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General theory of rectilinear ray systems
(By E. E. Kummer in Berlin)

Translated by D. H. Delphenich

Up to now, the systems of straight lines that fillalipof space, or a part of it, in such
a way that one, or a certain number, of discrete gmes through every point have been
examined only a little in full generality. In the gedneconsideration of ray systems,
one has chiefly restricted oneself to those of a apkuid, for which all of the rays take
the form of normals to one and the same surfacee@yhhat has the closest relationship
with the study of the curvature of surfaces, and whoss distinguished properties were
found byMonge who developed them in several chapters ofpiglication de I’Analyse
a la Géomeétrie Since systems of rays in space have great sigmificéor optics, the
theory of them has be treated several times forsétke of physical interest; however,
from that standpoint, one likewise rarely gets veryffam systems of normals to a
surface. Here, one of the most beautiful theorenapbés has hindered the development
of the general theory to a remarkable degree, nanme\theorem that was discovered by
Malus and generalized bupin that after the light rays that emanate from a pbawe
experienced an arbitrary number of reflections from tbiy-shaped mirrors and
refractions from passing through arbitrarily-bounded meadith various refracting
powers, they will always preserve the property thay e the normals to a surface. Itis
only when light goes through crystals that this properiy bwveak down for irregular
rays; these define systems of rays that cannot be htonaasurface that will be called
irregular ray systemsdue to that state of affairs. The question of whethgstals also
produce only special kinds of such things prompts one tod®mthie most general ray
systems. As far as | know, they were first tredtgtHamiltonin the Transaction of the
Royal Irish AcademyBd. XVI, in a Supplement to his great papEneory of Systems of
Rays into which they did not enter, because that treatiae directed to the goals of
optics, so only regular systems and their variationsruredlections and refractions were
considered, but the irregular systems that were camesideere the ones that arose during
the passage of light through crystals. In the aforéiomed first Supplement to this
treatise,Hamilton likewise started from physical principlesnamely, the principle of
least action- but he pursued a main objective of developing the geonpetimerties of
general ray systems of optics from a basic formula dhatyed that principle. In this
way, he discovered a series of distinguishing propertieeo general, rectilinear ray
systems that still seem to be little known, sinceemurse was made to them in several
later mathematical articles on related subjectsyinGithis theory of general, rectilinear
ray systems that was first treated Hgmilton a new foundation by appealing to the



Kummer — General theory of rectilinear rays systems. 2

analytic geometry of space, and likewise completirag geveral essential points, shall be
the goal of the present treatise.

§1.

Preliminary formulas and notations.

Any straight line of a ray system shall be determibgda point through which it
goes, whose rectilinear coordinates willpg, z, and by the angles that it makes with the
three coordinate axes, whose cosines will be denotdd/y. The law that couples the
straight lines into a system will be given by saying thair six determining dat; vy, z,

& n, {will be determined as continuous functions of two inaeljgat variablesi andv.
The pointsx, y, z will then lie on a well-defined surface, and the ralythe system will
all be regarded as emanating from the individual pointhatf surface. Any point of a
ray will be determined by its distance from the stgrfpoint of the ray, and thus by its
abscissa, as measured along the ray, which shall beedemnpt

If one considers two different rays of the systemme one, whose starting point and
direction are determined by the quantitey, z & 7, ¢, and the other, for which these
guantities will have the valuest Ax, y + Ay, z+ Az, {+ Aé, n+ An, {+ A, whereAx,
Ay, etc., denote finite differencesthen the relationship of both rays to each other il
determined by the following data: First, the angl¢hat they make with each other,
second, the length of the line that is perpendicular to both of them — tlee shortest
distance between them — and third, the direction of thgiepdicular, and thus, the
cosine of the angle that it makes with the three dinate axes, which shall be called
A, i, and fourth, the abscissaf that point of the first ray at which one finds Stertest
distance to the second ray. As is shown in the elesr& analytic geometry, these four
data will be determined in the following way from the stgrpoint and the directions of
the two rays:

1) cose ={($+ A +n(n+An) + {{+AJ,

(2) sirf & = (7 AJ—{An)* + (A= EAY? + (EDn -1 DY,

(3) psine = (nAJ—{An) Ax+ ({AS—SAQ Ay + (SAn—nAS) Az

@ o SABC=GBp _IAEZEAC _ EAn-nAE
SInE SIné Sin&

(5) P =KAX+AAy+ Az,

(6) rsine =[u(n+0n) —A({+AQI A + [k ({+AQ — p(E+A8] by

+[A({+ A -k (n+An)] Az

By means of the two equations:

N+ {t=1,
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(E+0E*+ (+An?+({+Ad° =1,

from which one will get the equation:

(7 EAS+ AN+ A =3B+ AT +D0),
one can also express cgsin¢g, andr in the following forms:

(8) cose = 1-1(AE?+ AP +AJP),

(9) sif € =AE*+AP +AJ%-L(AE*+ A + A%,

(10) rsife =—-(AXAE+AYAR+AzAJ
+1(AEP+A7 + D7) [AX(E+ D8 + Dy (7+An) + Az ({+AQ).

If one further considers the distance between twogstrdines at any of their points
that is measured by the length of a line that is draamm fthe second ray to the first one
in such a way that it is perpendicular to it, and dakslength of that lin@, the abscissa
of the point at which it is perpendicular to the firse, R, and the cosines of the angles
that its direction makes with the three coordinate axésl’, 1, then analytic geometry
will give the following expressions for these quantities:

o = ix e+ (RZPUEFDD).
cose

(11) gt =ay- Ry + (R PO+
Cose

ot =z rp + REPCHBO).
cose

in which, for the sake of brevity, we have set:
P=¢MX+nAy+ Az,

If one lets the second ray approach the first onaiiafy closely— so the differences
AX, Ay, Az, Aé, An, A{ become the differentiatsx, dy, dz d¢, dr, d{ — then the distances
p andg and the angle will become infinitely small, and will then be dendtkydp, dq,
dg the infinitely small quantities of higher order willen vanish in comparison to the
lower-order ones, and one will get:

(12) de? =d&*+dif +dZ?,

(13) g=19¢-¢dy -, _¢dé-gd¢ o Edpmndé
de de de
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(14) dp =xkdx+Ady+ udz

_dxdé+dydp+ dzd
d<(2+d,72+d52

(15) r=

K'dg=dx+ R -$($ dxrp dy ¢ dz
(16) Adg=dy+ Ry -n($ den dyd dz
Hdg=dz+ Rd -{({ dxn dyd 0z

Sincex, y, z ¢, n, { are functions of the two independent variahleandv, their
differentials must be expressed in terms of their pladifferential quotients with respect
to u andv and the differentialdu anddv. In that, the same notations shall be chosen for
the first partial differential quotients and the expi@ss that are composed from them
that Gauss applied in his treatisd®isquisitiones generales circa superficies curvas
namely:

a7 dx=adu+a dy, dy=b du+b dy, dz=cdu+c dy
(18) bc -bc=A, cd —ca=B, ab —ab=C,
(19) a’+b?+c?=E, ad +bb +cd =F, a?+b?+c?=G.

Furthermore, the following analogous notations shall pplied for the partial

differential quotients of the quantiti€s 7, ¢, and the expressions that are composed from
them:

(20) dé=adu+4d dy, dn=bdu+ b dy, d{=cdu+c dy,
(21) b¢ - bc=A, ca-ca=B, ab-4db =C,
(22) g+ +=E, ad+bb +cc=F, & +b%+c?=G,

and, in addition:
(23) R+B+C=EG-E=A%

Furthermore, the following four expressions that are cagpoof partial differential
quotients ok, y, z, andé, 7, { will be denoted by simple symbols:

aa t+bb +cc =e,
aa +bb +cc =f,
aa +bb +cc =7,
aad +bbd +cdd =g

(24)

The quotient of the differentials of the two independestiablesdu and dv shall be
denoted simply by, so:
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dv
25 — =t
(25) U

From the equation:
52 + ,72 + ZZ — 1’

which gives the following equations under differentiatiorhweéspect ta andv:
a +nb +{c =0,

(26) ' ’ nb +{
& +nb +¢¢ =0

one will also obtain the following expressions fér 7, { in terms of their partial
differential quotients:

(27) g=2 B c

:Z’ O:Z’ Z:Z’

which will be applied to great advantage, but which are tenohéned in the case whefe

= 0. The conditio’ = 0, from which it follows that A = 0, B = 0, C = 0,valid for only

a special kind of ray system that will require sorhghs modifications of the general
method for its treatment, but which will not be donewhat follows, because this ray
system can also be regarded as a limiting case of tiezaje@ne.

