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INTRODUCTION.

1. The first research relating to the general propedfesystems that are composed
of light rays goes back to the year 1682, where caustieswrere treated, as well. It is
due to Tschirnhausef)( who proposed to find the equation of the caustic ftéaon in
the particular case where the incident rays are paiaild contained in the same plane,
while the reflection takes place on the circumfereoica circle. This problem, which
seems quite simple today, was quite difficult back tlam the solution that was given
by Tschirnhausen was falsely attributed to Cassini, Mati@nd de la Hire, who were
named curators by the Academy of Sciences. Moredwerattention of the geometers
was directed to that genre of questions, but they digpaonse to appreciate all of their
importance in optics. Bernoulli, Carré, I'Hbpitalnch several other mathematicians
pointed out some general method for obtaining the equatipfané caustics that were
due to reflection and refraction, regardless of the eatdirthe reflecting or refracting
curve. In a more recent epoch, the theory of planastics was perfected, notably, by
Quetelet, who showed that in a great number of cases ttaustics, although they might

() TSCHIRNHAUSEN,Inventa nova, etc., Acta eruditorugear 1682, pp. 364.
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be quite complicated in their own right, are only tevelopments of other curves that
are really quite simple, and which are generally efidgs ().

2. Malus was the first to consider systems of rayspace. It was in a paper on
optics that was published in 1818 that he proved, by means of a very laborious
analysis, the theorem that often bears his name.t filemrem can be stated in the
following manner:When all of the rays that comprise a luminous pencil are normal to
the same surface, they will preserve that property after an arpitramber of reflections
by arbitrary surfaces, and an arbitrary number of refractions during theirsages
through bounded media that exhibit arbitrary refringent poweks. error in calculation
led Malus to refuse to give that proposition all of generality that it deserved, and to
restrict it to the case of a single reflection orraefion. In 1822, Charles Dupin
recognized that Malus’s theorem extended to an arbitramybau of reflections and
refractions, and substituted a very simple geometricfpnaihie case of reflection for the
analytic considerations that Malus had uséd (Timmermans 4 and, after him,
GergonneY), treated the case of refraction in an analogous manne

The importance of Malus’s theorem, which is, morepagplicable to only isotropic
media, and its relation to the theory of caustics,easy to conceive. Indeed, if a system
of light rays can be considered to be composed of lihas are normal to the same
surface then it will result immediately that thedsoof the intersections of those rays —
i.e., the caustic surface — is nothing but the surfatle tmio sheets that is the locus of
centers of curvature of that orthogonal trajectoryayfs; the theory of caustics is thus
found to be very closely linked with that of the cunratof surfaces.

3. The geometers that we just spoke of were occupied exdiusin isotropic
media. As we will see, the systems of rays thapagate in media of this type enjoy the
property of always being normal to the same surface.birigfringent or anisotropic
media, this is not generally true, which is a fact teatls one to qualify the systems that
propagate in such media as beimggular. The study of these irregular systems was
begun for the first time by Hamilton in his treatibattwas entitled’heory of systems of
rays and especially in a supplement that was published in 330r( these important
papers, Hamilton took the principle of least action asshasting point, which, when
applied to optical phenomena, will lead to the condition:

sl vds=o,

() QUETELET, “Mémoire sur une nouvelle manéiere desatérer les caustiques, soit par réflexion,
soit par réfraction,” Nouveaux Mémoires de I'Académie dexBlies, t. lll, pp. 15.

() MALUS, “Mémoire sur I'Optique,” Journal de I'Ecole Btechnique, Letter XIV, pp. 1.

() CH. DUPIN, Développmentde Géométried” memoir: “Sur les routes suivies par la lumiere dans
les phénomenes de la réflexion et de la réfraction, 1p.

() TIMMERMANS, Correspondance mathématique et physiquie pp. 336.

() GERGONNE, “Démonstration purement géométrique du printopdamental de la théorie des
caustiques,” Annales de Mathématiques pures et appliqué&d, pp 307.

(®) HAMILTON, “Theory of systems of rays,” Transactioofthe Irish Academy, v. XV, pp. 69 and v.
XVI, pp. 1 and 94.
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whereds is the element of the trajectory that is followleg the light ray, and is the
velocity of light that is calculated under the hypothediemission. This makes the
solution of all of the questions that relate to rdftat and refraction- whether ordinary
or extraordinary— depend upon the existence ofcharacteristic functionfor every
optical system of rays. That function is generd#yined in the following manner:

V:Jvds:f(x, v,z X,Y,Z, {).

X, Y, zare the coordinates of the final point of a lumingagettory,X, y', Z are those of
the initial point, andy is a constant that depends upon the color. What digtimggs
Hamilton’s research on the subject of that integslthat it regards the variable
coordinates as depending upon the extremities of the mdytkee color, while in the
statement of the principle of least action theseeex#r coordinates and color are regarded
as constants, and only the intermediate points wherectieth or refraction takes place
are assumed to vary. In the report that Hamiltomeman this work to the British
Association 1), he remarked that under the hypothesis of undulatioas;haracteristic
function V will represent theime of propagation of light from one point to another
However, he confined himself to indicating that viewpomithout otherwise taking
advantage of it, which is easily explained by the lackawbr that the wave theory of
light enjoyed in England in that era. Moreover, Hamnltwas occupied almost
exclusively with regular systems of rays, and spoke migentally of the modifications
that would be introduced into these systems by passing thingghngent media.

4. Hamilton’s work did not attract the attention thatléserved at first, and it was
only after a long interval that we see Kummer retarthie same subject in 1859, in a
very remarkable paper that bore the title of “Gendnabty of rectilinear ray systems
(®.” The celebrated German geometer propogedstudy, in full generality, the
properties of a system of lines that fills up all of space or a@onif space, in such a
manner that one ray or a well-defined number of rays will pass through agy goint.
Taking a purely geometric viewpoint, at no point did heceon himself with the changes
in the directions of rays that were produced by refleaviorefraction, nor the relations
between these directions and the system of ligheaiaWoreover, he rose to a degree of
generality that was, without a doubt, of consideraltler@st to geometry, but useless to
optics. Indeed, the rays that move through an arbjtfaosynogeneous medium, and
regardless of how they were introduced, will enjoy thepprty— and one will find the
proof of this later or- that their direction has a relationship with thegemt plane to the
wave surface that is well-defined and constant for #meesmedium. It results from this
that the optically-realizable systems of rays inveegimedium are not arbitrary, but there
constitution is intimately connected with that of thedium, and that it presents a certain

() Report of the first and the second meetings of British Associatiche advancement of science.
pp. 545.

() KUMMER, “Allgemeine Theorie der gradlinigen Strahlgsieme,” Journal de Crelle, t. LVII, pp.
189.
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number of peculiarities that would not belong to a systd lines that was chosen
completely arbitrarily.

The consequences that Kummer’s theory implied whenresgicted oneself to
optically-possible rays were finally developed by MeibauBr (That author was
concerned almost exclusively with caustic surfacesvak in his paper that the relation
that exists in an arbitrary homogeneous medium betweseditection of a ray and that of
the tangent plane to the wave at the point where itetshy that ray was proved for the
first time, and stated neatly.

5. The rapid historical outline that you just read sugiitly indicates the type of
guestions that | propose to treat. My goal is to botipkiy and generalize the proof of
the principles of geometrical optics. The method to whibave taken recourse consists
essentially in introducing the consideration of light esnto the solution of problems
that spring from that branch of applied mathematics, @so that of the time that is
employed by light in order to propagate from one poinanother. That manner of
proceeding will offer the advantage of permitting onéatee for one’s starting point, not
the laws of reflection and refraction in isotropicdiae but the general principle that was
stated for the first time by Huyghens under the naméefprinciple of enveloping
waves and which is applicable to any type of homogeneous mediuWith the
introduction of time, the theorems of geometrical agptill thus take on a form that
permits one embrace the properties of luminous trajeston any homogeneous medium
— whether isotropic or anisotropic — in a single statéme

The present paper has the objective of studying the gemerpérties of optical
systems of rectilinear rays; i.e., the systems phapagate in an arbitratyomogeneous
medium @). The principles that are presented in it will ultely receive their
application in other papers that are dedicated to apdasatfaces and caustic surfaces.
Moreover, the results that one gains for homogeneousiamean be extended to
heterogeneous media, which can always be considerede t@omposed by the
juxtaposition of an infinitude of infinitely-thin homogenevlayers.

|. — Definitions and notations.

6. Let there be a center of disturbance in an arbithempogeneous medium, from
which a homogeneous wave emanates. The locus of powsich the vibratory motion
is communicated after a given time interval will cansé a certain surface. By
following each of the directions that start from theninous point, the velocity of
propagation of that motion will be constant, and théases that correspond to different
time points will all be similar and similarly-placedtkv respect to the luminous point.

() MEIBAUER, Theorie der gradlinigen Strahlensysteme des Lidbslin, 1864.

() The principle results that are contained in this papee been recorded in a note that was presented
to the Academy of Sciences on 10 September 1866mptes rendus des séances de I'Academie des
Sciencest. LXIII, pp. 458.
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Since the medium is homogeneous, the form of thesacasfand their orientation in the
medium will be independent of the point from which tight emanates. Each of them
will obviously have its center at the luminous point toak it refers; moreover, since the
velocity of light cannot become infinite along any direg, they will be closed surfaces.
We call themcharacteristic wave surfaces of the mediurindeed, it is clear that a
homogeneous medium is optically defined, at least, fgivan color, when one knows
that locus of points to which a vibratory motion thatrresponds to that color and
emanates from an arbitrary point of the medium willdoenmunicated after a given
length of time. Knowing any of the characteristic wasurfaces of a homogeneous
medium — for example, the one that has its centdreabrigin and which corresponds to a
unit of time — it is easy to find all of the others; irder for one of those surfaces to be
well-defined, it will then suffice to give its center attie time interval to which it
corresponds.

In order for two homogeneous media to be identicahfthe optical viewpoint (while
considering only light of one well-defined color), itnecessary and sufficient that the
characteristic wave surfaces of these two mediadb@aespond to the same time — for
example, a unit of time — be identical. Meanwhile, waark that if two homogeneous
media are optically identical then light can nonktbe experience a change of direction
upon passing from one to the other; that is what alwagpdms whenever these media
are placed in such a fashion that the homologous radaigrseof the characteristic wave
surfaces are not parallel, but that is true when onerpoges two layers of the same
crystal that was sliced along different planes. riteo for two homogeneous media to be
considered as composing a continuous whole, it is therefeszessary and sufficient that:

1. The characteristic wave surfaces that correspone tanihtime be identical.

2. The homologous radius vectors of these surfaces béeparal

For isotropic, homogeneous media the characteristic waxaces will always be
spherical, so the first condition will be sufficient.

The homogeneous media whose characteristic wave ssirtiaat correspond to a unit
of time are similar, without being identical, cons#at group and enjoy a certain number
of common properties. For example, one has the groigotwbpic, homogeneous media
whose characteristic wave surfaces that correspoaditit of time are all spheres, but of
different radii.

7. The characteristic wave surfaces of a homogeneous meduiwe one or more
sheets, according to whether or not the light motioeaaoh direction can propagate in
that medium with a unique velocity or with severaloedies, respectively. The media
whose characteristic wave surfaces have only one sheeatalledunifringent; the ones
for which these surfaces have two sheets are cdllegfringent From another
viewpoint, one distinguishes tligotropic media; i.e., the ones in which light propagates
with the same velocity in all directions, and #Hmsotropicmedia, in which the velocity
of propagation of light will vary with the directionCalculation and experiment have
consistently shown that if one accounts for onlytthasverse vibrations, which seem to
be the only ones that are suitable for producing the lumsiedfect, then any anisotropic,
homogeneous medium will necessarily be birefringemt.the unifringent or isotropic,
homogeneous media, the characteristic wave surfadesbwiously be spheres. As for
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the birefringent or anisotropic media, physical opticts te¢ that they divide into two
classes: For the one, the characteristic wave ®gfae composed of one spherical sheet
and another sheet that takes the form of an ellipsbréwvmlution, such that these two
sheets will envelop each other and touch at the extesoti the axis of the ellipsoidal
sheet: These are tlmiaxial media. For the others, the characteristic wave ssfaall

be surfaces of fourth degree that are indecomposablesactind-degree surfaces: these
are thebiaxial media. We remark that at present the uniaxial medigbeaconsidered to
be isotropic relative to the rays that correspond eosfiherical sheet and which one calls
ordinary rays All of the theorems that were proved for isotropiedia will thus be
applicable to uniaxial birefringent media when one confomesself to ordinary rays in
the latter media.

8. We let:
f(x,y,2 =0
represent the equation of the characteristic wave®idéa homogeneous medium that

has its center at the coordinate origin and corresptmds unit of time. That of the
characteristic wave surface that has its centdreabtigin and corresponds to tinhewill

f(x,y’ Zj .

When the latter equation is assumed to have bdeedsfor T, we will write:

Xy, 2=T.

