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 Up to now, the systems of straight lines that fill up all of space, or a part of it, in such 
a way that one, or a certain number, of discrete rays goes through every point have been 
examined only a little in full generality.  In the geometric consideration of ray systems, 
one has chiefly restricted oneself to those of a special kind, for which all of the rays take 
the form of normals to one and the same surface, a theory that has the closest relationship 
with the study of the curvature of surfaces, and whose most distinguished properties were 
found by Monge, who developed them in several chapters of his Application de l’Analyse 
à la Géométrie.  Since systems of rays in space have great significance for optics, the 
theory of them has be treated several times for the sake of physical interest; however, 
from that standpoint, one likewise rarely gets very far from systems of normals to a 
surface.  Here, one of the most beautiful theorems of optics has hindered the development 
of the general theory to a remarkable degree, namely, the theorem that was discovered by 
Malus and generalized by Dupin that after the light rays that emanate from a point have 
experienced an arbitrary number of reflections from arbitrarily-shaped mirrors and 
refractions from passing through arbitrarily-bounded media with various refracting 
powers, they will always preserve the property that they are the normals to a surface.  It is 
only when light goes through crystals that this property will break down for irregular 
rays; these define systems of rays that cannot be normal to a surface that will be called 
irregular ray systems, due to that state of affairs.  The question of whether crystals also 
produce only special kinds of such things prompts one to consider the most general ray 
systems.  As far as I know, they were first treated by Hamilton in the Transaction of the 
Royal Irish Academy, Bd. XVI, in a Supplement to his great paper: Theory of Systems of 
Rays, into which they did not enter, because that treatise was directed to the goals of 
optics, so only regular systems and their variations under reflections and refractions were 
considered, but the irregular systems that were considered were the ones that arose during 
the passage of light through crystals.  In the aforementioned first Supplement to this 
treatise, Hamilton likewise started from physical principles − namely, the principle of 
least action − but he pursued a main objective of developing the geometric properties of 
general ray systems of optics from a basic formula that obeyed that principle.  In this 
way, he discovered a series of distinguishing properties of the general, rectilinear ray 
systems that still seem to be little known, since no recourse was made to them in several 
later mathematical articles on related subjects,.  Giving this theory of general, rectilinear 
ray systems that was first treated by Hamilton a new foundation by appealing to the 
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analytic geometry of space, and likewise completing it at several essential points, shall be 
the goal of the present treatise. 
 
 

§ 1. 
 

Preliminary formulas and notations. 
 

 Any straight line of a ray system shall be determined by a point through which it 
goes, whose rectilinear coordinates will be x, y, z, and by the angles that it makes with the 
three coordinate axes, whose cosines will be denoted by ξ, η, ζ.  The law that couples the 
straight lines into a system will be given by saying that their six determining data: x, y, z, 
ξ, η, ζ will be determined as continuous functions of two independent variables u and v.  
The points x, y, z will then lie on a well-defined surface, and the rays of the system will 
all be regarded as emanating from the individual points of that surface.  Any point of a 
ray will be determined by its distance from the starting point of the ray, and thus by its 
abscissa, as measured along the ray, which shall be denoted by r. 
 If one considers two different rays of the system − the one, whose starting point and 
direction are determined by the quantities x, y, z, ξ, η, ζ, and the other, for which these 
quantities will have the values x + ∆x, y + ∆y, z + ∆z, ξ + ∆ξ, η + ∆η, ζ + ∆ζ, where ∆x, 
∆y, etc., denote finite differences − then the relationship of both rays to each other will be 
determined by the following data: First, the angle ε that they make with each other, 
second, the length p of the line that is perpendicular to both of them – i.e., the shortest 
distance between them – and third, the direction of that perpendicular, and thus, the 
cosine of the angle that it makes with the three coordinate axes, which shall be called κ, 
λ, µ, and fourth, the abscissa r of that point of the first ray at which one finds the shortest 
distance to the second ray.  As is shown in the elements of analytic geometry, these four 
data will be determined in the following way from the starting point and the directions of 
the two rays: 
(1) cos ε  = ξ(ξ + ∆ξ) + η(η + ∆η) + ζ(ζ + ∆ζ), 
 
(2) sin2 ε = (η ∆ζ – ζ ∆η)2 + (ζ ∆ξ – ξ ∆ζ)2 + (ξ ∆η – η ∆ξ)2, 
 
(3) p sin ε = (η ∆ζ – ζ ∆η) ∆x + (ζ ∆ξ – ξ ∆ζ) ∆y + (ξ ∆η – η ∆ξ) ∆z, 
 

(4) κ = 
sin

η ζ ζ η
ε

∆ − ∆
, λ = 

sin

ζ ξ ξ ζ
ε

∆ − ∆
, µ = 

sin

ξ η η ξ
ε

∆ − ∆
, 

 
(5) p = κ ∆x + λ ∆y + µ ∆z, 
 
(6) r sin ε = [µ (η + ∆η) – λ (ζ + ∆ζ)] ∆x  + [κ (ζ + ∆ζ) – µ (ξ + ∆ξ)] ∆y 
  + [λ (ξ+ ∆ξ) – κ (η + ∆η)] ∆z. 
 
 By means of the two equations: 

ξ 2 + η2 + ζ 2 = 1, 
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(ξ + ∆ξ)2 + (η + ∆η)2 + (ζ + ∆ζ)2 = 1, 
 

from which one will get the equation: 
 
(7)    ξ ∆ξ + η ∆η + ζ ∆ζ = − 1

2 (∆ξ 2 + ∆η2  + ∆ζ 2), 
 
one can also express cos ε, sin ε, and r in the following forms: 
 
(8) cos ε = 1 − 1

2 (∆ξ 2 + ∆η2  + ∆ζ 2), 
 
(9) sin2 ε = ∆ξ 2 + ∆η2  + ∆ζ 2 − 1

4 (∆ξ 2 + ∆η2  + ∆ζ 2)2, 

 
(10) r sin2 ε = − (∆x ∆ξ + ∆y ∆η + ∆z ∆ζ) 
   + 1

2 (∆ξ 2 + ∆η2  + ∆ζ 2) [∆x (ξ + ∆ξ) + ∆y (η + ∆η) + ∆z (ζ + ∆ζ)]. 

 
 If one further considers the distance between two straight lines at any of their points 
that is measured by the length of a line that is drawn from the second ray to the first one 
in such a way that it is perpendicular to it, and calls the length of that line q, the abscissa 
of the point at which it is perpendicular to the first line, R, and the cosines of the angles 
that its direction makes with the three coordinate axes, κ′, λ′, µ′, then analytic geometry 
will give the following expressions for these quantities: 
 

(11)   

( )( )
,

cos
( )(

,
cos

( )( )
,

cos

R P
q x R

R P
q y R

R P
q z R

ξ ξκ ξ
ε

η ηλ η
ε
ζ ζµ ζ
ε

− + ∆ ′ = ∆ − +


− + ∆ ′ = ∆ − +


− + ∆ ′ = ∆ − +


 

 
in which, for the sake of brevity, we have set: 
 

P = ξ ∆x + η ∆y + ζ ∆z . 
 
 If one lets the second ray approach the first one infinitely closely − so the differences 
∆x, ∆y, ∆z, ∆ξ, ∆η, ∆ζ become the differentials dx, dy, dz, dξ, dη, dζ − then the distances 
p and q and the angle ε will become infinitely small, and will then be denoted by dp, dq, 
dε; the infinitely small quantities of higher order will then vanish in comparison to the 
lower-order ones, and one will get: 
 
(12) dε 2  = dξ 2 + dη2 + dζ 2, 
 

(13)  κ = 
d d

d

η ζ ζ η
ε

−
, λ = 

d d

d

ζ ξ ξ ζ
ε

−
, µ = 

d d

d

ξ η η ξ
ε

−
, 
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(14) dp  = κ dx + λ dy + µ dz, 
 

(15) r = − 2 2 2

dx d dy d dz d

d d d

ξ η ζ
ξ η ζ

+ +
+ +

, 

 

(16) 

( ),

( ),

( ).

dq dx R d dx dy dz

dq dy R d dx dy dz

dq dz R d dx dy dz

κ ξ ξ ξ η ζ
λ η η ξ η ζ
µ ζ ζ ξ η ζ

′ = + − + +
 ′ = + − + +
 ′ = + − + +

 

 
 Since x, y, z, ξ, η, ζ are functions of the two independent variables u and v, their 
differentials must be expressed in terms of their partial differential quotients with respect 
to u and v and the differentials du and dv.  In that, the same notations shall be chosen for 
the first partial differential quotients and the expressions that are composed from them 
that Gauss applied in his treatise Disquisitiones generales circa superficies curvas, 
namely: 
(17)  dx = a du + a′ dv, dy = b du + b′ dv, dz = c du + c′ dv, 
 
(18)  bc′ − b′c = A,  ca′ − c′a = B,  ab′ − a′b = C, 
 
(19)  a2 + b2 + c2 = E, aa′ + bb′ + cc′ = F, a′2 + b′2 + c′2 = G. 
 
 Furthermore, the following analogous notations shall be applied for the partial 
differential quotients of the quantities ξ, η, ζ, and the expressions that are composed from 
them: 
(20)  dξ = a du + a′ dv, dη = b du + b′ dv, dζ = c du + c′ dv, 
 
(21)  bc′ − b′c = A,  ca′ − c′a = B,  ab′ − a′b = C, 
 
(22)  a2 + b2 + c2 = E, aa′ + bb′ + cc′ = F, a′2 + b′2 + c′2 = G, 
 
and, in addition: 
(23)    A2 + B2 + C2 = EG – F2 = ∆2. 
 
Furthermore, the following four expressions that are composed of partial differential 
quotients of x, y, z, and ξ, η, ζ will be denoted by simple symbols: 
 

(24)    

a b c e,

a b c f,

a b c f ,

a b c g.

a b c

a b c

a b c

a b c

+ + =
 ′ ′ ′+ + =
 ′ ′ ′ ′+ + =
 ′ ′ ′ ′ ′ ′+ + =

 

 
The quotient of the differentials of the two independent variables du and dv shall be 
denoted simply by t, so: 
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(25)     
dv

du
 = t. 

 From the equation: 
ξ 2 + η 2 + ζ 2 = 1, 

 
which gives the following equations under differentiation with respect to u and v: 
 

(26)    
a b c 0,

a b c = 0,

ξ η ζ
ξ η ζ

+ + =
 ′ ′ ′+ +

 

 
one will also obtain the following expressions for ξ, η, ζ in terms of their partial 
differential quotients: 

(27)   ξ = 
A

∆
, η = 

B

∆
, ζ = 

C

∆
, 

 
which will be applied to great advantage, but which are undetermined in the case where ∆ 
= 0.  The condition ∆ = 0, from which it follows that A = 0, B = 0, C = 0, is valid for only 
a special kind of ray system that will require some slight modifications of the general 
method for its treatment, but which will not be done in what follows, because this ray 
system can also be regarded as a limiting case of the general one. 
 
