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Thefoundations of the theory of infinite continuous
transfor mation groups—1I1.

By Sophus Lie
Translated by D. H. Delphenich
Now that we know that any infinite continuous group cmstanfinitely many
independent linear transformations, we would now like tavstiat the entire theory of

infinite continuous groups comes down to the examinatiébnthe infinitesimal
transformations of such groups.

8 9. Thedefining equations of the infinitesmal transformations
of an infinite group.

1. As before, let:

Or 0r, 0°r
1 Y o X e e — 5| =0 =1, 2, ...
(1) k[& D% SPEEE ¢ ox T ox, 0% j k )

be the defining equations of the finite transformatiohsn infinite continuous group
with pair-wise inverse transformations. However, fnoomv on, we would like to write:

azci _ 522&
0x, ' 0x, 0%,

_xi,/lVl RN

for the differential quotients qf with respect to, such that our defining equations take
the form:

(2) Wk(X]_, vy Xy Ty oo Iy 81,15 - Inny B11D ) =0 ((: 1, 2, )

Should the infinitesimal transformation:

. of
Xf = fi(x,...,xn)_
; ' Or;
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belong to our group, then, from Theorem |, pp. 336 [here3pp], it is necessary and
sufficient that the system of differential equatio$) admit the infinitesimal
transformationXf, or, what amounts to the same thing, that the systexgquations (2) in

the variables, g, ti, ..., &, ... admit the extended infinitesimal transformation:
s of N, 0¢& of

(3) XOF=>E@)—+ > —tr,,—
Z:‘ or; i,;;:lax;, )

Analytically, this condition may be expressed as feHioAll expressions of the form:

n oW, & 98 0w
(4) XOf= N &) —e+ Y iy T+
; ax i ,,U,V:laxlu # ax| v

vanish, due to (2).

2. Now, if:
(5) ?i:Fi(Xl, ,Xn) (i:]., ...,n)

is any finite transformation of our group then equatifi)swill be fulfilled identically
under the substitutions:
oF 0°F

6 i = Fi(x), iv=—", = ...
(6) r (x) L, ox, Liu axﬂ ax

If we then think of equations (5) as having been solved;far., X, :
(7) X = ®i(r, ..., In) (i=1..n),

and further imagine these values xf ..., X, as having been substituted in the
expressions fofi v, tiw, ... that follow from (6):

(8) tiv = i), Tiv = Piplr), ..

then equations (2) must also go to mere identities uhdesibstitution that is defined by
(7) and (8). However, we saw before thditis an infinitesimal transformation of our
group when and only when the expression (4) vanishes due tdt{@¥, we can also say:
Xfis an infinitesimal transformation of our group whed anly when the expression (4)
always vanishes identically under the substitution (&), which might also make the
transformation (5) belong to our group. If we imply sudbstitution (7), (8) by including

the variables in square brackets then it emerges fromettpisrement thafi(z), ..., &(r)

must satisfy the differential equations:

},i%{"x a_W},___:o k=12, ..).

. oW,
@ XOW]=> & {—k y
; a? i,,u,v:16xlu v=1 # axiy
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3. Obviously, we obtain infinitely many different differ@ltequations foi, ..., &
in this way, since our group indeed contains infinitely maffem@nt transformations (5).
However, it may be shown that equations (9) are coelgl@tdependent of the special
choice of the transformation (5). If one employs taifferent transformations (5) of our
group for the definition of equations (9) then one obtthessame system of differential
equations fok, ..., & in both cases.

In order to prove this assertion, we first remark tig form in which we have
employed the system of equations (2) has no influencéh@rsystem of differential
equations (9). We then replace the system of equaynsith the equivalent one:

Uk(Xl, v Xy 81 e Iy 811 -e Enne 1,10 ) =0 Q(: l, 2, )

then the system of differential equations:
[X™ug]=0 k=1,2 ..)

differs from the system (9) only in form, when we uratly assume that the same
transformation (5) was employed both times for thesstbion [ ]. In order to convince
oneself of this, confelheorie der TransformationsgruppeAbschnitt I, pp. 109-111
[Leipzig 1888].

4. Now, if:
(10) n=3,....X%) i=1,..,n

is any other transformation of our group, and if one magttéin :
(11) X =W, (X,...,X,) i=1,...,n

from (5) and (10), by dropping thethen the transformation (11) would also belong to

our group, and the transformation (10) can obviously bar@atavhen one first performs
(11) and then (5).

We now recall Theorem Il, pp. 338 (here, pp. 319). Fronthleisrem, the system of
differential equations (1) preserves its form when mgeduce the new variables, ...,

X, in place ofxi, ..., X,by means of the transformation (11) of our group. Itken set:

and define the equations:

— Ve _ 5 _ X/ _ n. ax/ 6)_(;7 n._ 627([
(12) X _Lpi (X)’ Liv = Yoo Ly = & rrr__+ &. )
Z:;' " 0X, “ ,;1 Tox, 0x, = 0%,0X%,

in which we think of all of the differential quotients:
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ox, 9%

ox, ox,0x, "

by means of (11) then under the substitution (12), thesysf equations (2) goes to a
system of equations:

(13) U (R Xy sBn Bygee e 18 nfpage-- )= 0 k=12, ..)
that is equivalent to the system of equations:
(14) W (%sees XLy s n Epam e Epnfagre- )= 0 k=12, ..).