82
The limit point of the shortest distance from aray to an infinitely closeray.

If the differentialsdx, dy, dz d¢, drn, d{ are expressed in terms of their partial
differential quotients and the differentiadsi and dv then the expression (15) for the
abscissa of the points on the first ray at which & gets the shortest distance to an
infinitely close ray will give:

0 r__e+(f+f')t+gt2
E+2R +@% '

when one fixes the sign. For a well-defined valfie= dv/ du, this expression will give
the abscissa of the shortest distance from the first rayotte well-defined infinitely-
close ray; one gets the valueroih question for all of the infinitely-close raysoand a
ray when one gives all possible values frorh= — o to t = + o in succession. The
denominator of that expression can be zero for wéikeese values df because EG —°F
= A’ + B> + C is never negative, and because the special clioicethich EF — G
equals zero was excluded. Therefore, the valuecah never be infinitely large, and it
must then be always contained within certain firliteits that will be given by a
maximum and a minimum @f One thus has the following theorem:
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The shortest distance from a ray to all of its infinitely-cle®es lies on a bounded
part of that ray that is bounded by two well-defined points.

When the differential quotient ofwith respect td is set to zero, that will yield the
following equation for the value dffor which the two limit points correspond to the
shortest distance from the ray to the infinitely-clomgs:

2) (E +2F+ GO+ +2g) — (e + (f+ ) t + ¢))(2F + 2@) = 0,
or, when simplified:

(3) E+BGE+)+g)-(F+Q) (e +i(f+) D=0,

and when arranged in powerstof

(4) (QF-1(f+f) G)t*— (eG — gE} + (3 (f+ f') E —eF) = 0.

Let the two roots of this quadratic equatienwhich, as was shown above, must
always be reat bet; andt,, so one will have:

eG-gE o, =2 (f+F)E-gF

5 t+t: y - ]
® S Y T YR X

from which, one will get the noteworthy equations:
(6) E+Fu+t)+Gtit, =0,
(7) e +% (f + f')(tl + tz) + gtl = 0,

and to which, one might add the following equatjowsich are easily derived from
them:

(8) E +2Ft + Gt = (ti — t)(F + Gty),
9) E +2Ft + Gt = (t1 — t)(F + GU),
(10) (F + Gty)(F + Gtp) = - A%,

(11)  (E + 2F +Gt2)(E + 2R, +Gt?) = A%(t; — 1) %

If one now denotes the two extreme values of Hseiasa that belong to the valués
=t; and t = t, byr; andr,, resp., then one will have:
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(12) ST Gl L g
E+2R,+ Q&

(13) rp=- e (DL d;
E+2R,+ Q>

which are expressions that can assume the following lainforms by means of
equations (2) and (3):

1) Lo eI 30 +D gt
E+R, F+ G

(15) Lo e 30+ vgt
E+R, F+Gt,

If one eliminated; or t; from these equations then one will obtain theofsihg
guadratic equation, whose roetsandr, — which are always real — will be the abscissas
of the limit points for the shortest distance framay to all of the infinitely-close rays:

(16) (EF—Br°+ (gE — (f+ ) F + eG)r + eg— 1(f+ f)*=0,

from which, it will follow that:

E-(f+f)F+eG eg-1 (f+f)’
(17) M +rp=- 9 ( AZ') , i rr= —g 4A(2 ’) .

The extent of the interval in which the shortastahce from a ray to the rays that are
infinitely close to it will lie is equal to the dérence between the abscissas of the two
points themselves, so it is equalrto—r; . If one denotes this length byl 2nd the
abscissa of the midpoint of these two limit poimgsn then one will have:

(18) d= . m=

8 3.
Thedirections of the shortest distances and the principal planes.

Now, we shall also direct our attention to theediion that the shortest distance from
a ray to the infinitely close rays will have, whighdetermined by the cosines of the
angles that it makes with the three coordinate ,axed which were denoted By 4, v,
above. If one replaces the differentidis dy, dz dé¢, dn, d{ in the expressions for these
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guantities that are given by (13), 8 1 with their partidfedential quotients and the
differentials of the independent variablds and dv, whose quotient was denoted thy

then one will get:

(1)

(= 1e=Cbr @e-¢BY

JVE+2R+ Q?

Jdadcrgd-¢ ¢y

JE+2R+@°

= b-nat €8-nd)

VE+2R + @7

If one takes the expressions that were given above&1rioré, n, ¢, namely:

A

é= A
and observes that:

Bc — Cb = & — aF,

Ca - Ac = ke - bF,

Ab — Ba = ¢E — cF,

_ B _C
,7_A! Z_Al
Bt- CH = dF — aG,
Ca- Ac' = bF — bG,
Ab-Bd =cF-cG

then one will get:
K:a’ (E+R)-a(lF &)

AE+2R+ Q?

_b(E+R)-b(F G)

ME+2R+Q°

=D E+R)DFE G)

ME+2R+ @2

If one now considers, in particular, the directionshofse two shortest distances that
exist at the two limit points — thus, foe t; andt =t, , for which the special values &f
A, 1 will be denoted by, A1, (o and ke, A2, 1 — then by means of equation (6), § 2,
which shows that E +tF=-t, (F + (2), one will get the following expressions:

() p)

__(a+dt, )(F+ G )
- AV, !
_b+bt)(F+ G))

AV, ’
__(ctct)(F+ @)
- AV, !

JE+2R+ Q2% =V,

(3) A=

where we have set:
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for brevity. If one similarly denotes the correspamaggioot by:

VE+2R+ Q% =V,

then one will have, from (11) and (8), 8 2:

AV. AV,
4 Vi Vo = Atz —ty), L=\, 2 =-V,,
(4) 1 Vo =A(t, —ty) ey > Fr G 1
and thus:
(5) Kl:_a+at2’ Al:_b+Ut2’ ’ul:_c+dt2’
vV, vV, vV,

from which, one will get the values & , A, , 14 by switchingt, andt;, which makes/,
go to —Vi:

a+ dt b+ bt c+Ct
6 K = L A = L = L,
( ) ’ Vl ’ Vl luz Vl

The cosine of the angle between the directionthe@fshortest distance from a ray to
its infinitely-close rays at the two limit pointa$the value:

_ard, )@ 4y (B b )k hHH (€te He'te

KiKy+ A Ao+ fh b = V.V
1Y2

which will give, after carrying out the multipliagats in the individual terms:

K1 K> +A1A2+,ul/12 = - E+ 2F(1+t2 )+ th'[z,
iV,

and from equation (6), 8 2 will therefore by zefmm which, it will follow that this
angle is a right angle. One will then have théfeing theorem:

The shortest distances from a ray to the infinitdyse rays, which will lie at the two
limit points, will be perpendicular to each other.

Those two planes that go through a ray that aneepelicular to the directions of the
shortest distances at the two limit points shalthled theprincipal planesof that ray.
These two principal planes, which, from the theordrat was just proved, will be
mutually perpendicular, or the directions of thersést distances at the two limit points
that are perpendicular to them, will be chosen neosiveniently from the ones that lie
around a ray, along which those perpendicular tiies will be measured by angles.

Let wbe the angle between the direction of the shodistince from the first ray to
an arbitrary, infinitely-close ray and the directiof the shortest distance at one of the
limit points, whose abscissa equads or what amounts to the same thing, the angle of
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inclination between that direction and the second aiglane of the ray, so one will
have:
(7) COSw=KL K+ A1 A+ [ U,

and if k, A, i for ka, A1, tn are replaced with the expressions that were giver2ogr{d
(6) then:

@) cosw=— EXRuFt(F+ G )

VNE+2R+ Q&

or by using equation (6), § 2:
(F + th )(tz -t )

VNE+2R+ Q@

(9) COSw=

From this, one will get:

(10) sinw= AC-4) .\
VAE+ 2R+ @
(11) tanw= — -4

(F+GY)E,-t)’
and as a result:

(12)

{ = At cosw+ (F+ G, ), simw
Acosw+ (F+ G, )simw

which is a formula that allows one to replace thetgntt = dv/ du everywhere with the
angle b which expresses the geometric relationship batveeaeighboring ray and the
original ray immediately as a quotient. If one fpans that substitution in the
expression:

__et(f+f)+g”

~ E+2R+ Q@

for the abscissa of that point of a given ray aicWlone of the infinitely-close rays has
the shortest distance from it then one will get:

A2V?
(Acosw+ (F+ @, )simw )’

(13) E +2F+ G =

and one will then get:

(14) e+ (f+ht+g?
_ N (e+ (F+ ) +g))cosw+ (F+ G, )& (F T+ & )sitw
- (Acosw+ (F+ G )simw ) '

By dividing these expressions, when one makes ti@mula (4), from which, one will
have AV, = (F + Gy)* V2, one will have:
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[ 2 ! 2
(15) r:—e+(f+f)t1+?tl co§a)—6+(f+f)t2+gtzsinch
E+2R, + G E+ 2R, + Q2

and by means of the expressionsrioandr, that were given by (12) and (13):
(16) r=ry co$ w+r;sirf w

This elegant formula, which expresses a very simp&ioakship between the limit
points of the shortest distance to a ray and the estadistance to an arbitrary infinitely-
close ray, was found bilamilton in the aforementioned Supplement to his treafise
the Theory of Systems of Ramswhich he treated the points at which two infinitelyse
rays realize the shortest distance under the namigtwél foci. He also was the first to
establish the limits points of the shortest distanceaoray and the two mutually-
perpendicular principal planes of any ray.