 

§ 2. 
 

The limit point of the shortest distance from a ray to an infinitely close ray. 
 

 If the differentials dx, dy, dz, dξ, dη, dζ are expressed in terms of their partial 
differential quotients and the differentials du and dv then the expression (15) for the 
abscissa of the points on the first ray at which it one gets the shortest distance to an 
infinitely close ray will give: 
 

(1)     r = − 
2

2

e + (f + f ) + g

E + 2F +G

t t

t t

′
, 

 
when one fixes the sign.  For a well-defined value of t = dv / du, this expression will give 
the abscissa r of the shortest distance from the first ray to one well-defined infinitely-
close ray; one gets the value of r in question for all of the infinitely-close rays around a 
ray when one gives t all possible values from t = − ∞ to t = + ∞ in succession.  The 
denominator of that expression can be zero for none of these values of t, because EG – F2 
= A2 + B2 + C2 is never negative, and because the special choice for which EF – G2 
equals zero was excluded.  Therefore, the value of r can never be infinitely large, and it 
must then be always contained within certain finite limits that will be given by a 
maximum and a minimum of r.  One thus has the following theorem: 
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 The shortest distance from a ray to all of its infinitely-close rays lies on a bounded 
part of that ray that is bounded by two well-defined points. 
 
 When the differential quotient of r with respect to t is set to zero, that will yield the 
following equation for the value of t for which the two limit points correspond to the 
shortest distance from the ray to the infinitely-close rays: 
 
(2)   (E + 2Ft + Gt2)(f + f′ + 2gt) – (e + (f + f′) t + gt2)(2F + 2Gt) = 0, 
 
or, when simplified: 
 
(3)   (E + Ft) ( 1

2 (f + f′) + gt) – (F + Gt) (e + 1
2 (f + f′) t) = 0, 

 
and when arranged in powers of t: 
 
(4)   (gF − 1

2 (f + f′) G) t2 – (eG – gE) t + ( 1
2 (f + f′) E – eF) = 0. 

 
 Let the two roots of this quadratic equation − which, as was shown above, must 
always be real − be t1 and t2, so one will have: 
 

(5)   t1 + t2 = 
1
2

eG gE

gF (f + f ) G

−
′−

, t1 t2 = 
1
2

1
2

(f + f ) E gF

gF (f + f ) G

′ −
′−

, 

 
from which, one will get the noteworthy equations: 
 
(6)    E + F(t1 + t2) + G t1 t2 = 0, 
 
(7)    e + 12 (f + f′)(t1 + t2) + g t1 t2 = 0, 

 
and to which, one might add the following equations, which are easily derived from 
them: 
(8)  E + 2F t1 + 2

1G t  = (t1 − t2)(F + G t1), 

 
(9)  E + 2F t2 + 2

2G t  = (t1 − t2)(F + G t2), 

 
(10)  (F + G t1)(F + G t2)  = − ∆2, 
 
(11) (E + 2Ft1 +

2
1G t )(E + 2Ft2 +

2
2G t ) = ∆2(t1 − t2)

 2. 

 
 If one now denotes the two extreme values of the abscissa r that belong to the values t 
= t1 and  t = t2 by r1 and r2, resp., then one will have: 
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(12)  r1 = − 
2

1 1
2

1 1

e  (f   f ) g

E 2F G

t t

t t

′+ + +
+ +

, 

 

(13)  r2 = − 
2

2 2
2

2 2

e  (f   f ) g

E 2F G

t t

t t

′+ + +
+ +

, 

 
which are expressions that can assume the following simpler forms by means of 
equations (2) and (3): 
 

(14)  r1 = − 
1

12

1

e  (f   f )

E F

t

t

′+ +
+

 = 
1

12

1

(f   f ) g

F G

t

t

′+ +
+

, 

 

(15)  r2 = − 
1

22

2

e  (f   f )

E F

t

t

′+ +
+

 = 
1

22

2

(f   f ) g

F G

t

t

′+ +
+

. 

 
 If one eliminates t1 or t2 from these equations then one will obtain the following 
quadratic equation, whose roots r1 and r2 − which are always real – will be the abscissas 
of the limit points for the shortest distance from a ray to all of the infinitely-close rays: 
 
(16)  (EF – F2) r2 + (gE – (f + f′) F + eG) r + eg − 1

4 (f + f′)2 = 0, 

 
from which, it will follow that: 
 

(17)  r1 + r2 = − 
2

gE (f f ) F  eG′− + +
∆

,  r1 r2 = 
21

4
2

eg (f f )′− +
∆

. 

 
 The extent of the interval in which the shortest distance from a ray to the rays that are 
infinitely close to it will lie is equal to the difference between the abscissas of the two 
points themselves, so it is equal to r2 – r1 .  If one denotes this length by 2d and the 
abscissa of the midpoint of these two limit points by m then one will have: 
 

(18)    d = 2 1

2

r r−
, m = 2 1

2

r r+
. 

 
 

§ 3. 
 

The directions of the shortest distances and the principal planes. 
 

 Now, we shall also direct our attention to the direction that the shortest distance from 
a ray to the infinitely close rays will have, which is determined by the cosines of the 
angles that it makes with the three coordinate axes, and which were denoted by λ, µ, ν, 
above.  If one replaces the differentials dx, dy, dz, dξ, dη, dζ in the expressions for these 
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quantities that are given by (13), § 1 with their partial differential quotients and the 
differentials of the independent variables du and dv, whose quotient was denoted by t, 
then one will get: 

(1)     

2

2

2

c b ( c b )
,

E 2F G
a c ( a c )

,
E 2F G

b a ( b a )
.

E 2F G

t

t t
t

t t
t

t t

η ζ η ζκ

ζ ξ ζ ζλ

ξ η ξ ηµ

 ′ ′− + −=
+ +

 ′ ′− + − =
+ +

 ′ ′− + −=
 + +

 

 
 If one takes the expressions that were given above (17), § 1 for ξ, η, ζ, namely: 
 

ξ = 
A

∆
, η = 

B

∆
, ζ = 

C

∆
, 

and observes that: 
 Bc – Cb = a′E – aF, Bc′ − Cb′ = a′F – aG, 
 Ca – Ac = b′E – bF, Ca′ − Ac′ = b′F – bG, 
 Ab – Ba = c′E – cF, Ab′ − Ba′ = c′F – cG 
then one will get: 

(2)   

2

2

2

a  (E F ) a (F G )
,

E 2F G
b  (E F ) b (F G )

,
E 2F G

b  (E F ) b (F G )
.

E 2F G

t t

t t
t t

t t
t t

t t

κ

λ

µ

 ′ + − +=
∆ + +

 ′ + − + =
∆ + +

 ′ + − +=
 ∆ + +

 

 
 If one now considers, in particular, the directions of those two shortest distances that 
exist at the two limit points – thus, for t = t1 and t = t2 , for which the special values of κ, 
λ, µ will be denoted by κ1, λ1, µ1 and κ2, λ2, µ2  − then by means of equation (6), § 2, 
which shows that E + Ft1 = − t2 (F + Gt2), one will get the following expressions: 
 

(3)     

2 1

1

2 1

1

2 1

1

(a a )(F G )
,

(b b )(F G )
,

(c c )(F G )
,

t t

V

t t

V

t t

V

κ

λ

µ

 ′+ += − ∆
 ′+ += − ∆
 ′+ += −

∆

 

where we have set: 
2E 2F Gt t+ +  = V1, 
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for brevity.  If one similarly denotes the corresponding root by: 
 

2E 2F Gt t+ +  = V2 
 
then one will have, from (11) and (8), § 2: 
 

(4)    V1 V2 = ∆(t2 – t1), 1

1F G

V

t

∆
+

 = V2,  2

2F G

V

t

∆
+

 = − V1, 

and thus: 

(5)    κ1 = − 2

2

a  at

V

′+
, λ1 = − 2

2

b  bt

V

′+
, µ1 = − 2

2

c  ct

V

′+
, 

 
from which, one will get the values of κ2 , λ2 , µ2 by switching t2 and t1, which makes V2 
go to – V1: 

(6)    κ2 = 1

1

a  at

V

′+
,  λ2 = 1

1

b  bt

V

′+
,  µ2 = 1

1

c  ct

V

′+
. 

 
 The cosine of the angle between the directions of the shortest distance from a ray to 
its infinitely-close rays at the two limit points has the value: 
 

κ1 κ2 + λ1 λ2 + µ1 µ2 =  − 2 1 2 1 2 1

1 2

(a  a )(a  a ) (b  b )(b  b ) (c  c )(c  c )t t t t t t

V V

′ ′ ′ ′ ′ ′+ + + + + + + +
, 

 
which will give, after carrying out the multiplications in the individual terms: 
 

κ1 κ2 + λ1 λ2 + µ1 µ2 =  − 1 2 1 2

1 2

 E  2F( ) G t t t t

V V

+ + +
, 

 
and from equation (6), § 2 will therefore by zero, from which, it will follow that this 
angle is a right angle.  One will then have the following theorem: 
 
 The shortest distances from a ray to the infinitely-close rays, which will lie at the two 
limit points, will be perpendicular to each other. 
 
 Those two planes that go through a ray that are perpendicular to the directions of the 
shortest distances at the two limit points shall be called the principal planes of that ray.  
These two principal planes, which, from the theorem that was just proved, will be 
mutually perpendicular, or the directions of the shortest distances at the two limit points 
that are perpendicular to them, will be chosen most conveniently from the ones that lie 
around a ray, along which those perpendicular directions will be measured by angles. 
 Let ω be the angle between the direction of the shortest distance from the first ray to 
an arbitrary, infinitely-close ray and the direction of the shortest distance at one of the 
limit points, whose abscissa equals r1, or what amounts to the same thing, the angle of 
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inclination between that direction and the second principal plane of the ray, so one will 
have: 
(7)     cos ω = κ1 κ + λ1 λ + µ1 µ, 
 
and if κ, λ, µ for κ1, λ1, µ1 are replaced with the expressions that were given by (2) and 
(6) then: 

(8)     cos ω = − 1 1

2
1

E  F (F  G )

E 2F G

t t t

V t t

+ + +
+ +

, 

or by using equation (6), § 2: 

(9)     cos ω = 1 2

2
1

(F  G )( )

E 2F G

t t t

V t t

+ −
+ +

. 

