intersection of ∆C and ∆A , and let F′ be that of ∆C and ∆B .  Let 
Φ be the plane of ∆C and ∆A , while Φ′ is that of ∆C and ∆B . 
 The special complexes of the system of three terms will decompose into two families 
with regard to the equation: 

λ µ = 0, 
namely: 

µ B + ν C = 0  and λ A + ν C = 0. 
 

 Each of these families will constitute a system of two terms, and, from what we know 
about these systems, since the complexes that comprise them are all special, their 
directrices will define a plane pencil. 
 The family: 

λ A + ν C = 0 
 

will then be composed of the special complexes whose generators generate the plane 
pencil (F, Φ), while the pencil (F′, Φ′) will correspond to the second family. 
 One will observe that the two planar pencils (F, Φ), (F′, Φ′) will have a common line 
∆C , which will be the directrix of the complex C. 
 It is now easy to obtain the lines that are common to the complexes of three terms.  
Any of these lines will be defined by the condition that it must cut all of the lines of the 
pencils (F, Φ), (F′, Φ′).  If it does not pass through F then it will be in the plane Φ, and if 
it does not pass through F′ then it will be in the plane Φ′.  These lines will then be those 
of the two planar pencils (F, Φ′), (F′, Φ).  One sees that the pairs (F, Φ′), (F′, Φ) will be 
the inverses (no. 21) of the pairs (F, Φ), (F′, Φ′). 
 The lines of the pencils (F, Φ), (F′, Φ′) will then constitute a degeneracy in the lines 
of the semi-quadric, while the inverse pencils (F, Φ′), (F′, Φ) will constitute the 
degenerate complementary semi-quadric. 
 It is quite appropriate to remark that for these geometric entities a new conception of 
quadrics leads to a mode of degeneracy that one does not encounter when one defines 
them by their points or their planes.  Moreover, one knows that the latter two definitions 
will each lead to their own degeneracies: viz., cones or planes for the point-like quadrics 
and conics or points for the tangential quadrics. 
 A point-like quadric cannot become a conic or a point, nor can a tangential quadric 
become a cone or a plane.  From the new viewpoint that that we now take, the quadric 
can degenerate into four inverse plane pencils (F, Φ), (F′, Φ′), (F, Φ′), (F, Φ′), the first 
two of which represent the generators of one system and the last two of which represent 
the generators of the other. 
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 41.  Now assume that the invariant Ψ is zero, along with its first-order minors.  The 
form will then be a perfect square, which one may assume is ν2.  In this case, one will 
have: 

Ω(a) = 0, Ω(b) = 0, Ω(a | b) = 0, Ω(a | c) = 0, Ω(b | c) = 0, 
 

but Ω(c) will not be zero. 
 The complexes A, B will be special, and due to the fact that Ω(a | b) = 0, their 
directrices will intersect.  Let F be that point of intersection, and let Φ be their common 
plane.  Since Ω(a | c) = 0, Ω(b | c) = 0, the lines that are the directrices of A and B will 
belong to the non-special complex C, and as a result, F will be the pole of the plane Φ in 
this complex.  One immediately deduces that the lines that are common to the complexes 
A, B, C will be nothing but the lines of the plane pencil (F, Φ).  Moreover, since the 
special complexes of the system will define the system of two terms: 
 

λ A + µ B = 0, 
 

it is clear that the directrices of these special complexes will likewise be the lines of the 
plane pencil (F, Φ). 
 If one envisions the complementary system Σ0 of the system Σ considered, namely: 
 

Σ = λ A + µ B + ν C 
 

then one will see that the complexes of the system Σ0 have the lines of the pencil (F, Φ) 
in common, since the lines of the system Σ and the special complexes will be further 
represented by: 

λ A + µ B = 0. 
 
 This is nothing but the preceding, except that the pencils (F, Φ) and (F′, Φ′) will 
coincide. 
 
 
 42.  If we are to exhaust the systems with three terms then what finally remains for us 
to do is to treat the case in which the form (13) is identically zero.  All of the complexes 
of the system: 

Σ = λ A + µ B + ν C = 0 
 
will then be special.  Let z be the directrix of one of these complexes, so one will have: 
 

zi = 
( ) ( ) ( )

i i i

a b c

a b c
λ µ ν∂Ω ∂Ω ∂Ω+ +

∂ ∂ ∂
, 

 
and, as a result, these directrices will define a hyper-pencil. 
 The system Σ will therefore be composed of special complexes whose directrices 
form a hyper-pencil.  The lines themselves of that hyper-pencil will be, moreover, the 
only ones that are common to all of the complexes of the system. 
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 This case exhibits the remarkable aspect that the system Σ will coincide with its 
complentary system.  The reader will easily prove that this is the only case in which this 
situation prevails. 
 It is assuredly quite remarkable that the line complexes of such a system of three 
terms must have a congruence of lines in common (of class 1 and degree zero or class 
zero and degree 1), since otherwise there would exist a linear relation between any three 
of these complexes.  This fact shows the degree of circumspection that one must treat 
these questions with, and the fact that one must explain things with care in perhaps a bit 
more detail than we have seen fit to invest in this part of our exposition. 
 
 
 43.  We now arrive at the lines that are common to four linear complexes, and to the 
systems of four terms.  Let Σ be such a system that is represented by the equation: 
 

Σ = λ A + µ B + ν C + ρ D = 0. 
 

 Since the complementary system Σ0 has two terms, we may utilize what we know 
about the systems with two terms and complementary systems.  The systems with two 
terms contain two special complexes, which might coincide in certain cases.  They may 
also be composed of special complexes whose directrices form a plane pencil.  Let us see 
what the corresponding complementary systems with four terms would be. 
 First, in the general case, we see that the complexes of the system Σ with four terms 
will have two common lines ∆, ∆′, which are directrices of the linear congruence that is 
common to the complexes of the system with two terms.  Thus: 
 
 Four linear complexes that are included in the same system of three terms will have 
two common lines ∆, ∆′, in general. 
 
 The congruence whose directrices are ∆, ∆′ is the locus of the directrices of the 
special complex of the system. 
 ∆ and ∆′ might coincide accidentally: The congruence of the directrices of the special 
complexes would then be singular. 
 Finally, there is the case where all of the complexes of the complementary system of 
two terms Σ0 are special.  Let (F, Φ) be the plane pencil that is formed by the directrices 
of the special complex.  The complexes of the system with four terms will then have 
(from a theorem that was established in no. 37) all of the lines of the pencil (F, Φ) in 
common, and no other ones. 
 
 The complexes of the system with four terms will then be defined by the property that 
they admit a given plane pencil of lines (F, Φ). 
 
 As in the preceding case, one may introduce the form in λ, µ, ν, ρ: 
 

Ω(a λ + b µ + c ν + d ρ) = 0 
and its discriminant: 



Line Geometry, and its applications. 51 

( ) ( | ) ( | ) ( | )

( | ) ( ) ( | ) ( | )

( | ) ( | ) ( ) ( | )

( | ) ( | ) ( | ) ( )

a a b a c a d

b a b b c b d

c a c b c c d

d a d b d c d

Ω Ω Ω Ω
Ω Ω Ω Ω
Ω Ω Ω Ω
Ω Ω Ω Ω

, 

 
which is a combinant.  If this discriminant is non-zero then one will be dealing with the 
general case.  If it is zero then the lines ∆, ∆′ will coincide. 
 If its minors of first order are all zero then one will be dealing with the case where the 
complexes have a plane pencil of lines in common. 
 I leave to the reader the task of proving these results, which are analogous to the ones 
that we already encountered for the systems of three terms.  One verifies that the form in 
λ, µ, ν, ρ might not be identically zero, nor likewise be a perfect square. 
 
 
 44.  We complete this study of linear systems of complexes with a remark that 
concerns systems with five terms. 
 Let A, B, C, D, E be five complexes that are not contained in the same system with 
four terms.  If one solves the five equations: 
 

A = 0, B = 0, C = 0, D = 0, E = 0 
 

then the corresponding values of x1, …, x6 will not generally verify the equation: 
 

ω(x) = 0; 
 

in a word, the five linear complexes will not have a common line, in general. 
 The complementary system will reduce to a unique linear complex, as we have 
remarked in no. 37, and from the results that were obtained in the same place, since the 
common lines to the complexes of a systems will be the directrices of the special 
complex of the conjugate system, five linear complexes that are not included in the same 
system of four terms might have only one common line − namely, the directrix of the 
complementary complex − which must again be special. 
 Conversely, the linear complexes that contain a given line z will define a system with 
five terms, namely, the complementary system to the system with one term that is 
composed of the linear complex whose directrix is z. 
 
 
 45.  In the course of this exposition, we have introduced successively the invariants 
Ω(a), Φ(a | b), Ψ(a| b | c), and we have indicated another one that relates to systems with 
four terms; the systems with five terms also have an invariant.  One might represent these 
combinants in a uniform fashion as follows: Let: 
 

ω(x) = ∑ ωik xi xk 
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be the fundamental form, so one will have, up to a constant factor, this expression for 
Ω(a): 

11 12 16 1

21 22 26 2

61 62 66 6

1 2 6 0

a

a

a

a a a

ω ω ω
ω ω ω

ω ω ω

⋯

⋯

⋯ ⋯ ⋯ ⋯ ⋯

⋯

⋯

. 

 
One will likewise have for Φ(a | b): 
 

11 16 1 1

61 66 6 6

1 6

1 6

0 0

0 0

a b

a b

a a

b b

ω ω

ω ω

⋯
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⋯

⋯

⋯

, 

and for Ψ(a | b | c): 

11 16 1 1 1

61 66 6 6 6

1 6

1 6

1 6

0 0 0

0 0 0

0 0 0

a b c

a b c

a a

b b

c c

ω ω

ω ω

⋯

⋯ ⋯ ⋯ ⋯ ⋯ ⋯

⋯

⋯

⋯

⋯

. 

 
 The invariant of a system with four terms will be obtained by bordering this, on the 
right and at the bottom, with the line d1 … d6 0 0 0 0; upon adding another border on the 
right and at the bottom that consists of the line e1 … e6 0 0 0 0 0, one will get the 
invariant for the system with five terms.  This invariant will be annulled if the complexes 
of the system have a common line; i.e., if the complementary complex is special. 
 
 
 46.  In concluding this chapter, we finally remark that it results from the preceding 
discussion that any complex P that contains lines that are common to p other than A, B, 
…, D, and which is not contained in a system with (p – 1) terms or one with a number of 
terms less than (p – 1), will belong to the system with p terms: 
 

P = λ A + µ B + … + ρ D = 0. 
 
The reader will easily verify this remark, while I shall content myself by merely stating it 
here. 
 

_______



CHAPTER IV. 
 

PRINCIPLES OF INFINITESIMAL GEOMETRY IN LINE COORDI NATES. 
 
 

Skew surfaces. – Chasles correlation. – Quadrics of agreement and congruence of tangents. – Osculating 
hyperboloid. – Contact of a skew surface with a linear complex. – Contact of various orders.  Ruled 
series with envelope. – Osculating pencil. – Case of the cone and the plane curve. – Theorem on curves 
whose tangents belong to a linear complex. – Lie contact elements. – Plane pencils that depend upon 
one parameter. – Bands. – General theorem on plane pencils with envelopes. – Infinitesimal properties 
of first order for line complexes. – Tangent complexes. – Normal correlation. – Its properties. – Plane 
pencils of a complex. – Klein invariant. – Singular lines. – Surface of singularities. – Pasch’s theorem. 
– Singular complexes. – Cayley-Klein theorem. – Congruences. – Focal surfaces. – Focal pairs. – 
Developables. – Tangent linear complexes. – Special cases. – Invariant. – Congruences of asymptotic 
tangents. – Case of degeneracy. 

 
_________ 

 
 

 47.  In this chapter, we shall develop the first principles of infinitesimal geometry in 
line coordinates. 
 Suppose that a line x depends upon one parameter t; it generates a ruled series that 
consitutes a skew surface, a developable, a cone, or the set of tangents to a plane curve. 
 We first examine the case where the series constitutes a skew surface.  One knows 
that the distribution of tangent planes at each point of a rectilinear generator is 
constructed by means of a homographic correlation that we have already spoken of, and 
which we called the Chasles correlation. 
 The set of tangents to the surface at all of the points of the generator x constitutes a 
singular linear congruence; all of the linear complexes that contain that congruence will 
define the same normal correlation on x, namely, the Chasles correlation. 
 These complexes form a system with two terms that is easy to represent. 
 One may regard the congruence of the tangents as the set of lines that are subject to 
cutting the neighboring lines x and x + x′ dt, where x′ = dx / dt.  They are therefore 
defined by the following two equations, where y is the current line: 
 

2ω(x | y) = i
i

y
x

ω∂
∂∑  = 0, 

 

2ω(x + dx | y) = 
( )

i
i i

x
dt y

x x

ω ω ′∂ ∂+ ′∂ ∂ 
∑ = 0; 

i.e.: 

(1)     
( )

i
i

x
y

x

ω∂
∂∑ = 0, 

( )
i

i

x
y

x

ω ′∂
′∂∑ = 0. 

 
The system with two terms that is considered will thus have the equation: 
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(2)      
( ) ( )

i
i i

x x
y

x x

ω ωλ µ
 ′∂ ∂+ ′∂ ∂ 

∑ , 

or further: 
(3)      ω(λ x + µ x′ | y) = 0. 

 
 One sees that it contains only one special complex, since, from the form of equation 
(3), the special complexes of the system will have those lines whose coordinates are 
described by the formula: 

λ xi + ixµ ′  
 

for its directrices.  Now, these expressions will be the coordinates of a line only if: 
 

ω(λ x + µ x′) = 0; 
i.e., if: 

ω(x) λ2 + 2ω(x | x′) λµ + ω(x′) µ2 = 0, 
or finally if: 

ω(x′) µ2 = 0, 
since: 

ω(x) = 0, 2ω(x | x′) = 
( )d x

dt

ω
 = 0. 

 
 It might be the case that ω(x′) is zero; however, as we will confirm later on, the ruled 
series would no longer constitute a skew surface then.  Under the hypothesis that we have 
imposed, there is therefore only one solution, namely: 
 

µ = 0. 
 

 One says that two ruled surfaces agree along a common generator if their tangent 
planes are the same at each point of that generator, which demands that the Chasles 
correlation must be the same for the two surfaces.  There is an infinitude of hyperboloids 
and paraboloids that satisfy this condition, which are the quadrics of agreement, which is 
a terminology whose use is widespread in descriptive geometry.  Any quadric that is 
contained in the linear congruence of tangents will obviously be a quadric of agreement. 
 
 
 48.  I denote that linear congruence by Cx .  It is clear that the neighboring lines will 
give rise to another congruence Cx + dx, and one may prove that these two congruences 
will  have the same semi-quadric in common. 
 Indeed, equations (1) represent Cx , and if one changes x into x + x′ dt and x′ into x′ + 
x″ dt, where ix′′  = /idx dt′ , then one will get the representation of Cx + dx; one then finds 

that: 
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(4)     

( ) ( )
0,

( ) ( )
0.

i
i i

i
i i

x x
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x x

x x
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x x

ω ω

ω ω
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These equations, when combined with equations (1), will give three equations, in all, 
namely: 

(5)   
( )

i
i

x
y

x

ω∂
∂∑  = 0, 

( )
i

i

x
y

x

ω ′∂
′∂∑  = 0, 

( )
i

i

x
y

x

ω ′′∂
′′∂∑  = 0. 

 
 These three equations will be those of three complexes that have a semi-quadric Q in 

common. 
 From equations (5), an arbitrary line y of that semi-quadric must cut three consecutive 
lines of the ruled surface.  These lines y will then be the asymptotic tangents of the 
second system that run through all of the points of the line x.  The semi-quadric Q will 

then be composed of a system of generators for the osculating hyperboloid of the surface. 
 
 
 49.  The complementary semi-quadric Q0 is found to be related to the general theory 

of contact for a ruled surface with a linear complex. 
 If we have a linear complex: 

∑ ξi xi = 0 
 
then we will say that it has contact of pth order with a given ruled surface if it contains (p 
+ 1) consecutive generators of the surface. 
 The tangent complexes thus verify the two equations: 
 

i ixξ∑  = 0, i ixξ ′∑  = 0, 

 
which indicate that these tangent linear complexes form a system with four terms that is 
complementary to the system of two terms that is represented by equation (2). 
 Now, consider the complexes that have second-order contact with the surface; they 
will be subject to the conditions: 
 
(6)     i ixξ∑  = 0, i ixξ ′∑  = 0, i ixξ ′′∑  = 0. 

 
These three equations will reduce to two only if one verifies the six relations: 
 

i i ix x xα β γ′′ ′+ +  = 0  (i = 1, 2, …, 6); 

 
now, in this case, since the xi are solutions of the same second-order equation, one may 
set: 
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xi = CiT + 0iC T′ , 

 
in which, the Ci, iC′  will denote constants and T, T0 will be functions of t; the ruled series 

will then reduce to a plane pencil. 
 Since equations (6) are assumed to be distinct, the complexes that they define will 
define a system of three terms. 
 The complementary system is known to us; it is the system: 
 

(7)    
( ) ( ) ( )

i
i i i

x x x
y

x x x

ω ω ωλ µ ν
 ′ ′′∂ ∂ ∂+ + ′ ′′∂ ∂ ∂ 

∑  = 0, 

 
which is composed of all the linear complexes that contain the semi-quadric Q. 

 Indeed, the involution of the complex (7) with the complex ξ will be written: 
 

(8)     2Ω(ξ | u) = 
( )

i
i

u

u
ξ∂Ω

∂∑  = 0, 

if one sets: 

ui = 
( ) ( ) ( )

i i i

x x x

x x x

ω ω ωλ µ ν′ ′′∂ ∂ ∂+ +
′ ′′∂ ∂ ∂

, 

 
and, since one will deduce from that defining equation that: 
 

λ xi + i ix xµ ν′ ′′+  = 
( )

i

u

u

∂Ω
∂

, 

equation (8) will be written: 

i i i i i ix x xλ ξ µ ξ ν ξ′ ′′+ +∑ ∑ ∑  = 0. 

 
All of the complexes (7) will then be in involution with the complexes x that verify 
equations (6). 
 The complexes ξ will thus indeed have the semi-quadric Q0 in common, which is 

complementary to the quadric Q; i.e., the generators of the osculating hyperboloid of the 

same system as x. 
 
 
 50.  Now consider the complexes that have a third-order contact with the surface; 
they will be defined by the four equations: 
 
(9)   i ixξ∑  = 0, i ixξ ′∑  = 0, i ixξ ′′∑  = 0, i ixξ ′′′∑  = 0, 

 
which will be distinct, at least when one has six equations of the form: 
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i i i ix x x xα β γ δ′′′ ′′ ′+ + +  = 0. 

 
Now, if this is true then the xi will have the form: 
 
(10)    xi = Ci T + 0 00i iC T C T′ ′′+ , 

 
where the C will be constants, and T, T0, T00 will be functions of t. 
 Form: 

ω(x) = ω(Ci T + 0 00i iC T C T′ ′′+ ) = 0, 

or, upon developing this: 
 

ω(C) T2 + 2 2
0 00 00 0 00( ) ( ) 2 ( | ) 2 ( | )C T C T C C TT C C T Tω ω ω ω′ ′′ ′ ′ ′′+ + +  = 0. 

 
 If the coefficients of that form in T, T0, T00 are identically zero then the line x will be 
contained in a fixed hyper-pencil; the ruled series will be defined by the generators of a 
cone or the tangents to a curve.  Excluding that case, it might be the case that the 
quadratic equation above is not true identically.  However, one would then verify that 
equation by taking T, T0, T00 to be second-degree polynomials in one parameter s, which 
one can substitute for the parameter t.  Formulas (10) would take the form: 
 

xi = Di s
2 + i iD s D′ ′′+ . 

 
The ruled series would then be a semi-quadric. 
 Excluding this new class, equations (9) will then be distinct, and the complexes ξ that 
verify them will form a system with four terms.  The complementary system with two 
terms will consist of two special complexes whose directrices ∆, ∆′, by virtue of 
equations (9), will possess the property of intersecting four consecutive generators of the 
surface.  These lines ∆ and ∆′ will then have third-order contact with the surface, and 
each of them will be at a point of the line x. 
 If one considers the osculating hyperboloid that relates to a line x and the osculating 
hyperboloid that relates to the neighboring line x + dx then these two hyperboloids will 
intersect along two neighboring generators of x and along two other generators of the 
opposite system.  These two generators will be the lines ∆ and ∆′. 
 Finally, consider a linear complex that has fourth-order contact with the ruled surface.  
One must have: 
 

i ixξ∑  = 0, i ixξ ′∑  = 0, i ixξ ′′∑  = 0, i ixξ ′′′∑  = 0, iv
i ixξ∑ = 0, 

 
and these five equations, if they are distinct, will define the ratios of ξ ; i.e., the complex 
will be perfectly determined. 
 There will be no indeterminacy only if there exist six equations of the form: 
 

iv
i i i i ix x x x xα β γ δ ε′′′ ′′ ′+ + + +  = 0, 
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which are equations that prove that there will exist at least two linear relations with 
constant coefficients between the xi . 
 The surface or ruled series will thus belong to a linear congruence in this case.  The 
ruled surfaces that are contained in a linear congruence play a very important role, and 
we shall return to them later on.  For them, the osculating complex will be unavoidably 
indeterminate. 
 If one considers the osculating complexes that relate to two neighboring lines x and x 
+ dx on a ruled surface then the directrices of the common congruence will be the lines ∆ 
and ∆′ that were defined before. 
 Three consecutive osculating complexes will have the semi-quadric Q0 that was 

defined before in common. 
 Four consecutive osculating complexes will have two lines in common that are 
infinitely close to the line x. 
 The reader will easily prove these properties. The last one shows that if one takes a 
linear complex that depends upon one parameter arbitrarily then this complex will not 
always be the osculating complex of a ruled surface, because four consecutive complexes 
of the system will intersect along two lines that are generally distinct. 
 
 
 51.  Up till now, we have excluded the hypothesis that ω(x′) = 0.  Now, let: 
 

ω(x′) = 0. 
 

 The complexes (2) will all be special, and the ix′  will be the coordinates of a line x′ 
that is the directrix of one of these complexes.  The lines x, x′ will intersect at a point O 
and will have a plane π in common; the lines of the plane pencil (O, p) will be precisely 
the directrices of the complexes (2).  The congruence Cx of the lines that cut two 
consecutive lines x and x + x′ dt will then decompose here into the set of lines in the plane 
π and the set of lines that issue from the point O. 
 One can say that the consecutive lines x and x + x′ dt will intersect at the point O and 
will have the plane π in common.  One can likewise appreciate the infinitesimal order up 
to which this agreement is valid. 
 Indeed, the condition of agreement of two lines x and z can be written: 
 

ω(z − x) = ω(z) + ω(x) – 2ω(z | x) = − 2ω(z | x) = 0, 
 

if one considers that ω(x) = 0, ω(z) = 0.  If one takes: 
 

zi = xi + 
2 3

2 6i i i

t t
x t x x

∆ ∆′ ′′ ′′′∆ + +  + … 

 
then one will find painlessly: 
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ω(z − x) = ω(x′) ∆t2 + 
2

3 4
2

1 ( ) 1 ( ) 1
( )

2 6 12

d x d x
t x t

dt dt

ω ω ω
′ ′ ′′∆ + − ∆ 

 
+ … 

 
 Therefore, if ω(x′) is zero for each line of the ruled series ω(z − x), which is generally 
of second order, then this will reduces to fourth order: 
 

(11)    ω(z − x) = − 41
( )

12
x tω ′′ ∆ + … 

 
One recovers it in another form, a property that was exhibited for the first time by 
Bouquet. 
 Indeed, we verify that if one makes use of metric elements then ω(z – x) will be 
proportional to the product of the shortest distance  p between the lines x and z with the 
sine of their angle ε, or with that angle itself, namely: 
 

pε . 
 

 If one takes the element ε to be the infinitely small principal of the arc of the 
spherical indicatrix of the generators of the ruled series then pε will be an infinitesimal of 
order one higher than p.  Thus, if ω(x′) is zero and pε is of fourth order then p will be of 
third order, and this is Bouquet’s theorem, precisely. 
 In general, the ruled series will be formed from the tangents of a skew curve.  The 
point O of intersection of the consecutive lines will be the point of contact of the curve 
with x, and the plane π will be the osculating plane.  From this, the lines of the plane 
pencil (O, π), which I will call the osculating plane pencil, will have a representation of 
the form: 
(12)     xi + ixλ ′ . 

