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The foundations of the theory of infinite continuous 

transformation groups −−−− I. 
 

By Sophus Lie 
 

Translated by D. H. Delphenich 
 

 The continuous transformation groups decompose into two categories: finite and 
infinite.  For the theory of the finite ones, much has happened already; apart from my 
own numerous investigations, in recent times, many other mathematicians have been 
concerned with them and have made important discoveries.  Much less has been done for 
the infinite groups; apart from my own papers 1), in which I have developed the 
fundamentals of their theory, there is only the treatise of Engel, who was concerned with 
the defining equations of their infinitesimal transformations. 
 It is now my wish to direct attention to the infinite continuous groups, since they 
define an extended and more rewarding realm than the finite ones.  Admittedly, the 
theory is difficult.  Whereas it already seems possible to bring the theory of finite groups 
to a conclusion, the wide variety of infinite groups has still not even been roughly 
surveyed, although many general theorems about such groups can be posed. 
 Hopefully, before long this realm will also have been approached from many sides.  
In particular, this is very desirable for the theory of differential equations. 
 In the following, I will give an outline of the infinite groups.  While it is not also 
possible to develop this theory with the same completeness as that of finite groups, I still 
believe that the present summary yields the main facts for a rigorous foundation of the 
theory of infinite groups. 
 
 

§ 1.  Definition of the infinite continuous groups. 
 

 1. We define an infinite continuous group as follows: 
 
 Definition.  A family of transformations: 
 
(1)     ri = Fi(x1, …, xn),  (i = 1, …, n) 

 

                                                
 1) Verh. d.  Ges. d. Wiss. zu Christiana, 1883 and 1889, and part of the treatise on differential 
invariants in Bd. 24 of the Math. Ann., 1884 [here, Bd. V, Abh. XIII, XXIV; Bd. VI, Abh. II].  In the first 
paper, I established the concept of “infinite group” for the first time, and at the same time determined all 
infinite groups of the plane.  
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shall be called an infinite continuous group when F1, …, Fn are the most general 
solutions of a system of partial differential equations: 
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and when this system possesses the following properties: 
 1. The most general solutions of the system (2) do not depend upon merely a finite 
number of arbitrary constants. 
 2. Whenever: 
    ri = Fi(x1, …, xn),  (i = 1, …, n) 

and: 
    ri = Φi(x1, …, xn),  (i = 1, …, n) 

 
are any two systems of solutions of the differential equations (2): 
 
    ri = Φi(F1(x), …, Fn(x)), (i = 1, …, n) 

 
is likewise a system of solutions of these differential equation.  In other words: When two 
arbitrary transformations of the family that is defined by (2) are performed in sequence 
this always yields another transformation of the family. 
 
 We call the differential equations (2) the defining equations of the finite 
transformations of the group in question. 
 In addition, one must remark that in the sequel we always think of system (2) as 
having been, from the outset, brought into such a form that nothing new is obtained by 
differentiation.  More precisely: If m is the order of system (2) then all differential 
equations of order m or less that can be derived from (2) by differentiations and 
eliminations already follow from the system (2) without differentiations. 
 
 

§ 2.  General remarks. 
 

 2. When we define the infinite continuous groups in the manner that was just 
discussed, we exclude from the outset all groups that cannot be defined by differential 
equations.  There are very good grounds for this. 
 In general, there are infinite continuous groups that cannot be defined by differential 
equations: One defines such a group, for example, by the totality of all transformations of 
the plane that leave a given point invariant.  However, at first it seems to be difficult to 
pose general theorems on such groups.  For example, it is impossible to distinguish from 
the outset whether a group that is not defined by differential equations does or does not 
possess differential invariants.  Secondly, the continuous groups that can be defined by 
differential equations are indeed the only ones for which the general theory of differential 
equations is meaningful. 
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 The totality of all transformations that leave a given system of differential equations 
invariant always defines a group that can always be defined by differential equations, 
when it is continuous. 
 It generally seems conceivable infinitely many differential equations might be 
required to define a group in question.  If there are groups with the aforementioned 
properties then the general theory must also be extended from them.  That would not be 
difficult, since in any case the number of differential equations of order m and less would 
be bounded, so the following developments would carry over from such groups almost 
without alteration.  However, as long as I am uncertain of whether there actually are 
continuous groups that can only be defined by infinitely many differential equations, I 
shall regard it as natural to restrict myself to the ones whose definition demands a finite 
number of differential equations. 
 
 3. In order to simplify the theory, we introduce yet a second assumption, namely, we 
would like to consider only such infinite continuous groups whose transformations are 
pair-wise inverse to each other.  This assumption likewise implies the fact that the groups 
in question include the identity transformation.  If we then perform two mutually inverse 
transformations of a group then we again obtain a transformation of the group that is, in 
fact, the identity transformation. 
 The assumption that was just introduced appears to be a restriction, but it is not.  
Namely, one may prove that any infinite continuous group that can be defined by 
differential equations of the form (2) contains the identity transformation and consists of 
pair-wise inverse transformations.  However, our assumption is still completely justified 
when this is not the case, since only groups with pair-wise inverse transformations enter 
into the applications. 
 
 4. The validity of the assertion that was just made can be explained as follows: 
 If: 
(A)      xi = fi(x1, …, xn)  (i = 1, …, n) 

and: 
(B)      zi = ϕi(x1, …, xn)  (i = 1, …, n) 

 
are two transformations of an infinite continuous group then the transformation: 
 
(C)      zi = ϕi(f1(x), …, fn(x))  (i = 1, …, n) 

 
also belongs to the group.  In particular, if (A) is a well-defined transformation of the 
group, while (B) is completely arbitrary, then (C) is also a completely arbitrary 
transformation of the group.  One convinces oneself of this when one substitutes the 
independent variables x1, …, xn for x1, …, xn by means of the general transformation (B) 

of the group in the defining equations: 
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 We now select from the transformations of our group any family of ∞1 of them: 
 
(D)     ix  = Fi(x1, …, xn, a )   (i = 1, …, n) 

 
that yield the transformation (A) for a = a0 and the transformation (B) for a = a.  If (A) 
and (D) then yield: 
(E)     ix  = Ψi(x1, …, xn, a )   (i = 1, …, n) 

 

perhaps by removing the x, then, from the statements above, these equations represent 
nothing but transformations of our group when a  remains in the neighborhood of a.  
Therefore, Ψ1, …, Ψn are solutions of the defining equations of our group as long as a  
remains in the neighborhood of a.  However, from this, it follows that Ψ1, …, Ψn 
represent solutions of these defining equations for absolutely all values of a  and the 
equations (E) represent transformations of our group for all values of a .  Now, since 
equations (E) yield the identity transformation for a = a0 then our group includes the 
identity transformation. 

 Finally, if: 
    xi = Fi(x1, …, xn)  (i = 1, …, n) 

is any such transformation of our group that lies in the neighborhood of the identity then, 
from the remarks that were made above, there is always a second transformation of the 
group: 
    zi = Φi(x1, …, xn)  (i = 1, …, n) 

 
such that the equations: 
 
    zi = Φi(F1(x), …, F1(x)) (i = 1, …, n) 

 
represent the identity transformation. 
 The transformations of our group are then actually pair-wise inverse to each other. 
 
 5. In the next paragraphs, we shall confirm that any infinite continuous group with 
the properties that were described contains certain infinitesimal transformations and that 
it likewise subsumes the one-parameter groups that are generated by these infinitesimal 
transformations. 
 Through the introduction and fundamental use of the infinitesimal transformations, 
the theory of infinite continuous groups now takes on a surprising simplicity.  Here, as in 
the theory of finite groups, the infinitesimal transformations define the actual foundations 
of the theory. 
 