From this, one will get: 

(10)   sin ω = 1

2
1

( )

E 2F G

t t

V t t

∆ −
+ +

., 

 

(11)   tan ω = 1

1 2

( )

(F G )( )

t t

t t t

∆ −
+ −

, 

and as a result: 

(12) t = 1 1 2

1

cos (F  G ) sin

cos (F  G )sin

t t t

t

ω ω
ω ω

∆ + +
∆ + +

, 

 
which is a formula that allows one to replace the quotient t = dv / du everywhere with the 
angle ω, which expresses the geometric relationship between a neighboring ray and the 
original ray immediately as a quotient.  If one performs that substitution in the 
expression: 

r = − 
2

2

e (f   f ) g

E 2F G

t t

t t

′+ + +
+ +

 

 
for the abscissa of that point of a given ray at which one of the infinitely-close rays has 
the shortest distance from it then one will get: 
 

(13)   E + 2Ft + Gt2 = 
2 2

1
2

1( cos (F  G )sin )

V

tω ω
∆

∆ + +
, 

and one will then get: 
(14)     e + (f + f′) t + gt2 

= 
2 2 2 2 2

1 1 1 2 2
2

1

(e (f f ) g )cos (F G )(e (f f ) g )sin

( cos (F  G )sin )

t t t t t

t

ω ω
ω ω

′ ′∆ + + + + + + + +
∆ + +

. 

 
By dividing these expressions, when one makes use of formula (4), from which, one will 
have 2 2

1V∆  = (F + Gt1)
2 2

2V , one will have: 
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(15)  r = − 
2

1 1
2

1 1

e (f  f ) g

E 2F G

t t

t t

′+ + +
+ +

 cos2 ω – 
2

2 2
2

2 2

e (f  f ) g

E 2F G

t t

t t

′+ + +
+ +

sin2 ω, 

 
and by means of the expressions for r1 and r2 that were given by (12) and (13): 
 
(16)    r = r1 cos2 ω + r2 sin2 ω. 
 
 This elegant formula, which expresses a very simple relationship between the limit 
points of the shortest distance to a ray and the shortest distance to an arbitrary infinitely-
close ray, was found by Hamilton in the aforementioned Supplement to his treatise On 
the Theory of Systems of Rays, in which he treated the points at which two infinitely-close 
rays realize the shortest distance under the name of virtual foci.  He also was the first to 
establish the limits points of the shortest distance on a ray and the two mutually-
perpendicular principal planes of any ray. 
 
 

§ 4. 
 

Focal points of rays, their midpoint, and focal planes. 
 

 One finds the quantities of the shortest distance dp between two infinitely-close rays 
and the infinitely small angle dε that these rays make with each other from the 
expressions that were given above by (12) and (14) by introducing the partial differential 
quotients and the differentials du and dv of the two independent variables, instead of the 
differentials dx, dy, dz, dξ, dη, dζ, and by applying the values found for the quantities κ, 
λ, µ, which will give the following expressions: 
 

(1) dε = du 2E 2F Gt t+ + , 
 

(2) dp = 
2

((f g )(E F ) (e f )(F G )

E 2F G

du t t t t

t t

′ + + − + +
∆ + +

, 

so 

(3) 
dp

dε
= 

2

(f g )(E F ) (e f )(F G )

E 2F G

t t t t

t t

′ + + − + +
∆ + +

. 

 
 It follows from this that for those values of t that satisfy the equation: 
 
(4)    (f′ + gt)(E + Ft) – (e + ft)(F + Gt) = 0, 
 
the ray will be intersected by the infinitely close rays in question; that is, the shortest 
distance from the ray, which is generally a first-order infinitely small quantity, is a 
higher-order infinitely small quantity for this special value of t, and thus, for the same 
associated infinitely-close rays.  When this condition equation is developed, that will 
give: 
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(5)   (gF – fG) t2 + (gE – (f + f′) F – eG) t + f′ E – e F = 0, 
 
and when the two roots of this quadratic equation are denoted by τ1 and τ2, one will get: 
 

(6)   τ1 + τ2 = 
gE (f f ) F  eG

gF fG

′− + − +
−

, τ1τ2 = 
f  E  eF

gF fG

′ −
−

. 

 
 This quadratic equation does not have the distinguishing property of the one that was 
treated above − viz., that its roots τ1 and τ2 are always real; they will be real or imaginary, 
moreover, according to the nature of the laws that couple the lines in space into a system.  
One will then have two special categories of ray systems to distinguish from each other, 
namely, the ones in which any ray is intersected by infinitely-close ones, and the ones in 
which an intersection of infinitely-close rays is nowhere to be found.  As a third category 
of ray systems, we add the ones in which certain parts of the system will belong to one or 
the other of the two categories. 
 Those two points of a ray at which it is intersected by infinitely-close rays will be 
called the focal points of that ray.  They will be real points only when τ1 and τ2 are real. 
 One finds the abscissas of the two focal points from the general expression for the 
abscissa of the point at which the ray finds its shortest distance to an infinitely-close ray, 
which was found above (1), § 2, when one gives the two well-defined values τ1 and τ2 to 
the t there.  If one denotes the corresponding abscissas of the focal points by ρ1 and ρ2  
then one will have: 

(7)     

2
1 1

1 2
1 1

2
2 2

2 2
2 2

e (f   f ) g

E 2F G

e (f   f ) g
,

E 2F G

τ τρ
τ τ

τ τρ
τ τ

′ + + += − + +


′+ + + = −
 + +

 

 
and by means of the quadratic equation (4), whose roots are τ1 and τ2 , this expression 
will take on the simpler form: 

(8)     

1 1
1

1 1

2 2
2

2 2

e f f g
,

E F F G

e f f g
.

E F F G

τ τρ
τ τ
τ τρ
τ τ

′+ + = − = − + +
 ′+ + = − = −
 + +

 

 
 If one eliminates τ1 or τ2 from these equations then one will obtain the following 
quadratic equation, whose roots are ρ1 and ρ2 : 
 
(9)    (EG – F2) r2 + (gE – (f + f′) F + eG) r + eG − ff′ = 0, 
so one will have: 

(10)   ρ1 + ρ2 = − 
2

gE (f   f ) F  eG′− + +
∆

, ρ1 ρ2 = 
2

eg ff′−
∆

. 
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 If one compares this quadratic equation, whose roots ρ1 and ρ2 are the abscissas of the 
two focal points, with the one whose roots r1 and r2 are the abscissas of the limit points of 
the shortest distance then one will get: 
 
(11) ρ1 + ρ2  = r1 + r2 , 
 

(12) ρ1 ρ2 = r1 r2 + 
2

2

(f f )

4

′−
∆

. 

 
The first of these two equations gives the following theorem: 
 
 The midpoint of the two focal points of any ray will coincide with the midpoint of the 
two limit points of the shortest distances. 
 
 The common midpoint of the two focal points and the two limit points shall be 
called the midpoint of the ray.  Let the distance from the focal points to the midpoint be 
equal to δ, so: 

(13)  δ = 2 1

2

ρ ρ−
. 

 
 The four quantities r1, r2, ρ1, ρ2 can be expressed in terms of the three quantities m, 
d, and δ; namely, from equation (11) and the two equations (18), § 2, one will get: 
 

(14)     2 1

2 1

, ,

, .

r m d r m d

m mρ δ ρ δ
= + = −

 = + = −
 

Equation (12) will then give: 

(15)      d2 – δ2 = 
2

2

(f f )

4

′−
∆

, 

 
from which, it will then follow that the distance from the two focal points to the midpoint 
is never greater than the distance from the two limit points of the shortest distance to the 
midpoint, so the focal points can only lie between the limit points of the shortest distance 
or at most, coincide with them. 
 The two planes that go through a ray and one of the two infinitely-close rays that 
intersect the former ray shall be called the focal planes of that ray. 
 Focal planes will exist as real planes only when the focal points are real, so the 
positions of them with respect to each other and with respect to the principal planes will 
be determined most simply by the equation r = r1 cos2 ω + r2 sin2 ω, which will give: 
 

(16)   cos2 ω = 2

2 1

r r

r r

−
−

, sin2 ω = 1

2 1

r r

r r

−
−

. 

 
Namely, if one takes r = ρ1 then ω will be the angle that the first focal plane makes with 
the first principal plane, and if takes r = ρ2 then ω will be the angle that the second focal 
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plane makes with the first principal plane.  If one denotes these two angles with ω1 and 
ω2 then the difference ω2 − ω1 will give the angle that the two focal planes make with 
each other, which shall be denoted by γ.  One will thus have: 
 

(17)    

2 21 1 1 1
1 1

2 1 2 1

2 22 2 2 2
2 2

2 1 2 1

cos , sin ,

cos , sin ,

r r

r r r r

r r

r r r r

ρ ρω ω

ρ ρω ω

− − = = − −
 − − = =
 − −

 

 
and when one expresses the abscissas of the focal points and limit points in terms of the 
three quantities m, d, δ using equations (14), one will get: 
 

(18) 
1 2

1 2

cos sin ,
2

sin sin .
2

d

d

d

d

δω ω

δω ω

 += =



− = =

 

 
 Therefore, since ω1 = 1

2 π – ω2, and due to the perpendicular orientation of the two 

principal planes with respect to each other, the angle between the second focal plane and 
the second principal plane will be equal to 1

2 π – ω2 , and thus equal to the angle ω1 

between the first focal plane and the first principal plane, and it will follow that: 
 
 The two focal planes of any ray will lie symmetrically with respect to its two principal 
planes, in such a way that the bisecting plane of the angle between the focal planes will 
be the same as the bisecting plane of the right angle that the two principal planes define. 
 
 For the angle γ = ω2 – ω1 between the two focal planes, one will have, since ω1 + ω2 
= 1

2 π: 

(19) 
1 1

1 22 2

1 1 1 1
1 24 2 4 2

2 2 ,

, ,

γ π ω ω π
ω π γ ω π γ

= − = −
 = − = +

 

 
so sin γ = cos 2ω1 = cos2 ω1 – sin2 ω1 and cosγ = sin 2ω1 = 2 sin ω1 cos ω1 ; equations 
(18) will then give: 

(20)    sin γ = 
d

δ
, cos γ = 

2 2d

d

δ−
. 
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§ 5. 
 

The surfaces that are connected with any ray system. 
 