§4.
Focal pointsof rays, their midpoint, and focal planes.

One finds the quantities of the shortest distadwbetween two infinitely-close rays
and the infinitely small anglels that these rays make with each other from the
expressions that were given above by (12) and (14) byduntnog the partial differential
qguotients and the differentiatki anddv of the two independent variables, instead of the
differentialsdx, dy, dz d¢, dz, d¢, and by applying the values found for the quantikies
A, 1, which will give the following expressions:

(1) de=du+E+ 2R+ GQ?,

_ du((f' +gt)(E+ Ft)- (et ft)(F+ Q)

ME+2R+ @ ’

dp_ (f'+gt)(E+R)-(e+ t)(F+ Q)

de AME+2R+ Q?

It follows from this that for those valuestahat satisfy the equation:

(2) dp

SO

3)

(4) f+a)(E+R)-(e+f)(F+Q) =0,

the ray will be intersected by the infinitely closgys in question; that is, the shortest
distance from the ray, which is generally a fireder infinitely small quantity, is a
higher-order infinitely small quantity for this spal value oft, and thus, for the same
associated infinitely-close rays. When this cdaditequation is developed, that will
give:
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(5) (QF - fG)? + (QE - (f+H F—eG)t+f E—e F =0,
and when the two roots of this quadratic equation are denotedabg >, one will get:

() 4= -gE+ (f—f) F+ eG’ T, = f E—eF.
gF-fG gF-fG

This quadratic equation does not have the disistgng property of the one that was
treated above viz., that its roots; andr; are always real; they will be real or imaginary,
moreover, according to the nature of the laws ¢baple the lines in space into a system.
One will then have two special categories of rasteays to distinguish from each other,
namely, the ones in which any ray is intersectethbgitely-close ones, and the ones in
which an intersection of infinitely-close rays iswhere to be found. As a third category
of ray systems, we add the ones in which certaits jpd the system will belong to one or
the other of the two categories.

Those two points of a ray at which it is intergecby infinitely-close rays will be
called thefocal pointsof that ray. They will be real points only whenandr, are real.

One finds the abscissas of the two focal poiresnfthe general expression for the
abscissa of the point at which the ray finds itsrgdst distance to an infinitely-close ray,
which was found above (1), § 2, when one giveswzewell-defined values; and > to
thet there. If one denotes the corresponding abscafste focal points by, and o,
then one will have:

_ et (f+ )+t

' E+ 2Fr, + Gr’
__e+(f+f)r,+or]

? E+ 2Fr, + Gr}

(7)

and by means of the quadratic equation (4), whostsrarer; and 1> , this expression
will take on the simpler form:

p__e+frl__f’+gr1

Y OE+Fr, F+G
(8) ,

__e+fr,  f'+gr,

, =

E+Fr, F+Gr,

If one eliminatesr; or r» from these equations then one will obtain theofsihg
guadratic equation, whose roots greando; :

(9) (EG-Br’+(gE—-(f+ 7 F+eG)x +eG-ff' =0,
so one will have:
(10) oLt = - gE-(f+f)F+ eG _eg-ff

N? N?
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If one compares this quadratic equation, whose @oasdo, are the abscissas of the
two focal points, with the one whose rooisndr; are the abscissas of the limit points of
the shortest distance then one will get:

(11) P+ P =T1+17,

_ (f-f)*
(12) T

The first of these two equations gives the follogviheorem:

The midpoint of the two focal points of any ray will coincide with tlipamnt of the
two limit points of the shortest distances.

The common midpoint of the two focal points ané tivo limit points shall be
called themidpoint of the ray.Let the distance from the focal points to the poidt be
equal tog, so:

(13) o= %.

The four quantities,, r,, o1, 0> can be expressed in terms of the three quantities
d, andg, namely, from equation (11) and the two equat{d&3, 8 2, one will get:

r,=m+d, r=m-d,
(14)

P, =m+9d, p,=m-0.
Equation (12) will then give:

(15) #-g={ _?2 ,
4N

from which, it will then follow thathe distance from the two focal points to the midpoint
is never greater than the distance from the two limit points offtbeest distance to the
midpoint so the focal points can only lie between thetlipaints of the shortest distance
or at most, coincide with them.

The two planes that go through a ray and one eftwo infinitely-close rays that
intersect the former ray shall be called fibeal planesf that ray.

Focal planes will exist as real planes only whiea focal points are real, so the
positions of them with respect to each other artth vaspect to the principal planes will
be determined most simply by the equatignr; cos w+ r, sirf « which will give:

r,—r . r—r
(16) cod w= 2—, sirf w= —=L .
rh=r rL=r

Namely, if one takes= o thenwwill be the angle thathe first focal plane makes with
the first principal plane, and if takes 0, thenwwill be the angle thathe second focal
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plane makes with the first principal plane. If one deadhese two angles witda and
a» then the differencey — a will give the angle that the two focal planes makéhwi
each other, which shall be denoted)byOne will thus have:

r,—p . 0,1
cofw =", sifg=2—-1,
rL=n r,=r,

r, — . -
cosza)zzz—’oz, sifw, =222
= r,=r,

(17)

and when one expresses the abscissas of the foc&éd ponh limit points in terms of the
three quantities, d, dusing equations (14), one will get:

d+o
2d

sing = sinw, = d-o
=S =g

Therefore, sincew = § 71— w, and due to the perpendicular orientation of the two

principal planes with respect to each other, the andleees the second focal plane and
the second principal plane will be equal a7 — a» , and thus equal to the angie

between the first focal plane and the first princfgahe, and it will follow that:

cosw, = sinw, =
(18)

The two focal planes of any ray will lie symmetrically with respeits two principal
planes, in such a way that the bisecting plane of the angle between theléoed will
be the same as the bisecting plane of the right angle that the two pripapak define.

For the angle/= «» — . between the two focal planes, one will have, siace
T

N

(19) { y=3m-209 =20, =371,

W=37T-3Y, W =gTTGY,

so siny= cos 2y = co$ w — sirf @ and cog= sin Zy = 2 sina cosa ; equations

(18) will then give:
Jd? =97

. o
20 siny= —, cosy=
(20) 4 g y g
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8§ 5.
The surfacesthat are connected with any ray system.

The five well-defined points for any line of the systeramely, the two limit points
of the shortest distance, the two focal points, aednidpoint, have geometric loci over
all rays of the system that consist of five surfates are determined completely by the
ray system, and have a close relationship to it.

The two surfaces on which the limit points of the stgirdistance lie are ordinarily
represented by only one and the same equation, so theglsmame regarded as two
different parts or shells of one surface; howevergesit is quite necessary to distinguish
one from the other, in all of what follows they Biee regarded as two surfaces and will
be denoted by’ and F,. These two surfaces will divide all of space in such a way that

the shortest distances to all infinitely-close rays of the ergystem will lie between
them, but none of them outside, however.

If one goes from any ray of the system to the irdigiclose ray whose shortest
distance from it lies on the surfaEg and then goes from that one to the next one whose
shortest distance from it lies i, and so forth, then all of these successive rays will
collectively define a rectilinear surfa€® whose intersectioa; with the surfacd=; will
be the curve of the rectilinear surf&@eon which the shortest distance between any two
successive straight lines will lie. The same rec@imsurfaceO; will also intersect the
surfaceF; in a certain curvé, . If one does the same thing with the surflagéhen one
will obtain a rectilinear surfac®, for which the shortest distance between two infinitely
close straight lines will lie of, on a curvea, , and the rectilinear surfa€a will also
intersectF; in a certain curvdy; . Because all of this will be true for any ray of the
system, from which one would like to start, one Walve an entire family of rectilinear
surfacesO; whose curves of shortest distance between any twateifi-close straight
lines will yield a family of curvesy in the surfaceF;, and which will intersect the
surfaceF;, in a family of curveshb, . Likewise, one will have a second family of
rectilinear surface®, that will have their curvea, of shortest distance lying between
infinitely-close straight lines oR, , and which will intersedt; in a family of curves; .

If X', y', Z are the coordinates of the first limit point of themsast distance for the ray
that starts at the point y, zthen one will have:

X =X+ré y=y+nn, Zz=z+nd
as the equations of the surfd€g in such a form that the coordinates of any point af th

surface will be expressed as functions of the two inddgrgnvariablesi andv. In the
same way, one will have:

X =X+1é, Y=y+rn, Z=z+r,{

as the equations of the surfdée. In order to find the families of rectilinear sudga©;
andO,, one must integrate the two differential equations:
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\' V
d_:tl, d_:tz_

du du

If the complete integrals of them, which will includeigrary constants, have been
found, and one eliminates the quantitesndv for any ray by means of one of these two
integral equations from the two equations:

X=X _y-y Z-1z

¢ n ¢

then one will obtain an equation for the coordinatey’, Z that will include an arbitrary
constant and will represent the entire family of iteear surface©, or O,, according to
whether one or the other integral equation was appliae will obtain the two families
of curvesa; andb; onF; anda, andb, in F, immediately when one couples the three
equations for one of these two surfaces with one dftbentegral equations.