The equation of the characteristic wave surfaeg tias its center at a point whose
coordinates area( b, ¢) and corresponds to the tirfiewill be:

f(x—a’ y— b’ z- cj _ 0.
T T T

or
px—-a,y—-b,z-¢)=T.

If there is reason to consider two different meatien we will give the symbol of the
function f or ¢ the index 1 when the medium is the one in which iticident and
reflected rays propagate, and the index 2 for tadiain which the refracted rays move.
When one is dealing with a birefringent medium, itthdiceso or e, when added to the
symbol of the function, will serve to distinguidiettwo sheets of the characteristic wave
surfaces.

When we speak of reflection and refraction, weagsvsuppose implicitly that the
separation surface where the change of directiorayd takes place is continuous; i.e.,
that one can draw only one tangent plane at eaich pbthat surface. That restriction is
essential, because most of the theorems that weamile at will cease to be true when
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the separation surface is composed of several portiosisrfaces that intersect at angles
that are different from zero; for example, whensbegace is polyhedral. The case where
the separation surface presents one or more projestiitagty points will likewise be
reserved.

9. To abbreviate, we denote the ordinary rays with the syritjo and the
extraordinary rays by the symb@)( When the light passes from a birefringent medium
into another, likewise birefringent, medium, there wgknerally be four types of
refracted rays: We leb(0) denote the ones that one obtains by taking the ordategts
of the characteristic wave surfaces in the two mediaile the other three types of
refracted rays will be denoted in an analogous manner kgythbols ¢, €), (o, €), (g, 0),
where the first letter will always refer to thesfirmedium — i.e., the one in which the
incident rays move. Moreover, one knows that thetcoctson that gives some of these
refracted rays can become impossible, and their nunalmereduce to 3, 2, 1, and even
zero. When the light that emanates from a pointithattuated in a birefringent medium
is subject to a reflection, there is likewise reasmmistinguish four types of reflected
rays, which we denote by the same notations as inatdee af refraction. However, here,
one must remark that the reflected ragsd) and €, €) will always exist, whereas the
construction that gives the reflected rays € or (e, 0) can become impossible.
Moreover, there is an essential distinction to belenbetween the reflected rays ¢)
and €, e), on the one hand, and the reflected ray€) and €, 0), on the other. For the
rays of the first group, the same sheet of the cheniatic wave surface will correspond
to the incident and reflected rays; for those of thems@group, the two sheets will be
different. As is easy to imagine, it will then résthat the latter type of reflection will
offer more of an analogy with refraction than it daeth reflection, properly speaking.
We say that there iflomologous reflectionvhen the incident and reflected rays
correspond to the same sheet of the characteristie wavace of the medium, and that
there isantilogous reflectionn the contrary case. The rays @) and €, e) will therefore
be the rays that are subject to a homologous refleatibite the raysd, e) and €, o) will
experience an antilogous reflection. In unifringent imedeflection is necessarily
homologous.

10. If the directions of the incident rays that fall @meflecting or refracting surface
in a homogeneous medium agree at the same point thatiasedon one sideof that
surface then that point whether or not it is the one that provides lightvill bear the
name ofreal, luminous point If the point of agreement of the incident is sitdada the
other sideof the reflecting or refracting surface then we wal, to abbreviate, that these
rays emanate fromwrtual, luminous point When all of the reflected or refracted rays
that propagate in a homogeneous medium are directedhresiashion that these rays or
their prolongations converge to the same point, weaalll that point aotal focus If,
amongst the reflected or refracted rays that movehamogeneous medium, there is an
infinitude of them that form a conical surface, and whiblyg themselves or their
prolongations, agree at a point then that point wiltdékéed apartial focus In the case of
reflection, a total or partial focus will be calledal if it is in front to the reflecting
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surface andirtual if it is behind it; in the case of refraction, the opfwill be true. If
there exists a sequence of partial foci that form dimeous line then that line will
receive the name dbcal line

11. We conclude these preliminary considerations with sonp@itant remarks that
relate to waves.

When the rays that move in a homogeneous medium desus from a point that is
situated in that medium, or when, although they emafnate a point of the medium,
they are subject to one or more reflections, the lofike points that are attained at the
same instant by the vibratory motion that propagates alwsg rays will again bear the
name ofwave surface However— and this is the point on which one cannot insist
enough- these reflected or refracted waves will not, as vlesge later on, generally
have the form of characteristic wave surfaces imtbdium in which they propagate, and
will no longer necessarily constitute a system of lsimiconcentric surfaces. For
example, in an isotropic medium, these waves willspkerical in only three special
cases.

Let a system of rays originate from a luminous pdinat is situated in a
homogeneous medium, and currently propagates, eitheminmbadium or in another
homogeneous medium, where these rays can have beentedlp an arbitrary number
of reflections or refractions, but have traversed dwgnogeneous media. The wave that
corresponds to these rays can have several sheetswden the medium in which it
presently moves is isotropic; this will be the case,general, if these rays have
previously traversed birefringent media fortiori, the wave will have several sheets
when the rays presently propagate in a birefringent mediamom that, it is essential to
give more precision to the theorems that we shatesto group the rays that, having
originally issued from the same luminous point, propagasn arbitrary, homogeneous
medium in systems such thie rays of the same system will correspond to waves that
are each composed of one unique and continuous shiéetcall the rays that belong to
such a systemays of the same kind

In order for rays that originally issued from the sgmo@nt, having traversed only
homogeneous media and presently propagating in such a medibenpf the same kind,
from the definition that we just gave, it is obviouslg@ssary and sufficient that:

1. If the medium where the luminous point is foundirefringent then these rays
should all be originallpf the same nature;e., all ordinary or all extraordinary.

2. They have been subjected to the same reflectiotsrefractions by the same
surfaces in the same order, and consequently, have sedvéne same homogeneous
media.

3. In each of these reflections or refractions, dlvays will either all preserve their
nature — i.e., their ordinary or extraordinary quality th@y will all change their nature
together.

One should not confuse the term “rays of the sam@” kurith the term “rays of the
same nature.” Some rays can be of the same nature alligrdinary or all extraordinary
- relative to the medium in which they move, withowoabeing of the same kind. Rays
of the same kind are necessarily of the same nature.
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12. Finally, consider a system of rays of the same kimat propagates in an
arbitrary, homogeneous medium. L®tenote a wave that is composed of one unique
and continuous sheet that corresponds to these rayseataa instant, and |€&® denote
an arbitrary ray of the system. The mycan meet the wav® at more than one point;
however,among thentersection points of the ray R with the wave S, there will aay
one and only one of them where the vibratory motion takes place on theatath&
instant consideredand it is always that point that we will be referriogwthen we speak
of the point where the rady meets the wav8. That remark must not be lost from sight,
because what we will have to say about that pointiveller be applicable to the other
points of intersection of the ray with the waveS when there exist more than one of
them. Moreover, one sees that whenever a wavetibyreray of the system to which it
corresponds at more than one point, all of these pantept for the ones where the
vibratory motion takes place on the rRyat the instant considered, will necessarily be
points of intersection of the rd&ywith the other rays of the system.

Il. — Huyghens'’s principle, or enveloping waves. — General
construction of reflected or refracted waves.

13. The only notions that geometrical optics borrowanfrthe theory of wave
mechanics are:

1. The knowledge of the form of the characteristicvevaurfaces of different
homogeneous media.

2. The known theorem that goes by the nameHoyghens’s principleor the
principle of enveloping wave?).

It is, above all, important to clarify the signifit@ and scope of that fundamental
principle, since we will, so to speak, develop only safiés consequences in all of what
follows.

We first place ourselves in the simplest case, whedight that emanates from a
point that is situated in an indefinite homogeneous megitopagates in that medium
without being subject to reflection or refraction. t e be the luminous point, and I8t
denote the position that is occupied by the wave that a@sfrom the luminous point
after the timeT +t. The surfaceS andS’ will be the characteristic wave surfaces of the
medium; they will therefore be similar and similagiaced with respect to the luminous
point O. It follows from this that the wav8’ can be regarded as the envelope of the
characteristic wave surfaces of the medium thatlaseribed when the various points of
the waveS are taken to be the centers and corresponding to ta¢; tinese characteristic
wave surfaces will be whatuyghensalledelementary wavesOne sees, moreover, that
in order to get the direction of the ray that passesitiir an arbitrary poirA of the wave
S’ it will suffice to join that point to the center tife elementary wave that touches the
waveS’atA. Of course, if the medium is birefringent then onestiiake the elementary
wave to be one or the other of the sheets of the ctemistic wave surface of the
medium, according to whether one is dealing with the prdjpegaf ordinary or

() HUYGHENS, Traité de la lumiéreLeyden, 1690.
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extraordinary waves. The results that we just staaadoe expressed in another form by
saying that in order to study the propagation of the wave #ftetimeT, one can
suppose that the luminous poift has been suppressed, on the condition that one
considers each of the points of the w&é¢o be a center of disturbance, but while
regarding each of the elementary waves that emanatesthe various points of the
surfaceS as being active only at the point where it touchescttimamon envelope. As
long as one confines oneself to the simple case opritygagation of light in the same
homogeneous medium, Huyghens’s principle is only the sgje of an identity, and
there is no need for a special proof in order to see d@hat given instant, the perceptible
motion on each of the elementary waves cannot béeapoint where it touches the
enveloping wave. However, Huyghens did not stop theyeaBort of intuition, he
arrived at the generalization of the principle of enpglg waves and applied it to the
construction of reflected and refracted waves. Thecipi® when conceived in its full
scope, can be stated as follows the various points of a surface are successively or
simultaneously arrived at by the vibratory motion that emanates &duminous point,
the wave, at any instant, will always be the envelope of the mimmewaves that
emanate from the different points of the surface, when it is coadidethe position that

it occupies at that moment; moreover, the ray that passes through an arlptvent of
the wave will also pass through the center of the elementary wavietiches that point
of the enveloping waveThe surface where one finds it can be either a \wakface or a
reflecting or refracting surface, and in turn, the eletaiey waves can correspond to equal
or unequal times. Taken with that general meaning, Huyghensiciple is far from
obvious in itself, since it pertains to the case in whiehwave propagates in the same
homogeneous medium without reflecting or refractingdoles not suffice to remark, as
Huyghens’s did- and after, him Young and many other autherhat the elementary
waves shrink more and more in measure as one approheh&sveloping wave. As long
as one does not introduce the notion of interference,can indeed prove that on each
elementary wave at a finite distance from the comevelope the vibratory motion will
be very small with respect to that on the envelopejthis not infinitely small ). It was
only in the work of Fresnel that it was proved rigorouklgt the elementary waves will
be destroyed by interference at all of the points twtnot belong to the common
envelope, and that the use of Huyghens'’s principleusddo be justified in every case.

15. We therefore take that principle to be our poindeparture, and before passing
to the general construction of reflected or refractedesawe shall apply it to the
solution of a problem that will constantly present ftselus in the sequel. Let a wa%e
be given that corresponds to a system of rays of @heestype and propagates in a
homogeneous medium. As we have already remarkedyévat will not generally have
the form of the characteristic waves surfaces of rtieglium in which it propagates,
because the rays cannot issue from a point that idesitirathat medium, and even when
they do emanate from a point that is situated in tlestimm, they can be subjected to one
or more reflections. When the position of the w&we known at a certain instant, it will
amount to finding the position of that same wave atpositive or negative time- i.e.,

() That is what Verdet proved using analysis in the fiessons in the course in higher optics that he
taught at the Sorbonne in 1865.
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an epoch that is later or previous byo the instant considered — when one supposes that
during the timeT, the wave is not subject to either reflection oraetion. To that effect,
from the principle of enveloping waves, it will sufi¢co describe each of the points of
the first wave as being the center of a charactengtice surface of the medium that
corresponds to a time If the medium is birefringent then one can takedittbnary or
extraordinary sheet of the characteristic wave surfacegrding to whether the rays of
the system themselves are ordinary or extraordinasp,.reThe envelope of the portions
of the characteristic wave surface thus described,haduie found in front of the first
wave whenT is positive, and behind that wave whEns negative, will be the desired
wave. It can happen that the wave that is obtained danmof that construction is, in
whole or in part, outside the limits of the mediulmttis what we express by saying that
the wave is, in whole or in partjrtual. The consideration of virtual positions of the
wave — i.e., the positions that it occupies in the epdeiore or after the one in which
that wave passes through its real positions, if the uneah which it moves is continued
beyond the limits that separate the contiguous medidl-b&vbf great help to us in the
proof of several theorems.

We further remark that, from the construction that wst pointed out, whenever a
wave that propagates in a homogeneous medium does notdeoimith one of the
characteristic wave surfaces of that medium, the uanmmsitions that it will successively
occupy will no longer constitute a system of similad aoncentric surfaces.