 6. One would not, moreover, wish to lose sight of one fact.  The greater part of the 
following developments (§ 2, et seq.) is entirely independent of the fact that the group 
that is being examined in infinite; almost all of the considerations still remain valid when 
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the group in question is finite.  Thus, the following discussion is, at the same time, a new 
foundation for the theory of finite continuous groups. 
 
 

§ 3.  Infinitely small and infinitesimal transformations. 
 

 7. In order to make the following more understandable and to make it possible to 
express everything clearly, in the present paragraph we next introduce a concept that 
subsumes the concept of “infinitesimal transformation” as a special case. 
 We would now like to understand an infinitely small transformation to be a 
transformation that differs from the identity transformation only by infinitely little.  If δt 
means an infinitely small quantity then the general form of an infinitely small 
transformation is this one: 
 

ix′  = xi + δt ⋅ ϕi(x1, …, xn) + (δt)2 ⋅ ψi(x1, …, xn) + … (i = 1, …, n), 

 
where the coefficients of δt, (δt)2, … are arbitrary functions of x1, …, xn . 
 
 8. Any infinitesimal transformation is a special kind of infinitely small 
transformation and can be defined simply as the infinitely small transformation of the 
one-parameter group that it generates.  Namely, if: 
 

Xf = 1
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is an infinitesimal transformation then the finite equations of the one-parameter group 
that is generated by Xf read as follows: 
 

ix′  = xi + 
2 3

1 1 2 3!i i i

t t t
X XXξ ξ ξ+ + +

⋅
… (i = 1, …, n). 

 
The infinitely small transformation of this one-parameter group is now produced when 
one assigns an infinitely small value δt to the parameter t; it thus possesses the form: 
 

ix′  = xi + 
2 3( ) ( )

1 2 3!i i i

t t
t X XX

δ δδ ξ ξ ξ⋅ + +
⋅

 +… (i = 1, …, n). 

 
However, when all infinitely small quantities of second and higher order are omitted, this 
has precisely the form: 

ix′  = xi + δt ⋅ xi  (i = 1, …, n), 
 
in which we ordinarily prefer to write the equations of the infinitesimal transformation Xf. 
 We can therefore also say: An infinitesimal transformation is an infinitely small 
transformation in whose equations the infinitely small terms of second higher order are 
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determined completely by the infinitely small terms of first order.  In this, one also finds 
the grounds for the fact that the equations of an infinitesimal transformation can be 
satisfied by the given of the terms of first order, while dropping the higher order terms.  
This process is not allowed for an arbitrary infinitely small transformation with no further 
assumptions. 
 
 9. The introduction of the general concept of “infinitely small transformation” is 
indispensable for the following.  Namely, before we can show that any infinite 
continuous group includes infinitesimal transformations, we must first prove that it 
possesses infinitely small transformations; this shall be demonstrated in the next 
paragraphs.  It is first on the basis of the presence of infinitely small transformations that 
we can also prove the presence of infinitesimal transformations. 
 
 

§ 4.  The infinitely small transformations of an infinite continuous group. 
 

 10. Among the finite transformations of an infinite continuous group with the 
previously-defined properties, we choose any family of ∞1 transformations: 
 
(3)     xi = fi(x1, …, xn; a)   (i = 1, …, n). 

 
The ∞1 associated inverse transformations, which are likewise contained in our group, 
might read: 
(4)     xi = ϕi(x1, …, xn; a0)   (i = 1, …, n). 

 
Furthermore, the fi, as well as the ϕi, might remain regular in the neighborhood of a = a0 . 
 If we first perform the transformation: 
 
     xi = ϕi(x1, …, xn; a0)   (i = 1, …, n) 

and then the transformation: 
     i

′x = fi(x1, …, xn; a0 + ε)  (i = 1, …, n) 

 
with the arbitrary parameter ε then we obtain ∞1 transformations: 
 
(5)    i

′x = fi(ϕ1(x, a0), …, ϕn(x, a0); a0 + ε)  (i = 1, …, n), 

 
which, in turn, belongs to our group.  Here, the right-hand sides can be developed in 
powers of ε.  Upon considering the identities: 
 
    fi(ϕ1(x, a0), …, ϕn(x, a0); a0 + ε) = xi  (i = 1, …, n), 
 
we then obtain the following representation for the transformation (5): 
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(5′)   i
′x  = xi + 1 0 0 0

0

( ( , ), , ( , ); )i nf x a x a a
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+ … (i = 1, …, n). 

 
 11.  With this, we have found an associated family of transformations for our group 
whose equation for ε = 0 yields the identity transformation and remains regular 
everywhere in the neighborhood of ε = 0.  We would like to say of such a family that it 
lies in the neighborhood of the identity transformation. 
 In particular, if we assign an infinitely small value to the parameter ε in equation (5′) 
then we find an infinitely small transformation that belongs to our group. 
 Obviously, the infinitely small transformation that we just derived is not an 
infinitesimal transformation, in general; it is one only when the ∞1 transformations (3) 
belong to a one-parameter group.  If this case comes up then the one-parameter group in 
question is naturally generated by the infinitesimal transformation in question. 
 
 12.  From the family (3), one may derive still more infinitely small transformations 
that belong to our group; it is therefore more convenient to choose the family (5′) in place 
of the family (3) to be our starting point, because the former already include the identity 
transformation. 
 We would like to write the transformations (5′) briefly as: 
 
(6)     xi = Fi(x1, …, xn; ε)   (i = 1, …, n); 

 
the solution of these equations for x1, …, xn might read: 
 
     xi = Φi(x1, …, xn; ε)   (i = 1, …, n). 

 
If we first perform the transformation: 
 
     xi = Φi(x1, …, xn; ε)   (i = 1, …, n) 

and then the transformation: 
     i

′x  = Fi(x1, …, xn; ε + ω)  (i = 1, …, n) 

 
then we again obtain a transformation of our group, namely, this one: 
 
    i

′x  = Fi(Φ1(x, ε), …, Φn(x, ε); ε + ω)  (i = 1, …, n). 

 
Since the Fi remain regular in a certain neighborhood of ε = 0 we can develop them in 
powers of ω and find: 
 

i
′x  = Fi(Φ1(x, ε), …, Φn(x, ε); ε + ω) + 1( ( , ), , ( , ); )

1
i nF x x

α ε

ε ε αω
α =

∂ Φ Φ 
 ∂ 

⋯

+ … 
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If we finally consider that the term on the right-hand side that is free of ω equals xi, and 
we set, moreover: 
 

(7)   1( ( , ), , ( , ); )i nF x x

α ε

ε ε α
α =

∂ Φ Φ 
 ∂ 

⋯

= ξi(x1, …, xn; ε)  (i = 1, …, n) 

 
then we obtain the following representation for our transformation: 
 
(8)    i

′x  = xi + ω ⋅⋅⋅⋅ ξi(x1, …, xn; ε) + …   (i = 1, …, n), 

 
where the coefficients of the omitted higher powers of ω are likewise functions of x1, …, 
xn and ε. 
 From now on, we assign an infinitely small value to the parameter ω and immediately 
obtain an infinitely small transformation that is associated with our group whose 
analytical expression includes an arbitrary parameter, namely, ε.  This infinitely small 
transformation is independent of ε only when the family of ∞1 transformations (6) defines 
a one-parameter group.  In this case, it is naturally nothing but the infinitesimal 
transformation that will generate this one-parameter group; by contrast, in any other case, 
we have ∞1 different infinitely small transformations of our infinite group corresponding 
to the ∞1 values of ε. 
 We express the results obtained as follows: 
 
 Theorem 1.  From any family of ∞1 transformations: 
 
(3)     xi = fi(x1, …, xn; a)   (i = 1, …, n) 

 
that belongs to an infinite continuous group with pair-wise inverse transformations, one 
may derive a family of transformations that is associated with the group: 
 

i
′x  = xi + ω ⋅⋅⋅⋅ ξi(x1, …, xn; ε) + ω2 ⋅ ϑi(x1, …, xn; ε) + …  (i = 1, …, n), 

 
which includes the identity and formally two parameters, in addition.  If one chooses the 
ω in this family to be infinitely small then one obtains either one or ∞1 different infinitely 
small transformations of the infinite group, and indeed the first case comes up when and 
only when the ∞1 transformations (3) belong to a one-parameter group. 
 