If we would then like to form the system of differmhtequations that we get fdi, ...,
& by the use of the transformation (10) then, from tleripus statements, we can use
the system (13) in place of system (14) with no furt#ssumptions.

5. In order to obtain the differential equations for &{g) that follow from (10), we
extend the infinitesimal transformatidi, when we consider the, ..., r, to be functions

of X, ..., X :

o . of
(15) XMW= &@k)=—+ Ty
; a& i,,u,vzlaxﬂ # 6?

iV

08 of

and then define the expressions:

(16) xoy, =3 Wy 3 %ip Wi
i=1 L

Ly
ai i,,u,vzlaxﬂ # 6?

iV

and we finally make the substitution (17) into the expoess(16), which may be implied
by curly brackets. Then:

_ n ou noo& |&_ oU
(18) {XMu} = 5(?){—"}+ =N, —%t+...=0
k} ; ax| i,;;:laxlu V=1 # a?iyu
are the differential equations fof;, ..., & that one obtains by means of the

transformation (10).

6. We will verify that the differential equations (18nd (9) are identical with each
other.
Under the assumptions that were made, the furcildn Ws, ..., go toU;, Uy, ...

when thex, T, T, ... are introduced in place of the ri, riu, ... by means of (12).
However, at the same time, the infinitesimal transitionX™f is converted intoX ™ f
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under the transformation (12)((m)f is then defined by the fact that it must leave invariant
the system of Pfaffian equations:

(19 dri — z;cwdx/ =0, driv - inwdxﬂ =0, ...
v=1

H=1
on the other handX‘™ f is defined by the fact that it leaves invariant theesys

(20) dy - > §,d% =0, dz, - %,d%, =0, ...
H=1

v=1

However, the system (19) takes on the form (20) by mekthe dransformation (12), so
X™f must take on the fornX™ f under the transformation (12).

This illuminates the fact that the expression (4) godbké expression (16) under the
substitution (12). However, the left-hand sides of eqnoati¢l8) arise from the
expressions (16) by way of the substitution (17), so weatso say: The left-hand sides
of equations (18) will be obtained from the expressionsw@n one first performs the
substitution (12) and the substitution (17). If we ultiehatrecall that the two
transformations (11) and (5), when carried out one after dther, deliver the
transformation (11), then we recognize that the twotgubens (12) and (17), when
performed in succession, yield precisely the same thinfvas had performed just the
substitution (7), (8). The left-hand sides of equations \{@B}hen be obtained from the
expressions (4) by the substitution (7), (8). In otherdsoEquations (18) are identical
with equations (9).

With that, we have proved that the particular chaédransformation (5) has no
influence on the differential equations (9), justhestransformation (5) of our group may
be chosen so that one still always obtains the system of differential equations for

(@), -y dn().

7. We are therefore completely free to choose whighstiormation (5) of our group
to use for the definition of the differential equasq®). Naturally, everything becomes
simplest when we let the transformation (5) coineidld the identity transformation, so
that one then has, = &,, whereg, equals 1 whenever= v and vanishes whenever
v, although the; ., and likewise all differential quotients of higher ardethey;, are

equal to zero; the differential equations (9) then asgshmeimple form:

Y % M = =

iV

n aVVk
(21) .Z:;' ¢ (x) {?

where the symbol 0 on the square bracket meanstieamust set ak =y, all i, = &y,
and allyi ,v, ... equal to zero.
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If one thinks of the system of equations (2) as beingedabefore one uses them for
the definition of the differential equations (21) theneosees that the system of
differential equations (21) is of the same order as ybeem (1) and that it contains just
as many independent equations as that one. It is likelgaethat all of the differential
equations that are derivable from (21) by differentiatiod alimination whose order
does not exceed the order of (21) already follow from y@thout differentiations.

8. The differential equations (21), whose most generaltisolk & (x), ..., &()
determine the most general infinitesimal transformation:

Xf = Zé(x)%

of our group, are what we shall call the defininquaions of the infinitesimal
transformations of this group.
These defining equations (21) possess a charstatgrioperty. Namely, Xf and:

s of
Yi= ) n@)—
; Or;

are two infinitesimal transformations of our graten, from Theorem IV, pp. 348 [here,
pp. 327]:

on 0§
(X = Z{ o) axv}ax.

iv=1 v

is also always an infinitesimal transformation led group. In other words: whef, ...,
&andn, ..., nn are any two systems of solutions of the differ@quations (21) then:

i[a?—m %} (=1 ..0)

i,v=1 v v

is likewise a system of solutions of (21).
We summarize the results obtained in:

Theorem V. If the finite transformations of an infinite contious group can be
defined by a finite number of partial differentialquations then the infinitesimal
transformations contained in this group may also dedined by a finite number of
differential equations, where the latter differahgquations have the form:

(22) Zak.(x)ci@akw(x) : T P ) j =0,

v iupy=1 ,uxv
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so they are linear and homogeneouséi(x), ..., &(x), and their differential quotients

possess the following property, in addition:&f ..., & and /4, ..., n, are any two
systems of solutions of the differential equati@% then:

n %_ ﬁ - _
i;l[gv axv ,7i axvj (| 1, ...,n)

is a system of solutions (#2).

9. The foregoing theorem shall be referred to asFile Fundamental Theoremf
the theorem of infinite continuous groups; it corresponds h® theorem thatr
independent infinitesimal transformations:

. of
Xf = (X s X )—
’ ;Ek.(xl %) o
of anr-parameter group satisfy the pair-wise relatiorship
(X X) = D G X, f (i, k=1, ...r).
s=1

The theorem that was proved above — viz., thatdifferential equations (9) are
independent of the choice of the transformation{3)as its analogue in the theory of
finite groups: As might be remarked in passing;atresponds to the theorem that the
finite equations:

X =fi(Xy, ..., X, &1, ..., &) i=1,..n)

satisfy the differential equations of eqparameter group of the form:

%; =YW@ 8 (e ) (=1, mk=1, ).

8 10. Infinite groups of infinitesmal transformations.
Differential invariants of such groups.

10. In the previous paragraphs, we have seen thahfihéesimal transformations of
an infinitely continuous group can be defined gystem of partial differential equations
that possesses a certain special property: Ihéatiand homogeneous in theand their
differential quotients. From any two of its sysgepof solutions, one can derive a third
system of solutions by a certain operation. Fnals most general system of solutions
does not depend upon merely a finite number otrarlyi constants — the latter property
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follows from the fact that any infinite group containsiafinite number of independent
infinitesimal transformations.

A closely-related problem is to confirm that, conedys any system of partial
differential equations that possesses the aforemedtigmoperty defines the infinitesimal
transformations of an infinite group. It is therefounal for us to now consider an
arbitrary system of partial differential equations tiudfills the given requirements.

11. We thus imagine that we are now given an arbitraygtesn of linear,
homogeneous partial differential equations:

(22) iaki(x)fi +iakiv(x)% +..=0 k=1,2,..)

that possesses the following two properties:

1. The most general system of solutiong2®) shall not depend upon just a finite
number of arbitrary constants.

2. Whenevet(x), ..., &() and 71(x), ..., 7n(zr) are any two systems of solutions of

(22):
y %— ﬁ | =
i;l[fv % n, % j (i=1,..,n)

is likewise a system of solutiong22).

In addition, corresponding to the assumptionsmr8a8 [here, pp. 302], we make the
following assumption: If is the order of the system (22) then all diffef@requations of
orderr and less that can be derived from (22) by diffea¢ions and eliminations already
follow from (22) without differentiation.

Obviously, our system (22) defines a family ofiniiely many independent
infinitesimal transformations, and in faonly onefamily, that always contains, along
with the two infinitesimal transformationXf and Yf, likewise the infinitesimal
transformations Xf+ b Yf This suggests that one refer to such a familgrasfinite
group of infinitesimal transformationsWe pose the following definition:

A family of infinitely many independent infinitesimal transformatisime! be called
an infinite group of infinitesimal transformations when it is definedabgystem of
differential equations of the form (22) that possesses the aforemenpiapexity.

12. From Theorem V, it follows that the infinitesimmbnsformations of an infinite
group always define an infinite group of infinitesll transformations. Later, we will see
that conversely, the infinitesimal transformatiasfsan infinite group of infinitesimal
transformations are also always the infinitesimahs$formations of a certain infinite
group. If that were true to begin with then nallyrihere would be no point in speaking
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of infinite groups of infinitesimal transformations; howee, although this manner of
expression is superfluous, it is nevertheless very coentand advantageous.

We will next prove that any infinite group of infinitesinbeansformations determines
infinitely many differential invariants. From this, @can show without any difficulty
that also any infinite group of finite transformationstedmines such differential
invariants. By considering certain differential invatg of a particular nature we will
then prove in the next paragraph that any infinite group afiie8imal transformations
consists of the infinitesimal transformations ofeatain infinite group.

13. The infinite group of infinitesimal transformationsrséorms the variables, ...,
tn . To these variables, we add certain auxiliary variables..., y that are not

transformed by our group at all, and we reserve the tegghhoose the number of these
auxiliary variables as needed. Thet | variables:xy, ..., tn, b1, ..., bn Will then be

transformed under our group by an infinitesimal transformaticthe form:

where thef, ands, are defined by (22) and the equations:

2 2
% o, 06 o 0 ..
) D, 00, D, 01,
(23) u 5 u ; /162,7
m:0~£ﬁ=0 u=0, 2w =g,

o, O,  Oy,0n,

If g is the order of the system (22) then we imagine thatiféerential quotients up to
orderq of the £ and 7 with respect to the andy have been included.

Among then + | variables, ..., tn, 91, ..., i, We consider a certain number of them —
say,n — to be independent, and write theneas.., z,, while we regard the remaining
+ | —n = of them to be functions of the, ..., z,, and call thenug, ..., u, . Our infinite
group of infnitesimal transformations then transforhesnt+ | = n + [ variables, ..., z,,
U, ..., U, by an infinitesimal transformation:

- of of
Zt=>0,(Z 2 Yo W) D @0, (2o s 2o ey U
v=1 azv H=1 auﬂ

that is, in turn, defined by certain linear, homogeneousiapdifferential equations:
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i_ﬁkv(z, 9,2 (2 0,

(24) +Z B (2 u) ; + Z Vin k=1,2,..).
ZZ{IBKV;[(Z U) l/k,uv } "= 0

One clearly obtains these differential equations (@4@n one replaces they, ¢ andn
in (22) and (23) with the, u, ¢, and w Among equations (24), one finds some, in
particular, that express the idea thaf the functions(, ..., ¢, a, ..., @ vanish, along
with all of their differential quotients up to ordgr Furthermore, some of the equations
express the idea that forof the functions(,, «, all of the differential quotients with
respect to;, ..., n, vanish.

It is self-explanatory that equations (24) define amit&i group of infinitesimal

transformations and that this group transforms the vasahlprecisely the same way as
the infinite group of infinitesimal transformations tiatefined by (22).

14. We now extend the infinitesimal transformatidhby including all differential
guotients:

ou 0%u,
02,07

:Uy,w,

perhaps up to ordé\, inclusive. Thus, we nonetheless do not yet condideitheé, and

a), satisfy the differential equations (21). The extendesisformation in question,
which we callz™f, is defined by the fact that it leaves invariant thetesy of Pfaffian
equations:

(25) du,~ > u,,dz =0, du,,— > u,,dz =0, ...
v=1 =1

The expressions:
zZMu,,, ZN uyur, ...

then become linear, homogeneous functiong pof.., {,, a, ..., @and their differential
quotients. Therefore, we can wrE€’ f in the following way:

Z(N)f—ZZAVf+Za)B f+z & A, zg‘i’ B, f

vrl Hr=1

+ZZ{6ZV é;az)/ﬂ%#vf}+___,

v=1l u=1
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where theA,f, B,f, A,.f, ... are completely well-defined infinitesimal transfotioas in
the variables:

ZI/; u/j, U/I,V ) u/l,VTy
that do not include thé,, «,, or any of their differential quotients, at all.

15. Now, the differential equations (24) might also be aared.
We would like to assume that precisetyindependent equations of zero order can be
defined from (24):

(24% Za‘o)(z ug, +Z Bz Yw, =0 (=1, ...,m),

as well as preciselyy independent equations of first order:

Za(l) Z (1)0) Z 0'(1) aZ z ’3(1)
vir=1 1
(24" ' o N o k=1, ...,m),
+ 1) +90 2l
;;{VI((V,U aU kuv az/ }

from which, not all of the differential quotient$ forst order can be removed, and so on,
such that finally there are precisaty, independent equations of ordgr(24"), from
which not all of the differential quotients of ordgcan be removed.

The system ofnp + my + ... +my mutually independent equations:

(26) (248), (24Y, ..., (24)

is then equivalent to the system (24), and onebsasure that only such equations of
orderq and less can be derived by differentiation and ialmon starting with (24) that
already follow from (26) without differentiationln addition, it must be remarked that
among the assumptions that were made, the numper equal to at least the number
my is equal to at leadit + 2nl, and so on.

16. If the numbem that appeared above is greater thahen we must also include
the differential quotients of ordeq ¢ 1) up toN in the{, and ), . We thus differentiate
equations (29 N — g more times with respect @, ..., z, anduy, ..., u,, and obtain, in

this way, my+1 independent equations of ordgr+ 1, from which not all differential

guotients of ordeq + 1 can be removed, until finally we obtam independent equations
of orderN, from which not all differential quotients of ord® can be removed. The
system of equations:

(27) (24), (24Y, ..., (24
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then subsumes all linear, homogeneous relations xisithletween the general solutions
&, - ¢, @, ..., @ of the differential equations (24) and the differenjabtients of

these solutions of first up t¢™ order.

17. We now think of the system of equations (27) as having selad form, of the
functions{, , @,, and then fom, of the differential quotients of first order:

0, 0{, 0w, 0w,
0z, " du,’ 9z, du

m

and so on, until finally, fomy of the differential quotients d" order of theg, ,
We substitute the expressions thus found in the ieirital transformatiog™f that was
defined above, and obtain an abbreviated infinitesimalfvemation:

7= 3 CATas TR 3%,
v, T H.IT

a¢, 0w, =
+Z{ Qlf+a”%mf}+

Z

Here, the A, f, B,f, ..., like the A, f, B,f, ... before, are completely well-defined
infinitesimal transformations in the variables:

ZV! u/ll u/l,l/! u/l,I/Tl

except that now not all of the+ [ =n + | functionsd{, , &, appear, but only + [ —my =
& of them, and furthermore, of the ¢ 1)? differential quotients of first order of th@ ,

a), , only:
(n+)>-m =&,

and in general, only of the differential quotients of ordkrmof thed,, &),. The numbers
in questions, &, &, ... are thus clearly independent of the nunmbeand are already
completely well-defined by equations (22), a situation wiktikewise be of use to us.

18. With these preparations, we can finally prove that thinite group of
infinitesimal transformations that are defined by equati§24) possess differential
invariants.

A differential invariant of the group in question is aopdtion ofz, ...,z ,ui, ..., 4
and the differential quotients of tlg with respect to the, that remains invariant under
any infinitesimal transformation of the group:

n [ af
ZZ ”au

H=1
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The determination of all differential invariants of ardéof the group (24) then comes
down to the determination of all functions of:

(28) ZI/ ) u/j, u/urV y u/I,I/Ta -

that admit the infinitesimal transformation, whichrlessumes thag, ..., {,, aw, ..., @
are understood to be the most general system of solufotine differential equations
(24).

Now, only& + & + ... + & of the quantities:

g, g, awﬂ awﬂ

dz, ' du,’ 9z, du

{vy Wi,

m

enter intoZ™ f, and theseg + ... + & quantities are not coupled by any linear,
homogeneous relation, ¥, ..., {,, @, ..., @ refers to the most general system of
solutions (24). Thus, a function of the variables (28) admit the infinitesimal
transformationZ™ f when and only when it is a common solution of the- ... + &
linear partial differential equations:

(29) {““

We will prove that equations (29) determine a clatgpsystem that has at maest+
.. + & parameters.

_A}fO_E’L
QlfO%fO

19.1f &, ..., ¢, @, ..., @ means the most general system of solutions of tf#f)

the expressiorz ™ f obviously represents the most general infinitesitreisformation

that includes a certain infinite group of infinit@sl transformations in the variables (28).
Therefore, if:

u of L of
Z f= —+ —_— k=1,2
’ ;%ﬂ,;%ML ( )

are any two infinitesimal transformations of thewp that is defined by (24), and we set:

(Z122) = i¢ z

then the three infinitesimal transformations:

zZNf, ZNg, 3MNf
are related by:
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(ZMf, ZMf)y=3M¢

In other words: The totality of all linear, partial @iféntial equations that one obtains
when one thinks of all solutions of (24) as having been sutesdiford, ..., J,, @, ...,

@ in:
ZMf=0

defines a complete system in the variables (28). Howeinece theg + ... + &
guantities:

9¢, 9w,
v, Wy, o2 , ou -

that enter intoZ™ f cannot be coupled by a linear, homogeneous relatiomgsas,
., {,, A, ..., & is an arbitrary system of solutions of (24), the exqioets:

(AA), (AB,), (AA,),
(Eﬂéﬂ) 1 (E/IAT) 1
(AcA,).,

can all be expressed linearly and homogeneously in tdrthe:o
Af, B,f, A.f,

with coefficients that are functions of the variab(@8). However, that means nothing
more than the fact that equations (29) define a comgystem that has at mast+ ... +
& parameters.

20. The question of whether the infinite group that is deffibg (24) possessed”
order differential invariants is now resolved when wecsad in proving that the
complete system (29) possesses solutions.

Such solutions will always exist when the number oildes (28) that appear in (29)
is larger than the number of mutually independent onegquations (29). Now, we know
that among equations (29) at mast- ... + & of them are mutually independent. On the
other hand, we know that the numbegse, ..., & are independent éf while we can,
on the contrary, make the number of variables (28pagelas we want by a suitable
choice ofl. Thus, the complete system (29) always has a soltiem we chooskin a
suitable way.

If we now turn from the group (24) to the group that isirgef by (22) then we
obtain:
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Theorem 9. Any infinite group of infinitesimal transformations in the variahlgs
..., &, possesses differential invariants in any event when one appends a certagr num
of variablesys, ..., y, to the variablegs, ..., r, that are not transformed by the group. If
one has chosen | in a suitable way, and one considers that among the vatiables, ,
n1, ..., D, Some of them are functions of the other ones then all differentaiants of
N™ order of the group can be found by integration of a complete system,dh thiek,
then, and the differential quotients of the dependent ones with respectitaé&pendent
ones appear as variables.

21. It is indeed self-explanatory, although it must still imentioned, that the
differential invariants of an infinite group of infinit@ésal transformations also remain
invariant under all one-parameter groups that are generatethebyinfinitesimal
transformations of the group.

Moreover, one can also ask whether there are systedifferential equations df™
order that remain invariant under the group that is define@2)y (Obviously, one finds
systems of this type when one determines all systeragutions in the variables (28)
that admit the infinitesimal transformations:

Af, Bf, Af, Bf, ..

Admittedly, one must still examine whether the systef differential equations is
integrable in the individual cases.

8 11. Any infinite continuous group of finite transfor mation
possess differential invariants.

22. We again think of an infinite group of finite transforroas as being defined by a
system of partial differential equations:

or or 0°r
30 WL| X,y Xty et o o e L |20 =12 ).
(30) k[& b 9% SPEEED: ox ox 2% j k )

Let the defining equations of the infinitesimal transforiioreg of these group be:

(31) Y a1, (€, + i%(x)% f.20 K=1,2,.).

iv=1

Among the assumptions that were made, the in§imtal transformations that were
defined by (31) define an infinite group of infiedimal transformations, and naturally
any differential invariant of the group that is idefl by (30) is likewise a differential
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invariant of the group of infinitesimal transformatiathsfined by (31). We assert that,
conversely, any differential invariant of the latteogp is also one of the former.

23. Let:
(32) i =Fi(Xg, ..., Xn; &) i=1,..,n

be any family ofeo’ transformations of group (30). This family yields theniitg
transformation for = 0, and thé~; might still be regular fog = 0.

With the guidance of the previous paragraphs, we nexteleiiferential invariants
of the infinite group of infinitesimal transformations (31)We then append certain
variablesys, ..., yi to thex, ..., X,that are not transformed under the group. Among the
variablesxs, ..., Xn, Y1, ..., Yi, we considen, of them, which might be called, ..., z,, to

be independent, while the remainimg- | — n = | of themuy, ..., u are functions of, ...,

Z,. Let:
J(Z]_, woiyZny Ug, o, Uy Uy, oo, Uy U 1g, )

be any one of the differential invariantst order that arise in this way.
Under the transformations (32), the variablgs..., xn, y1, ..., yi will be transformed
as follows:

H=FilXy o % &), D =Y (=1 ..mu=1.1.

If we write these transformationszy ..., z,, uy, ..., U, as:

S E)

3i:l.|Ji(Zl,...,z1’q,.. . . _
(33) {uﬂ:xﬂ(a,---,g,q,~--,u,a) (i=1,..mu=1,..0

then it emerges from our assertion above thahould remain invariant under the
transformations (33).

24. In order to prove that this is the case, we proceedieaslid in the proof of
Theorem 2 on pp. 330 [here, pp. 312].

We imagine that equations (33) have been solved for., z,, uy, ..., U, which might
yield:
(34) {Zi:Lpi(al’.“’an’ul’.“’u[’g)

_ =1, ..nmu=1,..10.
up :Xp(al’”.’an’ul’”. ’u[ ’8)

Furthermore, we define the equations:

[F [6%(2, u,€)
de o€

| =c6e,
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du, |0X,(zu¢) B
de { o€ l:w =X Tl 9

The expression:

Zf = i((z, u,£)i+i@(z ug)i
i=1 I az, =1 Ju

]

then represents an infinitesimal transformationefachg, under whiche, ..., z,, u, ...,
u, will be transformed by the infinite group (30).(gbp. 324-326 and Theorem IlI, pp.

342 [here, pp. 306-308 and pp. 322]. One then has:
ZM™ Xz, ...,z Wy, ...,u) = 0.
If we now make the substitution (33) in the fuaaoti
J(Gay oo Fny U, aen, Up ULy -n)
then we obtain an equation of the form:
(35) JGay oo Fn ULy ey U UL o) TX(E 31y ceer G Uy ceey U UL, -nn),
and it obviously becomes:

oX
g:3(’\‘) JGas oo dm U1, e Uy UL, L) =0,

where 3Mf is obtained fromz™ when one replaces, ..., z,, Ui, ..., U, with the

corresponding German symbols. From this, it folawatX is free ofg, and that the
value ofX will be found when one sets= 0 in equation (35).

For £ = 0, however, (33) goes to the identity transfdiom so equation (35), which
comes about by means of (33), has the simple form:

(36) J(Zjl, ceey dn UL, o, U UL, ) :J(Zl, woey Zny Ug, oo, U Ug g, )

In other words: The functiod(z u, ui1, ...) remains invariant under each of theé
transformations (33).

25. With that, the aforementioned assertion is prcued we have that:

Theorem VI. Any infinite continuous group whose finite transformations can be
defined by a system of partial differential equations:
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d
(30) W{)g,...,)g,xl,...,xn,a—i j =0 k=1,2,..)

simultaneously possesses differential invariants when one appends a certaer mim
variables y, ...,y that are not transformed under the group to the X, X, .

In order to define such differential invariants, one must, for a suitelbtéce of |,
consider any of the variables,x.., X, y1, ..., i to be functions of the remaining ones.
The differential invariants are then functions ef x., X,, 1, ..., yi and the differential
guotients of the independent variables with respect to the dependentAenéiterential
invariants, they are characterized by the fact that they predeie form under any
transformation of the infinite group.

The differential invariants in question may be defined, moreover, tteeldifferential
invariants of the infinite group of infinitesimal transformations that deéined by the
infinitesimal transformations of the group that is determined3®y. Their number is
unbounded, but all differential invariants of given order can be found by thgratitan
of a certain complete system.

8 12. Theinfinite group of all point transformationsin n variables.

26. From now on, our problem is to prove the convers&éhsforem V, and thus to
show that any infinite group of infinitesimal transfotioas consists of infinitesimal
transformations of a certain infinite group of finitarisformations. We will thus employ
the fact that the defining equations of the finite transftions of an infinite group
remain invariantin a certain sensainder the infinitesimal transformations of this group
(Theorem I, pp. 336 [here, pp. 317]).

Now, if an infinite group of infinitesimal transformat® is given then we will show
that a system of differential equations remains i@rdrunder this group, which defines
an infinite group of finite transformations, and indeed afinite group whose
infinitesimal transformations define precisely the givefinite group of infinitesimal
transformations.

Before we commence the implied investigation in fulhgmlity, we would like to
treat a particularly simple case. We will arrivetla¢ result that will later essentially
simplify the definition of the aforementioned invariaystem of differential equations in
the case of an arbitrary infinite group of infinitesirtrahsformations.

27. We consider the infinite group of all infinitesimadisformations:
. of
Xt=> &(xy,-enly)—
Z;,f (T ) o

in then variables, ...,r, . This case is especially simple for the fact tha know from

the outset that the group of infinitesimal tranefations in question consists of all of the
infinitesimal transformations of the infinite grogp all finite transformations ins, ...,

t,. From Theorem VI, the differential invariants adr infinite group of infinitesimal
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transformations are likewise the differential invargaot the infinite group of all finite
transformations imy, ..., x, .

To the variabless, ..., r,, we appendn more variablesx, ..., x, that are not
transformed byf at all. We regards, ..., r, as functions ok, ..., X,, and look for all

functions of:
2

oy _ oy

0X, o 0X,0X%,

xll "'lxnl :xi,VTl

that remain invariant under all infinitesimal transfationsX f. These functions are then
naturally certain differential invariants of the infaigroup of all transformations in,

I

28. It is now clear that there are no functions ofyaqs) ..., ¢, that remain invariant
under all infinitesimal transformation&f. Then infinitesimal transformations:

o o
e

then already possess no common invariant.
If we now extenX f by the inclusion of the , then we get:

XV f=Xf+ %x”i.
i,v,rzlaxy Y axi,r

Any function ofy; andy; , that remains invariant under all infinitesimal transfationsX
f must therefore fulfill the equations:
of _ of

(37) —=0,..,,—=0, r,,—=0 v,i=1,...,n).
Or, or, Zl‘ " o,

The firstn of them say that the functidns free ofxy, ..., rn; the lastnn likewise show
that it is free of the; , , so the determinant:

A= Zixl,l"'xn,n
does not vanish identically.
There is therefore also no differential invariant obtf order with the desired
behavior; on the contrary, the equatds O obviously represents a differential equation
of first order that is invariant under our infinite group.
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29. If we also include ther,, then we obtain the extended infinitesimal
transformation:

0 1+e, |[N0E L & 0% of
x(z)f - x(l)f + z vt —a + z —axpyu x]'[,l' FY
2 pzlaxp pn=1a?pa?n a

iv,r=1 iV,

from Xf, where, as usuaé;,; vanishes whew # r and has the value 1 wher= 7. This
&vr IS introduced because one has =1, and the differential quotient dfvith respect
to 1., may then be considered only once. Thus, shodithetion of they;, iy, tivr
remain invariant under all infinitesimal transfommas Xf then it must satisfy the
equations:

of of
= O’ ..
or,

n of N 1+¢ of
38 —+ ve =0,
(38) 2o Z 2 ‘o

of

A+&,)tp) tar5—=0.
V;l P ' a?

= 0,
or,

i,r ivr

ivr

The equations in the last row of (38) may be enitas follows:

On the same grounds, this, in turn, implies theagqguos:

i:o G,v,r=1, ...,n),

axi,VT

which shows that is free ofy; ,,. However, since we have already seen that theraa

differential invariants of first order with the de=l behavior, it is thus also proved that
there are none of second order.

30. In order to prove in general that for any arlitril no differential invariants of
N™ order exist with the desired behavior, we imagima Xf has been extended by the
inclusion of the differential quotients, i, xi.,- up toN™ order. We can briefly write

the infinitesimal transformation that comes abait a
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@i++z 9’6 () o

n of
(39) XNF =3¢ () —+
Z 0 L0, 0%, 0,

?i iv=1 axu a?iyy iy
where the summation symbalg v, ..., iy must satisfy the conditions:
MSswms3<...<W.

If we imagine that the differentiations that were lieg in (39) have been carried out
then we get:

n n n N
(40) xOi=Ye@Af+Y 2B p oy Tal® p g
i=1 ir=1 a?r Y i,rl-urN:la?l"'axN I

where theA f, A ; f, ... mean certain infinitesimal transformations intaeablests, 1 .,

..., and wherer, ..., Iy must satisfy the same conditionsias..., u did above.
Now, should there be a function of thand its differential quotients up td" order

that remains invariant under all infinitesimal transfationsX f then it must satisfy all of
the equations:

(41) Af=0, A;f=0,..,A,, f=0.

However, it is easy to see that these equationsidepéendent of each other and can only
be satisfied whehis free of the: and their differential quotients.

In fact, ther; are undetermined functions xf, ..., X, . It thus suffices to verify that

the equations (41) are then also independent of eachwltieer one substitutes any well-
defined functions of the for they; in their coefficients — say; = x, . However, if we

make the substitutionr; = x in the coefficients of (41), or, more precisely, the
substitution:
(42) Li=X, Liyv = év, Tive = oo Sy, = 0,

then this easily gives:

_of | f of

S

One sees this immediately, when one carries outubstitution (42) on the coefficients
of the two forms (39) and (40) &™f and compares the two expressions obtained with
each other, in which one must observe that..., & are arbitrary functions of their
arguments.

With that, it is proved that equations (41) are independémach other, and the
vanishing of all differential quotients:
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of o of
axi , axi,r Y axi,rln-rN

is implied by this; there are therefore also no défftial invariants of\" order with the
desired behavior.

8 13. The second fundamental theorem.

31. Now, let an arbitrary infinite group of infinitesimadansformations be given
once more, and, in fact, by a system of partial diffeéal equations:

(43) iaki(p)5+§n‘,akw(x)%+ ..=0 k=1,2,..).

iv=1

We assume that this system is of ordeand that no new equations of ordeand less
can be derived by differentiation and eliminatiohhe most general system of solutions
of (43) shall naturally not depend upon merelyngdinumber of arbitrary constants.

We understandll to mean any positive whole number, which can aksdarger than
g. If N>qthen we append to (43) all equations of ordef (1), ...,N that come about
by differentiation. We imagine that the systemstbbtained is then solved in a way that
is similar to the one on pp. 367 [here, pp. 34Amaly, formy,, My, ..., my of the
differential quotients of order zero, one, N,,resp., and indeed such that one always has
thatm, of thep, differential quotients of ordaer are expressible in terms of the remaining
p, — m, and ones of lower order.

From now on, we considet, ..., r, to be functions of certain variables ..., x, that

are not transformed at all, and look for all fuons of;
ﬁ — 0%y,

i,V =Ulivry ---

ox, ox,0x,

L,

that remain invariant under all of the infinitesimeansformations that are defined by
(43).

32. We extend the infinitesimal transformation:
. of
Xf=) &(xynrn) o
; ! a?i
by the inclusion of all differential quotients,, ... up toN" order:

n n n N
(40) X0t=Ye@Afe > W oy oy AW,
i=1 ir=1 a?r Y izl-.-erla&"'a?N o
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In this infinitesimal transformation, we now expreby, means of (43), all of the,
differential quotients of ordev of the & in terms of thg, — m, remaining ones and the
ones of lower order, and obtain an abbreviated infinitddiraasformation:

X(N)f-Zg{()Af+za§(x(x)A ft...+ Zn: ai Q(f;) AT . f,

in which, of theé, only pp — my of them enter in, while ultimately, of the diffetex
quotients of order of the &, onlyp, — m, of them enter in. Thé\ f, A f, ... areA f,

A -1, ..., and in fact, one has:

f+2m(% f+2¢w(x) Ay Tt
(44) A, f=A, +Zw.w(xm f+2w.w(x)%

UV, IT

Under the substitution (42), one will then have:

Af=—— Z¢.ﬂ( ) Z%V(x)—+

(45) A,v f :r+z¢4pv (?) ax z ¢I|,uvrr

LV HV y78% MV, IT y78%3

in which obviously no other differential quotients:

of
Or m

enter into theA f than the ones for which tha , f are solved, and so on.

33. The differential invariants that we seek are obviodlse/ common solutions to
thepo —mp + ... +pn — My linear, partial differential equations:

(46) Af =0, A f=0 ., A, , f=

Of these equations, we already know that they deterancmmplete system (see pp. 369,
et seqlhere, pp. 344et seq). In our case, they are, moreover, obviously indeperafen
each other, so they define a complete systepy efmy + ... + py — My parameters, and
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since they contaipo + ... +py independent variables, they have precisajyt ... + my
common independent solutions.

The statement is true for any value Mf so our infinite group of infinitesimal
transformations possesses the following differemizdriants with the desired behavior:
Preciselym, independent differential invariants of order zero:

I k) u=1,..,m),

preciselym, differential invariants of first order:
J;l,(?l,.--,xn,xlyl,... Lon) w=1, ...,m)

that are independent of each other ﬂﬁe and ultimatelymy differential invariants oR"

order that are independent of each other and the otes@f order.

The differential invariants that we spoke of possessies important properties.
Namely, first of all, one can derive arbitrarily manywnéifferential invariants of higher
order from any of them by simply differentiating. 8edly, as long as all differential
quotients of ordeq are given, one can arrive at all differential invatsaof @@ + 1)" and
higher order by differentiation. Finally, the totalay all differential invariants of order
zero up tag (and higher) is only invariant under the infinitesimahsfarmations that are
defined by (43), but none of them in the variablgs.., tn .

34. The first property can be seen quite simply. Namgly,
'J(?la 'H!?ﬂl xl,l, )

is any differential invariant of ordéd — 1 with the given property then, as a function of
thexy, ..., X, J satisfies the equation:

(47) dJ- z_gJ dx, =0,
v=1
wheredJ : 0x, has the form:

aJ " 0J " 0J
Y st Y
0X, o) i,rz—l b

Now, if X fis an arbitrary infinitesimal transformation of tip@up that is defined by (43)
thenX™ J=0, and likewise, one has:

X(N) a_‘]
0x,

01
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so X™f must leave invariant the system of Pfaffian fornat th defined by equation (47)
and the equations:

dri _zxi,ud% =0, dri,..., _z?i,rr-m-y dx = 0.
v=1

v=1
Thus,dJ / 0%, is actually a differential invariant of ordist

35. In order to prove the other two properties of our tifgial invariants, we must
elaborate somewhat.

Equations (43) were soluble fop + ... + my of the & and their differential quotients
of order one up tg; we would like to denote the quantities in question by:

96 0%,
o, T 5ZC“1"'525

"q

(48) §i\

In addition, we would like to assume that the coedfies in the solutions of (43) are
regular fory1 =0, ...,zq = 0.
If we now choos®&l = g then we can write equations (46) more precisely:

(50) Af =0, A.f=0,.., A,..f=0,

where the indiceg n must range through the same values as in (49). If weefurtball

the form (45) that theK\f , ... assume under the substitution (42) then we recognitze tha
the equations (50) can be solved for the differential quistien

L o
axi , axi,n o Or

and that the coefficients in the equations thus solvedegular for the system of values:
=0, rex=&mn, n=0, .. (,p ...=1,..,n).

As solutions of the complete system (50), we can tmaglay itsmy + ... + my
principal solutions for:

(51) Lr= 0, Lrn= &, L= o, ..., ?ml“.nq =0.
This principal solutions are ordinary power series imthey; + ... +pq quantities:

xll ---axn, xT,]T_ £T771 xrvﬂlﬂz’ ey xrvﬂl'“ﬂq (Tl 77;77j.1 e = 11 1n)l

under the substitution (51), the series reduces to the gesntit
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By Bivy oo By, s

where the indices n, ... must range through the same values as in (48); for¢haon,
we would like to call them:
(52) Ji, