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INTRODUCTION

In any branch of geometry that touches upon the nss&néial points of all of the
other branches, and whose development has been crudiaé tevolution of science
during the entire first part of this century, it would seguite difficult to give the name
of the inventor with any certainty. It is to Pliickerttbae generally attributes the glory
of that invention, and meanwhile neither the idea obrgouence of lines nor likewise
that of a complex has received its first proper ackndgrieent. The entire world
recognizes that the properties of congruences go back éatlyeresearch in geometrical
optics; however, as far as complexes are concemas,seems much too disposed to
forget that Malus was the first to conceive of thenhimTraité d’Optique and that one
will arrive at a proposition of paramount importancehis subject that was ultimately
mentioned by Chasles in an interesting Mémoire de drans the grouping of lines in a
complex into congruences of normals to a surface.is lvery remarkable that the
proposition of Malus strongly touches upon another lihéhimking that we will have
occasion to speak of, and which has been developed in atenadjitashion by Sophus
Lie.

One will find the exact citations that corroborate tlurrent beliefs later on in the
historical part. Nevertheless, it is to Plicker thaégthe immortal credit for having
foreseen the role of the line in geometry and havingoif practiced, then at least
indicated, a method for grouping the great principles ofptiMe geometry thathasles
calledhomography and dualitynder more advanced laws.

However, Pliicker was not given the honor of reapindrthes of his discovery. The
task of making them prosper and ripen fell on no less thangreat talents of a
universally esteemed geometer whose was just as celebratanalysis. Klein has
recalled the ideas of Plicker by appealing to the methédaodern algebra. The
symmetry and elegance of his results, notably as fagueiratic complexes are
concerned, makes him justly deserving of the admiratigeometers.

We will have occasion, in the course of this studymention other names that are
very justly worth of being cited; however, the work Sdphus Lie on that branch of
geometry deserves especial mention. That illustrioushges has established the closest
links between the geometry of Pliicker and the theoryftardintial equations; he has, in
a sense, transported a doctrine that might appear, bgléree, to be almost exclusively
algebraic to the transcendental domain.

I will stop with the names that | just cited in thistroduction, in order to not
duplicate the historical notice that accompanies this amremlt is certain that line
geometry owes much to Cayley, Sylvester, Mobius, Chasled Battaglini, but the three
names of Plicker, Klein, and Sophus Lie charactenze sense, three phases of the
doctrine of the straight line, and this is why | havacpd them at the forefront of the
present study'{.

() This work is a partial reproduction of a course thaupht in 1887-1888 at the Collége de France.



CHAPTERI.

THE COORDINATES OF THE STRAIGHT LINE. GENERALITIES

Dualistic and projective character of line geometry.culile definition of Pliickerian coordinates. — The
fundamental quadratic forma(z). — The polar form. — Summary of purely dualistic notioad.inear
transformation. — Pencils, sprays, and planar systerRuled systems and their classification.

1. In the beginning of his research, Pliicker himself iadistn the double dualistic
and projective character of the space of lines.

One may consider only the points that comprise a figareggometry. By
transforming it homographically, one obtains an analogbgisre that is defined
immediately by its points. This is what one expregsesaying thathe homographic
transform of a point-like figure is another point-like figure.

On the contrary, if one considers the planes thaverge to generate that figure then
one will have glanar figure; its homographic transform will be another planar figure.
One can summarize these remarks by saying thapdhe-like space and the planar
space are transformed into spaceshad same typegespectivelyunder anyhomographic
transformation.

Now, perform a dualistic transformation for example, a transformation by
reciprocal polars. Any point-like figure will be changedoia planar figure and any
planar figure, into a point-like figure.

One may summarize that double remark by sayingthigapoint-like space and the
planar space are transformed into spacedhs opposite typeespectively, under any
dualistictransformation.

However, one must remember that duality was placetdta¢romography by Chasles
in the first quarter of this century, and that the subsedqoegress has served only to
accentuate the importance, and at the same timeintilgéusle of these two fundamental
transformations. One then understands that theteheih be some interest in finding a
conception — i.e., a mode of definition — of the figurest temain unaltered as a result of
one or the other of these transformations.

If we consider not just the points that comprise a &égunor even the planes that
generate it, but in fact the lines that enter intacdsstruction then we will obtain a new
mode of definition that we will characterize by saying tine figure isruled. The ruled
figure must then be placed alongside the point-like andapléigures. However, the
advantage of this mode of definition appears immediatelge observes that a line has a
line for its transformunder duality, as well as homographsince it results immediately
that the transform of a ruled figure, whether by dualityop homography, is another
ruled figure, which is what one expresses by saying teatuted spaces transformed
into a space of the same tyipe homographyas well ady duality.

The theory of ruled figures is therefore, in a setise,supreme expression of the
grand evolution of geometry that was inaugurated by Poncgé&gonne, and Chasles,
and which, if one does not stop, tends, on the contriar penetrate almost into
transcendental geometry.
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Any theorem concerning a figure that is point-like, plamarruled, resp., may be
calledpoint-like, planar, or ruledresp. It is clear that any theorem that is notrgiees
rise to a conjugate proposition, namely, the one thatdeduces by reciprocal polars.
From this, one derives the nameometry in a double rolghat serves to recall the habit
that some geometers have of associating any non-rutEmetim with its conjugate
theorem. This double meaning disappears when one usessinesie of them will
suffice for both propositions. One immediately seesexample of this in the geometry
of the spray (gerbe) and in that of the planar system.

In order to make the dominant idea of this paragraph as aepossible, consider a
curve in space. One might first regard it as a set aftpdhat depend upon one
parameter, namely, the points of the curve. One naffiat regard it as a set of planes
that depend upon the same parameter, namely, the osguylénes. Finally, one might
regard it as a set of lines that always depend upon #ma¢ parameter, namely, the
tangents to the curve. The knowledge of any arbitraryafribese sets will suffice to
define all of the other ones by means of differentgdrations that are simple to execute.
Nevertheless, a detailed study of geometric transfasnghas shown that there is good
reason to distinguish one from the other, and to dwee’s attention, depending on the
case, to either one of them or the other, althougih &ne, in fact, inseparable. Thus,
provisionally represent the set of points of a curve,d#t of osculating planes, and the
set of its tangents, b¥, E; Eg4 respectively. If one performs a homographic
transformation then each of these sets will be toamed into another such s&, E_,

E,, resp. On the contrary, performing a dualistic tramsétion onE, will change it into
a systemk, , andE, will change into the syster&z, that is attached & ; however, by
comparison, the systeBy will change into the systeR} . Therefore, the advantage of

defining the sets attached to a curve by means of thé&esatf tangents is that the

definition preserves its character under duality, as a&llunder homography. Any
theorem concerning a systdfp, for example, will have a corresponding theorem in a
systemE,; however, if one translates the theorem in such a thay the systenky
(which is attached t&p) figures only in its statement then the propositiori &l found
to coincide with the conjugate proposition.

One may similarly define a surface, not only by its {®oar its tangent planes, but by
its tangent lines; one is then led to new propertiesstiat the advantage of the method.

2. Aline itself possesses two modes of generatios: thhe locus of a point and it is
also the locus of a plane that turns around it. Pligked the termay to describe the
line in question as a locus of points ands when it is regarded as the locus of planes.
The word “axis” is employed in both senses, and, on therdtand, the distinction is so
inessential that we shall find no advantage in elabwaipon these locutions. To be
honest, it makes no difference whether a line is regaadea locus of points or planes; it
is naturally the one or the other, and it is not up rte jeometry to establish such a
distinction in every case. Even more, it might béysince it remains indifferent to any
dualistic transformation. The distinction that wasablished by Pllcker thus points to
the imperfection in his method, which never liberatenh fiom the encumbrance of
considering point-like spaces and planar spaces. Onerf;mdach thing in the work of
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Klein. All of the elements that one encounters thameedualistic in themselves i.e.,
they transform into the same type of elements undentglualand this must be our
preoccupation from the outset when we define the coordindtesill seem at first that
we have discarded that rule, but we shall not hedbateme back to it.

3. Consider a point-like space that is referregpamt-like homogeneous coordinates.
Let X1, X2, X3, X4 be the coordinates of a poigtand let:

(1) X+t EXtEX+&X=0

be the equation of a plane. The quantitfes &, &, & will be the homogeneous
coordinates of that plane, and equation (1) expressa®otiue that the poink and the
plane¢ areunited i.e., the point is in the plane.

Take two planes, 77; these planes intersect along a lyeand if one sets:

(2) PPk =& M—n &,

wherepis a coefficient of proportionality, then the planbat are guided by the lin@
and by the summits of the tetrahedron of referenclehanle the equations (in the current
coordinates ):

O+ ppX,+ peXst pyX,=0,
Py Xt O+ puXst+ pyX,=0,
Py Xyt P X+ O+ Py X,=0,
Pa X+ P Xot P Xst U =0.

3)

If one develops the zero determinant:

& § 4 4,
oopo|h M N5 M
& § 4,
m n, N 1,
then one will find:
(4) A = 2(p12 P3a + P13 Paz + P1a P23) = 0.

Conversely, take six quantitips,, P13, P14, P34, Pa2, P23 that are linked by equation (4)
and form equations (3) by agreeing that=— pi . One verifies by a simple calculation
that, by virtue of(4), the four planes (3) intersect along a common MineOne further
verifies quite easily that if one makes two plades pass through this line then the
binomial (&, 7« — ri &) will be proportional tqi . Therefore, six quantities:

P12, P13, P14 P34, Pa2, P23,
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which are linked by the equation:

(5) P12 P34 + P13 Paz + P14 P23= 0,

will completely define a line by means of equations (3)emsht is intended thad = -
pk . However, we must hesitate to adopt these sixtgiegp for coordinates of the line
due to the absence of any dualistic character in theitit@fiof these quantities. Indeed,
we have obtained them by means of equations (2) and (8¢ghyding the lin® as the
intersection of two or more planes.

In order to eliminate the difficulty, it will sufficeo appeal to the correlated definition.

Take two points, y on the line: Any point of that line will be representadthe
coordinates:

z=lx+my,

wherel, m are two parameters. We seek the trace of that fhinthe planez, = 0; upon
setting:

(6) OOk =X Yk F Vi %,

whereois a factor of proportionality, we will find thateHine cuts the plang, = 0 at a
point with the coordinates:

o, Oz Oz Qua (one sees thag,, = 0);

one will thus have the four points:

(0, G G ),
(G 00 Gpar Gay),
(G Gz 00 Gaa),
(A Qo Yz 0);

(7)

upon developing the zero determinant that is analogoiys to

X X% X X
i Y2 ¥ Vi
X % X X
i Y2 ¥ Vi

one will confirm that the following expression is zero:

(8) O12 O34 + Q13 Qa2 + Cha Q23 = O.

Conversely, take six quantiti€s,, Qis, Q4 O34, a2, 23 that are linked by equation
(8); a simple calculation proves that, thanks to the @ndition (8), the four points (7),
where one assumes thmat= — pik, will bee on the same lir@.
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4. We are therefore now in the presence of a nevesysft coordinateq for the line,
where that line is now considered to be a locus of pdintsn what we said above on the
character of duality that must be preserved in our expasitve do not, however, have
the right to choose the system of coordinateske the system of coordinatgs
However, it is fortunate that we nevertheless do rmtehto choose, sincthese
coordinates are found to be identical

Indeed, start with the linB, as represented by equations (3), and express thedact th
the line contains the poinksandy; we will have:

P12 X2 + P13 X3 + Pra X4 = O,
P12Y2 + P13Ys + Praysa = 0;
from this, one will conclude:

P — Pis — Pus .
XYs ™ X Y XY~ % Y, Xzyg_)%yz’
l.e.:
&: &: &
Qs Uz s

One will likewise have:
P21 X2 + P31 X3 + P2aXa = 0,
P21Y2 + Pa1Ys + Prays =0,

SO.
P2y - Pzs - Pas .
XY~ % Ys  XiTYVaX  XYa~ VX
l.e.:
Po_ PP
s e Chs

From the third of equations (3), one will likewise deducat tihese equal ratios are
further equal t@ss/ gi2, so one will finally have:

(9) Po_ P Pu_Pu_ Pp_Pxs
G4 Qs Gs G Ghs Gha

and upon combining formulas (2) and (6), and changing the icdeett of
proportionality slightly, we can write:
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o = P(E47,=N€) =0(XY ;= Y X),
s =PE{1:=NEI =0 (XY ,~ Y XD,
(10) e = P({1,=NE€ ) =0(XY ;=Y X),
Fy = P(EJ1,=11£ ) =Xy, Y X)),
Ly = P(§41,~ 1N £7) = T(XY 3= Y X),
e = P&/ £ = T(XY ,~ Y X)),

and it is these quantitias , which are susceptible to a double meaning, that we will
adopt for the coordinates of the straight line; theserdinates verify the quadratic
relation:

(11) afr) = 2(r12r3a+ rizrag +riarz3) = 0.

This quadratic forna(r) will play an essential role. We shall establisht thact by a
proposition that is of the greatest importance.

5. We seek the condition that the two limes' should meet; for this, if we start with
equations (3) then the limewill be the intersection of the two planes:

(12) { X, +r X +r, X ,=0,
X F X+, X = 0,

and the ling’ will be the intersection of the two planes:

(12) { e e 0
X, 1, X+, X =0,

EliminateX; andX; from (12) and (132. We will then find that:

(r13r1’2_ri£ 12)x ot (I’ L '12_r ’r14 12< =0,
(rzgrllz_r '25 12)x st (I’ 4 '12_r 'I’24 12< = 0.

The necessary and sufficient condition that they shodet is then:
(13) (=118 € £ By =1y F P K 0 20, =0,
which may be written:
o Ud oa T ¥ U Bt £ AP F 0 bl Bd % ) =0.

However, one has:
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12734 +Tr13r42+r14723=0,
andr,4 = —rap, moreover. One will then have:
13024 —Tr14123=Tl12134,

UPLPYRRL BV SPYall (P BV

and equation (13) will become:
r12rl'2(r 15 2%4+r ’{2 34+r r13’4é+r f‘13 4; r 14’1 25 r' 14)2 = 0

Our calculations supposed thiat and r), were not zero, which is a hypothesis of no
importance. The desired condition will then be wnitte

(14) r12r3’4+ri£ 34+r [3 ’42+r i’13 4§+F rll4’ 2-1‘: IJ 14 = 0
However, if one refers to the expression ddr):

afr) = 2( 1234 + 13742 +r14123)

then the left-hand side of equation (14) may be written:

1l dw() , dw(r) , Odwt), 0wt), 0wt), OJwt) ,
= r+ r.+ r! .+ r .+ r' r.
2 arlZ " arlS " d’l4 H a 23 = a 34 * a 42 *

One generally represents that expression by the symbol:

afr, r') :E[aw ! +...+% ! j;

— r
2\ or, or,, =
the condition that they meet will then be expressetheyequation:

(15) afr, r') = 0.

Thereforejf one constructs thEOLAR FORMa([r, ') relative to two lines r,'rthen
the vanishing of that form will express the intersection of tieslr and '

This fact has the greatest importance: Thanks teeitmay henceforth free ourselves
of all considerations of point-like space or planar sphathave served us up to now as
intermediaries for arriving at this quadratic formand the remarkable properties of its
polar form. All that we need to retain here is the fact that if one choosgearkitrary
quantities k2, ri3, ra, a4 ra2, 2z that are coupled by the equation:

afr) = 2012734+ r13r42 +r14723) = 0
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then one will find that they define a lifi¢ is less important for the moment how the
construction of the line might result from that defor) and that, moreover, the
intersection of the two lines r, is expressed by the equatiafr, r') = 0

It is assuredly quite worthy of interest that thisgemotion of the forner) suffices
to enlighten all of line geometrgndwith no further assumptions

6. Our primary concern shall be to give a broader pictdirthie form w2 If we
express the parameteisas linear functions of the six new parameiers

(16) ik =Aik 1 X1 + ... Ak 6X6

then nothing will prevent us from taking, X2, ..., X to be the new variables, since the
determinant of the linear substitution (16) is non-zefbhese new variables will be
linked by a homogeneous quadratic relai@r) = 0, where the forng(x) is the transform
of the formedAr).

As for afr, r'), its transform will be, after a well-known propedfyquadratic forms,
the polar formé(x, X'). Here is, in addition, the proof of this fact: Lefy(ris, ..., I23),

!

(r,, 5, ..., 1);) be two systems of values oind let ki, Xz, ..., %), (X, X,, ..., X,) be
the corresponding systems of values Xor The systemxg + Ax ), (x +AX;), ..., Xs
+Ax%;), whereA is arbitrary, will correspond to the systerpAr),), (riz +Ar5), ..., (23
+r,,), and one will have, in turn:

afr + Ar') = &x + AX),
SO:

(17) ar) + 2a(r, r') A + afr) A% = X) + 28(x, X)A + A%,

and, upon identifying the coefficients 4%, A, 1, one will find, apart from two obvious
relations, the relation that we needed to find, namely

afr, r') = §(x, X),

where, from formula (17) itself, one will have:

0§

XGXS

ZExx—— +—++
) = 5 % o

The particular form that we found for the quadratierfar(r) is not essential; a linear
transformation of the parameters permits us to contbet form into an arbitrary
guadratic form in six variables (which is arbitrary if cth@es not shrink from a linear
transformation with imaginary coefficients) whosecdisinant is non-zero. One may
then state the following theorem:

To any system of six variableg Xz, X3, X4, X5, Xs that are linked by one quadratic
relation &x) = Owhose discriminant is non-zero, one may associateladefined line in
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space, the correspondence having such a character that the equétiow’) = 0
expresses the notion that the lines xmeet.

Now that we have given all due weight to the fundasalesguadratic formé(x), we
may penetrate further into the theory by employing only dhalistic and projective
elements from now on.

7. The first of the elements that we shall appeastthé plane pencil of lines — i.e.,
the set of lines that issue from a point in a plane. célethat point and the plane the
supportsof the pencil of lines.

A pencil is defined completely by two of its linesandb; all of the other ones will
have coordinates of the form:

(18) X=Aa+ ub,
whereA, i are parameters. Indeed, one first has:
&x) = A a+ub) = &a) A* + 2&a, b) Au+ &b) 17,

and sincef(a) = 0, &b) = 0 and&(a, b) = 0, due to the intersection of the lireeandb, it
will then result that:

dAa+ub)=0.

Therefore,&(A & + 1 by) are the coordinate of a likethat line is part of the penci,(b).
Indeed, if one letd be a line that cutg andb then one will have:

f(a,b)=0, £(b,d)=0,
and consequently:

f(Aa+ub,d)=¢a, d A+ b, d u=0.

The lines represented by the formula (18) thus cut anydlifiat cutsa andb; this
will happen only if these lines are in the planea( b), as one sees by takingto be an
arbitrary line of that plane. Likewise, by takiddo be an arbitrary line that issues from
the point &, b), one sees that all of the lines (18) must pass thrdwgpdint &, b). All
of the lines (18) then define part of the penajllf). | add that, conversely, any line of
the pencil 4, b) is representable by formulas (18). In effect, takaraitrary line d that
cuts an arbitrary line of the pencil 4, b). There is only one line of this pencil that cdts
(one does not suppose tlokis cut by all of the lines of the pencil), and that unitjue is
the linez Now, one may determing 4 in such a way that cutsd,; it suffices to verify
the equation:

fx,d)=4(a dA+(a du=0.

There is then a line (18) that cuds and since all of the lines (18) define part of the
pencil, that line (18) that cutband belongs to the pencil may only be the #rtkat one
took arbitrarily in the pencilg, b); therefore, any line of the pencd, (b) is identical to
one and only one line of the system (18).
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In summation, if one refers to formulas (18) theratty value ofa : y there will
correspond a line of the pendd, (), and conversely. Formulas (18) will thus realize the
representation of the plane peneil If).

However, there is more, sinde: i and the lines of the pencil correspond uniquely —
i.e., since any line of the pencil corresponds only omgevaf A : 1, conforming to the
principle of correspondence in its simplest form, ill thien result that if one takes four
lines a, B, y; 0 of the pencil, and letg, g, 1, v be the corresponding values.bf 1 then
the anharmonic ratioa( £, y; J) of the four lines will be equal to the anharmonic r§tio
o, 1, V) of the corresponding ratios:

(19) @B yd=p oru).

For example, the linesig + ) and @a — () form a harmonic pencil with the
linesa andb.

8. Two lines that intersect define a plane pencil; tHiees that intersect form a
triangle or a trihedron. If they form a triangle treamy line that cuts them generates the
system of lines of a plane (planar system). If theegn a trihedron then any line that cuts
them passes through their common point, and the séiesé tines generates what one
calls aspray of linesi.e., the set of lines that issue from a fixed poifhe geometry of
sprays and the geometry of planar systems are reciprticghould then not surprise us
that line geometry has the same language for both e thnd is incapable of
establishing a distinction between them. On the contoame must see that as a sign of
the perfection of line geometry that | have alreadydait to.

Thus, leta, b, ¢ be three lines that intersect: We say that all eflites that cué, b, ¢
form what we call dayper-pencil because it is repugnant to opt for one or the othireo
expressionspray or plane pencilif they both have the same status. The word “hyper-
pencil” should shock no one, and is indeed appropriate s thgstems that enjoy, as one
just saw, a representation that is analogous to th&egbencil. Leh, b, c be three lines
of a hyper-pencil: | say that the set of lines of theteay is represented by the formulas:

(20) Xi=Aa+ub+va,

whereA, y, v are arbitrary parameters. The proof is analogous torieehat we made
use of for the case of a pencil. | will thus not edphe details here. One first confirms
that:

fAa + b + v0) = @) A* + &(b) 1 + &0) V + 28(a, b) Au+ 2&(b, ©) uv + 2&(a, ¢) Av

is identically zero, which proves that the quantitigsare the coordinates of line.
Consequently, one will confirm that this lireutsa, b, ¢, and, as a result, belongs to the
system; finally, one will prove that any lizeof the system is a line (20), by showing that
two arbitrary lined, e that cutz are always cut by a line (20) that is unique, in general.

9. We shall make incessant application of these nqtiafter we have nonetheless
made known some general notions on ruled systems.
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A line depends on four absolute parameters, so the lingsmae ghat are subject to
onecondition preservéhree parameters, and the set of them constitutes a COMPLE
Two conditions leave onlytwo parameters, and the line then generates a
CONGRUENCE. Three conditions toone parameter, and the line then generates a
RULED SERIES; a ruled series does not always fororfase, because the tangents to a
plane curve, for example, might not be regarded asifigra ruled surface, properly
speaking. There is, moreover, another time when iihasnvenient to speak of ruled
surfaces The hyperboloid, as a surface, serves to support, intfextuled seriesand it
would be a real inconvenience for us to not separate tivesserries by confusing them
with the same name astirfaceor hyperboloid Finally, four conditions determine a line
or, to say it best, A SET OF LINES. There is a gireonvenience to saying, as one
often does when one speaks of an arbitrary geometnealethat depends upan
parameters, that conditions defin@neelement. That locution is vicious and amounts to
denying the theory of binary forms. In reality, theonditions — which are four, here —
define a setof lines that is generally finite, and these elemenfsyethe interesting
property that one will lose the notion if one congsemneself to saying that four
conditions defineone line. To give the simplest example of this that iawdr from
another school of ideas, one knows that two planecsud®finea setof nine points that
enjoy special properties and that two curves of ondl@andn intersect ainn points, the
set of which presents some general properties thatudfieiently removed from the
properties of a unique point that the properties of a coireedermnwill be the same as
those of a simple straight line.

For these reasons, we thus consider five types efirgystems. First, theiled
space or the set of all lines in the space, and thenctmeplexesor systems withriple
indeterminacy. Next, one has tbengruences or doublyindeterminate systemsthe
ruled series with simple indeterminacy, and finally thesets of lines with zero
indeterminacy.

10. The condition for a line to belong to a plane pensilequivalent to three
conditions, since the lines of such a pencil constituteuled series; likewise, the
condition of belonging to a hyper-pencil is equivalentto tonditions.

Consider, from now on, a complex of lines; it issthdines that belong to a plane
pencil that constitutes a set of indeterminacy zéiee number of lines of that set is what
one calls thelegreeof the complex.

On the contrary, the lines of a complex that beltm@ hyper-pencil form a ruled
series. If the hyper-pencil is a spray then one wiwehall of the lines of the complex
issuing from a point. Their set obviously forms a ¢ameich we shall call theone of
the complexAny point of space is therefore the summit of a cofngne complex. If, on
the contrary, the hyper-pencil is a planar system then will have the lines of the
complex situated in one plane and enveloping a curvecuhes of the complex Any
plane thus contains its enveloping curve of the complitowever, note that this curve is
defined by its tangents and might nevertheless degenetatene or more points; we
will soon have some examples.



Chapter I. The coordinates of the straight line. Gaitiess. 13

THEOREM. —The degree of any cone of a complex and the class of any planar curve
that envelops the complex are equal to each other and to the degree ahiiexc

Take a poinD. In order to get the degree of the cone of a compldxsummitO,
one must cut this cone with a plafiethat goes throug® and count the number of lines
of intersection. The set of generators thus obtaiseubthing but the set of lines of the
complex that are contained in the pen€, (1). The number of these lines is then
precisely equal to the degree of the complex.

One can apply the same reasoning to the enveloping celatese to a plan€l. In
order to get the class of that curve, one counts tigetdas that one may pass through a
point O of . However, the set of these tangents is nothing buseéhef lines of the
complex that are contained in the pen€l (1). Therefore, the class of the curve is
precisely equal to the degree of the complex.

I will return to these general questions later on. thermoment, the theorem will
suffice for me.

11. Now take a congruence. Passing through a point is egnoival two conditions
for a line; similarly, being in a plane is equivalentwm conditions. Therefore, the lines
of a congruence that issue from a point form a setd&terminacy zero. The number of
lines of that set is thdegreeof the congruence. Likewise, the lines of a congru¢mae
are in a plane form a set whose number is calledlt#ssof the congruence.

12. If a ruled series is given then one will call the t@mof lines in the series that
cut an arbitrary line theegreeof the series. If the lines form a ruled surfacenttias
degreewill properly be that of the surface. If they enveloplanar curve then its degree
will properly be theclassof that curve.

Finally, one may call the number of lines that congadinite set of lines itdegree.

| shall begin by studying the complexes of first degeeewell as their common
systems.



CHAPTER II.

LINEAR COMPLEXES OF LINES.

Pole and polar plane. — Pencils of complexes. — Conjuigate - Distribution of poles and polar planes on
a line of the complex. — Normal correlation of a compleProperties of conjugate lines. — Reciprocal
polars with respect to a linear complex. — Analytic repnéation. — Special complexes. — Klein
invariant. — Conjugate lines.

13. A complex is calledinear when it is of the first degree — i.e., when, among the
lines of an arbitrary pencil, there is only one of thitiat belongs to the complex. The
cone of the complex will then reduce to a plane, anetiveloping curve in a plane will
reduce to a point (i.e., a locus of class 1). This giesiouble theorem:

The lines of a linear complex that issue from a point P generate a planerte calls
the POLAR PLANE of the point.

The lines of a linear complex are traced in a plane that passes throfiggdagpoint
of that plane — viz., the focus BOLE of that plane.

There thus exists an infinitude of pencils in space whiogs all belong to the
complex: They are the pencils that are defined by a @ouidtits polar plane, or, what
amounts to the same thing, by a plane and its pole. Wthese pencils theencils of
the linear complex).

14. One may deduce the properties of a linear complex &amique proposition
whose proof is quite simple.

Consider the set of a plaé and a point O in that plane: The polé @ the plandT
is in the polar planél’ of the point O.

In other words, if a poinD and a pland1 are UNITED 6eeno. 3) then their
corresponding polars in the complex will be a UNITED pléh and a pointO’, resp.
Indeed, the lin€@DO will belong to the complex, since it will pass througk pointQ’
and will be in the polar pland to that point. However, it must then be contained in the
planell’, which will be the polar of the poir® of that line. The plané&l’ will thus
contain the poinO'. Q. E. D.

Suppose that the lirkdoes not belong to the complex, tkats a point of that line,
and thatl1 is a plane through that point. From the precedingrémothe pole ol will
be in the polar 0©. However, sinc® is an arbitrary point of the liné, andll is an

() One may compare this with what we shall callpkacil of the complebater on in the general case
of an arbitrary complex.
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arbitrary plane through that line, one may conclude thatpoles of all the planes
through a line will be situated in the polar planes to all of the planésadfline.
It then results immediately that:

1. The polars to all of the points of a line d are the planes that cubrigaihe same
line d.

2. That line dis the locus of the poles of the plane through the line d.

The pole of a plane throughis then the point where it piercds and the pole of a
plane throughl' is the point where it pierces The linesd andd’ are then in a reciprocal
situation with respect to each other; one calls thenjugate lines.

The following remarks are used frequently:

Any line x that cuts two conjugate lines dbdlongs to a complex.

Consider the pland(d, x) throughd andx, so the pole of that point is its intersection
with d' — i.e., at precisely the poift(d', x) of intersection ok andd'. The linex of the
planerll(d, x) is thus found to pass through the pB{d', X) of that plane; it is therefore
implicit that it belongs to the complex.

Any line of the complex that cuts a line d also cuts its conjutjate

Indeed, consider the plam&d, x) that one passes throughandx, by hypothesis.
The linex in that plane that belongs to the complex must pasaghra pole of that
plane. Now, that pole is the trace of the plang¢henlined’; the linex will then cutd’ at
that point.

Two pairs of conjugate lines form four lines that are carried by theegpradric.

Indeed, let, & andb, b’ be two pairs of conjugate lines, and consider the quadric that
is generated by a linethat leans against &', b. The generatorsof that quadric belong
to the complex since they cat and &', and, since they cuh they must also cub'.
Thereforega, &, b, b’ are four generators of the second system.

In general, suppose that the generakoo$ a system of a quadric belong to a linear
complex. Consider a generatpof the second system and iétbe its conjugate; that
conjugate will necessarily be another generator of the system ay. Indeed, all of
the generatorg cuty, and, since they belong to the complex, they musy cutVe thus
arrive at the result that if a quadric is generated bylities x that belong to a linear
complex then the generators of the second systembeifound to be associated pair-
wise as pairs of conjugate lines. We give the nanwuadrics of the completo these
guadrics.

In concluding this section, we make the following remarks:
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We supposed to begin with that the lohelid not belong to the complex. If it does
belong to the complex then it will be its own conjugéikecause it is the locus of poles of
its planes and the envelope of the polar planes of g0

If a line d does not belong to the complex then it will be imgassthat it cuts its
conjugated’, since ifP is the point of intersection then any plane throdghll have its
pole at the poinP, and the linad that passes throughand is traced in this plane will
belong to the complex.

15. Consider four planeBl,, Iy, M3, M4 through a line that do not belong to a
complex, and leP,, P,, P3, P4 be the poles of these planes. One obtains thesg lpple
cutting the pencil of the four planes by the Ithe¢hat is conjugate td. Theanharmonic
ratio of the four poles is therefore equal to that of the four planes.

It is interesting to prove that this proposition furtlextends to the case of planes
passing through a line that belongs to the complex.

Indeed, led be a line of the complex and eta' be two conjugate lines that do not
cutd. Consider the quadric that is generated by axitifaat leans om, &, andd. That
guadric will be a quadric of the complex sinceuts the conjugate linesanda’. Pass a
planell through the lined; that plane cuts the quadric, not only alahgout along a
generatorx that must cud at the point of contad® of the planell with the quadric.
However, two lines of the complex pass throWylhat are contained in the plafk
namely,d andx. ThereforeP is the pole of the poinfl. From this, one infers the
consequence: The pole of a plane throdgs justly the point ofl where that plane is
tangent to the quadric.

However, one knows the beautiful theorem of Chaslegshe distribution of the
tangent planes along a rectilinear generator of a quadi@ anharmonic ratio of four
planes through that generator is equal to that of theploats of contact of these planes
with the surface.

It then results from this theorem, when combined wheh preceding remark, thet
one passes four planes through a line d of a complex then the anharmonic g0 of
poles of these planes will be equal to that of the planes themsélvas the theorem,
any linear complex defines a homographic correspondencecbnoéds lines between
the points and planes of that lid. ( Such a correspondence is frequently found in ruled
figures, and | believe it would be useful to attributepacgal name to it, which is an
anharmonic correlationor simply, acorrelation

We might then say that any linear complex defines alation on each of its lines,
namely, the one that relates a point of the lineg@dlar plane, and to distinguish that
correlation from all of the other ones that one lhignagine on that line, | will give it the
name of thenormal correlation of the compléX).

16. In the preceding section, we have seen that a lineaplex is provided by
means of a transformation under which a point trangaio a plane, a plane, to a point,

() 1 will henceforth call any plane through a line filane of the line.
(") One will verify an extension of that notion to tbase of an arbitrary complex later on.
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and a line to another line. We shall extend this remadkthus obtain a result that is
important in several aspects.
First of all, recall the theorem that was provedonl4:

[. If a point O and a planél are united then their corresponding elements will be a
planel1 and a point Othat will also be united.

Here are some other theorems in which lines figure:

[I. If aline d passes through a point O then its conjugateilll be traced in the
planell’ that is polar to O, and conversely.

This theorem is an immediate consequence of the tlefirdf the conjugate lines.
[1l. If two lines a and b intersect then their conjugate®'awill also intersect.

Indeed, sinca andb pass through the same po@then, by virtue of the preceding
theorem, their conjugat@s, b’ will be in the same plari@ that is polar td.

It results immediately from this that the lines gencil then correspond to the lines
of a pencil; any of the planes and lines through a g@inbrrespond to points and lines
that are traced in the plafi that is polar td.

We have already said that one gives the nanspraly to the set of planes and lines
that issue from a point and thatm&nar systento the set of points and lines in a plane.
One may thus say that a spray corresponds to a @gsta&m, and conversely.

Consider, in general, a figutE that is composed of points, lines, and planes, so by
taking the corresponding elements to all of the onekdrfigureF, one will generate a
figure 7, which we say will be the reciprocal 8f To the points of a straight line jA

there will correspond planes JA” that pass through a line, and conversely, to the lines

that issue from a point, the lines in a plane, and asel)e and to the planes through a
point, the points of plane, and conversely, etc.

To a polyhedrorP there will correspond a polyhedr@h in which:
1. The edges will be conjugate to the edgeB. of

2. The summits will be poles of the planes of thedaafP.

3. The planes of the faces will be the polars tostimamits ofP.

To a non-developable surfagen the figureF, when considered as a locus of points

O, there will be a surfac8 in F’that is defined to be the envelope of the plahéhat is

polar toO, and the point of conta€’ of " with the surfaces will be pole of the plane
I that is tangent &b to the surfacé, in such a way that the surfaBewill also be the
locus of poles of the tangent planesSo One may further remark that the pencil of
tangents to the surfa&at the poin©O will have the pencil of tangents to the surf&cat
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O for its reciprocal. One may thus further define théas@S to be the envelope of the
lines that are conjugate to the tangents of the sufface

Now, letC again be a curve that one might define to be eithelothes of a poinD,
the envelope of the tangemtst that point, or the envelope of the osculating @&hat
O. The locus of the pol®' of the pland1 will be a curveC': Consider three osculating
planed, M4, M5 to the curveC that are infinitely close, and 1€, O;, O, be their poles,

which are three points @', so the plane of these three points will be thellasiong plane
to the curveC' at O, and its pole will be the point of intersection of theee plane§l,
My, My} i.e., the poinO.
One may thus again define the cu¥eto be the envelope of the polar planes of the
points of the curve€.
Finally, take two neighboring poin@, O; on the curveC. The lined — orOO; — has
for its polar, the intersectiadi of the plane$1’, M} that are polar to the poin®andO;,

and which are both osculating planes that are closket@urveC'. The lined' is then
tangent to the curv€'. From this, one has the following theorem, which iegh third
definition of the curveC':

The polars dto the tangents d of a skew curve C envelop a skew curve C

It is in this case that one must recall the distimgt that were made at the end of no.
1. It is clear that if one considers the systéfpsEn, Eq of the curve then they will
transform into the systemg;, E,, E; of the reciprocal curves. | will henceforth call

the setEq of tangents to a curvewhich may be skew or planar, or even reduce to a point
—developableas in the case of the cone.

To summarize the material in this paragraph, we sayathaear complex permits us
to realize aualistic transformation of space.

This process did not escape Chasles in his beautiful meBw la dualité et
I’lhomographie which terminated hig\percu historique. The mechanical form in which
that illustrious geometer presented that transformasiar the greatest importance, and
because of that we shall return to it in detall later Bv¥e also verify in the applications
how that same transformation has found a very éepltice in graphical statics, thanks to
the ingenious research of Maxwell.

17. Before going further, it is convenient to express tisalte that we just obtained
analytically.
Let afX) be the fundamental quadratic form, and let:

1) f(x1, X2, ..., %) =f(X) =0
be the homogeneous algebraic equation,iR,, ..., Xs, which, when combined with:

(2) ox) =0,
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represents the linear complex considered.

| would like to prove that(x) is linear inxs, X2, ..., Xs. Indeed, let, b be two lines
that intersect. One has seen in no. 7 thaktbéthe straight line of the pencd,(b) are
of the forma A + b; 1, whereA : pis arbitrary. Upon expressing the idea that theXine
of that pencil belongs to the complex, one will have:

f(al)l + b]_,U, A+ bz,U, Y be,U) =0.

That equation must be of first degreedin ¢ because only one line of the complex
belongs to a given pencil; one must have, as a consequence

f(X) SAIX I FA X+ ...+ A X -

Conversely, any linear equationdmbviously representslimear complex.

18. The condition for a lin& to cut a linez is expressed by the linear equation:

0= 2&(2, x) :g_:l)x1+a_a))(2+...+a_a)x6_

0% 0%

The set of lines that cut a fixed lizghus forms a linear complex. However, one easily
recognizes that this is not the most general linear ecamplndeed, identify an arbitrary
linear function ofk with a(z, x); we will have:

W w dw  w
@3) 02 _0%_0%_ _0%
A A A A
One will infer from these linear equations m z, ..., Z, the values of those

guantities— or rather, their ratios and, by substituting these values iai(z), that form
will be become a homogeneous, quadratic fordyjmiy,, ..., As:

4) «(2) = Q(A);

this formQ(A) will be theadjoint formto the forma(2).

Therefore, if theg are the coordinates of a limeéhen one must have th@(A) is zero.

If Q(A) is zero then, from (4), the values »fthat one deduces from equations (3)
will be the coordinates of a line, and from equationst{@t line will be cut by all of the
lines of the linear complex:

XA X =0.

One gives the name special complexo such a complex, and the liaavill be the
called thedirectrix or axis however, the word “axis” has been employed with many
meanings in that same theory of lines, so the wordctis¢ seems preferable.
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When the expressio(A) is non-zero, the linear complex will possess noctiine
however, the consideration of the fo@{A) does not become less interesting. Klein
called it theinvariant of the complex. The name of “invariant” is justified by the
following remark:

If one performs a linear transformation on the \@esx then the coefficients; of a
linear form onx will be found to transform, as one knows, by the mexal
transformation, and the forf2(A) will be what one calls @ontravariantof the form
af2); this signifies thatQ(A) will be reproduced, but multiplied by a power (viz., the
second) of the determinant of the direct substitution.

If, for example, one has reduced the faifr) to the Plicker type:

WfX) = 21 X4 + X2 X5 + X3 Xg)
then the fornQ2(A) will be the following one:
Q(A) = 2(A1A4 + Ay As +A(>,Ae)

On the contrary, if one has reduced, as we verify Kitgin did, the forma(x) to a
sum of squares, namely:
aX) = K + K+ o+ Koxg,
then one will have:

Q(A) :ﬁ+&2+...+ ASZ

Ky K, Ke

At the beginning of this chapter, we were not preoccupiddtive case of the special
complex. It is clear that in this case the linestled space will all have the same
conjugate— namely, the directrix- and that all of the properties that relate to the
transformation by reciprocal polars will be found to tealid.

19. Therefore, suppose that one is dealing with a non-dpecigplex, and lez be an
arbitrary line; we seek its conjugate To that effect, | observe that of the three
equations:

2AX=0, wzx)=0, auXx) =0,

one of them must be a consequence of the other twaube any line of the complex that
cuts a line will cut its conjugate and any line that cuts ¢agjugate lines will belong to
the complex.

In order to arrive at this result easily, | obsetvat bne has identically)(

() Indeed, if one se = dw/ dz then from the definition of the adjoint form, one iild that:

W2) =Q(2);

it will then result that:
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Chapter 1.
0Q dw
> Ax = Y222,
0A 09X
and the three equations that we have to consider mayitiben:
aQaw =0, ZZIa_a): , uia_a):o
aA 6>§ 0X 0X,
From the remark that was made before that they mdsiceeto two, one can find two
guantitiesd, y such that:
0Q
5 — =Az+uu.
(5) oA H

If one expresses the idea thatu,, ... are the coordinates of a line then one will find

that:
(G—Q—)lzj =0
or:
dQ
dw=dQ=» —d
v dz 4

However, one will also have:

and, sincawis homogeneous:

2w= Z—d; = ZZ dz
Hence:
2dw=2.7 dz+2.2dz,
and finally, by subtraction:
dw=>zdZ.

Upon identifyingdew= Zj—QdZi , one will then have:

0Q
ooy %)
S0z 0w
0Z;
and, as a result, we will have precisely:
0Q
(7j _ N0 0Q(A) dw

ZAx=ZA = oA ox

62
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w(a—Qj—Z)lw(aQ zj =0,
0A 0A

upon remembering that(z) = 0. One has, moreover:

; , 3 6(2]

Q Q )

w(aAj el 2 (GA Zj'z Tpdw 4T LA%
0A

one must then have:

(6) QA) -1, A z=0.

Equation (6) gives ud, and equations (5) furnish the coordinates of theditteat is
conjugate t@

This calculation supposes thatA; z is not zero; i.e., that does not belong to the
complex.

The symmetric form of equations (15) indeed exhibits dwgprocity between the
linesz andu.

It is simple to find an algebraic proof of the variouspenmies of conjugate lines that
were already established geometrically when one statttisformulas (5); we leave this
to the reader.
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SYSTEMS OF LINEAR COMPLEXES.

Correspondence between the points and planes of a liversé pairs. — Homographic correlations on a
line. — Anharmonic ratio and angle of two correlaticagnvolution of two correlations. — Singular
correlations. — Pairs of conjugate lines common tolimear complexes. — System with two terms. —
Linear congruence. — Singular linear congruence. — Casdeodmposition. — Invariant of a
congruence. — Anharmonic ratio of two linear complexes.neati complexes in involution. — Linear
systems of linear complexes. — Complementary systei@gstems with three terms. — Lines common
to three complexes. — Semi-quadrics. — Complementary semiicgiad Case of degeneracy. —
System with four terms. — Lines common to four complexednvariants of systems of linear
complexes. — General form of these invariants.

20. | will preface the study of linear systems of compke of first degree with
several remarks of a general nature concerning the spomdences that might exist
between the points of a lineand the planes through that line.

Let u be a parameter that fixes the position of a plirdn the linex, in such a way
that to a poinM there corresponds only one valuau@nd conversely. Likewise, lebe
a parameter that uniformly corresponds to the positions planes throughx. For
example,u is the distance fronM to a fixed point ofx, t is the tangent of the angle
between the plangand a fixed plane through

A relation between andt:

f(u,t) =0

defines a correspondence between the points arid the planes of according to a
certain law. Iff is of degream in u and of degreg/ in t then one may say that this
correspondence is aflass manddegreex. If m = 4 = 1 then one recovers the
homographic correlationghat were introduced in no. 15.

Two correspondences of degraandnY and of clasg/ andy/ will have,in general:

um + 4 m

commonpairs if one calls the system that consists of a pMnand the corresponding
planerrapair of a correspondence.

For example, two homographic correlations will have tpairs in common, in
general.

This is why if one is dealing with two Chasles cotielas relative to a line common
to two ruled surfaces then the two pairs will be the paos of agreement of the two
surfaces.

21. Consider two pairsM, 7, (M', 7f) along a line. We call the pairs that one
obtains by exchanging the points thawerse pairsthe inverse pairs will then be:
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(M, 1), (M, 7.

22. Consider two homographic correlatiddsH' on a linex, and let E, ®), (F, ®')
be their common pairs. If a plameturns around then the homologued andO' of 77
under these two correlations will correspond homograghicahd F, F' will be the
double points of that homography. From a well-known propeftigomographies, the
anharmonic ratio:

(O,0,F, F) =k
will be constant.

Likewise, if a pointO moves along the line then its corresponding plamesd 77
will describe two homographic pencils whose double plankbevd, ®'; here again, the
anharmonic ratio:

(77 71, P, D) =k
will be constant.

| add thak; = k.

Indeed, letzrbe homologous t® in H, and let/7 be homologous t® in H', so we
will have:

(77 71, P, D) =k; .

Let O' be homologous tat in H; the planesf will have the pointO' for its
homologue irH and the poinO in H', so one will have:

(6, 0,F F) =k

Now, under homographic correspondences the anharmoniofbior elements will
equal that of its four correspondents. Therefore, SMd@', F, F' corresponds taz 77,
@, @' in H, one will indeed have:

kl =k

This ratiok will be called theanharmonic ratioof the two correlations.
Ever since Laguerre saw fit to define angles by an ardracnmatio, one has often
attached an angle to an anharmonic ratio by setting:

1
/-1

In the case of two planes, for examplek iflenotes the anharmonic ratio that they
define by the two isotropic planes through theimomon line then, according to
LaguerreV will be found to be precisely equal to the angdeneen these two planes.

In order to indicate an immediate application loditt notion of angle between two
correlations, suppose that they are the two Chasle®lations of two ruled surfaces
along the common linex. Suppose, moreover, that by means of a homographi
transformation one has arranged that the plahesd®’ of the pairs of agreement are
two isotropic planesV will then be the angle of two tangent planes atsame poin©

V=

logk.
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on two surfaces, and since that angle is constantsee that the transformed surfaces
will intersect along their common line with a constant angle.

23. A patrticularly important case of the angle betwiem homographic correlations
is the one in which the angle is a right angle, whitloants to the same thing as the case
where one has:

k=-1.

We will then say that the two correlations arenvolution.

One sees that in this case the pairs of p@dntd' that correspond to the same plane
will correspond involutively; the same will be true ftvetplanes that correspond to the
same point.

Here, the notion of inverse pairs that | have alregambken of intervenes.

Let M, 7) be a pair for a homographic correlatibh let H' be a homographic
correlation in involution with the first one, and &4, 7) be a pair oH’, in which the
point M is common with the first pair. LeM' be the homologue off under the
correlationH, in such a wayM, 7), (M', 7f) will be two pairs oH. It is clear that since
(M, 1) is a pair oH', (M', 7 must be another one. Inded&di,andM’ correspond to the
same planef in H andH’, respectively. Therefore, due to the characterigtitnsetry of
the involution, the point$1 and M' must be homologous to the same pléhandH’,
respectively, and sinc# is homologous td/' in H, it must be homologous td in H'.
Therefore, the pairsaM’, 7, (M', 7f) that are inverse to the pairsl,( 7, (M', 77) will
belong toH'.

The proof itself proves that conversely: If a corielaH' admits two pairs that are
inverse to a pair that belongs to a correlatiprthen the homographic correlatiodsand
H' will be in involution.

24. 1t will be useful to put the preceding results intcaaalytical form.
The equation that relates to a homographic correlatithinave the form:

aut+bu+ct+e=0.

That equation will depend upon three paramatds: c : e.

In a paper that dates to 1882, | indicated a mode of repregehomographic
correlations by means of a plane in space, by considaringc, e to be the coefficients
of the equation of a plane. | will not refer to tiepresentation, which says nothing
essential to this discussiod).(

Observe that if:

aut+bu+ct+€ =0

(®) At almost the same time, Stephanos published a repatioe of binary homographies in the
Mathematische Annalghat presented several ideas that were common to #setlosi | alluded to here.
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is the equation of another homographic correlatibthen the homography that relates to
homologous planes at the same point may be written:

(ac —ca)tt' + (@€ —b'c)t+ (bc —aet + (b€ —b'e) =0.
The condition of involution will then be:
ag —-bc—-bc +ae=0.

If one sets:
&a, b, c,d) =bc—aeg

for the moment, then this condition can be written:

%a’+%b’+%d+%é =0.
oda db Jc de

This expresses the notion that the elemeatb,(c, €), (@, b', ¢, €) are conjugate with
respect to the quadratic fora, b, c, €).
The correlations for which one has:
bc—ae=0
will be calledsingular.
Singular correlations present a peculiarity that idequemarkable. Their equation
may be written:
(at+b)(au+ 09 =0,
or further:
_ (t—1) (U—uo) =0,
upon setting:
b

C
to=— , Up=——.

Under a singular correlation, a given pdnhwill correspond to all planes and a given
planerz to all points. Such a correlation will then be chteazed and defined by a pair
(O, 7, and the pairs of the correlation will be divided it classes: One of them is
obtained by associatin® with an arbitrary plane on the line, and the other drye,
associating the plang with an arbitrary point of the same line. The p&k @ will

belong to both of these classes at once; we shall ¢gaint the singular pair of the
singular correlation.

25. What does the analytic condition of involution adfualgnify when one of the
two homographic correlations is singular?
One has:
a€ —b'c—-bc +de=0,
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and if the correlatioil’ is singular then one can set:
a =t, b':—to, C' =-— U, € =uwty,

where ug, to are the parameters of the singular pair. The comdaf involution will
become:
alwp to + buw +cty +e=0;

it expresses the idea that that the singular pair geltoH.

Therefore, we shall continue to say that a homogragdnelationH is in involution
with another ondéd’ — whereH' is singular — when the singular pairkdifbelongs tdH.

Likewise, two singular correlations will be said lte in involution if their singular
pairs have either the point or the plane in common.

Consider all of the homographic correlations that adwo given pairs Wo, to), (U,
t1); their equation can be given the form:

u-u _ o t-t
u-u, t—t,

whereA is arbitrary. Upon developing, this will become:
(1 —A) ut — (U]_—A Uo)t— (to—ﬂ t]_) Uu+toup—Atiug=0.

The condition of involution with another correlatiga’, b’, c’, €) will then be
written:
€(l-AN-c(Aty—to) = b (Au—u) +a(tour —At; ug) =0,
or further:
(€+ctrp+tbum+a wmty) —A(€+cti+b uw+a uty) =0.

Therefore, consider two correlations that admit themmon pairs o, to), (Ui, t1); these
correlations will correspond to two valuds= a, A = b of A, and the condition that the
correlation &, b', ¢, €) be in involution with each of them will give:

(€+ctotbw+a mt))—a@ +c'ty+b w+a uty) =0,
(€+ctotbwm+a mt)-Le€+ct+b u+a upty) =0;

€+ctg+bu+a utg=0,
€+ct+b uw+a uty=0.

These equations express the idea that the inverse(paits), (U, t1) belong to the
correlation &, b', ¢, €). One thus has the theorem:

If two correlations HH; have two pairs in common then any correlatidrtht is in
involution with H and H will contain pairs that are inverse to the first dwand
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conversely, any correlation that contains these inverse pairs willooblyi be in
involution with H and H (no. 23).

As one sees, this theorem defines the correlaticatsate in involution with two
given correlations, since these two correlations ggherally have two pairs in common.

26. One fact dominates the theory of systems of lin@anptexes, and it is the
following one:

Two linear complexes will generally have a pair of conjugate linesmmmon.
One may give a geometric proof of this theorem:

Let A andB be two complexes, &t be a line that does not belong to either of them,
and letA', A" be the conjugates # in the two complexes. First, exclude the case where
A', A" are in the same plané\, A, A" wAA then define a quadriQ, which will be the
locus of the linesX that cutA, A', A". The linesX will belong to the two complexes,
since they will cut the pairs of conjugate lings f'), (A, A") (no. 14). Consider a
generatoryY of Q that is from the same system&sA’, A”". We know (no. 14) that the
conjugatesy’, Y' of Y in the two complexeé andB will also be generators @ of the
same system ds A', A". Moreover, the principle of correspondence provasstthatY’,

Y" will correspond homographically, becaud® and Y’ will be in one-to-one
correspondence. From that, one seeks the Ynbst are traced o@ by the system,
A', A", which have the same conjugates in the two complexes.

One must express the idea thatY” are coincident; there are generally two positions

of coincidenceY, , Y, . TakeY,, and letY; be its conjugate iA. By hypothesisy, will

also be the conjugate té, in B. Therefore,Y,, as well asY;, will have the same
conjugate under the two complexes, and since ®hlyY, enjoy that property among the

systems of generatofs A', A", one must have that will coincide with the second line
Y, . The linesY;, Y, will then be conjugate to each other in the two corgde

I will not discuss this geometric proof. The analytimaof that | will give leads to a
discussion that is much more reliable (sGre), and wii@hprovide us with some useful
formulas.

Take the two linear complexes:

A=2ax =0,
B= z bi X = 0.
The six equations:
0Q(a -
(1) ():pz+pa

03,



Line Geometry, and its applications. 29

express the idea that we learned in the final numbgregbireceding chapter that the lines
z, Z are conjugate in the compleX. Denote the coefficients of the two special

complexes whose axes a&e& byc, ...,Cs, C, ..., G. AS we saw, one has:
0Q(c) ,_ 0Q(c)
Zi = H L = H
ac, 4 ac

and equation (1) may be written:

Q@) _ 90, , 9Q(c)
da, p ac F oc
or also:
00(a-pc-p'c) _, (=12 .., 6).

(& -pG-p0'¢c)

Since the discriminant of the forfh is not zero, these six equations will demand that
one must have:

(2) a—-pc-pc =0 (=12 ...6)
Likewise, six equations such that:
(3) bi—pc-oc =0

will express the idea that the linesz will be conjugate in the compldX
Now, observe thabo — ¢ owill not have to be zero, since otherwise, fromaggns
(2), (3), the complexe#, B would not be distinct, because one deduces fraaseth
equations that:
pb—-oa= (od-op)c,
p'b—-da=-(od-0p)c.

Sincepd — o g is not zero, one has, after dividing by that biredm

4) G=aa+fa,
(5) c=aa+pfa,

which are equations that are equivalen{2pand(3).
In order to solve the problem, all that remainsntlis to calculater : fanda’: [’
One will arrive at this upon expressing the lasadibon that remains for us to write,

namely, that the comple® =X ¢ x, = 0 must be special, and a similar statement st
true forC' =% ¢'x = 0. One must then write:

Q(aa+ b)) =Q(c) =0,
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Q(a’a+ £'b) =Q(c) =0,
or, upon developing this:
(6) Q(a) o + 20(a, b) aB +Q(b) =0,

and a similar equation must be true éor. 5.

This equation will give us two values of: £, and, after substituting one of these
values in (4) and the other one in (5), we will indeedehano special complexes, C'
whose axeg, Z will be conjugate under the two complexes, since equafings) are
equivalent to equations (2), (3), which express preciselyfdbe thatz and Z are
conjugate undef andB.

The theorem is thus established.

The imaginary character of the roots of (6) is not bstaxle; however, the proof
breaks down if equation (6) m: £ has equal roots; i.e., if the expression:

(7) ®(a|b) = Q(a) Qb) - [(a, b))?
is zero. We shall return later on to the hypothesis®hs zero, which is exceptional.

27. We immediately deduce a consequence of the resultwbajust obtained.
Consider the linear complexes that are defined by theiequat

AA+ 1B =3 (Aa +ub)x =0,

where A : u is an arbitrary parameter. We say of these complthasthey define a
pencil,or better yeta system of two terms.

The lines z,'z which are conjugate to both A and B at once, are conjugate with
respect to any complex of the system with two téAyi3).

From the last lines of no. 19, in order to prove thigppsition, it will suffice to prove
that one might find- A, i being arbitrary- two quantitiesr, 7 such that:

Qatpb) _
0(Aa + i)

or furthermore, what amounts to the same théagthe way that one passes from (1) to
(2)]:
T =Ap+ Ug, T =A0 + uco.

Therefore:Any of the complexes of a system of two t€An8) will have a pair of
conjugate lines in common.
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Now, among the complexes of the systé&nR), there will be two of them that are
special, because if one expresses the idea that thelecodA + 1B = 0 is special then
one will be led to write:

Q(Aa + wb) = 0,

an equation that is nothing but equation (6), whereplacesr and i/ replacess. At the
same time, one recognizes by this means that the #ineswill be precisely the
directrices of these special complexes. Therefore:

In any system of linear complex@s B) with two terms there will bre two complexes
that are special; the directrices of these special complexébevihe two lines that are
conjugate to each other in all of the complexes of the system.

28. One calls the set of lines that are common to tweal complexes énear
congruence.

It is clear that the congruence that is common to camplexes of a system of two
terms is composed of lines that belong to all of thepteres of the system. Indeed, the
equationsA = 0,B = 0 imply that:

AA+uB=0.

In particular, the lines of that congruence beloncgheogpecial complexes, and, as a
result:

The congruence that is common to two linear complexes A, B wilbrbposed of
lines that simultaneously cut the lines zthat are conjugate to each other in the two
complexes.

For that reason, one gives the namdiddctrices of the congruence the lines, Z.

In order to find the line of the congruence that isftm® a pointP, one takes the
intersection of two planes that pass throégand the two directrices. That line will be
unique. It will meanwhile be indeterminate if the pdihis taken on one of the two
directrices.

In order to trace the line of the congruence thatusatad in a planél, it will suffice
to join the traces of the two directrices on th&np. There is only one solution;
however, the problem will be indeterminate if the plahpasses through one of the two
directrices.

In summation, the linear congruence that is commadwdocomplexes of first order
will be of first order and first class, a result tlate can, moreover, state priori.
Furthermore, two linear complexes will have an infide of plane pencils in common
that one will generate by associating a pl&heghat goes through a directrix of the
common congruence with the poltwhere that plane cuts the other directrix.
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29. We now arrive at the singular case that we lefteasn which the expressiap(a
| b) is zero. Since the two roots of (6) will be equal, phevious reasoning will break
down.

We first exclude the case where all of the linear gexes included in the system
with two termsiA + 4B = 0 are special; i.e., we exclude the case where:

Q(Ja + ub) =Q(@) 1% + 2Q(a, b) Au+ Q(b) 1A
is identically zero, which would demand that:
Q(a) =0, Q(alb)=0, Q(b)=0.

Equation (6) will then possess a double root, which | sleadbte by : £, and there
will be only one special complex in the system witl terms, namely:

aA+ B =0.

| further represent the coordinates of the directfithe complex byz, and finally, |

consider an arbitrary complex:
AA+1B=0

of the system with two term#\(B).