15. It is easy to translate the preceding constructitmanalytical language. Indeed,
let:

) Ux,y,z)=0

denote the equation of the wave considered in the posit@nttbccupies at a certain
moment that is taken to be the origin, and let:

filx,y,2 =0

be the equation of the sheet with the same natureeasays of the characteristic wave
surface of the medium that is described by having itgiroras the center and that
corresponds to a unit of time. The equation of the chernatic wave surface of the
medium, when it is described by taking an arbitrary pinty’, Z) of the original wave
to be the center and corresponding to the imaill be:

@) fl(x—x’ y— y’ z- 2) o

T T T

if one considers only the sheets of that surfaaehive the same nature as the rays.

The wave after the timeé will be the envelope of the surfaces that areesgmted by
(2). In order to obtain that envelope, it is nsegg to eliminate one of the three variable
parameterx, y, Z from equations (1) and (2) — for exampte,~ which will give an
equation of the form:

(3) P(xy,zX,Y,Z,T)=0,
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which contains only the two arbitrary parametérandy’. If one eliminatex' andy'
from equation (3) and the two equations that one obtaindiffierentiating them with
respect to the two variablgsandy’, which are:

d_q):o, d_cD:O,
dx dy

then one will arrive at an equation of the form:

F(x,y,zT) =0,

which will represent the wave in the position thatdtupies at the timé.

16. We can now begin the general problem of the construaiioreflected or
refracted waves. Let two homogeneous media be sedabgt a continuous surface.
Suppose that a system of rays of the same kind propagate® iof these media that
originally issue from a luminous point that is situatedhat medium or in any other
homogeneous medium, but having had to cross only homogen&ulis. nThat system
of rays will correspond to a system of waves that weigadent wavesand since the
rays will be of the same type, each incident wave lellcomposed of a unique and
continuous sheet. When the incident rays encountesdparation surface of the two
media, the light will divide — at least, in generahtoitwo parts: One of them will be the
path that turns back into the first medium and isecakflecting while the other one will
penetrate into the second medium and is ca#&acted

Having said that, consider the incident wave in a cepasitionS where it cuts the
separation surface of the two media, and propose toHmgasition of the reflected or
refracted wave; we further make use of the principlerofeloping waves. In the first
place, suppose that one is dealing with a refracted wdltgen the various points of the
curve along which the wav@cuts the refringent surface are taken to be centeesywdin
describe characteristic wave surfaces of the secondimebat correspond to the tinie
One will then seek the intersection of the incidentvevat a timer after the waves with
the refringent surface, and when the various points ofcinae are taken to be centers,
one will describe characteristic wave surfaces insg@nd medium that correspond to
the timeT — 7. One gives all of the positive values that are between zeroTaadd all
of the negative values that are between zero andtaircéimiting value for which the
incident wave becomes tangent to the refringent surfadec@ases to intersect it. The
envelope of the portions that are situated in the seceadldum of the characteristic wave
surfaces thus described at the various points of thegefit surface, when taken to be
centers, will be the refracted wave after the timeln other words, when each point of
the refringent surface is taken to be a center, onedegtribe a characteristic wave
surface in the second medium that corresponds to altimg wherer is the interval that
elapses between the moment at which the incident wasses through the positié
that was taken to be the origin and the one at whicpasses through the point
considered, and that tintewill be taken to be positive or negative, according tothére
the first of the two moments is earlier than oedahan the second one. The envelope of
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the portions of all these characteristic wave surfabas are situated in the second
medium will be the desired refracted wave. A consiachat is entirely similar to the
preceding one will give the position of the reflectedsevafter a timel. However, in
that case, the characteristic wave surfaces thatusé describe at the various points of
the reflecting surface, when they are taken to beecgnwill be those of the first
medium, and it is the envelope of the portions of theracteristic wave surfaces that are
situated in the first medium that will be the desirefiected wave.

In order to get the directions of the reflected dracted rays that provide a given
incident ray, one must look for the points where theratteristic wave surface, which is
described at the poirA where the incident ray meets the separation surfalieh is
taken to be a center, touches the common envelopg reflected or refracted — and join
these points to the poi#. In the case of reflection, one will always ohtai unique
reflected ray by that construction if the first mediisrunirefringent, but one can find
two of them if the medium is birefringent. In the ca$¢he refraction, that construction
will never give a refracted ray if the second mediumefangent, but can give two if it is
birefringent.

If the second medium is birefringent in the case afogibn, or if the first medium is
birefringent in the case of reflection, then the m@#ed or refracted wave will generally
have two sheets, which signifies that a system oflentirays of the same type will then
correspond to two systems of reflected or refracted tlagt must be regarded as having
different types.

It might happen that when a certain point of the s surface is chosen to be a
center the characteristic wave surface that wasridescin the preceding construction
does not intersect any of the ones that are describeal tvbeother points of that surface
are chosen to be centers, and consequently does nottheucbmmon envelope. When
that is the case, there will be no possibility ofleetion or refraction. If the second
medium is unirefringent and the characteristic waveaserfthat is described when a
certain pointA is chosen to be a center does not touch the conemeelope then that
will indicate that there is no refractionAtand that, in turn, the incident ray that reaches
A will be subject to a total reflection at that point.the second medium is birefringent,
in that one of the sheets of the characteristic wauréace that is described whénis
taken to be a center does not touch the common envelagepne must conclude that
there is only one refracted ray. However, when any @fstieets of that surface touch
that common envelope there will be total reflectibdow, examine the case of reflection.
If the first medium is unirefringent then each of tferacteristic wave surfaces will
necessarily touch the common envelope, and in turn,ireictent ray will correspond to
a unique reflected ray. |If the first medium is birefangthen that sheet of each of the
characteristic waves surfaces that has the sameereduhe incident ray will necessarily
touch the common envelope, and in turn, each incident dhplways correspond to at
least one reflected ray, which will be either the fayo) or the ray ¢, €), according to
whether the incident ray is ordinary or extraordinargpreHowever, the other reflected
ray, which will either the rayo( €) or the ray ¢ 0), can be absent, and will indeed be
absent when the sheet of the characteristic wavacithat is described when the point
of incidence is taken to be its center, which will davdifferent nature from that of the
rays, does not touch the common envelope.
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17. The general construction that we just presented peusiits find the equation of
the reflected or refracted wave when it is considereddrposition that it occupies after a
given time, while the equation that represents thed@mti wave is known at a certain
moment.

Indeed, let the position of the incident wave be gigea certain moment that we take
to be the time origin. The equation of that incidemate in the position that it occupies
after a timet — whether positive or negative — when measured by gaftim that
instant, can be obtained in the way that we indicabedea (15), and that equation will be
of the form:

F(x,y,z1t)=0.
Moreover, let:
filx,y,2 =0
and
f2(x,y,2 =0

be the equations of the characteristic wave surfacdgdirst and second medium, when
they are described by taking the origin to be the ceamdrcorresponding to a unit of
time, and finally let:

(& m =0

be the equation of the reflecting or refracting surface.

We propose to find the equation of the refracted wavenvithis considered in the
position that it occupies after a tire after starting from the instant that is taken to be
the origin. Leté, 7, { be the coordinates of a point of the refringent serfdmat is
attained by the incident wave after a positive or negdtime that denote bg. We will
have:

(1) F(n ¢ 6 =0,
and
(2) ¢(& 1, Q) =0.

From the preceding construction, one must describendmacteristic wave surface in
the second medium that corresponds to the Timed when the point, 7, {is taken to
be the center, a surface whose equation is:

(3) f(x_f y=1 Z_ijo
\T-6'T-0'T-6)

The desired wave is the envelope of the surfdwsare represented by equation (3).
In order to find that envelope, to begin with, anast eliminated and one of the three
variablesé, n, { — for example — from equations (1), (2), and (3), which will letal
one equation that only refers to the two varialaleameters and, an equation that will
be of the form:
d(x,y,zT, & n=0.
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If one eliminates the two variablésand 77 from that equation and the ones that one
obtains by differentiating it with respect to the abte parameterg and s, equations
that will be:

do

= 0,
dé

and
d_CD: O,
dn

resp., then one will definitively arrive at an equatidthe form:
Fxy,zT) =0,

which will represent the desired wave.

The path that one must follow in order to find the equatibthe reflected wave is
entirely similar to the one that we just pointed owtth the one difference that in
equation (3), the functiof must be replaced with the functién which represents the
characteristic wave surface in the first medium.

In the particular case where the directions of tih@dent rays agree at the same
luminous point — whether real or virtual — the equatiorthef incident wave must be,
upon denoting the coordinates of the luminous pointab¥,(c) and measuring time by
starting from the instant where the light begindat point:

fl(x—a’ y— b’ z- Cj:O,

t t t

and equation (1) will take the form:

fl(f—a,n—b’Z—CJ:O_
6 6 6

18. In order to clarify the preceding by way of araewle, we shall perform the
calculation of the refracted wave in the simpleecadere the two media are isotropic,
the separation surface is planar, and the rays @&mdom a point that is situated in the
first medium. We take the refringent surface tothexy-plane, and the perpendicular
that is based at the luminous point on that planketthez-axis. We letc represent the
distance from the luminous point to the refringpetdne, and we let andv' be the
velocities of light in the first and second mediesp. We take the time origin to be the
moment at which the light starts from the luminpoit, and we propose to calculate the
equation of the refracted wave in the position thafill occupy when the timé& is equal
to zero. That position will obviously be virtudlut we choose it anyway, because that
will be when the refracted wave has the simplesinfo In the particular case that we
have chosen, equations (1), (2), and (3) will bezom
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EHTH(E-o =V e, (=0, k=9 H G-+ @) =v 7"
Upon eliminatingd and{ from these three equations, one will get:
(A) VEHE+ P+ =V [(x= + y—n)° + 7],

When the latter equation is differentiated with respecthe two variable parameters
&andz that it contains, that will give:

V2E+VP (x=§) =0, Vin+V(y-n) =0,
resp., so:
V2 X vy
v 7
VX Viy
S hvv A

Upon substituting these values into equatiy; ¢ne will obtain the equation:

2 _ 2 2 _ 2
X2+y2+ (V'\/ZV) 2= (V'VZV)Cz

for the desired refracted wave, which, upon setting

Y
—=n,
\4

will become:

X+ +(1-n))Z= (1_n2)cz.
n

2

One immediately sees that the surfaces that tjusten can represent when one
gives various values towill all be ellipsoids or hyperboloids of revolati around the-
axis that have one of their foci at the luminousypand their center at the origin — i.e., at
the foot of the perpendicular that is based atldh@nous point on the refringent plane.
The refracted wave that corresponds to a timeishequal to zero will be an ellipsoid of
revolution ifn is smaller than unity; i.e., if the second medisntess refringent than the
first one. It will be a hyperboloid of revolutiowhen the second medium is more
refringent than the first one. If the positiontbé luminous point with respect to the
refringent plane changes — i.e., if one ma&e&ry — then the ratio of the axes of the

meridian curve will remain constant, because tladio rwill be equal to/n’-1 or

J1-n?, according to whethert is greater than or less than unity, resp. It reidult from
this that if the meridian curve is a hyperbola titemill keep the same asymptotes when
one makes vary.
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From Malus’s theorem, since the rays are all nortoathe wave in an isotropic
medium, one will see that when two isotropic med& separated by a planar surface,
and the incident rays emanate from a luminous pointishsituated in the first medium,
the refracted rays will be normal to a second-degrefacaiof revolution. In order to
have the refracted wave that corresponds to an arbitiragyT, it will suffice to give
each of these normals to that surface a length tlegjual tov'T. The surface that passes
through all of the points thus obtained will be the @éeswave.

19. The well-known construction that Huyghens describedrder to find the
direction of the reflected or refracted ray when onewsithe direction of the incident
ray and also that of the plane that is tangent éoréfflecting or refracting surface at the
point of incidence is easily deduced from the generaltoact®n of the reflected or
refracted wave. In order to do that, it will suffimeimagine that the incident ray is part
of a system of parallel rays of the same type,tti@separation surface is planar, and that
it agrees with the tangent to the reflecting or rgfmt surface at the point of incidence,
which is a hypothesis that changes nothing regarding teetidn of the reflected or
refracted wave. LeOA be the incident rayP, the incident plane wave that passes
through the point of incidenck, and letP’ be the position of the reflected or refracted
plane wave after a time that is equal to unity, whensomea from the moment when the
incident wave occupies the positi?h The waveP’ is tangent to that sheet of the
characteristic wave surface that is described by makingpthet A its center and
corresponding to a unit of time, and which has the sameenas the rays that refer to the
wave P’, where that characteristic wave surface is thaheffirst medium when one is
dealing with a reflection and that of the second one vamenis dealing with a refraction.
One will get the desired reflected or refracted ray bying the point of contact to the
point A. Moreover, the plan®’ will intersect the planar separation surface of the t
media along the same straight line as the incident waken considered in the position
that it occupies after a unit of time. In order talfthat position of the incident wave, it
will obviously suffice to describe the sheet of tharegteristic wave surface in the first
medium that has the poiatfor its center, corresponds to a unit of time, and hasame
nature as the incident rays, and to draw a tangent fHahés parallel to the plarfé on
the portion of that sheet that is found in the secoedium. One can further and
because it amounts to exactly the same thimlyjaw a tangent plane to that sheet at the
point where it is met by the prolonged incident @A, which is a plane that is
necessarily parallel to the plaRe

We thus arrive at the following construction, whiclm@hing but that of Huyghens:
When the point of incidence is taken to be a centexy,dascribes the characteristic wave
surfacesx andX’ of the first and second media, resp., that correspmrdunit of time.
At the point where the prolonged incident ray meetsstinéaceZ, if the first medium is
unirefringent, or the point at which it meets the shéeh® surface: that has the same
nature as it, when the first medium is birefringeng, iticident ray will be only ordinary
or only extraordinary, and one draws a tangent platieatossurface or that sheet, resp. If
the first medium is birefringent, and the incident raypash ordinary and extraordinary
then one will draw tangent planes to the two shektBeosurface at the points where
that prolonged ray meets those sheets. In order to geefifacted rays, through the line
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or lines of intersection of that tangent plane or @éawith the tangent to the separation
surface at the point of incidence, one draws as many napdgnes as possible to the
portion of the surfac&’ that is found in the second medium, and one joins thagof
contact to the point of incidence. In order to getrefeected rays, one draws as many
tangent planes as possible to the portion of the suFaleat is found in the first medium
that go through the same lines of intersection, andans the points of contact to the
point of incidence.

We shall not stop to discuss the known consequencds rélsalt from that
construction for birefringent media with two axes where characteristic wave surface
presents singular points and singular tangent planes.pdarkieular phenomena that will
then be produced for certain directions of the incidags have been studied from the
theoretical viewpoint by Hamilton and experimentally bpyd, and constitute what is
convenient to calinternal or external conical refraction

lll. — Relations between the direction of the ray and that of the
tangent plane to the wave. — Generalization of Malus’s theorem.

20. Let a system of waves be given in an arbitrary homeges medium that
corresponds to a system of rays that originally issom fthe same point with the same
type. Take one of these waves, which we denotg Ity be the starting point, and 8t
S, S” ... be the positions that are successively occupied bywéwe as it propagates
through the medium without reflecting or refractingonSider a ray of the system that
meets the wav& at the pointO, and the waves§, S, S” ..., at the point&, A, A", ...,
resp.

From the construction that was described above (14), wlah based upon the
principle of enveloping waves, the wa\gsS’, S”, ..., at the point#, A, A" ..., resp.,
will be tangent to the sheets of the characteristigensurfaces of the medium that have
the pointO for their center and correspond to different timekjlevhaving the same
nature as the rays. Since these sheets are simnifaces that are similarly-placed with
respect to the poird, and the pointa, A’ A” ... are found on the same line, the tangent
planes to the sheets at the poist\, A" ..., and in turn, also the tangent planes to the
wavesS S’ S% ... at the same points, will be parallel to each othafe then have the
following proposition:

THEOREM I. —When a system of rays that originally issue from the same point and
all have the same type propagates in an arbitrary homogeneous medium, thet tange
planes that are drawn to the waves that correspond to these rays at ttie pbere
these waves are met by the same ray will be parallel to each other.

We remark that this theorem is true, no matter whahber of reflections and
refractions the rays have been subjected to.

21. It results from the preceding that when a systenag$ that originally issued
from the same point and all have the same type propadgfatesgh an arbitrary
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homogeneous medium, the direction of one of these isagletermined when one knows
that of the tangent plane that is drawn on one of theesvthat corresponds to the system
of ray at the point where it is met by that ray, analt tturthermore, if the medium is
birefringent then the nature of the rays will be givémdeed, suppose one wishes to find
the direction of the ray that meets the w&vat a certain poinA. When an arbitrary
point is taken to be the center, one describes the ehéige characteristic wave surface
of the medium that has the same nature as the raysoargsponds to an arbitrary time,
and one draws a tangent plane to that sheet that keptoahe tangent to the wa&at
A. The radius vector that that joins the point of conta the center of the surface will be
parallel to the ray that passes through the paint

Conversely, if one is given the direction of onghaf rays of the system and its nature
then it will be easy to find the common direction of thegent planes to the waves at the
points where they are met by that ray. In order tahao, it will suffice to describe the
sheet of a characteristic wave surface of the medhah dorresponds to an arbitrary
time, and has the same nature as the rays from anaaylpoint that is taken to be the
center, and to draw a radius vector on that surfacasimrallel to the given ray. The
tangent plane to the sheet thus-described at the pbetews met by the radius vector
will have the desired direction.

These two constructions, which are reciprocal to edlobr, can be combined into the
following statement:

THEOREM II . —When a system of rays that originally issued from the same point
and all have the same type propagates in an arbitrary, homogeneous mednenwithe
exist a relationship between the direction of the tangent plane to #we what
corresponds to these rays and the direction of the ray that passes ttitmigbint of
contact that is constant in the same homogeneous medium for rays of theasane,
and that relationship will be the same as the one that exists betheeirection of the
tangent plane to the sheet of one of the characteristic wave surfattess medium that
has the same nature as the rays and the direction of the radius vectat@utface that
passes through the point of contact.

We express the relation that exists between thetwireof the ray and that of the
tangent plane to the wave at the point where it isbypehat ray by saying that these two
directions areonjugateto each other. If the medium is birefringent thenwilesay that
the two directions arerdinarily or extraordinarily conjugaté¢o each other when the ray
is ordinary or extraordinary, resp. As a special casmn happen that in a birefringent
medium the directions of the ordinarily or extraordiyaconjugate planes coincide with
the direction of the same line. In order for thisctmme about, it is necessary and
sufficient that upon describing the two sheets of aadtaristic wave surface of the
medium when an arbitrary point is chosen to be itgere and upon drawing a radius
vector that is parallel to that line, the tangentnpato these two sheets at the points
where they are met by that radius vector will be muwupdirallel. We express the
relation that exists between the direction of a plamé a line that are conjugate to each
other, both ordinarily and extraordinarily, by saying thHatse directions ardoubly
conjugate Therefore, in a birefringent medium with one axig direction of a line that
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is parallel or perpendicular to the axis of the mediand that of a plane that is
perpendicular to that line will be doubly conjugate.

22. The preceding theorem, of which Malus’s theorem is andpecial case, is the
key to most of the questions of geometrical optics. dyglan important role in the
theory of caustic surfaces and in that of aplanaticasas. We shall develop some
immediate consequences of it.

In isotropic or uniaxial homogeneous media, the charnatitewave surfaces present
neither singular points nor singular tangent planes.these surfaces are tangent to just
one plane at each of their points, and each ofaigeint planes to these surfaces touch at
only one point — each given direction for the ray is ggaje to a unique direction for the
tangent plane to the wave, when the nature of thénaaybeen assigned. Conversely, in
these media, each direction of the tangent to theewsaconjugate to a unique direction
for a ray of a given nature. The same thing will e tin birefringent media with two
axes, except for two exceptions, which are due to thetlfat in such media every
characteristic wave surface will present four singulangsoand four singular planes.
The four singular planes are the ones where the suida@ngent to a cone, instead of a
plane; they are distributed pair-wise symmetricallytan lines that pass through the
center. We call the directions of these two lisggjular directionsof the medium. The
singular tangent planes are the ones that touch tifi@ceualong a curve, instead of a
unique point. We shall examine the peculiarities thatlrésr the propagation of light in
birefringent media with two axes from the existenceheke singular points and singular
tangent planes.

23. In a biaxial medium, let there be a ray that beldogs system of rays that issue
from the same point and have the type. If that rapggates parallel to one of the
singular directions of the medium then Theorem Il b found to break down, and it is
no longer sufficient to determine the direction of taagent plane to the wave at the
point where it is met by that ray. All that one casat is that it this tangent plane will
be parallel to one of the tangent planes to the tbhattouches the characteristic wave
surface of the medium at that one of its singular gdimat is situated on a radius vector
that is parallel to the ray in question, and that thigént plane will remain parallel to
itself while the wave displaces. In general, the evdwes not present a singular point at
the point where it is met by a ray that is parallebte of the singular directions of the
medium, because if the wave at that point touchesagacteristic wave surface of the
medium at one of its singular points then it doesrastilt that it must be tangent to the
cone that touches the characteristic wave surfaceaatsingular point. It will suffice
that the tangent plane to the wave at that poiat ladstangent to the cone. The direction
of the tangent plane to the wave at the point whasenitet by a ray that is parallel to one
of the singular directions of the medium can gengrb# determined in a complete
manner only when one knows the changes in directi@h rasture that the ray was
subjected to before it propagated along the line that ieptigsraverses.

Meanwhile, there exists a completely special caseeviee can affirm that the wave
presents a singular point at the point where it is met tgy that is parallel to one of the
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singular directions of the medium. That is the onesr@hthe ray comes from an
infinitude of rays that combine into just one aftedaeting or refracting. The tangent
cone to the wave at the point where it is met by timathen has its generators parallel to
those of the tangent cone to the characteristic warfaces of the medium at that one of
its singular points that is situated on the radius vetitat is parallel to the ray in
guestion. When the wave propagates in a medium, itslamgrint will displace along a
line that will be parallel to one of the singular diiens of the medium.

24. In birefringent media with two axes, every singulangent plane to the
characteristic wave surface will be conjugate to an itefiaf radius vectors that form a
conical surface and will point to the different pointsleé curve on which that plane will
touch the surface.

From that, it will be easy to see that if, amongrtngs that issue from the same point
and have the same type and propagate in such a medium,igheme of them that is
parallel to one of the radius vectors of the charatiemwave surface of the medium that
IS conjugate to a singular tangent plane then therenedkessarily be an infinitude of
other rays in the system that are each parallel to ainthe radius vectors of the
characteristic wave surface that are conjugate tedhee singular tangent plane. This is
evident when the rays emanate directly from a luminmaist that is situated in the
medium. If they were subjected to a certain numbeeftéctions and refractions before
taking their present directions then one can remark dhanhg the last reflection or
refraction that made these rays take their presesttains, an incident ray that had given
rise to a reflected or refracted ray that was partdl@lne of the radius vectors that we
just spoke of, the tangent plane to the characteristi® warface of the medium that is
described by making the point of incidence be the centreapoint it is met by that
reflected or refracted ray will touch that surface glom curve. Therefore, from
Huyghens’s construction, all of the lines that join ¥aeious point of the portion of that
curve that is situated in the medium at the point oflerece will be either reflected or
refracted rays that come from the same incident rElyese rays will define a conical
surface, and each wave will be tangent to the sanme @ilong the curve that is defined
where it cuts that conical surface, which will be paratlebne of the singular tangent
planes to the characteristic wave surface of the umedi

We thus arrive at the following theorem:

THEOREM lll. —When a system of rays that issues from the same point and has the
same type propagates in a biaxial, homogeneous medium, if one draws a tangetd plane
any of the waves that corresponds to that system that is parallel tof dhe singular
tangent planes to the characteristic wave surface of the medium theplanat will
touch the wave along a curve. The rays that pass through the various pohdsafrte
will define a conical surface whose summit will be found on the sunfiaeee these rays
are subjected to the reflection or refraction that has given them phesent directions,
or at the luminous point, if the rays emanate directly from a point ¢hsituated in the
medium. Each of these rays will be parallel to one of the radiu®rgethat are
conjugate in the characteristic wave surface of the medium tortbalar tangent plane
to that surface that is parallel to the singular tangent plane to the waimally, while
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the wave propagates in the medium, its singular tangent plane will displhide
remaining parallel to itself.

It follows form this that whenever the tangent plaméhe wave in a biaxial medium
is parallel to one of the singular tangent planes tackiaeacteristic wave surface of the
medium, the direction of the ray that passes throdgh pgoint of contact will be
indeterminate, in the sense that this ray can be platalEny of the radius vectors that
are conjugate to that singular tangent plane.

25. In a birefringent medium with one axis, the two shedtthe characteristic wave
surface of the medium are tangent to each other@aptunts that are situated on a line
that passes through the common center of these tvatsstand whose direction is the
one that one calls thexis of the medium. Imagine a system of rays in suchedimm
that have the same type before the reflection wactbn that gives them their present
direction; these rays will correspond to a system afes with two sheets. If one finds
that some of these rays are parallel to the axieeofriedium then each of these rays that
is parallel to the axis will obviously meet the two skesf each wave at the same point,
because the ordinary and extraordinary velocitiesghtt Iwill be equal to each other
along the direction of the axis. Moreover, at tlesnmon point, the two sheets of the
wave must be tangent to each other, because at thattpeitangent plane to each of
these sheets must be parallel to the tangent plane tehdets that corresponds to the
characteristic wave surface of the medium at thetpuliere it is met by the axis, which
is a plane that is perpendicular to the axis. Thus:

THEOREM IV. —When a system of rays that issue from the same point propagates
in a birefringent medium with one axis, and those rays all had the sambdfge they
were subjected to the reflections or refractions that gave themgresent directions,
the two sheets of each of the waves that correspond to that systeyms will be tangent
to each other at the point where they are met by any ray that is ga@lhe axis of the
medium, and the common tangent plane to the two sheets of the wave atnthatllpose
perpendicular to the axis.

