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Thefoundations of the theory of infinite continuous
transfor mation groups—1.

By Sophus Lie
Translated by D. H. Delphenich

The continuous transformation groups decompose into @tegories: finite and
infinite. For the theory of the finite ones, much appened already; apart from my
own numerous investigations, in recent times, many ottmthematicians have been
concerned with them and have made important discovekesh less has been done for
the infinite groups; apart from my own papéd)s in which | have developed the
fundamentals of their theory, there is only the tseabf Engel, who was concerned with
the defining equations of their infinitesimal transforimas.

It is now my wish to direct attention to the infinitentinuous groups, since they
define an extended and more rewarding realm than the tmés. Admittedly, the
theory is difficult. Whereas it already seems palssio bring the theory of finite groups
to a conclusion, the wide variety of infinite groups Is&f not even been roughly
surveyed, although many general theorems about such graupe pased.

Hopefully, before long this realm will also have begproached from many sides.
In particular, this is very desirable for the theofyifferential equations.

In the following, | will give an outline of the infiret groups. While it is not also
possible to develop this theory with the same completeas that of finite groups, | still
believe that the present summary yields the mairs fiet a rigorous foundation of the

theory of infinite groups.

8 1. Definition of the infinite continuous groups.
1. We define an infinite continuous group as follows:
Definition. A family of transformations:

(1) ti = Fi(Xy, ..., Xn), i=1,..n)

Y Verh. d. Ges. d. Wiss. zu Christiana, 1883 and 1889, andopahe treatise on differential
invariants in Bd. 24 of the Math. Ann., 1884 [here, Bd. V, Akhl, XXIV; Bd. VI, Abh. ll]. In the first
paper, | established the concept of “infinite group” fue first time, and at the same time determined all

infinite groups of the plane.
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shall be called an infinite continuous group whep E., F, are the most general
solutions of a system of partial differential equations:

oy, Or, 0%
2 W | X, X0t et e .. [=0 =1,2,..),
(2) k[xt XY taxl ox ox j k )
and when this system possesses the following properties:
1. The most general solutions of the sys{@ndo not depend upon merely a finite
number of arbitrary constants.
2. Whenever:

ti:Fi(Xl, ...,Xn), G:]., ...,n)
and:
ti:CDi(Xl, ...,Xn), G:]., ...,n)

are any two systems of solutions of the differential equati®ns
6 = Di(F(X), ..., Fa(X)), (=1 ..n)

is likewise a system of solutions of these differential equatroother words: When two
arbitrary transformations of the family that is defined(By are performed in sequence
this always yields another transformation of the family.

We call the differential equations (2) the defining equwtioof the finite
transformations of the group in question.

In addition, one must remark that in the sequel weaydnthink of system (2) as
having been, from the outset, brought into such a formnbening new is obtained by
differentiation. More precisely: Ifin is the order of system (2) then all differential
equations of ordem or less that can be derived from (2) by differerdgiagi and
eliminations already follow from the system (2) withdlifferentiations.

8 2. General remarks.

2. When we define the infinite continuous groups in the maarhat was just
discussed, we exclude from the outset all groups thatotdendefined by differential
equations. There are very good grounds for this.

In general, there are infinite continuous groups thatatane defined by differential
equations: One defines such a group, for example, by thaytatihll transformations of
the plane that leave a given point invariant. Howeagfirst it seems to be difficult to
pose general theorems on such groups. For examplenpassible to distinguish from
the outset whether a group that is not defined by diffedeaquations does or does not
possess differential invariants. Secondly, the caotis groups that can be defined by
differential equations are indeed the only ones for whielgeneral theory of differential
equations is meaningful.
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The totality of all transformations that leave aagwsystem of differential equations
invariant always defines a group that can always be definediffeyential equations,
when it is continuous.

It generally seems conceivable infinitely many diffél@nequations might be
required to define a group in question. If there are groufls tive aforementioned
properties then the general theory must also be extdmaiedthem. That would not be
difficult, since in any case the number of differenéiglations of orden and less would
be bounded, so the following developments would carry een such groups almost
without alteration. However, as long as | am undertd whether there actually are
continuous groups that can only be defined by infinitely maffgrdntial equations, |
shall regard it as natural to restrict myself to thesowhose definition demands a finite
number of differential equations.

3. In order to simplify the theory, we introduce yet acs&l assumption, namely, we
would like to consider only such infinite continuous grougmse transformations are
pair-wise inverse to each other. This assumption likewigplies the fact that the groups
in question include the identity transformation. If \wert perform two mutually inverse
transformations of a group then we again obtain a tranateymof the group that is, in
fact, the identity transformation.

The assumption that was just introduced appears to lestiction, but it is not.
Namely, one may prove that any infinite continuous growg ttan be defined by
differential equations of the form (2) contains the tdgnransformation and consists of
pair-wise inverse transformations. However, our assioms still completely justified
when this is not the case, since only groups with paewiverse transformations enter
into the applications.

4. The validity of the assertion that was just madelmaexplained as follows:
If:

(A) Li :fi(Xl, ,Xn) (I =1, ...,n)
and:
(B) 3 = @i(x, ... 1) i=1,..n)

are two transformations of an infinite continuous group the transformation:
(€) 3 = Bi(fa(x), .., Fa(X)) i=1,..n)

also belongs to the group. In particular, if (A) is alkdefined transformation of the
group, while (B) is completely arbitrary, then (C) issala completely arbitrary
transformation of the group. One convinces oneself &f when one substitutes the
independent variables, ..., tn for x4, ..., X, by means of the general transformation (B)

of the group in the defining equations:

0; 03, 0°3
Wi | Ty Esder et e o0 2 =0 =1,2,..).
k[xl Tnider o3 or,*ar. 0. (8 )
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We now select from the transformations of our groupfamyjly of co* of them:
(D) T =Fi(x, ..., X, @) i=1,..n)

that yield the transformation (A) faa = a and the transformation (B) fa=a. If (A)
and (D) then yield:
(E) T =Wi(ry, ity @) (i=1,..,n)

perhaps by removing the then, from the statements above, these equatipnssent
nothing but transformations of our group whanremains in the neighborhood af
Therefore, W, ..., W, are solutions of the defining equations of our group as d&g
remains in the neighborhood af However, from this, it follows tha®#i, ..., ¥,
represent solutions of these defining equations for absplatelalues ofa and the
equations (E) represent transformations of our group forafdes ofa. Now, since
equations (E) yield the identity transformation faE ap then our group includes the
identity transformation.