One first has, by hypothesis:

Q(aa+ f£b)=0.
In addition, form:
Q(aa+ bl Ava+ tpb).

Ao, Lo figure linearly in that expression, and likewige,5. One must then write:
Q(aa+ bl Aa+ tpb)
=Q(aa+ pbla) o +Q(aa+ Bblb) o,
=Q(ala)aA+Q(b|a) Bl +Q(a|b) awm+Q(b|b) Bu .
However,Q(a |a) =Q(a), Q(b|a) =Q(a|b), Q(b | b) = Q(b). One may then write:
=[Q@) a+Q(alb) A A+ [Q(a|b) a+Q(b) A to;
I.e., this equals 0, since, becawsefis a double root of (6), one will have:
Q(a) a+Q(a|b) 5 =0,
Q(a|b) a+Q(b) 5 =0.
We will thus have:

Q(aa+ bl Aa+ pb) =0,

no matter wha#lp and/p are. This can be written:
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0Q(aa+ fb) _
——— (Aobi + toly) = 0,
2z d(aa +h)
or again, taking our notations into account:
(8) 2 (Aobi + tob) z = 0.

From this, we will get the theorem:

Whend(a | b) = 0, or, more precisely, when equati() has a double root and is not
an identity, the system with two ter(@s B) will contain a unique special complex, and
the directrix of that special complex will be a line that is own to any complex of the
system.

It is clear that any line that is common to two céexps of the system will belong to
all of the other complexes of the system, as in theeigeé case. The linear congruence
that is common to all of these complexes is theretoraposed of lines that cut all of the
directricesz of the unique special complex that belongs to the systelowever, this
condition is insufficient to define the congruence.

It is easy to complete this definition. Indeed Adte a line of that congruence, Rt
be the point where it cuts the ligeand letll be the plane throughandz Consider the
plane pencil R, IT). Two lines of that penc# namely, the line and the lineA — will
belong to an arbitrary complex of the system. Tlweegfthe poinP will admit the plane
I as its polar plane in all of the complexes of theteay @, B). The pencil R, ) will
belong to all of these complexes (no. 13). From thigjli result immediately thaany
complex of the syste(A, B) will determine the same normal correlatiomo. 15)on the
line that is common to themTherefore, the linear congruence will admit theof@ihg
definition here:

In order for a lineA to belong to the congruence, it is necessary and sufficient that:
1. It must cut the fixed lin@irectrix 2).
2. The plangz A) through z andA and the poin{z A), which is the intersection
of z andA, must be two corresponding elements of a homographic correlation that is on
the line z, a priori.

One may interject a remark here:

Consider a general linear congruence that admits thedingctricesz, Z. Consider
an arbitrary quadri€ throughz andZ. The congruence will be composed of lines that
cut the quadri®Q at two points, one of which will be situated alangand the other of
which will be onZ. SinceZ will approachz infinitely closely, the congruence will be
nothing but the set of lines that meet the quadric atibfwitely close points, one of
which will be situated oz, i.e., the set of tangents to the quadric at the wanmints of
its generatorz. The correlation that figures in the definition o&thongruence wills
therefore be nothing but the Chasles correlation #saablishes the correspondence
between the points afand the tangent planes at these points.
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The reader will easily recognize that the singulargcoences that we just defined
will be of first order and first class, moreover.

30. What remains is the case where equation (6) is atitgleihe complexes of the
system with two termsA( B) will all be special. We seek the locus of their cliriees.
Let one of these complexes be:

AA+uB=0,
and lety be its directrix, so one will have:

o 0Q(Aa+ ub)
" 0(da+uh)

and since the right-hand side is linear and homeges ind, 1, one may write:

00(@) , 00

= A
=8 M an

One then recognizes that the directrices of thaptexes of the systenA(B) (all
special) will define a plane pencil. We then stagetheorem:

When all of the complexes of a system with twosterra special, their directrices
will define a plane pencil.

What is the congruence that is common to theseleoms? The answer is simple:
Any line of the congruence must cut all of the $iref the pencil of the directrices. Such
a line must then either be in the plane of the pacpass through the center of the
pencil. In a word, the congruence is found to dgmose here into two hyper-pencils,
one of which is the set of lines in the plane @f directrices, and the other of which is the
spray of lines that issue from the point of intet&m of the directrices.

Therefore, here is an example where the congruéhae is common to two
complexes decomposes into two of them: The oneclwfdrms a planar system, is of
order zero and class 1; the other, a spray, i®gfak 1 and class zero. The sums of the
classes and that of the degrees are equalto 8+ + 0 = 1, i.e., to the product of the
degrees of the complex.

We will have to recognize the generality of thastffor arbitrary complexes later on.
It is interesting to note that it is present in inear congruences.

Our linear congruence degenerates here into amturtfe of directrices that define a
pencil A, a). Letx be a line of that pencil. In the case of a siagwongruence, a
correlation on the directrix will serve to define the congruence. It is cléwat here that
correlation will be, in turn, singular, becauseoiie lets Q, ) be any pair of that
correlation — i.e., one such that any line of tha@l (O, ) belongs to the congruence,
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is onx, andll is a plane ok — then one must either have tl@ts atA, andll is then
arbitrary, or thafl coincides with the plang, andO is arbitrary.

From the definition of the pair®( ) of the correlation, one may then conclude that
it will be singular, and thaty, a) will be its singular pair.

31. We have seen that the expresgifa) is an invariant of the complex & x = 0.
Likewise, the expression:
®(a|b) = Q(a) Q(b) - [Q(a | b)]*

is an invariant of the congruence that is common tawltecomplexesA andB. That
invariant is of the type that one gives the nameowfibinantto. If one performs a linear
transformation of the variablesthen it will be reproduced, only multiplied by the fourth
power of the determinant of the substitution, and, becab@shat, it will be an invariant.
However, if one replaces the two equations:

A=0, B=0
with these:
AA+uB=0, AA+U/B=0

then®(a | b) will be reproduced, but multiplied byl — zA')%. Indeed, one will have:

PAA+uB|A A+ B)
=QUA+UB) QU A+ B —[QUAA+uB|AX A+ i B)?
= [Q(@) A2+ 2Q(a|b) Au+ Q(b) 1A [Qa) X% +2Q(a|b) X'/ + Q(b) /7]
= [Q(@) AN +Q(a|b)(Au" + i) +Q(b) ]
= [Q(a) Q(a) - Q(a| b)) (Au' + A,

The properties of the invariar® will thus correspond to those of the linear
congruence taken by itself, independently of the chofceoordinates, as well as the
choice of the two linear complexés B by means of which one defines it; from this, one
understands why the name “combinant” is given to that iamari

32. If two linear complexed, B are given then one can separate the properties of the
two collectively into two groups: One of them belongghe their common congruence
and remains the same if one replaBeB with two other complexes from the system of
two terms A, B): To these properties, we attach the invarfa(d | b), whose vanishing
expresses the idea that the congruence is singular.

However, aside from these properties, it is the ogneup of properties that belongs
to the two complexe8 andB exclusively. That is why if one is given two sphetesnt
their common circle will belong to all of the sphecésthe pencil, whereas their angle of
intersection will belong to these two spheres, inipaler.

These are the properties of that order that we shalkion for the two complexes
B.
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Consider the complex:
A+kB=0;

whenk varies, this complex will run through all of the systeof two termsA4, B). LetA
be a line of the congruence that is common to the @m@p of that system, €1 be a
plane through, and letPx denote the pole of the plafkin the compleXA + k B = 0.
Whenk varies the poinPx will describe the liné\. | say thatP, will correspond to the
values ofk in a unique fashion. Indeedkifis given therP, will be perfectly determined.
In the second place, if one is givBpas the pole of the plari¢ in a compleXA + k B of
the pencil then it will suffice to find the value kin order to write that a line through
Pk in the pland will belong to the complex, which will give:

A(2 +k B(2) =0,

which is an equation ikthat is of the first degree.

One sees that one excludes the case where the cespié the systemA( B)
determine the same normal correlationfonin this case, and only in this casé€z) and
B(2) will be zero for any position of the poif along the lineA. Moreover, the
congruence will then be singular, afavill be its directrix.

Since Py and k correspond uniquely, it will then result, from the piphe of
correspondence, that the anharmonic ratio of the fduesafk will be equal to that of
the correspondingy . On thus has this theorem:

Let there be four complexes of the system that are obtained by taking:
k=a,B y o

and letA be a line of the common congruence. The poles in the four complexes of a
plane throughA will define an anharmonic ratio that is equal to the anharmonic ratio of
the quantitiesa, £, y; O.

This anharmonic ratio is then constant from two stamdpokirst, it remains constant
when the plane turns arouAd and second, , it remains constant wheis displaced in
its congruence.

The same reasoning leads to the following theorem, wkiche transform of the
preceding one under reciprocal polars.

Let four complexes of the system be given, which are obtained by taking:
k=a,B y o
and letA be a line of the common congruence; the polar planes of an arbitrary point that

is taken oM\ in the four complexes will define a pencil whose anharmonic ratldowiil
equal to that of the quantities 5, y; o.
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These two theorems still persist when the two direesrof the congruence coincide.

They will likewise preserve themison d’etreif all of the complexes of the system
are special; in that case, the anharmonic ratio wikdpeal to that of the four directrices
of the complex, which will define a plane pencil.

33. Now, argue under the hypothesis that the two directoé¢ése congruence are
distinct. If two complexes:
A+pB=0, A+dB=0

are given then add to them the special complexes of/thers:
A+kB=0, A+KB=0,

in such a way tha, k' will be roots of the equation:

(8) Q(b) k¥ + 2Q(a | b) k + Q(a) = 0.

Let A be a line of the congruence that consequently intertieetdirectricesz, Z at
two pointsF, F'. If one draws an arbitrary plafe throughA thenF andF' will be the
poles of that plane in the tvapecialcomplexesk) and k'); they will remain fixed when
the plane turns. By contrast, the pdies P, of that plandT in the complexesd), (o)
will vary, but, withF, F' they will define an anharmonic ratio:

(Po, P F, F) = (o, 2, k k),

which will be constant. They will thus describe a homphyaonA whose double points
will be F, F' and whose anharmonic ratio will hg 0, k, K').

One likewise verifies that if one takes an arbitrarinpB onA, and ifl1,, M, are the
polar planes td in the complexesd), (¢), while ®, ®" are the planes throughandz,
thenA andZ will be the planes polar tB in thespecialcomplexesk), (k'); they will be
fixed. The anharmonic ratio of the four plafgs, My, ®, ®" will be equal to:

(Mp, Ny, ®, @) =(o 0, kK);

it will be constant and will have the same value asfitist one.

WhenP is displaced alond, only the planes$l, , MMy will vary, and they will then
describe two homographic pencils aroundvhere®, @' will be the double planes, and
(o, 2, k K) will be the constant anharmonic ratio.

This anharmonic pencil is easy to calculategldénote it. We have:

g=P~K.p-K _ (p=K (F-K)
-k

-k P -K (P -K) (p-K)
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_ 2(pp +KK) = (k+ K)(o+p')- (K- R(0' - p)
2(pp' +kK) = (k+ K)(o+ ')+ (K= R(0' - p)

SO:
e+l _ 2(pp' +KkK) - (k+ K)(p+p')
£-1 (K" =Ko - p) ’

and since, k' are roots of (8), this will become:

£+l _Q(b)po' +Q(a|b)p+p +Q(a)
£-1 (' = p)J-®(alb) |

In particular, sep = o, and then sep = 0, so the two complexes considered will then be
A andB, and we will have:
e+l _ Q(al|b)

e-1  J-o(ab)’

It will suffices to refer to what we said above time subject of homographic
correlations on a line in order to see that thisstant anharmonic ratiewill be equal to
that of the two normal correlations of the compddong any of theicommonines. The
angle of these two normal correlations will be what, along with Klein, shall cathe
angle between the two complexes.

If one sets:

1
V== loge
2i g

then one will easily find:

_1f 1 __Qalb)
(9) cosV = 2[\/; +\/Ej O

Although it is not necessary for us to insist uplos fact, one sees that\if= 77/ 2 or
& = — 1 then the normal correlations will be in invoartj and the two complexes will
also be said to b involutionor orthogonal
The condition of involution for the two complexés and B is, moreover, the
following one:
Q(a|b)=0.

34. Let us examine some particular cases.

The notion of involution that we just gave breaksvn if one of the complexes B
is special. However, we may continue to say tkai tomplexes are in involution
whenever the simultaneous invariddta | b) becomes zero, or likewise af andb are
both special.

In addition, suppose thtis special, and letbe its directrix. The equation:
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Q(alb)=0
can be written:
zaQ _
b
because, since:
_0Q
Z = o ’
one will have, upon summing:
2 az=0.

Thereforea special complex will be in involution with anyngalex that contains its
directrix, and conversely.

More particularly, ifA itself becomes special then, by an application ofttleésrem,
one will see thatwo special complexes will be in involution undee necessary and
sufficient condition that their directrices agree.

One may present the notion of complexes in involutiom another viewpoint.
Suppose one has a complex:

Yax=0.

The condition for two liney, y' to be conjugate in the complex is written, as orana)
in the form:
10Q(a)
2 0a

=py+ Py (=12, ..6),

wherep, ¢ are two parameters.
Suppose that the linedescribes the complex:

z bi Vi = 0.
The equation:

%zagéa)q =Qalb)= pY by +oY by

will give:

Qalb)= oY hy.

If we seek, moreover, the condition for the lyhéo describe the compld as well,
then we will find:

Q(a|b) = 0.

However, ify belongs to a comple& at the same time gghen this would signify thei
is its own reciprocal polar with respect to the pter A.
One will thus arrive at the following theorem:
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If two linear complexes are in involution then each of them willdeviin reciprocal
polar with respect to the other one.

If one of the complexes is special then one wildfthe property of the lines of a
complex that they must coincide with their conjugateh vaspect to that complex.

35. The consideration of complexes that are in involupéays the most important
role in the geometry of the straight line. It is elyslinked to the theory olinear
systems of complexes of the first degree.

We have given the name system with two term® the set of complexes that are
contained in the equation:

AA+uB=0;

likewise, letA, B, C be three linear complexes that are not containedeirsdme system
with two terms. We shall give the namesgttem of three ternte the set of complexes
that are represented by the equation:

AA+uB+vC=0.

Furthermore, consider four linear compleXesB, C, D that are not contained in the
same system with three terms, so the linear complélat are represented by the
equation:

AA+uB+vC+pD=0
will define a set of four terms.

Finally, upon taking five linear complexés B, C, D, E that are not contained in the
same system of four terms, the equation:

AA+uB+vC+pD+0E=0

will represent a system of five terms.
There is good reason to observe that the equatiofirefa complex:

2ax=0

will contain six coefficients and, as a result, fiergmeters. If one takes six complexes:

A=Xax=0,
B=>hx=0,
C=2cx=0,
D=>dx=0,
E=>2ex=0,
F=Xfix=0,

and one forms the expression:

AA+uB+vC+pD+0E+TF=2 U X%
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then one will have:
(20) u=aA+tbu+tcgv+dp+eo+fir i=12..,6).

If the determinant:
A=l|la b ¢ d e fi|

is not assumed to be zero then one might not find valuésy, v, o, g, T other than zero
that annul all of the; . There might not exist a linear relation of thenio

AA+uB+vC+pD+0E+TF=0

then, and the complexés B, C, D, E, F would not belong to the same system of five
terms.

On the contrary, i were zero then such a linear relation would be mearjrayfid
the six complexes would belong to the same system oftéras, or even a smaller
number of terms.

If Ais not zero — i.e., i, B, C,D, E, F do not belong to the same system of five
terms or to a system of less than five termthen equations (10) can be solved with
respect tol, 4, v, p, o, 1, and as a result, any linear complex:

2Uu%=0
can be represented by an equation such as:
AA+uB+vC+pD+0E+TF=0.
One thus has the theorem:
If the six linear complexes, B, C,D, E, F do not belong to the same system with five

terms or to the same system with a number of terms that ih#sfive then the equation
of any linear complex can assume the form:

AA+uB+vC+pD+0E+TF=0.

In other words, a system of six terms comprises aBipteslinear complexes. Later
on, we shall have to make use of this theorem in tmegt of the transformation of
coordinates. For the moment, we do not rule out therlsystems, which are the object
of our present study.

36. Consider the system withterms:
(11) AMAL+ A A+ ...+ApAp:0,

where:
A,,=a,,1x1+a,[2x2+ o taeXs.
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Let > u x = 0 be a complex, and if we express the notion thatdbimplexu is in
involution with the complex (11) then we will have:

Q(U |)l1a1 +Aa+ ... +)lpap) =0;

ie.:
Q(ula) A1+ ... +Q(u|ay) A, = 0.
One then sees that if one writes:
(12) Q(u|ay) =0, Q(u|ap) =0, Q(u|ay) =0

then the complexuj will first of all be in involution with the complese@), (a2), ...,
(a), and, moreover, AS A CONSEQUENCE, it will be in ilwdon with all of the
complexes of the system wighterms (11).

The equations (12) may be written:

0Q(a,)
da;

Q@) _ 0Q(a,) | _
> %, u=0, > %, u=0,..>

u =

We havep equations between the they are all distinct, because, if it were otheewn
the one would be able to find quantitjes o, ..., o that would not all zero and would
verify the relations:

aQ(ai)++p aQ(aP) — 0

=12, ..,6).
pl aail p aapl 6 )
These relations may be written:
0Q +... 4
(08, Po3y) =0 (=12, ..,6),

o(pay +--+p,a,)
and, sinc& has a non-zero discriminant this will demand tva must have:
pra+...+tpa=0 (=12 ..,6).
What will then result is the identity:

oA+ L+ A=0,

and the complexe8, ..., A, will belong to a system withp(— 1) terms or a lower
number of them. That would be contrary to our higpsis that the system (11) is a
system op terms.
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Equations (12) are thus distinct and, as a consequeng@dirait one to dedugeof
the u; as functions of the 6 p-other ones. The general valuesupthat verify equations
(12) will then have the form:

U =01j o+ Qi+ ... +Qopi lop=0 i=12,...,6),

and theg will be constant coefficients such that for any vadfig/ other than zero the
can be annulled all at once. From this, if one sets:

Gi=201 X%, Go=202 %, ... Gé-p = 2 Us-pii Xi
then the (6 -p) complexe<s can verify an identity such as:
PG+ 2 Go+ p5p Gop =0,
which signifies that these complexes do not all belorth¢ same systemof gg— 1 =5

— p terms or to a system with a lower number of ternEhe set of complexes in
involution with all of the systems wifliterms, a set that is represented by the equation:

2UiXi=p G+ ... +UspGep=0,

will thus define a system with 6pterms.
From this, one will get the theorem:

The linear complexes that are not in involution with those of amysith p terms
define a syster® —p terms in their own right.

To abbreviate, we shall s@pmplementary systents describe two systems wigh
and (6 ) terms whose complexes are in involution.

For example, take a system with five terms. Theptementary system will includes
only one complex. One will thus have the theorem:

The complexes of a system with five terms are orthogonal tedaliitlear complex.

37. LetZ, 2y be two complementary systems wiland (6 —p) terms, and suppose
thatp is equal to at least 2. Then, among the complextdedystenk there is a special
one, as one sees upon writing:

Q(al)ll + ... +aMp) =0;
le.:

Qa) A2 +Q(ag) A2 + ... +Q(ap) A2 + 2X(ay | &) M Az + 2X(ay |ag) AAs+ ... =0,

Now, the directrices of these special complexes imeising to each of the complexes
of the complementary systely ; indeed, these special complexes will be in involution
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with all of the ones of the complementary syst&m Therefore, from a theorem of no.
34, their directrices will belong to these complex€snversely, any line that is common
to all of the complexes of the systétn will be the directrix of a special complex in
involution with all of the complexes of the system; this special complex will thus

belong to the systen We thus state the theorem:

The directrices of the special complexes that are contained irtexrsysre nothing
but the lines that are common to the complexes of the complementamXys

We add the remark:

The lines that are common to the complexes of a systeithcut all of the lines that
are common to the complexes of a complementary s¥stem

Indeed, these lines will be the directrices of spemaiplexes that are in involution.

38. The introduction of the notion of involution greasiynplifies the problem of the
search for lines that are common to several lineapéoms. We have already treated
the case of two complexes; what remain then areabes of three and four complexes.

Let A, B, C be three complexes that do not belong to the sanensysgith two terms.
We then propose to look for their common lines.

In order to do this, consider the system of thremser

>S=AA+uB+vC=0;

the complementary systeby will likewise be a system of three terms. We sdek t
special complexes that are contained in the firsegyst We write:

Q(ad + bu+cv) =0,
when we are given that:
A=>ax, B=Xhbx, C=XcXx.

Upon developing this, we will get:

(13) {Quawbwc) = QA%+ QB +Q( gv?

+2Q@|bu+ X @|cpv+ 2 (b|cpuv =0
| set:
Q(a) Q(alb) Q(alo
(14) W@lb|c)=|Qbla) Q)  Q(blg|,
Q(cla) Q(clb) Q(9

in such a way that’ will be the discriminant of the quadratic form (13). This
discriminant will be a simultaneous invariant of tllenplexesA, B, C. However, there
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is more: It will also be @aombinant,like the functiond(a| b). Indeed, if one replaces
B, C with combinations such as:

A=pA+qB+rC

B=pA+dB+rC,

Q:p"A+qHB+r" C,
where the determinant:

p q T
p' ql r'
p" q" In

is not zero, then the functidfd will be reproduced, but multiplied by the square of that
determinant. We observe, in passing, that if one replacB, C with expressions such
asAy, Bi, Cy, for which the determinark £ p d r” is not zero, then this will amount to
performing a linear transformation of the form (13):

A=pli+p+p'v,
U=0AL+dn+q" v,
V=rAy + I",Ul +r'"un

on the variablesi, 1, v. One can profit from this remark to reduce the form .(13)
Therefore, if the invariar¥ is not zero then the form (13) will be reducible to a @im
three squares or, what amounts to the same thing, a fdha type:

A=A

If Wis zero, but not all of its minors, then the form (¥8] be the product of two
factors, and one may suppose that the form is of g ty

AL
If W is zero, as well as all of its minors, then thenfawill be a perfect square, and

one may suppose that the square is:
VA

Finally, it might be the case that the form (13)entically zero.
We thus have the four cases that might present #leessin the intersection of three
complexes of first degree. We examine them successively

39. In the first case, one must have:

Q@=0, Q=0 Q@lc=0, Qbl=0, R(a|b)=-0Q(c)=1
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The first two equations show that the two complekendB must be special, and,
since Z)(a | b) = 1, one sees that their directrices cannot intgrsaeceQ(a | b) = 0
would be the condition for them to meet. The third andth equations show that these
directrices must belong to the compl(éx

Now, one verifies the following equation in the mosteyal fashion:

A—1V=0,
by taking:
A=t u=1, V=t,

wheret is a parameter, in such a way that all of the speoiabtexes of the system will
be represented by the following equation:

Y@t+ct+h)x=0.
The coordinates of the directmof one of these complexes will be:

7= 0Q(at* +ct+ b
d(at’ +qt+h)

or further:
7 = 0Q(a) 24 0Q(0) - 0Q(b) .

03, oG ob

The locus of these directricesvill then be a ruled series, and in fact, a ridedes of
second order, because if one seeks the numbearesf dif the series that cut the fixed line
yi then one will be led to the equation of the seconakdr int:

0=aty| =Y 2
_|§990Q(a) | ., | 5 0@0Q() |, |5 0w0Q(b) | _ g
dy, 0a dy d¢ oy dp

A ruled series can be composed of the generafoasroled surface, of those of a
cone, or even of the tangents to a planar curmehd last two cases, the ruled series will
be contained in a hyper-pencil.

Now, this is not the case here, since if this ware then the directrices of the special
complexesA andB would have to intersect, since they belong tosdmme hyper-pencil.
The expressioQ(a | b) would then be zero, which is not true.

One must then conclude that the directrices ofspacial complexes form a ruled
surface, which is of second degree, since the sdeids of directrices is of second order.

One thus has this theorem:

The directrices of the special complexes of a systeth three terms will generally
constitute the rectilinear generators of a famifygoadrics.
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To abbreviate, we say that they fornseami-quadric The generators of the second
system of that quadric constitute what we will call deenplementary semi-quadrio
thefirst one.

It is now easy to obtain the lines that are comitmothe three complexes, B, C.
The set of these lines belongs to all of the complekéise system of three terms:

AA+uB+vC=0,

and may be defined by taking three arbitrary complekgsB;, C; of this system,
provided that these three complexes do not belong tsdhee system of two terms.
Now, this is precisely the case for the three spedaiplexeshs, Bi, C; of the system;
indeed, their directrices cannot intersect, since #neythe directrices of the same semi-
qguadric. The system of two terms:

PA+0B =0

will then includes no other special complex besilgandB;, and, as a resulf,, B, C;
will not belong to the same system with three te(thss might no longer be true if the
directrices ofA; andB; intersect).

The lines that are common to the complexes of tstem with three terms are
therefore defined by the condition that they cut thrdstrary generators of the semi-

quadricQ that is the locus of the directrices of the specrdr complex of the system.

These lines will thus constitute the complementary qua@s . We then assert this
theorem:

The lines that are common to three complexes A, B, C do notsikeamprise a
system of two terms, and as a result the lines that are commonatotladl complexes of
the system of three terms:

>S=AA+uB+vC=0

will define a semi-quadri@, that is complementary to the semi-quad@cthat is the

locus of the directrices of the special complexes that are codtairthe system of three
terms.

One should not neglect to observe that the sysIgemvith three terms that is
complementary to the systemwill admit the semi-quadri€Qo as the locus of directrices

of its special complexes, and that the lines of the-s@adric Q will, on the contrary, be

common to all of the complexes of the syst&m This will result from the corollary at
the end of no. 37.

40. Our reasoning assumed only tHatwvas not zero; now, assume tHat= 0. We
know that the form (13) can be reducedito This would give us:

Q@=0, Q0=0, Q=0 Qb|=0, Q(c]|a)=0:;
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however,Q(a | b) is not zero.

From the first three equations, the compleXeB, C must be special. The last two
show us that, in addition, the directd¢ of the complexC must cut the directricela ,
Ag of the other two complexes; the latter two will naersect, sinc€(a | b) is non-zero.

Let F be the point of intersection a&t andAa, and letF' be that ofAc andAg. Let
@ be the plane adic andAa, while @' is that ofAc andAg .

The special complexes of the system of three terithsl@ompose into two families
with regard to the equation:

namely:
uB+vC=0 and AA+vC=0.

Each of these families will constitute a systemwad terms, and, from what we know
about these systems, since the complexes that coniese are all special, their
directrices will define a plane pencil.

The family:

AA+vC=0

will then be composed of the special complexes whosergeors generate the plane
pencil , @), while the pencilE’, @) will correspond to the second family.

One will observe that the two planar pendis®), (F', ®') will have a common line
Ac, which will be the directrix of the compleéx

It is now easy to obtain the lines that are comnathé complexes of three terms.
Any of these lines will be defined by the condition thhanust cut all of the lines of the
pencils E, ®), (F', ®'). Ifit does not pass throughthen it will be in the plan&, and if
it does not pass throudh then it will be in the plan@’. These lines will then be those
of the two planar pencild=( ®'), (F', ®). One sees that the paifs @'), (F', ) will be
the inverses (no. 21) of the paifs @), (F', ®').

The lines of the pencild=( ®), (F', ®') will then constitute a degeneracy in the lines
of the semi-quadric, while the inverse pencils '), (F', ®) will constitute the
degenerate complementary semi-quadric.

It is quite appropriate to remark that for these geomentities a new conception of
guadrics leads to a mode of degeneracy that one does mainggrcwhen one defines
them by their points or their planes. Moreover, onews that the latter two definitions
will each lead to their own degeneracies: viz., congdanes for the point-like quadrics
and conics or points for the tangential quadrics.

A point-like quadric cannot become a conic or a point,aam a tangential quadric
become a cone or a plane. From the new viewpoatttttat we now take, the quadric
can degenerate into four inverse plane pen€Eilsp), (F', '), (F, @), (F, @), the first
two of which represent the generators of one systehtlanlast two of which represent
the generators of the other.
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41. Now assume that the invaria#itis zero, along with its first-order minors. The
form will then be a perfect square, which one may asseme In this case, one will
have:

Q(a) =0, Q(b) =0, Q(alb)=0, Q(alc)=0, Q(b|c)=0,

but Q(c) will not be zero.

The complexes\, B will be special, and due to the fact tiaa | b) = 0O, their
directrices will intersect. Lef be that point of intersection, and tétbe their common
plane. Sinc&(a|c) = 0,Q(b|c) =0, the lines that are the directricesfodndB will
belong to the non-special compl€xand as a resulE will be the pole of the plan®@ in
this complex. One immediately deduces that the lingisatte common to the complexes
A, B, C will be nothing but the lines of the plane penéi] (). Moreover, since the
special complexes of the system will define the sysiktwo terms:

AA+uB=0,

it is clear that the directrices of these special @eres will likewise be the lines of the
plane pencil, ®).
If one envisions the complementary systeynof the systenx considered, namely:

>S=AA+uB+vC

then one will see that the complexes of the sysigimave the lines of the pencH,(®)
in common, since the lines of the systénand the special complexes will be further
represented by:

AA+uB=0.