26. In isotropic media, the radius vectors of the ott@rastic surface are all normal
to that surface, which is spherical. In birefringentmevith one axis, the same is true if
one confines oneself to the consideration of thenargisheet of the characteristic wave
surface. That remark will permit is to deduce the foiflmgmheorem from Theorem 1V,
which is nothing but that of Malus:

THEOREM V. —When a system of rays that issue from the same point and all have
the same type propagate in an isotropic, homogeneous medium, or when adfystem
ordinary rays that issue from the same point and all have the samernypegate in a
uniaxial, homogeneous medium, these rays will always be normal to thehahvikey
correspond to, when it is considered at any of the positions that g#sgigely occupies.
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Malus’s theorem is found to be generalized in thdestant, in the sense that before
the rays penetrated into the medium in which they prgsembve, they can have
traversed arbitrary homogeneous media that are anisgtespwell as isotropic, and can
have been subjected to any number of reflections in timeshBa without this theorem
ceasing to be applicable.

Theorem V leads us to the following corollary: Thevea that correspond to a
system of rays that issue from the same point and & b@e same type, and which
propagate in an isotropic medium will define a systermudises such that any line that
is normal to one of them will be, at the same tin@mal to all of the other ones. That is
why one agrees to call theparallel surfaces. The same thing will be true for ordinary
waves in a birefringent medium with one axis. On thdreoy if one considers a system
of rays that issue from the same point and all hageséime type — viz., extraordinary, in
a birefringent medium with one axis, ordinary or extdawary in a birefringent medium
with two axes — then one will see that these raysept for some special directions, will
no longer be normal to the waves, and that consequdmtyywill no longer constitute
parallel surfaces, at least in the sense that onghattdo that expression most frequently.
These waves will even have their tangent planes phsgdlisome points that are situated
on the same line, but the lines that pass through theéspoincontact of the parallel
tangent planes will not generally be normal to theesa

The converse to Theorem V is true. Indeed, if a systtrays that issue from the
same point and have the same typat are not all mutually parallelpropagate in a
homogeneous medium in such a way that they are amatdo the waves that they
correspond to then one must conclude that the ray ngectiothe characteristic wave
surface of the medium at least, on the sheet of that surface that cornelsptm the rays
— will all be normal to that surface or to that shewhich in turn, cannot be spherical.
Therefore:

THEOREM VI. —When a system of rays that issue from the same point and all have
the same type, but are not mutually parallel, propagate in a homogeneous medium in
such a way that they are all normal to the waves that correspond to thameédium
will be isotropic or birefringent with one axis, and in the latter cade rays will
necessarily be ordinary.

If the rays of the system are all parallel to eaitter, so they are perpendicular to the
waves that they correspond to, then it will not be &sitole for us to conclude that the
medium is isotropic, or even uniaxial. That would resuly when the radius vector of
the sheet of the characteristic wave surface ofrtbéium that has the same nature as the
rays, which is drawn parallel to the common directbthe rays, is normal to that sheet,
which can be true for certain directions of the radertor, even in biaxial media.

27. From Theorem Il and the various propositions that deduced from it as
corollaries, we can infer this conclusion, which sumpesr all of the preceding
developments: If the waves in a homogeneous mediunctnedspond to a system of
rays that issue from the same point and all have tine $gpe are not necessarily present
when these rays were subjected to a certain numbeflettions and refractions before
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taking their present directions, then the form of thdweacteristic wave surfaces of the
medium — at least, the nature of these charactenstie surfaces — will, so to speak,
imprint a special stamp on all of the waves that capagate in the medium, especially
as far as the relations between the directionbefays and those of the tangent planes to
the waves are concerned, and certain peculiaritiebesket characteristic wave surfaces
will be found to be reproduced on all of the waves thattcaverse that medium.

28. We shall now exhibit several consequences of Theolréimatl relate to the case
where the rays that propagate in a homogeneous mediumuauelly parallel. We first
remark that by virtue of the previously-indicated construc{i4), a plane wave in an
arbitrary, homogeneous medium, no matter what it<ulne will always remain planar
while it displaces parallel to itself. Having said that can state the following two
propositions:

THEOREM VII. —If the rays that issue from the same point with the same type that
propagate in an arbitrary homogeneous medium are all parallel to each otberthie
wave that corresponds to these rays will be planar at each of thdopesthat it
successively occupies and will propagate while remaining parallel 1& itse

Indeed, from Theorem I, since the rays are pardlel,tangent plane to the wave
must have the same direction at all of the points aif Wave, which can be true only as
long as the wave is planar. The direction of thexg@lvave is always conjugate to the
common direction of the parallel rays, which are admor extraordinary, according to
whether these rays are themselves ordinary or eglireoy, respectively. As a result, if
the medium is isotropic or uniaxial then since the eagsordinary, the plane of the wave
will always be perpendicular to the parallel rays.

However, from the fact that the plane wave is perjgaitatt to the parallel rays, one
can conclude only that the radius vector of the chaistitewave surface of the medium
that is parallel to these rays will be normal tattbf the sheet of that surface that has the
same nature as the rays. As a result, if the mediusotropic or uniaxial then if the rays
are ordinary then those rays can have an arbitrary idinecHowever, if the medium is
uniaxial and the rays are extraordinary then they willessarily be parallel or
perpendicular to the axis of the medium, and if the inmds biaxial then they will
necessarily be parallel to one of the three symnaeteg of the medium.

The truth of Theorem VII will suffer a very spece&tception, but it is one that we
cannot neglect to point out: That exception will préseself in the case where the
medium is biaxial and the rays are parallel to onehef singular directions of the
medium. In that case, as we saw (23), the directfdhe tangent plane to the wave can
vary, that of the ray can remain constant, and in t@ithough the rays might be parallel
to each other, the wave that they correspond to wikbnger be necessarily planar.

THEOREM VIII. - If the wave in an arbitrary homogeneous medium that
corresponds to a system of rays that issue from the same point andealhbasame type
is planar at one of the positions that it occupies successivelyathehthese rays will be
parallel to each other.
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Indeed, since the direction of the tangent plane tavines is constant at the various
points of that wave, the same must be true for trection of the rays that pass through
these points.

Like the preceding one, this theorem is subject toxae@ion. If a plane wave that
propagate in a biaxial medium is parallel to one of the fangplanes of that
characteristic wave surface of the medium then Waate will remain parallel to itself
while it displaces, but the rays that correspond twilitno longer be parallel to each
other. Indeed, these rays will then define conical susfadese summits are found on
the surface where these rays were subject to theirdfisction or refraction (24). The
generators of all these cones will all be parall@bnsequently, an infinitude of systems
of parallel rays will propagate in the medium, wherehegystem will have a different
direction, and all of these systems of rays willrespond to a unique system of plane
waves that are mutually parallel.

Instead of supposing that all of the rays of a systesmautually parallel, one can
imagine that only a subset of these rays, which deiremntinuous surface, are parallel.
One will then arrive at the following theorems:

THEOREM XI. —If, among the rays that issue from the same point and all have the
same type, and propagate in an arbitrary homogeneous medium, one finds an infinitude
of them that define a continuous surface and are mutually parallel then edehwéves
that correspond to the system of rays will be tangent to the samegitarethe curve
along which it cuts the cylindrical surface that is defined by the paralies (except for
the case where the medium is biaxial and the rays are parall@he¢oof the singular
directions of the medium).

THEOREM X. —If a wave in an arbitrary homogeneous medium that corresponds to
a system of rays that issue from the same point and all have theygmmes tangent to
the same plane along a continuous curve then the rays that pass througlrithis va
point of the line of contact will be mutually parallel and will defimecontinuous,
cylindrical surface, at least when the medium is biaxial and that pEneti parallel to
one of the singular tangent planes of the characteristic wave surface ofedium

IV. — Research on the reflecting or refringent surface wheone is
given the incident wave and the reflected or refracted wave.
— Reciprocal construction to that of Huyghens.

29. The general construction of the reflected or rédeh¢16) immediately shows
that the reflecting or refracting surface can be consttido be the locus of the
intersections of the incident waves with the refldabe refracted waves that correspond
to the same time. That remark will permit us to solvefalewing problem:

Being given a real position S of the incident wave and a likewisepos#tion S of
the reflected or refracted wave or one of the sheets of that wave, if there are two of
them—-and knowing, moreover, the time T that it takes for the light to propdgah the
wave S to the wave, 3ind the reflecting or refracting surface.
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The problem comes down to uniquely determining the incidentesvand the
reflected or refracted wave that correspond to theedame. Let there be an incident
wave that isr later than the wavg, and the reflected or refracted wave that corresponds
at the same time i§ — 7 prior to the waves’if 7 is between zero arilandr — T later
than the wavé&'’ if 7 greater tha. Now, let there be a incident wave thar iater than
the waveS, so the reflected or refracted wave that corresptmdsat the same time will
be T + r prior to the waveS’. By definition, the reflecting or refracting surfacall
therefore be the locus of the intersections ofitleg@ent waves that are separated from
the waveS by an interval of timer, with the reflected or refracted waves being separated
from the waveS’ by a time intervall — 7, if we agree that the incident wave must be
regarded as later than or prior to the w&@according to whether is positive or
negative, resp., and that the reflected or refractee wayst considered to be prior to or
later than the wav8’according to whethef — ris positive or negative, resp. Moreover,
7 must take on all of the values for which there isirgersection. Solution will be
impossible when, for any value @fthere is no intersection between the incident wave
and the reflected or refracted wave that correspondsatdhe same time. Moreover, it
is obvious that for any wavesandS’ there will always exist certain values ffor
which solution will be possible, because if one imagiaa incident wave that slater
than the waves then one can always find a value frsuch that this incident wave
should be cut by the reflected wave thaT is 7 prior to the waves’. If one gives all
values toT for which the problem admits a solution then one willagbthe system of
reflecting or refracting surfaces that can transfammincident wave into the reflected
or refracted wav§'.

As a special case, one can suppose that the vilaard S’ each reduce to a point —
i.e., one looks for the reflecting or refracting sue¢hat make the rays that emanate
from a given point converge to a likewise given point.e Burfaces will receive the
qualification aplanatic and their complete theory will require some veryeasive
developments that will be the object of a special cliapte

30. Now, return to the general case, which we propose&b by calculation. Being
given the equation of the incident waseand knowing, moreover, the nature of the rays,
and in turn, the equation of the sheet of the charatiteivave surface for the first
medium that has the same nature as these raysaonapon following the path that was
indicated in no. 15, find the equation of the incident walaer than the wavg, which
is an equation that will be of the form:

F(x,y,2 =0.

Likewise, being given the equation of the reflected tacged waves’, and knowing,
moreover, the nature of the reflected or refracted,rapd in turn, the equation of the
sheet of the characteristic wave surface of the mediuwhich they propagate that has
the same nature as these rays, one can, by followiag@ogous path, find the equation
of the reflected or refracted wavdater than the wav8’, which is an equation that will
be of the form:
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F(x v,z 1)=0.

From the construction that was described in the preggainagraph, one will obtain
the equation of the reflecting or refracting surfacd thacapable of transforming the
incident waves into the reflected or refracted wa®é by eliminating r from the two
equations:

F(x,y,z 1)=0.
and
Fxy,z 1-T)=0,

which will lead to an equation of the form:
d(xy,zT) =0,

in whichT can take on all possible values.

31. Let Sbe a wave that corresponds to a system of rays that fsom the same
point and all have the same type. Suppose that theseafgrshaving been subjected to
an arbitrary number of reflections and refractions ugpawversing an arbitrary number of
homogeneous media whether isotopic or anisotropie still have the same type, and
then letS’ be one of the waves that correspond to them. Froat whk just saw, it is
always possible to find a reflecting or refracting sweféltat is capable of transforming
the waveS into the waveS’. If we remark that, furthermore, if the nature of thys in
the same medium is given then the same system ofswailenecessarily correspond to
the same system of rays then we will be led to dfleviing theorem, which was proved
by Gergonnej for the special case of isotropic media, and whick then found to
extend to any type of homogeneous media.

THEOREM XI. —When rays that issue from the same point and all have the same
type are subjected to an arbitrary number of reflections and refractions tugegrsing
an arbitrary number of homogeneous media, whether isotropic or anisotropidfelse e
of these reflections and refractions can always be replaced with aitbi@gle reflection
or a single refraction.