Finally, if:
i = Fi(xa, ..., %) i=1,..n)

is any such transformation of our group that lies inngighborhood of the identity then,
from the remarks that were made above, there isyahmasecond transformation of the
group:

3 = Pixn, ..o k) (=1 ..n

such that the equations:
5 = Pi(Fa(X), ..., Fa(x)) (i=1..n

represent the identity transformation.
The transformations of our group are then actually\p&ie inverse to each other.

5. In the next paragraphs, we shall confirm that any infioitetinuous group with
the properties that were described contains certaintedimal transformations and that
it likewise subsumes the one-parameter groups that areaggohdy these infinitesimal
transformations.

Through the introduction and fundamental use of the iiaBimal transformations,
the theory of infinite continuous groups now takes on prsimg simplicity. Here, as in
the theory of finite groups, the infinitesimal transfations define the actual foundations
of the theory.

6. One would not, moreover, wish to lose sight of orw. fal he greater part of the
following developments (8 &t seq) is entirely independent of the fact that the group
that is being examined in infinite; almost all of thexsiderations still remain valid when
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the group in question is finite. Thus, the following d&sian is, at the same time, a new
foundation for the theory of finite continuous groups.

8 3. Infinitely small and infinitesmal transfor mations.

7. In order to make the following more understandable anchake it possible to
express everything clearly, in the present paragraph weimeatiuce a concept that
subsumes the concept of “infinitesimal transformatas’a special case.

We would now like to understand an infinitely small tfansation to be a
transformation that differs from the identity transfiation only by infinitely little. If&
means an infinitely small quantity then the general fooman infinitely small
transformation is this one:

X =X+ & Wi(xe, ..., %) + (&) DX, ..o %) + ... (i=1,..,n),
where the coefficients af, (&)? ... are arbitrary functions o, ..., X,

8. Any infinitesimal transformation is a special kind affinitely small
transformation and can be defined simply as the infinsenall transformation of the
one-parameter group that it generates. Namely, if:

AN Loy 9f
Xf—gcﬁ(xl, ’X‘)a)g

is an infinitesimal transformation then the fingguations of the one-parameter group
that is generated byf read as follows:

2

X =x+ 1 gzIJ,t_ng, XXE (=1, ..,n).

The infinitely small transformation of this one-pareter group is now produced when
one assigns an infinitely small valdeto the parametdr it thus possesses the form:

(5t) (5t)

X =X + 5tEf+ Xé + XXf +.. (i=1,...,n).

However, when all infinitely small quantities ofcesd and higher order are omitted, this
has precisely the form:

X =%+ & i=1,..n),

in which we ordinarily prefer to write the equatsoaif the infinitesimal transformatioxf.
We can therefore also say: An infinitesimal transfation is an infinitely small
transformation in whose equations the infinitelyainerms of second higher order are
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determined completely by the infinitely small termsiodtforder. In this, one also finds
the grounds for the fact that the equations of an teBimal transformation can be
satisfied by the given of the terms of first order, le/ldropping the higher order terms.
This process is not allowed for an arbitrary infinitetgall transformation with no further

assumptions.

9. The introduction of the general concept of “infinitedgnall transformation” is
indispensable for the following. Namely, before we how that any infinite
continuous group includes infinitesimal transformationg must first prove that it
possesses infinitely small transformations; this shall deenonstrated in the next
paragraphs. It is first on the basis of the presenagfinitely small transformations that

we can also prove the presence of infinitesimal toanstions.

8 4. Theinfinitely small transformations of an infinite continuous group.

10. Among the finite transformations of an infinite ¢tooous group with the
previously-defined properties, we choose any familypbfransformations:

©)) i = filx, ...y Xo; @) i=1,..

The ' associated inverse transformations, which are likewisgained in our group,
might read:

(4) 4 = @i(Xa, ..., %n; a0) i=1,..

Furthermore, th&, as well as the;, might remain regular in the neighborhoocef a .

If we first perform the transformation:

i = @i(Xe, ..., Xn; Qo) i=1, ..

and then the transformation:

=ity ot @ + 6 (i=1,..

with the arbitrary parameterthen we obtaire® transformations:

(5) 5= fi(di(x @), ..., #n(X, &); @ + &) i=1,.

which, in turn, belongs to our group. Here, the rightehgides can
powers ofe. Upon considering the identities:

fi(@1(X, @p), ..., Pn(X, @0); @0 + &) =X; i=1, ..

we then obtain the following representation for tlaasformation (5):

,n),

be developed in

,N),
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(5') ?; =x + g[afi (¢1(X, ao)""é;in (X1ao); 30+£)} + (i =1, ...

11. With this, we have found an associated familyrahsformations for our group
whose equation fore = 0 yields the identity transformation and remamgular
everywhere in the neighborhood £ 0. We would like to say of such a family that it
lies in the neighborhood of the identity transfotioma

In particular, if we assign an infinitely smalllua to the parameterin equation (5
then we find an infinitely small transformation thlongs to our group.

Obviously, the infinitely small transformation thave just derived is not an
infinitesimal transformation, in general; it is opely when thex' transformations (3)
belong to a one-parameter group. If this case sampethen the one-parameter group in
guestion is naturally generated by the infinitesditrensformation in question.

12. From the family (3), one may derive still mordinitely small transformations
that belong to our group; it is therefore more @ment to choose the family'{5n place

of the family (3) to be our starting point, becatise former already include the identity
transformation.

We would like to write the transformations)(briefly as:
(6) n=FilX, . %0 8 (=1,...n);
the solution of these equations far ..., X, might read:
% =Di(r1, ..o In; &) i=1,..,n).

If we first perform the transformation:

i = ®i(Xq, ..., Xn; ) i=1,..,n)
and then the transformation:
r =Fi(, o £+ @ (i=1,..n

then we again obtain a transformation of our grawamely, this one:
r =Fi(®i(x, &), ..., Pu(X, 8); £+ @) (i=1,..n).