The two surfaces on which the focal points of anywdlylie, which will be called
thefocal surfaces of the ray systemd which will be briefly denoted bs%; and®; here,
will exist as real surfaces only when the rays havefoeal points and the two roots
and 7, of the quadratic equation (5), 8§ 4 have real values.

If one advances from an arbitrary ray to the infigi#dose ray that intersects a focal
point that lies ind4, and then proceeds further from that one to the onetis the focal
point that lies orb;, and so forth, then one will obtain a sequence of,ragch of which
will intersect the foregoing ones at a point of thefaxe ®; that will therefore
collectively define a developable surface whose curvegséssion will lie on the surface
®,;, and which will also intersect the surfadg in a certain curve. This developable
surface shall be denoted K, its curve of regression by, and its intersection curve
with the surfaced, by £ . Because one can then start from any arbitrary fapeo
system, one will obtain an entire family of develogaburface€2; whose regression
points will define a family of curves; on the surfac&;, and which will determine a
family of curves/f, on the surfaceb, . Likewise, starting from the focal points of the
rays that lie on the surfage,, one will obtain a second family of developable suddee
whose curves of regressien will be a family of curves that lie on the surfa®e, and
which will determine a family of curve; on the surface. Thus:

Any system of lines that has real focal surfaces lsa composed, in two different
ways, into a family of developable surfaces whasees of regression have the two focal
surfaces for their geometric loci.

Because the curve of regressiaon of the developable surfac@;, as such, will
contact all of the rays that lie ,, and because it will lie on the surfa®e, it will then
follow that all rays of any developable surfa€®s and so all of the rays of the system,
will contact the surfac&; . It likewise also follows that all rays of the /% must
contact the other focal surfade . One will then have the following theorem:
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All rays of a system that has real focal points will be common tangente two
focal surfaces.

As an immediate consequence of this theorem, thewwly theorem deserves to be
mentioned:

Any ray system that has real focal surfaces can be defined to bentheoa tangents
of two surfaces or also as the system of all double tangents to one aadhthewsface.

In order to completely determine a system, one canthlsk of just one of its two
focal surfaces — e.gf1 — as having been given, and similarly, the family o’ea; on
it; thus:

Any ray system that has real focal surfaces can be defined geomgttacdlé the
system of all tangents to a family of curves that lie on one surface

Because the rays that lie on a developable suffaaell also contact the surface,,
it will then follow that the curves, that it has in common with them must be a contact
curve of the two surfaces. It will likewise followathany developable surfa€, will
contact the surfac®; along an entire curve; i.e., it will envelop it. Thus:

Either of the two focal surfaces will be enveloped by one of thefamilies of
developable surfaces into which all of the rays of the system caonijsed.

Since, from a well-known theorem, the generatingigit lines of a developable
surface that contact another surface along an esumee will be the conjugate tangents
to the tangents of that curve, it will then follovath

The two families of curves that are determined by the two fanufielevelopable
surfaces on the focal surfaces of a ray system will intersecttloer ®f the two focal
surfaces in conjugate directions.

If the two focal surface®; and®, intersect then any tangent of the intersection curve
will be one of the rays of the system, and therefaregngent to one of the curves.
The intersection curve and the cumrewill thus have a common tangent, and in fact, at
the same point. The intersection curve will thentacinthe curver, and because that
will be true for all of the various tangents to theersection curve, it will then follow that
the intersection curve of all curves will contact tanily a1. It will likewise follow that
the intersection curve will also contact all curvéshe family oz on®, . One will then
have the following theorem:

The intersection curve of the two focal surfaces is the envelopiug €wr boundary
curve — for all of the curves of regression that line on the two feodaces of
developable surfaces that can be composed of the rays of the.system
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One can obtain the equations of the two focal surfacehe same way as the
equations for the limit surfaces of the shortest digtamere obtained above, with the
help of the abscissas of the focal pojot&ndo,, namely:

X=x+p & y =y+00n, Z=z+p
and

X=x+m:¢ Yy =y+m:0n, Z=z+p3 (.

One obtains the two families of developable surfdzeandQ,, and the families of
curvesm, [ on ®; and a», 5, on @, by the complete integration of the differential
equations:

dv _ . dv _ .

du " du
in the same way as was shown above for the sura@eslO,, along with the system of
curvesa;, b; onF; anday, b, onF; .

Finally, as far as the (always real) surface on whkiehmidpoints of all rays of the
system will lie, and which will be called thwiddle surfaceof the ray system for that
reason, it is especially important that it can beselmomost conveniently to be the surface
from which all rays of the system are considered ad.stin fact, if one calculates the
abscissas of the points on the individual rays of tidelie surface then one will have:

r=-rp, P=—p0, ge-(f+HF+eG=0,

from which a not-inconsiderable simplification will cerabout.
One obtains the equations of the middle surface ffa@rekpression for the abscissa
of the midpoint:
m=ltlr __ gE- (f+f)F+eG
2 20? ’

namely:
X=x+mé y=y+mpn, Z=z+m(.

All of these surfaces that are closely-linked with thg system- viz., the limit
surfaces of the shortest distance, the focal surfezed, the middle surface — can
degenerate into lines or even points in special casdssane of these surfaces can also
vanish at infinity, or also unite with each other in sackay that they cover themselves.
The systems of normals to a surface for which thefowmal surfaces coincide with the
limit surfaces of shortest distance also belong th@wsrspecial types of ray systems
that appear in this way as the limit surfaces of geémaras. The relationship between
these special kinds of ray systems to the generalstadiebe treated thoroughly later on.
In addition, the type of ray system deserves a spe@atian here for whiclhA = 0 and,
at the same time, A =0, B = 0, C = 0, which must belugled from the general
examination, because the expressionséfay, ¢ in terms of partial differential quotients
(27), 8 1 will yield indeterminate values for them. For fpecial kind of ray system, the
limit surfaces of shortest distance will both vanishnéihity, and likewise the middle



Kummer — General theory of rectilinear rays systems. 19

surface will vanish at infinity, but only one of the tmcal surfaces will be lost at
infinity, while the other one will remain a finitely-tiemined surface. Of the two
families of developable surface that can be composehkeofays of such a system, the
one of them whose curve of regression lies on theitelyxdistant focal surface will
contain only cylindrical surfaces. As one can infer frdns, such a system can be
represented geometrically as the system of all thersgents to a surface that are parallel
to the tangents of any of those given curves.

§ 6.
The measure of density.

If one considers three quantitiés;, {that satisfy the equation:
4+ {t=1,

to be the rectangular coordinates of a sphere whose radaggial to one then one will
have a point on the sphere that corresponds to eadf thg system, and a continuous
curve on the sphere that corresponds to any continuousnseqaérays. If one now
draws a plane through any point of a line that is perpaladito it and draws a curve in
that plane then the family of rays that go through th@ate will correspond to a curve on
the sphere. If one now takes any curve such thatdigidual points are separated from
the base point of the first ray by only infinitelytl, and such that it circumscribes an
infinitely small surface that lies around that poirgrttone will likewise obtain a closed
curve around an infinitely small surface as the corredipgncurve on the sphere. The
relationship between these two infinitely small suefgonhich in the case where the ray
system is a system of normals to a surface and tipempeicular plane is a tangent plane
to it was defined bysaussto be the measure of curvature of that surface, asattre
same importance for the most general system, nohasagure of the curvature, but as a
measure of théensityof the ray system. When a plane goes through any pblite
that is perpendicular to it, and in it, a curve thahfmitely close to the ray is assumed,
whose surface is equal tpandthe surface of the corresponding curve on the sphere is
equal tog theng / f shall be called thdensity measure of the ray system at this point

Let dg be the infinitely-small distance from a point of thevef to the base point of
the ray that is perpendicular to the plane of that cusnch is given by the quantities
Y,z ¢, n, ¢, and the abscis#® and furthermore, let’, A", 1’ be the cosines of the angles
thatdq defines with the three coordinate axes. Furtherntetréhe ray that goes through
the other end point afq be determined by the quantities dx, y + dy, z+ dz ¢+ d¢,
n+dn, {+d{. From (16), 8§ 1, one will then have the equations:

K'dg=dx+ R& -$(5 den dyd dz
) Adg=dy+ Ry -n(5 den dyd dz
¢'dg=dz+ R’ -{(¢ dxr dy{ 0z
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Furthermore, leta be the angle thatlg makes with a perpendicular to the first
principal plane, and then Iét77— a be the angle that it makes with a perpendicularéo th
second principal plane, so one will have:

sina =K,k + ,A"+ w0

If one multiplies these two equations ¢y and inserts the values &fdg A’ dqg, ¢’
dqgfrom (1), when one observes that:
Kié+ A+l =0,
Koé+ Ao+ 1 = 0,
then one will obtain:

3) dgcosa =k dx+ A dy+ 1, dz Rk, d+A, g+ u, 4),
dgsina =k, dx+ A, dy+ p, dz= R, d+A, g+, §4).

If one now replaceg;, A1, (1 and ke, A, Lk with their values that were found in (5)
and (6) of 8 3 and expresses the differentalsly, dz dé, dn, d{in terms of their partial
differential quotients and the differentials anddv of the independent variables then one
will get:

4 dgcosa =-Adu- B dy
@ { dgsinag =+ Adut+ B dy

where, for the sake of brevity, we have set:

_e+ft+R(E+ R) _ et f't, +R(E+ R,)

A]_ A2

v, v,

_f+gt,+R(F+ Gt) _f+gt,+R(F+Gt,)

B, = B, = .
Vl V2

From these two equations, it will follow, by diwsi, that:

(5) tana = - A+BL :

A+ Bt
and from that:
(6)

= A cosa + A sino
B, cosa + B, sinr

Now letdo be the arc length element on the sphere that smmorels tadg, so since
the coordinates of its endpoints &tey, {andé+dé, n+dn, {+d{, one will have:
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(7) do= \Jd&+dp?+d7? =duJE+2R+ Q2.

The cosines of the angles that the elendmton the sphere makes with the three
coordinate axes, namely:

d¢  dp  df
do’' do’' do’
will thus be equal to:
a+ dt b+ Bt c+Ct
JE+2r+@?  JE+2r+@?  JE+2R+ @2

(8)
Now, if to denotes the value ofor a = 0 then from equation (6) one will have:
©) t=- 2,

and if the angle on the sphere that correspontisetanglea is denoted by then, from
the known directions of its two sides, one will:get

_(atdt, )@ ay (5 b )b 'bH ety Mc'tc

(10) cosa
JE+2R,+ G2 E+ 2F+ @

or, when simplified:

E+R, +(F+ G, }
JE+2R,+ G2 E+ 2F+ @

(11) cosa =

from which, one will derive the following expressitor tana’:

A(t _to)

(12) tana = ,
E+ Ry +(F+ Gy )

which gives, when differentiated:

(13) a = A—dtz,

E+2R +G
and as a result, when multiplied 8g?, from equation (7), one will get:
(14) dd® da = A dU dt

By differentiating equation (6), one will furthebtain:
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15) i = (AB-AB) d

(B,cosa + B, siy §

and from the first of the two equations (4), wiaker’ du =t will be expressed in terms of
a by using equation (6):
(16) dq = (AB~AB) du

B, cosa + B, siny’

SO:
(17) dg? da = (A1 B, —A; By) di? di,

and when this equation is coupled with (14), théitgive:

18 dRde =— 2 mdda
(19) AB-AB 49

Since the linedq is the radius vector for the infinitely-small cerfy and a is the
associated angle, and for the infinitely-small eugv on the spheredo is the radius
vector and? is the associated angle, one will have:

(19) f=1["dofda, $=1["doda.

The integration of equation (18) between the limits 0 to a = 27z which correspond to
the same limits oa’, will then give:

(20) p=— "5

=—— 0.
AB-AB
If one now denotes the density measur@®bguch tha® = ¢ / f, then one will have
the following expression for it:

(21) a

0= ——.

AB-AB
From the values of the quantitidg, B;, Az, B, that are given by (4), one will obtain:
A1 B, - A; By = (eg- ff' + (QE — (f + ) F + eG)R + A%R);

however, from the values for the absciseaand o, that were found in § 4, (10) for the
two focal points, one will have:
eg-ff' = pip, 1%,
gE — (f+ ) F+ eG = (o1 + o) A%,

and since, from (4), 8 3, one will havev, = A(t; —t1), one will have:
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(22) A1B, - A; B = Aoz — (01 + ) R+ ).

The expression for the density mead@reill thus assume the following simple form:

1
(23) o= ,
PO, — (,01+ ,02)R+ R
or
(24) o= L

(,01 - R)(,02 -R .

The density measure at any point of a ray is tleprakto the reciprocal value of the
product of the distances from that point to the tacal points of the ray.

The density measure is always real, even whenwbefocal points are imaginary.
For ray systems with real focal surfaces, the dgnseasure will be positive for all
points that lie outside of the two focal surfacesgative for the ones that lie between
them, and, as is easy to see from the their expresst will attain its largest value at the
midpoint of any ray, but it will be infinitely laggat the focal points. The density
measure is always positive for ray systems withgimary focal points, and has its
maximum at the midpoint of any ray.

If one groups together all of the rays that afeitely close to a given ray that go
through the infinitely-small surface that is pergenlar to the ray and denoted bthen
they will define an infinitely-thirray bundlethat is bounded by those rectilinear surfaces
whose generating straight lines are the rays tbahgugh the curve that circumscribes
the surfacd. The infinitely-small surface is aross-sectiorof this infinitely-thin ray
bundle, and, in fact, the cross-section that beddoghe abscisda If one now considers
a second perpendicular cross-sectionvhose abscissa is equal RS then the same
corresponding infinitely-small surfageon the sphere that belongsftwill belong to it,
because all of the rays that go through the boyndarve off will also go through the
boundary curve off. Therefore, when the density measure at the pdiose abscissa is
R’is denoted by®’, one will have:

? o, ¢oo
f f
and it will follow that:
f ©
25 — ==
(25) f' ©

Therefore:The surface areas of two cross-sections of anitafyathin ray bundle
will behave inversely to the density measuresesdliplaces in the ray bundle

If one considers, not merely the density measuresalso the densities themselves
that the rays of an infinitely-thin ray bundle haatethe various places, then it will be
clear that they must have the opposite relationshiphe surface areas of the cross-
sections of the ray bundles. All of the rays ta contained in the ray bundle will then
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spread out in the cross-section over the entire suofiteand must then be denser in the
same ratio as the cross-sections are smaller.lldiM® from this thathe densities at the
different places in one and the same infinitely-thin ray bundle will Eelike the
associated density measure$he terminology “density measure” will then be justlfi
completely by that fact.

For two points that lie odifferentrays or on an infinitely-thin ray bundle, the ratio of
the densities of the rays is not necessarily the sesrtbe ratio of the density measures.
One recognizes this most clearly in the simplest sysk@mvhich all rays emanate from
one and the same point, which can be so arranged #hatyh go in all the different
directions with equal densities, or also such that theiteis a function of the direction.
In the first case, the density will be the same dbrequally-distant points from the
starting point, and will therefore be everywhere propadi to the density measure, but
in the second case the density will not be dependent jsbrthe distance from the
starting point, but also on a function of directiom. general, if the ray system — as was
assumed above — is determined in such a way that one rawéfl-defined direction
goes through each point of a surface that is chosendagbemetric locus of the starting
points of all rays then the density of the rays oa éntire surface can be determined in
some way as a function of the coordinates of the sigpmntx, y, z, or what amounts to
the same thing, as a function of the two independeritasu andv, and the density of
the rays at all points of the entire system to ohdhem will be first completely
determined by that relationship. The density itself will ineturn, equal to the density
measure, multiplied by a function ofandv that does not involve the absci$gaand for
that reason, will be the same for all of the variposts of a ray. When this function is
constant, and as a result, the density is proporttoridle density measure at all points of
the system, the ray system can be referred tmageneoum relation to the density of
rays.

All of the points on the various rays of a systerat thave the same well-defined
value of the density measure will lie on a well-definedface that shall be called a
surface of equal density measur8ince one can give all possible values to the density
measure, it will then follow that this will give anter family of surfaces of equal
density measure on a ray system. All of these swgfadé be determined very simply
through the expression for the density measure thatas ¢py (23), from which, one will
have:

R-(@+p)R+pp=

Q|+

If one taked® to be constant, and solves this quadratic equatioR,ftnom which, one
will get:

2
(26) R: ,01+,02i (pl_pzj +£,
2 2 o

then for those two values Bf

(27) X =x+R¢ y=y+Rn Z=z+R{
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will be the coordinates of all of the points of thesteyn whose density measure has the
constant valu®. They will then give the equations for the surfackgqual density
measure in such a way that the coordinates of any poithese surfaces will be
determined as functions of the two independent variablaadv. In order for these
surfaces to be real, it is necessary and sufficieat tite constant value of 13 lie

2
between the limits- (%) and +o. For the valu® = «, R will then be real when
the two focal points are real, and one will have eithe p, or R = o, from which, it will
follow that the two focal surfaces belong to the sigfaf equal density measure for
which it is infinitely large.

When the two focal surfaces are real and are giventbaclll rays of the system can
be considered to be their common tangents, one catrucinall of the surfaces of equal
density measure very easily, when one constructs a thindl joothe two contact points
of a ray that are its focal points, whose distarfoesy the two contact points have a
constant product. When the given value of that productsgiy®, that point must be
taken outside of the two focal points, and inside ofitlaen it is negative.

87.
Therotation angle of infinitely-close rays.

When two straight lines in space are given, anddvops perpendiculars from two
different points of the second line to the first liméyose base points on it might lieaat
andb, then the angle between these two perpendiculahsbehealled theotation angle
of the second line around the first one for the line segment from a fbhb rotation
angle for the whole infinite length of the first lire by this definition, equal to two right
angles, while the rotation angle for finite line segteenmill all be smaller than two right
angles. If the two straight lines lie in a plane tti@nrotation angle for any line segment
will be equal to zero or two right angles, accordingvteether that line segment does or
does not include that intersection point of the twoslimesp. If, b, c are three points of
the first straight line then the rotation angle frbnto ¢ will be equal to the difference
between the two rotation angles fr@o ¢ anda to b, so all of the rotation angles for
arbitrarily-limited line segments on the first line Wk given by the rotation angle that is
computed at a particular point.

In order to now investigate the rotation that a certay will make relative to
infinitely-close rays of the system, the rotatiorglenshall be calculated at the starting
point of the ray, whose abscissa will be equal to .zet@t dg be the length of a
perpendicular that goes from one of the infinitely-eloays to a given ray, which meets
it at the point whose abscissaRsanda is the angle that this perpendicular makes with a
perpendicular to the first principal plane. Furtherméeedq, be the length, and let, be
the corresponding angle of the perpendicular that nieetgiven ray at the starting point,
whose abscissa is zero, so one will have, as was sha@@v, (4), the equations:
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) dgcosa =-Adu- B dy,
dgsina =+ Adu+ Bdy
where:
_e+f't +R(E+ ) _e+f't,+R(E+R,)
Al - ) A2 - )
V, vV,
_f+gt,+R(F+Gt) _ f+gt, +R(F+Gt,)
Bl - ’ BZ - ’
Vl V2
and, in turn, foR = 0:
dq, cosa, = e+, du- T+t dv,
(2) V2 2
dg,sina, =+ e+t du+ f*gt dy,
Vi Vi

and as a result:

dqcosa - dg comr, =) au- HELEL) gy

(3) 2 2
dgsina - dq sina, =+ RE*+FL) dut+ R(F+ Gt) dv

1 1

One will get the following values for the diffetexls du and dv from these two
equations:

_ dgsina — dq sina, _ dqcosr — dg cos,

du
(@) R RY
dv= (dgsina —dq sina, )t (dgcosyr— dg cos, )}
RV, RV

and if one substitutes these two values in thedgumations (2), when one observes that:

e+ (f+f)ty+ gt} =-rV?, e+ (f+Ht+gtl =-rVy,
e+i(f+f)(ty+1t) +gtit, =—r1V,7, Vi Vo = Atz — t),

then one will obtain:

!

Rdq cosa,= -1, (dgcosr — dq cog, w}(%) dq sia—- dg sim,
(5) ,
qu)sinaoz—(%j(dqcosa— dg co®, > f dgsir— dg sia, |
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and because, from (15), § 4:

f_f' 2_ 2 f_
o =d"-F=pp-r1112,

one will then obtain the following expressions doycosa anddg, sin a from this:

[ _ 52
dqcosa:(l— Ry jdq) cowO—Rdz—5 dq sim,
(6) lp2 2
Y
dqsina:m dqg, cosao{ i RY, j dg simr,
1772 :01:02

When these two equations, which show that thegmelipulardg and the associated
angle a can be determined for any point on a ray from d¢beesponding data at its
starting point, are divided, that will give:

RV d® - 9% cosa, + (o,0,— Ry)sim,
(o0, Rr,)cosa,~ R/ & - 67 sima,

(7) tana =

The rotation angle of the rays that are infinitelyse to the first ray for the line
segment with abscisfis, as was shown above, equatte ap . If one denotes it by,
such thatB = a — ap and one will then obtain the following expressfon the rotation

angle from equation (7):
R d*-90% - dsin2a,)

8 tana = :
(®) 0.0, —R(r.cos a,+r sifa,)

It would follow from this that the tangent of thetation angle is equal to zero for any

arbitrary value of the abscisBa- so the rotation angle itself will be equal to zerdwo
right angles — when one has:

9) Jd?2-9?% =dsin 2mp,

so, from (20), § 4, if sin@ = cosy —orap = 2+ 3y—thenap = @y or ap= &, where

a and «p are the angles that the two focal planes make thighfirst principal plane.
The rotation angle will then be everywhere equatdm or equal to right angles for the
two infinitely-close rays that lie in the focal p This would also follow immediately
from the fact that each of these infinitely-closgg, along with the first ray, lie in one
and the same plane, namely, the focal plane.

In those ray systems that have imaginary focdhsas, and therefore also no focal
planes, the rotation angle can be nowhere equaéito for finite line segments, so the
rotation of the rays around each other will nevearge its sense. When any two
infinitely-close rays of such a system lie sucht tha rotation of one of them with respect
to the other one can be referred to as a clockvation, any two mutually infinitely-
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close rays of the whole system must necessarily theveame relationship to each other
of a clockwise rotation. The ray systems with imagynfocal surfaces will then divide
into two distinct classes: ray systems with clockwigation of all rays and rays systems
with counter-clockwise rotations. However, to any sggtem, which might have real or
imaginary focal surfaces, there is another one thatni a sense, symmetrically or
improperly equivalent to it, such that the single diffeeehetween them consists only in
the opposite sense of rotation of all rays comparedath ether, a difference that is
expressed analytically by only the difference in sighthe quadratic roots.

If the focal points are real, and one examines thaioot angle from the starting point
of a ray up to the focal points then fer= o, andR = p, — which might be denoted I8}
and /3, respectively — one will obtain, with the help of equiagi (14), 8§ 4, from which, it
follows thatry co$ ap + r1 sirf o =m—d cos 2
(10) tang, = \/dz—éz—dsmmo’ tan, = \/dz—éz—dsmmo’

o+dcoszr, -o0+dcosa,

and from this, with the help of the expressions thaewggren in (18), § 4 for the angles
a anda that the focal planes make with the principal planes:

_sin2w - sin2x,

tan = tanfy —a, ),
1) A COS 2y — COS 2, “@-a)
tang, = Sin2w, —sin2y, _ tan@, - a, )
COSZu, — cos @,
one will then have:
(12) b= - o, B=w—-0.

From these simple expressions for the rotation artblsare computed from the starting
point of a ray to the focal points of its infinitelyese rays, one will get:

(13) B-L=w-w=y

Thus: The rotation angles from a focal point of a ray to the other focal point i&ve t
same values for all rays that are infinitely-close to it, and are etu#ie inclination of
the two focal planes.

If one takes the rotation angfeéto be a given quantity then one can determine the
length of the abscisd& for which the rotation angle from the first ray to @finitely-
close ray will be that given quantity. Equation (8) willggthe following expression for
R:

(r,cos a,+r, sifa,)siB+d*-0% cof-d sin® cgs
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which will assume the following simple form whepn andr, are replaced with their
valuesr; =m —dandr; =m+d:

(15) R= PP,sInB .
msinB++ d® -9% cosB-d sin(2,+ 3

If one now consider® to be a function of onlyx and S to be a given constant
quantity therR will attain its largest value for siné@ + ) = +1, soay = $7-1 (3, and

its smallest value for sing® + ) = -1, soap = 377-3 3, and if the largest value &is
denoted byr;, while the smallest value is denotedm®ythen one will have:

_ PP, SINB
msin g+ d? -2 cosB - d
R2 - plpZSlnﬁ )
msin B ++/ d* - 5% cosB+ d

(16)

It further follow from this that:

1 1 _(@-sin(@,+pB)d _2sin° @, +18-4m)d
(17) R R Pyo,SinS P, SINS

1 _1_(+sin(2,+B)d _2cos @,+38-3m)d

R, R ppsing  ppsing

and from these two equations, one will get:

(18) 1 _ cog @0+%,[>’—71177)+ sirf 00+%,8—71177).
R R R

Thus: If one takes any ray that is infinitely-closeatoay that starts from an arbitrary
point of it atthe length at which it makes a constant rotation angle ivitien that length
will be one of the largest and smallest lengths amahgsinfinitely-close rays, and will
be determined from the angle that the direction ofsitating point makes with the
direction of the starting point of the largest ray bgqmsely the same equations that
determine the radius of curvature of a normal sectfom surface in terms of the largest
and smallest radii of curvature and the angle thatrtbrsnal section defines with the
principal plane by way of the well-knowuler equation. Euler’'s theorem itself is
included as a special case of this general theorem,|ldsevehown below. In the special
case where the constant rotation angéxjuals a right-angle, one will have:

co< a, N sirfa,

1
19 =
(19) = R R




Kummer — General theory of rectilinear rays systems. 30

Hamilton first established the special property of the general yayes that is
expressed by this equation in the cited Supplement, and indgotonsidering the
projection of a ray that was infinitely close to aagivray onto a plane that was drawn
through the first ray and the starting point of the indiytclose ray. However, nowhere
did Hamilton apply the concept of the rotation of rays relativeeteh other and the
rotation angle, which is extraordinarily fruitful famderstanding the properties of ray
systems.