 13.  One can also proceed with the family: 
 
(6)      xi = Fi(x1, …, xn; ε + ω)  (i = 1, …, n) 

in another way. 
 If one considers the xi as functions of ε then (6) yields upon differentiation with 

respect to ε: 
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id

dε
x

 = 1( , , ; )i nF x x ε
ε

∂
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⋯

, 

 
or, when one makes the substitution: 
 

xν = Φν(x1, …, xn; ε)  (ν = 1, …, n) 

 
in the right-hand side: 
 

id

dε
x

 = 1

( , )

( , , ; )i n

x

F x x

ν ν ε

ε
ε =Φ

∂ 
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⋯

x

= ξi(x1, …, xn; ε)  (i = 1, …, n), 

 
where the ξi are obviously the same functions of their arguments as in equations (7).  
Conversely, if one now integrates the simultaneous system: 
 

(9)    1

1 1( , , ; )n

d

ξ ε⋯

x

x x
= … = 

1( , , ; )
n

n n

d

ξ ε⋯

x

x x
 = dε 

 
while adding the initial conditions: 
 
(10)     [xi]ε = 0 = xi   (i = 1, …, n) 

 
then the xi become completely determined functions of x1, …, xn; ε.  However, we know, 

on the other hand, that the equations (6), from which the simultaneous system (9) is 
derived by differentiation, assume the form: 
 
      xi = xi ,    (i = 1, …, n) 

 
for ε = 0.  As a result, we can conclude that we must obtain precisely equations (6) by 
integrating the simultaneous system (9) with the initial conditions (10). 
 From this, we next infer that the functions ξi cannot all vanish; otherwise, we would 
not, in fact, obtain the family of ∞1 transformations (6) by the aforementioned integration 
of the simultaneous system (9), but merely the identity transformation: 
 

xi = xi ,   (i = 1, …, n). 

 
Furthermore, one deduces that the family (6) always defined a one-parameter group 
when, but also only when, the functions ξi can be represented in the form: 
 

ξi(x1, …, xn; ε) = ξi(x1, …, xn)  ⋅⋅⋅⋅ χ(ε)  (i = 1, …, n), 
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where the ξi  are completely free of ε.  Whether the infinitely small transformation (8) is 
or is not independent of ε and whether it is or is not an infinitesimal transformation may 
be decided already by considering the terms of first order in ω. 
 
 14. The well-known relation between the family of transformations (6) and the 
simultaneous system (9) also admits an intuitive explanation. 
 Namely, if a one-parameter group is generated by the infinitesimal transformation: 
 

Yf = 1
1

( , , )
n

i n
i i

f
x x

x
η

=

∂
∂∑ ⋯  

 
then its finite transformations would be obtained by integrating the simultaneous system: 
 

1

1 1( , , )n

dx

x xη
′

′ ′⋯

= … = 
1( , , )

n

n n

dx

x xη
′

′ ′⋯

= dt, 

 
with the assumption of the initial condition ix′  = xi for t = 0.  One can thus think of the 

finite transformations of this one-parameter group as arising by performing the 
infinitesimal transformation Xf in sequence infinitely often. 
 In a corresponding way, one can think of the finite transformations of the family (6) 
as arising by performing infinitely many different infinitesimal transformations in 
sequence.  To this end, one merely needs to interpolate a continuous sequence of values 
between ε = 0 and ε = ε; if one now assigns the sequence of all these values for the ε in 
the infinitesimal transformation: 
 

1
1

( , , ; )
n

i n
i i

f
x x

x
ξ ε

=

∂
∂∑ ⋯ , 

 
 
and one thinks of the resulting infinitude of infinitesimal transformations as being 
performed in succession then one obtains precisely the general finite transformation of 
the family (6). 
 The foregoing is naturally only an intuitive rationalization of the integration process 
by which equations (6) arise from the simultaneous system (9). 
 
 15. In order to clarify how a one-parameter group of an infinitesimal transformation: 
 

δxi = ξi(x1, …, xn) δt  (i = 1, …, n) 
 

is generated, I have resorted to the following manner of presentation on several 
occasions: I think of a compressible fluid that is chosen to be in a state of stationary 
motion.  The velocity components of the particle that is found at the location x1, …, xn 
will then always be determined by the equations: 
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idx

dt
= ξi(x1, …, xn)  (i = 1, …, n). 

 
 On the other hand, if: 
 

xi = Fi(x1, …, xn; ε)  (i = 1, …, n) 

 
are the equations of ∞1 transformations of an infinite group then these equations, as we 
found above, are the integral for of the equations of a certain simultaneous system: 
 

(9)     id

dε
x

 = ξi(x1, …, xn; ε)  (i = 1, …, n). 

 
If we thus imagine a compressible fluid whose motion (which is, in general, non-
stationary) is defined by saying that at the time t the fluid particles possess the velocity 
components: 

     id

dt

x
 = ξi(x1, …, xn; t)  (i = 1, …, n) 

 
at the location x1, …, xn , while the same fluid particles assume the initial position x1, …, 

xn at the time t = 0 then the aforementioned fluid particles will be found at the position: 
 
     xi = Fi(x1, …, xn; ε)  (i = 1, …, n) 

at the time t = ε. 
 Therefore, if the equations: xi = Fi(x; ε) represent ∞1 transformations of an infinite 

group, in which one finds the identity transformation, in particular, then one can always 
make a simple kinematic picture of these ∞1 transformations such that one describes them 
as ∞1 successive positions of a compressible fluid that is found in a certain – in general, 
non-stationary – motion. 
 
 16. Whether or not the infinitesimal transformations that appeared above belong to 
our group is a question that will first find its answer in the paragraphs after the next one, 
and in fact, in the affirmative.  First, we would like to develop another important relation 
that exists between these infinitesimal transformations and the family (6). 
 Let Ω(x1, …, xn) be a function that remains invariant under all transformations of the 
family: 
(6)     xi = Fi(x1, …, xn; ε)  (i = 1, …, n). 

 
Among them, by assumption, there exists an identity of the form: 
 

Ω(F1(x, ε), …, Fn(x, ε)) = Ω(x1, …, xn). 
 
Differentiating this with respect to ε yields the identity: 
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1

1

( ( , ), , ( , )) ( , )

( , )

n
n i

i i

F x F x F x

F x

ε ε ε
ε ε=

∂Ω ∂⋅
∂ ∂∑
⋯

 ≡ 0, 

 
or, when we make the substitution: 
 

xν = Φν(x1, …, xν; ε)  (n = 1, …, n) 

 
and take into account the identities: 
 
   F(Φ1(x, ε), …, Φn(x, ε)) ≡ xi, 

  
( , )

( , )i

x

F x

ν ν ε

ε
ε =Φ

∂ 
 ∂  x

≡ ξi(x1, …, xn; ε), 

 
this yields the following identities: 
 

1

1

( , , )n
n

i i=

∂Ω
∂∑
⋯x x

x
 ξi(x1, …, xn; ε) ≡ 0. 

 
However, this says that the function Ω(x1, …, xn) admits ∞1 infinitesimal transformations: 

 

1
1

( , , ; )
n

i n
i i

fξ ε
=

∂
∂∑ ⋯x x
x

. 

We can thus state the theorem: 
 
 Theorem 2. Let: 
 
(6)    xi = Fi(x1, …, xn; ε)  (i = 1, …, n) 

  
be a family of ∞1 transformations that include the identity transformation and indeed, for 
ε = 0; furthermore, let: 

1

1 1( , , ; )n

d

ξ ε⋯

x

x x
 = … = 

1( , , ; )
n

n n

d

ξ ε⋯

x

x x
= dε, 

 
be the simultaneous system from which one obtains equations (6) by integration with the 
initial conditions: 

[x1]ε=0 = x1, …, [xn]ε=0 = xn . 