 The five well-defined points for any line of the system, namely, the two limit points 
of the shortest distance, the two focal points, and the midpoint, have geometric loci over 
all rays of the system that consist of five surfaces that are determined completely by the 
ray system, and have a close relationship to it. 
 The two surfaces on which the limit points of the shortest distance lie are ordinarily 
represented by only one and the same equation, so they can also be regarded as two 
different parts or shells of one surface; however, since it is quite necessary to distinguish 
one from the other, in all of what follows they shall be regarded as two surfaces and will 
be denoted by 1F ′  and 2F ′ .  These two surfaces will divide all of space in such a way that 

the shortest distances to all infinitely-close rays of the entire system will lie between 
them, but none of them outside, however. 
 If one goes from any ray of the system to the infinitely-close ray whose shortest 
distance from it lies on the surface F1, and then goes from that one to the next one whose 
shortest distance from it lies in F1, and so forth, then all of these successive rays will 
collectively define a rectilinear surface O1 whose intersection a1 with the surface F1 will 
be the curve of the rectilinear surface O1 on which the shortest distance between any two 
successive straight lines will lie.  The same rectilinear surface O1 will also intersect the 
surface F2 in a certain curve b2 .  If one does the same thing with the surface F2 then one 
will obtain a rectilinear surface O2 for which the shortest distance between two infinitely-
close straight lines will lie on F2 on a curve a2 , and the rectilinear surface O2 will also 
intersect F1 in a certain curve b1 .  Because all of this will be true for any ray of the 
system, from which one would like to start, one will have an entire family of rectilinear 
surfaces O1 whose curves of shortest distance between any two infinitely-close straight 
lines will yield a family of curves a1 in the surface F1, and which will intersect the 
surface F2 in a family of curves b2 .  Likewise, one will have a second family of 
rectilinear surfaces O2 that will have their curves a2 of shortest distance lying between 
infinitely-close straight lines on F2 , and which will intersect F1 in a family of curves b1 . 
 If x′, y′, z′ are the coordinates of the first limit point of the shortest distance for the ray 
that starts at the point x, y, z then one will have: 
 

x′ = x + r1 ξ,  y′ = y + r1 η ,  z′ = z + r1 ζ 
 

as the equations of the surface F1, in such a form that the coordinates of any point of that 
surface will be expressed as functions of the two independent variables u and v.  In the 
same way, one will have: 
 

x′ = x + r2 ξ,  y′ = y + r2 η ,  z′ = z + r2 ζ 
 
as the equations of the surface F2 .  In order to find the families of rectilinear surfaces O1 
and O2, one must integrate the two differential equations: 
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dv

du
= t1 , 

dv

du
= t2 . 

 
 If the complete integrals of them, which will include arbitrary constants, have been 
found, and one eliminates the quantities u and v for any ray by means of one of these two 
integral equations from the two equations: 
 

x x

ξ
′ −

 = 
y y

η
′ −

= 
z z

ζ
′ −

 

 
then one will obtain an equation for the coordinates x′, y′, z′ that will include an arbitrary 
constant and will represent the entire family of rectilinear surfaces O1 or O2 , according to 
whether one or the other integral equation was applied.  One will obtain the two families 
of curves a1 and b1 on F1 and a2 and b2 in F2 immediately when one couples the three 
equations for one of these two surfaces with one of the two integral equations. 
 The two surfaces on which the focal points of any ray will lie, which will be called 
the focal surfaces of the ray system and which will be briefly denoted by Φ1 and Φ2 here, 
will exist as real surfaces only when the rays have real focal points and the two roots τ1 
and τ2 of the quadratic equation (5), § 4 have real values. 
 If one advances from an arbitrary ray to the infinitely-close ray that intersects a focal 
point that lies in Φ1, and then proceeds further from that one to the one that cuts the focal 
point that lies on Φ1, and so forth, then one will obtain a sequence of rays, each of which 
will intersect the foregoing ones at a point of the surface Φ1 that will therefore 
collectively define a developable surface whose curve of regression will lie on the surface 
Φ1, and which will also intersect the surface Φ2 in a certain curve.  This developable 
surface shall be denoted by Ω1, its curve of regression by α1, and its intersection curve 
with the surface Φ2 by β2 .  Because one can then start from any arbitrary ray of the 
system, one will obtain an entire family of developable surfaces Ω1 whose regression 
points will define a family of curves α1 on the surface Φ1, and which will determine a 
family of curves β2 on the surface Φ2 .  Likewise, starting from the focal points of the 
rays that lie on the surface Φ2, one will obtain a second family of developable surfaces Ω2 
whose curves of regression α2 will be a family of curves that lie on the surface Φ2, and 
which will determine a family of curves β1 on the surface.  Thus: 
 
 Any system of lines that has real focal surfaces can be composed, in two different 
ways, into a family of developable surfaces whose curves of regression have the two focal 
surfaces for their geometric loci. 
 
 Because the curve of regression α1 of the developable surface Φ1, as such, will 
contact all of the rays that lie in Ω2, and because it will lie on the surface Φ1, it will then 
follow that all rays of any developable surfaces Ω1, and so all of the rays of the system, 
will contact the surface Φ1 .  It likewise also follows that all rays of the system must 
contact the other focal surface Φ2 .  One will then have the following theorem: 
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 All rays of a system that has real focal points will be common tangents to the two 
focal surfaces. 
 
 As an immediate consequence of this theorem, the following theorem deserves to be 
mentioned: 
 
 Any ray system that has real focal surfaces can be defined to be the common tangents 
of two surfaces or also as the system of all double tangents to one and the same surface. 
 
 In order to completely determine a system, one can also think of just one of its two 
focal surfaces – e.g., Φ1 – as having been given, and similarly, the family of curves α1 on 
it; thus: 
 
 Any ray system that has real focal surfaces can be defined geometrically to be the 
system of all tangents to a family of curves that lie on one surface. 
 
 Because the rays that lie on a developable surface Ω1 will also contact the surface Ω2, 
it will then follow that the curve β2 that it has in common with them must be a contact 
curve of the two surfaces.  It will likewise follow that any developable surface Ω2 will 
contact the surface Φ1 along an entire curve; i.e., it will envelop it.  Thus: 
 
 Either of the two focal surfaces will be enveloped by one of the two families of 
developable surfaces into which all of the rays of the system can be composed. 
 
 Since, from a well-known theorem, the generating straight lines of a developable 
surface that contact another surface along an entire curve will be the conjugate tangents 
to the tangents of that curve, it will then follow that: 
 
 The two families of curves that are determined by the two families of developable 
surfaces on the focal surfaces of a ray system will intersect on either of the two focal 
surfaces in conjugate directions. 
 
 If the two focal surfaces Φ1 and Φ2 intersect then any tangent of the intersection curve 
will be one of the rays of the system, and therefore, a tangent to one of the curves α1 .  
The intersection curve and the curve α1 will thus have a common tangent, and in fact, at 
the same point.  The intersection curve will then contact the curve α1, and because that 
will be true for all of the various tangents to the intersection curve, it will then follow that 
the intersection curve of all curves will contact the family α1.  It will likewise follow that 
the intersection curve will also contact all curves of the family α2 on Φ2 .  One will then 
have the following theorem: 
 
 The intersection curve of the two focal surfaces is the enveloping curve – or boundary 
curve – for all of the curves of regression that line on the two focal surfaces of 
developable surfaces that can be composed of the rays of the system. 
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 One can obtain the equations of the two focal surfaces in the same way as the 
equations for the limit surfaces of the shortest distance were obtained above, with the 
help of the abscissas of the focal points ρ1 and ρ2, namely: 
 
   x′ = x + ρ1 ξ,  y′ = y + ρ1 η,  z′ = z + ρ1 ζ, 
and 
   x′ = x + ρ2 ξ,  y′ = y + ρ2 η,  z′ = z + ρ2 ζ . 
 
 One obtains the two families of developable surfaces Ω1 and Ω2, and the families of 
curves α1, β1 on Φ1 and α2, β2 on Φ2 by the complete integration of the differential 
equations: 

dv

du
 = τ1, 

dv

du
 = τ2, 

 
in the same way as was shown above for the surfaces O1and O2, along with the system of 
curves a1, b1 on F1 and a2, b2 on F2 . 
 Finally, as far as the (always real) surface on which the midpoints of all rays of the 
system will lie, and which will be called the middle surface of the ray system for that 
reason, it is especially important that it can be chosen most conveniently to be the surface 
from which all rays of the system are considered to start.  In fact, if one calculates the 
abscissas of the points on the individual rays of the middle surface then one will have: 
 

r1 = − r2 , ρ1 = − ρ2 , gE – (f + f′) F + eG = 0, 
 

from which a not-inconsiderable simplification will come about. 
 One obtains the equations of the middle surface from the expression for the abscissa 
of  the midpoint: 

m = 1 2

2

r r+
 = − 

2

gE (f f )F eG

2

′− + +
∆

, 

namely: 
x′ = x + m ξ, y′ = y + m η, z′ = z + m ζ . 

 
 All of these surfaces that are closely-linked with the ray system − viz., the limit 
surfaces of the shortest distance, the focal surfaces, and the middle surface – can 
degenerate into lines or even points in special cases, and some of these surfaces can also 
vanish at infinity, or also unite with each other in such a way that they cover themselves.  
The systems of normals to a surface for which the two focal surfaces coincide with the 
limit surfaces of shortest distance also belong the various special types of ray systems 
that appear in this way as the limit surfaces of general ones.  The relationship between 
these special kinds of ray systems to the general case shall be treated thoroughly later on.  
In addition, the type of ray system deserves a special mention here for which ∆ = 0 and, 
at the same time, A = 0, B = 0, C = 0, which must be excluded from the general 
examination, because the expressions for ξ, η, ζ in terms of partial differential quotients 
(27), § 1 will yield indeterminate values for them.  For this special kind of ray system, the 
limit surfaces of shortest distance will both vanish at infinity, and likewise the middle 
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surface will vanish at infinity, but only one of the two focal surfaces will be lost at 
infinity, while the other one will remain a finitely-determined surface.  Of the two 
families of developable surface that can be composed of the rays of such a system, the 
one of them whose curve of regression lies on the infinitely-distant focal surface will 
contain only cylindrical surfaces.  As one can infer from this, such a system can be 
represented geometrically as the system of all those tangents to a surface that are parallel 
to the tangents of any of those given curves. 
 
 

§ 6. 
 

The measure of density. 
 
 If one considers three quantities ξ, η, ζ that satisfy the equation: 
 

ξ 2 + η2 + ζ 2 = 1, 
 

to be the rectangular coordinates of a sphere whose radius is equal to one then one will 
have a point on the sphere that corresponds to each ray of the system, and a continuous 
curve on the sphere that corresponds to any continuous sequence of rays.  If one now 
draws a plane through any point of a line that is perpendicular to it and draws a curve in 
that plane then the family of rays that go through that curve will correspond to a curve on 
the sphere.  If one now takes any curve such that its individual points are separated from 
the base point of the first ray by only infinitely little, and such that it circumscribes an 
infinitely small surface that lies around that point then one will likewise obtain a closed 
curve around an infinitely small surface as the corresponding curve on the sphere.  The 
relationship between these two infinitely small surfaces, which in the case where the ray 
system is a system of normals to a surface and the perpendicular plane is a tangent plane 
to it was defined by Gauss to be the measure of curvature of that surface, also has the 
same importance for the most general system, not as a measure of the curvature, but as a 
measure of the density of the ray system.  When a plane goes through any point of line 
that is perpendicular to it, and in it, a curve that is infinitely close to the ray is assumed, 
whose surface is equal to f, and the surface of the corresponding curve on the sphere is 
equal to ϕ then ϕ / f shall be called the density measure of the ray system at this point. 
 Let dq be the infinitely-small distance from a point of the curve f to the base point of 
the ray that is perpendicular to the plane of that curve, which is given by the quantities x, 
y, z, ξ, η, ζ, and the abscissa R, and furthermore, let κ′, λ′, µ′ be the cosines of the angles 
that dq defines with the three coordinate axes.  Furthermore, let the ray that goes through 
the other end point of dq be determined by the quantities x + dx, y + dy, z + dz, ξ + dξ, 
η + dη, ζ + dζ .  From (16), § 1, one will then have the equations: 
 

(1)    

( ),

( ),

( ).

dq dx R d dx dy dz

dq dy R d dx dy dz

dq dz R d dx dy dz

κ ξ ξ ξ η ζ
λ η η ξ η ζ
ζ ζ ζ ξ η ζ

′ = + − + +
 ′ = + − + +
 ′ = + − + +
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 Furthermore, let α be the angle that dq makes with a perpendicular to the first 
principal plane, and then let 1

2 π – α be the angle that it makes with a perpendicular to the 

second principal plane, so one will have: 
 

(2)     1 1 1

2 2 2

cos ,

sin .

α κ κ λ λ µ µ
α κ κ λ λ µ µ

′ ′ ′= + +
 ′ ′ ′= + +

 

 
 If one multiplies these two equations by dq and inserts the values of κ′ dq, λ′ dq, µ′ 
dq from (1), when one observes that: 
 κ1ξ + λ1η + µ1ζ = 0, 
 κ2ξ + λ2η + µ2ζ = 0, 
then one will obtain: 
 

(3)   1 1 1 1 1 1

2 2 2 2 2 2

cos ( ),

sin ( ).

dq dx dy dz R d d d

dq dx dy dz R d d d

α κ λ µ κ ξ λ η µ ζ
α κ λ µ κ ξ λ η µ ζ

= + + + + +
 = + + + + +

 

 
 If one now replaces κ1, λ1, µ1 and κ2, λ2, µ2 with their values that were found in (5) 
and (6) of § 3 and expresses the differentials dx, dy, dz, dξ, dη, dζ in terms of their partial 
differential quotients and the differentials du and dv of the independent variables then one 
will get: 

(4)     2 2

2 2

cos ,

sin ,

dq A du B dv

dq A du B dv

α
α

= − −
 = + +

 

 
where, for the sake of brevity, we have set: 
 

 A1 = 1 1

1

e f (E  F )t R t

V

′+ + +
 A2 = 2 2

2

e f (E  F )t R t

V

′+ + +
, 

 

 B1 = 1 1

1

f g (F  G )t R t

V

+ + +
 B2 = 2 2

2

f g (F  G )t R t

V

+ + +
. 

 
From these two equations, it will follow, by division, that: 
 

(5)     tan α = − 1 1

2 2

A B t

A B t

+
+

, 

and from that: 

(6)     t = − 1 2

1 2

cos sin

cos sin

A A

B B

α α
α α

+
+

. 

 
 Now let dσ be the arc length element on the sphere that corresponds to dq, so since 
the coordinates of its endpoints are ξ, η, ζ and ξ + dξ, η + dη, ζ + dζ, one will have: 
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(7)    dσ = 2 2 2d d dξ η ζ+ +  = du 2E 2F Gt t+ + . 

 
The cosines of the angles that the element dσ on the sphere makes with the three 
coordinate axes, namely: 

d

d

ξ
σ

, 
d

d

η
σ

, 
d

d

ζ
σ

, 

will thus be equal to: 
 

(8)   
2

a  a

E 2F G

t

t t

′+
+ +

, 
2

b  b

E 2F G

t

t t

′+
+ +

, 
2

c  c

E 2F G

t

t t

′+
+ +

. 

 
 Now, if t0 denotes the value of t for α = 0 then from equation (6) one will have: 
 

(9)      t0 = − 1

1

A

B
, 

 
and if the angle on the sphere that corresponds to the angle α is denoted by α′ then, from 
the known directions of its two sides, one will get: 
 

(10)  cos α′ = 0 0 0

2 2
0 0

(a  a )(a  a ) (b  b )(b  b ) (c  c )(c  c )

E 2F G E 2F G

t t t t t t

t t t t

′ ′ ′ ′ ′ ′+ + + + + + + +
+ + + +

, 

 
or, when simplified: 
 

(11)  cos α′ = 0 0

2 2
0 0

E  F + (F  G )

E 2F G E 2F G

t t t

t t t t

+ +
+ + + +

, 

 
from which, one will derive the following expression for tan α′: 
 

(12)  tan α′ = 0

0 0

( )

E  F + (F  G )

t t

t t t

∆ −
+ +

, 

 
which gives, when differentiated: 
 

(13)    dα′ = 
2E  2F + G

dt

t t

∆
+

, 

 
and as a result, when multiplied by dσ2, from equation (7), one will get: 
 
(14)    dσ2 dα′ = ∆ du2 dt. 
 
 By differentiating equation (6), one will further obtain: 
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(15) dt  = 1 2 1 1
2

1 2

( )

( cos sin )

A B A B d

B B

α
α α
−
+

, 

 
and from the first of the two equations (4), when dv / du = t will be expressed in terms of 
α by using equation (6): 

(16) dq  = 1 2 1 1

1 2

( )

cos sin

A B A B du

B Bα α
−

+
, 

so: 
(17) dq2 dα  = (A1 B2 – A2 B1) du2 dt, 
 
and when this equation is coupled with (14), that will give: 
 

(18) dσ2 dα′  = 
1 2 2 1A B A B

∆
−

⋅⋅⋅⋅ dq2 dα. 

 
 Since the line dq is the radius vector for the infinitely-small curve f, and α is the 
associated angle, and for the infinitely-small curve ϕ on the sphere, dσ is the radius 
vector and α′ is the associated angle, one will have: 
 

(19) f = 
2 21

2 0
dq d

π
α∫ , ϕ = 

2 21
2 0

d d
π

σ α ′∫ . 

 
The integration of equation (18) between the limits α = 0 to α = 2π, which correspond to 
the same limits on α′, will then give: 

(20)     ϕ = 
1 2 2 1A B A B

∆
−

⋅⋅⋅⋅ f. 

 
 If one now denotes the density measure by Θ, such that Θ = ϕ / f, then one will have 
the following expression for it: 

(21)     Θ = 
1 2 2 1A B A B

∆
−

. 

 
From the values of the quantities A1, B1, A2, B2 that are given by (4), one will obtain: 
 

A1 B2 − A2 B1 = (eg − ff′ + (gE – (f + f′) F + eG) R + ∆2R2); 
 
however, from the values for the abscissas ρ1 and ρ2 that were found in § 4, (10) for the 
two focal points, one will have: 

eg − ff′ = ρ1ρ2 ∆2, 
gE – (f + f′) F + eG = − (ρ1 + ρ2) ∆2, 

 
and since, from (4),  § 3, one will have V1V2 = ∆(t2 – t1), one will have: 
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(22)    A1 B2 − A2 B1 = ∆(ρ1ρ2  − (ρ1 + ρ2) R + R2). 
 
The expression for the density measure Θ will thus assume the following simple form: 
 

(23)    Θ = 
2

1 2 1 2

1

( )R Rρ ρ ρ ρ− + +
, 

or 

(24)    Θ = 
1 2

1

( )( )R Rρ ρ− −
. 

 
 The density measure at any point of a ray is then equal to the reciprocal value of the 
product of the distances from that point to the two focal points of the ray. 
 
 The density measure is always real, even when the two focal points are imaginary.  
For ray systems with real focal surfaces, the density measure will be positive for all 
points that lie outside of the two focal surfaces, negative for the ones that lie between 
them, and, as is easy to see from the their expressions, it will attain its largest value at the 
midpoint of any ray, but it will be infinitely large at the focal points.  The density 
measure is always positive for ray systems with imaginary focal points, and has its 
maximum at the midpoint of any ray. 
 If one groups together all of the rays that are infinitely close to a given ray that go 
through the infinitely-small surface that is perpendicular to the ray and denoted by f then 
they will define an infinitely-thin ray bundle that is bounded by those rectilinear surfaces 
whose generating straight lines are the rays that go through the curve that circumscribes 
the surface f.  The infinitely-small surface is a cross-section of this infinitely-thin ray 
bundle, and, in fact, the cross-section that belongs to the abscissa R.  If one now considers 
a second perpendicular cross-section f′ whose abscissa is equal to R′ then the same 
corresponding infinitely-small surface ϕ on the sphere that belongs to f will belong to it, 
because all of the rays that go through the boundary curve of f will also go through the 
boundary curve of f′.  Therefore, when the density measure at the point whose abscissa is 
R′ is denoted by Θ′, one will have: 
 

f

ϕ
′
= Θ′,  

f

ϕ
= Θ, 

and it will follow that: 

(25)     
f

f ′
= 

′Θ
Θ

. 

 
 Therefore: The surface areas of two cross-sections of an infinitely-thin ray bundle 
will behave inversely to the density measures at these places in the ray bundle. 
 If one considers, not merely the density measures, but also the densities themselves 
that the rays of an infinitely-thin ray bundle have at the various places, then it will be 
clear that they must have the opposite relationship to the surface areas of the cross-
sections of the ray bundles.  All of the rays that are contained in the ray bundle will then 
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spread out in the cross-section over the entire surface of it, and must then be denser in the 
same ratio as the cross-sections are smaller.  It follows from this that the densities at the 
different places in one and the same infinitely-thin ray bundle will behave like the 
associated density measures.  The terminology “density measure” will then be justified 
completely by that fact. 
 For two points that lie on different rays or on an infinitely-thin ray bundle, the ratio of 
the densities of the rays is not necessarily the same as the ratio of the density measures.  
One recognizes this most clearly in the simplest system, for which all rays emanate from 
one and the same point, which can be so arranged that the rays go in all the different 
directions with equal densities, or also such that the density is a function of the direction.  
In the first case, the density will be the same for all equally-distant points from the 
starting point, and will therefore be everywhere proportional to the density measure, but 
in the second case the density will not be dependent upon just the distance from the 
starting point, but also on a function of direction.  In general, if the ray system – as was 
assumed above – is determined in such a way that one ray in a well-defined direction 
goes through each point of a surface that is chosen to be a geometric locus of the starting 
points of all rays then the density of the rays on this entire surface can be determined in 
some way as a function of the coordinates of the starting point x, y, z, or what amounts to 
the same thing, as a function of the two independent variables u and v, and the density of 
the rays at all points of the entire system to one of them will be first completely 
determined by that relationship.  The density itself will be, in turn, equal to the density 
measure, multiplied by a function of u and v that does not involve the abscissa R, and for 
that reason, will be the same for all of the various points of a ray.  When this function is 
constant, and as a result, the density is proportional to the density measure at all points of 
the system, the ray system can be referred to as homogeneous in relation to the density of 
rays. 
 All of the points on the various rays of a system that have the same well-defined 
value of the density measure will lie on a well-defined surface that shall be called a 
surface of equal density measure.  Since one can give all possible values to the density 
measure, it will then follow that this will give an entire family of surfaces of equal 
density measure on a ray system.  All of these surfaces will be determined very simply 
through the expression for the density measure that is given by (23), from which, one will 
have: 

R2 – (ρ1 + ρ2) R + ρ1 ρ2 = 
1

Θ
. 

 
If one takes Θ to be constant, and solves this quadratic equation for R, from which, one 
will get: 

(26)    R = 
2

1 2 1 2 1

2 2

ρ ρ ρ ρ+ − ± +  Θ 
, 

 
then for those two values of R: 
 
(27)   x′ = x + R ξ, y′ = y + R η, z′ = z + R ζ 
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will be the coordinates of all of the points of the system whose density measure has the 
constant value Θ.  They will then give the equations for the surfaces of equal density 
measure in such a way that the coordinates of any point of these surfaces will be 
determined as functions of the two independent variables u and v.  In order for these 
surfaces to be real, it is necessary and sufficient that the constant value of 1 / Θ lie 

between the limits − 
2

1 2

2

ρ ρ− 
 
 

 and + ∞.  For the value Θ = ∞, R will then be real when 

the two focal points are real, and one will have either R = ρ1 or R = ρ2, from which, it will 
follow that the two focal surfaces belong to the surface of equal density measure for 
which it is infinitely large. 
 When the two focal surfaces are real and are given such that all rays of the system can 
be considered to be their common tangents, one can construct all of the surfaces of equal 
density measure very easily, when one constructs a third point to the two contact points 
of a ray that are its focal points, whose distances from the two contact points have a 
constant product.  When the given value of that product is positive, that point must be 
taken outside of the two focal points, and inside of them when it is negative. 
 
 

§ 7. 
 

The rotation angle of infinitely-close rays. 
 

 When two straight lines in space are given, and one drops perpendiculars from two 
different points of the second line to the first line, whose base points on it might lie at a 
and b, then the angle between these two perpendiculars shall be called the rotation angle 
of the second line around the first one for the line segment from a to b.  The rotation 
angle for the whole infinite length of the first line is, by this definition, equal to two right 
angles, while the rotation angle for finite line segments will all be smaller than two right 
angles.  If the two straight lines lie in a plane then the rotation angle for any line segment 
will be equal to zero or two right angles, according to whether that line segment does or 
does not include that intersection point of the two lines, resp.  If a, b, c are three points of 
the first straight line then the rotation angle from b to c will be equal to the difference 
between the two rotation angles from a to c and a to b, so all of the rotation angles for 
arbitrarily-limited line segments on the first line will be given by the rotation angle that is 
computed at a particular point. 
 In order to now investigate the rotation that a certain ray will make relative to 
infinitely-close rays of the system, the rotation angle shall be calculated at the starting 
point of the ray, whose abscissa will be equal to zero.  Let dq be the length of a 
perpendicular that goes from one of the infinitely-close rays to a given ray, which meets 
it at the point whose abscissa is R, and a is the angle that this perpendicular makes with a 
perpendicular to the first principal plane.  Furthermore, let dq0 be the length, and let α0 be 
the corresponding angle of the perpendicular that meets the given ray at the starting point, 
whose abscissa is zero, so one will have, as was shown in § 6, (4), the equations: 
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(1)     2 2

1 1

cos ,

sin ,

dq A du B dv

dq A du B dv

α
α

= − −
 = + +

 

where: 

 A1 = 1 1

1

e f (E F )t R t

V

′+ + +
, A2 = 2 2

2

e f (E F )t R t

V

′+ + +
, 

 

 B1 = 1 1

1

f g (F G )t R t

V

+ + +
, B2 = 2 2

2

f g (F G )t R t

V

+ + +
, 

 
and, in turn, for R = 0: 

(2)  

2 2
0 0

2 2

1 1
0 0

1 1

e f f g
cos ,

e f f  g
sin ,

t t
dq du dv

V V

t t
dq du dv

V V

α

α

′+ + = − −

 ′+ + = + +


 

and as a result: 

(3)   

2 2
0 0

2 2

1 1
0 0

1 1

(E F ) (F G )
cos cos ,

(E F ) (F G )
sin sin .

R t R t
dq dq du dv

V V

R t R t
dq dq du dv

V V

α α

α α

+ + − = − −

 + + − = + +


 

 
 One will get the following values for the differentials du and dv from these two 
equations: 

(4)   

0 0 0 0

1 2

0 0 1 0 0 2

1 2

sin sin cos cos
,

( sin sin ) ( cos cos )

dq dq dq dq
du

RV RV

dq dq t dq dq t
dv

RV RV

α α α α

α α α α

− − = −

 − − = −


 

 
and if one substitutes these two values in the two equations (2), when one observes that: 
 
 e + (f + f′) t1 + g 2

1t  = − r1
2

1V ,   e + (f + f′) t2 + g 2
2t  = − r1

2
2V , 

 e + 1
2 (f + f′)(t1 + t2) + g t1t2  = − r1

2
1V , V1 V2 = ∆(t2 − t1), 

 
then one will obtain: 
 

(5) 
0 0 2 0 0 0 0

0 0 0 0 1 0 0

f  f
cos ( cos cos ) ( sin sin ),

2

f  f
sin ( cos cos ) ( sin sin ),

2

R dq r dq dq dq dq

R dq dq dq r dq dq

α α α α α

α α α α α

′ − = − − + −  ∆  
 ′−  = − − − −  ∆ 
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and because, from (15), § 4: 
2

f  f

2

′− 
 ∆ 

 = d2 – δ2 = ρ1 ρ2 – r1 r2 , 

 
one will then obtain the following expressions for dq cos α and dq0 sin α from this: 
 

(6)  

2 2
1

0 0 0 0
1 2 1 2

2 2
2

0 0 0 0
1 2 1 2

cos 1 cos sin ,

sin cos 1 sin .

Rr R d
dq dq dq

RrR d
dq dq dq

δα α α
ρ ρ ρ ρ

δα α α
ρ ρ ρ ρ

   −= − −  
  


 − = + − 
 

 

 
 When these two equations, which show that the perpendicular dq and the associated 
angle α can be determined for any point on a ray from the corresponding data at its 
starting point, are divided, that will give: 
 

(7)   tan α = 
2 2

0 1 2 2 0

2 2
1 2 2 0 0

cos ( )sin

( )cos sin

R d Rr

Rr R d

δ α ρ ρ α
ρ ρ α δ α

− + −
− − −

. 

 
 The rotation angle of the rays that are infinitely-close to the first ray for the line 
segment with abscissa R is, as was shown above, equal to α − α0 .  If one denotes it by β, 
such that β = α − α0 and one will then obtain the following expression for the rotation 
angle from equation (7): 

(8)    tan α = 
2 2

0
2 2

1 2 1 0 1 0

( sin 2 )

( cos sin )

R d d

R r r

δ α
ρ ρ α α

− −
− +

. 

 
 It would follow from this that the tangent of the rotation angle is equal to zero for any 
arbitrary value of the abscissa R − so the rotation angle itself will be equal to zero or two 
right angles – when one has: 

(9)      2 2d δ−  = d sin 2α0 , 
 
so, from (20), § 4, if sin 2α0 = cos γ  − or α0 = 1 1

4 2π γ± − then α0 = ω1 or  α0 = ω2 , where 

ω1 and ω2 are the angles that the two focal planes make with the first principal plane.  
The rotation angle will then be everywhere equal to zero or equal to right angles for the 
two infinitely-close rays that lie in the focal plane.  This would also follow immediately 
from the fact that each of these infinitely-close rays, along with the first ray, lie in one 
and the same plane, namely, the focal plane. 
 In those ray systems that have imaginary focal surfaces, and therefore also no focal 
planes, the rotation angle can be nowhere equal to zero for finite line segments, so the 
rotation of the rays around each other will never change its sense.  When any two 
infinitely-close rays of such a system lie such that the rotation of one of them with respect 
to the other one can be referred to as a clockwise rotation, any two mutually infinitely-
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close rays of the whole system must necessarily have the same relationship to each other 
of a clockwise rotation.  The ray systems with imaginary focal surfaces will then divide 
into two distinct classes: ray systems with clockwise rotation of all rays and rays systems 
with counter-clockwise rotations.  However, to any ray system, which might have real or 
imaginary focal surfaces, there is another one that is, in a sense, symmetrically or 
improperly equivalent to it, such that the single difference between them consists only in 
the opposite sense of rotation of all rays compared to each other, a difference that is 
expressed analytically by only the difference in signs of the quadratic roots. 
 If the focal points are real, and one examines the rotation angle from the starting point 
of a ray up to the focal points then for R = ρ1 and R = ρ2 – which might be denoted by β1 
and β2, respectively – one will obtain, with the help of equations (14), § 4, from which, it 
follows that r1 cos2 α0 + r1 sin2 α0 = m – d cos 2α0 : 
 

(10)  tan β1 = 
2 2

0

0

sin 2

cos2

d d

d

δ α
δ α
− −
+

, tan β2 = 
2 2

0

0

sin 2

cos2

d d

d

δ α
δ α
− −

− +
, 

 
and from this, with the help of the expressions that were given in (18), § 4 for the angles 
ω1 and ω2 that the focal planes make with the principal planes: 
 

(11)   

1 0
1 1 0

1 0

2 0
2 2 0

2 0

sin 2 sin 2
tan tan( ),

cos2 cos 2

sin 2 sin 2
tan tan( );

cos2 cos2

ω αβ ω α
ω α
ω αβ ω α
ω α

− = = − −
 − = = −
 −

 

one will then have: 
(12)    β1 = ω1 − α0,  β2 = ω2 − α0 . 
 
From these simple expressions for the rotation angles that are computed from the starting 
point of a ray to the focal points of its infinitely-close rays, one will get: 
 
(13)     β2 − β1 = ω2 − ω1 = γ. 
 
 Thus:  The rotation angles from a focal point of a ray to the other focal point have the 
same values for all rays that are infinitely-close to it, and are equal to the inclination of 
the two focal planes. 
 
 If one takes the rotation angle β to be a given quantity then one can determine the 
length of the abscissa R for which the rotation angle from the first ray to an infinitely-
close ray will be that given quantity.  Equation (8) will give the following expression for 
R: 

(14)  R = 1 2

2 2 2 2
1 0 2 0 0

sin

( cos sin )sin cos sin 2 cosr r d d

ρ ρ β
α α β δ β α β+ + − −

, 
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which will assume the following simple form when r1 and r2 are replaced with their 
values r1 = m – d and r1 = m + d: 
 

(15)   R = 1 2

2 2
0

sin

sin cos sin(2 )m d d

ρ ρ β
β δ β α β+ − − +

. 