This is nothing but the preceding, except that the fe(€] ®) and ¢, @) will
coincide.

42. If we are to exhaust the systems with three teh@s what finally remains for us
to do is to treat the case in which the form (13) istidalty zero. All of the complexes
of the system:

S=AA+uB+vC=0

will then be special. Letbe the directrix of one of these complexes, so aldnave:

, =00, 000 L 09,
03 oh 06

and, as a result, these directrices will defing@eh-pencil.

The systen® will therefore be composed of special complexe®sehdirectrices
form a hyper-pencil. The lines themselves of tigter-pencil will be, moreover, the
only ones that are common to all of the complexXd¢besystem.
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This case exhibits the remarkable aspect that thensystevill coincide with its
complentary system. The reader will easily prove thistis the only case in which this
situation prevails.

It is assuredly quite remarkable that the line com@lexesuch a system of three
terms must have a congruence of lines in common (s daand degree zero or class
zero and degree 1), since otherwise there would exisear Irelation between any three
of these complexes. This fact shows the degree airospection that one must treat
these questions with, and the fact that one must exihiengs with care in perhaps a bit
more detail than we have seen fit to invest in this @laour exposition.

43. We now arrive at the lines that are common to fm@ar complexes, and to the
systems of four terms. L&tbe such a system that is represented by the equation:

S=AA+uB+vC+pD=0.

Since the complementary system has two terms, we may utilize what we know
about the systems with two terms and complementastesys. The systems with two
terms contain two special complexes, which might cdmaén certain cases. They may
also be composed of special complexes whose direcface a plane pencil. Let us see
what the corresponding complementary systems withtierms would be.

First, in the general case, we see that the conplekthe systera with four terms
will have two common lined, A', which are directrices of the linear congruence that is
common to the complexes of the system with two serifhus:

Four linear complexes that are included in the same system oftdrras will have
two common lineA, A, in general.

The congruence whose directrices AreA’ is the locus of the directrices of the
special complex of the system.

A andA" might coincide accidentally: The congruence of thectliges of the special
complexes would then be singular.

Finally, there is the case where all of the com@enfethe complementary system of
two termsZ, are special. LetH, ®) be the plane pencil that is formed by the directrice
of the special complex. The complexes of the systatm four terms will then have
(from a theorem that was established in no. 37) all ofities of the pencilK, ®) in
common, and no other ones.

The complexes of the system with four terms will then be délyrge property that
they admit a given plane pencil of lings ®).

As in the preceding case, one may introduce the foving, v, o

Q@aA+bu+cv+dp =0
and its discriminant:
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Q(a) Q(alb) Q(alg Q(ald)
Q(la) QM)  Q(blg Q(bld)
Q(cla) Q(clb) Q(9  Q(cld)|
Q(d[a) Q(d|b) Q(d|g Q(d

which is a combinant. If this discriminant is non-zéren one will be dealing with the
general case. Ifitis zero then the lideg\' will coincide.

If its minors of first order are all zero then ondl e dealing with the case where the
complexes have a plane pencil of lines in common.

| leave to the reader the task of proving these resutish are analogous to the ones
that we already encountered for the systems of tierees. One verifies that the form in
A, 1, v, p might not be identically zero, nor likewise be a persquare.

44. We complete this study of linear systems of complexgs a remark that
concerns systems with five terms.

Let A, B, C, D, E be five complexes that are not contained in the sastera with
four terms. If one solves the five equations:

A=0,B=0,C=0,D=0,E=0
then the corresponding valuesxf ..., Xs will not generally verify the equation:

ax) = 0;

in a word, the five linear complexes will not havecanmon line, in general.

The complementary system will reduce to a unique lirceanplex, as we have
remarked in no. 37, and from the results that were adataimthe same place, since the
common lines to the complexes of a systems will be dinectrices of the special
complex of the conjugate system, five linear compleRasdre not included in the same
system of four terms might have only one common {ingamely, the directrix of the
complementary complexwhichmust again be special.

Conversely, the linear complexes that contain argivee z will define a system with
five terms, namely, the complementary system to dyem with one term that is
composed of the linear complex whose directrix is

45. In the course of this exposition, we have introducedessively the invariants
Q(a), d(a|b), WY(a b | c), and we have indicated another one that relategsteras with
four terms; the systems with five terms also havenaariant. One might represent these
combinants in a uniform fashion as follows: Let:

afX) =2 Gk % X«
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be the fundamental form, so one will have, up to ast@om factor, this expression for
Q(a):

W, W, - W a
W, W, - W, a4,
Wy Wy 1 We Qg

One will likewise have fof(a | b):

W, - W & bl
%1 w66 a6 b6 !
a a 0 O
b b, 0 O
and for¥(a|b|c):
qu a)16 a'1 bl Cl
Wy W 85 b G
aQ - g 0 0 O
b, - b O O O
C - ¢ 0 0 O

The invariant of a system with four terms will be at¢a by bordering this, on the
right and at the bottom, with the link ... ds 0 0 0 O; upon adding another border on the
right and at the bottom that consists of the k&e... & 0 0 0 0 O, one will get the
invariant for the system with five terms. This invatiaill be annulled if the complexes
of the system have a common line; i.e., if the cemantary complex is special.

46. In concluding this chapter, we finally remark that gules from the preceding
discussion that any compléxthat contains lines that are commormptother tham, B,
..., D, and which isot containedn a system withg{ — 1) terms or one with a number of
terms less tharp(- 1), will belong to the system withterms:

P=AA+uB+..+pD=0.

The reader will easily verify this remark, while | shadintent myself by merely stating it
here.
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47. In this chapter, we shall develop tiest principlesof infinitesimal geometry in
line coordinates.

Suppose that a line depends upon one parameteit generates a ruled series that
consitutes a skew surface, a developable, a cone, attbétangents to a plane curve.

We first examine the case where the series constitutgkew surface. One knows
that the distribution of tangent planes at each pointaofectilinear generator is
constructed by means of a homographic correlation thdtave already spoken of, and
which we called th€hasles correlation.

The set of tangents to the surface at all of thetpaihthe generatox constitutes a
singular linear congruence; all of the linear complekas tontain that congruence will
define the same normal correlationxgmamely, the Chasles correlation.

These complexes form a system with two termsisheasy to represent.

One may regard the congruence of the tangents agttlod lines that are subject to
cutting the neighboring lines andx + X' dt, wherex = dx/ dt. They are therefore
defined by the following two equations, whgre the current line:

0
2afx |y) = nyi =0,

0w, duAx) dt} y=0:
ox 0%

2w(x+dx|y):z{

ie.:

® e

The system with two terms that is considered ilist have the equation:
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0w(X) 0w(X)
“ ZP x Moy }y
or further:
(3 WA X+ ux|y)=0.

One sees that it contains only one special comgiegg, from the form of equation
(3), the special complexes of the system will havesehlines whose coordinates are
described by the formula:

A%+ px

for its directrices. Now, these expressions willliee ¢oordinates of a line only if:

WA X+ ux)=0;
i.e., if:
afX) A% + 20fx | X') A+ afx) 1 = 0,
or finally if:
| afx) 4 =0,
since:
wX) =0, mauq:mimza

It might be the case thafx') is zero; however, as we will confirm later on, théd
series would no longer constitute a skew surface thimer the hypothesis that we have
imposed, there is therefore only one solution, namely:

1 =0.

One says that two ruled surfaces agree along a corgemoerator if their tangent
planes are the same at each point of that genesatich demands that the Chasles
correlation must be the same for the two surfaddsgere is an infinitude of hyperboloids
and paraboloids that satisfy this condition, which hexjiadrics of agreementvhich is
a terminology whose use is widespread in descriptive ggpme\ny quadric that is
contained in the linear congruence of tangents will alshpbe a quadric of agreement.

48. | denote that linear congruence ®y. It is clear that the neighboring lines will
give rise to another congruen€g + dx, and one may prove th#tese two congruences
will have the same semi-quadric in common

Indeed, equations (1) represé€nt, and if one changesinto x + X dt andx’ into X +
X" dt, wherex’ = dx/ dt, then one will get the representationGyf+ dx; one then finds

that:
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5| 0609 | daX) dt}yi -0,

0X 0
“ :a;x') aaj(i(')
> o + o dt} y =0.

These equations, when combined with equations (1), will tivee equations, in all,
namely:

da(x) 0a(X) = _ 0w(X') = _
(5) > ox y, =0, > o Y, =0, > o y, =0.

These three equations will be those of three cexasl that have a semi-quadg@cin

common.
From equations (5), an arbitrary lip@f that semi-quadric must cut three consecutive
lines of the ruled surface. These linesvill then be the asymptotic tangents of the

second system that run through all of the pointtheflinex. The semi-quadri@ will
then be composed of a system of generators faydtating hyperboloidf the surface.

49. Thecomplementary semi-quadri@, is found to be related to the general theory

of contact for a ruled surface with a linear comple
If we have a linear complex:

26%=0
then we will say that it hasontact of ﬁ‘ orderwith a given ruled surface if it contaings (

+ 1) consecutive generators of the surface.
The tangent complexes thus verify the two equation

2.6% =0, 2.éx =0,
which indicate that these tangent linear compldae® a system with four terms that is
complementary to the system of two terms thatpsagented by equation (2).

Now, consider the complexes that have second-ardetact with the surface; they
will be subject to the conditions:

(6) DEx =0, DEX =0, DX =0.
These three equations will reduce to two only i @erifies the six relations:
ax'+BX+yx =0 i=12,..,6);

now, in this case, since thxeare solutions of the same second-order equatioa,ntay
set:
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X =CT+ C'T,,

in which, theC;, C| will denote constants arid To will be functions ot; the ruled series

will then reduce to a plane pencil.

Since equations (6) are assumed to be distinct, th@leges that they define will
define a system dhreeterms.

The complementary system is known to us; it is ffstesn:

da(x) ,  0aX) 0aX)| =~ _
(7) dA o + U o +V 2% y, =0

which is composed of all the linear complexes that comke semi-quadri®.
Indeed, the involution of the complex (7) with the céaw@f will be written:

(8) D@l =y 22 <o
if one sets:
o= 20600, 0aXX) | 0c(X)
o% ox %

and, since one will deduce from that defining emumathat:

aQ(u)

AX+ px vy ==

equation (8) will be written:

A Ex +uY EX+VY EX =0.

All of the complexes (7) will then be in involutiomith the complexex that verify
equations (6).
The complexest will thus indeed have the semi-quadd in common, which is

complementary to the quadrig; i.e., the generators of the osculating hyperkbddithe
same system as

50. Now consider the complexes that have a thirdsoodatact with the surface;
they will be defined by the four equations:

9) 2.6% =0, DEX =0, Y &X' =0, Y &X' =0,

which will be distinct, at least when one has sjxaions of the form:
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aX:”+ﬁX’+yxl+5lx = 0.
Now, if this is true then the will have the form:
(10) Xi :CiT+Ci'T0+Cr" -Iao’

where theC will be constants, andl, Ty, Tgo Will be functions oft.
Form:
wx) = fCi T+C T, + G T) =0,
or, upon developing this:

C) T + w(C) T2 +a(C') T3 +2a(C| C) T+ 20( C| €) T, = 0.

If the coefficients of that form ifi, To, Too are identically zero then the lixewill be
contained in a fixed hyper-pencil; the ruled series wildb&ned by the generators of a
cone or the tangents to a curve. Excluding that casmjgiht be the case that the
guadratic equation above is not true identically. Howewae would then verify that
equation by takingd, To, Too to be second-degree polynomials in one paransetehich
one can substitute for the paraméteFormulas (10) would take the form:

x=Di &+ Ds+D.

The ruled series would then be a semi-quadric.

Excluding this new class, equations (9) will then be miistiand the complexeSthat
verify them will form a system with four terms. Themplementary system with two
terms will consist of two special complexes whose dflifees A, A', by virtue of
equations (9), will possess the property of intersecting donsecutive generators of the
surface. These line& andA' will then have third-order contact with the surfaced an
each of them will be at a point of the lire

If one considers the osculating hyperboloid that eslab a linex and the osculating
hyperboloid that relates to the neighboring line dx then these two hyperboloids will
intersect along two neighboring generatorsxand along two other generators of the
opposite system. These two generators will be the ArendA'.

Finally, consider a linear complex that has fourth-oodatact with the ruled surface.
One must have:

DEX =0, DEX =0, DEX =0, DEX" =0, D.&EX=0,

and these five equations, if they are distinct, will metihe ratios of; i.e., the complex
will be perfectly determined.
There will be no indeterminacy only if there exist squations of the form:

ax’ +Bx"+yX+ox+ex =0,
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which are equations that prove that there will existeast two linear relations with
constant coefficients between the

The surface or ruled series will thus belong to a lim@agruence in this case. The
ruled surfaces that are contained in a linear congruglagea very important role, and
we shall return to them later on. For them, dseulating complexvill be unavoidably
indeterminate.

If one considers the osculating complexes that rétat@o neighboring lineg andx
+ dxon a ruled surface then the directrices of the comooemigruence will be the lings
andA' that were defined before.

Three consecutive osculating complexes will have sémi-quadricQ, that was
defined before in common.

Four consecutive osculating complexes will have twoslime common that are
infinitely closeto the linex.

The reader will easily prove these properties. Thiedase shows that if one takes a
linear complex that depends upon one parameter arbitthaly this complex will not
always be the osculating complex of a ruled surfaceguse four consecutive complexes
of the system will intersect along two lines that geeerally distinct.

51. Up till now, we have excluded the hypothesis tifxt) = 0. Now, let:
a(x) = 0.

The complexes (2) will all be special, and tdewill be the coordinates of a liné

that is the directrix of one of these complexese Tihesx, X' will intersect at a poinD
and will have a planerin common; the lines of the plane pen€l ) will be precisely
the directrices of the complexes (2). The congruedcef the lines that cut two
consecutive lineg andx + x' dt will then decompose here into the set of lines inplaae
rrand the set of lines that issue from the p@int

One can say that the consecutive lir@sidx + X' dt will intersect at the poinD and
will have the planerin common. One can likewise appreciate the infimtesiorder up
to which this agreement is valid.

Indeed, the condition of agreement of two liResdz can be written:

Wz=X) = 2) + aAX) — 2afz | X) = - 2a(z|X) = 0,
if one considers that(x) = 0, a{z) = 0. If one takes:

2 3
z=x+ X At+ >{’A—2+){"A—é + ...

then one will find painlessly:
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, ldw(X) ..z |1dw(X) 1 , ., |.ua
-X) = AP+ 22N | -= At'+ ...
az—X) = afX) > dt {6 e 12a)(x)

Therefore, ifafX') is zero for each line of the ruled sertgg — x), which is generally
of second order, then this will reduces to fourth order:

(11) afz-X) =- 1—12(4)(x")At4+

One recovers it in another form, a property that wdsbé&ed for the first time by
Bouquet.

Indeed, we verify that if one makes use of metric eleis thena(z — x) will be
proportional to the product of the shortest distapcketween the lines andz with the
sine of their angle, or with that angle itself, namely:

pE.

If one takes the elemerat to be the infinitely small principal of the arc of the
spherical indicatrix of the generators of the ruled sehenpe will be an infinitesimal of
order one higher thgm Thus, ifa(X') is zero ange is of fourth order thep will be of
third order, and this is Bouquet’s theorem, precisely.

In general, the ruled series will be formed from tidwegents of a skew curve. The
point O of intersection of the consecutive lines will be gont of contact of the curve
with x, and the planer will be the osculating plane. From this, the linédhe plane
pencil ©, 7, which | will call theosculating plane pengilwill have a representation of
the form:

(12) X + AX .

This representation will be very useful to us.

52. Meanwhile, it might be the case that the ruledeses defined by the generators
of a cone or the tangents to a plane curve; howelverformulas would then take on a
very special character. Indeed, one remarks that thiray lines of the ruled series
would intersect in this case, since they would all bgltnthe same hyper-pencil (spray
or planar system). The expressiefz —x) would then have to be rigorously zero, and, as
a result, one would need to have:

ax) =0,

because the terft* must disappear. It is pointless to add that the ter#s, ... would
disappear. Indeed, | would like to prove that if one has:

ox') =0
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then the ruled series will be contained in a hyper-penci
Indeed, one deduces from the equations:

a(x|x) =0, aX |x) =0, ax"|x) =0,
a(x|x) =0, afX |xX) =0, afx" |x) =0,
(A(X |X") - 0, (A(X' |X") - 0, (A(X" |X") - 0,
a(x |X"I) = 0’ a(xl |X"I) = 0’ a(xll |X"I) = 0’
which may be summarized by saying that &, ..., Xs), (X, X5, ..., X)), (X', X,
X ), (X, % , ..., X ) are four systems of solutions of linear equations,jni, ..., Us ,
that:
20(x |u) = Zaa)(x) =0,
(13) 20(X |u)= za“’(x) =0,
20X |u)= Za“’(x) = 0.

These three equations unwill be distinct, because if there exists an idgntit the
form:

Adfx|u) +padX [u) +vafx" |u) =0

20600, 0eXX) | deX) _ o
X X X'

then one will have:

or:
0w(Ax+ uxX +vX) _

0(A% + ux +vX)

(=12 .., 6),

and, sincavhas a non-zero discriminant, this will demand that must have:
A +ux+vxX =0 (=12, ..,6).

We have already seen that the ruled series wal plane pencil in this case.

Moreover, since the three equations (13) arengisend refer to six variables, any
system of solutions of these equations will be deduinearly from three other particular
systems, which are nonetheless independent. These therefore exist some relations
of the form:

ax'+ B +yX+ox =0,
which proves that the will have the general expression:

X=a R+bS+cT,
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whereR, S T will be three functions of, anda; , b , ¢ will be constants. One indeed
also recognizes that the ruled series will be contlaimethe hyper-pencil. It will
therefore be a cone or the set of tangents to a plamnee.

53. As an application of the preceding remarks, we progé¢hhorem:

If the tangents to a curve belong to a linear complex then the oscutdding7at a
point O of the curve will be the polar plane to that point in the complex.

It suffices to prove that the lines of the osculatitamne pencil:

z = A% + X
will all belong to the complex.
Now, upon taking:
A=>ax,

whereX. g x = 0 is the equation of the linear complex, one willdyan fact, that:

Xax=AA+ u%:O,

sinceA = 0 for all of the tangents to the curve.

54. In his research on the theory of contact, Lie mhiiced the notion that he called a
contact element i.e., the set that consists of a point and agpthrough that point (viz.,
the united point and plane of no. 3).

We have encountered contact elements in the precelddpgers, whether in the form
of a plane pencil of lines, or as a pair of correspan@iements that are defined by a
correspondence between the points and the planesnef a |

We shall give some simple properties of plane pencitgpace, while first supposing
that the point and the plane depend upon the same parameter.

For example, ik is a variable line endowed with an envelope then wekwalw that:

X + AX
represents a variable plane penciliz., the osculating pencil.
More generally, let®, 73 be an arbitrary pencil and latb be two lines of that pencil

that depend upon a parameteAny linez of the pencil will be represented by:

Z=aA+bu.
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| consider an arbitrary variable lin€ that passes through the poidtand also
depends on the parameteso the spray of lines that issues frénwill be represented
by:
z=aA+bpu+tcv.

To each value of : i : v, there will correspond a lineof the spray, and it : i : v
are functions of then the linez will be displaced along with the poi@ We seek the

values of/, y,v for whichz will be precisely the tangent to the curve that esldtus of
the pointO.

It will suffice to write thatd : 1 : vare functions of such that the line will have an
envelope that touches at the pdihbr to express the idea that the osculating pencil has
two of its lines in the spray. The lirzewill already be a line of that pencil. It will then

suffice to write down that the lin2 whose coordinates ar2, ..., z, will belong to the
spray, or that:
Z=aetha+cas,;
le.:
qA+Qurqu+al+ b+ o =acth a+ce,

which are equations of the form:
(14) al+hQu+cv =ap+bo+cr.
I multiply by dafa) / da; and | sum from = 1 toi = 6; this will give:

aala)A+aal|b)u+aualc)v =aua) p+aalb) o +aalc)r =0,

because:

afa) =0, afa|b) =0, afa|c) =0.

One also has:

awfala’) =0,

wfa|b) pu+aualc)v =0.

SO it thus remains that:

However, sinceda | c) = 0, one will have:

da(al ©)

p =@ |c)+afalc) =0,

and, as a result, the equation that will be obtainadeanritten:

wfa|b) u-dcla)v =0.

w@alb)A-ab|c)v =0.

One will likewise find:
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afcla)A-ab]|c)u =0,
and, by definition:

(15) A H v

wblc) acld) aalt)

Likewise, if we take a lin@ in the planerrthen any line of that plane will have a
representation of the form:
z=Aa+ub+ve.

In particular, if one desires to know the : 14 : 11 that give the line of contact of the
planerrwith its envelope (viz., its characteristic) thame will find that:

A y7; V.

15 L= =—1
S wbl€e) wleld) a(alb)

The linesc ande will only play an auxiliary role, here.

55. In general, the tangeit to the locus of the poir® will not be in the planez
and the characteristis of the planerzwill not pass through the poiQ.
In order forD to be in the planer—i.e., to belong to the pencD( 73 — it is necessary
and sufficient that one have:
v=0;
le.:

w@a|b) =0.

However, this is also the condition for one to have= O; i.e., for the lineA to also
belong to the penci, 7).

If a plane pencil that depends upon one paranetains, at each instant, the
tangent to the locus of its cent@rthen it will also contain the characteristic &f filane
71 and conversely.

This theorem is geometrically obvious: The plgnelis along a curveC, which it
touches at the poir®, and the generator of the developable will be gerd by the
plane that passes through the pdnt I will call the systems of plane pencils that¢ ar
thus definedbands(bandeau). They are geometrically equivalent o dystem that is
defined by a curve and a developable through it.

Bands are characterized by the equation:

afa|b’)=0.
Moreover, it is easy to obtain the linesandA in this case by taking recourse to only the

representation of the pencil, and without appealnthe auxiliary lineg ande.
Suppose that : 1 have been chosen in such a way that:

Aa+ub
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are the coordinates of the tangent to the curve thheitocus of the poir®, and which,
by hypothesis, belong to the pencil.
Sincev is zero, equations (14) will give:

al+Qu =pa+ob+ra,
So:
awa A+b p=adpa+ob+rc)=0;
one will thus have:

(16) @) A* + 2afa | b) A+ afb) 1 =0,

which is an equation that will give two values fbr. 1z One of them will furnish the
tangent to the curve that is the locus of the pOinand the other one, as one easily sees,
will give the characteristic of the plane.

56. These lines will coincide if;

(17) @ | b)]* - af@) atb) = 0.

We may then regard th& as the coordinates of a liag which, as one sees, belongs
to the pencil ©, 7). Sincea(a’) = 0, equation (17) will give, in fact:

ab' |&) =0,
in such a way that the lireé will belong to the linear complex:
(18) afb' |x) =0.

This complex will be special only if one hagb') = 0. If neither the poinD nor the
planerare fixed— in which case, the lines of the pencil considered wilrsect— then
one may always suppose that the linef the pencil is not the envelope and thé') is
not zero.

The equations:

Wb |a) =0, ab |b)=0

say that the lineg, b belong to the complex (18), and thais the polar plane of the point
O. The linea’ of the complex that issues fradhmust then be in the plame

The pencil(O, 7) is then the osculating pencil of the curve that is the locus of the
point O.

If thea’ are all zero or proportional Bthen the reasoning will break down; however,
the linea will then be fixedm and the poiQ and the planerwill be a point and a plane
on that fixed line that, since they depend upon the sansmeter, will constitute two
homologous elements of a certain correspondence betivegroints and the planesaf
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that will be givena priori. One must recall that such a set will possess thes sam
properties as the osculating pencils of a skew curve.

Finally, it might be the case that the pdhtor perhaps the plare is fixed. In these
two cases, one will have:

W@)=0, «b)=0, «fa|b)=0,

57. 1 would now like to occupy myself with the plane pemdihat depend upon
several parameters.

| will first recall a general proposition that congetthese plane pencils.

Take a system of rectangular axes, ana,lgt z be the coordinates of a poidt the
equation of a planp throughO will be:

Z-z=p(X =3 +q(Y -y,

in such a way that the syste@, (73 will be defined by the five quantitiesy, z p, g.
Suppose that these quantities depend wgemeral parameters and that, moreover,
when these parameters vary, the displacement of tiné Qowill be meaningful, up to
second order, in the plang; in other words, no matter what the law of variatidrihe
parameters is, the tangents to the locus of p&inall be in the planet
From that hypothesis, we must have:

dz—-pdx—-qdyO.

That equation proves that there exists at least oagoelbetweer, y, z

We thus successively imagine the hypotheses that these ane, two, or three
relations betweenr, y, z, resp.

If there is only one relation:

z=¢(x. )

then one will infer that:

dz:%dx+% dy,
0x oy

_9¢ _99 ) 4, =
(p adex{q ayjdy 0.

If the coefficients ofdx, dy are not zero then there will exist one relationnvaemnx, v,
which will bring about a second relation betweew ; one will then have:

SO:

here, which proves that the system of pen€s7 will be composed of the points of the
surface and the tangent planes to each of these points.
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Assume that there exist two relations:
z=¢(x), Y = UX),
dz=¢'(x) dx, dy = ¢/(x) dx,

[#(¥) —p—q¢/(x)] dx=0.

If dx were zero then there would be three relations betweg z which is not the
case. One will then have:

so we will have:

which will imply that:

P -p-q¥(x) =0,

and there will be no other relation betweel, z, p, g, because, y, p, q would then be
functions of the single variable and pencils do not depend severalparameters.

Here, we thus have the set of pencils that are obtéynedsociating each point of a
curve with ararbitrary tangent plane to the curve at that point.

Finally, if three relations exist betwegy, z then one will have pencils whose point
is fixed. The single plane must be variable and comtialeast two parameters, since the
plane must be an arbitrary one that passes throughxéaepoint.

As a particular case of such a surface, one has tleogable that gives the pencils
in which the plane depends only upon one parameter, and the thiat furnishes the
pencils whose plane is fixed and whose point is arbitratitat plane. These two cases
will be duals of the two that one considered in the piace.

An intermediary case is that of the pencils thatabtained by associating each point
of a line with a point on that line. In fact, in tluase, the point will depend upon only
one of the parameters, while the plane will depend upenother, and these two
parameters will be independent.

58. These facts find a very simple and elegant repregemiatline coordinates.
Indeed, take the plane pencil:

zZz=a+Ab,

where the lines, b depend upon several parameters. Which of these periititeevihe

ones that have an envelope? That is, how does otrucinhe tangent to the curve that

is described by, and, as a consequence, the characteristic of the pfathe pencil, in

order it to belong to that pencil, no matter whatdisplacement of the pencil is?
Conforming to the results that were achieved befdreyili be necessary and

sufficient that one have:

(29) afa|db) =0

for all possible displacements, or, what amounts tc#mee thing:

(19) a(b|da) =0,
because:
0 =dafa|b) = afa |db) + (b | da).
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One thus sees that a pencil that depends upon several gasaraatl which verifies the
condition:
a(b|da) =0,

must be composed of either:

1. A point of a surface and the tangent plane to that.poi

2. A point of a curve and an arbitrary plane thatngéat to the curve at that point.

3. The tangent plane to a developable and an arbitrary gfadontact of that plane
with the developable.

4. A point and a plane of a line that are arbitradlyciated.

5. A plane through a point that is associated withbant.

In any case, we say that the pencil will have anlepesif:
afb|da) = 0.

As one can see, the pencils with envelopes will depend aply two parameters, in
such a way that one finds oneself in the presence of a variable pencil that depends upon
several parameters then the condition:

afb|da) =0
will imply that the parameters that the pencil depends upon must be rediectialo.

We will soon make an application of that remark.

I now pass on to the study of the infinitesimal propertf the complexes of lines.

59. Suppose that one has a complex of lines:

f(xq, X2, ..., %) =f(X) =0,

wherex is a line of that complex, and(x) is the fundamental form, and consider the
system of linear complexes in two terms:

(20) Z[}Iiﬂua—;djyi =0.

| shall give the name déngent linear complexde these complexes.
The following remark justifies that name: Let+ dx + %dzx + ... be a line of the

neighboring complex ta, and replaceg; with x; + dx + + d®; + ... in the left-hand side
of (20), so one must have:

of odw 1 of  odw
A—+p— |y, == [ A—+pu— |d°%x+ ...
Z[ 0x ﬂaxjy' 22[ 0x ﬂaxj ?

upon taking into account thdt = 0,dew= 0; i.e., one obtains a result of second order.
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If the tangent linear complexes form a system of terons then it will be obvious
that such a complex cannot be represented by a singleaguait, in fact, by the two
equations:

f(x) = 0, axX) =0

We seek the special tangent complexes. We must write:

Q()lﬂﬂuawj 0;
0x 0x

AZQ(ij+2)l,uQ ot ow +y2§z(a—“’j = 0.
ox 0x| 0x 0Xx

However, one has:

w
0Q
of |dw (axjaf of
20| Z1%% =y A OXJ ,
(ax axJ L 50 o XN
ox

because; = GQ(awj aa“’ one also haﬂ(a j afX) = 0; it thus remains that:
0X 0x% ()4
VE Q(awj 0.
0x

The equation that furnishes the special tangent comptaxeshas equal roots, and,
in turn, the tangent complexes will generally include ontg special complex, which
hasx for its directrix. If one refers to no. 29 then and see that all of the tangent linear
complexes define the same normal correlationxprior that reason, we give that
correlation the name mbrmal correlation of the complekg = Oon its line x. One sees
how that notion generalizes the notion of the norroalatation of a linear complex (no.
15).