 
This representation will be very useful to us. 
 
 
 52.  Meanwhile, it might be the case that the ruled series is defined by the generators 
of a cone or the tangents to a plane curve; however, the formulas would then take on a 
very special character.  Indeed, one remarks that two arbitrary lines of the ruled series 
would intersect in this case, since they would all belong to the same hyper-pencil (spray 
or planar system).  The expression ω(z – x) would then have to be rigorously zero, and, as 
a result, one would need to have: 

ω(x′) = 0, 
 

because the term ∆t4 must disappear.  It is pointless to add that the terms in ∆t5, … would 
disappear.  Indeed, I would like to prove that if one has: 
 

ω(x″) = 0 
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then the ruled series will be contained in a hyper-pencil. 
 Indeed, one deduces from the equations: 
 
 ω(x | x)  = 0, ω(x′ | x)  = 0, ω(x″ | x)  = 0, 
 ω(x | x′)  = 0, ω(x′ | x′)  = 0, ω(x″ | x′)  = 0, 
 ω(x | x″)  = 0, ω(x′ | x″)  = 0, ω(x″ | x″)  = 0, 
 ω(x | x″′) = 0, ω(x′ | x″′) = 0, ω(x″ | x″′)  = 0, 
 
which may be summarized by saying that (x1, x2, …, x6), ( 1x′ , 2x′ , …, 6x′ ), ( 1x′′ , 2x′′ , …, 

6x′′ ), ( 1x′′′ , 2x′′′ , …, 6x′′′ ) are four systems of solutions of linear equations in u1, u2, …, u6 , 

that: 

(13)    

( )
2 ( | ) 0,

( )
2 ( | ) 0,

( )
2 ( | ) 0.

i
i

i
i

i
i

x
x u u

x

x
x u u

x

x
x u u

x

ωω

ωω

ωω

 ∂= = ∂
 ′∂′ = = ′∂
 ′′∂′′ = = ′′∂

∑

∑

∑

 

 
 These three equations in ui will be distinct, because if there exists an identity of the 
form: 

λ ω(x | u) + µ ω(x′ | u) + ν ω(x″ | u) = 0 
then one will have: 

( ) ( ) ( )

i i i

x x x

x x x

ω ω ωλ µ ν′ ′′∂ ∂ ∂+ +
′ ′′∂ ∂ ∂

 = 0, 

or: 
( )

( )i i i

x x x

x x x

ω λ µ ν
λ µ ν

′ ′′∂ + +
′ ′′∂ + +

 = 0  (i = 1, 2, …, 6), 

 
and, since ω has a non-zero discriminant, this will demand that one must have: 
 

i i ix x xλ µ ν′ ′′+ +  = 0  (i = 1, 2, …, 6). 

 
We have already seen that the ruled series will be a plane pencil in this case. 
 Moreover, since the three equations (13) are distinct and refer to six variables, any 
system of solutions of these equations will be deduced linearly from three other particular 
systems, which are nonetheless independent.  There must therefore exist some relations 
of the form: 

i i i ix x x xα β γ δ′′′ ′′ ′+ + +  = 0, 

 
which proves that the xi will have the general expression: 
 

xi = ai R + bi S + ci T, 
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where R, S, T will be three functions of t, and ai , bi , ci will be constants.  One indeed 
also recognizes that the ruled series will be contained in the hyper-pencil.  It will 
therefore be a cone or the set of tangents to a planar curve. 
 
 
 53.  As an application of the preceding remarks, we prove the theorem: 
 
 If the tangents to a curve belong to a linear complex then the osculating plane π at a 
point O of the curve will be the polar plane to that point in the complex. 
 
 It suffices to prove that the lines of the osculating plane pencil: 
 

zi = λxi + ixµ ′  
will all belong to the complex. 
 Now, upon taking: 

A = ∑ ai xi , 
 

where ∑ ai xi = 0 is the equation of the linear complex, one will have, in fact, that: 
 

∑ ai xi = λA + 
dA

dt
µ  = 0, 

 
since A = 0 for all of the tangents to the curve. 
 
 
 54.  In his research on the theory of contact, Lie introduced the notion that he called a 
contact element – i.e., the set that consists of a point and a plane through that point (viz., 
the united point and plane of no. 3). 
 We have encountered contact elements in the preceding chapters, whether in the form 
of a plane pencil of lines, or as a pair of corresponding elements that are defined by a 
correspondence between the points and the planes of a line. 
 We shall give some simple properties of plane pencils in space, while first supposing 
that the point and the plane depend upon the same parameter. 
 For example, if x is a variable line endowed with an envelope then we will know that: 
 

xi + ixλ ′  

 
represents a variable plane pencil − viz., the osculating pencil. 
 More generally, let (O, π) be an arbitrary pencil and let a, b be two lines of that pencil 
that depend upon a parameter t.  Any line z of the pencil will be represented by: 
 

zi = ai λ + bi µ . 
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 I consider an arbitrary variable line C that passes through the point O and also 
depends on the parameter t, so the spray of lines that issues from O will be represented 
by: 

zi = ai λ + bi µ + ci ν . 
 

 To each value of λ : µ : ν, there will correspond a line z of the spray, and if λ : µ : ν 
are functions of t then the line z will be displaced along with the point O.  We seek the 
values of λ, µ,ν  for which z will be precisely the tangent to the curve that is the locus of 
the point O. 
 It will suffice to write that λ : µ : ν are functions of t such that the line z will have an 
envelope that touches at the point O or to express the idea that the osculating pencil has 
two of its lines in the spray.  The line z will already be a line of that pencil.  It will then 
suffice to write down that the line z′ whose coordinates are 1z′ , …, 6z′  will belong to the 

spray, or that: 

iz′  = ai ε + bi ε1 + ci ε2 ; 

i.e.: 

i i i i i ia b c a b cλ µ ν λ µ ν′ ′ ′ ′ ′ ′+ + + + +  = ai ε + bi ε1 + ci ε2, 

 
which are equations of the form: 
 
(14)    i i ia b cλ µ ν′ ′ ′+ +  = ai ρ + bi σ + ci τ . 

 
 I multiply by ∂ω(a) / ∂ai and I sum from i = 1 to i = 6; this will give: 
 

ω(a | a′) λ + ω(a | b′) µ + ω(a | c′) ν  = ω(a) ρ + ω(a | b) σ  + ω(a | c) τ  = 0, 
 

because: 
ω(a) = 0, ω(a | b) = 0,  ω(a | c) = 0. 

 
 One also has: 

ω(a | a′) = 0, 
so it thus remains that: 

ω(a | b′) µ + ω(a | c′) ν  = 0. 
 

 However, since ω(a | c) = 0, one will have: 
 

( | )d a c

dt

ω
 = ω(a′ | c) + ω(a | c′) = 0, 

 
and, as a result, the equation that will be obtained can be written: 
 

ω(a | b′) µ − ω(c | a′) ν  = 0. 
One will likewise find: 

ω(a | b′) λ − ω(b | c′) ν  = 0. 
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ω(c | a′) λ − ω(b | c′) µ  = 0, 
and, by definition: 

(15)    
( | )b c

λ
ω ′

 = 
( | )c a

µ
ω ′

 = 
( | )a b

ν
ω ′

. 

 
 Likewise, if we take a line e in the plane π then any line of that plane will have a 
representation of the form: 

zi = λ ai + µ bi + ν ei . 
 
In particular, if one desires to know the λ1 : µ1 : ν1  that give the line of contact of the 
plane π with its envelope (viz., its characteristic) then one will find that: 
 

(15′)    1

( | )b e

λ
ω ′

= 1

( | )e a

µ
ω ′

 = 1

( | )a b

ν
ω ′

. 

 
The lines c and e will only play an auxiliary role, here. 
 
 
 55.  In general, the tangent D to the locus of the point O will not be in the plane π, 
and the characteristic ∆ of the plane π will not pass through the point O. 
 In order for D to be in the plane π – i.e., to belong to the pencil (O, π) – it is necessary 
and sufficient that one have: 

ν = 0; 
i.e.: 

ω(a | b′) = 0. 
 
However, this is also the condition for one to have v1 = 0; i.e., for the line ∆ to also 
belong to the pencil (O, π). 
 If a plane pencil that depends upon one parameter contains, at each instant, the 
tangent to the locus of its center O then it will also contain the characteristic of its plane 
π, and conversely. 
 This theorem is geometrically obvious: The plane p rolls along a curve C, which it 
touches at the point O, and the generator of the developable will be generated by the 
plane that passes through the point O.  I will call the systems of plane pencils that are 
thus defined bands (bandeau).  They are geometrically equivalent to the system that is 
defined by a curve and a developable through it. 
 Bands are characterized by the equation: 
 

ω(a | b′) = 0. 
 
Moreover, it is easy to obtain the lines D and ∆ in this case by taking recourse to only the 
representation of the pencil, and without appealing to the auxiliary lines c and e. 
 Suppose that λ : µ have been chosen in such a way that: 
 

λ ai + µ bi 
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are the coordinates of the tangent to the curve that is the locus of the point O, and which, 
by hypothesis, belong to the pencil. 
 Since ν is zero, equations (14) will give: 
 

i ia bλ µ′ ′+  = ρ ai + σ bi + τ ci , 

so: 
ω(a′ λ + b′ µ) = ω(ρ a + σ b + τ c) = 0 ; 

one will thus have: 
(16)    ω(a) λ2 + 2ω(a | b) λµ + ω(b) µ2 = 0, 
 
which is an equation that will give two values for λ : µ: One of them will furnish the 
tangent to the curve that is the locus of the point O, and the other one, as one easily sees, 
will give the characteristic of the plane. 
 
 
 56.  These lines will coincide if: 
(17)     [ω(a | b)]2 – ω(a) ω(b) = 0. 
 
 We may then regard the ia′  as the coordinates of a line a′, which, as one sees, belongs 

to the pencil (O, π).  Since ω(a′) = 0, equation (17) will give, in fact: 
 

ω(b′ | a′) = 0, 
 

in such a way that the line a′ will belong to the linear complex: 
 
(18)     ω(b′ | x) = 0. 
 
 This complex will be special only if one has ω(b′) = 0.  If neither the point O nor the 
plane π are fixed − in which case, the lines of the pencil considered will intersect − then 
one may always suppose that the line b of the pencil is not the envelope and that ω(b′) is 
not zero. 
 The equations: 

ω(b′ | a) = 0, ω(b′ | b) = 0 
 

say that the lines a, b belong to the complex (18), and that π is the polar plane of the point 
O.  The line a′ of the complex that issues from O must then be in the plane π. 
 
 The pencil (O, π) is then the osculating pencil of the curve that is the locus of the 
point O. 
 
 If the a′ are all zero or proportional to a then the reasoning will break down; however, 
the line a will then be fixedm and the point O and the plane π will be a point and a plane 
on that fixed line that, since they depend upon the same parameter, will constitute two 
homologous elements of a certain correspondence between the points and the planes of a 
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that will be given a priori.  One must recall that such a set will possess the same 
properties as the osculating pencils of a skew curve. 
 Finally, it might be the case that the point O, or perhaps the plane π, is fixed.  In these 
two cases, one will have: 
 

ω(a′) = 0, ω(b′) = 0, ω(a′ | b′) = 0. 
 
 

 57.  I would now like to occupy myself with the plane pencils that depend upon 
several parameters. 
 I will first recall a general proposition that concerns these plane pencils. 
 Take a system of rectangular axes, and let x, y, z be the coordinates of a point O; the 
equation of a plane p through O will be: 
 

Z – z = p(X – x) + q(Y – y), 
 
in such a way that the system (O, π) will be defined by the five quantities x, y, z, p, q. 
 Suppose that these quantities depend upon several parameters and that, moreover, 
when these parameters vary, the displacement of the point O will be meaningful, up to 
second order, in the plane π ; in other words, no matter what the law of variation of the 
parameters is, the tangents to the locus of points O will be in the plane π. 
 From that hypothesis, we must have: 
 

dz – p dx – q dy = 0. 
 

That equation proves that there exists at least one relation between x, y, z. 
 We thus successively imagine the hypotheses that there exist one, two, or three 
relations between x, y, z, resp. 
 If there is only one relation: 

z = ϕ(x, y) 
then one will infer that: 

dz = dx dy
x y

ϕ ϕ∂ ∂+
∂ ∂

, 

so: 

p dx q dy
x y

ϕ ϕ ∂ ∂ − + −  ∂ ∂   
 = 0. 

 
If the coefficients of dx, dy are not zero then there will exist one relation between x, y, 
which will bring about a second relation between x, y ; one will then have: 
 

p = 
x

ϕ∂
∂

, q = 
y

ϕ∂
∂

, 

 
here, which proves that the system of pencils (O, π) will be composed of the points of the 
surface and the tangent planes to each of these points. 
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 Assume that there exist two relations: 
 

z = ϕ(x), y = ψ(x), 
so we will have: 

dz = ϕ′(x) dx,  dy = ψ′(x) dx, 
which will imply that: 

[ϕ′(x) – p – q ψ′(x)] dx = 0. 
 

 If dx were zero then there would be three relations between x, y, z, which is not the 
case.  One will then have: 

ϕ′(x) – p – q ψ′(x) = 0, 
 
and there will be no other relation between x, y, z, p, q, because z, y, p, q would then be 
functions of the single variable x, and pencils do not depend on several parameters. 
 Here, we thus have the set of pencils that are obtained by associating each point of a 
curve with an arbitrary tangent plane to the curve at that point. 
 Finally, if three relations exist between x, y, z then one will have pencils whose point 
is fixed.  The single plane must be variable and contain at least two parameters, since the 
plane must be an arbitrary one that passes through the fixed point. 
 As a particular case of such a surface, one has the developable that gives the pencils 
in which the plane depends only upon one parameter, and the plane that furnishes the 
pencils whose plane is fixed and whose point is arbitrary in that plane.  These two cases 
will be duals of the two that one considered in the first place. 
 An intermediary case is that of the pencils that are obtained by associating each point 
of a line with a point on that line.  In fact, in this case, the point will depend upon only 
one of the parameters, while the plane will depend upon the other, and these two 
parameters will be independent. 
 
 
 58.  These facts find a very simple and elegant representation in line coordinates. 
 Indeed, take the plane pencil: 

zi = ai + λ bi , 
 

where the lines a, b depend upon several parameters.  Which of these pencils will be the 
ones that have an envelope?  That is, how does on construct the tangent to the curve that 
is described by O, and, as a consequence, the characteristic of the plane of the pencil, in 
order it to belong to that pencil, no matter what the displacement of the pencil is? 
 Conforming to the results that were achieved before, it will be necessary and 
sufficient that one have: 
(19)     ω(a | db) = 0 
 
for all possible displacements, or, what amounts to the same thing: 
 
(19′)     ω(b | da) = 0, 
because: 

0 = dω(a | b) = ω(a | db) + ω(b | da). 
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One thus sees that a pencil that depends upon several parameters, and which verifies the 
condition: 

ω(b | da) = 0, 
must be composed of either: 
 1. A point of a surface and the tangent plane to that point. 
 2. A point of a curve and an arbitrary plane that is tangent to the curve at that point. 
 3. The tangent plane to a developable and an arbitrary point of contact of that plane 
with the developable. 
 4. A point and a plane of a line that are arbitrarily associated. 
 5. A plane through a point that is associated with that point. 
 
 In any case, we say that the pencil will have an envelope if: 
 

ω(b | da) = 0. 
 
 As one can see, the pencils with envelopes will depend upon only two parameters, in 
such a way that if one finds oneself in the presence of a variable pencil that depends upon 
several parameters then the condition: 

ω(b | da) = 0 
 
will imply that the parameters that the pencil depends upon must be reducible to two. 
 We will soon make an application of that remark. 
 I now pass on to the study of the infinitesimal properties of the complexes of lines. 
 
 
 59.  Suppose that one has a complex of lines: 
 

f(x1, x2, …, x6) = f(x) = 0, 
 

where x is a line of that complex, and ω(x) is the fundamental form, and consider the 
system of linear complexes in two terms: 
 

(20)      i
i i

f
y

x x

ωλ µ
 ∂ ∂+ ∂ ∂ 

∑  = 0. 

 
I shall give the name of tangent linear complexes to these complexes. 
 The following remark justifies that name: Let x + dx + 1

2 d2x + … be a line of the 

neighboring complex to x, and replace yi with xi + dxi + 1
2  d2xi + … in the left-hand side 

of (20), so one must have: 
 

i
i i

f
y

x x

ωλ µ
 ∂ ∂+ ∂ ∂ 

∑  = 21

2 i
i i

f
d x

x x

ωλ µ
 ∂ ∂+ ∂ ∂ 

∑ + … 

 
upon taking into account that df = 0, dω = 0; i.e., one obtains a result of second order. 
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 If the tangent linear complexes form a system of two terms then it will be obvious 
that such a complex cannot be represented by a single equation, but, in fact, by the two 
equations: 

f(x) = 0, ω(x) = 0. 
 

 We seek the special tangent complexes.  We must write: 
 

f

x x

ωλ µ∂ ∂ Ω + ∂ ∂ 
 = 0; 

i.e.: 

2 22
f f

x x x x

ω ωλ λµ µ∂  ∂ ∂  ∂   Ω + Ω + Ω    ∂ ∂ ∂ ∂    
 = 0. 

However, one has: 

2
f

x x

ω ∂ ∂ Ω ∂ ∂ 
 = 

i

i

fx
x

x

ω

ω

∂ ∂Ω  ∂∂ 
∂ ∂∂
∂

∑ = i
i

f
x

x

∂
∂∑ = 0, 

 

because xi = 
ix x

ω ω∂ ∂ ∂Ω ∂ ∂ ∂ 
; one also has 

x

ω∂ Ω ∂ 
 = ω(x) = 0; it thus remains that: 

 

2

x

ωλ ∂ Ω ∂ 
= 0. 

 
 The equation that furnishes the special tangent complexes thus has equal roots, and, 
in turn, the tangent complexes will generally include only one special complex, which 
has x for its directrix.  If one refers to no. 29 then one will see that all of the tangent linear 
complexes define the same normal correlation on x; for that reason, we give that 
correlation the name of normal correlation of the complex f(x) = 0 on its line x.  One sees 
how that notion generalizes the notion of the normal correlation of a linear complex (no. 
15). 
 We have seen (no. 53) that if the tangents x to a curve belong to a linear complex then 
the osculating plane pencil will belong to that complex, and, in turn, the point O of 
contact and the osculating plane π will be corresponding elements for the normal 
correlation of the complex on the line x.  This important property will extend to the case 
of an arbitrary complex. 
 I would like to prove that if the tangents x to a curve belong to a complex: 
 

f(x) = 0 
 
then the osculating pencil of the curve will belong to the normal correlation of the 
complex f = 0 on the line x. 
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 It obviously suffices to prove that this osculating pencil will belong to the normal 
correlation of the tangent complex: 

i
i

f
y

x

∂
∂∑ = 0, 

 
since, by definition, that correlation will be the normal correlation of the complex f(x) = 
0. 
 Indeed, the osculating pencil will be represented by: 
 

ρ xi + ixσ ′ , 

 
upon supposing that the xi are expressed as functions of the one parameter t and setting 

ix′  = dxi / dt. 

 One must prove that: 

( )i i
i

f
x x

x
ρ σ∂ ′+

∂∑ = 0. 

Now, this is obvious, since: 
 

i
i

f
x

x

∂
∂∑ = m f(x) = 0,  i

i

f
x

x

∂ ′
∂∑  = 

( )df x

dt
= 0. 

 
 The theorem is thus proved. 
 
 
 60.  Several special cases will exhibit the significance of this main theorem. 
 Consider an arbitrary plane π through x, so the lines of the complex f = 0 that are 
contained in this plane will envelop a curve, and the line x itself will touch that curve at a 
point O.  It results from the preceding theorem that O and π will correspond under the 
normal correlation. 
 Therefore: 
 
 If one passes a plane π through a line x of a complex then the curve that is enveloped 
by the complex relative to the plane π will be touched by the line x at one point O; the 
point O and the plane π will correspond under the normal correlation of the complex. 
 
 Similarly: 
 
 If one takes a point O on a line x of a complex then the cone of the complex that has 
O for its summit will be tangent along x to a plane π that is homologous to O under the 
normal correlation. 
 
 
 61.  One may generalize these results. 
 Consider a ruled surface that is generated by the lines of the complex. 
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 In order to make this more precise, suppose that one has expressed the coordinates xi 
of a line on that surface as functions of one parameter t.  Let x and x + x′ dt be two 
neighboring lines on that surface. 
 The linear complex that is contained in the equation with two terms: 
 

( ) ( )
i

i i

x x
y

x x

ω ωρ σ
 ′∂ ∂+ ′∂ ∂ 

∑  = 0 

 
will define a normal correlation on x (no. 47) that is nothing but the Chasles correlation 
that relates to the ruled surface. 
 Now, compare these complexes with the tangent complexes to the proposed complex: 
 

( )
i

i i

f x
y

x x

ωλ µ
 ∂ ∂+ ∂ ∂ 

∑  = 0, 

 
and form their simultaneous invariant: 
 

( ) ( ) ( )x x f x

x x x x

ω ω ωρ σ λ µ
′ ∂ ∂ ∂ ∂ Ω + + ′∂ ∂ ∂ ∂ 

 

 

= 
f

x x x x

ω ω ωρλ µρ ∂ ∂   ∂ ∂ Ω + Ω   ∂ ∂ ∂ ∂   
 + 

f

x x x x

ω ω ωσλ σµ ∂ ∂   ∂ ∂ Ω + Ω   ′ ′∂ ∂ ∂ ∂   
. 

 
That expression will be zero identically, because we have already seen that: 
 

     
f

x x

ω ∂ ∂ Ω ∂ ∂ 
 − m f(x) = 0, 

     
x x

ω ω ∂ ∂ Ω ∂ ∂ 
 = 

x

ω∂ Ω ∂ 
 = ω(x) = 0. 

     
f

x x

ω ∂ ∂ Ω ′∂ ∂ 
 = 

1

2 i
i

f
x

x

∂ ′
∂∑  = 

1

2

df

dt
 = 0, 

     
x x

ω ω ∂ ∂ Ω ′∂ ∂ 
= 

1

2 i
i

x
x

ω∂ ′
∂∑ = 

1

2

d

dt

ω
 = 0. 

 
 The two systems of two terms considered will then be composed of linear complexes 
in involution. 
 It follows from this (no. 33) that the two normal correlations that determine each of 
the two respective systems on x will be in involution.  By employing the terminology that 
was introduced in no. 59, one can then say that: 
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 If one considers the Chasles correlation of a ruled surface of a complex relative to 
one of its lines x then that correlation will be in involution with the normal correlation of 
the complex relative to x. 
 
 In other words, if one takes a point O on the line x and draws the plane τ that is 
tangent to the surface through O then that plane τ and the plane π that is homologous to O 
under the normal correlation will define a harmonic pencil with two fixed planes.  
Furthermore: 
 Let: 
  O be a point on x, 
  τ be the tangent plane to the ruled surface, 
  O′ be the point that corresponds to t under the normal correlation, and let 
  τ′ be the tangent plane to O′. 
 
τ′ will then be the plane that corresponds to O under the normal correlation to the 
complex. 
 
 If the surface considered is developable (or, more generally, composed of a ruled 
series with an envelope) then the Chasles correlation will be singular and its involution 
with the normal correlation will signify that its singular pair will belong to that 
correlation.  That is precisely the theorem of no. 59. 
 
 
 62.  Consider all of the lines x of a complex and all of the plane pencils (O, π) whose 
point and plane are corresponding elements under the normal correlation of the complex 
on a line x.  I will call these plane pencils the plane pencils of the complex.  One sees how 
this definition generalizes the one that we gave in no. 13 for the case of a linear complex. 
 Let (O, π) be a pencil of the complex and let x be the line of the complex whose 
normal correlation admits the point O and the plane π for its corresponding elements.  
The cone of the complex that has the point O for its summit will be tangent along x to the 
plane π, and the enveloping curve of the lines of the complex relative to the plane π will 
touch the line x at O.  One may then state these theorems: 
 
 The planes π of the pencils of the complex whose point O is given will envelop the 
cone of the complex that has its summit at this point. 
 