 
 If one now considers R to be a function of only α0 and β to be a given constant 
quantity then R will attain its largest value for sin(2α0 + β) = +1, so α0 = 1 1

4 2π β− , and 

its smallest value for sin(2α0 + β) = −1, so α0 = 3 1
4 2π β− , and if the largest value of R is 

denoted by R1, while the smallest value is denoted by R2 then one will have: 
 

(16)    

1 2
1 2 2

1 2
2 2 2

sin
,

sin cos

sin
.

sin cos

R
m d d

R
m d d

ρ ρ β
β δ β

ρ ρ β
β δ β

 = + − −

 =
 + − +

 

 
 It further follow from this that: 
 

(17)  

2 1 1
00 2 4

1 1 2 1 2

2 1 1
00 2 4

2 1 2 1 2

2sin ( ))(1 sin(2 ))1 1
,

sin sin

2cos ( ))(1 sin(2 ))1 1
,

sin sin

dd

R R

dd

R R

α β πα β
ρ ρ β ρ ρ β

α β πα β
ρ ρ β ρ ρ β

 + −− +− = =



+ −+ + − = =


 

 
and from these two equations, one will get: 
 

(18)   
1

R
 = 

2 21 1 1 1
0 02 4 2 4

1 2

cos ( ) sin ( )

R R

α β π α β π+ − + −
+ . 

 
 Thus: If one takes any ray that is infinitely-close to a ray that starts from an arbitrary 
point of it at the length at which it makes a constant rotation angle with it then that length 
will be one of the largest and smallest lengths amongst the infinitely-close rays, and will 
be determined from the angle that the direction of its starting point makes with the 
direction of the starting point of the largest ray by precisely the same equations that 
determine the radius of curvature of a normal section of a surface in terms of the largest 
and smallest radii of curvature and the angle that this normal section defines with the 
principal plane by way of the well-known Euler equation.  Euler’s theorem itself is 
included as a special case of this general theorem, as will be shown below.  In the special 
case where the constant rotation angle β equals a right-angle, one will have: 
 

(19)   
1

R
 = 

2 2
0 0

1 2

cos sin

R R

α α+ . 
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 Hamilton first established the special property of the general ray system that is 
expressed by this equation in the cited Supplement, and in fact, by considering the 
projection of a ray that was infinitely close to a given ray onto a plane that was drawn 
through the first ray and the starting point of the infinitely-close ray.  However, nowhere 
did Hamilton apply the concept of the rotation of rays relative to each other and the 
rotation angle, which is extraordinarily fruitful for understanding the properties of ray 
systems. 
 
 

§ 8. 
 

Infinitely thin ray bundles and principal rays. 
 

 In the two equations (6), § 7: 
 

(1)   

2 2
1

0 0 0 0
1 2 1 2

2 2
1

0 0 0 0
1 2 1 2

cos 1 cos sin ,

sin cos 1 sin

Rr R d
dq dq dq

RrR d
dq dq dq

δα α α
ρ ρ ρ ρ

δα α α
ρ ρ ρ ρ

   −= − −  
  


 − = − − 
 

 

 
dq and α can be regarded as the polar coordinates of the boundary curve of that cross-
section of an infinitely-thin ray bundle that belongs to the abscissa R, and dq0 and α0, as 
the polar coordinates of the curve around the cross-section that is found at the starting 
point.  These equations can, in turn, be employed not only to compare the cross-sections 
of an infinitely-thin ray bundle in terms of surface area, which will already be 
accomplished completely by the density measure, but also to determine how the form of 
any cross-section will depend upon that of a given one.  If one then goes from the polar 
coordinates of the two cross-sections to rectangular coordinates whose axes lie in the two 
principal planes of the ray, relative to which all other rays of the ray bundle will be 
regarded as infinitely-close rays, then one will have to set: 
 

(2)     
0 0 0 0 0 0

cos , sin ,

cos , sin ,

dq x dq y

dq x dq y

α α
α α

= =
 = =

 

 
where x, y and x0, y0 are the infinitely-small coordinates of the two cross-sections.  
Equations (1) will then give: 

(3)     

2 2
1

0 0
1 2 1 2

2 2
2

0 0
1 2 1 2

1 ,

1 ,

Rr R d
x x y

RrR d
y x y

δ
ρ ρ ρ ρ

δ
ρ ρ ρ ρ

   −= − −  
  


 − = + − 
 

 

 
and when, conversely, x0 and y0 are expressed in terms of x and y, one will get: 
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(4)   
2 2

1 2 0 1 2 2

2 2
1 2 0 1 2 1

( )( ) ( ) ,

( )( ) ( ) .

R R x Rr x R d y

R R y R d x Rr y

ρ ρ ρ ρ δ

ρ ρ δ ρ ρ

 − − = − + −


− − = − − + −

 

 
 The boundary curves of the cross-section of an infinitely-thin ray bundle are thus not 
only all curves of the same degree, but they are also related to each by the collineation 
that is expressed by these equations. 
 Special attention is warranted for the cross-sections at the two focal points of 
infinitely-thin ray bundles, for which, as was already shown above, the density measure 
will be infinitely large, so the surface area will be infinitely small of a higher order.  If 
one takes R = ρ1 or R = ρ2 then, from the two equations (4) and, in turn, also from 
equations (3), the one will become identical with the other one, and they will give: 
 

(5)     
1

2

, for ,

, for ,

d
y x R

d

d
y x R

d

δ ρ
δ
δ ρ
δ

 −= = +


+ = = −

 

 
which are the equations of straight lines, and in fact, infinitely-small straight lines, 
because y and x can have only infinitely-small values. 
 The cross-sections of an infinitely-thin ray bundle at the two focal points are then 
infinitely-small straight lines; i.e., of the two dimensions of the cross-section, which are 
generally infinitely-small quantities of first order, one of them will become an infinitely-
small quantity of higher order at the two focal points. 
 From this, it also follows that the bounding surface of any infinitely-thin ray bundle 
with real focal points can be constructed by moving a straight line that always goes 
through an infinitely-small plane curve and two straight lines that can be perpendicular 
to a perpendicular that is erected to the plane of the small curve in its interior. 
 In order to determine the two cross-sections at the focal points, which are infinitely-
small lines, and their lengths in relation to the dimensions of the cross-section that is 
given at the starting point of the ray bundle, it is preferable to revert to the polar 
coordinates dq, α and dq0, α0 .  If one sets R = ρ1 in equations (1) and observes that ρ1 − 
r1 = d + δ, ρ2 − r2 = − d + δ then one will get: 
 

(6)   
2 2

1 0 0 0 0

2 2
2 0 0 0 0

cos ( ) cos sin ,

cos cos ( ) sin

dq d dq d dq

dq d dq d dq

ρ α δ α δ α

ρ α δ α δ α

 = + − −


= − − −

 

 
for the cross-section at the first focal point.  By introducing the angle ω1 that the first 
focal plane makes with the first principal plane, for which, as was shown above in (18), § 
4: 

sin ω1 = 
2

d

d

δ−
, cos ω1 = 

2

d

d

δ+
, 
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these equations can be represented in the following form: 
 

(7)    2 1 0 1 0

2 1 0 1 0

cos 2 cos cos( ) ,

sin 2 sin cos( ) ,

dq d dq

dq d dq

ρ α ω α ω
ρ α ω α ω

= +
 = +

 

 
and one will get by dividing them: 
 
(8)     tan α = tan ω1 , α = ω1 . 
 
 One can conclude the fact that the angle α has a constant value from this, but in order 
to conclude the fact that the cross-section whose polar coordinates are dq and α must be 
part of a straight line in which the pole lies, one must give the direction of that straight 
line, along with the constant value α = ω1 , since it makes the angle ω1 with the first 
principal plane. 
 In the same way, for R = ρ2 – i.e., for the cross-section at the second focal point – one 
will get: 

(9)    1 2 0 2 0

1 2 0 2 0

cos 2 cos cos( ) ,

sin 2 sin cos( ) ,

dq d dq

dq d dq

ρ α ω α ω
ρ α ω α ω

= +
 = +

 

 
(10)    tan α = tan ω2 , α = ω2 . 
 
 One has the following theorem: 
 
 The two infinitely-small straight lines that define the cross-section of an infinitely-thin 
ray bundle at the focal points will lie in the their two focal planes. 
 
 For the cross-section at the first focal point, where α = ω1, one will have, from 
equation (7): 
(11)     dq = dq0 cos(α0 + ω1). 
 
Now if, as we have assumed here, the bounding curve of the one cross-section at the 
starting point of the ray bundle is completely determined and given then one will have its 
radius vector dq0 given as a function of the angle α0 , and then dq will also be determined 
as a function of α0 by the equation (11).  However, since the curve whose radius vector is 
dq is a straight line, and the pole lies on that straight line, its length will necessarily be 
equal to the difference between the two extreme values that this radius vector dq can have 
as a function of α0, or because one of these two extreme values is necessarily positive, 
the other one must be negative, so the desired length of that line will be equal to the sum 
of the absolute values of that maximum and minimum.  One likewise obtains the length 
of the cross-section at the two focal points when one adds the largest positive and 
negative values that dq can assume as a function of α0 from the equation: 
 

(12)     dq = 
1

2d

ρ
 dq0 cos(α0 + ω1), 
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while ignoring the sign. 
 In the simplest case, where the cross-section at the starting point is assumed to be an 
infinitely-small circle, so dq0 will be constant, as the radius of that circle, one will have 
the two extreme values of dq for the cross-section at the first focal point when α0 + ω1 = 

0 and α0 + ω1 = π, so they will be equal to 
2

2d

ρ
dq0 and −

2

2d

ρ
dq0 ; when they are added, 

ignoring the signs, that will give 
2

4d

ρ
dq0  as the length of the rectilinear cross-section at 

the first focal point.  One will likewise find that length of the cross-section at the second 

focal point is equal to 
2

4d

ρ
dq0 .  The lengths of these two cross-sections at the focal points 

will then behave like their distances from the circular cross-section at the starting point of 
the ray bundle. 
 If one investigates the condition for the length of a cross-section to be zero at the 
focal points of the ray bundle – i.e., infinitely-small of higher order than the former – 
then one will recognize immediately from equations (11) and (12) that this case will 
occur when d = 0, and that it can occur only when that condition is fulfilled.  The 
condition d = 0 also necessarily implies that δ = 0, since δ, when it is real, is nowhere 
greater than d, so one must have r2 = r1 and ρ2 = ρ1 ; i.e., the two boundary points of the 
shortest distance, and the two focal points must coincide for those ray bundles that have 
the one midpoint.  If one, with Hamilton, calls those rays whose infinitely-close rays all 
go through a single point principal rays then it will follow that the principal rays can 
exist, and also exist in reality, where the two boundary surfaces, and with them, likewise 
the two focal surfaces, have common points, which can be either contact points or 
intersection points or points on the intersecting lines. 
 The two principal planes will be undetermined for the principal rays, because the 
shortest distance to the infinitely-close rays will always be zero for them, and in turn, 
cannot determine a direction. 
 In the completely special ray systems, whose rays all go through a single point, all 
rays will be principal rays; it is also easy to see that this is the only degenerate case.  
However, there are infinitely many ray systems that have continuous sequences of 
principal rays that collectively define a surface, such as, e.g., the system of common 
tangents to two confocal second-degree surfaces, in which all tangent are the intersection 
curves of these two confocal surfaces of principal rays.  Similarly, there are infinitely 
many ray systems that have isolated principal rays, but as a rule, principal rays do not 
exist in general systems, because the values of the two independent variable u and v for 
which a ray becomes a principal ray will be determined by three equations.  Namely, 
since the directions of the two principal planes will be undetermined for a principal ray, 
the quadratic equation (4), § 2, whose roots determine the directions of the principal 
planes, must be fulfilled identically, and one must then simultaneously have: 
 
(13)  gF − 1

2 (f + f′) G = 0, eG – gE = 0, 1
2 (f + f′) E – e F = 0. 