32. The Huyghens construction will further permit us, whee are given the
direction of an incident ray and that of a reflectedadracted ray that results from the
incident ray, to determine the direction of the tangdaue to the reflecting or refringent
surface at the point of incidence, upon supposing thataheenof each of the rays is
known, if the medium in which it propagates is birefringefio that effect, when the
point of incidence is taken to be the center, one @elcribe the characteristic wave
surfaces and%’ in the first and second medium at that point thatespond to a unit of

() GERGONNE, Annales, t. XIV, pp. 129.
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time. At the point where the incident ray meets #iaet of the surface that has the
same nature as it, one draws a tangent plame that sheet. At the point where the
reflected ray meets that sheet of the surfateat has the same nature as it, or even at the
point where the refracted ray meets that sheet dfuhface>’ that has the same nature as
it, one draws a tangent plaRéto that sheet. Finally, one passes a plane thrdwglne

of intersection of the pland? and P’ and the point of incidence, which is the desired
plane. If the two tangent plan€andP’ are parallel to each other then the required
plane will be parallel to those two planes. The lof intersection of the plan&sandP’
can never pass through the point of incidence, so th&rcation that we just described
will always give one and only one plane, except ingecial case where one of the two
media is biaxial and the incident ray or the reflected ifat is the first medium, and the
refracted case, if it is the second one, meets theactesistic wave surface of the
medium at one of its singular points. Meanwhile, sbtition will be possible for any
given directions of the two rays only when one is agalith a homologous reflection.

If there is refraction or antilogous reflection thé&e solution can become impossible for
certain direction of the given rays. That is what Wwdbpen in the case of refraction if
the plane that is determined by the construction thgtistedescribed is found within the
angle that is defined by the prolonged incident ray and ¢fracted ray, and for
antilogous reflection if that plane is found within @nggle that is defined by the incident
ray and the reflected ray.

33. We shall now propose to seek the conditions that toe satisfied in order for a
ray to reflect back onto itself or to refract with aeviation.

To begin with, consider the case of a homologouscaidin. If a ray is then reflected
in such a fashion that that it returns to itself thba tonstruction of the preceding
paragraph will show immediately that the tangent planth¢oreflecting surface at the
point of incidence will be parallel to the tangent plaimat is drawn to that sheet of the
characteristic wave surface of the medium that isrdest by choosing the point of
incidence to be its center and corresponding to a uret tamd which has the same nature
as the incident ray at the point where that sheeetsoynthe prolonged incident ray. The
Huyghens construction will show, moreover, that tlisdition is sufficient. Therefore:

THEOREM XII. —In order for a ray that propagates in an arbitrary, homogeneous
medium to reflect back onto itself (the reflection being homologous)nécessary and
sufficient that the tangent plane to the reflecting surface at the pointidence have a
direction that is conjugate to that of the incident ray, which will bdirary or
extraordinary, according to the nature of that ray.

If the medium is isotropic, of if the medium is wxa and the ray is ordinary, then in
order for a ray to return to itself as a result oh@mologous reflection, from the
preceding theorem, it will be necessary and sufficitat the ray be normal to the
reflecting surface.

Upon passing through to the case of refraction, if veegaren the direction of the
incident ray and its nature, as well as the nature ofenacted ray, then we can propose
to determine the direction that the tangent plane todfmangent surface at the point of
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incidence must have in order for the incident ray and thracted ray to be on the

prolongation of each other. The Huyghens constructidinagain provide us with the

solution to the problem. When an arbitrary pdihis taken to be the center, one will
describe the sheets of the characteristic wave suofiaitee medium that corresponds to
unit time, which will have the same nature as the incidaptand the refracted ray,

respectively. One then draws a plane through the (@ititat is parallel to the given

direction of the incident ray. That line will meeetbheet& and' at two points that are

situated on the same side of the p&@niwhere one will draw two tangent plarieandP’

to those sheets. Finally, one passes a plane througmehef lintersection of the two

planesP andP’and the poinO whose direction is the desired direction. One Seafs t
this problem will always involve one and only one solution.

When the sheefs andZ’ are similar and similarly-placed, the plafeandP’ will be
parallel to each other, and in turn, in order for thédmat ray and the refracted ray to be
a straight line, it is necessary that the tangenteplarthe refringent surface at the point
of incidence be parallel to the planBsand P’. That condition will obviously be
sufficient, so:

THEOREM XIll. — When the sheets of the characteristic wave surfaces of two
homogeneous media that correspond to the incident ray and the refracted ray,
respectively, are similar and similarly-placed, in order for tineident ray and the
refracted ray to be on the prolongation of each other, it is necessatysufficient that
the tangent plane to the refringent surface at the point of incidence hawdiréction
that would be conjugate to that of the incident ray in either of the metliah will be
ordinary or extraordinary according to the nature of that ray.

One can remark that in this case, the incident raythe refracted ray will always
have the same nature. One further sees that if ibets of the characteristic wave
surfaces of the two media that correspond to the incalehrefracted rays, respectively,
are spherical, then in order for the incident ray ande¢hacted rays to be prolongations
of each other, it will be necessary and sufficiemt tihe incident ray be normal to the
refringent surface.

An inverse problem to the preceding one is the onecitradists of being given the
direction of the tangent plane to the refringent srfat the point of incidence and the
nature of the incident and refracted rays and lookinghdirection that the incident ray
must have in order to penetrate the second medium witneaking. In order to answer
that question, one further describes the sheetsdZ' when an arbitrary poir® is taken
to be the center. One draws a plane through the @adinat is parallel to the given one,
and one looks for a line on that plane such that thgetat planes that are drawn through
that line to subsets of the she&tandZ' that are found on the same side of that plane
will touch these surfaces at two points, which will dre the same straight line as the
pointO. The line that passes through the p@rand the two contact points will have the
desired direction.

As for the case where one ray must be reflected batik itself, if the reflection is
antilogous then it will be treated by following exacthetsame path that we did for
refraction. The surfaces andX' will then be the two sheets of the characteristéwev
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surface of the first medium. Since these two shemtsnever be similar, there is no
reason to state a proposition that is analogous to &hexill.

V. — On total and partial foci and focal lines.
— Tautochronism of luminous trajectories that end at the sam#ocus.

34. Suppose that in an arbitrary, homogeneous mediumhether isotropic or
anisotropic— all of the reflected or refracted rays of a certgjetare directed in such a
fashion that they coincide at a total foédswhich is either real or virtual. L&be any
of the real or virtual waves that correspond to thakesy®of rays. Take an arbitrary point
A on that wave. If we describe the sheet of a chamatit wave surface in the medium
when the poinD is taken to be its center and that has the same regutes rays at the
time that corresponds to the time that sheet thategathroughA then, by virtue of
Theorem Il, that sheet will be tangent to the w&at A. Since this argument is
applicable to all of the points of the wa®ethat wave must be tangent at each of its
points to the sheet that has the same nature asyth@fa certain characteristic wave
surface and is described with for its center. If that characteristic wave suefa& not
the same for all points of the wa®then that wave will envelop sheets of the same
nature as the characteristic wave surfaces that ailoed with the same poi@ as
their centers and corresponding to different times, iscimpossible, since the sheets
cannot intersect. At all of its points, the we&mill therefore be tangent to the sheet that
has the nature as the rays of the same charaaeveste surface that is described w@h
as its center, and in turn, will coincide with thatetheConversely, if any of the waves,
whether real or virtual, that correspond to the sysieémys coincides with the sheet that
has the same nature as the rays of a characteriatie surface of the medium that is
described witlO for its center then the directions of all the rayshe system will agree
at the pointO. Indeed, if that condition is satisfied then the agaje directions, which
will be ordinary or extraordinary, according to the natof the rays, to the tangent
planes that are drawn to that wave at its varioustpewil all pass through the poiq.
Now, from Theorem Il, these directions will be pesty those of the rays that pass
through the various points of the wave; these raysallitherefore agree Q.

We thus arrive at the fundamental theorem that Westate as:

THEOREM XIV. —In order for the reflected or refracted rays that issue from the
same point and have a certain type and that propagate in an arbitrary, homogeneous
medium to have a total focus O, whether real or virtual, it is reacgsand sufficient that
the wave that corresponds to that system of rays, when considesiag of its real or
virtual positions, coincide with the sheet that has the same naturbeasays of a
characteristic wave surface of the medium that has the point @ foenter. It will then
follow that:

1. The wave will reduce to a point at the moment when it passes throuttahe
focus.

2. If all of the reflected or refracted rays in an arbitrary, homogeneuadium that
issue from the same point and all have a certain type converge artteersal focus
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then all of these rays will take the same time to propagate frotarthirous point to the
focus and consequently will arrive there with no difference in phase.

This theorem is true for any sort of reflections agfdaction that the rays might have
be subject to before taking their present directions,obuthe condition that these rays
originally emanate from the same point and that tkeyain of the same type.

The tautochronism of luminous trajectories that enth@atsame focus constitutes a
proposition of paramount importance. It is the princhgsis for the theory of aplanatic
surfaces, and one must necessarily take recourséntoritler to justify the use of lenses
in the observation of interference phenomena arithdifon ¢).

It results from the preceding theorem that in ordetHerreflected or refracted waves
that propagate in an arbitrary, homogenous medium toaiakke form that is presented
in that medium by that sheet of the characteristicensurface that has the same nature as
these waves, it will be necessary and sufficient thaifdahe reflected or refracted rays
be directed in such a fashion that they will agrebettime point.

We finally remark that if one describes the sheet lthatthe same nature as the rays
of a characteristic wave surface that has its ceatethe total focusO, and which
corresponds to an arbitrary tinfe then that sheet will coincide with both of the two
waves, namely, with the one thatTigrior to the moment when the wave reduces to the
total focus and with the one thatTidater than that moment. If the reflected or refedc
rays do not fill up all of space then these two wavesaaithcide with two subsets of the
characteristic wave surface that will be bounded by ¢wwes that are symmetric with
respect to the focus, and can impinge upon each othemvew¢r, if the reflected or
refracted rays fill up all of space before they arrivéha focus, which can happen when
the rays that emanate from a luminous point thaitisated in a homogeneous medium
that is bounded by a closed surface converge to a unique fideusedlection, then the
two waves will each coincide with the sheet of tharacteristic wave surface over the
entire extent of that sheet, and in turn, will coslecwith each other.

35. It can happen that amongst the reflected or refraetgsl of a certain type that
propagate in an arbitrary, homogeneous medium there ysomal subset of them that
defines a conical surface that converges to the samerremtual focus. That focus will
then bear the name phrtial focus. By employing exactly the same line of reasoning
that we did in the previous paragraph, one will arrivihatfollowing proposition:

THEOREM XV. —In order for the reflected or refracted rays that issue from the
same point and all have a certain type and propagate in an arbitrary, homogeneous
medium to contain an infinitude of them that define a continuous surfaceothadrges
to a partial focus O, which is real or virtual, it is necessary anifigent that the wave
that corresponds to that system of rays, when considered in anyregliter virtual
positions, be tangent along the curve along which it is intersectéuklgurface that the
rays defines to that sheet that has the same nature as the rays arfaatehistic wave

() This theorem has been known for some time fdrapic media. Huyghend(aité de la Lumiére
chap. VI) gave a proof by appealing to the laws of céfb@ and refraction in these media. It remains to be
seen whether it likewise applies to birefringent media.
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surface in the medium that is described by taking O to be iterceiherefore, it will

follow that if an infinitude of reflected or refracted rays in an &dyy, homogeneous
medium issue from the same point with the same type and define raugostsurface
that converges to the same real partial focus then those rays wilthakeame time to
propagate from the luminous point to that focus, and will consequently ariilrenw

difference in phase.

As a special case, it can happen that the conicacguthat is defined by the rays
whose directions converge to the partial fo€dsreduces to a planar surface. The
preceding theorem will then persist without modifigati

36. When a system of rays issues from the same wétlsdime type and propagates
in an arbitrary, homogeneous medium, four distinct ceaegresent themselves:

1. There is neither a total focus nor a partial one.

2. There are a finite number of mutually isolated pldiz.

We will then sayaplanatic lines which will lie either on the reflecting or refraat
surface or on the wave that correspond to the sysferays, in order to refer to the
intersections of those surfaces with the cones tleadiefined by the rays that converge to
the same partial focus, where these conical surfacesedaice to planes in some special
cases.

3. There is an infinitude of partial foci that definecatinuous line that we call the
focal line There then exists a continuous system of aplahaéis on the reflecting or
refracting surface and on each of the waves that sorel to the system of reflecting or
refracting rays, and the system of rays will decosepmto an infinitude of conical
surfaces whose summits will define a continuous line.