We have seen (no. 53) that if the tangeritsa curve belong to a linear complex then
the osculating plane pencil will belong to that complerd, in turn, the poin© of
contact and the osculating plame will be corresponding elements for the normal
correlation of the complex on the lime This important property will extend to the case
of an arbitrary complex.

I would like to prove thaf the tangents x to a curve belong to a complex:

f(x) =0

then the osculating pencil of the curve will belolmgthe normal correlation of the
complex = 0on the line x.



Chapter IV. Principles of infinitesimal geometry indicoordinates. 69

It obviously suffices to prove that this osculating @ewill belong to the normal
correlation of the tangent complex:

since, by definition, that correlation will be the notmoarrelation of the complei(x) =
0.
Indeed, the osculating pencil will be represented by:

pX+ 0%,

upon supposing that the are expressed as functions of the one pararmeted setting
X =dx/dt.
One must prove that:
Zi(p& +0X)=0.
0%
Now, this is obvious, since:

zg_:;xi:mf(x):o, —X =

The theorem is thus proved.

60. Several special cases will exhibit the signifm@nf this main theorem.
Consider an arbitrary plangthroughx, so the lines of the compldx= 0 that are
contained in this plane will envelop a curve, amel linex itself will touch that curve at a

point O. It results from the preceding theorem t@aand 77 will correspond under the
normal correlation.
Therefore:

If one passes a planethrough a line x of a complex then the curve that is enveloped
by the complex relative to the plamewill be touched by the line x at one point O; the
point O and the planawill correspond under the normal correlation of the complex.

Similarly:
If one takes a point O on a line x of a complex then the cone of tipdegaimat has

O for its summit will be tangent along x to a plaméhat is homologous to O under the
normal correlation.

61. One may generalize these results.
Consider a ruled surface that is generated biiritee of the complex.
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In order to make this more precise, suppose that onexpesssed the coordinatgs
of a line on that surface as functions of one parantetdret x andx + X' dt be two
neighboring lines on that surface.

The linear complex that is contained in the equatith two terms:

Z{paw(x)maw(qu o

ox ax |7

will define a normal correlation oxi(no. 47) that is nothing but the Chasles correlation
that relates to the ruled surface.
Now, compare these complexes with the tangent compl® the proposed complex:

of (x|
T|gutit e

and form their simultaneous invariant:

Q{paw(x)maw(mugwaw(x)}
0X oX | 0Xx 0X

0X| 0X ox'| 0x 0X| 0X

That expression will be zero identically, becausenerxe already seen that:

Jw| of
= pAQ| —|— |+
p (ax axj

o[ 299" _ i =0,
ox | 0x
ow dw ow

Q== =Q|—=| =ax) =0.
ox axJ (axj al)
ow|of |  1of ,  1df _

Q__ - _x - - - 1
oX|0x) 2 0x 2 dt

Q a_a)a_a) :E a_a)'zid_a):
oxX|ox) 2<oax ' 2dt

The two systems of two terms considered will thercomposed of linear complexes
in involution.

It follows from this (no. 33) that the two norn@drrelations that determine each of
the two respective systems owill be in involution. By employing the terminajy that
was introduced in no. 59, one can then say that:
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If one considers the Chasles correlation of a ruled surface of a comgllive to
one of its lines x then that correlation will be in involution with nleemal correlation of
the complex relative to x.

In other words, if one takes a poi@ton the linex and draws the plane that is
tangent to the surface throu@hthen that plane and the planerthat is homologous t@
under the normal correlation will define a harmonic pemdth two fixed planes.
Furthermore:

Let:
@) be a point o,
r be the tangent plane to the ruled surface,
o be the point that correspondsttander the normal correlation, and let

r be the tangent plane @.

r will then be the plane that correspondsQounder the normal correlation to the
complex.

If the surface considered is developable (or, more geperaimposed of a ruled
series with an envelope) then the Chasles correlatithibe singular and its involution
with the normal correlation will signify that its ngular pair will belong to that
correlation. That is precisely the theorem of rth. 5

62. Consider all of the lines of a complex and all of the plane pencily () whose
point and plane are corresponding elements under timeahgorrelation of the complex
on a linex. | will call these plane pencils tipane pencils of the compleXdOne sees how
this definition generalizes the one that we gave irlBdor the case of a linear complex.

Let (O, ) be a pencil of the complex and letoe the line of the complex whose
normal correlation admits the poifit and the planer for its corresponding elements.
The cone of the complex that has the p@irfor its summit will be tangent alongto the
plane 7z and the enveloping curve of the lines of the compl&ative to the planerwill
touch the linex atO. One may then state these theorems:

The planesr of the pencils of the complex whose point O is given will envieéop t
cone of the complex that has its summit at this point.

The locus of points O of the pencils of a complex whose plane is givdre the
enveloping curve of the lines of the complex relative to that plane.

The cone of the complex will then be the envelopimgu$ of the planes whose
enveloping curve passes through the summit of the cone.esdoping curve relative
to a plane will be the locus of summits of the corfeab@tangent complex to that plane.

One observes that a plane pen€l ¢ of the complex can belong to the normal
correlation of the two lineg, y of the complex only if the cone with its summit @t
touches the plangalongx andy; moreover, in that case, the enveloping curve reléabive
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the pointO will have a double point at this point, whecandy are the tangents. | shall
leave aside this exceptional case.

63. Recall the system with two terms of the tangenalirmplex:

Z /]i-{-’ua_a) y =
ox " ox )7
As we have seen (no. 59), the special complexes tesystem will be furnished by the
equation:
pE Q(ﬂj =0,
0x
They will thus all be special if:

Q[ﬂ} 0.
0Xx

We thus naturally encounter the remarkable expression:

(5
0x
that was introduced by Klein. | would like to show thas ia differential invariant of the

complex.
Perform the linear transformation:

x=3AX (,p=1,2, ..,6);

the coefficients of the equation of linear complex are found to be couplgtidsea’ of
its transformed equation by the formulas:

a, =273,

and, by virtue of these latter formulas, one will hadentically:

Q'(@) =A% Q(a),
whereQ(a) is the adjoint form tay(x), Q'(a") is the adjoint form taJ(x'), which is the
transform ofa(x), andA is the discriminant of the substitution.

Having said this, suppose that the funcfigh becomed'(X), in such a way that:

f'(x) =1(x),
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so one will have:
of’ of
— = ZA _—
ox, T 7 ox
Now, these equations imply the following one:

o) e o).
ox' o0x

which indeed proves the invariance@(g—fj.
X

One calls any line of a complex for which the invari@(g—fj IS zero asingular
X

line.

It is interesting to examine the behavior of the ndwcoarelation on a singular line.

Since the tangent complexes are all special anddds#ye a system in two terms, one
must conclude that their directrices will define a plaencil O, 7 and, from the remark
in no. 30, the normal correlation will be singular. Ahgmographic correlation in
involution with it must then contain its singular pai®, (7). As a result, any non-
developable ruled surface that is contained in the comatek passes through the
singular linex must touch the plangat O.

By contrast, any developable surface (of the complead) passes through the line
must either admi© on its edge of regression or touch the plane

64. We have found an interesting application of the ppiesi of the representation
of surfaces by their tangents that were presented iB&o.
Indeed, | would like to prove the following theorem, whigklue to Pasch:

The plane pencil@O, 7) that pertain to all of the singular lines of a complex will have
an envelope.

Since one has:

Q[ﬂj -0,
0Xx

if one sets:

then they; will be the coordinates of a ling and that line will be the directrix of one of
the tangent linear complexes.



74 Line Geometry, and it applications.

The plane pencil of the directrices of these cowrgde- viz., the pencild, 7 — will
then be represented by the formulas:

Z=AX+Luy .
a(x) = 0, afy) = 0, afx|y) =0

will obviously be satisfied, so it will suffice to preyno. 58) that:

The conditions:

afy |dx) =0,
or that:
506 4, g
oy,
However, since one has set:
ag(gfj
X
W=
67
ox,
one can then infer that:
of _ day) .
ox oy

it will then suffice to prove that:
zi dx =df=0,
0x

which is obvious.
, One gives the name of SURFACE OF SINGULARITIESHat remarkable surface
().

The theorem that relates to the singular linesahatraced on the ruled surface of the
complex shows that if one observes that a rulethsarof a complex generally contains
singular lines then that would prove the followimgorem:

Any ruled surface of the complex will generallydothe surface of singularities at a

certain number of points.

65. Now, the theorem of no. 58 permits us to prowe ftillowing theorem, which
was partially found by Cayley and completed by Klei

If one has:
o0X

() One sees that it might happen that the surfacengfikirities reduces to a simple curve, or that the
singular plane pencil generates one of the four othettsstsvere defined in no. 58, or a system of several
of these sets.
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identically, for a complex of lines, or by virtue bf 0, w = 0, then the lines of the
complex will have an envelopel.e., they will touch a fixed surface, which willlegtr be
developable or not, or it might even intersect a fixedeur

Indeed, recall the preceding notations:

90 (afj
_ 0x ) .

\/i_ af ’

we thus make the ling correspond tany line x of the complex that intersects it at a
point O and has a plangin common with it.
The pencil O, p) will have the representation:

Z=AX+tUuy .

One might believe that it depends upon three paramékershe linex, but in reality
it depends upon only wo, although one does not know thprori; however, be that as
it may, since one has:

of

2afy | dX) = za—xdx =df=0,

one will be assured that the pen€il ©) will have an envelope (no. 5&nd furthermore,
it will not depend upon more than two parametellsO describes a surface therwill
touch the surface, and the complex will be that oftémgents to that surface. If, on the
contrary,O describes a curve then all the lines of the compliixcet that curve and
their set will be defined by that condition.

We will see later on how to differentiate these tases.

66. The infinitesimal properties of congruences were knowmngtate a long time
before those of complexes. They were presented imegeyp in the earliest research into
the theory of surfaces. In higaité de GéometrieG. Darboux gave them an important
position and added to the interest that geometers glreatin them from the research of
Laplace on the linear second-order partial differemttplations. We will have occasion
to insist upon the role of these equations in the studyomigruences. | would
nonetheless like to recall the principal properties ofycoences of lines.

The lines of a congruence are generally tangentwo surfaces;meanwhile, in
certain cases, these surfaces might reduce to cureesncide.

Let a congruence be common to two complefXeand B; let x be a line of that
congruence. The normal correlatiods, Hg of the complexe#\, B on the linex will
have two pairsK, ®@'), (F’, ®) in common. The paird=( ®), (F’ ®') that are inverse to
these pairs (no. 21) will play a particularly importesie; we shall call therfocal pairs:

F, F’will be thefoci and®, @' will be thefocal planesof the linex.

Focal pairs can be real or imaginary, or even margether.
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First, suppose that they are distinct. The Ixesll depend upon two parameters (no.
9) — viz., the point$, F’ - so the plane®, ' will depend upon two parameters, in
general. The point& and F’ will then generally describe two surfac&sand S’
(respectively) that one callscal surfaces.Meanwhile, it might be the case that the point
F, for example, describes a curve, in which case we sayl that the focal surface
reduces to a curve.

Consider a ruled surface that is contained in the cemge and passes through the
line x; it will determine a Chasles correlation »that must be (no. 61) in involution with
each of the normal correlatiom$s, Hg , and which, as a consequence (no. 25), must
admit the pairsK, ®), (F’, @) that are inverse to the pairk, (@), (F’, ®) that are
common toHx andHg . In a word,any Chasles correlation that is defined on x by a
ruled surface of the congruence must admit focal pai@®: furthermore:Any ruled
surface of the congruence that passes through x will touch the plah& and the plane
@', at F

Consider the singular Chasles correlations that befonthe congruence. These
correlations will be defined by the condition of beinginwolution with Hy and Hg .
Thus, from no. 25, the singular pair will e @') for the one andH, ®) for the other.

One may conclude that around each hknef the congruence there will be two
neighboring linex + dx, x + d'x of the congruence that each foam elemenbf the ruled
series with envelope, along wixhto abbreviate, we san element of the developable.

There are thus two ways of continuously displacinge dif a congruence when one
starts with an arbitrary given position, in such a Wt the line generates a developable.
The congruence may then be decomposed into developab&gaaiily in two ways.
Two of these developables will pass through each sired the congruence, and the
osculating pencils of these developables will Bed®') and ', ®), respectively. The
two developables in question will then be real whentgwese two pairs are.

First, imagine the case whe8eandS’ are true surfaces. Consider a developable that
is formed from lines of the congruence. The edge ofdbaélopable will be a locus of
pointsF that is traced o8 We will thus have a family of curv€son S whose tangents
will generate the congruence. Similarly, we will baavfamily of curve€” on S’ whose
tangents will likewise generate the congruence.

Any line x of the congruence will be tangent to a cutvatF and to a curv€’atF
it will then be tangent to the focal surfaces S ahak 8s foci

Any ruled surface that is composed of lines of the comgeués therefore found to
circumscribe both of the surfacB&ndS’at once. Now, its tangent planeFawvill be the
plane®, and its tangent plane &t will be the planeb'.

The focal pairgF, ®), (F’, @) will then be tangents to the focal surfaces.

In particular, consider the developable whose edd#;ig will be circumscribed,
with S, along a curvdd. WhenC’ describes the surfac, the curveD will generate a
family of curves or& | say that theurves Cand D will form a conjugate net on S.

Indeed, the curv® will be the curve of contact db with a developable whose
rectilinear generator that passes thro&ghvill touch the curveC at that point. The



Chapter IV. Principles of infinitesimal geometry indicoordinates. 77

tangent toD at the pointF and the linex tangent toC at F will then be two conjugate
tangents, in the sense of Dupin.

Similarly, the developables that have the cur@sfor their edges will be
circumscribed withS” along the curve® ’ that will form a conjugate system with the
curvesC’.

One sees that a congruence establishes a point-wisspondence between its focal
surfaces. The poift on Swill correspond td="onS’, and inversely. When two surfaces
correspond point-wise, there will generally exist twmifées of conjugate curves on each
of them whose image on the other one will be andtdraily of conjugate curves. Here,
these two families will be the curv€s D onSand the curve€’, D’on S’ because iF
describes a curv€ thenF " will describe a curv€’, and ifF describes a curve@ thenF’
will describes a curve€’.

There is nonetheless good reason to obselavad we shall return to this pointthat
if the asymptotes correspond on the two shBetsdS’ then to any conjugate system that
is traced orsthere will correspond another conjugate syster’on

67. The case where one of the surfaBeS’, or even both of them, become curves
offers no difficulty. Suppose th&t describes a curv®¥ andF’ describe a surfac®’,
which is a surface that is, moreover, the locus ofcinee C’ that is the edge of the
developables of a family that is defined by the lineshefdongruence. These lines will
then be subject to the double condition that they mus¥ emd touclt’, except that here
the developables of a family will reduce to cones whasamitF is taken to be on the
curveV and which will be circumscribed /.

The curved "will be the curves of contact of these cones.

As for the curve£’, they will be the edges of the developables that pasagh the
curveV.

If the surfaces’ itself reduces to a curw¢’then the congruence will be the set of lines
that cutV andV’ the developables of the congruence will then be timesohat pass
throughV’whose summits are ovi and the cones that pass throighwhose summits
are onVv".

An interesting example is furnished by the lines thatrge@ both of two focal
conics. All of the cones will then be cones of retioin.

We have already encountered an example of focalcagfdnat reduce to lines in the
linear congruence.

68. It would not be futile to recall the exposition of thessults by another path.
Let the equations of the complex@sndB be:
f(x) =0, a(x) =0,

and letx be a line of the common congruence; | consider the iequat
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of dag ow
21 A—+pu—+v—:1_y =0.
& 25{ ox o Vaxjy

In that equationy denotes a current line amt y, v are three arbitrary functions; as
always, afx) is the fundamental form. This equation representystes of linear
complexes with three terms that have a common degerssmi-quadric (no. 40).

Indeed, form the invariant:
dag ow

of
4=

|

Q A—+
[ ox 0%  0x
3 (66«))
of  ag) ,-(0w ox of  dg
=QA—+u—= [+vQ— [+V) ——| A —+u—
(ax ”axj (axj L 5w (ax Hax
0%
One first has:
Q(a—wj:a(x)zo,
o0X
acz@“’j
X
X = :
5@
0x

N A—+ U—
2 o HH
wherem, m' are the degrees of homogeneityf@ndg. Sincef = g = 0, one will thus
have:
Q(Aﬂ‘f‘,ua—g‘f‘l/a—a)j = Q(Aﬁ-}-lua_gj,
0x ox  0x 0x 0x
or, upon developing this:
:Q(QJ)IHZQ o9 )l,u+§2(@j,u2.
0X| 0X 0X

22
(22) ™
The special complexes of the system will be obtamethking the valued, : 1o and

Ay My that annul that invariant fot : . These special complexes will then form the

systems with two terms:
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of dag ow
23 A—+p,—+v—-:7_y =0,
(23) > [oa& A%ax Vaxjx

, of , 09 ow
24 A—+u,—+v—7 .|y =0
(24) > [oa& A%ax Vaxjx

In these formulasy remains arbitrary. From no. 30, each of these sys{2&)s(24)
will be composed of special complexes whose direstwill form a plane pencil. We
will thus have two plane pencils; | add that these twacigewill be F', @), (F, @').
Indeed, let us seek the two plane pencils whose union sl of the lines common
to the complexes (21). These common lpesll verify the equations:

of 99 0w, _
Za)gyi 0, Zaxyi 0, Zaxyi 0.

From the last relation, they will cit and sincex will belong to the two complexes:
of 09
E —V =0, E —vy =0,
0% ¥ 0% %=

they may themselves belong to these two complexgswnder the condition that they
belong to one of the two penciB{®), (F, @), which will have the two correlatiorsa,
Hg in common that were already defined above. Sincértée of the pencilsH’, ®), (F,
@") will be the ones that have all of the complex&k) (n common, the directrices of the
special complexes of this system will generate thalfpairs E, ®), (F’, ®') that are
inverse to the first two.

Moreover, if we suppose that the complexes (23) gendratpencil E, ®) then any
line of this pencil will thus be represented by:

Z+VUX,

6a)(x) ] oag
0z, 6>q ®ox

where we have set:

It is obvious that the thus defined will be the coordinates of a particdine of the
pencil F, ).
One verifies that the condition fdf,(®) to have an envelope is found to be satisfied:

2a(z | d¥) = Za“’(z) Z[ ggjdx

=Apdf + 1o dg =0,
sincedf = 0,dg=0.
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It is then proved that the focal pairs possess an gyeelo

The system of complexes (21) possesses a propertushéies the name aangent
linear complexeshat one gives to these complexes. If one repldy; in the left-hand
side of (21) with the coordinates of a line of the congtaen

1 5, 1
X+ —d% + —— o+ ...
XA 12 X 1[2[B X

that is infinitely close tox then one will find a result of order at most two. blber
linear complex will present that peculiarity, which teader may verify for himself.

69. Although we would not like to carry out a detailed stodlyhe congruences of
lines here, we would nonetheless like to give an accaiutiiteocase in which the focal
pairs coincide for all of the lines of the congruence.

This case is obviously characterized by the fact thatwbeaoots of the equation (22)

are equal, which gives:
2
(25) Q or 199 —Q(ﬂjQ(a—gj =0.
0Xx|0X 0Xx 0Xx

The left-hand side of that equation will be an invariahthe congruence; it will
likewise be a combinant, because, if one sets:

fi=7{f0), &=0(9),

Ao OF0G _0F 3G
of dg ag of

then one will find:

(88 ({8 - [=( ] (3R}

We seek to discover what the definition of the congreevzuld be in this case.
We have only one family of ruled series with an empe] and the unique focal pair
(F, ®) will be the locus of directrices of the specialgant linear complex:

of dag ow
E A —+pu,—+v—: .y =0.

As before, one recognizes that the p&ir®) will possess an envelope, which will
generally be a surfac®
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On the other hand, since the plablecoincides here with the pladg the pair E, ®)
will, at the same time, constitutes the osculatingcper the unique developable that one
can form from the lines of the congruence, and whichpaits through the line The
edgeC of that developable will be traced &rand since the osculating plagreto C at
the pointF will, at the same, be tangent it will then result thaC is an asymptotic
line of the surfac& Since this will be true for any developable of thegraance, it will
appear to bseet of tangents to the asymptotic lines of a family on the surface S.

Conversely, if one considers the asymptd@esf a family on a surfac® then their
tangents will constitute a congruence with coincidenaf pairs.

Indeed, let there be a family of curven a surfac&, and consider the congruence
of tangents to these curves. kdbe one of these tangents that tokchlong a curveC,
let ® be the plane tangent to the surfackE,and letd’ be the osculating plane @atF.

The planesh and®' are the focal planes of the lireand the second focal surfaSe
is the envelope of the plar®’. However, the line are asymptotes fo so @’
coincides with® and the focal pairs coincide.

70. It then remains for us to consider what happens if tirg pano longer describes
a surface, but a curv€ when the focal pairs coincide. This case, which iglyar
considered, nevertheless offers a certain interest.

The congruence will be composed of lines that cut #eelfcurveV. An infinitude of
lines will then pass through any polbfV. The lines issuing frof will form a hyper-
pencil such that one may represent any one of theseldinthe formulas:

Zz=Aa+ub+vg

wfa) = ab) = afc) = afa|b) = afa|c) = «fb|c) =0,

in which &, b;, ¢ are functions of the one parameter Moreover, there must exist a
homogeneous relation betweény, v, which will be, in some sense, the equation of the
cone that will be described by the lines of the congrudratessue fronk.

One will have:

or:

dz =Ada+udh+vdg+adil+b du+cdv
= (A’ +pj+vg) du+ (a dA + by du +c dv),

inwhich &', b', ¢ are the derivatives @, b, ¢; with respect ta. Therefore:

a(d?) =ada +ub +vc)dd
+2aAa +ub +vc |adl+bdy +cdv)du+ afadd+b du +cdy).

The expressiomfa dA + b du + c dv) will be zero identically, and what will remain is:

Wdd = a +ub +ve)dé+ada +ub +vc |adi+bdu +cdy)du
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The equatione{d2) = 0 will define the lines of the congruence that acseltoz,
which, along withz, will form an element of the developable. The solutia = 0 will
give the cones whose summits are on the chtveHowever, since the two families of
developables will coincide here, the two solutions mue du = 0.

Suppose thad, y, v are expressed as functionsuodnd a parameter () that varies
when the line describes the desired cone. It mustlibethe case that the termda dv
will disappears, or that one has:

a)[a')l +bu+cv

IR TA T
ov v av

identically, which is written, upon developing it:

fU(blC)(,u—V—V—j a)(c|a{)( ——)lg—vj+ w(a| b)( g,u ﬂﬂj =
Vv ov

If one observes thai(b | ¢'), afb | ¢'), afb | ¢') do not depend uponthen one will
see that this equation is equivalent to the firatation:

A Y7 Vv
(26) wb|c) w(alc) w(alb)| =0,
a B y

wherea, S, yare constants; i.e., as functionsuof

The linear form of that equation proves to usstfiof all, that the lines of the
congruence issuing from the poiatof the curveV will generate a plane pencil. The
plane ® of that pencil will obviously be the focal planévioreover, in the spray that
consists of the lines that issue fréinthe tangenkET to the curveV will be represented
by the following values ofl : 1 :v (no. 54):

A _ M _ Vv
wblc) wlcld) walb)

Since these values df: i :v will verify equation (26), one must conclude thia¢
plane @ will touch the curveV; i.e., conforming to the terminology of no. 55geth
characteristics of the penci,(®) will belong to that pencil. From this, it wilesult
immediately that, in generahe congruence will be the locus of the lines toatch a
given developable at the points of curve thataséd on that developabland that in the
exceptional case, it will be the locus of planeqien(F, ®) such that the point and the
plane constitute a pair of a correspondence thdeisrmined between the points and
planes with a fixed line (no. 56).

() [D. H. D. One must be careful to distinguish(“vee”) from v (“nu”) in these expressions.
Generally, the “vee” is in the denominator.]
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The singular linear congruence (no. 29) is the simplest of this that one may cite.

71. It is often useful to represent a congruence by egpgshe coordinates of
any of its linesx as functions of two parameteusv. Likewise, it is often useful to
represent the coordinates of a line of a complex by mefafusictions of three variables.
We shall return later on to that representation efabmplex; however, | would like to
immediately present some remarks on this subject tmatecn congruences.

If one formsaf(dx) then since:

dx = %du +6_>§ dv,
Ju ov

one will have:
(27) a(dx) = E dif + 2F du dv+ G dV/,

where:
E= w(axj F:w%a—x , G:w(%j.
ou ou|ov ov

Any equation betweem, v will furnish a ruled surface of the congruence; in
particular, the integrals of the equation:

Edé+2Fdudv+Gd#=0

w2iII give the developables of the congruence. These devetpalill coincide ifEG -
F*=0.
Consider a linear complex:
2aYy=0,

and replace thg with the coordinates of a line of the neighboring caegce to the line
x of that same congruence. This will yield:

Vi = >q+a)§du+?;§d+ [axd?wa—)'( &\a

\Y Ju ov
a’Qolu 298 quaw 2% g |+
ou auav oV

The equation of the complex will become:

qu Za1>§+2a 0% du+z aax dw (z,gﬁ d l:fziaaa—)'\(/ 6}
9°x

If one chooses thein such a way that:
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@  Tay=o.  YaZwo  Ya%-o

then the result of that substitution will be:

Zay——Z

it will then reduce to second order.
For certain congruences, one may determine the comﬁa(yiz 0 in such a

manner that the second-order terms also disappear, hnasway thatup to third order
the neighboring lines to a linein the congruence may be envisioned as being contained
in a linear complex. In this case, we will say tlmt tongruence possesseoacoulating
linear complexalong each of its lines.

In order for the terms of second order to disappe& necessary that one must have,
at the same time as equations (28), the following ones:

0% _ 0% _ 0° >s
(29) 2.a ou? =0 2.3 6u6v_0’ Za, =0

The compatibility of these equations may be expressed hngvthat the following
determinant is zero:

30 , , , =
(30) ‘au2 oudv 0V uav)g

0°x 0% 0°x 9x 0k H_O
a : - .

Now, the vanishing of this determinant obviously expredsesiecessary and sufficient
condition for thex to be solutions of the same equation of the Laplawa:f

2 2 2
(31) A6§+2868+C68+ D—ae %+G9 0.
ou ouov oV ou 0dv

Therefore,in order for a congruence to admit an osculatinger complex, it is
necessary and sufficient that the coordinates @f a@hits lines verify an equation of the
same form a¢31).

72. The congruences of coincident focal pairsaveaysof this kind.
Indeed, suppose that = const. are the developables of the congruence, so the
expression forfdx) must reduce tdv?, and one will have:

ady) = w (a jdu +2w (a ax}d U dvt (axj dv:
0 Jdu|ov ov
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w(axj 0, o %1% =0
ou ou|dv

| will consider the following expressions:

one will thus have:

2
¢.-Aa" +289% L 0 )'(+Dax+

Gx,
ou? ouov 0V

and form:
B 9°x 9°x X ax
ax19) _Aw[XW}F B‘”Hauav} Cw[ >’auj D{ +EJ+ @ X
w[% ¢j = Aw[ax 0°x j+ Bw[%ﬂj+ Cw(axj Dw(ajaxj Gw( %a—j
ou ou |ou? dujldud v Ju Jdyovy 0

These two expressions will be zero. Indeed, ofiehewe:

a(X) =0 an(x) = w[x %j =0, an(x) = w[x %j =0,
2 du ou 2 ov ov
aw(x 6xj
ou) _ (
= w

0°X (axj
+ W) 0,
6u oJu

ou?
Likewise:
ow x% 5
ou) 0°X 0Xx|0X
= w| X +w —
ov ouov Ju 6v
and sincew| — ox 6x = 0, one will have:
ou 6v

w[x

2
O | _ .
ouov

One will then have:
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0w X)
0%

0X | 0WS) , _
20)(% |¢j —Zwﬂ =0,

20(x|¢) =) ¢ =0,

(32)

where one has sét=0x; / du, for the moment.

If one has:
daAé)  dcd) 26)
0§, _ 05, _ _ 04
da(X)  dw(X) T 0aw(X)
0X, 0X, 0X;

then, upon calling the common value of these ratjame will have:

OE=P) _y (=12 ..6)
(S =~ PX)

which will require that:

&—px =0,
or:

% _

Py =pPX,
from which:

X = e[pduvi.

The ratios of the; will depend upon only, which is contrary to our hypothesis.
From the preceding, at least one of the deterrtsnan

0a($) 0axX) _ 0ex{) 0cNX)
0¢ 0% 04 0%

will be non-zero; for example, the one that coroegfs to the indices= 1,k = 2. One
may then determine the equation:

2 2 2
(33) A662’+2868+C68+ D%+ E%+G9:0
ou duov oV ou odv

in such a fashion that it should admit the sollg X4, X5, Xs : SINCe@z , P4, Ps, Ps
are zero, equations (32) will give zero values dgr ¢,, moreover, since the
corresponding determinant will not be zero.

Since the six expressiong will then be zero, the six coordinates will verify
equation (33). The congruence will thus admit acudating linear complex.
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73. However, this is not the only case.

For example, take a congruen@ethat is contained in a linear complex. The two
focal surfaces will be reciprocal polars with respecthis complex. Indeed, |& be a
line of the congruence and lét, (@), (F’, @) be focal pairs. The paiF(®') will be the
osculating plane pencil of the cur@ethat is traced on the surfa€no. 66). This plane
pencil will then belong to the linear complex, whichlwihply that the tangents t€
must belong to that complex, as well (no. 53). Thagd® will then be the polar plane
to F in the complex; likewise, the plare will be the polar plane t&”. The two plane
pencils E, ), (F', @) will be polar to each other, and, as a result, wWwefocal surfaces
SandS’that they envelop will be polar to each other with respeethe complex.

There is more: When the poiitdescribes a curve @ or, more precisely, when the
plane pencil £, ®) describes dand circumscribed byg, the plane pencilH’, ®') will
describe the reciprocal band that is circumscribe®byln particular, if the band is an
asymptotic band d® - i.e., a band in which the locus of the pdinis an asymptote @&

— then the corresponding bandSsfwill likewise be asymptotic. This amounts to saying
that, by duality, the asymptotic band of a surface wansform into that of the
transformed surface.

In other words, asymptotes will correspond on focal seda

As was shown by G. Darboux, this remarkable property isrgérand the preceding
considerations permit us to given an immediate proof.

Let G be a congruence that admits an osculating linear el the linex. LetS
be a focal surface, and consider the tangen&that belong to the comple3; . | shall
refer to the reciprocal polar & in the complexCy by S;, so the surfac& will be the
second focal surface of the congrue@eof the tangent lines t8 that belong taCy .
Finally, let S” be the second focal surface of the congrughceAlong the linex, the
congruences andG; will coincide, up to properties that depend upon third orddre
two focal surface$’andS, must then be tangents to the pdiritvherex touchesS’, and
moreover, the elements of second ordeScand S; must be the same alo€). The
asymptotic tangents 8 andS must coincide.

However, ifF is displaced along an asymptotic tangen® tdienF " will be displaced
along an asymptotic tangent, and therefore along an asymtangent toS’ It is thus
established that the asymptotic tangentSandS’ will correspond. The asymptotesSo
andS’ will then correspond.

We will have occasion to return to that question.
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74. In no. 3, we defined a special system of coordinatésr the straight line, which
is a notion that is found to be linked to that of a certaordinate tetrahedron.

We then pointed out how one can substitute new codedifar these coordinates by
means of transformation formulas:

lik = Ak X1 + Ak X2 + ... +Aike X5,
in which the determinant of the transformation is nob z& he equations:
x=0
each represent a linear complex, and these six congpéeeobviously not part of the

same system of five terms.
The variablesi verify the relation:

12734+ 113742 +r14723=0,

and if one substitutes the variabbedor them then the left-hand side of that equation
becomes a quadratic formxq X, ..., Xs :

afX).
The form of the functiona(x) characterizes the coordinates. There are two
particularly important types of them, and they have ¢losest links between them,
moreover. The first one is the following:

X1 Xa + X2 X5 + X3 X5
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and the second one, which was first considered by Kaeid, which is the basis for his
research into this geometry, consists of the sumeo$gjuares:

Kot xhn

We shall study these two types in turn.
We first observe that the coordinatgsrealize the former type, and we shall show
that, converselyif the coordinates reduce the formafx) to the type:

fX) = X1 X4 + X2 X5 + X3 Xe

(i.e., the sum of three trianglesgjen the ¥ will be the coordinatesyrwith respect to a
certain tetrahedron.
Indeed, if we seek the adjoint fo®@(a) then we will find:

Q@ =ayaut+tayas+azae;

i.e., afa). This is one of those cases in which the adjoint fogproduces the original
form. For the complex, = 0, all of the coefficients; are zero, except faa,, and in
turn, Q(a) = 0;the coordinate complexes are therefore all special
We now show that the directrices of these complexeshe edges of a tetrahedron.
The condition for the involution of the two complexXe®B is written:

aubi+bsas+tashby+bsay+asbs+bsas =0

here; it is verified for every pak, = 0, X, = O of coordinate complexes, except for the
three pairs of indices 1 and 4, 2 and 5, 3 and 6.

Figure 1.

For example, take the complexes with indices 1, Ei@® (), so they are special and
pair-wise in involution, and they are not part of the saystem of two terms. It then
results that their directrices define a trinedron tniamgle; for example, a trihedron with
summitO.

The directrices of the complexes 2, 3, 4, likewisengeh trihedron or a triangle.
However, if they define a trihedron then the directri 4 must pass through the point of
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intersectionO of the directrices 2 and 3. The directrix of 4 wileh cut that of the
complex 1 aO, which cannot happen, since 1 and 4 are not expected tarb@lation.
Therefore, the directrices of 2, 3, 4 define a trianghel the directrix of 4 cuts that of 2 at
a pointO,, and that of 3 at a pois .

If one then takes the directrix of 5 then it will afia trihedron or triangle with those
of 3 and 4. If it defines a triangle then it will bethe planeO0,O; and will cut the
directrix of 2, which cannot happen, since one expects 2zhahd 5 will not be in
involution. Therefore, the directrices of 5, 3, 4 wilifine a trihedron, and in turn, the
directrix of 5 will pass througls ; similarly, the directrix of 6 will pass througby .

All that remains is to prove that the directricd5p6, 1 intersect at the same point
Oq; i.e., they define a trihedron. Now, in fact, thegeehdirectrices intersect pair-wise;
they thus define a trihedron or a triangle. One camsstime that they define a triangle
because the directrix of 1 would then be in the planthe directrices of 5 and 6 and
would cut the directrix 4, but this cannot happen, since 4aé not in involution. It is
therefore a trihedron that defines the directrix lioeghe complexes 1, 6, 5.

One will obviously arrive at the same result if oretstwith the hypothesis that the
directrices of 1, 2, 3 define a triangle, and not a dinbe. One will have obtained a
dualistic configuration from the viewpoint of the notatiémswhat we have found.

Having said that, assign the index 1 to the pGntthe index 2 to the poird,, the
index 3 to the poinDs, and the index 4 to the poi® Then, consider the coordinatgs
that were defined in no. 4 and taken with respect ta¢hathedron.

The directrix of the complex:

1is the line OO, or 41,

2 : 00, “ 42,
3 “ 0G; “ 43,
4 : 0,03 23,
5 “ 00, 31
6 “ 0.0, 12.

Now, the equation:
rk=0

is the condition of intersection for a line with thee ik; therefore, with the system of
the equation of the complex:
1 will be ra1 =0,
rs2=0,
rs3=0,
rs=0,
rs1=0,
r2=0,

OO WN

and since they are linear functions of the,, one must have:
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I
K

41

1
[/ RK

2 r42’

43

(1)

[
-

23

2 r31’

KK XX KX
I

1
Q K

3 r12’
where thea, o are constants. If one forms:

X1 X4 + X2 X5 + X3 X6 = Q10 Ta1T23+ 020, T42731+ O30 43712
then that form will differ only by a factor from:

F41V23 + T4 031+ 43012,
and one will see that:
(2) ma, = a,= a:a;.

However — and this is the essential point — formulasndged show that the, are the
coordinatesi, when taken with respect to a certain tetrahedrom agfdctor.

The presence of the factards of no importance, since in regard to the relations (2)
one can put them back into tkevithout changing the form:

X1 Xa + X2 X5 + X3 X5 .

In summary, performing a transformation that takesdahe above to the same form
amounts to changing the tetrahedron of reference.

As an application of the formulas that define then no. 4, the reader will easily
verify that, conversely, any change of symbols or dimates translates into a linear
transformation of the coordinatgesg.

75. The other coordinates that we shall speak of are dkikeio.

Suppose that one has a coordinate system of the prgdggm — i.e.tetrahedral
ones — and from now on denote these coordinates by th®bgm as in no. 4. We will
have:

1723+ 42031+ 43r12=0,
or furthermore:

(ra1+123° + (a2 +13)° + (a3 +112)° = (a1 — 29" = (a2 — r3))° — (ras— r12)> = 0.
The fundamental form # one appeals to real numbetsis therefore decomposable

into six squares, three of which are positive and tbfe¢hich are negative.
Perform thaeal transformation:
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I’41+I’23:X1,
r42+r3l:X2’
M.+r.,=X,
(3) 43 12 3

My =T =Xy

My =13 =Xg

3= =X
and the fundamental form becomes:

4 XA KX KX

However, by reasons symmetrthat also present themselves in the theory of penta-
spherical or hexa-spherical coordinates, one desiréeg4hahould be converted into a
sum of squares . Obviously, this goal can be achieved only by an imaginary
transformation.

For example, one may substitute the following equationsequations (3):

Myt =Xy, Fa7 T =X N -1,
(5) My ¥r3=X5 M7l 3=X o -1,

M3t =Xy Fag™l =X -1,
and instead of (4) will then have:

6) XA G GF XK X

a formula that is symmetric, but complicated by imagasa
Meanwhile, under the hypotheses that we have imposedixtcemplex coordinates

will be real, sinceq, X, X; are real and/~1 is a factor ik, Xs, Xs .
However, this situation will not beecessarilytrue if we performany otherlinear
transformation that reduces the fundamental forthécssum of six squares.

76. If one is given a quadratic form that is the safraquares (involving six squares):
R

then one will saprthogonal substitutiomo mean any linear transformation that preserves
the type of its form in such a way that by virtdéhe transformation equations:

Xi=Qiiyi+adi2Y2+ ... +QigYe i=12..6),

() In regard to that, consult the work of Darboux: “Sur uressg remarquable de courbes et de
surfaces,” “Sur les groupes de points, de cercles,” &rlceljons sur la théorie des surfaces.
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one must have:
XXt T Y Yt Y

Consequently, upon performing an arbitrary orthogonal substiton the variables
X that are defined precisely by formulas (5), one willthetgeneral type of coordinates
that attribute the form of a sum of squares to thetioneu

The coordinates thus defined are those of Klein. Horyévis easy to confirm that
these coordinates are not essentially distinct ftbencoordinates that were defined in
formulas (5), but which are more general in appearance.

Indeed, choose coordinatgshat reducevto the form:

Vit Yo ety

and perform the linear transformation:

z=y+ WL 7=y Wl
™ Z=y,+ YVl 3=y Wl
Z= Y+ -l 7=y Wl

so the use of the varial#ethus defined, will reduce the form to the tetrahegae t

L+t 237,

in such a way that the are the coordinata relative to a certain tetrahedron, while the
y, from formulas (7), are the ones that one deducessphediy applying formulas (5).

Meanwhile, there is a difference, because here thahestron to which the
coordinates; are referreccan very well be imaginary One agrees that this distinction
implies nothing essential.

From that remark, the passage from a Klein coordispgdéem to another analogous
system can be reduced to the passage from a tetraledrainate system to another
tetrahedral system that is preceded and followed by éinsfarmation that is defined by
formulas (5).

77. The system of Klein coordinates presents a remarkaislégaration whose
principal properties we shall discuss.
Six coordinate complexe§;, C,, ..., Cs enter into it that are represented by the
equations:
X1 =0, X2 =0, e X =0,
respectively.
None of these complexes are special, because jinatddrm to a(X) is:

Q@) = & + a4+ &
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here; it is not zero for any of the complexgs
The condition for involution of the two complexes:

X tax X+ ... +agXs =0,

bixg+boXxo+ ... +bgXs =0
IS written:

aabi+ab,+ ... +agbs =0.

One thus recognizes that the complegswhen taken two at a time, will be in
involution or orthogonal. From the nareextuply-orthogonalhat one sometimes gives
to this coordinate system, Klein gave the nduonedamental systerto the set of six
complexe<; .

Conversely, suppose that the coordinate complgxes, ..., X are pair-wise in
involution.

When the adjoint form to the fundamental form igten:

Q@) =2Ajaaq,
the involution of the complexes:
X =0, X =0

will demand thatA; = 0. All of the rectangles must be missing fréx@a), and no
coordinate complex can be special, because=if0 were special then one would have:

and Q(a) would be reducible to less than six squares. Upon onge mtroducing
constant factors into thee one can thus write:

Q(a) = 812+822+---+ aé,
and one will then have:
@)= K+ G+

The coordinate system is then that of Klein.

This permits us to count the number of parameters &hat contained in a
fundamental system.

If we are giverC; arbitrarily then we will introduce five parameters, dese a linear
complex depends upon five parameters. We @&kéo be in involution withCy, but
otherwise arbitrary; we thus introduce four new paramet@smust be in involution
with C;and Cy, but it still contains three new parameteiG, will contribute only two
parameters, because it is subject to being in involutibh @, C,, C; . Finally, Cs
contains just one parameter, because it must be itutiwo with Cy, C,, C3, C4 . As for
Cs, it is defined uniquely by the condition of being in invaatwith C;, C;, C3, C4, Cs.
We have thus constructed a fundamental system, and Imttratmost general oneWe
have thus introduced:

5+44+3+2+1=15
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parameters in our construction. That is the numbgraochmeters that the fundamental
system contains.

One will observe that after having tak€p C,, ..., C, to be real, we can then take
Cp+1, ..., Cs to have arbitrary imaginary coefficients, in sucvay thatthe number of
imaginary complexes in a fundamental system is arbitr&gnetheless, it is impossible
that one would have just one imaginary, becauseg,,ifC,, ..., Cs were real then the
complexCs would be unavoidably real. However, there can be tiwreg, four, five, or
even six imaginaries.

In order to obtain such a system, one obviouslyireg@an imaginary transformation.

78. Takep of the complexe€; — sayCy, C,, ..., C, — and define the system wigh
terms:
AiXxg+ Aoxo+ ... +Apo: 0.

It is clear that since&.1 = 0, ...,Xs = 0 are (6 p) complexes in involution witkC,, Cs,
..., Cp, the complementary system to the preceding systdirbavi

Ap+1xp+l+ +A6X6: 0

This has numerous consequences, as we will see.

Let C;j be the congruence that is common to the com@lexdC; . It is not singular,
because its invariant is equal to unity. | shall denoteiriggtiices byA; andA; , which
are distinct. | observe that the system with twentethat is composed of the complexes
that contain the congruen€g has the equation:

Xi+Ax=0.
Its invariant is equal to 1 #% so the special complexes of the system will haee th
equations:

J-1x+x%=0,

J-1%+x=0.

The coordinates of the directrices of the congece€ty will all be zero, except fox;

andy; , which will be proportional te:+/-1 and to 1.
HERE IS HOW | FIX THE NOTATIONS:

| let A; denote the directix whose coordinates xare J-1, X; = 1, while the other

coordinates are zeray; will then have the coordinates= /-1, x = 1, while the other
coordinates are zero.

One will see how important this fixing of notatom from the standpoint of the
correspondence that is established between theepiexp of the configuration of six
fundamental complexes and those of the permutatibss letters.

There are fifteen combinations of six indices takeo at a time. There are thus
fifteen congruence§;; , and in turn, thirty lined,. .
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One observes tha#ny lineA; will belong to any complex,@hat has no common
index with it. There are four of these complex@s, C,, Cn, C, ; they have two lines in
common, namely; and4; .

Take two congruencés; , Cy that have no common indeX heir directrices form a
skew quadrilateral. Indeed, from the precedindy; , for example, will belong to the
complexeC, andC; . Therefore/; will belong to the congruence, and consequently, so
will Ny andA|k .

On the contrary, suppose thaf and Cix have a common indeix in that case, the
directrices cannot intersect. Indeed,llein, n be three indices other thanj, k. The
complexe<C;, Cn, C, contain the directrices @, Ci. Thus, these directrices belong to
the semi-quadriQmn, that is common to these three complexes.

The complexe€;, when taken three at a time, will give rise to twesgyni-quadrics.
These semi-quadrics will be pairs of complementary spradrics. Indeed, it is clear
that the two semi-quadrics:

Qik»  Qimn s

with no common index, will be complementary. Theylvibké carried by the same
qguadric that | shall represent by the symbol:

(Qik , Qimn).

There are then ten of these quadrics. Klein gave themame ofundamental quadrics.
Two semi-quadrics that have a common index:

Qi s Qmn

will have no line in common, because if a common lixisted then it would be common
to the five complexe€ , C«, C;, Cy, Cn. The complements of these two semi-quadrics
will be:

Qmn, Qii,

and they will also have a common index
On the contrary, consider two semi-quadrics that hagecbommon indices:

Qik » Qi

so these semi-quadrics will have the lidgs, Anm in common, which are the directrices
of Cmn. Their complements will be:

anl y ank,

and these complements will ha&g A; in common.
Therefore, the two fundamental quadrics:

(Qik » Qund,  (Qyi , Qmni)

will intersect along the skew quadrilateral that is iedi by the lined, Aji, Amn, Aam -
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If a congruenc&; has no common index with a semi-quadpig, then it will have
two common indices with the complementary semi-quag@yicand its directrices will be
carried by that semi-quadric. They will thus be tracetherguadric:

(Qik, Qimn)-

Therefore,in order for a congruence to have its directrices on a fundamental
guadric, it is necessary and sufficient that it have two or zeroesdit common with one
or the other of the semi-quadrics that constitute the proposed fundamentakquadr
However, it can happen that the congrugbgdas an index in common with each of
its semi-quadrics:

Qikt s Qimn -

One can prove thah this case, the lineA;, A; will be conjugate with respect to the
proposed fundamental quadric:

(Qit, Qimn)-
O
Akl Anm
Anm Ol
© AV
o
Figure 2.

Indeed Amn, Anme Ak, A define a skew quadrilateral on that quadidg. cutsAn, and
Anm at two pointg0, O', andAy cuts these same two lines@ O;. The lineh; cuts the

three linesAy , Ak , Amn, Anm . Therefore, sincédy; is not traced on the quadric, it is
necessary that the points where they pierce thaaife two of the four poin@, O,
O,, O;; they can be onlYD, O, or O, O;, and similarly, ford; . Therefore, the lines
A, A will be precisely the ones that johandO, , O andO;, resp. They will thus be
the diagonals of the skew quadrilateral. Consequethtdy will indeed be conjugate
with respect to the proposed quadric.

However, our reasoning proves some other things.

The lineshy, Aji, Aw, Ak, Amn, Anm Will be the edges of a tetrahedron.
Therefore:

The directrices of three congruenceg, @, Cnn With no common indices define a
tetrahedron.
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| shall denote that tetrahedronTfj, ki, mn).
One can give this fact another proof.

| recall that the special complex whose direcsi&j, has the equation:

x/—_lxp+xa =0.

Consequently, set, in a general manner:

Zpo =J-1 Xp+ X .
One will have:

Zij Zj + Ly L + Zinn Zom

(V=1 X +X)( V1 X +X) + (V-1 X+ X)( V=1 X + X + (V=1 Xm + Xn)( V=1 X + X)
== (6 X+ XX+ X X0) + VLKL R+ ) + (60X F XX+ X Xn)
VI(OE+ X+ ¢+ X+ 6+ X).

The transformation formulas:

Zy =-1x+x,
Zi =-1x+x,
Za =1 x+x,
Zik =~-1x+x,
Zon = N1 X+ X ,
Zom = N=1 X + X

thus associate the quadratic foufx) with thetetrahedralform:
Zij Zj + L L + Zinn Zom
and in turn, conforming to no. 74, the axes ofdixespecial complexes:
Z;=0, =0, Z24=0, Zx=0, Zm=0, Zm=0,

I.e., the directrices of the congruen€gsCy, Cnn— form a tetrahedron.

79. Arrange the directrices of these congruencesti@anatrix below:

AV Dg,  Dmn,
AV DA,  Anm.
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It is clear that all of the pairs of elements fraiifferent rows in this matrix will
intersect, except for the ones that are in the saohenn, which then constitute pairs of
opposite edges of the tetrahedikdip, kl, mn), precisely.

By grouping the elements of the preceding matrix by thieeswithout ever taking
two of them from the same column, one can proceedvaral manners. Once take all
three of them from the first row, or two from thestiand one from the second, or one
from the first and two from the second, or even finallythree of them from the second
row. We thus obtain eight different groups of threeditigat intersect pair-wise and
consequently define either a trihedron or a triangle.

In this way, we will realize the four trihedra ane tlour triangles whose faces are on
our tetrahedroi(ij, kl, mn).

Suppose, to fix ideas, that the lines that are plactdeeifirst row:

(B, Dy D)

define a trihedron with summ@. The other three lines, namely, the ones in therskc
row:
(Qji, Dk, Do),

will obviously define a triangle that constitutes the @gfe face to the concurrence point
of the first three edges.
If we now replace one of the lines in the symbol:

(AI] ’ Akl ’ Amn),

for example Amn — with the lineA,, in the second row, which is placed beneath it, then
we will get three lines:
(B, Dy Do)

that define one of the faces that meet at the int

One thus sees that one will obtain the four facab@tetrahedron by taking an odd
number (viz., 1 or 3) of lines from the second row andwan number (viz., 2 or 0) from
the first one.

On the contrary, one will get the four trihedra oé tetrahedron by taking an odd
number (1 or 3) of lines from the first row and an emember (2 or 0) from the second.

Therefore, if the lines:

(D, Dy D)

form a trihedron then the same thing will be true lfer triples of lines:

(D, Dy Do),

i, Dy Do),

i, Dic, D),
while the triples of lines:

(i, Dic, Do),

i, Dy D),
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(D, Dic, D),
(B, Dy Do)
will form triangles.
One can summarize these facts in a very laconierstat:
Let there be a triple of lines:
(Aij , Ak| , Amn)-

These lines will form a trihedron or a triangle.otfe permutes the two indices in one
of these lines then one will again have three linesitit@rsect pair-wise and again form
a trihedron or a triangleand only the type of the configuration will be changed — i.e., if
the first triple forms a triangle then the new one will form kaddron, and conversely.

We shall call the tetrahediE(ij, kl, mn) fundamental There are fifteen of these
tetrahedra. Indeed, each of them is characterizeddisgréoution of three pairs:

(i), «), @n

of indices 1, 2, ..., 6. The order of these pairs mattels, las well as the order of the
indices within a pair.

Observe that the index 1 figures in one of these pagsi = 1, soj can be 2, 3, 4, 5,
or 6, which already gives us five classes of groupitfyjthe index that is associated with
the index 1 has been chosen then it remains for odéstigbute the other four indices
into two pairs. The number of possible dispositionsegaal to one-half the number of
combination of four objects taken two at a time; i£ = 3. Each class is then

comprised of three dispositions. There are five ctasse there will be % 5 = 15
tetrahedra.

Consider a directrigy;; of the congruenc€;; . This directrix is cut by the directrices
of the congruences:

Ckl and Cmn, Ckm and Cln, Ckn and Clm.

We have grouped these congruences in pairs, becausedtteiahs ofCy andCpn,
for example, cuty; at the same two points. On each igave will then have three pairs
of summits of fundamental tetrahedréhese three pairs, when taken two at a time, will
be harmonically related.

For example, the two points whekg , Ak cut define a harmonic proportion with the
ones wheré; is cut byAwm andAnm . Indeed, the first two points are two summits ef th
tetrahedronT(ij, kl, mn), and the other two are the ones where the Aglgevhich carries
them, pierce the quadric:

(Qikty Qmn).-
Therefore, since the tetrahedrdfy, kl, mn) is conjugate with respect to that conic,

the harmonic property is indeed true.

80. We have seen that the tetrahedidi, ki, mn) has two of its pairs of opposite
edge, Ak, Amn, Anmon the quadric:
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(Qikt, Qmn),

while the opposite edgds , A; are conjugate with respect to that quadric.
One formed that quadric by means of the grouping of inditeghree pairs:

ij, kI, mn

by takingQi to be one index in one of these pairs (e.g., the ifdéwo from anotherl(
andl), and none from the last on@ &ndn). Qmn is likewise formed by taking one index
from one of the two pairs, two from a second one, amekrirom the third.

There are obviously six fundamental quadrics that thok eantain two pairs of
opposite edges OoK(ij, kl, mn); all the pairs of opposite edges, exceptdgr, A; , are
contained in the two quadrics:

(Qki, Qmn),  (Qimny Qya)-

(ditto), except fo\, Ak, the quadrics:

(Qkij, len)a (kan Qilj )

(ditto), except fol\mn, Anm, the quadrics:

(Qmij, Qnki), Qi Qni)-

Four other fundamental quadrics remain that containedge of the proposed
tetrahedron. They are the quadrics that one obtainakiygt each of the component
semi-gquadrics to be one (and only one) of the three imdliceach of the pairs:

ij, kI, mn.
One thus finds the fundamental quadrics:

(Qikm, Qim),
(Qim , Qim),
(Qikn, Qim),
(Qim , Qm)-

These four quadrics admit the tetrahedidn, kI, mn as a common conjugate
tetrahedron.
Indeed, we have seen that if a fundamental quadrizes gifor example:

(Qikm, Qim),

then any congruence that has a common index with itscomgponent semi-quadrics
Qim, Qum — for exampleC;; — will have its two directrices conjugate with respiecthe
quadric.
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Therefore, in regard to the mode of formation of our fguadrics, precisely, one sees
that the directrices dj;, Cua, Cmn form many pairs of conjugate lines that are common to
these four quadrics. Since these lines form the tetrahddij, kl, mn), one indeed sees
that this tetrahedron will be conjugate with respedlitof these four quadrics at once.

One can attach this property to another one that cosi¢hree linear complexes in
involution.

Let C;, C;, C« be three linear complexes that are pair-wise in invariutiLetO be a
point of space, letz, 77, 7% be its polar planes in the three complexes, and;lety., ai
be the intersections of these planes.

On the linea; one finds the poinDy, which is the pole of7 in the complexC;, and
on ai one finds the poin®;, which is the pole of7 in the complexCy .

SinceO andOy are poles of the same plaman C; andC; , respectively, it results that
(in regard to involutiond,andO will be poles of the same plane on these two coxagle
Ci andC;, respectively (Fig. 3).

Qik

O
Figure 3.

Sincerz is the polar plane t® in C;, one sees that will be the polar plane t® in
Ci . ThereforeQy is the pole of7 in Cjand of7zin C; . Similarly, the poin©,; is the pole
of 7z in C;and of7in Cy.

One likewise confirms that there exists a p@nbn aj that is at the same time the
pole of 7z in C; and of77in C. Finally, the planerof the pointg;, O;, O is the pole of
these points in each of the comple&sC;, Ci , respectively.

Indeed, we shall prove by example tkatis the pole of the plangin the complex
Ci. It will suffice to prove thad; Ox andG; O; are two lines of the complex. Now, in
effect, Oy O issues from the poiry in the planes that is polar tdOx in Ci , andG; G
issues fron©; in the planerx that is polar td); in C; .

We have thus formed a tetrahedron such that each pidhe faces admits precisely
the three summits that it contains as poles inlileetcomplexes.

The law of distribution of the poles and polar plangsgrise to the following table:
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0 0 0 O
T * C G Ci
s C * Ci C
C Ci * C
% Ci C C *

Take a plane in the left-hand column and a summitanalv above — for exampleg
andQ; . At the intersection of the rowy and the columi®;, one will findsC . That will
be the complex, with respect to whighandO; are conjugate.

Had | takerv andO; , | would have arrived at a vacuous case. Ind@edould have
to be the summit that is opposite #p, and in turn, that point and that plane cannot be
conjugate to any complex.

Let A, A be the directrices of the congruer@gthat is common to the complex€s
andC; . These lines cuDO and OO, , because the latter lines belong to both of the
complexesC; andC; at once. However, there is more: SiteandQ; are the poles of
the same planer in the complexe<; andC; , respectively, one will see that the line
segmentO,0; is divided harmonically by the lings;, A;i , by virtue of the properties of
complexes in involution that were proved already.

Now, imagine the semi-quadric:

Qi

that is common to the complex€s, C;, C. .The complementary semi-quadric obviously
containshj, 4 . Therefore, the points where the IDg; cutsA;, A; are also the ones
where it cuts the quadric that carries the semi-qua&igic The same reasoning is then
applied to the other edges of the tetrahedron. One desntisat:

The tetrahedron O@;Ox is conjugate with respect to the quadric that carries the
semi-quadric G .

For example, take the tetrahedron:
T(ij, kI, mn)

and one of the four fundamental quadrics that were caesiddready; e.g.:

(Qikm, Qiin).

The tetrahedroii(ij, kl, mn) is such that the planes of its faces have the tswenmits
that are situated in each of these planes for pol#srespect to the complex€s C;, Cy .

Indeed, assume thaf;, Au, Amn form a triangle. Call the plane of that triangteso
any line that issues from the poid;( Aw) (viz., the intersection oy andAy) and is
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traced in the plangwill cut Ay, andAnm. It will thus belongs t&€m, and, in turn, t&Cnm,.
Therefore, the pointj, Aw) will be the pole ofirin Cy, . Similarly, the point &, Amn)
will be the pole ofrrin Cy , and finally, fmn, Ax) Will be the pole ofrin C; . In the case
of the tetrahedrot©O 0,0« that was just discussed, the tetrahedf@p kI, mn) will
therefore indeed be conjugate with respect to the quédticarrieQim andQjn .

Figure 4.

We complete the discussion of the set of these foudrmpsathat admit the
tetrahedronr(ij, kl, mn) as their conjugate by proving an interesting property inrdega
them:

Each of these quadrics is its own proper reciprocal polar with resfgeany of the
other three.

One first observes that these four quadrics inters@ciwise along four lines. Take
any two of them; e.g.:
(Qikmy Qjin),
(Qikmy Qjin)-

They will intersect along the directrices@f, andCj, , which form a tetrahedron withy
andAy .

Therefore Ay andAy will intersect these two quadrics at the same poiftsen, take
one of the other four edges of the tetrahedi@n kl, mn) — for example;; — so the two
line segments that these two quadrics determint;amll be the ones that determine the
directrices of the congruenc€s, and Cy, . From the remark that concluded no. 79,
these two pairs of points will be harmonically related.

Therefore, there are two quadri@s Q' that have a common conjugate tetrahedron
T(ij, kl, mn) that intersect along four lines that form a skew quatgnal whose diagonals
are Ay , Ax and which ultimately determines some pairs of harmonicalbated line
segments on the other four edges of the tetrahedroarteanvisions.

When referred to the common conjugate tetrahedromghation ofQ will be:

X?2+Y2+Z2+T2=0,

and ifX = 0,Y = 0 are the equations Af then those of\k will be:
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Z=0, T=0.

The harmonic properties that were established then pitmateQ’ will have an
equation of the form:
X?+Y?-72-T?=0

and one thus indeed recognizes that the two quadrics wifiebproper reciprocal polars
of each other.

81.In order to represent the configuration of linfss more completely, one can
introduce a symbol that exhibits an interesting correspwalbetween the properties of
that configuration and those of the permutations ofetbels.

Three linesy;j, Aw , Amn With no common index will always form a hyper-sheat (vi
a triangle or trihedron).

| shall represent that hyper-sheaf by the notation:

i, kI, mn).

There are as many symbols of that form as thereparmutations of six letters,
namely, 720. However, | observe that one can permeteairs of indicesj, kl, mn
without the symbol ceasing to apply to the set of thirees A , A, Amn . The six
permutations:

>j, kKl, mn), (Kl ij, mn),  (mn kKl ij),
(i, mn K,  (mnij, k), (I, mnij),

are applied to the same three lines. We will then hiavesality, 720 / 6 = 120 hyper-
sheaves. Sixty of them are spragerpe$ (viz., the summits of the fundamental
tetrahedra). Sixty of them are planes (viz., thedaaf the tetrahedra).
We shall now establish a rule for distinguishing them.
From what was said in no. 79, it first results thatné permutesandj, ork andl, or
evenm andn in the symbol:
(ij, kI, mn)

then the nature of the hyper-sheaf will change.

One can similarly add that upon performing several ofethgsrmutations, one
obtains eight hyper-sheaves, four of which will be thenmits of the fundamental
tetrahedron:

T(ij, kI, mn),

while the other four will be the faces of that sameatetdron.

| now add thafor anytwo indices that one permutes in the symiliglk{, mn) the
hyper-sheaf that it represents valivayschange in nature.

Since the permutation of two arbitrary indices resdiitsn an odd number of
permutations of successive indicagd the theory of determinants), and since that fact
has already been established for the two indices ddairee pairj, kl, mn it will suffice
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to establish that it is true for two consecutive indioétwo different pairs — for example,
m andl.
Therefore, one considers the hyper-sheaf:

(ij, km In),
and establishes that it is of a different type thehdhthe original hypersheaf:
(ij, kI, mn).
One then seeks to determine whether these hyper-sh@axeany common lines.

The hyper-sheafj( kl, mn) is formed from lines that intersetf, Aw, Amn SO the lines
of that hyper-sheaf will therefore verify the equations

Z; :Xi\/_—]-+)(j =0,
Za = V-1 +% =0,
Zmn:Xm\/__l"'xn:O;

ie.:
X X _ Xn  _
8 —— =X, ==X, = =X.
© N 1
Analogously, the hyper-sheaf,km In) will be defined by the equations:
X X _ X
8 —— =X, —= =Xm, —T7— =Xn.
© N N
The set of equations (8) and (9) will then rediace
(10) _X' = ﬁ i = _X1 :_Xm = ﬁ
11 1 V1 V11
The ratioﬁ is uniquely-defined, and similarly the ratie)}(é,ﬁ ,ﬁ are, as well,
X X X %
but the ratioﬁ remains arbitrary. Moreover, our two hyper-shedwave a planar sheaf

X
of lines in common. This obviously demands thatytlbe of opposite types, and
furthermore, it is necessary that these hyper-stgehbeunited i.e., that the one that is a
spray has its summit in the plane of the one tbasists of a planar system of lines. One
can therefore affirm that if one permutes tavbitrary consecutive indices in the symbol:

i, kI, mn)

then the hyper-sheaf that it represents will chagpge.



Chapter V. Klein coordinates. Anallagmatic geometry. 107

Moreover, as one does in the theory of determinas, counts the number of
inversions that are presented by the permutation:

i, kI, mn).

Since the permutation of two consecutive indices etifinge the parity of the number of
inversions, one can say this:

Two symbols represent two hyper-sheaves of the same or ditigrenaccording to
whether the two numbers of inversions that they present are of the aopposite
parity, respectively.

It is indeed evident that nothing will indicadepriori what type of parity applies to
the sprays or planar systems, luwill suffice that the choice be fixed in a symbdbr
example, in:

(1,2, 3,4,5, 6),

in order for one to know what it is for all of the otlenes. Therefore, if the preceding
symbol agrees with a spray, since it contains zero imressthen all of the symbols that
contain an even number of inversions will agree withyspran the contrary, the planar
systems will agree with the ones that present an odtar.

We believe that the introduction of that represemtatinto the study of the
configuration of the fundamental system will shed sdigi@ on it, since it defines a link
between that configuration and the system of permutatlmatsone can define with six
distinct indices.

82.The sixty summits and the sixty faces of the diftefundamental tetrahedra
present a remarkable grouping.
Consider the tetrahedra:

T(j, kI, mn),  T(ij, km In),  T(ij, kn, In)

that one obtains by grouping the indided, m, n into two pairs in all possible ways
(which gives three such dispositions). These threahtetira will obviously have the pair
of opposite edges, A in common.

For example, there are thus three pairs of summits;dhat each belong to one of
the three tetrahedra. These pairs will be pair-waenbnic with respect to each other.
Indeed, the trihedrom(ij, kl, mn) is conjugate with respect to the quadric:

Q = Q(Qui, Qin),

and that will contain two pairs of opposite edges otéteahedroi(ij, km In).

The lineA; cuts that quadri at two points, which are the two summitsT@if, km,
In) that are carried bg; , precisely. These points thus divide the edgef the first
tetrahedror(ij, kl, mn) harmonically.
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One will likewise prove that the three pairs of facéthe three tetrahedra:
T(ij, K, mn),  T(ij, km In),  T(j, kn, Im)

that pass throughy; will divide it harmonically.

Suppose that the line4;, Au, Amn define a trihedron; we call their point of
concurrenceO. The trihedron of these lines belongs to the tethareT(ij, kI, mn).
Through the edgd;, in addition to the faces of the tetrahedron, thetepass a pair of
faces of the tetrahedradifij, km In) and a pair of faces of the tetrahedidm, kn, Im).

The symbols of these faces are easy to define.

First, let:

(ij, kI, mn)

be the symbol of the trihedron of linAg, Aw, Amn, SO the symbols:

(ij, kmy In),
(ij, mk nl)

will be those of the two faces of the tetrahedrffij, kl, mn) that containd; .
Analogously:

(ij, kn, ml),

(ij, nk Im)

will be the symbols of the two faces of the tetrabed (ij, kn, ml) that contairy;; .

The parity rule for permutations that was given ingheceding number permits one
to define these four symbols with no hesitation.

Similarly, relative t@\y, we will have:

(kl,im, jn)

o faces ofT(kl, im, jn) that go througldy,,
(kl, mi, nj)

(kl,in, mj)

o faces ofT(kl, in, mj) that go througldy,
(kl, ni, jm)

and finally, relative tad\mn:

mn, Ki, lj -

( n,. ! _J) faces off(mn ki, |j) that go througldmn,
(mn, ik, jl)

mn, Kj, il .

(mn _J I_) faces off(mn kj, il) that go througldm,.
(mn jk 1)

We thus see that through any sumfiof a fundamental tetrahedrdiij, kl, mn)
there will pass, not only three faces of that tetatwe, but also twelve faces of the other
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six fundamental tetrahedra, each of which has a paiommon opposite edges with the
proposed tetrahedron.

| add thatthese twelve faces will intersect along sixteen lthes issue fron®O; i.e.,
that any plane among the four that are drawn thrdyghand any plane among the four
that are drawn throughy will intersect in one of the four planes that are drdlrough
Dmn

For example, take the face:

(ij, kmy In)

that is drawn through;;, and associate it with the four that are drawn thralgh
We can define the four groups:

(ij km,In),
(kl,im, jn),
(mn, ki, il);

(ij ,km, In),
. (kl,nj, mi),
(mn li, jk);

(ij km, In),
. (kl,mj,in),
(mn, 1j, ki);

(ij ,km, In),
\2 (Kl ni, jm),
(mn, ik, jl).

Among these groups, the first plane is always th#teface if, km In) that is drawn
throughd; . The second plane is one of the four that are mitavwoughdy . As for the
third plane in each group, it is one of the four that aaevdrthrough\n,. In each group,
the third plane will depend upon the first two.

It is easy to confirm that the three planes of $hene pair have a line in common.
Here is the representation of these lines for eatheofour triples of faces above:

i:—xj :i:—x1 :—Xm :ﬁ
-1 J1 -1 J1 J1 o1
I X X XX % X
+1 /1 -1 J1 J1 1
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1. i_xj_xk_xi_xm_xn

We get four lines on the facg, (km In) that is drawn through; in this way, and in
turn, there are indeed sixteen of these lines aQun

One can give a regular process for defining tlerdioates of these lines.

Observe that if one starts with the spray:

i, kI, mn)

then these sixteen lines widl,fortiori, verify the equations:

X LK X% L% X %
N R e

which one can presently write by simply readinggpmbol j, ki, mn).
Each of the lines of the spray will thus be ddin®y a system of values of the two
ratios:

[ —

X: i

]
DR

X, X,

Now, these ratios can only be +i1, V-1, —+/-1, because in all of the hyper-
sheaves that we shall consider the equations thavilvhave to write will always be of
the form:

Xa:th(ﬁ,

where ¢ is equal to one of the four quantities above, aimte the multiplication or
division will only permute these quantities, onderd sees that:

can only be +1-1, /-1, —+/-1.

That will then give us sixteen possible combinagicand since we have sixteen lines,
these sixteen combinations will all be realizable.

In that way, one will obtain the sixteen linestlodé spray by taking, X, ..., Xs to be
proportional to +1;-1, J-1, -J/-1 in all possible wayssuch that the equations of the
spray:
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XK KX X L%

X
J-1 1 J1 1 J1o1

will nonetheless be preserved.
One observes that the ratios of the coordinates, xm, x» will be the same for the four
lines that are situated the sameplane through; .

I will call the lines that we just definegl

We will get an analogous result if the symbol:

0
0

i, kI, mn)

is consistent with a planar system. There wilhtbe twelve summits of the fundamental
tetrahedra that are situated in that plane, in addiidhe three summits of the face, and
these summits will be distributed with four of themtbe edges of that face. Moreover,
there will be groups of three on sixteen lirigs whose analytical representation will be
the same as that of the sixteen liges

However, there is mordhese new lines' that we just obtained do not define a set
that is different from the one that is defined by the lihes

For example, consider the line that is common tdtihee planar systems:

(ij, km, In),

(kl, im, jn),

(mn, i, il),
which has the coordinates:

N RN |

It already passes through the summit of the spray:

XK XX %
-1 -1

(ij, kI, mn).
One confirms that it also passes through the sprays

i, km jn).
(im, kj, In).

Therefore, any line that is common to three planes of the faces willas as a
junction of the three summit8)(

() One glimpses the possibility of establishing a compteteespondence between the groups of
permutations of six letters and the properties of théiguation of the fundamental system. Here, | will
content myself by giving some general indications, wrakerving the more fundamental development of
these new remarks for a special effort.
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The number of these lines is, moreover, very eagyatiate. There are 60 summits
that each carry 16 lineS. However, since each line is counted three timedim t
enumeration (since each of them contains three stanthere will be:

60016 _ 320
3

lines=.

83. One can join the 60 points pair-wise in a numbeavafs, namely:

60559 _ 1770
2

ways.

However, each of the linés that are represented has just three lines that aredjoi
pair-wise at the summits, namely, 960 lines.

There will thus remain 1770 — 960 = 810 lines that are joinedyise.

Now, take the edges; . There are six summits of the tetrahedron on theacth of
them thus represents a number of lines that are joinewvisa, namely:

@:15,
2

and since there are 30 of these edges, that would makd 3@ 450 joined lines. What
then remains are:
810 — 450 = 360

lines, which are neither edges nor lirgsand which join the summits pair-wise.
It is easy to see how one can obtain 360 new lineghwidenote by .
Take the summitij( kl, mn), which is the intersection of the linAg, Ax, Amn .
There are six tetrahedra:

TG, K, mn), T, kn, In),
T, im,jn),  T(KI,in, jm),
T(mn ik, jl),  T(mnil, jk),

which each have a pair of edges in common with thahtetronr(ij, kl, mn).
The first two each have two summitsfyn, which makes four of them, and similarly
the second two give four @, and the last give four diy,,. In all: 3x 4 = 12 points.
Having said that, join the summit:
(ij, kI, mn)

of the tetrahedrofi(ij, kl, mn) to these twelve summits.
We will thus have twelve lines, , and we will have all of them in this way, because
the number of lines thus obtained will be equal to exactly



Chapter V. Klein coordinates. Anallagmatic geometry. 113

60x12 _ 360.

One thus obtains the liné&s by joining the summit of a tetrahedrd(ij, ki, mn) that
is taken from an edgk; to a summit that is taken from the opposite efigef another

fundamental tetrahedron that is subject to ha¥pgndA; for opposite edges.
One should not fail to observe that any kfigls also the intersection of two planes of

the faces of the tetrahedron that was considered above.
We seek to represent the lirigs. In order to do this, we shall take a hyper-sheaf:

(1], kI, mn);

say, a spray, to be precise. Take a summit of otleedetrahedrd(ij, kl, mn), T(ij, km,
In) on4; and join it to the summit of the proposed spray.
The sprays of the tetrahedr®(ij, kn, Im) that containg; are the following two:

(i, ml, kn),
(i, Im, nk).

Similarly, the sprays of the tetrahedrdn, km, In) that containg; are:

(ji, km, In),
(i, mk nl).

Some very simple calculations give:
The line that is common to the spraysKl, mn), (i, ml, kn):

X _ X K K K
1

- _1 =

X 4
0 0 41

The line that is common to the spraysKl, mn), (ji, Im, nk):

4

X; X :ﬁ:—xm :ﬁ_

J

0 J1 1 1 1

X
0

The line that is common to the spraysKl, mn), (i, km, In):
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One easily sees that all of the linég are obtained by annulling two of the
coordinates and taking the other four to be proportionaht of the four quantities +1,
-1, +J-1, =+/~1 in all possible ways, in such a way thakif= 0,x = 0 then one will
nonetheless have two relations of the form:

RN
V==

84. We cannot leave this subject without exhibitingzexy curious property of
fundamental tetrahedra.

Take a summitij, kl, mn) of the tetrahedrofi(ij, kl, mn). There are eight tetrahedra
that have no edge in common with it. Take ondne$¢ tetrahedrafor example:

T(ik, jm, In),

and join the pointif, kl, mn) to the summits of that tetrahedron. We will thexve four
of the sixteen line&. On each of these four lines there is thus onoeema summit,
which makes four summits. | say that these foummaiis belong to the same
fundamental tetrahedron.

Indeed, the four summits of the tetrahedf@k, jm, In) have the symbols:

@k, jm, In), @ik, mj, nl),
(ki, mj, In), ki, jm, nl).

Now, one easily confirms that the three points:
>j, kl, mn),  (ik, jm, In),  (km ni, jI)
are in a straight line. Similarly, the points:

@ij, kI, mn), (k,mjnl), and (kin,jl),
(j,kl, mn, (ki,mjIn), and &kmlj,in),
@ij, kI, mn),  (ki,jm,nl), and (k ni,l)),
are, as well.
One indeed sees that the four new points areutinengts of the tetrahedron:

T(mk in, ).

ThereforeRelative to each of the summits of a fundamenti@hedron Tij, kl, mn),
the eight fundamental tetrahedra that have no comeuge with the preceding one are
pair-wise homologous.

From this, one can conclude that three fundameetedhedra that have no common
edge define desmicsystem of three tetrahedra; i.e., the faces obtigepass through the
sixteen lines of intersection of the faces of thigeo two, and the summits of one are on
the sixteen joined lines of the summits of the pth®.
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On the subject of these desmic systems, one canlcanpaper by Stephanos that
was included in th8ulletin des Sciences mathématiqueXIV, of that collection.

85. The fundamental system gives rise to a remarkablesmwndence between the
points and planes of space.

First, consider a plana The poles of that plane in the six fundamental complexes
are on the same conic.

Indeed, letO; be the pole of the plangin the complexC; , and take three of these
pointsOy, O,, O3 . As one knows, the complex€sg, C,, C; permit one to associate these
three points with a fourth poi@ such that the plar®0,0; is the polar plane t@ in Cs,
0OG0;0; is the polar plane t@ in C;, andOO,0; is the polar plane t® in Cy (see no.

80). The tetrahedro@0;0,0; is conjugate with respect to the quadithat carries the
semi-quadricQi2z . Therefore, the triangl®,0,05 is conjugate with respect to the conic
K that is the trace d on the planez Now, the quadri€ also carries the semi-quadric
Q4s6. Therefore, the triangl@,0s0s is also conjugate with respect to the cdficSince

the two triangle$,;0,03; and0,050 are conjugate with respect to the same conic, their
summits are on the same conic.

One can even add that their edges touch the same conic.

Analogously: If one distributes the polar plamesrs, 7&, 7, 78, 76 to the same point
O in the six fundamental complexes into two trihednant the two trihedra will be
conjugate with respect to the same second-degree comed. etiges will be on the same
second-degree cone, ateir faces will touch a third second-degree cone.

86. We preserve the preceding notations.

Since the poinG; and the poin; are the poles of the same plamén C; andC; ,
respectively, the poir); and the poin©; will also be the poles of the same plagevith
respect toC; andC; . That planer; will pass through the line®; O;; there will be then
fifteen planesrs; .

Take the three planes:

74 T, 7Th.

The pointOy where they intersect is the one that we considevedea and which is the
pole:

of 7 InCy,
‘i G
“ 7L “Cj.

Now, take the other three indiceam, n. We will likewise have three planes, ,
Tk 7o that intersect at a poimn .

However, it is clear thaDj andOm, coincide. Indeed, we know that the tetrahedra
0000k, OMOIONMO, are conjugate with respect to the quad@jowhich contains the
complementary semi-quadri€dx, Qmn . Therefore Oy and Om, are the poles of the
same planerwith respect t@.
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There areii%?éL = 20 combinations of indices taken three at a time, mharmn, there

are twenty tetrahedra:
OO0,

but there are only ten poin®, sinceOyi is identical to Gy .
From that, one sees that the po@j(= Omn) is the pole:

of the planeg in G,

G,
“ ot C,
“ e G,
“ " Cm,
“ Tim “ Cy.

In summation, we have a configuration of sixteen [goint
O1, Oz, 03 04 O O (O123=0s56), (0134=0256), (O124=Ossp), ...,

and sixteen planes:
7L Thp, 783, Tha, ...

such that the poles of the sixteen planes in the sokaftmental complexes are part of the
sixteen points, and the polar planes to the sixteeriare part of the sixteen planes.

Each of the sixteen planes thus contains six of tkteen points, and six of the
sixteen planes pass through each of the sixteen points.

If one takes the poles of one of the sixteen plantsrespect to the ten fundamental
qguadrics then one will obtain the ten points of a sydtahis not situated in that plane,
and if one takes the polar planes of one of the sixig&ints with respect to the
fundamental quadrics then one will obtain ten planeshefdystem that do not pass
through that point.

87. One can associate this remarkable configuration with important
correspondence that the fundamental system givesrise t

We just saw that any plarreis found to be part of a configuration of sixteen planes
and sixteen points that it defines completely. Consdtylewe can say that the
knowledge of a spray will define a configuration of sixtespnays and sixteen planar
systems that are part of the proposed spray.

More generally: Any hyper-sheaf is part of a configuratainthirty-two hyper-
sheaves, sixteen of which are sprays and sixteen ohwah&planar systems.

Let x1, X2, X3, X1, X5, Xg b€ @ line. If we lek, &, &, &, &, & denote the symbol +1 or
the symbol1 then the expressions:

&1 X1, £X, E3X3, E4Xa, E5 X5, & Xp
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will be the coordinates of2= 32 lines, among which, will be the lings x, ..., Xs, and
which will define a special configuration with them. Eittsvo lines of the configuration
do not intersectn general because:

Sle+£2X§+---+£6X2

can be a consequence xf+ x5 +---+ X =0 only if& = & = ... = &, in which case, the

two lines will not be distinct.
It comes to mind that if the ling, Xz, ..., Xs generates a hyper-sheaf:

Xi=aA+bpu+cv

then the same thing will be true for the other thirty-tines of the configuration. For
these lines, one will have:

X = &(@A +hy +¢ev).

Are the hyper-sheaves of the same nature?

If we suppose that the number of positsis even — for example (12— then there will
be 6 — 2/ negative ones. By a change of all the signs, oneleayssuppose tha2=
4, because if 2= 2 then one will have 6 2= 4.

Therefore, let:

I

X =ad +bu’ +cv’,
X, =apd" +bou' +cov’,
X, =ad’ +bgu' +cav,
X, =aud' +bau' +Cav’,
- X =asd’ +bsy’ +csv,
Xs =agA' +bgtt' +CsV'.
If one writes that:

I

X1= X, X2 = X, X3 = X, Xa = X,

&
|
<
&
1
Pt

then one will find that:
a(A-A)+bh(u-pu") +c(v - v’
A=A +bh(u—pu'") +c(v - v’
(A —-A") +bhg(u—p') +c(v - v
(A =A") +ba(u— ') +ca(v - v’
as(A—=A") +bs(u—pu') +cs(v - v’
as(A—A") +bs(ui— ') +co(v — v’

SN N N N N N
(T T TR T TR
leNeNoNeNoNo)

The first four equations demand that:

A=A'"=u-u'"=v -v'=0,
and the other two give:
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asd+bsp+cv =0,
agd +bs u+cr=0

in order to determind : 1 : v. In this case, the two hyper-sheaves will have aitine
common. They will have the same type.

On the contrary, if there are an odd numbee tfat are equal to + 1 then one can
always suppose that are five or three of them. Ifetlage three then instead of the six
equations above, one will have the system:

a(A-A)+bh(u-u") +c(v - v’
A=A +bh(u—pu") +c(v — v’
ag(A = A') +bg(u—p') +ca(v - v'
ay(A+A') +bg(u+ p') + (v + V!
as(A+A') +bs(u+p') +cs(v + v
as(A+A') +bg(u+ p') +ce(v + v

N N N N N NS
mo o
e NeNoNeNoNe!

and the existence of a common line will be impossibleabse the first three equations
give:
A=A'"=u-u'"=v -v'=0,
and the others give:
A+A"'=pu+u' =v +v'=0,
So:
/]:/]':/J:/J':V:V':O.

The hyper-sheaves will then have different types.
Finally, if there is only one negatisghen one will have five equations of the form:

a(A-A") +bi(u-pu') +a(v -v') =0,
which gives:

!

A=A", u=u', v=v',
and in turn, a unique equation of the form:
aA+bu+gv =0.

In this case, the hyper-sheaves will thus have a @heaf of lines in common. They
will again be of different types, but they will baited moreover.
The unique equation:
gA+bu+qr =0

expresses the idea that= 0; i.e., that the sheaf that is common to our lwper-sheaves
will be a sheaf of complexes; .

It is, moreover, easy to recover the preceding tesoht were obtained.

Suppose, to fix ideas, that the lirg x,, ..., Xs generates a plane systemso the
other thirty-one lines:
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E1 X1, &X2, ...y E6 X6
must generate a hyper-sheatf.

The fifteen of them for which there is an even numbiepositive £s will again
generate planar systems. The other sixteen will gémsprays, and of these sprays there
will be six of them that have just one negat&vand for which the six summit3;, O,
..., Og Will be in the planerz The lines of the planar sheat (O;) will belong to the
complexC; andO; will therefore be the pole of the plamen the complexC; . One sees
how we recover the configuration of sixteen points artéasn planes that we already
described.

We will have occasion to return to these questionhiéncontext of the theory of
second-degree complexes and Kummer surfaces.

88. From the standpoint of the transformation of coat#ns, we had to occupy
ourselves with those transformations that preserveyfie of the fundamental form, or,
as one says, makes it go back to itself. Insteackofgahe viewpoint of transformations
of coordinates, one can pose another problem that | wiseldol treat.

Let xq, X2, ..., X6 be the linear coordinates of a line — i.e., theredaduced linearly
from arbitrary tetrahedral coordinates, as we have seaml let:

o a(X)
be the corresponding linear form.
There exist linear transformations:

(11) X Zan X taX+ ... +aisXe

that preserve the expression of the fundamental farsuch a way that by virtue of
equations (11), one will have:

(12) WfX) = afX).
These transformations can be considered as making ia lihe coordinate systexa,
X2, ..., Xg correspond to another ling in the same coordinate systemsince the

coordinatesx annul the same form as tke

What is the nature of this transformation?
If x describes a planar sheaf then one will have:

Xi=aA+by,

and in turn, in regard to the linear form of the when expressed as functions of xhe
one will also have:
Xil = a;A +b’ﬂ.

The linex' will thus also describe a planar sheaf.
One has the same proof for the hyper-sheak déscribes a hyper-sheaf thémwill
describe another one.
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However, here a paramount distinction arises here.

The hyper-sheaves that are generatex &ydx' can have the same name (i.e., spray
and spray or plane and plane), or they can even have itgppasies (i.e., spray and
plane or plane and spray).

In the first case, all of the lineshat issue from a poif will correspond to all of the
X that issue from a poir?'. All of the linesx in a planerrwill correspond to all of the
linesx' in a planerz. Moreover, ifP is in the planerthenP will be in the planer,
because the planar she&f 3 will correspond to the planar she&,(77). From all of
this behavior, one recognizes a homographic transformatispace.

In the second case, all of the lines that issue faopointP will correspond to the
lines in a plane?, and all of the lines in a plarmrewill correspond to the lines that issue
from a pointP’. Moreover, if the planerand the poinP are united then the plameand
the pointP’" will also be united, which is once more due to the avasien of sheaves.

The transformation thus consists oflaalistic correspondence between the figures
that are loci of lines and the figures that are lodinesx .

The solution to our problem is the following:

If the equations of the linear transformation:

X =& X tapXe+ ... +aic Xe i=1,2..,6)
give:

fx) = afX)

then they will establish either a homographic correspondence betweenebe land x
or a dualistic correspondence.

89. For Klein, that remark was the point of departure fouous encounter between
the geometry of lines in space and the geometry of tbgianproperties in a four-
dimensional space.

Today, the notion of spaces of more than three msmas has won the right to be
mentioned in geometry. We would not like to say that implies that a systematic and
complete study of-dimensional spaces would be of genuine geometric Bitetiee
interest that would be attached to such a study wouldnbeely philosophical and
speculative. Nonethelessgertain propertiesof n-dimensional spaces find a useful
interpretation in the figures of ordinary geometry. fiksato these properties, the facts of
Euclidian geometry can often take on a more rationdliduminating form. From that
viewpoint, the language ofdimensional geometry can be of great service, andlibwil
devoid of any auxiliary affectation that one would rej@¢hout further examination. It
is within these limits that the study nfdimensional geometry deserves to be confined.
One will find an example in the study of the strailyi.

Let x1, X2, ..., Xn, Xn+1 D€ N + 1 homogeneous variables; i.e., ones that involve only
their ratios. We regard these parameters as the honmgemeordinates in an-
dimensional spack, .
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A homogeneous equations of degne@ X, X, ..., Xn+1 represents a space of degree
m that is contained in the spad& and is endowed with only — 1 dimensions. We
represent such a space by:
E",.

In particular, a linear relation represents mr (L)-dimensional linear space:

S
that is contained irE; .

If one is giverk linear equations — i.ek,spacesE:_, — then they will have am(-k)-
dimensional space in common that we will again quaiif the word “linear.”

More generally, if one is givek equations in the; then one will define am(— k)-
dimensional spacg&;’, .

The degreg: of that space is defined to be the number of pointstthas in common
with an arbitrarily-chosek-dimensional linear spadg; .

If =2 then we will say that the spacejisadratic

For example, a second-degree equationxinxy, ..., X,«1 defines anrf — 1)-
dimensional quadratic spadg>,. To abbreviate, we also say that it is an—{(1)-
dimensional quadric. The intersection of ar-(1)-dimensional quadric ahd 1 (n — 1)-
dimensional linear spaces is obviously ar-k)-dimensional quadric space.

The quadratic spaces give rise to the same theorieghiaquadrics, cones, and
conics do.

For example, let am(— 1)-dimensional quadratic space be givem-gimensional
space by:

ax) =0,
and let:
X1y X2y «oy Xnt1s Vi, Y2, ooy Yt

be two points of that space. One says that the paistsonjugate if:

afx]y) = 0.

The locus of pointx that are conjugate to a fixed powis an ( — 1)-dimensional
linear space. That linear space generalizes themotipolar plane or polar line for the
guadrics and conics, respectively.

Let Q(a) be the adjoint form ta(x). The equation:

Q@ =0
expresses the idea that the linear space:
2a%=0
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is tangent0) to the quadratic spaegx) = 0. Similarly, the equation:
Q(a|b)=0
expresses the idea that the two linear spaces:
Yax=0, Xhx=0

are conjugate; i.e., each of them contains the poleeodther one.
An (n - 1)-dimensional quadric space is the locus of an infinitodeower-
dimensional linear spaces.

90. The geometry of quadric spaces holds a special interass.
Indeed, we have seen that one can define any line in dpageeans of six
homogeneous coordinates x,, ..., Xs that are linked by a second-degree equation:

af(x) = 0.

Moreover, if one considers the to be the coordinates of a point in a five-
dimensional spaceE; then the equatiorw = O will represent a four-dimensional

quadratic spacé; in that space. One can therefore say tiiaigeometry of the lines in

ordinary space is identical to that of a point on a four-dimensional quaBfithat is

contained in a five-dimensional space.
The lines of a linear complex:

ax=0

are represented by the points of intersection of tieali spaceE; that is represented by
that equation with the fundamental quadgg. The equation:

Q(a) =0,

which expresses the idea that the complex is spesjalesses the idea that the sp&ge

is tangent to the quadratic spagg.
If one considers two linear complexes:

Yax=0, > ax=0

then the condition of involution:
Q(ala)=0

(9 l.e., its pole is on the quadric.
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expresses the idea that the corresponding linear spggeE;" will be conjugatewith
respect to the fundamental quadEg.

The quadricE; contains linear spaces of dimensions one and two.
Indeed, we know that i’ andx’® are two lines that intersect then the expressions:

(13) X = XA+ x%u

will be the coordinates of a line of the planar shiat ts defined by these two lines. It
will then result immediately that wheh: y varies one will always have:

aX) = a2 +x° 1) = 0.

Now, when they are interpreted in five-dimensional sparpiations (13) will
represent a one-dimensional linear spEgehat is contained irk; .

Conversely, letE; be a one-dimensional linear spacegf, so the coordinates of a

point in that linear space will be represented by formglach as (13), where one must
have:

WX) = afx’ A +x7 1) =0

for any A, . In the geometry of lines, we will thus have a pfasihaeaf. One can,
moreover, state this proposition:

There are an infinitude of one-dimensional linear spacesEpn In line geometry,
these spaces correspond to the planar sheaves in Euclidian space, in saghttzaiv
there is a quintuple infinitude of these linear space€fn

One confirms in the same way that there is an infinitoidevo-dimensional linear
space inE; that correspond to the hyper-sheaves of linear geometry

However, there are two kinds of hyper-sheaves: izays and planar systems. One
can thus predict that will be two distinct familieswb-dimensional linear spaces Ef .

That fact, which is completely analogous to the that there is a double system of
rectilinear generators of the quadrics in ordinary spzae be exhibited directly. As one
will see, it presentan essential differendeom the example that | have compared it to.

For ordinary quadrics, two rectilinear generators alwatersact if they are from
different systems, and never if they are from thmesaystem.

The opposite is true herdecause two linear spac&s from the same family will

always have a point in common; this amounts to saywag two sprays or even two
planes will always have a common line.

That amounts to saying that a spray and a plane do netallg have a common line,
and that if this is the case then they will have agraheaf of lines in common.

A complex of lines that is defined by an equation:
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f(x1, X2, ..., %) =0

will be represented by the trace of the spagcéhat is represented by the equation O
on the quadricE; .

We thus obtain a three-dimensional spagen E? .

Similarly, a two-dimensional spack, that is traced onE? will represent a
congruence, and a one-dimensional space will represeat@dasurface.

91. This agreement between ruled geometry and that of th@ pa a four-
dimensional quadric in a five-dimensional space will balve no great utility if one does
not heed a remark that concerns the geometry of quadpatces.

I will first take the example of an ordinary quadricardinary space.

Let Q be such a quadric, I€ be a point on it, and letbe an arbitrary plane.

Imagine that one makes any poMit of the plane correspond to a poktof the
guadric by taking the intersection of the latter withlthe OM. Conversely, a poir of
the quadric will correspond to one and only one pbintThe correspondence ssgle-
valuedin both directions. One expresses that by sayingthieatjuadric isepresentable
on the pland?).

One can give a concrete analytical representatidhatorepresentation and associate
it with an old method that Chasles imagined for the ystafdcurves that were traced on
quadrics ).

Let OGy, OHop be two rectilinear generators of the quadric that issua the pointO.
Two generators pass through the péindf the quadric. One of them — vig&,— comes
from the same system &Gy, while the second one — viz, — comes from the same
system a®©OH, . G cutsOHy at a pointP’, andH cutsOG, at a pointP”. In order to
define the position o on OHy , one can take the anharmonic ratio that it definels wit
the pointO and two other fixed points ddHp , in such a way that &', B' denote these
fixed points then one will have:

_AO_AB

u__ _

PO PB’

Similarly, if A", B" denote two fixed points 0@G, then one will define the poimi®”
by the parameter:
v=20 AB
PO PB
Onceu andv are known, the pointB’, P" will result, as well as the poiRR, and
consequently, the poii in the planez

() For the question of which surfaces are representabthe plane, one can consult several notes that
Darboux dedicated to that question in Bletin des Sciences mathématiquekhe original papers of
Clebsch appeared in tivathematischen AnnalenToday, that theory is very well-developed and deserves
a special study.

(**) Comptes rendudes seances de I'’Academie des Scigrcksl.
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Call the traces d® Gy, andOHg on that plané€, , Ho , resp. The lin€gM is the trace
of the planeOGyM on the planez This planeODGM is obviously tangent to the quadric
atP", and due to Chasles’s theorem, the line is tracedptana that is tangent to a ruled
surface. The parameters equal to the anharmonic ratio:

V= (GQO", GOM, GOHO, GO,B’),

whereGoa” is the trace of the tangent planedaton the planez andGyf' is the trace of
the tangent plane &'.

(7

o Ao
AI

Figure 5.

Similarly, sinceHoa ', Ho' are traces of the tangent planeg\atB', resp., one will
have:
u= (Hoa", HOM, HOGO, Hoﬁ').

Take the triangle of reference on the plan® be the triangle that is defined by the
linesHyB', Gof”, andGy Ho, and one will immediately see that if:

X=0,Y=0,2=0
represent the equations of these three lines then, opoducing constant factors in¥g

Y, Z, one will have:

X Y
u=—, V= —.
Z Z

If one letsKqy denote the intersection point of the lieg3” andHyS' then one will
see that the quantities v arethe Chasles coordinates of the point P on the quadnd
that they are also the triangular coordinates of thiet pd with respect to the triangle of
referenceGoHoKo .
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The pointdHy, Go play an essential role in this representation. AnyntpaiOGy will
project ontoGy and any point o©Hy will project ontoHy . These pointblp , Gy are thus
points of indeterminacy, in the sense that each of tsetfmei projection of an infinitude
of points of the quadric.

There is also a point of indeterminacy on the quadricledd, it is clear that if the
point P of the quadric tends to the poi@tthen the poinM will be placed on the line
GoHo , and that the position of the poikt will be the trace orGoHp of the limiting
position ofOP whenOP becomes tangent to the surfac©at

We thus see that there are two remarkable pdbatsHo on the plane and one
remarkable line, which is the line that joins them. réhe one remarkable poi@ton the
surface and two remarkable lines, namely, the generatatrssue from that point.

In representations of this kind, the pois Ho are given the name bhse pointdor
the representations and the lGgHo is given the name déindamental line.

In the general case of the representation of surfacdse plane, the nature of the
base points and fundamental lines —gmnerically FUNDAMENTAL ELEMENTS —
characterizes the representation.

One proves that, in general, the curves in the planedpegsent plane sections of the
surface pass through the base points or fundamental lines.

Here, this is obvious, because any plane section@@Gtsat one point an®H, at
another, and the perspective is therefore a conicpédmges through the two poiris,
Ho.

One knows that the metric properties of plane figaresdefined as relations between
those figures and two remarkable points in the planeelyanthe circular points at
infinity. From the projective viewpoint, one can timegard all of the properties of the
relation between a figure and two points in the psbeing metric.

The conics that pass through these two fixed points willdlledcircles From this
standpoint, one can say that the plane sectionseofjtiadric will be represented by
circles in the plane.

Moreover, one recognizes that in order to realize tbptesentation effectively, it
will suffice to take the poinD to be an umbilic of the quadric and take the plate be a
plane that is parallel to the tangent plane at thet idin

One then finds that one has generalized a very olwsftramation, namely, the
stereographic transformation.

However, such a restriction is useless to us, sincawealways free to take two
arbitrary points of the plane to be the basis fomtleéric properties.

92. One can exhibit this representation of quadrics on ldeegn a more analytical
form that lends itself better to the generalizatioat tve have in mind.

Indeed, take two point® andO' on the quadric that are not situated on the same
rectilinear generator. Draw two conjugate planes throbgHineOO, and letA be the
intersection of the planes tangentQandO'. That line will cut the conjugate planes at
two pointsO”, O"'; we take the tetrahedr&adO' O"O'" to be the tetrahedron of reference.
The quadric will have an equation of the form:

(14) X +y —zt=0
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by introducing numerical constants intoy, z, t, which are pointless to specify explicitly.
| then set:

PX=XZ,
(15) py=YZ
0z= 7%,

and | observe that equation (14) then gives:
(16) pt=X2+Y?2

We have thus expressedy, z as functions of three homogeneous parameteysZ.

We can regard, Y, Z as the triangular coordinates of a point in a pland,vee will
have thus realized a representation of the quadric iplémeanalytically.

| shall not stop to prove that the representatione@ized geometrically by the
stereographic projection that | defined above.

Observe that any plane section:

ax+by+cz+dt=0
is represented on the plane by the conic:
(17) @X+bY+c2) —dt(X2+Y?) =0
that passes through the two fixed points:
Z=0, XxiY=0.

If one regards these two points as the circular paattinfinity in the plane then

equation (17) will be the general equation of the cinciele plane.

93. Having said that, we seek to answer the following question

What exactly are the properties of plane figures that correspond to thecpve
properties of the quadric?

In order to resolve this question with any precision, shall look for the plane
transformation that corresponds to a homographic transtisn that preserves the
proposed quadric.

Letx, y, z t be the coordinates of a poiatof the quadric and let, y', Z, t' be those
of the corresponding poift. One has:
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X =ax +by + cz+ dt
y=dx+By+ ¢cz+ dt
X'=zdx+dy+ ¢z 4

nm

X'za'x+d'y+ ¢ 2+ 4

(18)

and one must have:
(19) X2 +y? -7t = k(¢ +y* —2zi).

Let (X, Y, Z) be the coordinates of the poltthat corresponds to the polatand let
(X', Y', Z") be those of the poiMl ' that corresponds to the polit

Upon replacing, y, z, t, ¥, Z, t' in (18) with their values interms & Y, Z, X', Y,
Z', one gets:

oX'Z =aXZ +bYZ+ cZ + @ X+ ¥,
(20) oY'Z =dXZ+ bYZ+ cZ+ 4 X+ ¥,
0z =d'XZ+BYZ+ 2+ Y X+ 9,

o(X?+Z')=d"XZ+ B Y& ¢ 2+ 8 X+ 9.

There are obviously too many of these equations for ondetine X’, Y, Z" as
functions ofX, Y, Z. However, from the identity (19), they are compatibke; whena,
b,cda,b,c,d, .., c" d"obeythat identity.

In order to simplify the interpretation of the forras) | will makeZ =Z =1, and |
will write the formulas in the form:

,_aX+bY+cor d X+ V)
x - ’
a'xX+g Y+ é+d( X+ V)
,_aX+PYy+E+ d( X+ Y)
Y_ ’
aX+HY+ e+ d( X+ Y)
a"X+B'Y+ ¢+ d( X+ Y
axX+P0 Y+ e+ d( X+ V)

(M

X'2+Y'?=

X, Y will then be the rectangular coordinates of a poimd,>&, Y’ will be those of its
transform.

Suppose that one performs a first transformation anftdimT, and then anothéf’
that has other coefficients, so the linear nature e$ehformulas will show us that the
resulting transformatiom’ T will again be a transformation of the same form.

In a word, these transformations define what Liesdadigroup.

A homothetic transformation around an arbitrary poant,arbitrary displacement, a
symmetry transformation with respect to an arbitramg, and more generally, an
inversion with respect to an arbitrary circle definemedats of the group, as one will
recognize immediately from the formulas that expressehvarious transformations.
would like to prove that, converselgny transformation that is defined by formu(@3s
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will result from the successive application of a certain number seth@nsformations
(13).

Indeed, lefl; denote the translation that changes the pginf into the pointX”, Y”,
and which is represented by the formulas:

(Tw) X”=X+h, Y” =Y +k

whereh andk are two constants; then envision the transformation:

x = AX +hY'+ g+ d( XE+ V)
X'+ Y+ ¢+ d( X2+ V)
y 2 aX HHYH 6+ d(XP+ ¥
X'+ Y+ ¢+ 4 X2+ V)
X'+ Y+ ¢+ g X°+ V)
X" +HY" + g+ (X + Y7

(T2)

X'2+Y'?=

The composition of the two operation;)(and {2) is equivalent to the general
transformationT), wherec, ¢ are not zero; one can then$et T, T; .
Now, if one considers the identity:

(@ X"+ )+ (G X +..)7 = (@X"+. )+ (AKX +..)°

then one will see that the left-hand side is amabWithX”, Y”, so the same must be true
for the right-hand side. One thus has:

q’ Jn = 0.
First, suppose that’ = 0. Then, upon performing the inversion:

x m Y'"

T x" = , T e ,
( 0) xmz+YmZ me+YmZ

the operatioT, will appear to be the produ€t Tp of the operation3; andTy, whereT;
is defined by the formulas:

(** KLEIN, Mathematischen Annaleh V.
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X, B alxm+ qu+ q
ai,x"’+ qr Y"+ q’
m) yo Xl
ai,x"’+ qr Y"+ q’
X,2+Y,2 _ air "+ qﬂYr+ qr( x112+ Y’2)+ @
airxn+ qyr+ q !

and one will have:
T:Tle :T3TOT1.

On the contrary, suppose that it is tbg that are zero. Then, upon once more
performing the operatiomo, T3 will appear to be the produdi T, of the two operations
ToandT, , whereT, is then defined by:

X, _ alxm + QY"+ q
ai,x’"'i' qu"+ (;( )(1!2+ Y’Z)_i_ Q’
(T’) Y’ _ aixm + q an
2 a:x’"'i' qu"+ (;( )(1!2+ Y’Z)_i_ @’
x’2+Y’2: ai"X"'i'q" Yr+ qr
airxm_i_ qu"_i_ q( )(1!2+ Y’2)+ d

Now, in order to perform the transformatiorT,f, one can perform the
transformation:

x B alxrrr+qyrr+ q
1 ai,xm'i' qu"+ q’
. rxm+ Y"
(T3) Yl = na1 m rt1 " q !
XY+
e AKX YY)
ai"X"'i' qn Yr+ qr
and follow it with the inversiofiy:
= X y=_
X;+Y] X;+Y]

The transformation$; and T, have the same character. The have the genenal for



Chapter V. Klein coordinates. Anallagmatic geometry. 131

X’ = aX+pBY+y
a'X+pY+y'
v = axX+pY+y
a'X+pY+y'
X2 4yr? = a"X+B"Y+ Y +0"( X+ Yz)l
a'X+p'Y+y

We write down that one has identically:

(@X+BY+ )P+ (@ X+BY+y)
=@ X+BY+ Y@ X+ Y+ )+ AX P +Y ).
One first sees that”, f” must be zero, which then permits one to)get 1. What then
remains is:
X =aX+pY+y
Y =a’'X+['Y+Y,
XZ2+Y2=a"X+B'Y+y'+ ' (X2+Y?),
with the identity:

(@X+BY+ P+ @X+LBY+Y )V =a’X+ LY+ )y +F(X*+Y?).
One must then have, in particular:
(aX+BYV P+ (@X+BY) =0"(X?+Y?.

Now, this identity proves that one can set either:

21) a= Jo'cosd, PB= s,
a' =—/d"sing, B =J" cod

or

(22) { a =+/0" cosh, B= Jo sig

a' =" sing, B =-JJ cod

In the first case, the transformatidg will represent an arbitrary displaceméntin
the plane that is preceded by a homotli&tgne will then have:

T3 =D [H.

In the second case, the homothety is accomparyieal ymmetry transformatios
with respect to a line, and one then has:

T3:D|:H|:5
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Therefore, in summation, one will have:

T3T0T1
T= or even
T,
where
DH,
Tz = or even
D[H [&

Therefore,T indeed reduces to a superposition of operations of tleoly nature:

Motions, homotheties, inversions, and symmetries wighae@so lines.

All of these transformations have a common propé&rhey transform any circle in
the plane into another one, or in other words, the godumnsformations preserves the
family of circles in the plane. One can then giliese transformations the name of
anallagmatic transformations

Consequently, one sees that, when interpreted onregpreesentative plane, the
homographic transformations of a quadric to itself wikidahe group of anallagmatic
transformations of the plane for their images.

The projective properties of the quadric then correspandhe anallagmatic
properties in the plane.

91. All of what we just said about the representationrofnary quadrics on a plane
extend to the case af ¢ 1)-dimensional quadrics mdimensional space.
For example, take the quadric:

(23) XtX+ e+ K- %%=0

in five-dimensional space. We set:
PX1=X1 Xs,
PX2 =X Xs,
PXz=X3Xs,
PXe=X4 X5,
pxs = Xg,

and equation (23) will give:

OXs= X2+ X2+ X2+ X2

We have represented our quadric on a four-dimensional linece spavhichXy, Xo,
X3, Xa, X5 are the homogeneous coordinates of a point.

Here, we have tundamental figureor figure of indeterminacy. It is represented by
the equations:

X4 =0, X2+ X2+ X2+ XZ=0.
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It constitutes a two-dimensional quadratic space thaell s2present bis .
Call any quadric in four-dimensional space that corta@rsphere so the equation of
a sphere will be:
@X+bX +cXg+d X +c X)) Xs +f( X2+ X2+ X2+ X2) =0.
It is convenient to reduce the varialdeto unity, and when it is equated to zero, it

will represent the infinity in our four-dimensional spase,the equation of our sphere
would have the form:

(24) aXgtaXot+tag Xg+ay Xy +a5 +aG(X12+X22+X§+Xf):O.

The distance between two points will be:

VX = XD+ 4 (X, = X)2

A displacement, a symmetry, a homothety, and aargion are defined as they are in
the case of ordinary space, and by the same arquasewas presented above, we
recognize that any linear transformation that preesethe form:

XX+ XK= %X,

i.e., any homographic or dualistic transformatioh roled space, translates in the
representative four-dimensional space into a ss@e®f operations such as:

1. Homothety.

2. Symmetry.

3. Inversion.

4. Displacements.
These are all transformations that leave the natf@phere invariant.

From this viewpoint, we can say that:

From the dualistic and projective viewpoint, rulg@ometry is identical to the
anallagmatic geometry of a four-dimensional space.

95. One sees that in the representations that wepgcourselves with a linear
complex (i.e., a section of the four-dimensionahdpc by a four-dimensional linear
space) is found to be represented by a spherairrdimensional space.

If:

aaXgtaXet...tax=0

is the equation of the linear complex then thattred sphere will be equation (24),
precisely.
The equation of the sphere takes on the form:
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2 2 2 2 2,2, 2, 2
Xl+i + X2+i + X3+a$ + X4+ & :ai+a2+a3+an 4‘%86
2a, 23, 2a, 23, a;

The expression in the right-hand side represent theesg@idine radius of the sphere, and

_ a4 % & , = 4 are the coordinates of its center. The radiasiie if:

2a, 2a, 2a, 2a,

(25) a+a+ta+ag-4ag=0
Now, since the fundamental form is:
XXX X %%

here, the invariant of the complex will be pregiseie left-hand side of (25).The
spheres of radius zero will thus correspond togbecial complexes.
Similarly, the equation:

b +ayby+azbs+asbs—2asbs — 285 bs = 0
expresses thavolution of the two complexes:
aXgt+taxo+...=0, bixg+bhyxo+ ... =0;

it also expresses tlthogonalityof the two corresponding spheres.

A linear congruence is represented by the intéiseof two spheres. One can make
two spheres of radius zero pass through that edtaos that each represent one of the
special complexes that have the directrices ottmgruence for their directrices.

The intersection of two spheres in four-dimensi@pace is, in addition tky, which
is set apart, a two-dimensional quadratic spacé dha can call a two-dimensional
sphere.

If one denotes the three-dimensional spheresSbyhen | will denote the two-
dimensional ones b, .

The intersection of three three-dimensional spheye circleS, or one-dimensional
guadratic space of a special kind, because it aviig two points in common with the
two-dimensional spade .

An infinitude (viz., a double infinitude) of spleer pass through a circ& that are
images of the system with three terms of linear glewes that are drawn through the
semi-quadric whose image $ . An infinitude of these complexes are speci@heir
directrices, which generate the complementary spradric, have the points of a second
circle § for their images, a circle that is the locus @& tenters of the spheres of radius

zero that are drawn throudh . The correspondence betwe§nand S is obviously
reciprocal.
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96. The planar sheaves of lines and the hyper-sheavaketspace also have a very
simple representation.
If the linex generates a planar sheaf of lines then, as we kn@agamwrite:

X1 =ag +pby, Xo=ap+phy, Xz =ag+phs,
X4 = ay + p by, Xs =1 +p, Xe =ag + 0bg .

The coordinateX;, X, X3, X4 of the corresponding point in four-dimensional space
will be:

(26) O G W - SV N - N -

X, ltp ' 1+p 1+p 1+p

Moreover, one will have:
XX+ 6+ K= %% =0,
o+ (o b+ (a0 0+ (s 01 = (1 +0) 2+ o)
This must be true for any, so one gets:
o val+al+tdf =as,

b’ + b5+ b+ b =bs,
281+ 2ap by + 283 b3 + 284 s =85 + bg

so, upon eliminatings andbs, one gets:
(27) @u — b1 + (B2 — by)” + (Bs — b3)” + (a4 — ba)* = 0.

The binomialsa; — b are the director coefficientg of the line that is represented by
equations (26), which can be written, upon setting:

a=a-h,
as
(28) Xl_a1:X2_az:X3_a3:X4_aAI
a, a, a, a,
Equation (27), which is written:
(29) al+ai+ai+al=0,

obviously expresses the idea that the point ofitige(28) that is at infinity belongs to the
quadratic spacé, . It also expresses the idea that the distantgeba two arbitrary
points of the line is zero. The lines consideree laes of length zero, and can be
defined by the property that they have a pointommon withl .
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Moreover, it is natural to introduce the Chasles coatdinf the point of intersection
by setting:

(30) a, a. a, a

= 2 = = 4
htty  (h=tN-1  Ato=1  (Aptp+DV-1

and furthermore, the general representation ofines (and in turn, of the planar sheaves
of ruled space) will be:

(31) X,—a — X~ 8 — X3~ 8 — Xi— 8y _
Aty (=tN=1  Atly=1  (otly+IN-1

It is clear that ifA; and /o remain fixed then the point of intersection wighwill also
remain fixed.

If one leavesi, fixed then whenyy varies the point in question will describe a
rectilinear generator of a systdm. On the contrary, whesy varies, whiletp remains
fixed, it will describe a rectilinear generatortbé second system.

The representation goes much deeper than one fingjhbelieve.

Indeed, let us seek to represent a hyper-sheaf.

If the linex generates a hyper-sheaf then one can set:

xx=ay+pb+00b,
X =ax+php+0h,
X3 =ag+pbs+0h;,
Xs =au+pbs+ by,
Xs=1+p+p0,

Xe =a +pbs + 0 by,

with the relation:
X X+ + %= %% =0,

and since this must be true for amy, we will get:
f+aira+d =a,

0+ + B+ by,

b +5°+ 1+ 17 = b,
2@ byt +aghs +ashs) =as + b,
2(@b +ax b, +agb; +asb,) =as + by,
2(bib + b2 b, + bz b +bsby) =be+ b;

thus, by eliminatings, bs, b;, one will get:

(a1 — b1)* + (@ —b2)” + (83— be)® + (au— bs)* = 0,
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(@ —b)*+ (@2 —1)* + (a3 — B)* + (au— b})* = 0,
(b1 —B)? + (b2 — by)* + (bs — ) + (ba — b,)* = 0.

One verifies the first two equations by setting:

b-a __ b-3 _b-a __b-a _,
htty  (h=tN-1  Ato=1  (App+DV-1
b-a __b-a _b-a __ b-a _,

Mttly  (B—ptN-1 Aph=1  (Rphy+DV-1

in which Ao, tho, Ay, 14, 6 0 are arbitrary.
One infers from this that:

bl =l =[(Ag+ 1) —O( Ao+ 1]

b, = b, = [6'(Ay— ) =6(A = N1,

b; = b, = [0 (Aotto—1) = (At~ 1),

b = b, =[6(Aptdy +1) = O(A ot o+ DV-1,

SO:
0= —b)”+ (b —b)* + (B —bg)® + (b —bu)®

==260"[ (A + 1) (Ao + o) = (Ao= (A= 1)

+ (Aotly = D)(Aotty= 1)~ Atdy+ DA gt o+ 1)]
=- 460’ (/](; _/]o)(:u:) ~Hy)-

One sees that one must have either:
A=A
or
Ho = o
For example, takd, = A,.

The corresponding hyper-sheaf is represented im-danensional space by the
equations:

x-atph+tol

1+p+p
or again by the equations:
X~ — X~ 8,
pb-a)+p(d-a) plb,-a)+o(b-2a)
X3~ & — X,— 3

T Db -a)+p(B-a) pb,-a)rA(b-a)’
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I.e., upon inserting into pand &’into p”:

X,—8 — X, &
P+ o) + 0/ Ao+ 1) p(Ay = N1+ p' (N = -1
— X3~ 8 - Xy~ 8y _
P(Aotly =1)+ P (Aotdy=1) [ p(Aotly +1) + P (Apply + DN -1

These equations, whege p’is arbitrary and even variable, define a two-disienal
linear space that represents the hyper-sheaf istigpe Now- and this is a very
remarkable fact upon setting:

Ho P+, P
1+ 0
these equations can take on the form:

= U,

(32) Xl_a1: X~ & :X3_a3: X~ 8 _
ottt (A-pN-1 Ap=1 (hu+DJ-1

These equations are deduced from equations (3Bdigcing the constant parameter
Mo With a variable parameter.
If one has adopted the solutig) = 14 then one will arrive at the formula:

(33) Xl_a1: X~ 8 - Xs_a3: X, — 8 ’
Aty (=tiN=1 Atlg=1 (Aptp+IN-1

which is deduced from equations (30) by varyhg

The linear spaces (32) and (33) are two-dimengisirce is variable in (32) and
is variable in (33). In some way, they @etropictwo-dimensional linear spaces. They
possess the property of intersecting each plandiaty along a rectilinear generator of
I, . However, one of them interse¢tsalong a generator of one system [equation (32)],
while the other one, along a generator of the apegstem [equation (33)].

We thus have two types of isotropic linear spaggg™).

The one type corresponds to hyper-sheaves thapeags, while the other one, to the
hyper-sheaves that are planar systems.

It is assuredly quite curious that the separatibthe two systems of generatorsl pf
amounts to the distinction between the geometrpaofits in three-dimensional space,
which is the domain of ruled figures, and thathef planes.

For example, if we take the equations:

(34) X,—a - X~ 8 - Xs_a3: X,— 8
Aty (=tN=1 Atlg=1 (Aptp+IN-1

(% This fact is not new. The isotropic lines in thane already define two distinct families.
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then we will have the representation of a planaat(@, 7) that includes the lind that
has the pointy, ay, as, a4 for its image in four-dimensional space. Whknio take on
all possible valuesye will get all of the planar sheaves that contain

If Ao remains fixed then, as we know, the IXewvill generate a hyper-sheaf, one of
whose element® or 7remains fixed — for exampl® — and then equations (34) will
represent all of the lines that issue frOm

On the contrary, if it ig4 that remains fixed then it will be the plarm¢hat is found to
be fixed and represented as the support of a planar sybteeso

Therefore, in summation, when a sheaf is representddrimpilas such as (34) then
ay, a, as, au Will represent a line of that sheah, the pointO, andi, the planerrof the
sheaf on that line").

If one relateslo, (o homographically then the locus of the liKewill be asingular
linear congruence that admitsfor its directrix (9.

There exist other coordinates systems, but their statlyally leads into a series of
infinitesimal properties.

I will add that the coordinates that | have defined ptojely at the beginning can
take on an important metric form. We shall returnhe metric properties of ruled
systems at some other time.

(**) One can compare this with the representation tlyave in 1882 in my paper “Sur les propriétés
infinitésimales de I'espace réglé,” pp. 23.

(*®) The reader can compare the preceding with the chaptgpenta-spherical or hexaspherical
coordinates in Tome | of theeconsof G. Darboux. The sphere in Euclidian space givestoisetheory
that is entirely similar to that of the line.