 The locus of points O of the pencils of a complex whose plane is given will be the 
enveloping curve of the lines of the complex relative to that plane. 
 
 The cone of the complex will then be the enveloping locus of the planes whose 
enveloping curve passes through the summit of the cone.  The enveloping curve relative 
to a plane will be the locus of summits of the cones of the tangent complex to that plane. 
 One observes that a plane pencil (O, π) of the complex can belong to the normal 
correlation of the two lines x, y of the complex only if the cone with its summit at O 
touches the plane π along x and y; moreover, in that case, the enveloping curve relative to 
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the point O will have a double point at this point, where x and y are the tangents.  I shall 
leave aside this exceptional case. 
 
 
 63.  Recall the system with two terms of the tangent linear complex: 
 

i
i i

f
y

x x

ωλ µ
 ∂ ∂+ ∂ ∂ 

∑  = 0. 

 
As we have seen (no. 59), the special complexes to that system will be furnished by the 
equation: 

2 f

x
λ ∂ Ω ∂ 

 = 0. 

 They will thus all be special if: 
f

x

∂ Ω ∂ 
= 0. 

 
 We thus naturally encounter the remarkable expression: 
 

f

x

∂ Ω ∂ 
 

 
that was introduced by Klein.  I would like to show that it is a differential invariant of the 
complex. 
 Perform the linear transformation: 
 

xi = iA xρ ρ
ρ

′∑    (i, ρ = 1, 2, …, 6); 

 
the coefficients a of the equation of linear complex are found to be coupled to those a′ of 
its transformed equation by the formulas: 
 

aρ′  = i i
i

A aρ∑ , 

 
and, by virtue of these latter formulas, one will have identically: 
 

Ω′(a′) = ∆2 Ω(a), 
 

where Ω(a) is the adjoint form to ω(x), Ω′(a′) is the adjoint form to ω′(x′), which is the 
transform of ω(x), and ∆ is the discriminant of the substitution. 
 Having said this, suppose that the function f(x) becomes f′(x′), in such a way that: 
 

f′(x′) = f(x), 
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so one will have: 
f

xρ

′∂
′∂

 = i
i i

f
A

xρ
∂
∂∑ . 

 
Now, these equations imply the following one: 
 

f

x

′∂ ′Ω  ′∂ 
 = ∆2 

f

x

∂ Ω ∂ 
, 

 

which indeed proves the invariance of 
f

x

∂ Ω ∂ 
. 

 One calls any line of a complex for which the invariant 
f

x

∂ Ω ∂ 
 is zero a singular 

line. 
 It is interesting to examine the behavior of the normal correlation on a singular line. 
 Since the tangent complexes are all special and they define a system in two terms, one 
must conclude that their directrices will define a plane pencil (O, π) and, from the remark 
in no. 30, the normal correlation will be singular.  Any homographic correlation in 
involution with it must then contain its singular pair (O, π).  As a result, any non-
developable ruled surface that is contained in the complex and passes through the 
singular line x must touch the plane π at O. 
 By contrast, any developable surface (of the complex) that passes through the line x 
must either admit O on its edge of regression or touch the plane π. 
 
 
 64.  We have found an interesting application of the principles of the representation 
of surfaces by their tangents that were presented in no. 58. 
 Indeed, I would like to prove the following theorem, which is due to Pasch: 
 
 The plane pencils (O, π) that pertain to all of the singular lines of a complex will have 
an envelope. 
 
 Since one has: 

f

x

∂ Ω ∂ 
 = 0, 

if one sets: 

vi = 

i

f

x
f

x

∂ ∂Ω ∂ 
∂∂
∂

 

 
then the yi will be the coordinates of a line y, and that line will be the directrix of one of 
the tangent linear complexes. 
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 The plane pencil of the directrices of these complexes – viz., the pencil (O, π) − will 
then be represented by the formulas: 

zi = λ xi + µ yi . 
 The conditions: 

ω(x) = 0, ω(y) = 0, ω(x | y) = 0 
 

will obviously be satisfied, so it will suffice to prove (no. 58) that: 
 

ω(y | dx) = 0, 
or that: 

( )
i

i

y
dx

y

ω∂
∂∑  = 0. 

However, since one has set: 

yi = 

i

f

x
f

x

∂ ∂Ω ∂ 
∂∂
∂

, 

one can then infer that: 

i

f

x

∂
∂

= 
( )

i

y

y

ω∂
∂

; 

it will then suffice to prove that: 

i
i

f
dx

x

∂
∂∑ = df = 0, 

which is obvious. 
 One gives the name of SURFACE OF SINGULARITIES to that remarkable surface 
(7). 
 The theorem that relates to the singular lines that are traced on the ruled surface of the 
complex shows that if one observes that a ruled surface of a complex generally contains 
singular lines then that would prove the following theorem: 
 
 Any ruled surface of the complex will generally touch the surface of singularities at a 
certain number of points. 
 
 
 65.  Now, the theorem of no. 58 permits us to prove the following theorem, which 
was partially found by Cayley and completed by Klein: 
 If one has: 

f

x

∂ Ω ∂ 
= 0 

 

                                                
 (7) One sees that it might happen that the surface of singularities reduces to a simple curve, or that the 
singular plane pencil generates one of the four other sets that were defined in no. 58, or a system of several 
of these sets.  
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identically, for a complex of lines, or by virtue of f = 0, ω = 0, then the lines of the 
complex will have an envelope – i.e., they will touch a fixed surface, which will either be 
developable or not, or it might even intersect a fixed curve. 
 Indeed, recall the preceding notations: 
 

vi = 

i

f

x
f

x

∂ ∂Ω ∂ 
∂∂
∂

; 

 
we thus make the line y correspond to any line x of the complex that intersects it at a 
point O and has a plane π in common with it. 
 The pencil (O, p) will have the representation: 
 

zi = λ xi + µ yi . 
 

 One might believe that it depends upon three parameters, like the line x, but in reality 
it depends upon only wo, although one does not know them a priori;  however, be that as 
it may, since one has: 

2ω(y | dx) = i
i

f
dx

x

∂
∂∑ = df = 0, 

 
one will be assured that the pencil (O, p) will have an envelope (no. 58), and furthermore, 
it will not depend upon more than two parameters.  If O describes a surface then π will 
touch the surface, and the complex will be that of the tangents to that surface.  If, on the 
contrary, O describes a curve then all the lines of the complex will cut that curve and 
their set will be defined by that condition. 
 We will see later on how to differentiate these two cases. 
 
 
 66.  The infinitesimal properties of congruences were known for quite a long time 
before those of complexes.  They were presented in geometry in the earliest research into 
the theory of surfaces.  In his Traité de Géometrie, G. Darboux gave them an important 
position and added to the interest that geometers already had in them from the research of 
Laplace on the linear second-order partial differential equations.  We will have occasion 
to insist upon the role of these equations in the study of congruences.  I would 
nonetheless like to recall the principal properties of congruences of lines. 
 The lines of a congruence are generally tangent to two surfaces; meanwhile, in 
certain cases, these surfaces might reduce to curves or coincide. 
 Let a congruence be common to two complexes A and B; let x be a line of that 
congruence.  The normal correlations HA, HB of the complexes A, B on the line x will 
have two pairs (F, Φ′), (F′, Φ) in common.  The pairs (F, Φ), (F′, Φ′) that are inverse to 
these pairs (no. 21) will play a particularly important role; we shall call them focal pairs: 
F, F′ will be the foci and Φ, Φ′ will be the focal planes of the line x. 
 Focal pairs can be real or imaginary, or even merge together. 
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 First, suppose that they are distinct.  The lines x will depend upon two parameters (no. 
9) – viz., the points F, F′ − so the planes Φ, Φ′ will depend upon two parameters, in 
general.  The points F and F′ will then generally describe two surfaces S and S′ 
(respectively) that one calls focal surfaces.  Meanwhile, it might be the case that the point 
F, for example, describes a curve, in which case we will say that the focal surface S 
reduces to a curve. 
 Consider a ruled surface that is contained in the congruence and passes through the 
line x; it will determine a Chasles correlation on x that must be (no. 61) in involution with 
each of the normal correlations HA, HB , and which, as a consequence (no. 25), must 
admit the pairs (F, Φ), (F′, Φ′) that are inverse to the pairs (F, Φ′), (F′, Φ) that are 
common to HA and HB .  In a word, any Chasles correlation that is defined on x by a 
ruled surface of the congruence must admit focal pairs.  Or furthermore: Any ruled 
surface of the congruence that passes through x will touch the plane Φ at F and the plane 
Φ′, at F′. 
 Consider the singular Chasles correlations that belong to the congruence.  These 
correlations will be defined by the condition of being in involution with HA and HB .  
Thus, from no. 25, the singular pair will be (F, Φ′) for the one and (F′, Φ) for the other. 
 One may conclude that around each line x of the congruence there will be two 
neighboring lines x + dx, x + d′x of the congruence that each form an element of the ruled 
series with envelope, along with x; to abbreviate, we say an element of the developable. 
 There are thus two ways of continuously displacing a line of a congruence when one 
starts with an arbitrary given position, in such a way that the line generates a developable.  
The congruence may then be decomposed into developables of a family in two ways.  
Two of these developables will pass through each line x of the congruence, and the 
osculating pencils of these developables will be (F, Φ′) and (F′, Φ), respectively.  The 
two developables in question will then be real whenever these two pairs are. 
 First, imagine the case where S and S′ are true surfaces.  Consider a developable that 
is formed from lines of the congruence.  The edge of that developable will be a locus of 
points F that is traced on S.  We will thus have a family of curves C on S whose tangents 
will generate the congruence.  Similarly, we will have a family of curves C′ on S′ whose 
tangents will likewise generate the congruence. 
 Any line x of the congruence will be tangent to a curve C at F and to a curve C′ at F′; 
it will then be tangent to the focal surfaces S and S′ at its foci. 
  Any ruled surface that is composed of lines of the congruence is therefore found to 
circumscribe both of the surfaces S and S′ at once.  Now, its tangent plane at F will be the 
plane Φ, and its tangent plane at F′ will be the plane Φ′. 
 
 The focal pairs (F, Φ), (F′, Φ′) will then be tangents to the focal surfaces. 
 
 In particular, consider the developable whose edge is C′; it will be circumscribed, 
with S, along a curve D.  When C′ describes the surface S′, the curve D will generate a 
family of curves on S.  I say that the curves C and D will form a conjugate net on S. 
 Indeed, the curve D will be the curve of contact of S with a developable whose 
rectilinear generator that passes through F will touch the curve C at that point.  The 
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tangent to D at the point F and the line x tangent to C at F will then be two conjugate 
tangents, in the sense of Dupin. 
 Similarly, the developables that have the curves C for their edges will be 
circumscribed with S′ along the curves D′ that will form a conjugate system with the 
curves C′. 
 One sees that a congruence establishes a point-wise correspondence between its focal 
surfaces.  The point F on S will correspond to F′ on S′, and inversely.  When two surfaces 
correspond point-wise, there will generally exist two families of conjugate curves on each 
of them whose image on the other one will be another family of conjugate curves.  Here, 
these two families will be the curves C, D on S and the curves C′, D′ on S′, because if F 
describes a curve C then F′ will describe a curve C′, and if F describes a curve D then F′ 
will describes a curve C′. 
 There is nonetheless good reason to observe − and we shall return to this point − that 
if the asymptotes correspond on the two sheets S and S′ then to any conjugate system that 
is traced on S there will correspond another conjugate system on S′. 
 
 
 67.  The case where one of the surfaces S, S′, or even both of them, become curves 
offers no difficulty.  Suppose that F describes a curve V and F′ describe a surface S′, 
which is a surface that is, moreover, the locus of the curve C′ that is the edge of the 
developables of a family that is defined by the lines of the congruence.  These lines will 
then be subject to the double condition that they must cut V and touch S′, except that here 
the developables of a family will reduce to cones whose summit F is taken to be on the 
curve V and which will be circumscribed by S′. 
 The curves D′ will be the curves of contact of these cones. 
 As for the curves C′, they will be the edges of the developables that pass through the 
curve V. 
 If the surface S′ itself reduces to a curve V′ then the congruence will be the set of lines 
that cut V and V′; the developables of the congruence will then be the cones that pass 
through V′ whose summits are on V and the cones that pass through V′ whose summits 
are on V′. 
 An interesting example is furnished by the lines that intersect both of two focal 
conics.  All of the cones will then be cones of revolution. 
 We have already encountered an example of focal surfaces that reduce to lines in the 
linear congruence. 
 
 
 68.  It would not be futile to recall the exposition of these results by another path. 
 Let the equations of the complexes A and B be: 
 

f(x) = 0, g(x) = 0, 
 

and let x be a line of the common congruence; I consider the equation: 
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(21)     i
i i i

f g
y

x x x

ωλ µ ν
 ∂ ∂ ∂+ + ∂ ∂ ∂ 

∑  = 0. 

 
In that equation, y denotes a current line and λ, µ, ν are three arbitrary functions; as 
always, ω(x) is the fundamental form.  This equation represents a system of linear 
complexes with three terms that have a common degenerate semi-quadric (no. 40). 
 Indeed, form the invariant: 
 

  
i i i

f g

x x x

ωλ µ ν
 ∂ ∂ ∂Ω + + ∂ ∂ ∂ 

 

   = 2

i i

i

f g f gx
x x x x x

x

ω
ωλ µ ν ν λ µω

∂ ∂Ω   ∂ ∂ ∂ ∂ ∂∂     Ω + + Ω + +     ∂∂ ∂ ∂ ∂ ∂     ∂
∂

∑ . 

 One first has: 

x

ω∂ Ω ∂ 
 = ω(x) = 0, 

xi = 

i

x

x

ω

ω

∂ ∂Ω ∂ 
∂∂
∂

, 

and, as a result, the coefficient of ν will be written: 
 

i
i i

f g
y

x x
λ µ
 ∂ ∂+ ∂ ∂ 

∑ = λ m f(x) + µ m′ g(x), 

 
where m, m′ are the degrees of homogeneity of f and g.  Since f = g = 0, one will thus 
have: 

f g

x x x

ωλ µ ν∂ ∂ ∂ Ω + + ∂ ∂ ∂ 
 = 

f g

x x
λ µ∂ ∂ Ω + ∂ ∂ 

, 

 
or, upon developing this: 
 

(22)   = 2 22
f f g g

x x x x
λ λµ µ∂  ∂ ∂  ∂   Ω + Ω + Ω    ∂ ∂ ∂ ∂    

. 

 
 The special complexes of the system will be obtained by taking the values λ0 : µ0 and 

0λ′ : 0µ ′  that annul that invariant for λ : µ.  These special complexes will then form the 

systems with two terms: 
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(23)    0 0 i
i i i

f g
y

x x x

ωλ µ ν
 ∂ ∂ ∂+ + ∂ ∂ ∂ 

∑  = 0, 

(24)    0 0 i
i i i

f g
y

x x x

ωλ µ ν
 ∂ ∂ ∂′ ′+ + ∂ ∂ ∂ 

∑  = 0. 

 
 In these formulas, ν remains arbitrary.  From no. 30, each of these systems (23), (24) 
will be composed of special complexes whose directions will form a plane pencil.  We 
will thus have two plane pencils; I add that these two pencils will be (F′, Φ), (F, Φ′).  
Indeed, let us seek the two plane pencils whose union comprises all of the lines common 
to the complexes (21).  These common lines y will verify the equations: 
 

i
i

f
y

x

∂
∂∑  = 0,  i

i

g
y

x

∂
∂∑  = 0,  i

i

y
x

ω∂
∂∑  = 0. 

 
 From the last relation, they will cut x, and since x will belong to the two complexes: 
 

i
i

f
y

x

∂
∂∑  = 0,  i

i

g
y

x

∂
∂∑  = 0, 

 
they may themselves belong to these two complexes only under the condition that they 
belong to one of the two pencils (F′, Φ), (F, Φ′), which will have the two correlations HA, 
HB in common that were already defined above.  Since the lines of the pencils (F′, Φ), (F, 
Φ′) will be the ones that have all of the complexes (21) in common, the directrices of the 
special complexes of this system will generate the focal pairs (F, Φ), (F′, Φ′) that are 
inverse to the first two. 
 Moreover, if we suppose that the complexes (23) generate the pencil (F, Φ) then any 
line of this pencil will thus be represented by: 
 

zi + ν xi , 
where we have set: 

( )

i

x

z

ω∂
∂

 = 0 0
i i

f g

x x
λ µ∂ ∂+

∂ ∂
. 

 
 It is obvious that the zi thus defined will be the coordinates of a particular line of the 
pencil (F, Φ). 
 One verifies that the condition for (F, Φ) to have an envelope is found to be satisfied: 
 

   2ω(z | dx) = 0 0

( )
i

i i i

z f g
dx

z x x

ω λ µ
 ∂ ∂ ∂− − ∂ ∂ ∂ 

∑ ∑  

 
  = λ0 df + µ0 dg = 0, 
since df = 0, dg = 0. 
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 It is then proved that the focal pairs possess an envelope. 
 The system of complexes (21) possesses a property that justifies the name of tangent 
linear complexes that one gives to these complexes.  If one replaces the yi in the left-hand 
side of (21) with the coordinates of a line of the congruence: 
 

xi + dxi + 
1

1 2⋅
d2xi + 

1

1 2 3⋅ ⋅
 d3xi + … 

 
that is infinitely close to x then one will find a result of order at most two.  No other 
linear complex will present that peculiarity, which the reader may verify for himself. 
 
 
 69.  Although we would not like to carry out a detailed study of the congruences of 
lines here, we would nonetheless like to give an account of the case in which the focal 
pairs coincide for all of the lines of the congruence. 
 This case is obviously characterized by the fact that the two roots of the equation (22) 
are equal, which gives: 

(25)    
2

f g f g

x x x x

  ∂ ∂  ∂ ∂   Ω − Ω Ω      ∂ ∂ ∂ ∂     
 = 0. 

 
 The left-hand side of that equation will be an invariant of the congruence; it will 
likewise be a combinant, because, if one sets: 
 

f1 = F(f, g), g1 = G(f, g), 

 

∆ = 
f g g f

∂ ∂ ∂ ∂−
∂ ∂ ∂ ∂
F G F G

 

then one will find: 
 

2

1 1 1 1f g f g

x x x x

  ∂ ∂  ∂ ∂   Ω − Ω Ω      ∂ ∂ ∂ ∂     
 = 

2

2 f g f g

x x x x

   ∂ ∂  ∂ ∂    ∆ Ω − Ω Ω       ∂ ∂ ∂ ∂       

. 

 
 We seek to discover what the definition of the congruence would be in this case. 
 We have only one family of ruled series with an envelope, and the unique focal pair 
(F, Φ) will be the locus of directrices of the special tangent linear complex: 
 

0 0 i
i i i

f g
y

x x x

ωλ µ ν
 ∂ ∂ ∂+ + ∂ ∂ ∂ 

∑  = 0. 

 
 As before, one recognizes that the pair (F, Φ) will possess an envelope, which will 
generally be a surface S. 
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 On the other hand, since the plane Φ′ coincides here with the plane Φ, the pair (F, Φ) 
will, at the same time, constitutes the osculating pencil of the unique developable that one 
can form from the lines of the congruence, and which will pass through the line x.  The 
edge C of that developable will be traced on S, and since the osculating plane Φ to C at 
the point F will, at the same, be tangent to S, it will then result that C is an asymptotic 
line of the surface S.  Since this will be true for any developable of the congruence, it will 
appear to be set of tangents to the asymptotic lines of a family on the surface S. 
 Conversely, if one considers the asymptotes C of a family on a surface S then their 
tangents will constitute a congruence with coincident focal pairs. 
 Indeed, let there be a family of curves C on a surface S, and consider the congruence 
of tangents to these curves.  Let x be one of these tangents that touch F along a curve C, 
let Φ be the plane tangent to the surface at F, and let Φ′ be the osculating plane to C at F. 
 The planes Φ and Φ′ are the focal planes of the line x and the second focal surface S′ 
is the envelope of the plane Φ′.  However, the lines C are asymptotes for S, so Φ′ 
coincides with Φ and the focal pairs coincide. 
 
 
 70.  It then remains for us to consider what happens if the point F no longer describes 
a surface, but a curve V when the focal pairs coincide.  This case, which is rarely 
considered, nevertheless offers a certain interest. 
 The congruence will be composed of lines that cut the fixed curve V.  An infinitude of 
lines will then pass through any point F of V.  The lines issuing from F will form a hyper-
pencil such that one may represent any one of these lines by the formulas: 
 

zi = λ ai + µ bi + ν ci  
or: 

ω(a) = ω(b) = ω(c) = ω(a | b) = ω(a | c) = ω(b | c) = 0, 
 

in which ai, bi, ci are functions of the one parameter u.  Moreover, there must exist a 
homogeneous relation between λ, µ, ν, which will be, in some sense, the equation of the 
cone that will be described by the lines of the congruence that issue from F. 
 One will have: 
  dzi = λ dai + µ dbi + ν dci + ai dλ + bi dµ + ci dν 
   = ( )i i ia b c duλ µ ν′ ′ ′+ +  + (ai dλ + bi dµ + ci dν), 

 
in which ia′ , ib′ , ic′  are the derivatives of ai, bi, ci with respect to u.  Therefore: 

 
  ω(dz)  = ω(λ a′ + µ b′ + ν c′) du2 
  + 2ω(λ a′ + µ b′ + ν c′ | a dλ + b dµ  + c dν) du + ω(a dλ + b dµ  + c dν). 
 
The expression ω(a dλ + b dµ  + c dν) will be zero identically, and what will remain is: 
 

ω(dz) = ω(λ a′ + µ b′ + ν c′) du2 + ω(λ a′ + µ b′ + ν c′ | a dλ + b dµ  + c dν) du. 
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 The equation ω(dz) = 0 will define the lines of the congruence that are close to z, 
which, along with z, will form an element of the developable.  The solution du = 0 will 
give the cones whose summits are on the curve V.  However, since the two families of 
developables will coincide here, the two solutions must give du = 0. 
 Suppose that λ, µ, ν are expressed as functions of u and a parameter ν (*) that varies 
when the line describes the desired cone.  It must then be the case that the term in du dv 
will disappears, or that one has: 
 

a b c a b c
λ µ νω λ µ ν
ν ν ν

 ∂ ∂ ∂ ′ ′ ′+ + + + ∂ ∂ ∂ 
 = 0 

 
identically, which is written, upon developing it: 
 

( | ) ( | ) ( | )b c c a a b
ν µ λ ν µ λω µ ν ω ν λ ω λ µ
ν ν ν ν ν ν

∂ ∂ ∂ ∂ ∂ ∂     ′ ′− + − + −     ∂ ∂ ∂ ∂ ∂ ∂     
 = 0. 

 
 If one observes that ω(b | c′), ω(b | c′), ω(b | c′) do not depend upon ν then one will 
see that this equation is equivalent to the finite relation: 
 

(26)    ( | ) ( | ) ( | )b c a c a b

λ µ ν
ω ω ω

α β γ
′ ′ ′  = 0, 

 
where α, β, γ are constants; i.e., as functions of u. 
 The linear form of that equation proves to us, first of all, that the lines of the 
congruence issuing from the point F of the curve V will generate a plane pencil.  The 
plane Φ of that pencil will obviously be the focal plane.  Moreover, in the spray that 
consists of the lines that issue from F, the tangent FT to the curve V will be represented 
by the following values of λ : µ :ν (no. 54): 
 

( | )b c

λ
ω ′

= 
( | )c a

µ
ω ′

 = 
( | )a b

ν
ω ′

. 

 
 Since these values of λ : µ :ν  will verify equation (26), one must conclude that the 
plane Φ will touch the curve V; i.e., conforming to the terminology of no. 55, the 
characteristics of the pencil (F, Φ) will belong to that pencil.  From this, it will result 
immediately that, in general, the congruence will be the locus of the lines that touch a 
given developable at the points of curve that is traced on that developable, and that in the 
exceptional case, it will be the locus of plane pencils (F, Φ) such that the point and the 
plane constitute a pair of a correspondence that is determined between the points and 
planes with a fixed line (no. 56). 
                                                
 (*) [D. H. D.  One must be careful to distinguish v (“vee”) from ν (“nu”) in these expressions.  
Generally, the “vee” is in the denominator.] 
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 The singular linear congruence (no. 29) is the simplest case of this that one may cite. 
 
 
 71.  It is often useful to represent a congruence by expressing the coordinates xi of 
any of its lines x as functions of two parameters u, v.  Likewise, it is often useful to 
represent the coordinates of a line of a complex by means of functions of three variables.  
We shall return later on to that representation of the complex; however, I would like to 
immediately present some remarks on this subject that concern congruences. 
 If one forms ω(dx) then since: 

dxi = i ix x
du dv

u v

∂ ∂+
∂ ∂

, 

one will have: 
(27) ω(dx) = E du2 + 2F du dv + G dv2, 
where: 

E = 
x

u
ω ∂ 
 ∂ 

,  F = 
x x

u v
ω  ∂ ∂ 
 ∂ ∂ 

, G = 
x

v
ω ∂ 
 ∂ 

. 

 
 Any equation between u, v will furnish a ruled surface of the congruence; in 
particular, the integrals of the equation: 
 

E du2 + 2F du dv + G dv2 = 0 
 

will give the developables of the congruence.  These developables will coincide if EG − 
F2 = 0. 
 Consider a linear complex: 

∑ ai yi = 0, 
 

and replace the yi with the coordinates of a line of the neighboring congruence to the line 
x of that same congruence.  This will yield: 
 

  yi = xi + 2 21

2
i i i ix x x x
du dv d u d v

u v u v

∂ ∂ ∂ ∂ + + + ∂ ∂ ∂ ∂ 
 

   + 
2 2 2

2 2
2 2

1
2

2
i i ix x x
du du dv dv

u u v v

 ∂ ∂ ∂+ + ∂ ∂ ∂ ∂ 
+ … 

 
The equation of the complex will become: 
 

i ia y∑ = 2 21

2
i i i i

i i i i i i

x x x x
a x a du a dv a d u a d v

u v u v

∂ ∂ ∂ ∂ + + + + ∂ ∂ ∂ ∂ 
∑ ∑ ∑ ∑ ∑  

+ 
2 2 2

2 2
2 2

1

2
i i i

i i i

x x x
a du a du dv a dv

u u v v

∂ ∂ ∂+ +
∂ ∂ ∂ ∂∑ ∑ ∑ + … 

 
 If one chooses the a in such a way that: 
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(28)  i ia y∑ = 0,  i
i

x
a

u

∂
∂∑ = 0,  i

i

x
a

v

∂
∂∑ = 0 

 
then the result of that substitution will be: 
 

i ia y∑ = 
2 2 2

2 2
2 2

1

2
i i i

i i i

x x x
a du a du dv a dv

u u v v

∂ ∂ ∂+ +
∂ ∂ ∂ ∂∑ ∑ ∑ + …; 

 
it will then reduce to second order. 
 For certain congruences, one may determine the complex i ia y∑ = 0 in such a 

manner that the second-order terms also disappear, in such a way that up to third order 
the neighboring lines to a line x in the congruence may be envisioned as being contained 
in a linear complex.  In this case, we will say that the congruence possesses an osculating 
linear complex along each of its lines. 
 In order for the terms of second order to disappear, it is necessary that one must have, 
at the same time as equations (28), the following ones: 
 

(29)   
2

2
i

i

x
a

u

∂
∂∑  = 0,  

2
i

i

x
a

u v

∂
∂ ∂∑ = 0, 

2

2
i

i

x
a

v

∂
∂∑ = 0. 

 
The compatibility of these equations may be expressed by writing that the following 
determinant is zero: 

(30)    
2 2 2

2 2, , , , ,i i i i i
i

x x x x x
x

u u v v u v

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

 = 0. 

 
Now, the vanishing of this determinant obviously expresses the necessary and sufficient 
condition for the xi to be solutions of the same equation of the Laplace form: 
 

(31)   
2 2 2

2 22A B C D E G
u u v v u v

θ θ θ θ θ θ∂ ∂ ∂ ∂ ∂+ + + + +
∂ ∂ ∂ ∂ ∂ ∂

 = 0. 

 
 Therefore, in order for a congruence to admit an osculating linear complex, it is 
necessary and sufficient that the coordinates of one of its lines verify an equation of the 
same form as (31). 
 
 
 72.  The congruences of coincident focal pairs are always of this kind. 
 Indeed, suppose that ν = const. are the developables of the congruence, so the 
expression for ω(dx) must reduce to dv2, and one will have: 
 

ω(dx) = 2 22
x x x x

du du dv dv
u u v v

ω ω ω∂  ∂ ∂  ∂   + +    ∂ ∂ ∂ ∂    
; 
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one will thus have: 
x

u
ω ∂ 
 ∂ 

 = 0, 
x x

u v
ω  ∂ ∂ 
 ∂ ∂ 

 = 0. 

 
 I will consider the following expressions: 
 

ϕi = 
2 2 2

2 22i i i i
i

x x x x
A B C D Gx

u u v v u

∂ ∂ ∂ ∂+ + + +
∂ ∂ ∂ ∂ ∂

, 

and form: 

 ω(x | ϕ)  =
2 2

2
( )

x x x x
A x B x C x D x G x

u u v u u
ω ω ω ω ω
   ∂ ∂  ∂   ∂ + + + +       ∂ ∂ ∂ ∂ ∂      

, 

 

 
x

u
ω ϕ ∂ 
 ∂ 

 = 
2 2

2

x x x x x x x x
A B C D G x

u u u u v u u v u
ω ω ω ω ω
   ∂ ∂ ∂ ∂ ∂  ∂ ∂   ∂  + + + +         ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂        

. 

 
These two expressions will be zero.  Indeed, one will have: 
 

ω(x) = 0, 
1 ( )

2

x

u

ω∂
∂

= 
x

x
u

ω  ∂ 
 ∂ 

 = 0,  
1 ( )

2

x

v

ω∂
∂

= 
x

x
v

ω  ∂ 
 ∂ 

 = 0, 

 
x

x
u

u

ω  ∂ ∂  ∂ 
∂

 = 
2

2

x x
x

u u
ω ω
 ∂ ∂ +   ∂ ∂  

 = 0, 

 

and since 
x

u
ω ∂ 
 ∂ 

 = 0, one will have: 

2

2

x
x

u
ω
 ∂
 ∂ 

= 0. 

Likewise: 
x

x
u

v

ω  ∂ ∂  ∂ 
∂

= 
2x x x

x
u v u v

ω ω
 ∂  ∂ ∂ +   ∂ ∂ ∂ ∂  

 = 0, 

and since 
x x

u v
ω  ∂ ∂ 
 ∂ ∂ 

 = 0, one will have: 

2x
x

u v
ω
 ∂
 ∂ ∂ 

 = 0. 

 One will then have: 
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(32)    

( )
2 ( | ) 0,

( )
2 | 0,

i
i

i
i

x
x

x

x

u x

ωω ϕ ϕ

ω ξω ϕ ϕ

∂ = = ∂
 ∂ ∂  = =  ∂ ∂ 

∑

∑
 

 
where one has set ξi = ∂xi / ∂u, for the moment. 
 If one has: 

1

1

( )

( )x

x

ω ξ
ξ

ω

∂
∂

∂
∂

 = 2

2

( )

( )x

x

ω ξ
ξ

ω

∂
∂

∂
∂

 = … = 6

6

( )

( )x

x

ω ξ
ξ

ω

∂
∂

∂
∂

 

 
then, upon calling the common value of these ratios ρ, one will have: 
 

( )

( )i i

x

x

ω ξ ρ
ω ξ ρ

∂ −
∂ −

= 0 (i = 1, 2, …, 6), 

which will require that: 
ξi – ρ xi = 0, 

or: 

ix

u

∂
∂

 = ρ xi , 

from which: 

xi = 
du

ie V
ρ∫ . 

 
The ratios of the xi will depend upon only v, which is contrary to our hypothesis. 
 From the preceding, at least one of the determinants: 
 

( ) ( ) ( ) ( )

i k k i

x x

x x

ω ξ ω ω ξ ω
ξ ξ

∂ ∂ ∂ ∂−
∂ ∂ ∂ ∂

 

 
will be non-zero; for example, the one that corresponds to the indices i = 1, k = 2.  One 
may then determine the equation: 
 

(33)   
2 2 2

2 22A B C D E G
u u v v u v

θ θ θ θ θ θ∂ ∂ ∂ ∂ ∂+ + + + +
∂ ∂ ∂ ∂ ∂ ∂

 = 0 

 
in such a fashion that it should admit the solutions x3 , x4 , x5 , x6 : since ϕ3 , ϕ 4 , ϕ 5 , ϕ 6 
are zero, equations (32) will give zero values for ϕ1, ϕ2, moreover, since the 
corresponding determinant will not be zero. 
 Since the six expressions ϕi will then be zero, the six coordinates xi will verify 
equation (33).  The congruence will thus admit an osculating linear complex. 
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 73.  However, this is not the only case. 
 For example, take a congruence G that is contained in a linear complex.  The two 
focal surfaces will be reciprocal polars with respect to this complex.  Indeed, let ∆ be a 
line of the congruence and let (F, Φ), (F′, Φ′) be focal pairs.  The pair (F, Φ′) will be the 
osculating plane pencil of the curve C that is traced on the surface S (no. 66).  This plane 
pencil will then belong to the linear complex, which will imply that the tangents to C 
must belong to that complex, as well (no. 53).  The plane Φ′ will then be the polar plane 
to F in the complex; likewise, the plane Φ will be the polar plane to F′.  The two plane 
pencils (F, Φ), (F′, Φ′) will be polar to each other, and, as a result, the two focal surfaces 
S and S′ that they envelop will be polar to each other with respect to the complex. 
 There is more: When the point F describes a curve on S, or, more precisely, when the 
plane pencil (F, Φ) describes a band circumscribed by S, the plane pencil (F′, Φ′) will 
describe the reciprocal band that is circumscribed by S′.  In particular, if the band is an 
asymptotic band of S − i.e., a band in which the locus of the point F is an asymptote of S 
− then the corresponding band of S′ will likewise be asymptotic.  This amounts to saying 
that, by duality, the asymptotic band of a surface will transform into that of the 
transformed surface. 
 In other words, asymptotes will correspond on focal surfaces. 
 As was shown by G. Darboux, this remarkable property is general, and the preceding 
considerations permit us to given an immediate proof. 
 Let G be a congruence that admits an osculating linear complex on the line x.  Let S 
be a focal surface, and consider the tangents to S that belong to the complex Cx .  I shall 
refer to the reciprocal polar of S in the complex Cx by S1, so the surface S1 will be the 
second focal surface of the congruence G1 of the tangent lines to S that belong to Cx .  
Finally, let S′ be the second focal surface of the congruence G.  Along the line x, the 
congruences G and G1 will coincide, up to properties that depend upon third order.  The 
two focal surfaces S′ and S1 must then be tangents to the point F′ where x touches S′, and 
moreover, the elements of second order of S′ and S1 must be the same along F′.  The 
asymptotic tangents to S′ and S must coincide. 
 However, if F is displaced along an asymptotic tangent of S then F′ will be displaced 
along an asymptotic tangent, and therefore along an asymptotic tangent to S′.  It is thus 
established that the asymptotic tangents on S and S′ will correspond.  The asymptotes to S 
and S′ will then correspond. 
 We will have occasion to return to that question. 
 

_________ 
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 74.  In no. 3, we defined a special system of coordinates r ik for the straight line, which 
is a notion that is found to be linked to that of a certain coordinate tetrahedron. 
 We then pointed out how one can substitute new coordinates for these coordinates by 
means of transformation formulas: 
 

r ik = Aik,1 x1 + Aik,2 x2 + … + Aik,6 x6 , 
 
in which the determinant of the transformation is not zero.  The equations: 
 

xi = 0 
 

each represent a linear complex, and these six complexes are obviously not part of the 
same system of five terms. 
 The variables r ik verify the relation: 
 

r12 r34 + r13 r42 + r14 r23 = 0, 
 

and if one substitutes the variables xi for them then the left-hand side of that equation 
becomes a quadratic form in x1, x2, …, x6 : 
 

ω(x). 
 

 The form of the function ω(x) characterizes the coordinates.  There are two 
particularly important types of them, and they have the closest links between them, 
moreover.  The first one is the following: 
 

x1 x4 + x2 x5 + x3 x6 , 
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and the second one, which was first considered by Klein, and which is the basis for his 
research into this geometry, consists of the sum of the squares: 
 

2 2 2
1 2 6x x x+ + +⋯ . 

 
 We shall study these two types in turn. 
 We first observe that the coordinates r ik realize the former type, and we shall show 
that, conversely, if the coordinates reduce the form ω(x) to the type: 
 

ω(x) = x1 x4 + x2 x5 + x3 x6  
 
(i.e., the sum of three triangles) then the xρ will be the coordinates rik with respect to a 
certain tetrahedron. 
 Indeed, if we seek the adjoint form Ω(a) then we will find: 
 

Ω(a) = a1 a4 + a2 a5 + a3 a6 ; 
 
i.e., ω(a).  This is one of those cases in which the adjoint form reproduces the original 
form.  For the complex xρ = 0, all of the coefficients ai are zero, except for aρ , and in 
turn, Ω(a) = 0; the coordinate complexes are therefore all special. 
 We now show that the directrices of these complexes are the edges of a tetrahedron. 
 The condition for the involution of the two complexes A, B is written: 
 

a4 b1 + b4 a1 + a5 b2 + b5 a2 + a6 b3 + b6 a3 = 0 
 
here; it is verified for every pair xρ = 0, xσ = 0 of coordinate complexes, except for the 
three pairs of indices 1 and 4, 2 and 5, 3 and 6. 

 
O 

3 
1 

O1 

O2 

O3 
 

2 

6 

5 

4 

 
Figure 1. 

 
 For example, take the complexes with indices 1, 2, 3 (Fig. 1), so they are special and 
pair-wise in involution, and they are not part of the same system of two terms.  It then 
results that their directrices define a trihedron or a triangle; for example, a trihedron with 
summit O. 
 The directrices of the complexes 2, 3, 4, likewise define a trihedron or a triangle.  
However, if they define a trihedron then the directrix of 4 must pass through the point of 
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intersection O of the directrices 2 and 3.  The directrix of 4 will then cut that of the 
complex 1 at O, which cannot happen, since 1 and 4 are not expected to be in involution.  
Therefore, the directrices of 2, 3, 4 define a triangle, and the directrix of 4 cuts that of 2 at 
a point O2, and that of 3 at a point O3 . 
 If one then takes the directrix of 5 then it will define a trihedron or triangle with those 
of 3 and 4.  If it defines a triangle then it will be in the plane OO2O3 and will cut the 
directrix of 2, which cannot happen, since one expects that 2 and 5 will not be in 
involution.  Therefore, the directrices of 5, 3, 4 will define a trihedron, and in turn, the 
directrix of 5 will pass through O3 ; similarly, the directrix of 6 will pass through O2 . 
 All that remains is to prove that the directrices of 5, 6, 1 intersect at the same point 
O1; i.e., they define a trihedron.  Now, in fact, these three directrices intersect pair-wise; 
they thus define a trihedron or a triangle.  One cannot assume that they define a triangle 
because the directrix of 1 would then be in the plane of the directrices of 5 and 6 and 
would cut the directrix 4, but this cannot happen, since 1 and 4 are not in involution.  It is 
therefore a trihedron that defines the directrix lines of the complexes 1, 6, 5. 
 One will obviously arrive at the same result if one starts with the hypothesis that the 
directrices of 1, 2, 3 define a triangle, and not a trihedron.  One will have obtained a 
dualistic configuration from the viewpoint of the notations for what we have found. 
 Having said that, assign the index 1 to the point O1, the index 2 to the point O2, the 
index 3 to the point O3, and the index 4 to the point O.  Then, consider the coordinates r ik 
that were defined in no. 4 and taken with respect to that tetrahedron. 
 The directrix of the complex: 
 1 is the line OO1 or 41, 
 2 “ OO2  “ 42, 
 3 “ OO3  “ 43, 
 4 “ O2O3 “ 23, 
 5 “ O3O1 “ 31 
 6 “ O1O2 “ 12. 
 Now, the equation: 

r ik = 0 
 
is the condition of intersection for a line with the line ik; therefore, with the system of r ik 
the equation of the complex: 
 1 will be r41 = 0, 
 2 “ r42 = 0, 
 3 “ r43 = 0, 
 4 “ r23 = 0, 
 5 “ r31 = 0, 
 6 “ r12 = 0, 
 
and since the r ik are linear functions of the xρ , one must have: 
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(1) 

1 1 41

2 2 42

3 2 43

4 1 23

5 2 31

6 3 12

,

,

,

,

,

,

x r

x r

x r

x r

x r

x r

α
α
α
α
α
α

=
 =
 =
 ′=
 ′=
 ′=

 

 
where the α, α′ are constants.  If one forms: 
 

x1 x4 + x2 x5 + x3 x6 = α1 1α ′  r41 r23 + α2 2α ′  r42 r31 + α3 3α ′  r43 r12 

 
then that form will differ only by a factor from: 
 
 r41 r23 + r42 r31 + r43 r12 , 
and one will see that: 
(2)    α1 1α ′  = α2 2α ′ = α3 3α ′ . 
 
However – and this is the essential point – formulas (1) indeed show that the xρ are the 
coordinates r ik, when taken with respect to a certain tetrahedron, up to a factor. 
 The presence of the factors α is of no importance, since in regard to the relations (2), 
one can put them back into the x without changing the form: 
 

x1 x4 + x2 x5 + x3 x6 . 
 
 In summary, performing a transformation that takes the form above to the same form 
amounts to changing the tetrahedron of reference. 
 As an application of the formulas that define the r ik in no. 4, the reader will easily 
verify that, conversely, any change of symbols or coordinates translates into a linear 
transformation of the coordinates r ik . 
 
 
 75.  The other coordinates that we shall speak of are due to Klein. 
 Suppose that one has a coordinate system of the preceding type – i.e., tetrahedral 
ones – and from now on denote these coordinates by the symbol r ik , as in no. 4.  We will 
have: 

r41 r23 + r42 r31 + r43 r12 = 0, 
or furthermore: 
 

(r41 + r23)
2 + (r42 + r31)

2 + (r43 + r12)
2 − (r41 − r23)

2 − (r42 − r31)
2 − (r43 − r12)

2 = 0. 
 
 The fundamental form – if one appeals to real numbers − is therefore decomposable 
into six squares, three of which are positive and three of which are negative. 
 Perform the real transformation: 
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(3)      

41 23 1

42 31 2

43 12 3

41 23 4

42 31 5

43 12 6

,

,

,

,

,

,

r r x

r r x

r r x

r r x

r r x

r r x

+ =
 + =
 + =
 − =
 − =


− =

 

and the fundamental form becomes: 
 
(4)     2 2 2 2 2 2

1 2 3 4 5 6x x x x x x+ + − − − . 

 
 However, by reasons of symmetry that also present themselves in the theory of penta-
spherical or hexa-spherical coordinates, one desires that (4) should be converted into a 
sum of squares (8).  Obviously, this goal can be achieved only by an imaginary 
transformation. 
 For example, one may substitute the following equations for equations (3): 
 

(5)     

41 23 1 41 23 4

42 31 2 42 31 5

43 12 3 43 12 6

, 1,

, 1,

, 1,

r r x r r x

r r x r r x

r r x r r x

 + = − = −
 + = − = −
 + = − = −

 

 
and instead of (4) will then have: 
(6)      2 2 2 2 2 2

1 2 3 4 5 6x x x x x x+ + + + + , 

 
a formula that is symmetric, but complicated by imaginaries. 
 Meanwhile, under the hypotheses that we have imposed, the six complex coordinates 

will be real, since x1, x2, x3 are real and 1−  is a factor in x4, x5, x6 . 
 However, this situation will not be necessarily true if we perform any other linear 
transformation that reduces the fundamental form to the sum of six squares. 
 
 
 76.  If one is given a quadratic form that is the sum of squares (involving six squares): 
 

2 2 2
1 2 6x x x+ + +⋯  

 
then one will say orthogonal substitution to mean any linear transformation that preserves 
the type of its form in such a way that by virtue of the transformation equations: 
 

xi = αi,1 y1 + αi,2 y2 + … + αi,6 y6   (i = 1, 2, …, 6), 
 
                                                
 (8) In regard to that, consult the work of Darboux: “Sur une classe remarquable de courbes et de 
surfaces,” “Sur les groupes de points, de cercles,” and his Leçons sur la théorie des surfaces.  
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one must have: 
2 2 2
1 2 6x x x+ + +⋯  = 2 2 2

1 2 6y y y+ + +⋯ . 

 
 Consequently, upon performing an arbitrary orthogonal substitution on the variables 
xi that are defined precisely by formulas (5), one will get the general type of coordinates 
that attribute the form of a sum of squares to the function ω. 
 The coordinates thus defined are those of Klein.  However, it is easy to confirm that 
these coordinates are not essentially distinct from the coordinates that were defined in 
formulas (5), but which are more general in appearance. 
 Indeed, choose coordinates yi that reduce ω to the form: 
 

2 2 2
1 2 6y y y+ + +⋯  

 
and perform the linear transformation: 
 

(7)    

1 1 2 4 1 2

2 4 4 5 3 4

3 5 6 6 5 6

1, 1,

1, 1,

1, 1,

z y y z y y

z y y z y y

z y y z y y

 = + − = − −
 = + − = − −
 = + − = − −

 

 
so the use of the variable z, thus defined, will reduce the form to the tetrahedral type: 
 

z1 z4 + z2 z5 + z3 z6 , 
 
in such a way that the zi are the coordinates r ik relative to a certain tetrahedron, while the 
y, from formulas (7), are the ones that one deduces precisely by applying formulas (5). 
 Meanwhile, there is a difference, because here the tetrahedron to which the 
coordinates zi are referred can very well be imaginary.  One agrees that this distinction 
implies nothing essential. 
 From that remark, the passage from a Klein coordinate system to another analogous 
system can be reduced to the passage from a tetrahedral coordinate system to another 
tetrahedral system that is preceded and followed by the transformation that is defined by 
formulas (5). 
 
 
 77.  The system of Klein coordinates presents a remarkable configuration whose 
principal properties we shall discuss. 
 Six coordinate complexes C1, C2, …, C6 enter into it that are represented by the 
equations: 

x1 = 0,  x2 = 0,  …, x6 = 0, 
respectively. 
 None of these complexes are special, because the adjoint form to ω(x) is: 
 

Ω(a) = 2 2 2
1 2 6a a a+ + +⋯  
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here; it is not zero for any of the complexes Ci . 
 The condition for involution of the two complexes: 
 
 a1 x1 + a2 x2 + … + a6 x6 = 0, 
 b1 x1 + b2 x2 + … + b6 x6 = 0 
is written: 
 a1 b1 + a2 b2 + … + a6 b6 = 0. 
 
 One thus recognizes that the complexes Ci, when taken two at a time, will be in 
involution or orthogonal.  From the name sextuply-orthogonal that one sometimes gives 
to this coordinate system, Klein gave the name fundamental system to the set of six 
complexes Ci . 
 Conversely, suppose that the coordinate complexes x1, x2, …, x6 are pair-wise in 
involution. 
 When the adjoint form to the fundamental form is written: 
 

Ω(a) = ∑ Aij ai aj , 
the involution of the complexes: 

xi = 0,  xj = 0 
 
will demand that Aij = 0.  All of the rectangles must be missing from Ω(a), and no 
coordinate complex can be special, because if xi = 0 were special then one would have: 
 

Aii = 0, 
 

and Ω(a) would be reducible to less than six squares.  Upon once more introducing 
constant factors into the a, one can thus write: 
 

Ω(a) = 2 2 2
1 2 6a a a+ + +⋯ , 

and one will then have: 
ω(x) = 2 2 2

1 2 6x x x+ + +⋯ . 