 
 These three equations will, in general, reduce to two, because, except for the case of F 
= 0, one of them is a necessary consequence of the other two; however, a third condition 
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equation will arise, because the ray must have a real focal point − namely, δ = 0 − which 
will yield: 
(14)     f = f′. 
 
 If the two focal points of a ray coalesce with the midpoint, but not, at the same time, 
the two limit points of shortest distance, as well, then the infinitely-thin ray bundle that 
neighbors it will have only one rectilinear cross-section at that midpoint, which will 
likewise contain the two focal points, and that cross-section will lie in the plane into 
which the two focal planes will coalesce in this case, since, from the equation sin γ = δ / 
d, the angle γ, along with δ – viz., one-half the distance between the two focal points – 
will be equal to zero.  Since the condition for the two focal points to coincide gives only 
one equation between the two independent variables u and v, it will then follow that the 
ray system, as a rule, will not contain individual rays of this kind, but a continuous 
sequence of them that define rectilinear surfaces, and that the focal surfaces, as a rule, 
will intersect in well-define curves, since all tangents to the intersection curve of the two 
focal surfaces will be rays whose focal points coincide.  However, there is also an entire 
category of ray systems for which all of the rays have that property, because their two 
focal surfaces cover each other in such a way that they combine into a single surface. 
 
 

§ 9. 
 

Comparison between the general theory of rays systems and the special theory 
of the curvature of surfaces and their systems of normals. 

 
 In the special case for which two ray systems whose general theory was developed in 
the foregoing are denoted by f and f′, and the expressions that are composed of the partial 
differential quotients of x, y, z and ξ, η, ζ are equal to each other, those ray systems will 
become special systems whose rays are all normals to one and the same surface.  Namely, 
if there is a surface for which any ray is a normal, and one lets x′, y′, z′ denote the 
coordinates of that point at which the ray of the system that is determined by x, y, z, ξ, η, 
ζ is normal to it, and calls the distance from these points to the stating point x, y, z, of the 
ray r then one will have: 
 
(1)    x′ = x + r ξ, y′ = y + r η, z′ = z + r ζ, 
 
and because this ray must be perpendicular to the surface, one must have: 
 
(2)     ξ dx′ + η dy′ + ζ dz′ = 0. 
 
 When x′, y′, z′ are replaced with their values, this condition will give: 
 
(3)   ξ dx + η dy + ζ dz + dr (ξ 2 + η2 + ζ 2) + r (ξ dξ + η dη + ζ dζ) = 0, 
 
and as a result [sic]: 
(3)     ξ dx + η dy + ζ dz = − dr, 
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or: 
(4)    (ξ a + η b + ζ c) du + (ξ a′ + η b′ + ζ c′) dv = − dr. 
 
The expression on the left-hand side of this equation must then be a complete differential 
of a function – r of the two independent variables u and v.  One must therefore have: 
 

(5)     
( )a b c

v

ξ η ζ∂ + +
∂

 = 
( )a b c

u

ξ η ζ′ ′ ′∂ + +
∂

, 

 
and from this, by performing the partial differentiations, since: 
 

a

v

∂
∂

 = 
a

u

′∂
∂

, 
b

v

∂
∂

 = 
b

u

′∂
∂

, 
c

v

∂
∂

 = 
c

u

′∂
∂

, 

 
one will get the following condition: 
 

aa′ + bb′ + cc′ = a′a + b′b + c′c, 
so 
(6)       f = f′, 
 
which must be fulfilled identically in order for the ray system to be a system of normals 
to a surface.  The fact that this condition is also sufficient will emerge from the fact that 
when it is fulfilled, the quantity r can be determined from equation (40 as a function of u 
and v, and the fact that for such a value of r, equations (1) will represent a surface whose 
normals are rays of the system.  Since an arbitrary constant can be added to the value of r 
that is determined from the differential equation (4), one will then have, not just one 
surface that satisfies this condition, but an entire family of them, which are known by the 
name of parallel surfaces. 
 For f = f′, the quadratic equation (5), § 4, whose roots are τ1 and τ2, will be identical 
with the quadratic equation (9), § 4, whose roots are t1 and t2, and likewise the quadratic 
equation (9), § 4, whose roots are ρ1 and ρ2 , will be identical with the quadratic equation 
(16), § 2, whose roots are r1 and r2 .  It will follow from this that: 
 
 In those systems whose rays are normals to a surface, the two focal planes of any line 
will coincide with the principal planes, and the two focal points will coincide with the two 
limit points of shortest distance. 
 
 If one chooses one of the surfaces in this case for which all of rays of the systems are 
normals to be the surface from which all rays can be regarded as starting then the 
abscissas of the focal points ρ1 and ρ2 − or what amounts to the same thing here, the 
abscissas of the limit points r1 and r2 − will be the two principal radii of curvature of this 
surface, and the focal surfaces of the system, which will coincide with the limit surfaces 
of shortest distance, will be the surfaces that were treated by Monge on which the centers 
of all principal curvature circles will lie.  The theory of the curvature of surfaces can then 
be regarded as a special case of the general theory of ray systems, and it is not without 
interest to discuss the connection between the general theorems that were developed in 
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the foregoing and the known theorems on the curvature of surfaces somewhat more 
closely. 
 If one next examines whether the general of ray systems might perhaps yield new 
theorems for the theory of curvature and the normals to surfaces then, as one might 
expect, one will derive no great profit from that.  In this regard, the theorem that is 
expressed through equation (16), § 3, viz.: 
 

r = r1 cos2 ω + r2 sin2 ω, 
 
can be cited as such a thing that, since it likewise expresses a general property of the 
normals to a surface, will serve as a distinguished one in this special case.  Furthermore, 
from the property of infinitely-thin ray bundles that was proved in § 8 that their cross-
sections at the two focal points are not infinitely-small surfaces, but infinitely-small lines 
that lie in the two focal planes, one can obtain the following not-uninteresting − and I 
believe, still not well-known − theorem for the normals to surfaces: 
 
 The two principal normal planes at a point of a surface will be intersected by all of 
the normals that are infinitely-close to that point in such a way that the distances from 
the intersection points to the given point of the surface will be equal to the larger of the 
radii of curvature in the one principal normal plane and the smaller of them in the other 
one. 
 
 If one goes through the known theorems on the curvature and the normals to surface 
then one will find them again in a general form, and with a general interpretation, in the 
general theory of ray systems. 
 If one next considers the two principal normal intersections for a point of a surface 
that yields the larger and the smaller of the radii of curvature then in the general theory 
one will get, on the one hand, the two principal planes, and on the other hand, the focal 
planes that correspond to these planes.  The properties of the normals to surfaces that are 
connected with the principal normals will arrange themselves in the general theory in 
such a way that one part of them will contain the principal planes and the other part will 
contain the focal planes.  The principal planes preserve the properties that they are always 
real and perpendicular to each other, while the focal planes preserve the property that 
both of the intersecting rays that are infinitely close to the given ray will lie in them.  
Likewise, in the general theory, the centers of principal curvature of the surface will split 
into the limit points of shortest distance and the focal points, and correspondingly, the 
surfaces in which the centers of principal curvature lie will also split into the limit 
surfaces of shortest distance and focal surfaces.  Here, the limit surfaces will retain only 
the property that was already expressed in their definition that they bound the space, 
inside of which, all of the shortest distances to any two infinitely-close rays will lie, but 
the focal surfaces will retain the property that they will be tangent to all rays of the 
system.  The two beautiful properties of surfaces of centers of principal curvature that 
were found by Monge, namely, that first of all their outlines always intersect 
perpendicularly, from which, one might also consider points of space, and secondly, that 
the curves of regression of all developable surfaces into which the normals can be 
combined are the shortest lines on the surface of centers of principal curvature, will be 
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lost for the limit surfaces of shortest distance, as well as the focal surfaces of the most 
general ray system, and will become special properties that belong to the system of 
normals to a surface. 
 The two families of curvature lines of surfaces, insofar as they have the property that 
the normals that belong to them will define developable surfaces, will appear in the 
general ray systems as the two families of developable surfaces that were denoted by Ω1 
and Ω2 in § 5.  However, on the other hand, the rectilinear surfaces O1 and O2 can also be 
considered to be the curvature lines of the surfaces, because the curvature lines will 
sweep out the surface in the special case in which all rays are normals to a surface when 
they coincide with them. 
 The umbilic points of surfaces, for which the two principal curvature centers will 
coalesce, such that all infinitely-close normals will go through the same point of 
coalescence, and at which the principal normal planes will lose their well-defined 
directions, are found in the general theory as the principal rays whose infinitely-close 
rays all go through a point, and their principal planes, as focal planes, are undefined, as 
well. 
 Euler’s theorem, which teaches us how the radii of curvature of an arbitrary normal 
section is determined from the two principal radii of curvature and the angle that its plane 
makes with one of the principal planes, is included as a special case in the general 
equation (18), § 7, which goes to Euler’s equation for β = π / 2, r1 = ρ1, r2 = ρ2 .  The 
general method in § 7 also allows one to understand the radius of curvature of the normal 
section of a surface from a new, not-uninteresting, viewpoint, in that it shows that the 
rotation angle of the radius of curvature of a normal section with a normal that starts at an 
infinitely-close point on the plane of that section, when computed along the entire length 
of the radius of curvature, will be equal to a right angle, or: 
 
 If one draws the normals to a surface at two infinitely-close points, and gives them 
the well-defined length for which their rotation angle is equal to a right angle then they 
will represent the curvature radius of the surface at these two infinitely-close points for 
the normal section that goes through them. 
 
 The Gaussian curvature measure of the surface is found in the general ray system as 
the general concept of the density measure, and the expression for it as the reciprocal 
values of the products of two principal radii of curvature corresponds completely to the 
expression for the density measure that was given in § 6, from which, that would be equal 
to the reciprocal value of the products of the distances from the two focal points of the 
ray to the point in question.  For the ray systems that are normals to a surface, and in turn, 
also normals to an entire family of its parallel surfaces, the density measure will be 
completely identical with the curvature measure, since at any point of space the density 
measure of the rays will be equal to the curvature measure of the parallel surface that 
goes through that point.  This also shows how the concepts that Gauss introduced into 
science rigorously carry with them the character of true generality, by which they can 
extend their influence far across the domain in which they originally came about. 
 
 Berlin, in October 1859. 
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