 
If the function Ω(x1, …, xn) now admits the ∞1 transformations (6) then at the same time 
it also admits the ∞1 transformations: 
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1
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i n
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 17.  Up to now, we have made absolutely no use of the fact that our group is infinite.  
The foregoing developments will thus work just as well for an arbitrary finite continuous 
group whose transformations are pair-wise inverse to each other.  We will now also take 
into account that we are dealing with an infinite continuous group, and will show that our 
group includes infinitely many different infinitely small transformations. 
 Since our group is infinite, its most general transformation depends upon not just a 
finite number of arbitrary parameters; there are therefore transformations in the group 
that contain infinitely many parameters.  For example, we consider a transformation: 
 
(11)   xi = fi(x1, …, xn; a1, …, al)   (i = 1, …, n) 

 
of our group in which precisely l essential parameters appear.  We can thus choose the 
whole number l to be arbitrarily large: 
 
(12)   xi = ϕi(x1, …, xn; a1, …, al)   (i = 1, …, n), 

 
and let 0

1a , …, 0
la be a system of values in whose neighborhood the fi, as well as the ϕi, 

remain regular.  If we now first perform the transformation: 
 
    xi = ϕi(x1, …, xn; 

0
1a , …, 0

la )   (i = 1, …, n) 

and then the transformation: 
    i

′x  = fi(x1, …, xn; 
0
1a + ε1, …, 0

la + εl)  (i = 1, …, n) 

 
then we obtain a transformation: 
 
  i

′x  = fi(ϕ1(x, a0), …, ϕn(x, a0); 0
1a + ε1, …, 0

la + εl) (i = 1, …, n) 

 
that again belongs to our group, and which, like (11), contains l essential parameters, 
namely: ε1, …, εl . 
 We thus write this transformation briefly as: 
 
(13)   xi = Fi(x1, …, xn; ε1, …, εl)   (i = 1, …, n); 

 
F1, …, Fn are then ordinary power series in ε1, …, εl and reduce to x1, …, xn, respectively, 
for ε1= 0, …, εl = 0.  The solutions of the equations (13) for x1, …, xn might read: 
 
(14)   xi = Φi(x1, …, xn; ε1, …, εl)  (i = 1, …, n). 

 
 If we now first perform the transformation: 
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   xi = Fi(x1, …, xn; ε1, …, εl)   (i = 1, …, n), 

 
and then the transformation: 
 
    i

′x  = Fi(x1, …, xn; ε1 + ω1, …, εl + ωl)  (i = 1, …, n) 

 
then we obtain a transformation of our group that can be written, with the help of the 
abbreviation: 
 

(15) 
1

1 1 1

0

( ( , ), , ( , ); , , )

l

i n l l

k t t

F x x t t

t

ε ε ε ε

= = =

 ∂ Φ Φ + +
 ∂ 

⋯

… …

= ξki(x1, …, xn; ε1, …, εl), 

as: 

(16)  i
′x  = xi + 

1

l

k
k

ω
=
∑ ξki(x1, …, xn; ε1, …, εl), (i = 1, …, n), 

 
where the unwritten terms are of higher order in ω1, …, ωl . 
 If we assign ωk infinitely many values here then we obtain infinitely many 
transformations of our group that depend upon the l parameters ε1, …, εl , as well as the l 
– 1 arbitrary ratios of the ωk .  Since l is arbitrary, our infinite group includes infinitely 
many small transformations. 
 
 18. One can also come to the functions ξki that enter into (16) in yet another way. 
 Namely, if one differentiates equations (13) with respect to εk: 
 

i

kε
∂
∂
r

= 1 1( , , ; , , )i n l

k

F x x ε ε
ε

∂
∂

… …

 

 
and makes the substitution (14) on the right-hand side then one obtains: 
 

i

kε
∂
∂
r

= 1 1

( , )

( , , ; , , )i n l

k x

F x x

ν ν ε

ε ε
ε

=Φ

 ∂
 ∂ 

… …

x

= ξki(x1, …, xn; ε1, …, εl), 

 
where the ξki are obviously the same functions of their arguments as in equations (15).  
We can thus conclude that equations (13) are obtained when one integrates the system of 
partial differential equations: 
 

(17)   i

kε
∂
∂
r

= ξki(x1, …, xn; ε1, …, εl), (i = 1, …, n; k = 1, …, l), 

 
while adding the initial conditions: 

[ ] 0k l
i ε ε= = =⋯

x = xi . 
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 From this, one ultimately infers an important property of the functions ξki . 
 Namely, since the l parameters ε1, …, εl are essential in equations (13), the n 
functions x1, …, xn of the l variables ε1, …, εl can never satisfy one and the same 

differential equation of the form: 
 

1
1

( , , )
l

k l
k k

α ε ε
ε=

∂Ω
∂∑ … = 0, 

 
in which the αk are functions of only the ε.  It follows that the ln functions ξki(x, ε) can 

also never satisfy n relations of the form: 
 

1
1

( , , )
l

k l
k

α ε ε
=
∑ …  ξki(x1, …, xn; ε1, …, εl),  (i = 1, …, n). 

 
In other words: The l infinitesimal transformations: 
 

1

n

i=
∑ ξki(x1, …, xn; ε1, …, εl) 

i

f∂
∂x

 (k = 1, …, n) 

 
in the variables x1, …, xn are independent of each other. 

 
 19. We would not like to overlook the formulation of this important result as a 
theorem.  In order to do this in the most convenient manner, we remark that in general the 
l infinitesimal transformations: 
 

1

n

i=
∑ ξki(x1, …, xn; ε1, …, εl) 

i

f∂
∂x

 (k = 1, …, n) 

 
also remain independent of each other when we assign any well-defined numerical values 
to the ε.  We further remark that l different transformations with one parameter can be 
defined from the transformation (16), when we, in fact, set all ω up to ω1 equal to zero in 
succession, then all of them up to ω2, and so forth.  We can then say: 
 
 Theorem 3.  No matter how large one sets the positive whole number l, an infinite 
continuous group with pair-wise inverse transformations always contains l families: 
 

xi = xi + ω ξki(x1, …, xn) + ω2 ϑki(x1, …, xn) + … (i = 1, …, n) 

 
of ∞1 transformations such that the l expressions: 
 

1

n

i=
∑ ξki(x1, …, xn) 

i

f∂
∂x

 (k = 1, …, n) 
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determine just as many independent infinitesimal expressions. 
 
 

§ 5.  The defining equations of the finite transformations of an 
infinite continuous group. 

 
 20. We imagine that the finite transformations: 
 

xi = Fi(x1, …, xn)  (i = 1, …, n) 

 
of an infinite continuous group with pair-wise inverse transformations is defined by a 
system of partial differential equations: 
 

(18)  
2

1 1
1 1 2

1 1

, , , , , , , , , ,n
k n n

n

W x x
x x x

 ∂∂ ∂
 ∂ ∂ ∂ 
… … … …

xx x
x x = 0 (k = 1, 2, …). 

 
We will now show that this system of differential equations, in a certain sense, admits the 
infinite group that it defines. 
 
 21. If: 
(19)   xi = Fi(x1, …, xn)  (i = 1, …, n) 

and 
(20)   i

′x = Φi(x1, …, xn)  (i = 1, …, n) 

 
are any two transformations of our infinite group then: 
 
(21)   i

′x = Φi(F1(x), …, Fn(x)) (i = 1, …, n) 

 
is always a transformation of the group, as well.  1′x , …, n

′x , when regarded as functions 

of x1, …, xn, thus satisfy the differential equations: 
 

(18′)  
2

1 1
1 1 2

1 1

, , , , , , , , , ,n
k n n

n

W x x
x x x

 ′′ ′∂∂ ∂′ ′ ∂ ∂ ∂ 
… … … …

xx x
x x = 0 (k = 1, 2, …) 

identically. 
 On the other hand, x1, …, xn, when regarded as functions of x1, …, xn, fulfill equations 

(18) identically.  Thus, if we imagine that the variables x1, …, xn  are removed from (18), 

by means of (20), then we must obtain a system of differential equations: 
 

(22)  
2

1 1
1 1 2

1 1

, , , , , , , , , ,n
k n n

n

V x x
x x x

 ′′ ′∂∂ ∂′ ′ ∂ ∂ ∂ 
… … … …

xx x
x x = 0 (k = 1, 2, …) 

 
that are satisfied identically, just as the system (18′) is with the substitution (21). 
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 Now, if (19) and (20) are completely arbitrary transformations of our infinite group, 
and since we can let (19), in particular, coincide with the identity transformation, then 
(21) is also an entirely arbitrary transformation of the group; equations (21) thus 
represent a completely arbitrary system of solutions of the differential equations (18′).  
We then see that any system of solutions of the differential equations (18′) likewise 
satisfies the differential equations (22); from this, it follows immediately that the system 
(22) is equivalent to the system (18′). 
 In fact, the system (22) arises from (18) when 1′x , …, n

′x  are introduced in place of x1, 

…, xn by means of the transformation (20).  It is therefore of the same order as the system 

(18′) and also contains exactly as many independent equations as it.  Finally, since the 
system (18′) yields no new equations of the same or lower order by differentiation (cf., 
pp. 318 [here, pp. 301]), the totality of solutions of (18′) can also be solutions of (22) 
only when these two systems of differential equations are equivalent, and thus when all 
of equations (22) follow from equations (18′), and conversely. 
 With that, we have proved that the system (18) always preserves its form when one 
introduces the new variables 1′x , …, n

′x  in place of x1, …, xn by means of any 

transformation (20) of our group.  We express this result in the following way: 
 
 Theorem 4.  If an infinite continuous group with pair-wise inverse transformations is 
defined by a system of partial differential equations: 
 

(18)  
2

1 1
1 1 2

1 1

, , , , , , , , , ,n
k n n

n

W x x
x x x

 ∂∂ ∂
 ∂ ∂ ∂ 
… … … …

xx x
x x = 0 (k = 1, 2, …), 

and if: 
     xi = Fi(x1, …, xn)   (i = 1, …, n) 

 
is any transformation that belongs to the group then the system of differential equations 
(18) always admits the transformation: 
 
     i

′x  = Fi(x1, …, xn) ix′  = xi  (i = 1, …, n). 

 
 22.  This important theorem may be inverted. 
 Namely, if the system (18) admits the transformation: 
 
(23)    i

′x  = Πi(x1, …, xn) ix′  = xi  (i = 1, …, n), 

and if: 
(19)    xi = Fi(x1, …, xn)   (i = 1, …, n) 

 
is any transformation of the infinite group that is defined by (18) then, along with the 
functions (10), the n functions: 
 
(24)    i

′x  = Πi(F1(x), …, Fn(x))  (i = 1, …, n) 
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also define a system of solutions of the differential equations (18).  From this, it then 
follows that equations (24) represent a transformation of our infinite group. 
 In order to express this conveniently, we would now like to introduce the symbols S 
and T for the transformations (19) and (23), respectively.  The aforementioned result may 
then be expressed briefly as: If the system (18) admits the transformation T and if S is a 
transformation of the group that is defined by (18) then ST is always a transformation of 
the group, as well.  However, the group contains the transformation S−1 at the same time 
as S, and therefore also the transformation S−1ST; that is, it contains T. 
 With that, we have proved the important theorem: 
 
 Theorem I.  If an infinite continuous group with pair-wise inverse transformations is 
defined by a system of partial differential equations: 
 

(18)  
2

1 1
1 1 2

1 1

, , , , , , , , , ,n
k n n

n

W x x
x x x

 ∂∂ ∂
 ∂ ∂ ∂ 
… … … …

xx x
x x = 0 (k = 1, 2, …) 

 
then this system of differential equations always admits a transformation of the form: 
 

i
′x  = Fi(x1, …, xn) ix′  = xi  (i = 1, …, n) 

 
when, but also only when, the equations: 
 

i
′x  = Fi(x1, …, xn)  (i = 1, …, n) 

 
represent a transformation of the infinite group in question. 
 
 23.  It is perhaps useful to clarify this theorem by an example. 
 The differential equation: 
 

(25)    1 2

1 2

n

nx x x

∂∂ ∂±
∂ ∂ ∂∑ ⋯

xx x
= 1 

 
defines an infinite continuous group.  Namely, if x1, …, xn are functions of x1, …, xn that 

satisfy equation (25) then1′x , …, n
′x , as functions of x1, …, xn , satisfy the equation: 

 

1 2

1 2

n

nx x x

′′ ′ ∂∂ ∂±
∂ ∂ ∂∑ ⋯

xx x
= 1 

 
that arises from (25) and (26) by multiplication. 
 Now, if: 
 
(27)    i

′x  = Fi(x1, …, xn), ix′  = xi  (i = 1, …, n) 
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is any transformation for which the differential equation (25) remains invariant then 
equation (25) retains the form: 
 

(28)    1 2

1 2

n

nx x x

′′ ′ ∂∂ ∂±
∂ ∂ ∂∑ ⋯

xx x
= 1 

 
under the transformation (27), where x1, …, xn are written for 1x′ , …, nx′ ; however, 

equation (25) comes into play, and because of that, as is known, one has: 
 

(29)    1 2

1 2

n

n

xx x ∂∂ ∂±
∂ ∂ ∂∑ ⋯

x x x
= 1. 

 
Thus, if we multiply (28) and (19) together then we get: 
 

     1 2

1 2

n

n

′′ ′ ∂∂ ∂±
∂ ∂ ∂∑ ⋯

xx x

x x x
= 1. 

 
This immediately illuminates the fact that the equations: 
 

i
′x  = Fi(x1, …, xn),  (i = 1, …, n) 

 
actually represent a transformation of the infinite group that is defined by (25). 
 
 24.  Theorem I on pp. 336 (here, pp. 317) says that the defining equation (18) of an 
invariant group remains invariant when one performs an arbitrary transformation of the 
group on the variables x1, …, xn , but, by contrast, only the identity transformation on the 

variables x1, …, xn .  One may now easily show – although we omit the very simple proof 
– that Theorem I is distinct from the following one: 
 
 Theorem II.  If an infinite continuous group with pair-wise transformations is 
defined by a system of partial differential equations: 
 

(18)  
2

1 1
1 1 2

1 1

, , , , , , , , , ,n
k n n

n

W x x
x x x

 ∂∂ ∂
 ∂ ∂ ∂ 
… … … …

xx x
x x = 0 (k = 1, 2, …) 

 
then this system of differential equations always admits a transformation of the form: 
 
   i

′x  = xi , ix′  = Fi(x1, …, xn)  (i = 1, …, n) 

 
when, but also only when, the equations: 
 
     ix′  = Fi(x1, …, xn)  (i = 1, …, n) 
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represent a transformation of the infinite group in question. 
 
 Here, x1, …, xn are then transformed by the identity transformation, while the x1, …, 

xn are transformed by an arbitrary transformation. 
 
 

§ 6.  The infinitesimal transformations of a finite continuous group. 
 

 With theorem I, we are now in a position to prove that any infinite continuous group 
with pair-wise inverse transformations contains certain infinitesimal transformations and 
certain one-parameter groups. 
 
 25.  Let: 
(30)  i

′x  = xi + ε ξi(x1, …, xn) + ε2 ϑi(x1, …, xn) + … (i = 1, …, n) 

 
be any family of ∞1 transformations that belongs to our infinite group, and then we 
assume, as the form of equations (30) shows, that this family includes the identity 
transformation. 
 If we now add the following equations to equations (30): 
 
(31)     1x′  = x1, …, nx′  = xn 

 
then as a result of Theorem I we must obtain a family of ∞1 transformations that remains 
invariant under our group: 
 

(18)  
2

1 1
1 1 2

1 1

, , , , , , , , , ,n
k n n

n

W x x
x x x

 ∂∂ ∂
 ∂ ∂ ∂ 
… … … …

xx x
x x = 0 (k = 1, 2, …). 

 
All of the following conclusions rest upon this fact. 
 
 26.  We extend the ∞1 transformations (30), (31) by taking into account the fact that 
the differential quotients of the x with respect to the x are transformed.  In this way, we 

obtain a number of equations of the form: 
 

(32)  
1

2 2 2 2

1 1

,
n

i i i

n n
i i i i

x x x

x x x x x x x x

τ

τν ν τ ν

τ τ π

τ τµ ν µ ν τ µ ν τ π ν µ

ξε

ξ ξε

=

= =

′∂ ∂ ∂ ∂ = + + ′∂ ∂ ∂ ∂


 ′∂ ∂ ∂ ∂ ∂ ∂ ∂  = + + +  ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

∑

∑ ∑

⋯

⋯

x x x

x

x x x x x

x x x

 

 
and we then take all differential quotients of first, second, …, up to mth order when the 
system of differential equations (18) is of mth order. 
 If we now add the equations (32) to (30) and (31) then we obtain a family of ∞1 
transformations in the variables: 
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(33)    x1, …, xn, x1, …, xn, 1

1x

∂
∂
x

, …, 
1

m
n

mx

∂
∂
x

, 

 
under which the system of equations (18) in these variables remains invariant.  That is 
only another way of expressing the fact that the system of differential equations (18) 
remains invariant under the ∞1 transformations (30), (31). 
 In order to be able to analytically express the invariance of the system of equations 
(18) in a convenient way, we now introduce the infinitesimal transformation: 
 

Xf = 1
1

( , , )
n

i n
i i

fξ
=

∂
∂∑ …x x
x

, 

 
and also extend it by taking all differential quotients of the r with respect to the x up to 

mth order.  The infinitesimal transformation that is thus extended: 
 

X(m)f 
 
in the variables (33) is very easy to compute; namely, it must leave invariant the system 
of Pfaffian equations in the variables (33): 
 

dxi − 
1

n
i dx

x ν
ν ν=

∂
∂∑
x

 = 0, 

 
2

1

n
i id dx

x x x µ
µν ν µ=

∂ ∂−
∂ ∂ ∂∑
x x

 = 0, 

 
and since it does not transform x1, …, xn at all, one finds very easily that: 
 

( )m iX
xν

 ∂
 ∂ 

x
 =

1

n
i

x
τ

τ τ ν

ξ
=

∂ ∂
∂ ∂∑

x

x
, 

 
2

( )m iX
x xµ ν

 ∂
  ∂ ∂ 

x
 =

2 21

1 ,

n n
i i

x x x x
τ τ π

τ π ττ µ ν τ π ν µ

ξ ξ
=

∂ ∂ ∂ ∂ ∂+
∂ ∂ ∂ ∂ ∂ ∂ ∂∑ ∑

⋯x x x

x x x
. 

 
In other words: One can briefly write the equations of the ∞1 transformations (30), (31), 
(32) as: 
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(34)   

( )

( )

2 2 2
( )

,

( ) ,

,

,

i i
m

i i i

mi i i

mi i i

x x

X

X
x x x

X
x x x x x x

ν ν ν

µ ν µ ν µ ν

ε

ε

ε

′ =
 ′ = + +
  ′∂ ∂ ∂= + +   ′∂ ∂ ∂ 
  ′∂ ∂ ∂ = + +   ′ ′∂ ∂ ∂ ∂ ∂ ∂ 


⋯

⋯

⋯

⋯

x x x

x x x

x x x

 

 
We do not generally know how the coefficients of the higher powers of ε behave; 
however, that is also entirely irrelevant. 
 
 27.  We therefore now go on to draw new conclusions from the aforementioned 
invariance of the system of equations (18). 
 The system of equations (18) admits the ∞1 transformations (34).  Thus, if we think of 
all the variables in (18) as now being written with primes then if we express the primed 
quantities in the equations thus obtained: 
 
(35)    1W′  = 0, 2W′  = 0, … 

 
in terms of unprimed ones everywhere by means of (34) then the system of equations that 
emerges must exist for every ε by means of equations (18).  However, we now obtain the 
following system of equations: 
 

Wk + ε X(m)(Wk) + … = 0   (k = 1, 2, …) 
 
from (35) by the given process, where once more only the first powers of ε are taken into 
account.  Should this system of equations exist for any value of ε due to (18) then it is, in 
any case, necessary that all of the expressions: 
 

X(m)(Wk) 
 

vanish due to (18).  However, this is nothing more than the fact that the system of 
equations (18) in the variables (33) admits the infinitesimal transformation X(m)f in these 
variables, in addition to the ∞1 transformations (34). 
 
 28.  Since the system of equations (18) admits the infinitesimal transformation X(m)f, 
it also admits any transformation of the one-parameter group that is generated by the 
X(m)f.  If we then revert to the original standpoint, from which we regarded (18) as a 
system of differential equations, then we can say: The system of the differential equations 
(18) admits the infinitesimal transformation Xf and likewise any transformation of the 
one-parameter group that is generated by Xf. 
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 However, from Theorem I, one thus proves that our infinite group subsumes the 
infinitesimal transformation Xf, as well as the one-parameter group that is generated by 
Xf. 
 
 Theorem III.  If an infinite continuous group with pair-wise inverse transformations 
contains ∞1 transformations of the form: 
 
(30)  xi = xi + ε ξi(x1, …, xn) + ε 2ϑi(x1, …, xn) + … (i = 1, …, n), 

 
where ε denotes an arbitrary parameter, then it likewise contains the infinitesimal 
transformation: 

1
1

( , , )
n

i n
i i

f
x x

x
ξ

=

∂
∂∑ … , 

 
and above all, the one-parameter group that it generates. 
 
 29.  This important theorem is capable of yet another extension.  It can indeed happen 
that the coefficients of ε, ε2, …, εl−1 in the equations (30) can all vanish, while it is first 
the coefficients of εl that are not all zero.  In this case, one obtains by exactly the same 
reasoning as above: 
 
 Theorem 5.  If an infinite continuous group with pair-wise transformations contains 
∞1 transformations of the form: 
 

xi = xi + εl ξi(x1, …, xn) + ε l+1ψi(x1, …, xn) + … (i = 1, …, n), 

 
where l denotes a positive whole number that is  ≥ 1, then it also contains the 
infinitesimal transformation: 

1
1

( , , )
n

i n
i i

f
x x

x
ξ

=

∂
∂∑ … , 

 
and the one-parameter group that it generates. 
 
 With that, we have then proved that any infinite continuous group with pair-wise 
inverse transformations contains not just infinitely small, but also infinitesimal 
transformations. 
 
 30.  Finally, we can prove very easily with the help of Theorem 3 on pp. 333 [here, 
pp. 315] that our group contains infinitely many independent [infinitesimal] 
transformations. 
 In fact, as a result of this theorem our group always contains l transformations of the 
form: 

xi = xi + ω ξki(x1, …, xn) + …  (i = 1, …, n), 

 



Lie – The foundations of the theory of infinite continuous transformation groups – I.       24 

no matter how large l might be, and in which ω denotes an arbitrary parameter, and 
where the l expressions: 

(36)     1
1

( , , )
n

ki n
i i

f
x x

x
ξ

=

∂
∂∑ …   (k = 1, …, l) 

 
represent just as many independent infinitesimal transformations.  However, from 
Theorem III, the l infinitesimal transformations (36) and the one-parameter groups that 
they generate belong to our infinite group, so we have: 
 
 Theorem 6.  Any infinite continuous group with pair-wise inverse transformations 
contains infinitely many independent infinitesimal transformations, and likewise infinitely 
many different one-parameter groups that are generated by these infinitesimal 
transformations. 
 
 

§ 7.  The finite transformations of an infinite group are generated by 
infinitesimal transformations of the group. 

 
 31.  If one has a finite continuous – perhaps r-parameter – group: 
 

ix′  = fi(x1, …, xn; a1, …, ar)  (i = 1, …, n) 

 
with pair-wise inverse transformations then one knows that the transformations of this 
group can be arranged into one-parameter groups: Any transformation whose parameter 
lies in a certain neighborhood of the identity transformation belongs to a certain one-
parameter subgroup of the r-parameter group and is therefore generated by an 
infinitesimal transformation of this group. 
 In the present paragraph, we have now generally shown that any infinite continuous 
group with pair-wise inverse transformations contains infinitely many one-parameter 
groups, but it was in no way proved that the group consists of nothing but one-parameter 
subgroups.  Whether that is the case, i.e., whether any transformation of the infinite group 
belongs to a one-parameter subgroup of the group, and is thus generated by an 
infinitesimal transformation of the group, is a function-theoretic question whose 
resolution does not seem to be simple.  Here, we leave this question completely aside, 
and are all the more justified in doing this because we can show that the transformations 
of an infinite continuous group are still generated by the infinitesimal transformations of 
the group, in a certain sense. 
 
 32.  We recall the developments of pp. 327, et seq. [here, pp. 309, et seq.].  There, we 
considered a family: 
(6)      xi = Fi(x1, …, xn; ε)  (i = 1, …, n) 

 
of ∞1 transformations that belongs to an infinite group and contains the identity 
transformation.  The identity transformation belongs to the value ε = 0 and indeed the Fi 
are regular in a certain neighborhood of ε = 0. 
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 We have thus shown that any of the ∞1 transformations (6) can be obtained when one 
performs the ∞1 different infinitesimal transformations: 
 

(6′)     1
1

( , , ; )
n

i n
i i

f
x x

x
ξ ε

=

∂
∂∑ …   

 
in succession.  On the other hand, we found that our infinite group contains a family of 
transformations that are represented by equations of the form: 
 
(8)     i

′x  = xi + ω ξi(x1, …, xn; ε) + … (i = 1, …, n). 

 
We can therefore conclude from theorem III, pp. 342 [here, pp. 322] that the ∞1 
infinitesimal transformations (6′) all belong to our infinite group in such a way that each 
of the ∞1 transformations (6) can be obtained by performing the ∞1 different infinitesimal 
transformations of our group in succession. 
 We must still remember that any transformation that belongs to the family (6) and 
exhibits the aforementioned behavior can be briefly referred to as a transformation that 
lies in the neighborhood of the identity transformation (cf., pp. 323 [here, pp. 306]), so 
we can state the following: 
 
 Theorem 7.  Any transformation of an infinite continuous group with pair-wise 
inverse transformations that lies in a neighborhood of the identity can be obtained by 
performing ∞1 different infinitesimal transformations of this group in succession. 
 
 33.  A very simple example will suffice to explain things. 
 The infinite continuous group of all point transformations in a plane will be 
represented by two equations of the form: 
 
(37)    x = F1(x, y), y = F2(x, y), 

 
in which we understand F1, F2 to mean completely arbitrary functions of x, y; the 
differential equations that define the finite equations of this group thus consist of nothing 
but the identity 0 = 0. 
 Among the transformations of the group (37), we choose any well-defined one of 
them – say: 
(37′)    x = f1(x, y), y = f2(x, y), 

 
and we would like to prove that it is generated by infinitesimal transformations of the 
group. 
 We next construct a family of ∞1 transformations of our group in which the identity 
transformation is contained, along with the transformation (37′).  To that end, we connect 
any point x, y with the point x, y that it goes to under the transformation (37′) through a 

line and determines a point x′, y′ on this line whose distance from x, y relates to the 



Lie – The foundations of the theory of infinite continuous transformation groups – I.       26 

distance between the points x, y and x, y like λ: 1.  The point x′, y′ will then be 

represented by the two equations: 
 

(38)    1

2

( ( , ) ),

( ( , ) ),

x x f x y x

y y f x y y

λ
λ

′ = + −
 ′ = + −

 

 
and it is clear that these equations with the arbitrary parameter λ represent a family of ∞1 
transformations that possess the desired properties. 
 The point x, y goes to x′, y′ under the transformation (38); if we replace λ with λ + dλ 
then x, y goes to a point that is infinitely close to x′, y′: x′ + dx′, y′ + dy′.  However, we 
can obviously arrive at the point x + dx, y + dy by an infinitely small transformation of 
our group.  In order to find this infinitely small transformation, we need only to express 
dx′, dy′ in terms of x′, y′, λ, and dλ.  We thus differentiate equations (38) with respect to 
λ: 

dx

dλ
′
= f1(x, y) – x, 

dy

dλ
′
= f2(x, y) – y, 

 
and then eliminate x and y by means of (38), which yields equations of the form: 
 

dx

dλ
′
= ξ(x′, y′, λ), 

dy

dλ
′
= η(x′, y′, λ). 

 
With that, we have found the desired infinite small transformation. 
 Obviously, we can, however, say: Starting from the point x′, y′, we arrive at the 
infinitely neighboring point x′ + dx′, y′ + dy′ when we perform the infinitesimal 
transformation with the symbol: 
 

(39)    ( , , ) ( , , )
f f

x y x y
x y

ξ λ η λ∂ ∂′ ′ ′ ′+
′ ′∂ ∂

 

 
on x′, y′.  If we now imagine that the λ in (39) has been replaced with all real numbers 
from 0 to 1, in succession, then we obtain ∞1 infinitesimal transformations that yield 
precisely the transformation (37′) when performed in succession. 
 With that, we have proved that the transformation (37′) is generated by ∞1 
infinitesimal transformations of the group (37).  This group then contains absolutely all 
point transformations of the plane, so it also contains the ∞1 infinitesimal transformations 
(39), in particular. 
 

§ 8.  Relations between the infinitesimal transformations 
of an infinite continuous group. 

 
 34.  As before, an infinite continuous group with pair-wise inverse transformations 
can be defined by a system of partial differential equations: 
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(40)  
2

1 1
1 1 2

1 1

, , , , , , , , , ,n
k n n

n

W x x
x x x

 ∂∂ ∂
 ∂ ∂ ∂ 
… … … …

xx x
x x  = 0 (k = 1, 2, …). 

 If: 

Xf = 1
1

( , , )
n

i n
i i

fξ
=

∂
∂∑ …x x
x

, Yf = 1
1

( , , )
n

i n
i i

fη
=

∂
∂∑ …x x
x

 

 
are two infinitesimal transformations of our group then the system of equations (40) 
admits the two extended infinitesimal transformations: 
 

X(m)f,  Y(m)f 
in the variables: 

x1, …, xn, x1, …, xn, 1

1x

∂
∂
x

, …, n

nx

∂
∂
x

, 
2

1
2

1x

∂
∂
x

, …, 
m

n
m

nx

∂
∂
x

 

 
(cf., pp. 339, et seq. [here, pp. 319, et seq.]).  However, the system (40) then also admits 
the infinitesimal transformation: 
 

a X(m)f + b Y(m)f = (a Xf + b Yf)(m) 
 

that arises from a Xf + b Yf by extension.  We therefore have the theorem: 
 
 Theorem 8.  If X1f, X2f, X3f, … are infinitesimal transformations of an infinite 
continuous group with pair-wise inverse transformations then this group likewise 
contains any infinitesimal transformation of the form: 
 

c1 X1f + c2 X2f + c3 X3f + … 
 

for whatever values one assigns to the constants c1, c2, c3, ... 
 
 On the other hand, along with X(m)f and Y(m)f, the system of equations (40) also admits 
the infinitesimal transformation: 
 

X(m)f Y(m)f − Y(m)f X(m)f, 
which arises from: 

XY f – YX f = (X Y) 
 
by extension.  We have thus arrived at the fundamental: 
 
 Theorem IV.  If X1f, X2f, X3f, … are infinitesimal transformations of an infinite 
continuous group with pair-wise inverse transformations then every infinitesimal 
transformation: 

Xi Xk f – Xk Xi f = (Xi Xk),  (i, k = 1, 2, …) 
 

also belongs to the group. 
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 35.  We now give yet another elementary proof of this important theorem. 
 If Xf and Yf are two infinitesimal transformations of our group then this group also 
contains the two associated one-parameter groups whose finite equations read as follows 
when one considers only the terms of first and second order: 
 

(41)   i
′x  = xi + ε ξi(x1, …, xn) + 

2

1 2

ε
⋅

 X ξi + … (i = 1, …, n) 

and: 

(42)   i
′x = xi + ε′ ηi(x1, …, xn) + 

2

1 2

ε ′
⋅

 Y ηi + … (i = 1, …, n). 

 
 We now first bring the point xi into the new position i′x  by means of a transformation 

of the one-parameter group (41), and we then take the point i
′x  to the new position i′′x  by 

a transformation of the one-parameter group (42): 
 

i
′′x  = i

′x  + 
2

1( , , )
1 2i n iY
εε η η

′′ ′ ′ ′ ′+
⋅

…x x  + …  (i = 1, …, n). 

 
If we then substitute the values of i

′x  from (41) then we obtain the i′′x , as expressed in 

terms of the xi : 

(43) i
′′x  = xi + 

2 2

1 1( , , ) { ( , , ) }
1 2 1 2i n i i n i iX X Y
ε εεξ ξ ε η ε η η

′′+ + + +
⋅ ⋅

… …x x x x  + …  

(i = 1, …, n). 
 
The equations (43) then naturally represent a transformation of our group. 
 On the other hand, if we first bring the point xi to the new position i′x  by means of the 

transformation (42) and the i′x  to the new position i′′x with the help of (41) then the i′′x  

are expressed in terms of the xi as follows: 

 

(44) i
′′x  = xi + 

2 2

1 1( , , ) { ( , , ) }
1 2 1 2i n i i n i iY Y X
ε εε η η ε ξ ε ξ ξ

′′ ′+ + + +
⋅ ⋅

… …x x x x  + …  

(i = 1, …, n). 
This is also a transformation of our group. 
 We now consider the transformation that takes the point i

′′x  to i
′′x .  This 

transformation belongs to our group and will be obtained when one removes x1, …, xn 
from (43) and (44).  This next gives: 
 

i
′′x  = i

′′x  + εε′ (Y ξi – X ηi) + …, 

 
where the omitted terms are of third order and higher. 
 If one expresses the x in terms of the x″ by means of (43) here then one comes to: 
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(45)   i
′′x  = i

′′x  + εε′ (Y″ iξ ′′ – X″ iη ′′ ) + …  (i = 1, …, n). 

 
These are, except for terms of third and higher order, the equations for the transformation 
that takes the point i′′x  to i

′′x . 

 If one sets ε = ε′ then one obtains a family of transformations of our group, to which 
one can apply Theorem 5, pp. 343 [here, pp. 322] with no further assumptions.  This 
immediately yields the fact that our group contains the infinitesimal transformations: 
 

1

( )
n

i i
i i

f
X Yη ξ

=

∂−
∂∑
x

 = XY f – YX f = (X Y). 

 
 With that, the promised second proof of Theorem IV is delivered. 
 
 36.  If the finite transformations (41) and (42) of the two one-parameter groups Xf and 
Yf are denoted by S and T, respectively, then equations (45) obviously represent the 
transformation: 
(46)     T−1 S−1 T S. 
 
If one then chooses S and T to both be infinitely small, in particular − perhaps when one 
sets ε = ε′ = δt – then the transformation (46) takes on precisely the form: 
 

ix′  = xi + (δt)2 (Yξi – Xηi) + … (i = 1, …, n), 

 
up to terms of second order.  This remark, as also might be emphasized here, explains the 
important role that the Poisson bracket expression: 
 

(X Y) = 
1

( )
n

i i
i i

f
X Y

x
η ξ

=

∂−
∂∑  

plays in group theory. 
 We would like to further mention that the developments of the last pages can also 
find application to such groups with pair-wise inverse transformations that are not 
definable through differential equations. 
 If one knows, on whatever basis, that such a group contains the two infinitesimal 
transformations Xf and Yf, and therefore also the associated one-parameter groups, then 
one can conclude from the above that it simultaneously contains the infinitely small 
transformation: 

ix′  = xi + (δt)2 (Yξi – Xηi) + … (i = 1, …, n); 

 
whether it indeed subsumes the infinitesimal transformation (X Y) is another matter. 
 
 37.  A third proof of Theorem IV is given by the following reasoning: 
 If we understand S and T to mean the finite transformations (41) and (42) of the one-
parameter groups Xf and Yf, respectively, and we imagine that ε is chosen to be fixed, 
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while ε′ is arbitrary, then the ∞1 transformations S−1 T S define a one-parameter group 
that belongs to our infinite group and is generated by the infinitesimal transformation: 
 

Yf = Yf + ε(X Y) + 
2

1 2

ε
⋅

((Y X) X) + … 

 
The system of differential equations that defines our infinite group thus admits the 
infinitesimal transformation Yf, and since ε can take on any value it likewise admits the 

infinitesimal transformation (Y X) = − (X Y), and thus (X Y), as well as the one-parameter 
group that is generated by (X Y), also belongs to our infinite group.  However, that is just 
the content of Theorem IV. 
 If one applies these considerations to arbitrary infinite continuous groups that are not 
actually definable by means of differential equations, but whose transformations are 
associated with each other pair-wise as inverses, then this yields the following: 
 If such a group contains the two infinitesimal transformations Xf and Yf then it 
likewise contains the infinitesimal transformation: 
 

Yf = Yf + ε(X Y) + 
2

1 2

ε
⋅

((Y X) X) + …, 

 
no matter what the value of ε might be.  Now, if the group contains, above all, the two 
infinitely small transformations: 
 
    ix′  = xi + ϕi(x1, …, xn) δt + …  (i = 1, …, n), 

    ix′  = xi + ψi(x1, …, xn) δt + … (i = 1, …, n) 

    
then, as one easily confirms, it also contains the infinitely small transformation: 
 
    ix′  = xi + (aϕi + bψi) δt + …  (i = 1, …, n) 
 
for arbitrary a and b.  Thus, under the assumptions that were made, we can conclude that 
our group contains the infinitely small transformations whose first-order terms coincide 
with the first-order terms of the infinitesimal transformation: 
 

ε(X Y) + 
2

1 2

ε
⋅

((Y X) X) + … 

 
Since ε is arbitrary, we can see from this that our group contains absolutely any infinitely 
small transformation whose first-order terms coincide with the first-order terms of the 
infinitesimal transformation (X Y).  By contrast, we cannot actually prove that our group 
contains the infinitesimal transformation (X Y) itself when the group is not defined by 
differential equations; still, one cannot indeed doubt that this is the case. 
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 38.  The foregoing treatise is, like the paper of Herrn Professor Engel on linear 
differential equations (these Berichte, pp. 253, et seq. [here, Bd. IV, Abh. V]), elaborated 
upon in a manuscript. 
 
 