 
The coordinate system is then that of Klein. 
 This permits us to count the number of parameters that are contained in a 
fundamental system. 
 If we are given C1 arbitrarily then we will introduce five parameters, because a linear 
complex depends upon five parameters.  We take C2 to be in involution with C1, but 
otherwise arbitrary; we thus introduce four new parameters.  C3 must be in involution 
with C1and C2, but it still contains three new parameters.  C4 will contribute only two 
parameters, because it is subject to being in involution with C1, C2, C3 .  Finally, C5 
contains just one parameter, because it must be in involution with C1, C2, C3, C4 .  As for 
C6, it is defined uniquely by the condition of being in involution with C1, C2, C3, C4 , C5 .  
We have thus constructed a fundamental system, and in truth, the most general one.  We 
have thus introduced: 

5 + 4 + 3 + 2 + 1 = 15 
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parameters in our construction.  That is the number of parameters that the fundamental 
system contains. 
 One will observe that after having taken C1, C2, …, Cp to be real, we can then take 
Cp+1 , …, C6 to have arbitrary imaginary coefficients, in such a way that the number of 
imaginary complexes in a fundamental system is arbitrary.  Nonetheless, it is impossible 
that one would have just one imaginary, because if C1, C2, …, C5 were real then the 
complex C6 would be unavoidably real.  However, there can be two, three, four, five, or 
even six imaginaries. 
 In order to obtain such a system, one obviously requires an imaginary transformation. 
 
 
 78.  Take p of the complexes Ci – say C1, C2, …, Cp – and define the system with p 
terms: 

λ1 x1 +  λ2 x2 +  … + λp xp = 0. 
 
It is clear that since xp+1 = 0, …, x6 = 0 are (6 – p) complexes in involution with C1, C2, 
…, Cp, the complementary system to the preceding system will be: 
 

λp+1 xp+1 +  … + λ6 x6 = 0. 
 
 This has numerous consequences, as we will see. 
 Let Cij be the congruence that is common to the complex Ci and Cj .  It is not singular, 
because its invariant is equal to unity.  I shall denote its directrices by ∆ij and ∆ji , which 
are distinct.  I observe that the system with two terms that is composed of the complexes 
that contain the congruence Cij has the equation: 
 

xi + λ xj = 0. 
 
Its invariant is equal to 1 + λ2, so the special complexes of the system will have the 
equations: 

 1−  xi + xj = 0, 

 1−  xj + xi = 0. 
 
 The coordinates of the directrices of the congruence Cij will all be zero, except for xi 

and xj , which will be proportional to ± 1−  and to 1. 
 HERE IS HOW I FIX THE NOTATIONS: 

 I let ∆ij denote the directix whose coordinates are xi = 1− , xj = 1, while the other 

coordinates are zero.  ∆ji will then have the coordinates xj = 1− , xi = 1, while the other 
coordinates are zero. 
 One will see how important this fixing of notations is from the standpoint of the 
correspondence that is established between the properties of the configuration of six 
fundamental complexes and those of the permutations of six letters. 
 There are fifteen combinations of six indices taken two at a time.  There are thus 
fifteen congruences Cij , and in turn, thirty lines ∆ρσ . 
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 One observes that: Any line ∆ij will belong to any complex Ck that has no common 
index with it.  There are four of these complexes Ck , Cl, Cm, Cn ; they have two lines in 
common, namely, ∆ij and ∆ji . 
 Take two congruences Cij , Ckl that have no common index.  Their directrices form a 
skew quadrilateral.  Indeed, from the preceding, ∆ij , for example, will belong to the 
complexes Ck and Cl .  Therefore, ∆ij will belong to the congruence, and consequently, so 
will ∆kl and ∆lk . 
 On the contrary, suppose that Cij and Cik have a common index i; in that case, the 
directrices cannot intersect.  Indeed, let l, m, n be three indices other than i, j, k.  The 
complexes Cl, Cm, Cn contain the directrices of Cij, Cik .  Thus, these directrices belong to 
the semi-quadric Qlmn that is common to these three complexes. 
 The complexes Cl, when taken three at a time, will give rise to twenty semi-quadrics.  
These semi-quadrics will be pairs of complementary semi-quadrics.  Indeed, it is clear 
that the two semi-quadrics: 

Qijk , Qlmn , 
 
with no common index, will be complementary.  They will be carried by the same 
quadric that I shall represent by the symbol: 
 

(Qijk , Qlmn). 
 
There are then ten of these quadrics.  Klein gave them the name of fundamental quadrics. 
 Two semi-quadrics that have a common index: 
 

Qijl  , Qlmn 
 
will have no line in common, because if a common line existed then it would be common 
to the five complexes Ci , Ck , Cl, Cm, Cn .  The complements of these two semi-quadrics 
will be: 

Qjmn , Qjki , 
 
and they will also have a common index j. 
 On the contrary, consider two semi-quadrics that have two common indices: 
 

Qijk , Qijl  , 
 
so these semi-quadrics will have the lines ∆mn, ∆nm in common, which are the directrices 
of Cmn .  Their complements will be: 

Qmnl , Qmnk , 
 
and these complements will have ∆ij, ∆ji in common. 
 Therefore, the two fundamental quadrics: 
 

(Qijk , Qmnl), (Qlji  , Qmnk) 
 
will intersect along the skew quadrilateral that is defined by the lines ∆ij, ∆ji , ∆mn, ∆nm . 
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 If a congruence Cij has no common index with a semi-quadric Qlmn then it will have 
two common indices with the complementary semi-quadric Qijk and its directrices will be 
carried by that semi-quadric.  They will thus be traced on the quadric: 
 

(Qijk, Qlmn). 
 

 Therefore, in order for a congruence to have its directrices on a fundamental 
quadric, it is necessary and sufficient that it have two or zero indices in common with one 
or the other of the semi-quadrics that constitute the proposed fundamental quadric. 
 However, it can happen that the congruence Cij has an index in common with each of 
its semi-quadrics: 

Qikl , Qlmn . 
 
One can prove that in this case, the lines ∆ij, ∆ji  will be conjugate with respect to the 
proposed fundamental quadric: 

(Qikl, Qlmn). 
 

 O 

O1 

O′ 

∆kl ∆nm 

∆nm 

∆lk 

1O′  
 

 
Figure 2. 

 
 Indeed, ∆mn , ∆nm, ∆kl, ∆lk define a skew quadrilateral on that quadric.  ∆kl cuts ∆mn and 
∆nm at two points O, O′, and ∆lk cuts these same two lines at O1, 1O′ .  The line ∆ij cuts the 

three lines ∆kl , ∆lk , ∆mn , ∆nm .  Therefore, since ∆ij is not traced on the quadric, it is 
necessary that the points where they pierce that surface be two of the four points O, O′, 
O1, 1O′ ; they can be only O, O1 or O′, 1O′ , and similarly, for ∆ji .  Therefore, the lines 

∆ij, ∆ji  will be precisely the ones that join O and O1 , O′ and 1O′ , resp.  They will thus be 

the diagonals of the skew quadrilateral.  Consequently, they will indeed be conjugate 
with respect to the proposed quadric. 
 However, our reasoning proves some other things. 
 The lines ∆ij , ∆ji , ∆kl , ∆lk , ∆mn , ∆nm will be the edges of a tetrahedron.   
 Therefore: 
 
 The directrices of three congruences Cij , Ckl , Cmn with no common indices define a 
tetrahedron. 
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 I shall denote that tetrahedron by T(ij , kl, mn). 
 One can give this fact another proof. 
 I recall that the special complex whose directrix is ∆ρσ has the equation: 
 

1−  xρ + xσ  = 0. 
 
Consequently, set, in a general manner: 
 

Zρσ = 1−  xρ + xσ . 
One will have: 
 
 Zij Zji + Zkl Zlk + Zmn Znm   
 
 = ( 1−  xi + xj)( 1−  xj + xi) + ( 1−  xk + xl)( 1−  xl + xk) + ( 1−  xm + xn)( 1−  xn + xm) 
 = − (xi xj + xk xl + xm xn) + 1− ( 2 2 2 2 2 2

i j k l m nx x x x x x+ + + + + ) + (xi xj + xk xl + xm xn) 

 =  1− ( 2 2 2 2 2 2
i j k l m nx x x x x x+ + + + + ). 

 
 The transformation formulas: 

 Zij  = 1−  xi + xj , 

 Zji  = 1−  xj + xi , 

 Zkl  = 1−  xk + xl , 

 Zlk  = 1−  xl + xk , 

 Zmn  = 1−  xm + xn , 

 Znm  = 1−  xn + xm  
 
thus associate the quadratic form ω(x) with the tetrahedral form: 
 

Zij Zji + Zkl Zlk + Zmn Znm , 
 
and in turn, conforming to no. 74, the axes of the six special complexes: 
 

Zij = 0,    Zji = 0,    Zkl = 0,    Zlk = 0,    Zmn = 0,    Znm = 0, 
 

i.e., the directrices of the congruences Cij, Ckl, Cmn – form a tetrahedron. 
 
 
 79.  Arrange the directrices of these congruences into the matrix below: 
 
 ∆ij , ∆kl , ∆mn , 
 ∆ji , ∆lk , ∆nm . 
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 It is clear that all of the pairs of elements from different rows in this matrix will 
intersect, except for the ones that are in the same column, which then constitute pairs of 
opposite edges of the tetrahedron T(ij , kl, mn), precisely. 
 By grouping the elements of the preceding matrix by threes, but without ever taking 
two of them from the same column, one can proceed in several manners.  Once take all 
three of them from the first row, or two from the first and one from the second, or one 
from the first and two from the second, or even finally all three of them from the second 
row.  We thus obtain eight different groups of three lines that intersect pair-wise and 
consequently define either a trihedron or a triangle. 
 In this way, we will realize the four trihedra and the four triangles whose faces are on 
our tetrahedron T(ij , kl, mn). 
 Suppose, to fix ideas, that the lines that are placed in the first row: 
 

(∆ij , ∆kl , ∆mn) 
 
define a trihedron with summit O.  The other three lines, namely, the ones in the second 
row: 

(∆ji , ∆lk , ∆nm), 
 
will obviously define a triangle that constitutes the opposite face to the concurrence point 
of the first three edges. 
 If we now replace one of the lines in the symbol: 
 

(∆ij , ∆kl , ∆mn), 
 
for example, ∆mn – with the line ∆nm in the second row, which is placed beneath it, then 
we will get three lines: 

(∆ij , ∆kl , ∆nm) 
 

that define one of the faces that meet at the point O. 
 One thus sees that one will obtain the four faces of the tetrahedron by taking an odd 
number (viz., 1 or 3) of lines from the second row and an even number (viz., 2 or 0) from 
the first one. 
 On the contrary, one will get the four trihedra of the tetrahedron by taking an odd 
number (1 or 3) of lines from the first row and an even number (2 or 0) from the second. 
 Therefore, if the lines: 

(∆ij , ∆kl , ∆mn) 
 

form a trihedron then the same thing will be true for the triples of lines: 
 

(∆ij , ∆kl , ∆nm), 
(∆ji , ∆kl , ∆nm), 
(∆ji , ∆lk , ∆mn), 

while the triples of lines: 
(∆ji , ∆lk , ∆nm), 
(∆ji , ∆kl , ∆mn), 
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(∆ij , ∆lk , ∆mn), 
(∆ij , ∆kl , ∆nm) 

will form triangles. 
 One can summarize these facts in a very laconic statement: 
 Let there be a triple of lines: 

(∆ij , ∆kl , ∆mn). 
 
 These lines will form a trihedron or a triangle.  If one permutes the two indices in one 
of these lines then one will again have three lines that intersect pair-wise and again form 
a trihedron or a triangle, and only the type of the configuration will be changed – i.e., if 
the first triple forms a triangle then the new one will form a trihedron, and conversely. 
 We shall call the tetrahedra T(ij , kl, mn) fundamental.  There are fifteen of these 
tetrahedra.  Indeed, each of them is characterized by a distribution of three pairs: 
 

(ij ),    (kl),    (mn) 
 
of indices 1, 2, …, 6.  The order of these pairs matters little, as well as the order of the 
indices within a pair. 
 Observe that the index 1 figures in one of these pairs.  Let i = 1, so j can be 2, 3, 4, 5, 
or 6, which already gives us five classes of groupings.  If the index that is associated with 
the index 1 has been chosen then it remains for one to distribute the other four indices 
into two pairs.  The number of possible dispositions is equal to one-half the number of 
combination of four objects taken two at a time; i.e., 4 31

2 2
⋅⋅  = 3.  Each class is then 

comprised of three dispositions.  There are five classes, so there will be 3 × 5 = 15 
tetrahedra. 
 Consider a directrix ∆ij of the congruence Cij .  This directrix is cut by the directrices 
of the congruences: 
 

Ckl    and    Cmn , Ckm    and    Cln , Ckn    and    Clm . 
 
 We have grouped these congruences in pairs, because the directrices of Ckl and Cmn , 
for example, cut ∆ij at the same two points.  On each line ∆ij we will then have three pairs 
of summits of fundamental tetrahedra.  These three pairs, when taken two at a time, will 
be harmonically related. 
 For example, the two points where ∆kl , ∆lk cut define a harmonic proportion with the 
ones where ∆ij is cut by ∆km and ∆mk .  Indeed, the first two points are two summits of the 
tetrahedron T(ij , kl, mn), and the other two are the ones where the edge ∆ij , which carries 
them, pierce the quadric: 

(Qikl, Qjmn). 
 

 Therefore, since the tetrahedron T(ij , kl, mn) is conjugate with respect to that conic, 
the harmonic property is indeed true. 
 
 
 80.  We have seen that the tetrahedron T(ij , kl, mn) has two of its pairs of opposite 
edges ∆kl , ∆lk , ∆mn , ∆nm on the quadric: 
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(Qikl, Qjmn), 
 
while the opposite edges ∆ij , ∆ji are conjugate with respect to that quadric. 
 One formed that quadric by means of the grouping of indices into three pairs: 
 

ij , kl, mn, 
 
by taking Qikl to be one index in one of these pairs (e.g., the index i), two from another (k 
and l), and none from the last one (m and n).  Qjmn is likewise formed by taking one index 
from one of the two pairs, two from a second one, and none from the third. 
 There are obviously six fundamental quadrics that thus each contain two pairs of 
opposite edges of T(ij , kl, mn); all the pairs of opposite edges, except for ∆ij , ∆ji , are 
contained in the two quadrics: 

(Qikl, Qjmn), (Qlmn, Qjkl). 
 

(ditto), except for ∆kl , ∆lk , the quadrics: 
 

(Qkij, Qlmn), (Qkmn, Qilj). 
 
(ditto), except for ∆mn , ∆nm , the quadrics: 
 

(Qmij, Qnki), (Qmkl, Qnij). 
 
 Four other fundamental quadrics remain that contain no edge of the proposed 
tetrahedron.  They are the quadrics that one obtains by taking each of the component 
semi-quadrics to be one (and only one) of the three indices in each of the pairs: 
 

ij , kl, mn . 
 

One thus finds the fundamental quadrics: 
 
 (Qikm , Qjlm), 
 (Qilm , Qjkm), 
 (Qikn , Qjlm), 
 (Qilm , Qjkm). 
 
 These four quadrics admit the tetrahedron T(ij , kl, mn) as a common conjugate 
tetrahedron. 
 Indeed, we have seen that if a fundamental quadric is given − for example: 
 
 (Qikm , Qjlm), 
 
then any congruence that has a common index with its two component semi-quadrics 
Qikm, Qjlm – for example, Cij – will have its two directrices conjugate with respect to the 
quadric. 
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 Therefore, in regard to the mode of formation of our four quadrics, precisely, one sees 
that the directrices of Cij, Ckl, Cmn form many pairs of conjugate lines that are common to 
these four quadrics.  Since these lines form the tetrahedron T(ij , kl, mn), one indeed sees 
that this tetrahedron will be conjugate with respect to all of these four quadrics at once. 
 One can attach this property to another one that concerns three linear complexes in 
involution. 
 Let Ci, Cj, Ck be three linear complexes that are pair-wise in involution.  Let O be a 
point of space, let πi, πj,  πk be its polar planes in the three complexes, and let αij, αjk, αik 
be the intersections of these planes. 
 On the line αij one finds the point Ok , which is the pole of πi in the complex Cj, and 
on αik one finds the point Oj , which is the pole of πi in the complex Ck . 
 Since O and Ok are poles of the same plane πi in Ci and Cj , respectively, it results that 
(in regard to involution) Ok and O will be poles of the same plane on these two complexes 
Ci and Cj , respectively (Fig. 3). 

 O 

αij 

αjk 

αik 

Oj 

Oi 

Ok 

 
Figure 3. 

 
 Since πj is the polar plane to O in Cj , one sees that πj will be the polar plane to Ok in 
Ci .  Therefore, Ok is the pole of πi in Cj and of πj in Ci .  Similarly, the point Oj is the pole 
of πk in Ci and of πi in Ck . 
 One likewise confirms that there exists a point Oi on αjk that is at the same time the 
pole of πk in Cj and of πj in Ck .  Finally, the plane π of the points Oi, Oj, Ok is the pole of 
these points in each of the complexes Ci, Cj, Ck , respectively. 
 Indeed, we shall prove by example that Oi is the pole of the plane π in the complex 
Ci. It will suffice to prove that Oi Ok and Oi Oj are two lines of the complex.  Now, in 
effect, Oi Ok issues from the point Ok in the plane πj that is polar to Ok in Ci , and Oi Oj 
issues from Oj in the plane πk that is polar to Oj in Ci . 
 We have thus formed a tetrahedron such that each plane of the faces admits precisely 
the three summits that it contains as poles in the three complexes. 
 The law of distribution of the poles and polar planes gives rise to the following table: 
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 O Oi Oj Ok 

π * Ci Cj Ck 

πi Ci * Ck Cj 

πj Cj Ck * Ci 

πk Ck Cj Ci * 

 
 Take a plane in the left-hand column and a summit in the row above – for example, πi 
and Oj .  At the intersection of the row πi and the column Oj , one will finds Ck .  That will 
be the complex, with respect to which, πi and Oj are conjugate. 
 Had I taken πi and Oi , I would have arrived at a vacuous case.  Indeed, Oi would have 
to be the summit that is opposite to πi , and in turn, that point and that plane cannot be 
conjugate to any complex. 
 Let ∆ij, ∆ji be the directrices of the congruence Cij that is common to the complexes Ci 
and Cj .  These lines cut OOk and OiOj , because the latter lines belong to both of the 
complexes Ci and Cj at once.  However, there is more: Since Oi and Oj are the poles of 
the same plane π in the complexes Ci and Cj , respectively, one will see that the line 
segment OiOj is divided harmonically by the lines ∆ij, ∆ji , by virtue of the properties of 
complexes in involution that were proved already. 
 Now, imagine the semi-quadric: 

Qijk 
 
that is common to the complexes Ci , Cj , Ck .The complementary semi-quadric obviously 
contains ∆ij, ∆ji .  Therefore, the points where the line OiOj cuts ∆ij, ∆ji are also the ones 
where it cuts the quadric that carries the semi-quadric Qijk .  The same reasoning is then 
applied to the other edges of the tetrahedron.  One then sees that: 
 
 The tetrahedron OOiOjOk is conjugate with respect to the quadric that carries the 
semi-quadric Qijk . 
 
 For example, take the tetrahedron: 

T(ij , kl, mn) 
 
and one of the four fundamental quadrics that were considered already; e.g.: 
 

(Qlkm, Qjin). 
 
 The tetrahedron T(ij , kl, mn) is such that the planes of its faces have the three summits 
that are situated in each of these planes for poles with respect to the complexes Ci, Cj, Ck . 
 Indeed, assume that ∆ij, ∆kl, ∆mn form a triangle.  Call the plane of that triangle π, so 
any line that issues from the point (∆ij, ∆kl) (viz., the intersection of ∆ij and ∆kl) and is 
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traced in the plane π will cut ∆mn and ∆nm .  It will thus belongs to Cmn and, in turn, to Cnm.  
Therefore, the point (∆ij, ∆kl) will be the pole of π in Cm .  Similarly, the point (∆ij, ∆mn) 
will be the pole of π in Ck , and finally, (∆mn, ∆kl) will be the pole of π in Ci .  In the case 
of the tetrahedron OOiOjOk that was just discussed, the tetrahedron T(ij , kl, mn) will 
therefore indeed be conjugate with respect to the quadric that carries Qikm and Qjln . 

 

∆kl 

∆mn 

∆ij  

 
Figure 4. 

 
 We complete the discussion of the set of these four quadrics that admit the 
tetrahedron T(ij , kl, mn) as their conjugate by proving an interesting property in regard to 
them: 
 
 Each of these quadrics is its own proper reciprocal polar with respect to any of the 
other three. 
 
 One first observes that these four quadrics intersect pair-wise along four lines.  Take 
any two of them; e.g.: 
 (Qikm, Qjln), 
 (Qikm, Qjln). 
 
They will intersect along the directrices of Cim and Cjn , which form a tetrahedron with ∆kl 
and ∆lk . 
 Therefore, ∆kl and ∆lk will intersect these two quadrics at the same points.  Then, take 
one of the other four edges of the tetrahedron T(ij , kl, mn) – for example, ∆ij – so the two 
line segments that these two quadrics determine on ∆ij will be the ones that determine the 
directrices of the congruences Ckm and Ckn .  From the remark that concluded no. 79, 
these two pairs of points will be harmonically related. 
 Therefore, there are two quadrics Q, Q′ that have a common conjugate tetrahedron 
T(ij , kl, mn) that intersect along four lines that form a skew quadrilateral whose diagonals 
are ∆kl , ∆lk and which ultimately determines some pairs of harmonically-related line 
segments on the other four edges of the tetrahedron that one envisions. 
 When referred to the common conjugate tetrahedron, the equation of Q will be: 
 

X 2 + Y 2 + Z2 + T 2 = 0, 
 
and if X = 0, Y = 0 are the equations of ∆kl then those of ∆lk will be: 
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Z = 0, T = 0. 
 
 The harmonic properties that were established then prove that Q′ will have an 
equation of the form: 

X 2 + Y 2 − Z2 − T 2 = 0, 
 
and one thus indeed recognizes that the two quadrics will be the proper reciprocal polars 
of each other. 
 
 
 81. In order to represent the configuration of lines ∆ij more completely, one can 
introduce a symbol that exhibits an interesting correspondence between the properties of 
that configuration and those of the permutations of six letters. 
 Three lines ∆ij , ∆kl , ∆mn with no common index will always form a hyper-sheaf (viz., 
a triangle or trihedron). 
 I shall represent that hyper-sheaf by the notation: 
 

(ij , kl, mn). 
 

 There are as many symbols of that form as there are permutations of six letters, 
namely, 720.  However, I observe that one can permute the pairs of indices ij , kl, mn 
without the symbol ceasing to apply to the set of three lines ∆ij , ∆kl , ∆mn .  The six 
permutations: 
 (ij , kl, mn), (kl, ij , mn), (mn, kl, ij), 
 (ij , mn, kl), (mn, ij , kl), (kl, mn, ij), 
 
are applied to the same three lines.  We will then have, in reality, 720 / 6 = 120 hyper-
sheaves.  Sixty of them are sprays [gerbes] (viz., the summits of the fundamental 
tetrahedra).  Sixty of them are planes (viz., the faces of the tetrahedra). 
 We shall now establish a rule for distinguishing them. 
 From what was said in no. 79, it first results that if one permutes i and j, or k and l, or 
even m and n in the symbol: 

(ij , kl, mn) 
 
then the nature of the hyper-sheaf will change. 
 One can similarly add that upon performing several of these permutations, one 
obtains eight hyper-sheaves, four of which will be the summits of the fundamental 
tetrahedron: 

T(ij , kl, mn), 
 
while the other four will be the faces of that same tetrahedron. 
 I now add that for any two indices that one permutes in the symbol (ij , kl, mn) the 
hyper-sheaf that it represents will always change in nature. 
 Since the permutation of two arbitrary indices results from an odd number of 
permutations of successive indices (see, the theory of determinants), and since that fact 
has already been established for the two indices of the same pair ij , kl, mn, it will suffice 
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to establish that it is true for two consecutive indices of two different pairs – for example, 
m and l. 
 Therefore, one considers the hyper-sheaf: 
 

(ij , km, ln), 
 

and establishes that it is of a different type then that of the original hypersheaf: 
 

(ij , kl, mn). 
 

 One then seeks to determine whether these hyper-sheaves have any common lines. 
 The hyper-sheaf (ij , kl, mn) is formed from lines that intersect ∆ij, ∆kl, ∆mn, so the lines 
of that hyper-sheaf will therefore verify the equations: 
 

 Zij = xi 1−  + xj = 0, 

 Zkl = xk 1−  + xl = 0, 

 Zmn = xm 1−  + xn = 0; 
i.e.: 

(8)   
1

ix

−
 = xj , 

1
kx

−
 = xl , 

1
mx

−
 = xn . 

 
 Analogously, the hyper-sheaf (ij , km, ln) will be defined by the equations: 
 

(8)   
1

ix

−
 = xj , 

1
kx

−
 = xm , 

1
lx

−
 = xn . 

 
 The set of equations (8) and (9) will then reduce to: 
 

(10)   
1

ix

−
 = 

1
jx
, 

1
kx

−
 = 

1
lx

−
 =

1
mx

−
 = 

1
nx

. 

 

 The ratio j

i

x

x
 is uniquely-defined, and similarly the ratios l

n

x

x
, m

n

x

x
, n

k

x

x
 are, as well, 

but the ratio k

i

x

x
 remains arbitrary.  Moreover, our two hyper-sheaves have a planar sheaf 

of lines in common.  This obviously demands that they be of opposite types, and 
furthermore, it is necessary that these hyper-sheaves be united; i.e., that the one that is a 
spray has its summit in the plane of the one that consists of a planar system of lines.  One 
can therefore affirm that if one permutes two arbitrary consecutive indices in the symbol: 
 

(ij , kl, mn) 
 

then the hyper-sheaf that it represents will change type. 
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 Moreover, as one does in the theory of determinants, one counts the number of 
inversions that are presented by the permutation: 
 

(ij , kl, mn). 
 
Since the permutation of two consecutive indices will change the parity of the number of 
inversions, one can say this: 
 
 Two symbols represent two hyper-sheaves of the same or different type, according to 
whether the two numbers of inversions that they present are of the same or opposite 
parity, respectively. 
 
 It is indeed evident that nothing will indicate a priori what type of parity applies to 
the sprays or planar systems, but it will suffice that the choice be fixed in a symbol – for 
example, in: 

(1, 2, 3, 4, 5, 6), 
 
in order for one to know what it is for all of the other ones.  Therefore, if the preceding 
symbol agrees with a spray, since it contains zero inversions, then all of the symbols that 
contain an even number of inversions will agree with sprays.  On the contrary, the planar 
systems will agree with the ones that present an odd number. 
 We believe that the introduction of that representation into the study of the 
configuration of the fundamental system will shed some light on it, since it defines a link 
between that configuration and the system of permutations that one can define with six 
distinct indices. 
 
 
 82. The sixty summits and the sixty faces of the fifteen fundamental tetrahedra 
present a remarkable grouping. 
 Consider the tetrahedra: 
 

T(ij , kl, mn), T(ij , km, ln), T(ij , kn, ln) 
 

that one obtains by grouping the indices k, l, m, n into two pairs in all possible ways 
(which gives three such dispositions).  These three tetrahedra will obviously have the pair 
of opposite edges ∆ij, ∆ji in common. 
 For example, there are thus three pairs of summits on ∆ij that each belong to one of 
the three tetrahedra.  These pairs will be pair-wise harmonic with respect to each other.  
Indeed, the trihedron T(ij , kl, mn) is conjugate with respect to the quadric: 
 

Q = Q(Qikl, Qjin), 
 

and that will contain two pairs of opposite edges of the tetrahedron T(ij , km, ln). 
 The line ∆ij cuts that quadric Q at two points, which are the two summits of T(ij , km, 
ln) that are carried by ∆ij , precisely.  These points thus divide the edge ∆ij of the first 
tetrahedron T(ij , kl, mn) harmonically. 
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 One will likewise prove that the three pairs of faces of the three tetrahedra: 
 

T(ij , kl, mn), T(ij , km, ln), T(ij , kn, lm) 
 
that pass through ∆ij will divide it harmonically. 
 Suppose that the lines ∆ij, ∆kl, ∆mn define a trihedron; we call their point of 
concurrence O.  The trihedron of these lines belongs to the tetrahedron T(ij , kl, mn).  
Through the edge ∆ij, in addition to the faces of the tetrahedron, there will pass a pair of 
faces of the tetrahedron T(ij , km, ln) and a pair of faces of the tetrahedron T(ij , kn, lm). 
 The symbols of these faces are easy to define. 
 First, let: 

(ij , kl, mn) 
 
be the symbol of the trihedron of lines ∆ij, ∆kl, ∆mn , so the symbols: 
 

(ij , km, ln), 
(ij , mk, nl) 

 
will be those of the two faces of the tetrahedron T(ij , kl, mn) that contain ∆ij .  
Analogously: 

(ij , kn, ml), 
(ij , nk, lm) 

 
will be the symbols of the two faces of the tetrahedron T(ij , kn, ml) that contain ∆ij . 
 The parity rule for permutations that was given in the preceding number permits one 
to define these four symbols with no hesitation. 
 Similarly, relative to ∆kl , we will have: 
 

 
( , , )

( , , )

kl im jn

kl mi nj





  faces of T(kl, im, jn) that go through ∆kl , 

 

 
( , , )

( , , )

kl in mj

kl ni jm





  faces of T(kl, in, mj) that go through ∆kl , 

 
and finally, relative to ∆mn : 
 

 
( , , )

( , , )

mn ki lj

mn ik jl





  faces of T(mn, ki, lj) that go through ∆mn , 

 

 
( , , )

( , , )

mn kj il

mn jk li





  faces of T(mn, kj, il) that go through ∆mn . 

 
 We thus see that through any summit O of a fundamental tetrahedron T(ij , kl, mn) 
there will pass, not only three faces of that tetrahedron, but also twelve faces of the other 
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six fundamental tetrahedra, each of which has a pair of common opposite edges with the 
proposed tetrahedron. 
 I add that these twelve faces will intersect along sixteen lines that issue from O; i.e., 
that any plane among the four that are drawn through ∆ij , and any plane among the four 
that are drawn through ∆kl will intersect in one of the four planes that are drawn through 
∆mn . 
 For example, take the face: 

(ij , km, ln) 
 

that is drawn through ∆ij , and associate it with the four that are drawn through ∆kl . 
 We can define the four groups: 
 

I.     

( , , ),

( ),

( , , );

ij km ln

kl,im, jn

mn kj il







 

 

II.     

( , , ),

( ),

( , , );

ij km ln

kl,nj,mi

mn li jk







 

 

III.     

( , , ),

( ),

( , , );

ij km ln

kl,mj,in

mn lj ki







 

 

IV.     

( , , ),

( ),

( , , ).

ij km ln

kl,ni, jm

mn ik jl







 

 
 Among these groups, the first plane is always that of the face (ij , km, ln) that is drawn 
through ∆ij .  The second plane is one of the four that are drawn through ∆kl .  As for the 
third plane in each group, it is one of the four that are drawn through ∆mn .  In each group, 
the third plane will depend upon the first two. 
 It is easy to confirm that the three planes of the same pair have a line in common.  
Here is the representation of these lines for each of the four triples of faces above: 
 

I.    
1
ix

−
 = 

1
jx

−
 = 

1
kx

−
 = 

1
lx

−
 = 

1
mx

−
 = 

1
nx

, 

 

II.    
1
ix

+
 = 

1
jx

− −
 = 

1
kx

−
 = 

1
lx

−
 = 

1
mx

−
 = 

1
nx

, 
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III.    
1

ix

−
 =

1
jx
 = 

1
kx

−
 = 

1
lx

−
 = 

1
mx

−
 = 

1
nx

, 

 

IV.    
1

ix

− −
 =

1
jx

−
 = 

1
kx

−
 = 

1
lx

−
 = 

1
mx

−
 = 

1
nx

. 

 
 We get four lines on the face (ij , km, ln) that is drawn through ∆ij in this way, and in 
turn, there are indeed sixteen of these lines around O. 
 One can give a regular process for defining the coordinates of these lines. 
 Observe that if one starts with the spray: 
 

(ij , kl, mn) 
 

then these sixteen lines will, a fortiori, verify the equations: 
 

1
ix

−
 = 

1
jx
,  

1
kx

−
 = 

1
lx

, 
1

mx

−
 = 

1
nx

, 

 
which one can presently write by simply reading the symbol (ij , kl, mn). 
 Each of the lines of the spray will thus be defined by a system of values of the two 
ratios: 

j

n

x

x
, l

n

x

x
. 

 
 Now, these ratios can only be +1, −1, 1− , − 1− , because in all of the hyper-
sheaves that we shall consider the equations that we will have to write will always be of 
the form: 

xα = ε ⋅⋅⋅⋅ xβ , 
 
where ε is equal to one of the four quantities above, and since the multiplication or 
division will only permute these quantities, one indeed sees that: 
 

j

n

x

x
, l

n

x

x
. 

can only be +1, −1, 1− , − 1− . 
 That will then give us sixteen possible combinations, and since we have sixteen lines, 
these sixteen combinations will all be realizable. 
 In that way, one will obtain the sixteen lines of the spray by taking x1, x2, …, x6 to be 

proportional to +1, −1, 1− , − 1−  in all possible ways, such that the equations of the 
spray: 
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1
ix

−
 = 

1
jx
,  

1
kx

−
 = 

1
lx

, 
1

mx

−
 = 

1
nx

 

 
will nonetheless be preserved. 
One observes that the ratios of the coordinates xk, xl, xm, xn will be the same for the four 
lines that are situated in the same plane through ∆ij . 
 I will call the lines that we just defined Ξ. 
 We will get an analogous result if the symbol: 
 

(ij , kl, mn) 
 

is consistent with a planar system.  There will then be twelve summits of the fundamental 
tetrahedra that are situated in that plane, in addition to the three summits of the face, and 
these summits will be distributed with four of them on the edges of that face.  Moreover, 
there will be groups of three on sixteen lines Ξ′, whose analytical representation will be 
the same as that of the sixteen lines Ξ. 
 However, there is more: These new lines Ξ′ that we just obtained do not define a set 
that is different from the one that is defined by the lines Ξ. 
 For example, consider the line that is common to the three planar systems: 
 

(ij , km, ln), 
(kl, im, jn), 
(mn, kj, il), 

which has the coordinates: 
 

1
ix

−
 = 

1
jx

−
 = 

1
kx

−
 = 

1
lx

−
 = 

1
mx

−
 = 

1
nx

. 

 
It already passes through the summit of the spray: 
 

(ij , kl, mn). 
 

One confirms that it also passes through the sprays: 
 

(il , km, jn). 
(im, kj, ln). 

 
 Therefore, any line Ξ that is common to three planes of the faces will serve as a 
junction of the three summits (9). 

                                                
 (9) One glimpses the possibility of establishing a complete correspondence between the groups of 
permutations of six letters and the properties of the configuration of the fundamental system.  Here, I will 
content myself by giving some general indications, while reserving the more fundamental development of 
these new remarks for a special effort. 
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 The number of these lines is, moreover, very easy to evaluate.  There are 60 summits 
that each carry 16 lines Ξ.  However, since each line is counted three times in this 
enumeration (since each of them contains three summits) there will be: 
 

60 16

3

⋅
 = 320 

lines Ξ. 
 
 
 83.  One can join the 60 points pair-wise in a number of ways, namely: 
 

60 59

2

⋅
 = 1770 

ways. 
 However, each of the lines Ξ that are represented has just three lines that are joined 
pair-wise at the summits, namely, 960 lines. 
 There will thus remain 1770 – 960 = 810 lines that are joined pair-wise. 
 Now, take the edges ∆ij .  There are six summits of the tetrahedron on them.  Each of 
them thus represents a number of lines that are joined pair-wise, namely: 
 

5 6

2

⋅
 = 15, 

 
and since there are 30 of these edges, that would make 30 × 15 = 450 joined lines.  What 
then remains are: 

810 – 450 = 360 
 
lines, which are neither edges nor lines Ξ, and which join the summits pair-wise. 
 It is easy to see how one can obtain 360 new lines, which I denote by Ξ0 . 
 Take the summit (ij , kl, mn), which is the intersection of the lines ∆ij, ∆kl, ∆mn . 
 There are six tetrahedra: 
 
 T(ij , kl, mn), T(ij , kn, ln), 
 T(kl, im, jn), T(kl, in, jm), 
 T(mn, ik, jl ), T(mn, il , jk), 
 
which each have a pair of edges in common with the tetrahedron T(ij , kl, mn). 
 The first two each have two summits on ∆ji , which makes four of them, and similarly 
the second two give four on ∆lk , and the last give four on ∆mn .  In all: 3 × 4 = 12 points. 
 Having said that, join the summit: 

(ij , kl, mn) 
 
of the tetrahedron T(ij , kl, mn) to these twelve summits. 
 We will thus have twelve lines Ξ0 , and we will have all of them in this way, because 
the number of lines thus obtained will be equal to exactly: 
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60 12

2

×
 = 360. 

 
 One thus obtains the lines Ξ0 by joining the summit of a tetrahedron T(ij , kl, mn) that 
is taken from an edge ∆ij to a summit that is taken from the opposite edge ∆ji of another 
fundamental tetrahedron that is subject to having ∆ij and ∆ji for opposite edges. 
 One should not fail to observe that any line Ξ0 is also the intersection of two planes of 
the faces of the tetrahedron that was considered above. 
 We seek to represent the lines Ξ0 .  In order to do this, we shall take a hyper-sheaf: 
 

(ij , kl, mn); 
 

say, a spray, to be precise.  Take a summit of one of the tetrahedra T(ij , kl, mn), T(ij , km, 
ln) on ∆ji and join it to the summit of the proposed spray. 
 The sprays of the tetrahedron T(ij , kn, lm) that contains ∆ij are the following two: 
 

(ji , ml, kn), 
(ji , lm, nk). 

 
Similarly, the sprays of the tetrahedron T(ij , km, ln) that contains ∆ij are: 
 

(ji , km, ln), 
(ji , mk, nl). 

 
 Some very simple calculations give: 
The line that is common to the sprays (ij , kl, mn), (ji , ml, kn): 
 

0
ix

 = 
0

jx
 = 

1
kx

−
 = 

1
lx

 = 
1

mx

−
=

1
nx

. 

 
The line that is common to the sprays (ij , kl, mn), (ji , lm, nk): 
 

0
ix

 = 
0

jx
 = 

1
kx

−
 = 

1
lx

 = 
1

mx

− −
=

1
nx

−
. 

 
The line that is common to the sprays (ij , kl, mn), (ji , km, ln): 
 

0
ix

 = 
0

jx
 = 

1
kx

−
 = 

1
lx

 =
1
mx

 = 
1

nx

− −
. 

 
The line that is common to the sprays (ij , kl, mn), (ji , km, ln): 
 

0
ix

 = 
0

jx
 = 

1
kx

−
 = 

1
lx

 =
1
mx

−
 = 

1
nx

−
. 
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 One easily sees that all of the lines Ξ0 are obtained by annulling two of the 
coordinates and taking the other four to be proportional to one of the four quantities +1, 

−1, + 1− , − 1−  in all possible ways, in such a way that if xi = 0, xj = 0 then one will 
nonetheless have two relations of the form: 
 

1
kx

−
 = xl , 

1
mx

−
 = xn . 

 
 
 84.  We cannot leave this subject without exhibiting a very curious property of 
fundamental tetrahedra. 
 Take a summit (ij , kl, mn) of the tetrahedron T(ij , kl, mn).  There are eight tetrahedra 
that have no edge in common with it.  Take one of these tetrahedra − for example: 
 

T(ik, jm, ln), 
 
and join the point (ij , kl, mn) to the summits of that tetrahedron.  We will then have four 
of the sixteen lines Ξ.  On each of these four lines there is thus once more a summit, 
which makes four summits.  I say that these four summits belong to the same 
fundamental tetrahedron. 
 Indeed, the four summits of the tetrahedron T(ik, jm, ln) have the symbols: 
 
 (ik, jm, ln), (ik, mj, nl), 
 (ki, mj, ln), (ki, jm, nl). 
 
 Now, one easily confirms that the three points: 
 

(ij , kl, mn), (ik, jm, ln), (km, ni, jl) 
 
are in a straight line.  Similarly, the points: 
 
 (ij , kl, mn), (ik, mj, nl), and (mk, in, jl), 
 (ij , kl, mn), (ki, mj, ln), and (km, lj , in), 
 (ij , kl, mn), (ki, jm, nl), and (mk, ni, lj), 
are, as well. 
 One indeed sees that the four new points are the summits of the tetrahedron: 
 

T(mk, in, lj ). 
 

 Therefore: Relative to each of the summits of a fundamental tetrahedron T(ij , kl, mn), 
the eight fundamental tetrahedra that have no common edge with the preceding one are 
pair-wise homologous. 
 From this, one can conclude that three fundamental tetrahedra that have no common 
edge define a desmic system of three tetrahedra; i.e., the faces of the one pass through the 
sixteen lines of intersection of the faces of the other two, and the summits of one are on 
the sixteen joined lines of the summits of the other two. 
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 On the subject of these desmic systems, one can consult a paper by Stephanos that 
was included in the Bulletin des Sciences mathématiques, t. XIV, of that collection. 
 
 
 85.  The fundamental system gives rise to a remarkable correspondence between the 
points and planes of space. 
 First, consider a plane π.  The poles of that plane in the six fundamental complexes 
are on the same conic. 
 Indeed, let Oi be the pole of the plane π in the complex Ci , and take three of these 
points O1, O2, O3 .  As one knows, the complexes C1, C2, C3 permit one to associate these 
three points with a fourth point O such that the plane OO2O3 is the polar plane to O in C3, 
OO3O1 is the polar plane to O in C2, and OO1O2 is the polar plane to O in C0 (see, no. 
80).  The tetrahedron OO1O2O3 is conjugate with respect to the quadric Q that carries the 
semi-quadric Q123 .  Therefore, the triangle O1O2O3 is conjugate with respect to the conic 
K that is the trace of Q on the plane π.  Now, the quadric Q also carries the semi-quadric 
Q456 .  Therefore, the triangle O4O5O6 is also conjugate with respect to the conic K.  Since 
the two triangles O1O2O3 and O4O5O6 are conjugate with respect to the same conic, their 
summits are on the same conic. 
 One can even add that their edges touch the same conic. 
 Analogously: If one distributes the polar planes π1, π2, π3, π4, π5, π6 to the same point 
O in the six fundamental complexes into two trihedra then the two trihedra will be 
conjugate with respect to the same second-degree cone.  Their edges will be on the same 
second-degree cone, and their faces will touch a third second-degree cone. 
 
 
 86.  We preserve the preceding notations. 
 Since the point Oi and the point Oj are the poles of the same plane π in Ci and Cj , 
respectively, the point Oi and the point Oj will also be the poles of the same plane πij with 
respect to Ci and Cj .  That plane πij will pass through the lines Oi Oj; there will be then 
fifteen planes πij . 
 Take the three planes: 

πij ,     πjk ,    πkl . 
 
The point Oijk where they intersect is the one that we considered above, and which is the 
pole: 
 of πij  in Ck , 
  “ πjk   “ Ci , 
  “ πkl   “ Cj . 
 
 Now, take the other three indices l, m, n.  We will likewise have three planes πlm , 
πmn, πml that intersect at a point Olmn . 
 However, it is clear that Oijk and Olmn coincide.  Indeed, we know that the tetrahedra 
OijkOiOjOk, OlmnOlOmOn are conjugate with respect to the quadric Q, which contains the 
complementary semi-quadrics Qijk, Qlmn .  Therefore, Oijk and Olmn are the poles of the 
same plane π with respect to Q. 
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 There are 
6 5 4

1 2 3

⋅ ⋅
⋅ ⋅

 = 20 combinations of indices taken three at a time, and in turn, there 

are twenty tetrahedra: 
OijkOiOjOk , 

 
but there are only ten points Oijk , since Oijk is identical to Olmn . 
 From that, one sees that the point (Oijk = Olmn) is the pole: 
 
 of the plane πjk in Ci , 
 “ πki  “ Cj , 
 “ πij  “ Ck , 
 “ πmk  “ Cl , 
 “ πnl  “ Cm , 
 “ πlm  “ Cn . 
 
 In summation, we have a configuration of sixteen points: 
 

O1,    O2,    O3,    O4,    O5,    O6 (O123 = O456),    (O134 = O256),    (O124 = O356), …, 
 

and sixteen planes: 
π, π12, π13, π14, … 

 
such that the poles of the sixteen planes in the six fundamental complexes are part of the 
sixteen points, and the polar planes to the sixteen points are part of the sixteen planes. 
 Each of the sixteen planes thus contains six of the sixteen points, and six of the 
sixteen planes pass through each of the sixteen points. 
 If one takes the poles of one of the sixteen planes with respect to the ten fundamental 
quadrics then one will obtain the ten points of a system that is not situated in that plane, 
and if one takes the polar planes of one of the sixteen points with respect to the 
fundamental quadrics then one will obtain ten planes of the system that do not pass 
through that point. 
 
 
 87.  One can associate this remarkable configuration with an important 
correspondence that the fundamental system gives rise to. 
 We just saw that any plane π is found to be part of a configuration of sixteen planes 
and sixteen points that it defines completely.  Consequently, we can say that the 
knowledge of a spray will define a configuration of sixteen sprays and sixteen planar 
systems that are part of the proposed spray. 
 More generally: Any hyper-sheaf is part of a configuration of thirty-two hyper-
sheaves, sixteen of which are sprays and sixteen of which are planar systems. 
 Let x1, x2, x3, x4, x5, x6 be a line.  If we let ε1, ε2, ε3, ε4, ε5, ε6 denote the symbol +1 or 
the symbol −1 then the expressions: 
 

ε1 x1, ε2 x2, ε3 x3, ε4 x4, ε5 x5, ε6 x6 
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will be the coordinates of 25 = 32 lines, among which, will be the lines x1, x2, …, x6, and 
which will define a special configuration with them.  First, two lines of the configuration 
do not intersect, in general, because: 
 

2 2 2
1 1 2 2 6 6x x xε ε ε+ + +⋯  

 
can be a consequence of 2 2 2

1 2 6x x x+ + +⋯  = 0 only if ε1 = ε2 = … = ε6, in which case, the 

two lines will not be distinct. 
 It comes to mind that if the line x1, x2, …, x6 generates a hyper-sheaf: 
 

xi = ai λ + bi µ + ci ν 
 
then the same thing will be true for the other thirty-one lines of the configuration.  For 
these lines, one will have: 

ix′  = ( )i i i ia b cε λ µ ν′ ′ ′+ + . 

 
 Are the hyper-sheaves of the same nature? 
 If we suppose that the number of positive ε is even – for example, 2µ – then there will 
be 6 – 2µ negative ones.  By a change of all the signs, one can always suppose that 2µ = 
4, because if 2µ = 2 then one will have 6 – 2µ = 4. 
 Therefore, let: 
 1x′  = a1λ ′ + b1µ ′ + c1ν ′, 
 2x′  = a2λ ′ + b2µ ′ + c2ν ′, 
 3x′  = a3λ ′ + b3µ ′ + c3ν ′, 
 4x′  = a4λ ′ + b4µ ′ + c4ν ′, 
 − 5x′  = a5λ ′ + b5µ ′ + c5ν ′, 
 − 6x′  = a6λ ′ + b6µ ′ + c6ν ′. 
 If one writes that: 
 

x1 = 1x′ , x2 = 2x′ , x3 = 3x′ , x4 = 4x′ , x5 = 5x′ , x6 = 6x′  

 
then one will find that: 
 a1(λ − λ ′) + b1(µ − µ ′) + c1(ν  − ν ′) = 0, 
 a2(λ − λ ′) + b2(µ − µ ′) + c2(ν  − ν ′) = 0, 
 a3(λ − λ ′) + b3(µ − µ ′) + c3(ν  − ν ′) = 0, 
 a4(λ − λ ′) + b4(µ − µ ′) + c4(ν  − ν ′) = 0, 
 a5(λ − λ ′) + b5(µ − µ ′) + c5(ν  − ν ′) = 0, 
 a6(λ − λ ′) + b6(µ − µ ′) + c6(ν  − ν ′) = 0. 
 
 The first four equations demand that: 
 

λ − λ ′ = µ − µ ′ = ν  − ν ′ = 0, 
and the other two give: 
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 a5λ + b5 µ + c5ν  = 0, 
 a6λ  + b6 µ + c6ν = 0 
 
in order to determine λ : µ : ν.  In this case, the two hyper-sheaves will have a line in 
common.  They will have the same type. 
 On the contrary, if there are an odd number of ε that are equal to + 1 then one can 
always suppose that are five or three of them.  If there are three then instead of the six 
equations above, one will have the system: 
 
 a1(λ − λ ′) + b1(µ − µ ′) + c1(ν  − ν ′) = 0, 
 a2(λ − λ ′) + b2(µ − µ ′) + c2(ν  − ν ′) = 0, 
 a3(λ − λ ′) + b3(µ − µ ′) + c3(ν  − ν ′) = 0, 
 a4(λ + λ ′) + b4(µ + µ ′) + c4(ν  + ν ′) = 0, 
 a5(λ + λ ′) + b5(µ + µ ′) + c5(ν  + ν ′) = 0, 
 a6(λ + λ ′) + b6(µ + µ ′) + c6(ν  + ν ′) = 0, 
 
and the existence of a common line will be impossible, because the first three equations 
give: 
  λ − λ ′ = µ − µ ′ = ν  − ν ′ = 0, 
and the others give: 
 λ + λ ′ = µ + µ ′ = ν  + ν ′ = 0, 
so: 

 λ = λ ′ = µ = µ ′ = ν  = ν ′ = 0. 
 
The hyper-sheaves will then have different types. 
 Finally, if there is only one negative ε then one will have five equations of the form: 
 
 ai(λ − λ ′) + bi(µ − µ ′) + ci(ν  − ν ′) = 0, 
which gives: 

λ = λ ′,     µ = µ ′,    ν  = ν ′, 
 
and in turn, a unique equation of the form: 
 

ai λ + bi µ + ci ν  = 0. 
 
In this case, the hyper-sheaves will thus have a plane sheaf of lines in common.  They 
will again be of different types, but they will be united, moreover. 
 The unique equation: 

aj λ + bj µ + cj ν  = 0 
 
expresses the idea that xj = 0; i.e., that the sheaf that is common to our two hyper-sheaves 
will be a sheaf of complexes Cj . 
 It is, moreover, easy to recover the preceding results that were obtained. 
 Suppose, to fix ideas, that the line x1, x2, …, x6 generates a plane system π, so the 
other thirty-one lines: 
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ε1 x1, ε2 x2, ..., ε6 x6 
must generate a hyper-sheaf. 
 The fifteen of them for which there is an even number of positive ε’s will again 
generate planar systems.  The other sixteen will generate sprays, and of these sprays there 
will be six of them that have just one negative ε and for which the six summits O1, O2, 
…, O6 will be in the plane π.  The lines of the planar sheaf (π, Oi) will belong to the 
complex Ci and Oi will therefore be the pole of the plane π in the complex Ci .  One sees 
how we recover the configuration of sixteen points and sixteen planes that we already 
described. 
 We will have occasion to return to these questions in the context of the theory of 
second-degree complexes and Kummer surfaces. 
 
 
 88.  From the standpoint of the transformation of coordinates, we had to occupy 
ourselves with those transformations that preserve the type of the fundamental form, or, 
as one says, makes it go back to itself.  Instead of taking the viewpoint of transformations 
of coordinates, one can pose another problem that I would like to treat. 
 Let x1, x2, …, x6 be the linear coordinates of a line – i.e., there are deduced linearly 
from arbitrary tetrahedral coordinates, as we have seen – and let: 
 

ω(x) 
be the corresponding linear form. 
 There exist linear transformations: 
 
(11)    ix′  = ai1 x1 + ai2 x2 + … + ai6 x6  

 
that preserve the expression of the fundamental form in such a way that by virtue of 
equations (11), one will have: 
(12)     ω(x) = ω(x′). 
 
 These transformations can be considered as making a line in the coordinate system x1, 
x2, …, x6 correspond to another line x′ in the same coordinate system, since the 
coordinates ix′  annul the same form as the xi . 

 What is the nature of this transformation? 
 If x describes a planar sheaf then one will have: 
 

xi = ai λ + bi µ, 
 
and in turn, in regard to the linear form of the ix′ , when expressed as functions of the xi , 

one will also have: 

ix′  = i ia bλ µ′ ′+ . 

 
The line x′ will thus also describe a planar sheaf. 
 One has the same proof for the hyper-sheaf.  If x describes a hyper-sheaf then x′ will 
describe another one. 
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 However, here a paramount distinction arises here. 
 The hyper-sheaves that are generated by x and x′ can have the same name (i.e., spray 
and spray or plane and plane), or they can even have opposite names (i.e., spray and 
plane or plane and spray). 
 In the first case, all of the lines x that issue from a point P will correspond to all of the 
x′ that issue from a point P′.  All of the lines x in a plane π will correspond to all of the 
lines x′ in a plane π′.  Moreover, if P is in the plane π then P′ will be in the plane π′, 
because the planar sheaf (P, π) will correspond to the planar sheaf (P′, π′).  From all of 
this behavior, one recognizes a homographic transformation of space. 
 In the second case, all of the lines that issue from a point P will correspond to the 
lines in a plane π′, and all of the lines in a plane π will correspond to the lines that issue 
from a point P′.  Moreover, if the plane π and the point P are united then the plane π′ and 
the point P′ will also be united, which is once more due to the conservation of sheaves. 
 The transformation thus consists of a dualistic correspondence between the figures 
that are loci of lines and the figures that are loci of lines x′. 
 The solution to our problem is the following: 
 
 If the equations of the linear transformation: 
 

ix′  = ai1 x1 + ai2 x2 + … + ai6 x6  (i = 1, 2, …, 6) 

give: 
ω(x) = ω(x′) 

 
then they will establish either a homographic correspondence between the lines x and x′ 
or a dualistic correspondence. 
 
  
 89.  For Klein, that remark was the point of departure for a curious encounter between 
the geometry of lines in space and the geometry of the metric properties in a four-
dimensional space. 
 Today, the notion of spaces of more than three dimensions has won the right to be 
mentioned in geometry.   We would not like to say that this implies that a systematic and 
complete study of n-dimensional spaces would be of genuine geometric interest; the 
interest that would be attached to such a study would be entirely philosophical and 
speculative.  Nonetheless, certain properties of n-dimensional spaces find a useful 
interpretation in the figures of ordinary geometry.  Thanks to these properties, the facts of 
Euclidian geometry can often take on a more rational and illuminating form.  From that 
viewpoint, the language of n-dimensional geometry can be of great service, and it will be 
devoid of any auxiliary affectation that one would reject without further examination.  It 
is within these limits that the study of n-dimensional geometry deserves to be confined.  
One will find an example in the study of the straight line. 
 Let x1, x2, …, xn, xn+1 be n + 1 homogeneous variables; i.e., ones that involve only 
their ratios.  We regard these parameters as the homogeneous coordinates in an n-
dimensional space En . 
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 A homogeneous equations of degree m in x1, x2, …, xn+1 represents a space of degree 
m that is contained in the space 1nE  and is endowed with only n – 1 dimensions.  We 

represent such a space by: 

1
m
nE − . 

 
 In particular, a linear relation represents an (n – 1)-dimensional linear space: 
 

1
1nE −  

that is contained in 1
nE . 

 If one is given k linear equations – i.e., k spaces 1
1nE −  − then they will have an (n – k)-

dimensional space in common that we will again qualify by the word “linear.” 
 More generally, if one is given k equations in the xi then one will define an (n – k)-
dimensional space 1nEµ

− . 

 The degree µ of that space is defined to be the number of points that it has in common 
with an arbitrarily-chosen k-dimensional linear space 1kE . 

 If µ = 2 then we will say that the space is quadratic. 
 For example, a second-degree equation in x1, x2, …, xn+1 defines an (n – 1)-
dimensional quadratic space 2 1nE − .  To abbreviate, we also say that it is an (n – 1)-

dimensional quadric.  The intersection of an (n – 1)-dimensional quadric and k- 1 (n – 1)-
dimensional linear spaces is obviously an (n – k)-dimensional quadric space. 
 The quadratic spaces give rise to the same theories that the quadrics, cones, and 
conics do. 
 For example, let an (n – 1)-dimensional quadratic space be given in n-dimensional 
space by: 

ω(x) = 0, 
and let: 

x1, x2, …, xn+1;  y1, y2, …, yn+1 
 

be two points of that space.  One says that the points are conjugate if: 
 

ω(x | y) = 0. 
 
 The locus of points x that are conjugate to a fixed point y is an (n – 1)-dimensional 
linear space.  That linear space generalizes the notion of polar plane or polar line for the 
quadrics and conics, respectively. 
 Let Ω(a) be the adjoint form to ω(x).  The equation: 
 

Ω(a) = 0 
expresses the idea that the linear space: 

∑ ai xi = 0 
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is tangent (10) to the quadratic space ω(x) = 0.  Similarly, the equation: 
 

Ω(a | b) = 0 
 
expresses the idea that the two linear spaces: 
 

∑ ai xi = 0, ∑ bi xi = 0 
 
are conjugate; i.e., each of them contains the pole of the other one. 
 An (n − 1)-dimensional quadric space is the locus of an infinitude of lower-
dimensional linear spaces. 
 
 
 90.  The geometry of quadric spaces holds a special interest for us. 
 Indeed, we have seen that one can define any line in space by means of six 
homogeneous coordinates x1, x2, …, x6 that are linked by a second-degree equation: 
 

ω(x) = 0. 
 
 Moreover, if one considers the xi to be the coordinates of a point in a five-
dimensional space 1

5E  then the equation ω = 0 will represent a four-dimensional 

quadratic space 2
4E  in that space.  One can therefore say that the geometry of the lines in 

ordinary space is identical to that of a point on a four-dimensional quadric 2
4E  that is 

contained in a five-dimensional space. 
 The lines of a linear complex: 

∑ ai xi = 0 
 

are represented by the points of intersection of the linear space 1
4E  that is represented by 

that equation with the fundamental quadric 2
4E .  The equation: 

 
Ω(a) = 0, 

 
which expresses the idea that the complex is special, expresses the idea that the space 1

4E  

is tangent to the quadratic space 2
4E . 

 If one considers two linear complexes: 
 

∑ ai xi = 0, i ia x′∑ = 0 

 
then the condition of involution: 

Ω(a | a′) = 0 
 

                                                
 (10) I.e., its pole is on the quadric.  
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expresses the idea that the corresponding linear spaces 1
4E , 1

4E′  will be conjugate with 

respect to the fundamental quadric 2
4E . 

 The quadric 2
4E  contains linear spaces of dimensions one and two. 

 Indeed, we know that if x0 and x00 are two lines that intersect then the expressions: 
 
(13)     xi = 0 00

i ix xλ µ+  

 
will be the coordinates of a line of the planar sheaf that is defined by these two lines.  It 
will then result immediately that when λ : µ varies one will always have: 
 

ω(x) = ω(x0 λ + x00 µ) = 0. 
 
 Now, when they are interpreted in five-dimensional space, equations (13) will 
represent a one-dimensional linear space 1

1E  that is contained in 2
4E . 

 Conversely, let 1
1E  be a one-dimensional linear space in 2

4E , so the coordinates xi of a 

point in that linear space will be represented by formulas such as (13), where one must 
have: 

ω(x) = ω(x0 λ + x00 µ) = 0 
 
for any λ, µ.  In the geometry of lines, we will thus have a planar sheaf.  One can, 
moreover, state this proposition: 
 
 There are an infinitude of one-dimensional linear spaces on 2

4E .  In line geometry, 

these spaces correspond to the planar sheaves in Euclidian space, in such a way that 
there is a quintuple infinitude of these linear spaces on 2

4E . 

 
 One confirms in the same way that there is an infinitude of two-dimensional linear 
space in 2

4E  that correspond to the hyper-sheaves of linear geometry. 

 However, there are two kinds of hyper-sheaves: viz., sprays and planar systems.  One 
can thus predict that will be two distinct families of two-dimensional linear spaces in 24E . 

 That fact, which is completely analogous to the fact that there is a double system of 
rectilinear generators of the quadrics in ordinary space, can be exhibited directly.  As one 
will see, it presents an essential difference from the example that I have compared it to. 
 For ordinary quadrics, two rectilinear generators always intersect if they are from 
different systems, and never if they are from the same system. 
 The opposite is true here, because two linear spaces 1

2E  from the same family will 

always have a point in common; this amounts to saying that two sprays or even two 
planes will always have a common line. 
 That amounts to saying that a spray and a plane do not generally have a common line, 
and that if this is the case then they will have a planar sheaf of lines in common. 
 A complex of lines that is defined by an equation: 
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f(x1, x2, …, x6) = 0 
 

will be represented by the trace of the space E4 that is represented by the equation f = 0 
on the quadric 2

4E . 

 We thus obtain a three-dimensional space E2 on 2
4E . 

 Similarly, a two-dimensional space E2 that is traced on 2
4E  will represent a 

congruence, and a one-dimensional space will represent a ruled surface. 
 
 
 91.  This agreement between ruled geometry and that of the point on a four-
dimensional quadric in a five-dimensional space will still have no great utility if one does 
not heed a remark that concerns the geometry of quadratic spaces. 
 I will first take the example of an ordinary quadric on ordinary space. 
 Let Q be such a quadric, let O be a point on it, and let π be an arbitrary plane. 
 Imagine that one makes any point M of the plane correspond to a point P of the 
quadric by taking the intersection of the latter with the line OM.  Conversely, a point P of 
the quadric will correspond to one and only one point M.  The correspondence is single-
valued in both directions.  One expresses that by saying that the quadric is representable 
on the plane (11). 
 One can give a concrete analytical representation to that representation and associate 
it with an old method that Chasles imagined for the study of curves that were traced on 
quadrics (12). 
 Let OG0, OH0 be two rectilinear generators of the quadric that issue from the point O.  
Two generators pass through the point P of the quadric.  One of them – viz., G − comes 
from the same system as OG0, while the second one – viz., H − comes from the same 
system as OH0 .  G cuts OH0 at a point P′, and H cuts OG0 at a point P″.  In order to 
define the position of P′ on OH0 , one can take the anharmonic ratio that it defines with 
the point O and two other fixed points on OH0 , in such a way that if A′, B′ denote these 
fixed points then one will have: 

u = :
A O A B

P O P B

′ ′ ′
′ ′ ′

. 

 
 Similarly, if A″, B″ denote two fixed points on OG0 then one will define the point P″ 
by the parameter: 

v = :
A O A B

P O P B

′′ ′′ ′′
′′ ′′ ′′

. 

 
 Once u and v are known, the points P′, P″ will result, as well as the point P, and 
consequently, the point M in the plane π. 

                                                
 (11) For the question of which surfaces are representable on the plane, one can consult several notes that 
Darboux dedicated to that question in the Bulletin des Sciences mathématiques.  The original papers of 
Clebsch appeared in the Mathematischen Annalen.  Today, that theory is very well-developed and deserves 
a special study. 
 (12) Comptes rendus des seances de l’Academie des Sciences, t. LIII. 
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 Call the traces of OG0 and OH0 on that plane G0 , H0 , resp.  The line G0M is the trace 
of the plane OG0M on the plane π.  This plane OG0M is obviously tangent to the quadric 
at P″, and due to Chasles’s theorem, the line is traced on a plane that is tangent to a ruled 
surface.  The parameter v is equal to the anharmonic ratio: 
 

v = (G0α″, G0M, G0H0, G0β″), 
 
where G0α″ is the trace of the tangent plane at A″ on the plane π, and G0β″ is the trace of 
the tangent plane at B″. 

 

M 

P 

(π) 

(G) 
(H) 

O B″ A″ 
A′ B′ 

P″ P′ 

G0 

(α″) 

(α′) (β′) 
K0 

H0 

(β″) 

 
Figure 5. 

 
 Similarly, since H0α ′, H0β ′ are traces of the tangent planes at A′, B′, resp., one will 
have: 

u = (H0α ′, H0M, H0G0, H0β ′). 
 
 Take the triangle of reference on the plane π to be the triangle that is defined by the 
lines H0β ′, G0β″, and G0 H0, and one will immediately see that if: 
 

X = 0, Y = 0, Z = 0 
 

represent the equations of these three lines then, upon introducing constant factors into X, 
Y, Z, one will have: 

u = 
X

Z
, v = 

Y

Z
. 

 
 If one lets K0 denote the intersection point of the lines G0β″ and H0β ′ then one will 
see that the quantities u, v are the Chasles coordinates of the point P on the quadric, and 
that they are also the triangular coordinates of the point M with respect to the triangle of 
reference G0H0K0 . 



126 Line Geometry, and it applications. 

 The points H0, G0 play an essential role in this representation.  Any point of OG0 will 
project onto G0 and any point of OH0 will project onto H0 .  These points H0 , G0 are thus 
points of indeterminacy, in the sense that each of them is the projection of an infinitude 
of points of the quadric. 
 There is also a point of indeterminacy on the quadric.  Indeed, it is clear that if the 
point P of the quadric tends to the point O then the point M will be placed on the line 
G0H0 , and that the position of the point M will be the trace on G0H0 of the limiting 
position of OP when OP becomes tangent to the surface at O. 
 We thus see that there are two remarkable points G0, H0 on the plane and one 
remarkable line, which is the line that joins them.  There is one remarkable point O on the 
surface and two remarkable lines, namely, the generators that issue from that point. 
 In representations of this kind, the points G0, H0 are given the name of base points for 
the representations and the line G0H0 is given the name of fundamental line. 
 In the general case of the representation of surfaces on the plane, the nature of the 
base points and fundamental lines – or, generically, FUNDAMENTAL ELEMENTS – 
characterizes the representation. 
 One proves that, in general, the curves in the plane that represent plane sections of the 
surface pass through the base points or fundamental lines. 
 Here, this is obvious, because any plane section cuts OG0 at one point and OH0 at 
another, and the perspective is therefore a conic that passes through the two points G0, 
H0. 
 One knows that the metric properties of plane figures are defined as relations between 
those figures and two remarkable points in the plane, namely, the circular points at 
infinity.  From the projective viewpoint, one can thus regard all of the properties of the 
relation between a figure and two points in the plane as being metric. 
 The conics that pass through these two fixed points will be called circles.  From this 
standpoint, one can say that the plane sections of the quadric will be represented by 
circles in the plane. 
 Moreover, one recognizes that in order to realize that representation effectively, it 
will suffice to take the point O to be an umbilic of the quadric and take the plane π to be a 
plane that is parallel to the tangent plane at the point O. 
 One then finds that one has generalized a very old transformation, namely, the 
stereographic transformation. 
 However, such a restriction is useless to us, since we are always free to take two 
arbitrary points of the plane to be the basis for the metric properties. 
 
 
 92.  One can exhibit this representation of quadrics on the plane in a more analytical 
form that lends itself better to the generalization that we have in mind. 
 Indeed, take two points O and O′ on the quadric that are not situated on the same 
rectilinear generator.  Draw two conjugate planes through the line OO′, and let ∆ be the 
intersection of the planes tangent to O and O′.  That line will cut the conjugate planes at 
two points O″, O″′; we take the tetrahedron OO′O″O′″ to be the tetrahedron of reference.  
The quadric will have an equation of the form: 
 
(14)     x2 + y2 – zt = 0 
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by introducing numerical constants into x, y, z, t, which are pointless to specify explicitly.  
I then set: 

(15)     
2

,

,

,

x XZ

y YZ

z Z

ρ
ρ
ρ

=
 =
 =

 

 
and I observe that equation (14) then gives: 
 
(16)     ρ t = X 2 + Y 2. 
 
 We have thus expressed x, y, z as functions of three homogeneous parameters X, Y, Z. 
 We can regard X, Y, Z as the triangular coordinates of a point in a plane, and we will 
have thus realized a representation of the quadric in the plane analytically. 
 I shall not stop to prove that the representation is realized geometrically by the 
stereographic projection that I defined above. 
 Observe that any plane section: 
 

ax + by + cz + dt = 0 
 

is represented on the plane by the conic: 
 
(17)    (aX + bY + cZ) – dt (X 2 + Y 2) = 0 
 
that passes through the two fixed points: 
 

Z = 0,  X ± iY = 0. 
 
 If one regards these two points as the circular points at infinity in the plane then 
equation (17) will be the general equation of the circles in the plane. 
 
 
 93.  Having said that, we seek to answer the following question: 
 
 What exactly are the properties of plane figures that correspond to the projective 
properties of the quadric? 
 
 In order to resolve this question with any precision, we shall look for the plane 
transformation that corresponds to a homographic transformation that preserves the 
proposed quadric. 
 Let x, y, z, t be the coordinates of a point P of the quadric and let x′, y′, z′, t′ be those 
of the corresponding point P′.  One has: 
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(18)    

,

,

,

,

x ax by cz dt

y a x b y c z d t

x a x b y c z d t

x a x b y c z d t

′ = + + +
 ′ ′ ′ ′ ′= + + +
 ′′ ′′ ′′ ′′ ′′= + + +
 ′′′ ′′′ ′′′ ′′′ ′′= + + +

 

and one must have: 
(19)    x′2 + y′2 − z′ t′ = k(x2 + y2 – zt). 
 
 Let (X, Y, Z) be the coordinates of the point M that corresponds to the point P, and let 
(X ′, Y ′, Z ′) be those of the point M ′ that corresponds to the point P′. 
 Upon replacing x, y, z, t, y′, z′, t′ in (18) with their values in terms of X, Y, Z, X ′, Y ′, 
Z′, one gets: 

(20)  

2 2 2

2 2 2

2 2 2 2

2 2 2 2 2

( ),

( ),

( ),

( ) ( ).

X Z aXZ bYZ cZ d X Y

Y Z a XZ b YZ c Z d X Y

Z a XZ b YZ c Z d X Y

X Z a XZ b YZ c Z d X Y

σ
σ
σ
σ

′ ′ = + + + +
 ′ ′ ′ ′ ′ ′= + + + +
 ′ ′′ ′′ ′′ ′′= + + + +
 ′ ′ ′′′ ′′′ ′′′ ′′′+ = + + + +

 

 
 There are obviously too many of these equations for one to define X′, Y′, Z′ as 
functions of X, Y, Z.  However, from the identity (19), they are compatible; i.e., when a, 
b, c, d, a′, b′, c′, d′, …, c′″, d′″ obey that identity. 
 In order to simplify the interpretation of the formulas, I will make Z′ = Z = 1, and I 
will write the formulas in the form: 
 

(T)   

2 2

2 2

2 2

2 2

2 2
2 2

2 2

( )
,

( )

( )
,

( )

( )
.

( )

aX bY c d X Y
X

a X b Y c d X Y

a X b Y c d X Y
Y

a X b Y c d X Y

a X b Y c d X Y
X Y

a X b Y c d X Y

 + + + +′ = ′′ ′′ ′′ ′′+ + + +
 ′ ′ ′ ′+ + + + ′ = ′′ ′′ ′ ′′+ + + +
 ′′′ ′′′ ′′′ ′′′+ + + +′ ′+ =

′′ ′′ ′′ ′′+ + + +

 

 
 X, Y will then be the rectangular coordinates of a point, and X′, Y′ will be those of its 
transform. 
 Suppose that one performs a first transformation on that form T, and then another T′ 
that has other coefficients, so the linear nature of these formulas will show us that the 
resulting transformation T′ T will again be a transformation of the same form. 
 In a word, these transformations define what Lie called a group. 
 A homothetic transformation around an arbitrary point, an arbitrary displacement, a 
symmetry transformation with respect to an arbitrary line, and more generally, an 
inversion with respect to an arbitrary circle define elements of the group, as one will 
recognize immediately from the formulas that express these various transformations.  I 
would like to prove that, conversely: Any transformation that is defined by formulas (T) 
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will result from the successive application of a certain number of these transformations 
(13). 
 Indeed, let T1 denote the translation that changes the point X, Y into the point X″, Y″, 
and which is represented by the formulas: 
 
(T1)    X″ = X + h,  Y″  = Y + k, 
 
where h and k are two constants; then envision the transformation: 
 

(T2)   

2 2
1 1 1 1

2 2
1 1 1 1

2 2
1 1 1 1

2 2
1 1 1 1

2 2
2 2 1 1 1 1

1 1

( )
,

( )

( )
,

( )

( )

a X bY c d X Y
X

a X b Y c d X Y

a X b Y c d X Y
Y

a X b Y c d X Y

a X b Y c d X Y
X Y

a X b

′′ ′′ ′′ ′′+ + + +′ =
′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′+ + + +
′ ′′ ′ ′′ ′ ′ ′′ ′′+ + + +′ =
′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′+ + + +
′′′ ′′ ′′′ ′′ ′′′ ′′′ ′′ ′′+ + + +′ ′+ =
′′ ′′ ′′+ 2 2

1 1

.
( )Y c d X Y










′′ ′′ ′′ ′′ ′′+ + +

 

 
 The composition of the two operations (T1) and (T2) is equivalent to the general 
transformation (T), where c, c′ are not zero; one can then set T = T2 T1 . 
 Now, if one considers the identity: 
 

2 2
1 1( ) ( )a X a X′′ ′ ′′+ + +… …  = 2 2

1 1( ) ( )a X a X′′ ′′ ′′′ ′′+ + +… …  

 
then one will see that the left-hand side is annulled with X″, Y″, so the same must be true 
for the right-hand side.  One thus has: 
 

1 1c c′′ ′′′  = 0. 

 
 First, suppose that 1c′′  = 0.  Then, upon performing the inversion: 

 

(T0)    X″ = 
2 2

X

X Y

′′′
′′′ ′′′+

, Y″ = 
2 2

Y

X Y

′′′
′′′ ′′′+

, 

 
the operation T2 will appear to be the product T3 T0 of the operations T3 and T0 , where T3 
is defined by the formulas: 
 

                                                
 (13) KLEIN, Mathematischen Annalen, t. V.  
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(T3)  

1 1 1

1 1 1

1 1 1

1 1 1

2 2
2 2 1 1 1 1

1 1 1

,

,

( )
,

a X bY d
X

a X b Y d

a X b Y d
Y

a X b Y d

a X b Y c X Y d
X Y

a X b Y d

 ′′′ ′′′+ +′ = ′′ ′′′ ′′ ′′′ ′′+ +
 ′ ′′′ ′ ′′′ ′+ ′ = ′′ ′′′ ′′ ′′′ ′′+ +
 ′′′ ′′ ′′′ ′′ ′′′ ′′′ ′′′ ′′′+ + + +′ ′ + =

′′ ′′ ′′ ′′ ′′+ +

 

 
and one will have: 

T = T2 T1 = T3 T0 T1 . 
 
 On the contrary, suppose that it is the 1c′′′  that are zero.  Then, upon once more 

performing the operation T0, T3 will appear to be the product 2 0T T′  of the two operations 

T0 and 2T′ , where 2T′  is then defined by: 

 

( 2T′ )   

1 1 1
2 2

1 1 1 1

1 1 1
2 2

1 1 1 1

2 2 1 1 1
2 2

1 1 1

,
( )

,
( )

.
( )

a X bY d
X

a X b Y c X Y d

a X b Y d
Y

a X b Y c X Y d

a X b Y d
X Y

a X b Y c X Y d

 ′′′ ′′′+ +′ = ′′ ′′′ ′′ ′′′ ′′ ′′′ ′′′ ′′+ + + +
 ′ ′′′ ′ ′′′ ′+′ = ′′ ′′′ ′′ ′′′ ′′ ′′′ ′′′ ′′+ + + +

′′′ ′′ ′′′ ′′ ′′′+ +′ ′+ =
′′ ′′′ ′′ ′′′ ′′ ′′′ ′′′ ′′+ + + +




 

 
 Now, in order to perform the transformation (2T′ ), one can perform the 

transformation: 

3( )T′    

1 1 1
1

1 1 1

1 1 1
1

1 1 1

2 2
2 2 1 1 1 1
1 1

1 1 1

,

,

( )
,

a X bY d
X

a X b Y d

a X b Y d
Y

a X b Y d

a X b Y c X Y d
X Y

a X b Y d

 ′′′ ′′′+ += ′′ ′′′ ′′ ′′′ ′′+ +
 ′ ′′′ ′ ′′′ ′+ = ′′ ′′′ ′′ ′′′ ′′+ +
 ′′ ′′′ ′′ ′′′ ′′ ′′′ ′′′ ′′+ + + +
 + =

′′′ ′′ ′′′ ′′ ′′′+ +

 

 
and follow it with the inversion T0 : 
 

X′ = 1
2 2
1 1

X

X Y+
,  Y′ = 1

2 2
1 1

Y

X Y+
. 

 
 The transformations T3 and 3T′  have the same character.  The have the general form: 
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 X′  = 
X Y

X Y

α β γ
α β γ

+ +
′′ ′′ ′′+ +

, 

 Y′  = 
X Y

X Y

α β γ
α β γ

′ ′ ′+ +
′′ ′′ ′′+ +

, 

 X′ 2 + Y′ 2 = 
2 2( )X Y X Y

X Y

α β γ δ
α β γ

′′′ ′′′ ′′′ ′′′+ + + +
′′ ′′ ′′+ +

. 

 
 We write down that one has identically: 
 
 (α X + β Y + γ)2 + (α′ X + β′ Y + γ′ )2  
    = (α″ X + β″ Y + γ″)2 [(α″ X + β″ Y + γ″ + δ(X 2 + Y 2)]. 
 
One first sees that α″, β″ must be zero, which then permits one to set γ″ = 1.  What then 
remains is: 
 X′ = α X + β Y + γ, 
 Y′ = α′ X + β′ Y + γ′, 
 X′ 2 + Y′ 2 = α″ X + β″ Y + γ″ + δ″ ( X 2 + Y 2), 
with the identity: 
 

(α X + β Y + γ)2 + (α′ X + β′ Y + γ′ )2  = α″ X + β″ Y + γ″ + δ″ (X 2 + Y 2). 
 
One must then have, in particular: 
 

(α X + β Y )2 + (α′ X + β′ Y )2  = δ″ (X 2 + Y 2). 
 
Now, this identity proves that one can set either: 
 

(21)  
cos , sin ,

sin , cos ,

α δ θ β δ θ
α δ θ β δ θ

 ′′ ′′= =


′ ′′ ′ ′′= − =
 

or 

(22)  
cos , sin ,

sin , cos .

α δ θ β δ θ
α δ θ β δ θ

 ′′ ′′= =


′ ′′ ′ ′′= = −
 

 
 In the first case, the transformation T3 will represent an arbitrary displacement D in 
the plane that is preceded by a homothety H; one will then have: 
 

T3 = D ⋅⋅⋅⋅ H. 
 

 In the second case, the homothety is accompanied by a symmetry transformation S 
with respect to a line, and one then has: 
 

T3 = D ⋅⋅⋅⋅ H ⋅⋅⋅⋅ S. 
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Therefore, in summation, one will have: 
 

T = 
3 0 1

0 3 0 1

or even

,

T T T

T T T T







 

where 

T3 = 

,

or even

.

D H

D H S

⋅


 ⋅ ⋅

 

 
 Therefore, T indeed reduces to a superposition of operations of the following nature: 
 Motions, homotheties, inversions, and symmetries with respect to lines. 
 All of these transformations have a common property: They transform any circle in 
the plane into another one, or in other words, the group of transformations preserves the 
family of circles in the plane.  One can then give these transformations the name of 
anallagmatic transformations. 
 Consequently, one sees that, when interpreted on the representative plane, the 
homographic transformations of a quadric to itself will have the group of anallagmatic 
transformations of the plane for their images. 
 The projective properties of the quadric then correspond to the anallagmatic 
properties in the plane. 
 
 
 91.  All of what we just said about the representation of ordinary quadrics on a plane 
extend to the case of (n – 1)-dimensional quadrics in n-dimensional space. 
 For example, take the quadric: 
 
(23)    2 2 2 2

1 2 3 4 5 6x x x x x x+ + + −  = 0 

 
in five-dimensional space.  We set: 
 ρ x1 = X1 X5 , 
 ρ x2 = X2 X5 , 
 ρ x3 = X3 X5 , 
 ρ x4 = X4 X5 , 
 ρ x5 = 2

5X , 

and equation (23) will give: 
ρ x5 = 2 2 2 2

1 2 3 4X X X X+ + + . 

 
 We have represented our quadric on a four-dimensional linear space in which X1, X2, 
X3, X4, X5 are the homogeneous coordinates of a point. 
 Here, we have a fundamental figure, or figure of indeterminacy.  It is represented by 
the equations: 

X4 = 0,  2 2 2 2
1 2 3 4X X X X+ + +  = 0. 
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It constitutes a two-dimensional quadratic space that I shall represent by I2 . 
 Call any quadric in four-dimensional space that contain I2 a sphere, so the equation of 
a sphere will be: 
 

(a X1 + b X2 + c X3 + d X4 + c X5) X5 + f( 2 2 2 2
1 2 3 4X X X X+ + + ) = 0. 

 
 It is convenient to reduce the variable X5 to unity, and when it is equated to zero, it 
will represent the infinity in our four-dimensional space, so the equation of our sphere 
would have the form: 
 
(24)  a1 X1 + a2 X2 + a3 X3 + a4 X4 + a5  + a6 (

2 2 2 2
1 2 3 4X X X X+ + + ) = 0. 

 
 The distance between two points will be: 
 

2 2
1 1 4 4( ) ( )X X X X′ ′− + + −… . 

 
 A displacement, a symmetry, a homothety, and an inversion are defined as they are in 
the case of ordinary space, and by the same argument as was presented above, we 
recognize that any linear transformation that preserves the form: 
 

2 2 2 2
1 2 3 4 5 6x x x x x x+ + + − , 

 
i.e., any homographic or dualistic transformation of ruled space, translates in the 
representative four-dimensional space into a succession of operations such as: 
 1. Homothety. 
 2. Symmetry. 
 3. Inversion. 
 4. Displacements. 
These are all transformations that leave the notion of sphere invariant. 
 From this viewpoint, we can say that: 
 
 From the dualistic and projective viewpoint, ruled geometry is identical to the 
anallagmatic geometry of a four-dimensional space. 
 
 
 95.  One sees that in the representations that we occupy ourselves with a linear 
complex (i.e., a section of the four-dimensional quadric by a four-dimensional linear 
space) is found to be represented by a sphere in four-dimensional space. 
 If: 

a1 x1 + a2 x2 + … + a6 x6 = 0 
 
is the equation of the linear complex then that of the sphere will be equation (24), 
precisely. 
 The equation of the sphere takes on the form: 
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2 2 2 2

31 2 4
1 2 3 4

4 4 4 42 2 2 2

aa a a
X X X X

a a a a

       
+ + + + + + +       

       
= 

2 2 2 2
1 2 3 4 5 6

2
6

4a a a a a a

a

+ + + −
. 

 
The expression in the right-hand side represent the square of the radius of the sphere, and 

− 1

42

a

a
, − 2

42

a

a
, − 3

42

a

a
, − 4

42

a

a
 are the coordinates of its center.  The radius is zero if: 

 
(25)    2 2 2 2

1 2 3 4 5 64a a a a a a+ + + −  = 0. 

 
 Now, since the fundamental form is: 
 

2 2 2 2
1 2 3 4 5 6x x x x x x+ + + −  

 
here, the invariant of the complex will be precisely the left-hand side of (25).  The 
spheres of radius zero will thus correspond to the special complexes. 
 Similarly, the equation: 
 

a1 b1 + a2 b2 + a3 b3 + a4 b4 − 2a5 b6 − 2a6 b5 = 0 
 
expresses the involution of the two complexes: 
 

a1 x1 + a2 x2 + … = 0,  b1 x1 + b2 x2 + … = 0; 
 
it also expresses the orthogonality of the two corresponding spheres. 
 A linear congruence is represented by the intersection of two spheres.  One can make 
two spheres of radius zero pass through that intersection that each represent one of the 
special complexes that have the directrices of the congruence for their directrices. 
 The intersection of two spheres in four-dimensional space is, in addition to I2, which 
is set apart, a two-dimensional quadratic space that one can call a two-dimensional 
sphere. 
 If one denotes the three-dimensional spheres by S3 then I will denote the two-
dimensional ones by S2 . 
 The intersection of three three-dimensional spheres is a circle S1 or one-dimensional 
quadratic space of a special kind, because it always has two points in common with the 
two-dimensional space I2 . 
 An infinitude (viz., a double infinitude) of spheres pass through a circle S1 that are 
images of the system with three terms of linear complexes that are drawn through the 
semi-quadric whose image is S1 .  An infinitude of these complexes are special.  Their 
directrices, which generate the complementary semi-quadric, have the points of a second 
circle 1S′  for their images, a circle that is the locus of the centers of the spheres of radius 

zero that are drawn through S1 .  The correspondence between S1 and 1S′  is obviously 

reciprocal. 
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 96.  The planar sheaves of lines and the hyper-sheaves in ruled space also have a very 
simple representation. 
 If the line x generates a planar sheaf of lines then, as we know, one can write: 
 
 x1 = a1 + ρ b1, x2 = a2 + ρ b2 , x3 = a3 + ρ b3 , 
 x4 = a4 + ρ b4, x5 = 1 + ρ, x6 = a6 + ρ b6 . 
 
 The coordinates X1, X2 X3, X4 of the corresponding point in four-dimensional space 
will be: 

(26)  X1 = 1

5

x

x
 = 1 1

1

a bρ
ρ

+
+

,    X2 = 2 2

1

a bρ
ρ

+
+

,    X3 = 3 3

1

a bρ
ρ

+
+

,    X4 = 4 4

1

a bρ
ρ

+
+

. 

 
Moreover, one will have: 

2 2 2 2
1 2 3 4 5 6x x x x x x+ + + −  = 0, 

i.e.: 
(a1 + ρ b1)

2 + (a2 + ρ b2)
2 + (a3 + ρ b3)

2 + (a4 + ρ b4)
2 = (1 + ρ) (a6 + ρ b6). 

 
This must be true for any ρ, so one gets: 
 

2 2 2 2
1 2 3 4a a a a+ + +  = a6 , 
2 2 2 2
1 2 3 4b b b b+ + +  = b6 , 

2a1 b1 + 2a2 b2 + 2a3 b3 + 2a4 b4 = a6 + b6 , 
 

so, upon eliminating a6 and b6, one gets: 
 
(27)   (a1 − b1)

2 + (a2 − b2)
2 + (a3 − b3)

2 + (a4 − b4)
2 = 0. 

 
 The binomials ai – bi are the director coefficients αi of the line that is represented by 
equations (26), which can be written, upon setting: 
 

αi = ai – bi , 
as 

(28)   1 1

1

X a

α
−

 = 2 2

2

X a

α
−

 = 3 3

3

X a

α
−

 = 4 4

4

X a

α
−

. 

 
 Equation (27), which is written: 
 
(29)     2 2 2 2

1 2 3 4α α α α+ + +  = 0, 

 
obviously expresses the idea that the point of the line (28) that is at infinity belongs to the 
quadratic space I2 .  It also expresses the idea that the distance between two arbitrary 
points of the line is zero.  The lines considered are lines of length zero, and can be 
defined by the property that they have a point in common with I2 . 
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 Moreover, it is natural to introduce the Chasles coordinate of the point of intersection 
by setting: 

(30)   1

0 0

α
λ µ+

 = 2

0 0( ) 1

α
λ µ− −

 = 3

0 0 1

α
λ µ −

 = 4

0 0( 1) 1

α
λ µ + −

, 

 
and furthermore, the general representation of our lines (and in turn, of the planar sheaves 
of ruled space) will be: 
 

(31)   1 1

0 0

X a

λ µ
−
+

 = 2 2

0 0( ) 1

X a

λ µ
−

− −
 = 3 3

0 0 1

X a

λ µ
−

−
 = 4 4

0 0( 1) 1

X a

λ µ
−
+ −

. 

 
 It is clear that if λ0 and µ0 remain fixed then the point of intersection with I2 will also 
remain fixed. 
 If one leaves λ0 fixed then when µ0 varies the point in question will describe a 
rectilinear generator of a system I2 .  On the contrary, when λ0 varies, while µ0 remains 
fixed, it will describe a rectilinear generator of the second system. 
 The representation goes much deeper than one might first believe. 
 Indeed, let us seek to represent a hyper-sheaf. 
 If the line x generates a hyper-sheaf then one can set: 
 
 x1 = a1 + ρ b1 + ρ′ 1b′ , 
 x2 = a2 + ρ b2 + ρ′ 2b′ , 
 x3 = a3 + ρ b3 + ρ′ 3b′ , 
 x4 = a4 + ρ b4 + ρ′ 4b′ , 
 x5 = 1 + ρ + ρ′, 
 x6 = a6 + ρ b6 + ρ′ 6b′ , 
with the relation: 

2 2 2 2
1 2 3 4 5 6x x x x x x+ + + −  = 0, 

 
and since this must be true for any ρ, ρ′, we will get: 
 
 2 2 2 2

1 2 3 4a a a a+ + +   = a6 , 

 2 2 2 2
1 2 3 4b b b b+ + +    = b6 , 

 2 2 2 2
1 2 3 4b b b b′ ′ ′ ′+ + +  = 6b′ , 

 2(a1 b1 + a2 b2 + a3 b3  + a4 b4) = a6 + b6 , 
 2(a1 1b′  + a2 2b′  + a3 3b′  + a4 4b′ ) = a6 + 6b′ , 
 2(b1 1b′  + b2 2b′  + b3 3b′  + b4 4b′ ) = b6 + 6b′ ; 
 
thus, by eliminating a6, b6, 6b′ , one will get: 

 
 (a1 –  b1)

2 + (a2 – b2)
2 + (a3 –  b3)

2 + (a4 –  b4)
2 = 0, 
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 (a1 – 1b′ )2 + (a2 – 2b′ )2 + (a3 – 3b′ )2 + (a4 – 4b′ )2 = 0, 

 (b1 – 1b′ )2 + (b2 – 2b′ )2 + (b3 – 3b′ )2 + (b4 – 4b′ )2 = 0. 

 
 One verifies the first two equations by setting: 
 

 1 1

0 0

b a

λ µ
−
+

 = 2 2

0 0( ) 1

b a

λ µ
−

− −
 = 3 3

0 0 1

b a

λ µ
−

−
 = 4 4

0 0( 1) 1

b a

λ µ
−
+ −

 = θ, 

 1 1

0 0

b a

λ µ
′ −
′ ′+

 = 2 2

0 0( ) 1

b a

λ µ
′ −

′ ′− −
 = 3 3

0 0 1

b a

λ µ
′ −
′ ′ −

 = 4 4

0 0( 1) 1

b a

λ µ
′ −

′ ′ + −
 = θ′, 

 
in which λ0, µ0, 0λ′ , 0µ ′ , θ, θ′ are arbitrary. 

 One infers from this that: 
 
 1 1 0 0 0 0[ ( ) ( )]b b θ λ µ θ λ µ′ ′ ′ ′− = + − + , 

 2 2 0 0 0 0[ ( ) ( )] 1b b θ λ µ θ λ µ′ ′ ′ ′− = − − − − , 

 3 3 0 0 0 0[ ( 1) ( 1)]b b θ λ µ θ λ µ′ ′ ′ ′− = − − − , 

 4 4 0 0 0 0[ ( 1) ( 1)] 1b b θ λ µ θ λ µ′ ′ ′ ′− = + − + − , 

so: 
  0 = ( 1b′  – b1)

2 + ( 2b′  – b2)
2 + ( 3b′  – b3)

2 + ( 4b′  – b4)
2 

 = − 2θθ′ [ 0 0 0 0 0 0 0 0( )( ) ( )( )λ µ λ µ λ µ λ µ′ ′ ′ ′+ + − − −   

  + 0 0 0 0 0 0 0 0( 1)( 1) ( 1)( 1)λ µ λ µ λ µ λ µ′ ′ ′ ′− − − + + ] 

 = − 4θθ′ 0 0 0 0( )( )λ λ µ µ′ ′− − . 

 
 One sees that one must have either: 

0 0λ λ′ =  

or 

0 0µ µ′ = . 

 For example, take 0 0λ λ′ = . 

 The corresponding hyper-sheaf is represented in four-dimensional space by the 
equations: 

Xi = 
1

i i ia b bρ ρ
ρ ρ

′ ′+ +
′+ +

, 

or again by the equations: 
 

1 1

1 1 1 1( ) ( )

X a

b a b aρ ρ
−

′ ′− + −
 = 2 2

2 2 2 2( ) ( )

X a

b a b aρ ρ
−

′ ′− + −
 

= 3 3

3 3 3 3( ) ( )

X a

b a b aρ ρ
−

′ ′− + −
= 4 4

4 4 4 4( ) ( )

X a

b a b aρ ρ
−

′ ′− + −
; 
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i.e., upon inserting θ into ρ and θ′ into ρ′ : 
  

1 1

0 0 0 0( ) ( )

X a

ρ λ µ ρ λ µ
−

′ ′ ′+ + +
 = 2 2

0 0 0 0( ) 1 ( ) 1

X a

ρ λ µ ρ λ µ
−

′ ′ ′− − + − −
 

= 3 3

0 0 0 0( 1) ( 1)

X a

ρ λ µ ρ λ µ
−

′ ′ ′− + −
= 4 4

0 0 0 0[ ( 1) ( 1)] 1

X a

ρ λ µ ρ λ µ
−
′ ′ ′+ + + −

. 

 
 These equations, where ρ : ρ′ is arbitrary and even variable, define a two-dimensional 
linear space that represents the hyper-sheaf in question.  Now − and this is a very 
remarkable fact − upon setting: 

0 0

1

µ ρ µ ρ
ρ

′ ′+
′+

= µ, 

these equations can take on the form: 
 

(32)   1 1

0

X a

λ µ
−
+

 = 2 2

0( ) 1

X a

λ µ
−

− −
= 3 3

0 1

X a

λ µ
−
−

= 4 4

0( 1) 1

X a

λ µ
−

+ −
. 

 
 These equations are deduced from equations (30) by replacing the constant parameter 
µ0 with a variable parameter µ . 
 If one has adopted the solution 0µ ′  = µ0 then one will arrive at the formula: 

 

(33)  1 1

0 0

X a

λ µ
−
+

 = 2 2

0 0( ) 1

X a

λ µ
−

− −
= 3 3

0 0 1

X a

λ µ
−

−
= 4 4

0 0( 1) 1

X a

λ µ
−
+ −

, 

 
which is deduced from equations (30) by varying λ. 
 The linear spaces (32) and (33) are two-dimensional, since µ is variable in (32) and λ 
is variable in (33).  In some way, they are isotropic two-dimensional linear spaces.  They 
possess the property of intersecting each plane at infinity along a rectilinear generator of 
I2 .  However, one of them intersects I2 along a generator of one system [equation (32)], 
while the other one, along a generator of the opposite system [equation (33)]. 
 We thus have two types of isotropic linear spaces 2E′  (14). 
 The one type corresponds to hyper-sheaves that are sprays, while the other one, to the 
hyper-sheaves that are planar systems. 
 It is assuredly quite curious that the separation of the two systems of generators of I2 
amounts to the distinction between the geometry of points in three-dimensional space, 
which is the domain of ruled figures, and that of the planes. 
 For example, if we take the equations: 
 

(34)   1 1

0 0

X a

λ µ
−
+

 = 2 2

0 0( ) 1

X a

λ µ
−

− −
= 3 3

0 0 1

X a

λ µ
−

−
= 4 4

0 0( 1) 1

X a

λ µ
−
+ −

 

                                                
 (14) This fact is not new.  The isotropic lines in the plane already define two distinct families. 
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then we will have the representation of a planar sheaf (O, π) that includes the line Λ that 
has the point a1, a2, a3, a4 for its image in four-dimensional space.  When λ0, µ0 take on 
all possible values, we will get all of the planar sheaves that contain Λ. 
 If λ0 remains fixed then, as we know, the line X will generate a hyper-sheaf, one of 
whose elements O or π remains fixed – for example, O – and then equations (34) will 
represent all of the lines that issue from O. 
 On the contrary, if it is µ0 that remains fixed then it will be the plane π that is found to 
be fixed and represented as the support of a planar system of lines. 
 Therefore, in summation, when a sheaf is represented by formulas such as (34) then 
a1, a2, a3, a4 will represent a line of that sheaf, λ0, the point O, and µ0, the plane π of the 
sheaf on that line (15). 
 
 If one relates λ0, µ0 homographically then the locus of the line X will be a singular 
linear congruence that admits Λ for its directrix (16). 
 There exist other coordinates systems, but their study naturally leads into a series of 
infinitesimal properties. 
 I will add that the coordinates that I have defined projectively at the beginning can 
take on an important metric form.  We shall return to the metric properties of ruled 
systems at some other time. 
 

__________ 
 

                                                
 (15) One can compare this with the representation that I gave in 1882 in my paper “Sur les propriétés 
infinitésimales de l’espace réglé,” pp. 23. 
 (16) The reader can compare the preceding with the chapter on penta-spherical or hexaspherical 
coordinates in Tome I of the Leçons of G. Darboux.  The sphere in Euclidian space gives rise to a theory 
that is entirely similar to that of the line.  