4. There is a total focus, and then the reflecting fsmgent surface will be called
aplanatic.

The last case was just studied (34). We shall now stopoime time in order to
examine the consequences that result from the existérecéooal line. That focal line
can be either entirely real, entirely virtual, or iy real and partially virtual.
However, there is, in addition, an essential distorcto be made, according to whether
the rays take the same time or unequal times in ordgy fiom the reflected or refracted
wave considered to any of the real or virtual positibas it successively occupies at the
various points of the focal line (upon supposing that theiumedh which the prolonged
rays move is prolonged to its limits in such a fashi®toainclude both the wave and the
focal line, if that is necessary in order to evaluatesé times). If these times are equal
then we will say that the focal line isochronous;in the contrary case, we will call it
anisochronous.One sees that when a real focal line is isochuspall of the reflected or
refracted rays will take the same time to propagate frentuminous point to the various
points of that focal line, while, in general, it is ot rays that end on the same point of
the focal line will take the same time in order toagrat that partial focus.
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37. LetL be a real or virtual, isochronous, focal line in ahiteasry, homogeneous,
medium. From Theorem XV, if one considers the w@weat corresponds to the system
of reflected or refracted rays in any of its real otuaf positions then that wave must be
tangent along a curve to the sheet that has the satione ras the rays of the characteristic
wave surfaces that are described when each of thespofirihe linelL are taken to be
centers. In order for the focal line to isochronatiss obviously necessary that these
characteristic wave surfaces that are described wigemattious points of the line are
taken to be centers, and each of which is tangenbhgonmaveS along a curve, must
correspond to the same time. Conversely, if that itonds satisfied then the rays must
end on the various points of the liheand take equal times to go from the w8#® the
line L, which will be, in turn, isochronous. Therefore:

THEOREM XVI. —In order for a line L to be an isochronous focal line for the
reflected or refracted rays that issue from the same point withséimee type and
propagate in an arbitrary medium, it is necessary and sufficient thatwthes that
corresponds to these rays be, in any of its real or virtual posijtibresenvelope of the
sheets that have the same nature as the rays of the characterisacswéaces of the
medium that are described when the various points of the line L ae takbe centers
and corresponding to the same time. Therefore, it follows that the mast reduce to
an isochronous focal line in some position, which will be either reairtray.

For example, if the medium is isotropic then thevevavill be the envelope of a
sphere whose center will traverse the isochronous limeaand whose radius will remain
constant.

When there exists an isochronous focal line, everyewidmat corresponds to the
system of reflected or refracted rays will presenbmtiouous system of aplanatic lines.
In order to find the aplanatic line on one of these wdkat corresponds to a given point
of the focal line, it will obviously suffice to descrilzecharacteristic wave surface with
that point for its center whose sheet that has#ime nature as the rays is tangent to the
wave. The contact between the two surfaces is defii@oy a line that will be the
desired aplanatic line. It is likewise easy to find dpdanatic line on the reflecting or
refracting surface that will correspond to a given pd@irdgf the isochronous focal line.
Indeed, since the wave will reduce to that line in ongsgbositions, one will obtain the
rays that converge t&A by drawing the lines whose directions are ordinary or
extraordinary conjugates according to the nature of tretmathose of the tangent planes
to the focal line aA — i.e., to all of the planes that pass through the tdanges atA to
that line. These rays that define a conical surfaneeduce to a planar surface in special
cases, whose intersection with the reflecting orimgént surface will be the required
aplanatic line.

If the medium is isotropic, or if the medium is va& and the rays are ordinary then
the rays that converge to the same pdinbf the isochronous focal line must be
perpendicular to the tangent plane to that focaldin® and in turn, to the tangent that is
drawn to that line at the poit These rays will therefore all be contained in thees
normal plane to the focal line At This will give the following theorem:
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THEOREM XVII. - In an isotropic, homogeneous medium or a uniaxial,
homogeneous medium when the rays are ordinary, if rays that issuehigaame point
and all have the same type give rise to an isochronous focal line thenothtbee rays
whose directions converge to the same real or virtual point of thawlilh&e contained
in the same normal plane to the focal line, and in turn, the aplanatic lsdeng as the
reflecting or refringent surface and the waves that correspond toy#iens of rays are
planar.

38. When there exists an anisochronous focal line, thee wahen considered in any
of its real or virtual positions, will again be the emgs of the sheets that have the same
nature as the rays of the characteristic wave surfaicé® medium that are described by
taking the various points of that line to be their cemteHowever, these characteristic
wave surfaces will no longer correspond to equal tinfdge aplanatic lines in the waves
that correspond to the reflected or refracted wavesheilbbtained in this case by the
same construction as in the case of an isochrone@aslfoe (37). That construction will
be further applicable when there exist a finite numlbésadated partial foci.

When the focal line is anisochronous, the wave doesedoice to that line in any of
its positions, whether real or virtual. It will then sessively pass through the various
points of that line. Consider the wave in the real otual position where it passes
through an arbitrary poirA of the anisochronous focal line. From Theorem XV pél
the rays that converge Atwill arrive at that point at the same time. Thaw at the
point A must then be simultaneously tangent to all of thegsdahat are conjugate to the
rays that arrive af, and will be ordinary or extraordinary according to niag¢ure of the
rays. The envelope of these planes is, in geneni@al surface, but that surface can
reduce to a straight line. That is what will happen whHenexample, the medium is
isotropic, and the rays that end at the pgimtre contained in the same plane.

It will result from what we just said that the wawell present what one calls a
singular pointat A. There is an exception to this rule only in a verycgdease: It is the
one where the medium is biaxial and each of the ratsctimverge t@ is parallel to one
of the radius vectors that are conjugate to the singarteyent planes in the characteristic
wave surface of the medium. All of what we justdsaill obviously apply to the case
where the wave passes through an isolated partial f@@oisversely, if the wave presents
a singular point in any of its real or virtual positiohsrt one can assert that the point will
either belong to an anisochronous focal line or caustian isolated partial focus,
because at that point the wave will be tangent tonéinitude of planes that have a
conical surface for their envelope, or in some spe@aks, a straight line, and these
planes will be conjugate to an infinitude of rays that deffine a conical surface that can
reduce to a planar surface. Here again, the genermalwil present a particular
exception: Indeed, if the medium is biaxial and the corsadiace that is tangent to the
wave at the singular point has all of its generatorsllpata those of the cone that is
tangent to the characteristic wave surface of theunedt one of its singular points then
all of the tangent planes to the wave at the sinquaant will be conjugate to a unique
direction, which will be one of the singular directiarfsthe medium. Only one ray will
pass throughA, but, from a remark that was made previously (23), tagtwill be
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composed of the superposition of an infinitude of reflectedefracted rays that come
from a cone of incident rays.
The preceding remarks can be summarized into theMoigptheorem:

THEOREM XVIIl. —Whenever the wave in an arbitrary homogeneous medium that
corresponds to a system of rays that issue from the same point andealhbasame type
passes through a real or virtual partial focus without belonging to an isochronoals foc
line, it will present a singular point at that focus, at least whenrhedium is biaxial and
the tangent plane to the wave that is drawn through that focus is not paoadieé of the
singular tangent planes to the characteristic wave surface of the meddamversely,
whenever the wave presents a singular point in any of its real tial/ppositions, that
point will be a partial focus that does not belong to an isochronous focal lileasit
when the medium is biaxial and the tangent cone to the wave at that singualangeno
generators that are parallel to those of the tangent cone to the charactexave
surface of the medium at one of its singular points.

A construction results from this theorem that wiltrpé one to find the aplanatic line
on the reflecting or refracting surface that correspdnda point of an anisochronous
focal line or an isolated focal point. Indeed, exceptlie exception that was pointed out
above, the wave will be tangent to a cone when isgsmshrough such a point. If one
draws lines through the singular point of the wave whasectibns are conjugate,
ordinary or extraordinary, according to the nature of rdyes, to those of the tangent
planes to that cone then these lines will define acabsurface whose intersection with
the reflecting or refracting surface will be the desiaplanatic line.

If the medium is isotropic then the cone that israef by the rays that end at the
partial focus will have generators that are perpenalictd those of the cone that is
tangent to the wave at that partial focus, and theritétecone will reduce to a planar
surface when the second one reduces to a straight line.

39. The remarks that we just made about the relationshipebe the existence of
foci or focal lines and the peculiarities that are @nésd by waves can be summarized as
follows:

1. If the wave that corresponds to a system ofcatteor refracted rays that issue
from the same point and all have the same type propagaaesarbitrary, homogeneous
medium and does not reduce to a point or a line at anyotdl or virtual positions that
it successively occupies, and it presents no singulat abamy of its positions then there
will be neither a total nor a partial focus (at leaghen the medium is biaxial and an
infinitude of incident rays that define a continuous sgfgives rise to an infinitude of
conical sheaves of reflected or refracted rays thatcogate partial foci when they cross
each other without the wave presenting any singular point)

2. If the wave, while
never reducing to either a point or a line, presents omeooe singular points in one or
more of its isolated positions then these singular poewitsalso be isolated partial foci.
(Nonetheless, if the medium is biaxial then the singptants of the wave, where the
tangent cone to the wave has generators that ardepaoathose of one of the tangent
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cones to the characteristic wave surface of the mediuits singular points, will be the
reproduction of the singular points of that characterstave surface, and will not be
responsible for the existence of partial foci.)

3. If the wave, while never reducing to either a poinadine, presents a singular
point in a continuous series of positions then thetla is described by that point will
be an anisochronous focal line (except for the excepghah was pointed out in the
preceding case).

4. If the wave reduces to a line in certain positions dha either real or virtual then
that line will be an isochronous focal line.

5. If the wave reduces to a point in a certain pastt@t is either real or virtual then
that point will be a total focus.

VI. — Fundamental property of luminous trajectories: the time that it takes to
traverse is, in general, a minimum or a maximum.

40. While we do not propose to present the theory of apitasarfaces here
especially, in order to arrive at the simple and genecalff a fundamental property of
luminous trajectories it will be, nonetheless, indispensible for us tofgaher than we
have done in the study of those surfaces up to now.

Suppose that the reflected or refracted rays of aidstae that correspond to the
incident rays that emanate from a real, luminous p@iobnverge to the same real focus
O’ LetT denote the time that it takes for a ray of the saatera as the incident rays to
propagate in the first medium from the po@to an arbitrary poinM, and letT”denote
the time that it takes for a ray of the same naturthegeflected or refracted rays to
propagate from the poif@’to the same poiritl, where one is dealing with refraction in
the second medium and reflection in the first mediuih.results immediately from
Theorem X1V that for all points of the reflecting i@fringent surface, the suim+ T’ will
be constant, and that conversely, if that sum isteahn a reflecting or refringent
surface then that surface will be aplanatic for thetibos O and O’ of the luminous
point and focus, respectively (which are both assumed tedbg and if the nature of the
incident rays is assigned, as well as that of thecefig or refracting rays, then there will
exist an infinitude of aplanatic surfaces that consstateertain system. The sdm T’
will have a constant value on each of these surfatéise system. However, that sum
will vary when one passes from one of these surfacasdther one. It then follows that
the aplanatic surfaces that define a subset of the sgstem can never intersect, and that
they will completely envelop each other.

To begin with, consider the case of reflection. &pkanatic surfaces that correspond
to the given positions of the luminous po@tand focugD’, which are both assumed to
be real, will then be closed, and each of them witlude the point©© andO’ in its
interior. Moreover, it is obvious that the sdm T’ which is constant on each of these
surfaces, must increase in measure when one consideraae that is more and more
separated from the poin®andO’, or in other words, when one passes from an aptanati
surface to another one that includes the first onesimterior. It will result from that, if
one denotes the particular valueToft T on one of the aplanatic surfaces @y- a
surface that we shall caél- that for any point that is external to the surf&cthe sunir
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+ T’ will have a value that is greater th@n and for any point that is internal to that
surface, that sum will have a value that is less thar©ne will further see that if, at an
arbitrary point of the surfac® one draws a tangent plane to that surface then th&@ sum
T’will have a value that is greater than the one thakes at the point of contact at every
point of that plane other than that point of contaet; a value that is greater th&n It
will then have a minimum value on the plane at thatpaf contact.

Now, pass to the case of refraction. The aplasatitaces will then necessarily pass
between the point® andO’. First, suppose that in the directi®®’, the velocity of a
ray in the first medium that has the same naturd@sncident rays is greater than the
velocity of a ray in the second medium that has Hmesnature as the refracted rays.
The sumT + T’ will then increase in measure until the aplanatic serfaeets the line
OO’ at a point that is closer to the poidt Moreover, in that case, the aplanatic surfaces
— at least, in the part of their extent that actuadintributes to refraction — will have their
convexity turned towards the poi® Having said that, we |&@ denote the value of the
sumT + T’on one of these aplanatic surfacea surface that we shall c&F and letM
be a point that is subject to only the condition thae found on the subset of any of the
aplanatic surfaces of the system that actually dauteito refraction. One must conclude
from the preceding that the suimt+ T’ will have a value that is greater th@rat the point
M if that point is found outside of the surface — i.e.fl@same side of that surface as the
point O — and a value that is less th@nf that point is situated inside the surf&e i.e.,
on the same side as the pdnt

On the contrary, if when one follows the directi®®’, the velocity in the first
medium of a ray that has the same nature as the migigs is smaller than the velocity
in the second medium of a ray that has the same resdubres refracted rays then the sum
T+ T’ will increase in measure until the aplanatic surfaeets the lin@©O’ at a point
that is closer to the poif@@”. However, since the aplanatic surface — at leastpé#nt of
its extent that actually contributes to the refrattiohas its convexity turned towards the
point O’, one will see that, as in the preceding case, theTsti T’ will have a value that
is greater tha€ at the poinM if that point is found outside of the surfége i.e., on the
same side of that surface as the p@nt- and a value that is less th@nf that point is
situated inside that surface — i.e., on the same sitteegmintO.

In either case, if one draws a tangent plane to dtieecaplanatic surfaces at a point
that is situated on the part of that surface that dgtaahtributes to the refraction then
since all of the points of that plane other than thatpaf contact will be external to the
aplanatic surface, the suim+ T’ will have a minimum value at the point of contact.
Since aplanatic surfaces — either by reflection aactibn — will always be convex, the
proposition that we just stated, just like the analogpusposition that relates to
reflection, will suffer no exception.

41. Now, suppose that light propagates from a p@ib another poinO’ while
being subject to a reflection or refraction, whereséhewo points are situated in one
arbitrary, homogeneous medium if one dealing with raflec or two arbitrary,
homogeneous media if one is dealing with refraction @@ reflecting or refringent
surface is likewise arbitrary. Call the incident Rythe reflected or refracted r&/, the
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point of incidencd, and the reflecting or refracting surfege Let T denote the time that
a ray in the first medium that has the same naturth@gayR will take in order to
propagate from the poi@ to an arbitrary poiniM, and letT " be the time that it takes, in
the first or second medium, according to whether ongeaing with a reflection or
refraction, respectively, for a ray that has theesaature as the rdy’to propagate from
the pointO’to the same poin¥l. If we consider the poirD to be a real, luminous point
and the poinD’to be a real focus, while the incident rays have dineesnature as the ray
R and the reflected or refracted rays have the sameenasuthe ray’, then, from what
we just saw, there will be an infinitude of aplanaticfaces for these positions of the
luminous point and the focus. Among these aplanatfaces, there will necessarily be
one of them that passes through the point of incidentleat aplanatic surface, which we
shall denote by, will be tangent to the reflecting or refringent sugf& because at the
point | the surface& must, like the surfac§ reflect or refract a ray that comes fr@n
towards the poin©’. The sumrl + T’ will be constant on the aplanatic surfacé40).
Therefore, since the surfa&ds tangent to the surfaéeatl, if one passes from the point
| on that reflecting or refracting surface to an inéhjtclose point then the variation of
the sumT + T will be infinitely small of order higher than onén other words, if one
considers the sufh+ T’ on the surfac&to be a function of the coordinates of the points
on that surface then the differential of that fumetwill be zero at the poirit

Conversely, if the differential of the functioh + T’ is zero at the point on the
surfaceS then that function will be constant on the surf&te an infinitely-small extent
when one starts with the poiht As a result, the surfacwill be tangent to one of the
aplanatic surfaces atfor the positionsO and O’ of the luminous point and the focus.
Therefore, the point will be such that a ray that emanates from the pOimust pass
through the poin© after reflecting or refracting.

We thus arrive at the following proposition:

THEOREM XIX. —If one is given two points O and’é@nd a reflecting or refringent
surface S, while the nature of the incident rays is assigned, hasnbht of the reflected
or refracted rays, then in order for a trajectory that starts atpbent O and ends at the
point O, while touching the surface S, to be actually followed by lightnéeessary and
sufficient that upon passing from that trajectory to an arbitrary infinitébse trajectory,
the variation of the time that is taken by the light to propagate fraim tBe point Obe
infinitely small of order higher than one.

42. In the theory of waves, the preceding theorem isatieogue of the one that
takes the form of the principle of least action ia theory of emission.

One can further express this by saying: In order forjectay that starts at the point
O and ends at the poi@’to be actually followed by light, it is necessary aundficient
that the differential of the sufh+ T’ be zero at the poiritwhere that trajectory touches
the reflecting or refracting surface, where that ssraonsidered to be a function of the
coordinates of the points of the surf&e

If one is given the coordinates of the poi@tandO’, the equation of the reflecting or
refracting surface, the nature of the incident raysthadof the reflected or refracted rays
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then this theorem will permit one to calculate the dowates of the points where a ray
that starts alD must touch the surfac® in order to pass through the poi@t’ after
reflecting or refracting.

Indeed, let & b, c) denote the coordinates of the poitand let &, b, ¢') denote
those of the poinD”. Let:

(1) #($n9=0
be the equation of the reflecting or refringent surfadet:
fix,y,2 =0

be the equation of the sheet that has the same natutbeaincident ray of the
characteristic wave surface in the first medium thalescribed by taking the origin to be
its center and that corresponds to a unit of time, and let

fo(x,y,2 =0

be the equation of the sheet that has the same nattihe aeflected or refracted ray of
the characteristic wave surface of the first or sdaoadium, according to whether one is
dealing with reflection or refraction, respectivelyattis described by taking the origin to
be its center and that corresponds to a unit of timee timeT that is taken by light to
propagate from the poir® to an arbitrary point of the surfaSwhose coordinates are
(& n, O will be given by the equation:

@ f{f‘a,”‘b,f‘cj — 0.
T T T

Similarly, the timeT’ that is taken by light to propagate from the pd@xitto the same
point of the surfac& will be given by the equation:

3) fz[‘(‘a' n-b Z‘dj -0,

-I-r ! Tr ! -I-r
where the two functionfs andf, will be identical when one is dealing with a hoowdus
reflection.
If one deduces values fdrand T’ from equations (2) and (3), resp., and adds them
then one will obtain an equation of the form:
T+T =K n {abcd, b, c)=0.

If one eliminates one of the three variabfeg, { — for example{ — from that equation
and equation (1) then one will arrive at an equetibthe form:

T+T =& nabca, bc)=0.
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From Theorem XIX, one must have:
dT+T")=0

for the desired points of the surfaSean equation that will decompose into two other
ones, namely:

d_f = 0
dé

and
d_f = 0’
dn

since there are two independent variables. These twdi@wgjawhen combined with
that of the surface, will determine the coordinates efdibsired points.

43. Based upon the considerations that already helped us pheogem XIX, it is
easy to see that the time that is employed by ligbtder to propagate from one point to
another, while experiencing a reflection or refractiem,generally a maximum or a
minimum.

Indeed, at the point of incidende the reflecting or refringent surfac® will be
tangent to an aplanatic surfa€en which the sunt + T’is constant (41). If the contact
between the two surfac&and at the pointl is simply of first order, which is true in
general, or if that contact is of odd order, then thidaseS will be internal or external to
the surface: in the neighborhood of the poihtbecause they cannot intersect in the case
of two surfaces. If the surfa&is external to the aplanatic surfatearound the poink
then, from what we saw previously (40), the stim T’ will have a value that is greater
than it is on the surface for the points that are external to the surfacevhile that sum
will have a minimum value on the surfaBeat|. On the contrary, if the surfa&is
external to the aplanatic surfaceeverywhere around the pointhen the sunt + T’ will
have a maximum value on the surf&at the pointl. When the two surfac&sand
have a contact of even order at the pojnwhich is true only in exceptional cases, these
two surfaces must intersect everywhere that theytaargent, and then the value of the
sumT + T’ on the surfac& will be neither a maximum nor a minimumlaglthough the
variation of the sunT + T must again be infinitely-small of order higher than aien
one passes from the pointo an infinitely-close point on the surfaBeand in this case,
that variation must even be of at least third ordere ®dn thus state the following
theorem:

THEOREM XX. — When light propagates from a point O to a point While
experiencing reflection or refraction, the time tha employed by the light in order to
traverse its trajectory will always be a minimumaomaximum, at least when the point of
incidence of the reflecting or refringent surfaceed not have a contact point of even
order with that of the aplanatic surfaces that teldo the positions O and ‘@f the
luminous point and focus, respectively.
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The time will be a minimum when the reflecting or refrignenftase is external to
the aplanatic surface everywhere around the point of incidence, and a maximem
the reflecting or refringent surface is internal to the aplanaticagfeverywhere around
the point of incidence.

One often believes that the time that is employetighy in order to propagate from
one point to another while reflecting or refractingl&ays a minimum. The preceding
theorem shows that this is not true, and indicatesitbeamference under which one will
know whether that time is a maximum or a minimum. rétwer, it lets one know the
exceptional cases in which that time is neither ammmn nor a maximum. It should be
remarked that these exceptional cases will never présemiselves when the reflecting
or refringent surface is convex; i.e., situated entioglthe same side of any of the planes
that are tangent to it.

The error that we just pointed out stems from the tlaat one ordinarily considers
only planar reflecting or refringent surfaces. Whenr#iflecting or refringent surface is
planar, one will find that the time is indeed a minimawuerywhere around a point of
incidence that is external to the aplanatic surfacehiotwit is tangent at that point.

44. Up to now, we have considered only the case of aeshedlection or refraction.
However, Theorem XIX has a more extensive significaanoe will permit one to solve
the general problem, which consistsdgftermining the trajectory that a light ray must
follow in order to propagate from one given point to another given point, while
experiencing an arbitrary number of reflections and refractions on givéiaces and
traversing an arbitrary number of homogeneous media that are likewise gikéa,the
nature of the ray on each part of its trajectory is assigned, moreover

Leta, b, c be the coordinates of the point of departure and &, ¢’ denote those of
the point of arrival. Let:

$.(,1,{1) =0,
$,($2:17,,¢5) =0,

$.($0170:¢ 1) =0

(A)

be the equation of the reflecting or refringent surfasdsch we assume toin number,
when they are written in the order in which the trajgctoeets these surfaces. Call the
part of the trajectory that is found between the pofndeparture and the first of these
surfacesRy, the part that is between the first and second Bxe..., and the part that is
between the last surface and the point of arfal .

Let &, m, &, &, o, &) ... &, My {n be the coordinates of the points where the
trajectory meets the first, second, ..., antisurface, respectively. These will be the
coordinates that one must determine. Furthermore, let:
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f.(x,y,2=0,
f,(xy,2=0,
B Y
f.(x,y,2=0
fra(Xy,2=0

be the equations of the characteristic wave surfacdgeahedia in which the ray, Ry,
..., Rn, Rns1 move, respectively, which will be surfaces that aremlesd by taking the
origin to be their centers and corresponding to a dritr@, and each of these equations
will be considered to represent only that sheet otti@acteristic wave surface that has
the same nature as the corresponding portion of tjeetivay.

Finally, letT; denote the time that it takes for light to propagatenfte pointa, b, ¢
to the pointéy, 71, &1, T, the time that it takes to propagate from the péinty1, {1 to the
point &, 172, {, ..., andTn.1, the time that it takes to propagate from the péint,, ¢, to
the pointa’, b', C'.

From equationsH), one will get:

L L

fz(é—é 1= $2=¢ j_o,
TZ T2 T2

fl[‘(l_a '71_b,51_°j:o,

(©

If one eliminates the variabl&s, &, ..., {+1 from each of equation€) then one can
deduce the values @f, T, ..., Th+1 from the resulting equations, and when one finally
adds these values to each other pair-wise, ongetiti equations of the form:

T1+T2 :f'l(a’ b: C§(11/711§(2/72)1

(D) T+ T, = Fy(§u1 0ol € 501 9,

From Theorem XIX, if one consideés and; to be the only variables in the first of
these equations$; and 77, to be the only variables in the second of theseagons,
..., and & and, to be the only variables in the last one thenmost have:

d(T1 +T2) =0,
d(T. +T3) =0,
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A(To + Toe) = 0,

and in turn;
d7 _y 4%E_,
dé; dn,
dF, -0 dF, =0,
dé, dr,
d7, _, 9% _
dé, ' dn,

These equations, which ara & number, when combined with tineequations 4),
will determine the B coordinateséy, m, &, &, e, & ...; & Ty &, and in turn, the
desired trajectory.

In general, there will be a unique or finite number @tiBons when a solution is
possible, which is not always true, as is easy to asmeself. However, it can happen
that there will be an infinitude of solutions that cepend to a curve on each of the
reflecting or refringent surfaces. The point of arrmall then be a partial focus for a
certain group of rays that define a continuous surfaaeallfzj in some very special cases
it can happen that the values of the unknowns are etetplindeterminate, which
indicates that all of the rays that emanate from thetmd departure must agree at the
point of arrival after reflecting or refracting frometlyiven surfaces, or in other words,
that the reflecting or refringent surface will constitateaplanatic system with respect to
the two given points.

45. We further remark that when light can propagate foyma point to the other,
while experiencing an arbitrary number of reflections eefthctions by given surfaces,
for several trajectories, which are finite in numpéhe times that it takes to traverse
these trajectories will not necessarily be equdliowever, when light can follow an
infinitude of trajectories in order to go from the poafitdeparture to the point of arrival,
which will then be a total or partial focus, the tintkat the light takes to traverse these
trajectories will necessarily be equal (34 and 35). hewotords, two trajectories that
start from the same point in order to arrive at thmespoint will not necessarily traverse
them in equal times when there exists a continuous sequéntajectories that are
likewise traversed by light, and to which, these two ttajges will belong.