Since the~ remain regular in a certain neighborhoodef0 we can develop them in
powers ofwand find:

R e

Ja
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If we finally consider that the term on the right-tiaside that is free abequalsx, and
we set, moreover:

e [aﬁ(q:l(x, ), D, (X))

Ja

} = &(X1, ...\ Xn; &) i=1,...,n

then we obtain the following representation for wansformation:
(8) ro=X+t wlE(Xe, . X 6 F i=1,..,n),

where the coefficients of the omitted higher powsraare likewise functions o, ...,
Xp ande.

From now on, we assign an infinitely small valoghe parametewand immediately
obtain an infinitely small transformation that issaciated with our group whose
analytical expression includes an arbitrary parametamely,s. This infinitely small
transformation is independent #6nly when the family ofo* transformations (6) defines
a one-parameter group. In this case, it is ndynabthing but the infinitesimal
transformation that will generate this one-paramgteup; by contrast, in any other case,
we havew? different infinitely small transformations of oinfinite group corresponding
to theoo! values ofe.

We express the results obtained as follows:

Theorem 1. From any family ofo! transformations:
(3) b =fi(xg, ..., % @) i=1,...n)

that belongs to an infinite continuous group witlirpyvise inverse transformations, one
may derive a family of transformations that is assted with the group:

r =X+ WOE(XL, ooy Xy & + F DS (Xe, oovy X &) + ... i=1,..n),

which includes the identity and formally two paraens, in addition. If one chooses the
win this family to be infinitely small then one aibs either one o different infinitely
small transformations of the infinite group, andeed the first case comes up when and
only when theo! transformationg3) belong to a one-parameter group.

13. One can also proceed with the family:

(6) H=Fiy oot £+ Q) (i=1,..,n)
in another way.
If one considers theg as functions ofs then (6) yields upon differentiation with

respect tce:
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dr, _ R (%, %,;€)
de o€

or, when one makes the substitution:
Xy = P11, ..., In; &) (v=1,...,n

in the right-hand side:

dr; :[65("1""%?‘9)} =&t oy o) € i=1,..n),
de o€ % =@, (r,€)

where theé are obviously the same functions of their argumestinaequations (7).
Conversely, if one now integrates the simultaneougsys

9) _du o o W g
$(Xy e 1203E) $nlXy 1 203E)
while adding the initial conditions:
(10) kile=0o=X i=1,..n)

then ther; become completely determined functionsxgf..., x,; & However, we know,

on the other hand, that the equations (6), fromcwhhe simultaneous system (9) is
derived by differentiation, assume the form:

Li=X, i=1,...n
for e= 0. As a result, we can conclude that we musiiolprecisely equations (6) by
integrating the simultaneous system (9) with thigainconditions (10).
From this, we next infer that the functio§scannot all vanish; otherwise, we would

not, in fact, obtain the family o$' transformations (6) by the aforementioned intégrat
of the simultaneous system (9), but merely thetitietransformation:

=X, i=1,..,n).

Furthermore, one deduces that the family (6) alwdgBned a one-parameter group
when, but also only when, the functiofigan be represented in the form:

Q(i(?l, --n?n; 5) zfi(?la --u?n) D)((f) (I = 1! ""n)’
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where the§ are completely free of Whether the infinitely small transformation (8) is
or is not independent @gfand whether it is or is not an infinitesimal transfation may
be decided already by considering the terms of first ander

14. The well-known relation between the family of ts&rmations (6) and the
simultaneous system (9) also admits an intuitive exgpian.
Namely, if a one-parameter group is generated by thatedimal transformation:

" of
Yf= (X, X )—
;/7.09 X‘)ax

then its finite transformations would be obtaingdriiegrating the simultaneous system:

L: :L: dt,
Mm% %) 7O %)

with the assumption of the initial conditioxi = x; for t = 0. One can thus think of the

finite transformations of this one-parameter groap arising by performing the
infinitesimal transformatioiXf in sequence infinitely often.

In a corresponding way, one can think of the dirtitansformations of the family (6)
as arising by performing infinitely many differemfinitesimal transformations in
sequence. To this end, one merely needs to irttegpa continuous sequence of values
betweens = 0 ande¢ = ¢ if one now assigns the sequence of all theseesdior thees in
the infinitesimal transformation:

n . i
;é(><u---,>4w£)a)g ,

and one thinks of the resulting infinitude of inf@simal transformations as being
performed in succession then one obtains prectbelygeneral finite transformation of
the family (6).

The foregoing is naturally only an intuitive rataization of the integration process
by which equations (6) arise from the simultanesystem (9).

15. In order to clarify how a one-parameter grouprofrdinitesimal transformation:

XK = &(Xe, ..., X)) & i=1,..n

is generated, | have resorted to the following neanaf presentation on several
occasions: | think of a compressible fluid thatcioosen to be in a state of stationary
motion. The velocity components of the particlattls found at the locatiox, ..., X,
will then always be determined by the equations:
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%:5()(1, ooy Xn) (i=1,..n).

On the other hand, if:
i =Fi(xy, ..., Xn; &) i=1,..,n

are the equations of' transformations of an infinite group then these equatiamsye
found above, are the integral for of the equationsagfrtain simultaneous system:

9) —g = &(X1, ..vy Xa &) i=1,..,n).

If we thus imagine a compressible fluid whose motiomi¢ is, in general, non-
stationary) is defined by saying that at the timbe fluid particles possess the velocity
components:
dr, ,
ﬁ = &(re, .o 1o 1) i=1,..n)

at the location, ..., rn, while the same fluid particles assume the initial fpmsk, ...,
Xn at the time = 0 then the aforementioned fluid particles will barfd at the position:

=R, ..., X0 &) i=1,...,n
at the timet = &
Therefore, if the equations; = Fi(x; &) represento’ transformations of an infinite
group, in which one finds the identity transformationpanrticular, then one can always
make a simple kinematic picture of thesetransformations such that one describes them

aso’ successive positions of a compressible fluid that isddnra certain — in general,
non-stationary — motion.

16. Whether or not the infinitesimal transformationstthppeared above belong to
our group is a question that will first find its answer in paeagraphs after the next one,
and in fact, in the affirmative. First, we would likeedevelop another important relation
that exists between these infinitesimal transformatemd the family (6).

Let Q(xy, ..., X,) be a function that remains invariant under all tramsé&tions of the
family:

(6) =R, ..., X0 &) i=1,...,n.

Among them, by assumption, there exists an identith@fdarm:

Q(F1(X, &), ..., Fa(X, &) =Q(Xa, ..., Xn)-

Differentiating this with respect toyields the identity:
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R

or, when we make the substitution:
XV:ch(?la N I 5) (n:]., ...,n)
and take into account the identities:

F(q)l(xi E), rey ch(Xa 8)) =71,

[aﬁ(x, £)

} = Czi(?l, Ty ?na 8),
0e % =P, (t,£)

this yields the following identities:

.Z;‘ o &y -ovrm ) =0.

However, this says that the functi®yy, ..., tn) admitseo’ infinitesimal transformations:

L of
25(&,”' & ;‘9)_ .
i=1 a?i
We can thus state the theorem:

Theorem 2. Let:
(6) t=FX, ..., X% 8 i=1,..,n

be a family obo’ transformations that include the identity transformation and indeed, for
&= 0;furthermore, let:
dx, dr,

— 4 = =—""1" =dg
$i (X103 E) & (X, ,20E)

be the simultaneous system from which one obtajuations(6) by integration with the
initial conditions:

[r1]e0 = X1, -y [En)e=0 = Xn -

If the functionQ(xy, ..., X) now admits theo® transformationg6) then at the same time
it also admits theo® transformations:
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n . i
;5(&,”'1?n’5)axi .

17. Up to now, we have made absolutely no use of the Hattour group is infinite.
The foregoing developments will thus work just as vi@llan arbitrary finite continuous
group whose transformations are pair-wise inverse to ethen. We will now also take
into account that we are dealing with an infinite camims group, and will show that our
group includes infinitely many different infinitely smalahsformations.

Since our group is infinite, its most general transfaionadepends upon not just a
finite number of arbitrary parameters; there are theeefransformations in the group
that contain infinitely many parameters. For exampke consider a transformation:

(11) t=fil .. Xo; A, .., &) (=1, ..n)

of our group in which preciselyessential parameters appear. We can thus choose the
whole numbet to be arbitrarily large:

(12) Li = ¢i(X1, ey Xny Ag, ...,a.) (i =1, ...,n),

and leta’, ..., a’be a system of values in whose neighborhood;ttzs well as thes,
remain regular. If we now first perform the transfiation:

=i o X @, e, &) i=1,..n
and then the transformation:

r =iy o &t &, ..., 80+ ) i=1,..n)
then we obtain a transformation:
r =fi(gux &), ..., d(x, &); &+ &, .., a7+ &) (=1, ..,n
that again belongs to our group, and which, like (11), comtaessential parameters,
namely:&, ..., &§.
We thus write this transformation briefly as:

(13) i =Fi(x, ..., X &, .., 8) (i=1,..n);

Fi, ..., Fy are then ordinary power series&n ..., § and reduce taj, ..., X, respectively,
for =0, ...,§=0. The solutions of the equations (13)xar..., X, might read:

(14) X :cDi(Xl, e bny &1, - 8|) (I =1, ...,n).

If we now first perform the transformation:
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ti =Fi(xy, ..., Xn; &, ..., &) i=1,..n,
and then the transformation:
5 =Fiy omata, .., 8+ d) i=1,..n)

then we obtain a transformation of our group that carwhtten, with the help of the
abbreviation:

OF (®,(X, &),..., P, (X,E);& + ... .6 +1)

(15) . tlz...:q:o: &ilXe, ooy Xny &L -.ny 8),
as:
(16) 5 =Xt Y @ &% e Xl & e 8), (i=1,...n),

where the unwritten terms are of higher ordewin..., @.

If we assign ax infinitely many values here then we obtain infiyt many
transformations of our group that depend upor fherameterss, ..., &, as well as the
— 1 arbitrary ratios of thex . Sincel is arbitrary, our infinite group includes infinlye
many small transformations.

18. One can also come to the functigfasthat enter into (16) in yet another way.
Namely, if one differentiates equations (13) wekpect tos:

Oy _ OR(X,- X360 06)

0&, 0&,

and makes the substitution (14) on the right-haahel then one obtains:

Oy _ | OR(Xy.. i %3600 06))
0&, 0&,

=&ty oo Im &, ..., &),

%, =®, (r.£)

where theéy are obviously the same functions of their argumes in equations (15).
We can thus conclude that equations (13) are adstaivhen one integrates the system of
partial differential equations:

a7 ﬁ:g‘ki(zcl, N A T ) § i=1,..,mk=1,...)D,
0&,

while adding the initial conditions:
[?i]gk:...zg‘zoz X .
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From this, one ultimately infers an important propeitthe functions; .
Namely, since thd parameterss, ..., § are essential in equations (13), the
functions i, ..., rn Of thel variablesg, ..., § can never satisfy one and the same

differential equation of the form:

' 0Q
a (&,...,.&)—=0,
pLACRE:

k

in which theag are functions of only the. It follows that thdn functionséi(x, £ can
also never satisfyg relations of the form:

Zl:ak(£1’~--’£|) &i(ts, «oovtns &, ..., 8), i=1,..n.

In other words: Thé infinitesimal transformations:

&z, - Ins & é‘l)g—f k=1, ...,n)

n
i=1 L
in the variables,, ..., rn are independent of each other.

19. We would not like to overlook the formulation difig important result as a
theorem. In order to do this in the most convenmanner, we remark that in general the
| infinitesimal transformations:

i(t, «ntms &1, ...y 8) g—f k=1, ...,n

n
i=1 L

also remain independent of each other when weraasig well-defined numerical values
to thee. We further remark thdtdifferent transformations with one parameter can b
defined from the transformation (16), when we,antf set alkvup to a equal to zero in
succession, then all of them updg and so forth. We can then say:

Theorem 3. No matter how large one sets the positive wholebaurh) an infinite
continuous group with pair-wise inverse transforioas always contains | families:

=X+ W& . X)) +oF Sk, X)) ... (=1, ....n)
of »* transformations such that the | expressions:

n Si(Xa, ...y Xn) o k=1, ...,n)
= Or
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determine just as many independent infinitesimal expressions.

8 5. Thedefining equations of the finite transfor mations of an
infinite continuous group.
20. We imagine that the finite transformations:

i = Fi(xa, ..., %) i=1,..n)

of an infinite continuous group with pair-wise inverse $farmations is defined by a
system of partial differential equations:

or or. 0°r
18 W| oo Xt % 00 g k=1, 2, ..).
(18) k[& XLyl ox " ax ox? j k )

We will now show that this system of differentigjuations, in a certain sense, admits the
infinite group that it defines.

21. If:
(19) ti = Fi(X1, .., %) (=1, ..,n
and
(20) = ®i(Xy, ..., %) (=1, ...,n

are any two transformations of our infinite group then:

(22) r = ®i(Fi(%), ..., Fna(X) i=1,..n)

is always a transformation of the group, as well, ..., r,, when regarded as functions
of x4, ..., Xn, thus satisfy the differential equations:

. , 0r, O, 0°1]
18 W | X,y X2 =L, =2 —2L =0 =1,2, ..
(18) k[& D STTN ¢ ox " ax o2 j (8 )

identically.

On the other handy, ..., tn, when regarded as functions»f ..., X,, fulfill equations
(18) identically. Thus, if we imagine that the varighig ..., rn are removed from (18),
by means of (20), then we must obtain a system cdréffitial equations:

. , Or, O, 0°r
22 Vi| X X Ty b=t . 2 —2 |=0 =1,2, ..
(22) k[xl R SN ¢ ox " ax ‘ox? j (8 )

that are satisfied identically, just as the syster) ($8vith the substitution (21).
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Now, if (19) and (20) are completely arbitrary transfations of our infinite group,
and since we can let (19), in particular, coincide whth identity transformation, then
(21) is also an entirely arbitrary transformation bé tgroup; equations (21) thus
represent a completely arbitrary system of solutidnthe differential equations (18
We then see that any system of solutions of the diffgal equations (18 likewise
satisfies the differential equations (22); from thidpltows immediately that the system
(22) is equivalent to the system (L8

In fact, the system (22) arises from (18) whén..., ¢, are introduced in place of,

..., tn by means of the transformation (20). It is there@drine same order as the system

(18) and also contains exactly as many independent equatiahs Bmally, since the
system (18 yields no new equations of the same or lower ordeditbgrentiation (cf.,
pp. 318 [here, pp. 301]), the totality of solutions of' (X&n also be solutions of (22)
only when these two systems of differential equatiaeseguivalent, and thus when all
of equations (22) follow from equations (),8&nd conversely.

With that, we have proved that the system (18) alvmagserves its form when one
introduces the new variableg,, ..., r, in place ofyri, ..., rn by means of any

transformation (20) of our group. We express this resulie following way:

Theorem 4. If an infinite continuous group with pair-wise inverse transformations is
defined by a system of partial differential equations:

or 0r, 0°r
18 Wi | Xoeees XrEp e e e 2 —2 . |=0 =1,2, ..
(18) k[& X0T ?axl ox % j (8 )
and if:
i = Fi(X, ..., Xn) i=1,..n

is any transformation that belongs to the group then the system of ditiéesouiations
(18) always admits the transformation:

I

t =FiCen - 1) X =X i=1,..n).

22. This important theorem may be inverted.
Namely, if the system (18) admits the transformation

(23) =ik o) X =X (=1, ..,n),
and if:
(19) i = Fi(Xy, ..., Xn) (=1, ..n)

is any transformation of the infinite group that is dedir®y (18) then, along with the
functions (10), the functions:

(24) . =Mi(Fu(X), ..., Fa(X)) i=1,..n)
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also define a system of solutions of the differentigiations (18). From this, it then
follows that equations (24) represent a transformaticouoinfinite group.

In order to express this conveniently, we would now likentiloduce the symbolS
andT for the transformations (19) and (23), respectiveliie @aforementioned result may
then be expressed briefly as: If the system (18) adhmetsransformatio and ifSis a
transformation of the group that is defined by (18) tB&ms always a transformation of
the group, as well. However, the group contains thesfvamationS™ at the same time
asS and therefore also the transformat®tST: that is, it containg.

With that, we have proved the important theorem:

Theorem I. If an infinite continuous group with pair-wise inverse transformations is
defined by a system of partial differential equations:

or 0r, 0°r
18 W | Xoores X Epree et e 20 1120 =12 ...
(18) k[& D% SRTPN ¢ ox " ax o j (8 )

then this system of differential equations always admits a transfornwdtiba form:
t =Fi(r, - ) X =X (i=1,..n
when, but also only when, the equations:
r =Fi(ry, ..o 1) i=1,..,n
represent a transformation of the infinite group in question.

23. It is perhaps useful to clarify this theorem by amaxa.
The differential equation:

(25) zi%%...%:l

defines an infinite continuous group. Namelyif..., rn are functions ok, ..., X, that
satisfy equation (25) theh, ..., r;,, as functions ofy, ..., rn, satisfy the equation:

zia_x;% O _

that arises from (25) and (26) by multiplication.
Now, if:

(27) 5 =Ry o) X =X (i=1,...n)
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is any transformation for which the differential eqoati(25) remains invariant then
equation (25) retains the form:

(28) Z+61‘1 oy Ot _ 4
0% 0%, 0%
under the transformation (27), whexe ..., X, are written forx , ..., x,; however,

equation (25) comes into play, and because of that kasvegn, one has:

(29) S % 0%y

Thus, if we multiply (28) and (19) together then we get:

5% On 0r;  Ofn_ 4

Oy, Or, Or,
This immediately illuminates the fact that the equation
=R, oo 2n), i=1,..,n
actually represent a transformation of the infiniteugr that is defined by (25).
24. Theorem | on pp. 336 (here, pp. 317) says that the definingicts8) of an

invariant group remains invariant when one performs an anpitransformation of the
group on the variables, ..., rn, but, by contrast, only the identity transformationtios

variablesx, ..., X,. One may now easily show — although we omit the ganple proof
—that Theorem | is distinct from the following one:

Theorem |I. If an infinite continuous group with pair-wise transformations is
defined by a system of partial differential equations:

or or. 0°r
18 W, g O L g k=12, ...

then this system of differential equations always admits a transforntdtiba form:
o=, X =Fi(X, ..., Xn) i=1,...,n
when, but also only when, the equations:

X =Fi(x1, ..., %) i=1,..n)
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represent a transformation of the infinite group in question.

Here,z1, ..., rn are then transformed by the identity transformatiomjeathex, ...,
Xn are transformed by an arbitrary transformation.

8 6. Theinfinitesmal transformations of a finite continuous group.

With theorem I, we are now in a position to prokattany infinite continuous group
with pair-wise inverse transformations contains deriafinitesimal transformations and
certain one-parameter groups.

25. Let:
(30) =+t E&EQL o)+ E (e ) + i=1,..,n

be any family ofeo! transformations that belongs to our infinite group, ana the
assume, as the form of equations (30) shows, that anmlyf includes the identity
transformation.

If we now add the following equations to equations (30):

(31) X =Xty eeey X, = Xn

then as a result of Theorem | we must obtain a faofibe transformations that remains
invariant under our group:

or or. 0°r
18 W| X Xt % 00 g k=1, 2, .).
(18) k[& XLyl ox " ax %2 j k )

All of the following conclusions rest upon this fact.

26. We extend theo! transformations (30), (31) by taking into account the fhat
the differential quotients of thewith respect to the are transformed. In this way, we

obtain a number of equations of the form:

ox, 0x, 750r, 0%

O _ 9%, +& Y %ayr +...

(32) 2.1 2 n 2. n 2
a’xi = 0x, +¢ Z% ot, +z X %ax” +...
0x,0x, 0%,0% =0, 0%0% 7=0r,0r,0%0X%
and we then take all differential quotients of firgtcend, ..., up tan™ order when the

system of differential equations (18) isrof order.
If we now add the equations (32) to (30) and (31) then wairol family ofco?
transformations in the variables:
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0 "
(33) Xll "'lxnlxll "'lxnlﬁl R | xn: )
0% 0%,

under which the system of equations (18) in these variabheains invariant. That is
only another way of expressing the fact that the systé differential equations (18)
remains invariant under the' transformations (30), (31).

In order to be able to analytically express the irarae of the system of equations
(18) in a convenient way, we now introduce the infiniteditransformation:

. of
Xf=) &ty k)=,
; ' or,
and also extend it by taking all differential qeotis of ther with respect to the up to
m" order. The infinitesimal transformation thatlisi$ extended:
X™f

in the variables (33) is very easy to compute; fgmiemust leave invariant the system
of Pfaffian equations in the variables (33):

n

o, _
dyi - Ziad& =0,

or. n 62;.
d—->» ———dx, =0,
0x, ;6&6& »

and since it does not transfox ..., X, at all, one finds very easily that:

Or; no& O
x(m) < o 2 ar ,
0x, j ZL‘ Or, 0X,

xm| 0% | _3h04 9%, +Z 0°¢ Or, Or,
ox,0x, | 45 0r, 0x,0%, %47 0r,0r, 0% 0%,

In other words: One can briefly write the equatiofishe o’ transformations (30), (31),
(32) as:
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X =X,
e +‘9X(m)(?i)+”"

a_x;:%+gx(m)(aij+...

(34) ox,  0x, 0%,
2.1 2 2
0 _ 0%, ym| 9% |,
0x, 0%, 0%,0% 0%0%

We do not generally know how the coefficients oé thigher powers of behave;
however, that is also entirely irrelevant.

27. We therefore now go on to draw new conclusiomsnfithe aforementioned
invariance of the system of equations (18).

The system of equations (18) admits &laransformations (34). Thus, if we think of
all the variables in (18) as now being written wattimes then if we express the primed
guantities in the equations thus obtained:

(35) W =0 W =0,..

in terms of unprimed ones everywhere by means4ftfin the system of equations that
emerges must exist for evesypy means of equations (18). However, we now alitze
following system of equations:

Wi + e X™(W) + ... =0 k=1,2,..)

from (35) by the given process, where once morg thd first powers of are taken into
account. Should this system of equations exisafgyrvalue ot due to (18) then it is, in
any case, necessary that all of the expressions:

x( m) (Wk)

vanish due to (18). However, this is nothing mtran the fact that the system of
equations (18) in the variables (33) admits thitefsimal transformatioxX™f in these
variables, in addition to the® transformations (34).

28. Since the system of equations (18) admits tHaiiesimal transformatiox™¥,
it also admits any transformation of the one-patamgroup that is generated by the
XM If we then revert to the original standpoingrfr which we regarded (18) as a
system of differential equations, then we can 3 system of the differential equations
(18) admits the infinitesimal transformatiotf and likewise any transformation of the
one-parameter group that is generateXby
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However, from Theorem |, one thus proves that ounitefigroup subsumes the
infinitesimal transformatiorXf, as well as the one-parameter group that is generated by
Xf.

Theorem I11. If an infinite continuous group with pair-wise inverse transformations
containsw® transformations of the form:

(30) L=X A+ EEX ooy X)) + ETHOKL, oy Xa) F o (i=1,...n),

where £ denotes an arbitrary parameter, then it likewise contains the ieginial
transformation:

3 of
;5(&,---%)6—)9,

and above all, the one-parameter group that it getss.

29. This important theorem is capable of yet anoéxtension. It can indeed happen
that the coefficients of, &, ..., € * in the equations (30) can all vanish, while ifiist
the coefficients o that are not all zero. In this case, one obthinexactly the same
reasoning as above:

Theorem 5. If an infinite continuous group with pair-wise trgfiormations contains
oo! transformations of the form:

HEX+ & &0 oo %) F € UK oy Xa) + (i=1,..,n),

where | denotes a positive whole number that > 1, then it also contains the
infinitesimal transformation:

3 of
;5(&,---%)6—)9,

and the one-parameter group that it generates.

With that, we have then proved that any infinitntinuous group with pair-wise
inverse transformations contains not just infijitedmall, but also infinitesimal
transformations.

30. Finally, we can prove very easily with the helpTheorem 3 on pp. 333 [here,
pp. 315] that our group contains infinitely manydependent [infinitesimal]
transformations.

In fact, as a result of this theorem our groupagisvcontains transformations of the
form:

=X+t wilxy, ..., %) + ... i=1,..,n),
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no matter how largé might be, and in whichwdenotes an arbitrary parameter, and
where thd expressions:

" of _
(36) ;ﬁi(xﬂ.--,ma—& k=1,..

represent just as many independent infinitesimahsiormations. However, from
Theorem lll, the infinitesimal transformations (36) and the onegpaeter groups that
they generate belong to our infinite group, so aeeh

Theorem 6. Any infinite continuous group with pair-wise invergansformations
contains infinitely many independent infinitesirtrahsformations, and likewise infinitely
many different one-parameter groups that are gemeraby these infinitesimal
transformations.

8 7. Thefinitetransformationsof an infinite group are generated by
infinitessimal transformations of the group.

31. If one has a finite continuous — perhagsarameter — group:
X =fi(x1, ..., Xn; @1, ..., &) i=1,..,n)

with pair-wise inverse transformations then oneviksdhat the transformations of this
group can be arranged into one-parameter groupg:transformation whose parameter
lies in a certain neighborhood of the identity sfanmation belongs to a certain one-
parameter subgroup of theparameter group and is therefore generated by an
infinitesimal transformation of this group.

In the present paragraph, we have now generadlyistthat any infinite continuous
group with pair-wise inverse transformations camainfinitely many one-parameter
groups, but it was in no way proved that the groopsists of nothing but one-parameter
subgroups. Whether that is the case, i.e., whatmgtransformation of the infinite group
belongs to a one-parameter subgroup of the grouog, ia thus generated by an
infinitesimal transformation of the group, is a dtion-theoretic question whose
resolution does not seem to be simple. Here, aeelg¢his question completely aside,
and are all the more justified in doing this beeaws can show that the transformations
of an infinite continuous group are still generabgdthe infinitesimal transformations of
the group, in a certain sense.

32. We recall the developments of pp. 387seq[here, pp. 30%t seq. There, we
considered a family:

(6) ti=FilXe, ..., X & i=1,..n

of o' transformations that belongs to an infinite groapd contains the identity
transformation. The identity transformation belstig the value = 0 and indeed thE;
are regular in a certain neighborhoodcef 0.
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We have thus shown that any of thketransformations (6) can be obtained when one
performs theo' different infinitesimal transformations:

. ” s
(6) ;é(><u---,>w)a)g

in succession. On the other hand, we found thairdmite group contains a family of
transformations that are represented by equatibtiedorm:

(8) =Xt wéi(Xe, o Xy &) F . i=1,...n.

We can therefore conclude from theorem I, pp. 34@re, pp. 322] that theo’
infinitesimal transformations (6all belong to our infinite group in such a wagteach
of thew® transformations (6) can be obtained by perforniego® different infinitesimal
transformations of our group in succession.

We must still remember that any transformatiort thelongs to the family (6) and
exhibits the aforementioned behavior can be briedferred to as a transformation that
lies in the neighborhood of the identity transfotiowa (cf., pp. 323 [here, pp. 306]), so
we can state the following:

Theorem 7. Any transformation of an infinite continuous group with pair-wise
inverse transformations that lies in a neighborhood of the identity cambtaned by
performingeo different infinitesimal transformatiorsf this group in succession.

33. A very simple example will suffice to explain ngs.
The infinite continuous group of all point transfwtions in a plane will be
represented by two equations of the form:

(37) r=Fuxy), v=F(xY),

in which we understandF;, F; to mean completely arbitrary functions wfy; the
differential equations that define the finite egoia$ of this group thus consist of nothing
but the identity O = 0.

Among the transformations of the group (37), weade any well-defined one of
them — say:
(37) r=fxy), p=f(xy)

and we would like to prove that it is generatedidfjnitesimal transformations of the
group.

We next construct a family of* transformations of our group in which the identity
transformation is contained, along with the transiation (37). To that end, we connect
any pointx, y with the pointy, y that it goes to under the transformation’3R@rough a

line and determines a point, y on this line whose distance fromy relates to the
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distance between the pointsy andyg, y like A: 1. The pointx, y will then be
represented by the two equations:

X =x+A(h(x Y- 3,

(38) { ,
y=y+A(L(x Y-V,

and it is clear that these equations with the arbipargmeter represent a family ob*

transformations that possess the desired properties.

The pointx, y goes tax, ¥y under the transformation (38); if we replateith A + dA
thenx, y goes to a point that is infinitely closexqy: X + dX,y +dy. However, we
can obviously arrive at the poirt+ dx, y + dy by an infinitely small transformation of
our group. In order to find this infinitely small transforroat we need only to express
dx, dy in terms of, y', A, anddA. We thus differentiate equations (38) with respect to
A

dx dy _

2 =f4(X, y) =X, =%, y) -V,
oy (X, y) =x oy 2(X, y) -y

and then eliminatg andy by means of (38), which yields equations of the form:

dy _

a1 1Y A).

ax _ ..,
d—A—f(X,YJl),

With that, we have found the desired infinite small ti@msation.

Obviously, we can, however, say: Starting from the tpginy’, we arrive at the
infinitely neighboring pointx + dx, y + dy when we perform the infinitesimal
transformation with the symbol:

o

, of
(39) E(X,Y,/l)ax, +7(X, M)ay
onx, Y. If we now imagine that thé in (39) has been replaced with all real numbers
from O to 1, in succession, then we obteih infinitesimal transformations that vyield
precisely the transformation (37vhen performed in succession.

With that, we have proved that the transformati@T) is generated by’
infinitesimal transformations of the group (37)hig group then contains absolutely all
point transformations of the plane, so it also adns thew® infinitesimal transformations
(39), in particular.

8 8. Reations between theinfinitesmal transfor mations
of an infinite continuous group.

34. As before, an infinite continuous group with paise inverse transformations
can be defined by a system of partial differerg@hations:
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2
o % Oy j =0 k=12 ..
0x, 0%, 0X

(40) Wk[)g,...,)g,xl,...,xn,

: of n of
Xf:za(xl,”,,xn)a—, Yf:zni(xl”"’xn)a_
i=1 L =1 i

are two infinitesimal transformations of our grothen the system of equations (40)
admits the two extended infinitesimal transformagio

XM, Y
in the variables:
0 0 02 o
Xll ---1Xnaxla "'lxnlﬁl "'lﬁl x;-l L | xmn
0%, ox, 0x X,

(cf., pp. 339¢t seq[here, pp. 31%t seq). However, the system (40) then also admits
the infinitesimal transformation:

a X"t + b YMf = (a Xf+b Y§™
that arises froma Xf+ b Yfby extension. We therefore have the theorem:

Theorem 8. If Xif, Xf, Xif, ... are infinitesimal transformations of an infinite
continuous group with pair-wise inverse transforimas then this group likewise
contains any infinitesimal transformation of thenfio

CL Xqf + o Xof +Ca Xof + ...

for whatever values one assigns to the constants,cs, ...

On the other hand, along wi{"f and Y™, the system of equations (40) also admits
the infinitesimal transformation:

XMf M yAmg (g
which arises from:
XY f=YXf=(XYV)

by extension. We have thus arrived at the fundaafen
Theorem V. If Xaf, Xof, Xsf, ... are infinitesimal transformations of an infinite
continuous group with pair-wise inverse transforioas then every infinitesimal

transformation:
Xi X f =X X £ = (X %), i, k=12 ..)

also belongs to the group.
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35. We now give yet another elementary proof of this irtgoartheorem.

If Xf andYf are two infinitesimal transformations of our group theis group also
contains the two associated one-parameter groups wimiteeeffjuations read as follows
when one considers only the terms of first and secoael o

2

. £ )
(41) L :?i‘l'fg(i(xl,...,?n)‘l'ﬁxgzi"'... (|:1,...,n)
and:
g'? .
(42) T=x+&Mxy ..., tn) o Yri+.. (i=1,..,n).

We now first bring the poing into the new positionr; by means of a transformation
of the one-parameter group (41), and we then taé&eointy; to the new position; by
a transformation of the one-parameter group (42):

12

£ -
et EnGL. ) t—=Yn + ... i=1,..,n).
L =y AT ) 1> 7] ( )

If we then substitute the values gf from (41) then we obtain the', as expressed in
terms of the; :

52 5’2
XE+EWN(v,....,x.)+EXnY+—Yn + ...
3 &+en(ry..or,) n} 1"

(43) ?:' :xl+£§(|(x1!’xn)+1_
(=1 ..n).

The equations (43) then naturally represent afwamation of our group.
On the other hand, if we first bring the painto the new positiory, by means of the

transformation (42) and th€ to the new positiorx’ with the help of (41) then thg'
are expressed in terms of thas follows:

12

£ £?
44) T =xi+En(r.,....x.)+—Yn +{&(xy ... x )+ EYEY+— XE + ...
(44) T =n+en(,....r,) 377 {&(zy -0 1) &} ﬂle

This is also a transformation of our group.
We now consider the transformation that takes ploént ¢’ to T'. This

transformation belongs to our group and will beaoi#d when one removes ...,
from (43) and (44). This next gives:

T o= ree'(YE=Xn) + ...,

where the omitted terms are of third order and érigh
If one expresses than terms of the" by means of (43) here then one comes to:



Lie — The foundations of the theory of infinite continutamsformation groups — I. 29

(45) T o=y tee’ (Y E-X7")+ ... (=1, ...n).

These are, except for terms of third and higher otterequations for the transformation
that takes the point/ to T, .
If one setse = £’then one obtains a family of transformations of owugy to which

one can apply Theorem 5, pp. 343 [here, pp. 322] with no fuabsumptions. This
immediately yields the fact that our group containsitifiaitesimal transformations:

i(xm —Ycﬁ)g—; =XY f- YXE(XY).

With that, the promised second proof of Theorenmsldelivered.

36. If the finite transformations (41) and (42) oéttwo one-parameter grougéand
Yf are denoted by and T, respectively, then equations (45) obviously repn¢ the
transformation:
(46) T!'s'Ts

If one then chooseSandT to both be infinitely small, in particular perhaps when one
setse = £’= A& — then the transformation (46) takes on precidedyform:

X =X+ (&) (Y& =Xn) + ... (=1, ..n),

up to terms of second order. This remark, asmlght be emphasized here, explains the
important role that the Poisson bracket expression:

iy O
(¥ = 30 = YE) 3

plays in group theory.

We would like to further mention that the devel@mts of the last pages can also
find application to such groups with pair-wise irse transformations that are not
definable through differential equations.

If one knows, on whatever basis, that such a grmargains the two infinitesimal
transformations<f and Yf, and therefore also the associated one-parameiapg then
one can conclude from the above that it simultasgoaontains the infinitely small
transformation:

X =X+ (&) (Y& =Xm) + ... (i=1,..n);
whether it indeed subsumes the infinitesimal tramaétion ¥ V) is another matter.
37. A third proof of Theorem IV is given by the folling reasoning:

If we understan® andT to mean the finite transformations (41) and (42he one-
parameter groupXf and Yf, respectively, and we imagine thais chosen to be fixed,
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while ¢ is arbitrary, then theo' transformationsS* T Sdefine a one-parameter group
that belongs to our infinite group and is generated by thatedimal transformation:

_ £
Df=YF+ 4gXY) + 1D?((YX)X) + ...

The system of differential equations that defines mfinite group thus admits the
infinitesimal transformatio®)f, and sinces can take on any value it likewise admits the

infinitesimal transformationy( X = - (X V), and thusX Y), as well as the one-parameter
group that is generated by (), also belongs to our infinite group. Howeveasttls just
the content of Theorem IV.

If one applies these considerations to arbitrafipite continuous groups that are not
actually definable by means of differential equasiobut whose transformations are
associated with each other pair-wise as inverkes, this yields the following:

If such a group contains the two infinitesimalnstrmationsXf and Yf then it
likewise contains the infinitesimal transformation:

_ £
Df=YF+ 4gXY) + 1D?((YX)X) + ...,

no matter what the value @fmight be. Now, if the group contains, above té two
infinitely small transformations:

X =X+ @(X, .., X)) X+ ... i=1,..n),
X =X+ X, ..., %) X+ . i=1,..n

then, as one easily confirms, it also containgrtheitely small transformation:
X =X+ @g +by) &+ ... i=1,..n)

for arbitrarya andb. Thus, under the assumptions that were madeaweanclude that
our group contains the infinitely small transforioas whose first-order terms coincide
with the first-order terms of the infinitesimal msformation:

52
X Y) + = (Y 9 %)+ ..

Sincec¢ is arbitrary, we can see from this that our grooptains absolutely any infinitely
small transformation whose first-order terms cadecwith the first-order terms of the
infinitesimal transformationX Y). By contrast, we cannot actually prove that graup
contains the infinitesimal transformatioK {) itself when the group is not defined by
differential equations; still, one cannot indeedilotathat this is the case.



Lie — The foundations of the theory of infinite continutamsformation groups — I. 31

38. The foregoing treatise is, like the paper of Herrnféasor Engel on linear
differential equations (these Berichte, pp. 2&83seq[here, Bd. IV, Abh. V]), elaborated
upon in a manuscript.