§8.
Infinitely thin ray bundles and principal rays.

In the two equations (6), 8 7:

N v
dqcosa:(l— Ry jdq) cowO—Rdz—5 dq sim,
(1) WP PP
2 _ 52
dqsina:m dg cosao—( + Al j dq sim,
1772 :01:02

dg and a can be regarded as the polar coordinates of thadawy curve of that cross-
section of an infinitely-thin ray bundle that befsnto the abscisd® anddqg, and ao, as
the polar coordinates of the curve around the esestion that is found at the starting
point. These equations can, in turn, be employddnly to compare the cross-sections
of an infinitely-thin ray bundle in terms of sur@acarea, which will already be
accomplished completely by the density measurealsat to determine how the form of
any cross-section will depend upon that of a gioea. If one then goes from the polar
coordinates of the two cross-sections to rectamgulardinates whose axes lie in the two
principal planes of the ray, relative to which ather rays of the ray bundle will be
regarded as infinitely-close rays, then one wiltdéo set:

dgcosa = X, dgsim = v,
(2) {

dg,cosa,=%,, dg simr,= Yy,

where x, y and Xo, Yo are the infinitely-small coordinates of the twass-sections.
Equations (1) will then give:

[ _ =2
(3) PP, PP
_ RV =97 R,
y=——%*1- Yo
PP PP,

and when, converselyy andyy are expressed in termsyéandy, one will get:



Kummer — General theory of rectilinear rays systems. 31

(0, -R)(p,- R %=(ppo,~ Rp) ¥+ R d-0° y

(4)
(0,-R)(p,~R %=-R/ d-5" *(ppo,~ R} 3

The boundary curves of the cross-section of aniiafy-thin ray bundle are thus not
only all curves of the same degree, but they ae adlated to each by the collineation
that is expressed by these equations.

Special attention is warranted for the cross-eastiat the two focal points of
infinitely-thin ray bundles, for which, as was a@dy shown above, the density measure
will be infinitely large, so the surface area vk infinitely small of a higher order. If
one takeR = p; or R = p, then, from the two equations (4) and, in turnpdi®m
equations (3), the one will become identical with bther one, and they will give:

o
y=,—-——=x forR=p,

d+d

©) d+o
= for R=p,,
y d—é_x, P

which are the equations of straight lines, and aot,f infinitely-small straight lines,
because andx can have only infinitely-small values.

The cross-sections of an infinitely-thin ray bundle at the two focal Pairg then
infinitely-small straight linesj.e., of the two dimensions of the cross-sectwhich are
generally infinitely-small quantities of first ondeone of them will become an infinitely-
small quantity of higher order at the two focalngsi

From this, it also follows thate bounding surface of any infinitely-thin ray bundle
with real focal points can be constructed by moving a straight line ahedys goes
through an infinitely-small plane curve and two straight lines that can be paiqdar
to a perpendicular that is erected to the plane of the small curt® imterior.

In order to determine the two cross-sections atfolecal points, which are infinitely-
small lines, and their lengths in relation to then@hsions of the cross-section that is
given at the starting point of the ray bundle, stpreferable to revert to the polar
coordinategiqg, @ anddg, ap . If one setRR = p; in equations (1) and observes tpat
ri=d+9, 0o —r,=-d+ dthen one will get:

(6)

p,dgcosa = (d+9)dg cosr,— o -9% dg sim,
0, dgcosa =+ d* - 3% dg cosr,— (-0 )dg sim,

for the cross-section at the first focal point. Btyroducing the anglea that the first
focal plane makes with the first principal plara;, Wwhich, as was shown above in (18), §

4.
Sin@: M_ cosa = ﬂ-
\ 2d \ 2d
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these equations can be represented in the following form:
e p,dgcosa = A cosy cosf,+w, g,
p,dgsina = 2d sinw, cosf,+w, W,

and one will get by dividing them:
(8) tana =tana , a=a .

One can conclude the fact that the angleas a constant value from this, but in order
to conclude the fact that the cross-section whose polardinates ardq and a must be
part of a straight line in which the pole lies, one ngise the direction of that straight
line, along with the constant value= a , since it makes the angla with the first
principal plane.

In the same way, fdR = o, — i.e., for the cross-section at the second focaitpoone
will get:

©) p,dgcosa = 2d cosu, cosl,+w, g,
p,dgsina = 2d sinw, cosf,+w, dg,
(10) tana =tanw , a=w.

One has the following theorem:

The two infinitely-small straight lines that define the crossisedf an infinitely-thin
ray bundle at the focal points will lie in the their two focal planes.

For the cross-section at the first focal point, kehe = «, one will have, from
equation (7):
(11) dqg=dagp cos(@o + w).

Now if, as we have assumed here, the bounding curitbeobne cross-section at the
starting point of the ray bundle is completely deteediand given then one will have its
radius vectodq, given as a function of the angte , and therdqg will also be determined
as a function ot by the equation (11). However, since the curve whosesaéctor is
dg is a straight line, and the pole lies on that sttalgle, its length will necessarily be
equal to the difference between the two extreme valadttis radius vectaiq can have
as a function ofw, or because one of these two extreme values iss&ty positive,
the other one must be negative, so the desired lengtiatoline will be equal to the sum
of the absolute values of that maximum and minimunme Gkewise obtains the length
of the cross-section at the two focal points when adds the largest positive and
negative values thalg can assume as a functionaffrom the equation:

(12) dg=29 dg coso + ),

1
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while ignoring the sign.

In the simplest case, where the cross-sectioheastiarting point is assumed to be an
infinitely-small circle, sodg, will be constant, as the radius of that circle, wié have
the two extreme values dfj for the cross-section at the first focal point wimgnt w =

0 andap + @ = 71 so they will be equal teZE dop and—E do ; when they are added,
> P>

ignoring the signs, that will givé12 dg as the length of the rectilinear cross-section at
P>
the first focal point. One will likewise find th#éngth of the cross-section at the second

focal point is equal teAQ dgp. The lengths of these two cross-sections atabal points
P>

will then behave like their distances from the glac cross-section at the starting point of
the ray bundle.

If one investigates the condition for the lengthaocross-section to be zero at the
focal points of the ray bundle — i.e., infinitelgaall of higher order than the former —
then one will recognize immediately from equatiqid) and (12) that this case will
occur whend = 0, and that it can occur only when that conditie fulfilled. The
conditiond = 0 also necessarily implies that= 0, sinced, when it is real, is nowhere
greater thaml, so one must have =r; andp, = o1 ; i.e., the two boundary points of the
shortest distance, and the two focal points musicae for those ray bundles that have
the one midpoint. If one, witHamilton, calls those rays whose infinitely-close rays all
go through a single poirgrincipal raysthen it will follow that the principal rays can
exist, and also exist in reality, where the two rmary surfaces, and with them, likewise
the two focal surfaces, have common points, whigh be either contact points or
intersection points or points on the intersectingd.

The two principal planes will be undetermined tbe principal rays, because the
shortest distance to the infinitely-close rays willvays be zero for them, and in turn,
cannot determine a direction.

In the completely special ray systems, whose &llygo through a single point, all
rays will be principal rays; it is also easy to $bat this is the only degenerate case.
However, there are infinitely many ray systems thave continuous sequences of
principal rays that collectively define a surfaseich as, e.g., the system of common
tangents to two confocal second-degree surfaceghich all tangent are the intersection
curves of these two confocal surfaces of princiipgk. Similarly, there are infinitely
many ray systems that have isolated principal rbys,as a rule, principal rays do not
exist in general systems, because the values dinhhéndependent variable andv for
which a ray becomes a principal ray will be deteedi by three equations. Namely,
since the directions of the two principal planed i@ undetermined for a principal ray,
the quadratic equation (4), 8 2, whose roots deterrthe directions of the principal
planes, must be fulfilled identically, and one mili&n simultaneously have:

(13) gF-1(f+f)G=0, eG-gE=0,5(f+f)E—-eF=0.

These three equations will, in general, redudevty because, except for the case of F
=0, one of them is a necessary consequence othiee two; however, a third condition
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equation will arise, because the ray must haseabfocal point— namely,d = 0 — which
will yield:
(14) f=f.

If the two focal points of a ray coalesce with th&lpoint, but not, at the same time,
the two limit points of shortest distance, as wellnthee infinitely-thin ray bundle that
neighbors it will haveonly onerectilinear cross-section at that midpoint, which will
likewise contain the two focal points, and that cresstion will lie in the plane into
which the two focal planes will coalesce in this ¢asece, from the equation sjn= o/

d, the angley; along withd — viz., one-half the distance between the two focaltpein
will be equal to zero. Since the condition for the faoal points to coincide gives only
one equation between the two independent variab&slyv, it will then follow that the
ray system, as a rule, will not contain individual rafsthis kind, but a continuous
sequence of them that define rectilinear surfaces, andhbdocal surfaces, as a rule,
will intersect in well-define curves, since all tangetd the intersection curve of the two
focal surfaces will be rays whose focal points calaci However, there is also an entire
category of ray systems for which all of the raysehthat property, because their two
focal surfaces cover each other in such a way thatdbeypine into a single surface.

§9.

Comparison between the general theory of rays systems and the special theory
of the curvature of surfaces and their systems of normals.

In the special case for which two ray systems whogsergétheory was developed in
the foregoing are denoted by f ahdaind the expressions that are composed of the partial
differential quotients oxX, y, zand¢, 7, { are equal to each other, those ray systems will
become special systems whose rays are all normalsetand the same surface. Namely,
if there is a surface for which any ray is a normall @ne letsx, y, Z denote the
coordinates of that point at which the ray of the sydieat is determined by vy, z ¢, n,

{is normal to it, and calls the distance from thesimts to the stating point vy, z, of the
rayr then one will have:

(2) X =x+ré Yy =y+rn Z=z+r{,
and because this ray must be perpendicular to the sudae must have:
(2) EdX + ndy +dZ =0.
Whenx', y, Z are replaced with their values, this condition wilegi
(3) Edx+pdy+dz+dr (E2+ 77+ %) +r (Edé+ndn+{dd) =0,

and as a resulsic]:
3) fdx+ ndy+ {dz=—dr,
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or.
4) Ea+nb+lodu+ (fa+nb+c)dv=-dr.

The expression on the left-hand side of this equation thastbe a complete differential
of a function - of the two independent variablesndv. One must therefore have:

d(éa+nb+lq _ o(a’+nb+c)

®) ov Ju

and from this, by performing the partial differentiatiogisice:

one will get the following condition:

ad +bb +cc =a'a+b'b+cc,
SO
(6) f=f,

which must be fulfilled identically in order for the raystem to be a system of normals
to a surface. The fact that this condition is alsflicgent will emerge from the fact that
when it is fulfilled, the quantity can be determined from equation (40 as a functian of
andv, and the fact that for such a valuer péquations (1) will represent a surface whose
normals are rays of the system. Since an arbiti@mgtant can be added to the value of
that is determined from the differential equation (4), ok then have, not just one
surface that satisfies this condition, but an entrailfy of them, which are known by the
name ofparallel surfaces

For f = f, the quadratic equation (5), 8§ 4, whose rootsraend 7>, will be identical
with the quadratic equation (9), 8§ 4, whose rootgaamdt,, and likewise the quadratic
equation (9), § 4, whose roots areand, , will be identical with the quadratic equation
(16), 8 2, whose roots areandr, . It will follow from this that:

In those systems whose rays are normals to a surface, the tweloas of any line
will coincide with the principal planes, and the two focal points wilhcide with the two
limit points of shortest distance.

If one chooses one of the surfaces in this casetiarh all of rays of the systems are
normals to be the surface from which all rays canrdgarded as starting then the
abscissas of the focal points and o> — or what amounts to the same thing here, the
abscissas of the limit pointg andr, — will be the two principal radii of curvature of this
surface, and the focal surfaces of the system, whittlcarncide with the limit surfaces
of shortest distance, will be the surfaces that wexsted byMongeon which the centers
of all principal curvature circles will lie. The theoosythe curvature of surfaces can then
be regarded as a special case of the general theoay slystems, and it is not without
interest to discuss the connection between the gettmatems that were developed in
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the foregoing and the known theorems on the curvatursudéces somewhat more
closely.

If one next examines whether the general of ray systeight perhaps yield new
theorems for the theory of curvature and the nornmalsurfaces then, as one might
expect, one will derive no great profit from thatn this regard, the theorem that is
expressed through equation (16), § 3, viz.:

r =r; cog w+r, st w

can be cited as such a thing that, since it likewiggesses a general property of the
normals to a surface, will serve as a distinguishael in this special case. Furthermore,
from the property of infinitely-thin ray bundles that svaroved in § 8 that their cross-
sections at the two focal points are not infinitehyadl surfaces, but infinitely-small lines
that lie in the two focal planes, one can obtain fti®wing not-uninteresting- and |
believe, still not well-known- theorem for the normals to surfaces:

The two principal normal planes at a point of a surface will be intdeseby all of
the normals that are infinitely-close to that point in such a way thatlistances from
the intersection points to the given point of the surface will be ¢quak larger of the
radii of curvature in the one principal normal plane and the smaller of theitme other
one.

If one goes through the known theorems on the curvahdé¢h® normals to surface
then one will find them again in a general form, and \&itipeneral interpretation, in the
general theory of ray systems.

If one next considers the two principal normal intetisas for a point of a surface
that yields the larger and the smaller of the raficwvature then in the general theory
one will get, on the one hand, the two principal plaaes on the other hand, the focal
planes that correspond to these planes. The propeftiee normals to surfaces that are
connected with the principal normals will arrange teelves in the general theory in
such a way that one part of them will contain theqipial planes and the other part will
contain the focal planes. The principal planes predée/@roperties that they are always
real and perpendicular to each other, while the focalgd preserve the property that
both of the intersecting rays that are infinitelysdao the given ray will lie in them.
Likewise, in the general theory, the centers of prinapavature of the surface will split
into the limit points of shortest distance and theafqmints, and correspondingly, the
surfaces in which the centers of principal curvature lid aldo split into the limit
surfaces of shortest distance and focal surfaces., Herdimit surfaces will retain only
the property that was already expressed in their defmithat they bound the space,
inside of which, all of the shortest distances to any infinitely-close rays will lie, but
the focal surfaces will retain the property that theil be tangent to all rays of the
system. The two beautiful properties of surfaces afars of principal curvature that
were found byMonge namely, that first of all their outlines alwaystersect
perpendicularly, from which, one might also considen{soof space, and secondly, that
the curves of regression of all developable surfaces witch the normals can be
combined are the shortest lines on the surface of seatgurincipal curvature, will be
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lost for the limit surfaces of shortest distancewadl as the focal surfaces of the most
general ray system, and will become special propertias lielong to the system of
normals to a surface.

The two families of curvature lines of surfaces, ias@s they have the property that
the normals that belong to them will define developahlgaces, will appear in the
general ray systems as the two families of developabfaces that were denoted 8y
andQ, in 8 5. However, on the other hand, the rectilineaiasasO; andO; can also be
considered to be the curvature lines of the surfacegubecthe curvature lines will
sweep out the surface in the special case in which allar@yaormals to a surface when
they coincide with them.

The umbilic points of surfaces, for which the two pipat curvature centers will
coalesce, such that all infinitely-close normals vgth through the same point of
coalescence, and at which the principal normal plandislagie their well-defined
directions, are found in the general theory as the ipahcays whose infinitely-close
rays all go through a point, and their principal plamessfocal planes, are undefined, as
well.

Euler's theorem, which teaches us how the radii of curvatu@ndrbitrary normal
section is determined from the two principal radii ofvalure and the angle that its plane
makes with one of the principal planes, is included apeial case in the general
equation (18), 8 7, which goes Euler’s equation for3 =/ 2,r1 = pi, 12 =0, . The
general method in 8 7 also allows one to understand thesraficurvature of the normal
section of a surface from a new, not-uninteresting, viéwtpan that it shows that the
rotation angle of the radius of curvature of a norse&tion with a normal that starts at an
infinitely-close point on the plane of that sectisinen computed along the entire length
of the radius of curvature, will be equal to a right angte

If one draws the normals to a surface at two infinitely-close poamd,gives them
the well-defined length for which their rotation angle is equal to a ragigfle then they
will represent the curvature radius of the surface at theseinfuately-close points for
the normal section that goes through them.

The Gaussiancurvature measure of the surface is found in the gengralystem as
the general concept of the density measure, and the sikprder it as the reciprocal
values of the products of two principal radii of curvatuveresponds completely to the
expression for the density measure that was given irfr8r@,which, that would be equal
to the reciprocal value of the products of the distaficen the two focal points of the
ray to the point in question. For the ray systemsdhanormals to a surface, and in turn,
also normals to an entire family of its parallel scefs the density measure will be
completely identical with the curvature measure, sinca@ngtpoint of space the density
measure of the rays will be equal to the curvature measiuthe parallel surface that
goes through that point. This also shows how the cosidbpt Gaussintroduced into
science rigorously carry with them the character oé tgenerality, by which they can
extend their influence far across the domain in whicl treginally came about.

Berlin, in October 1859.
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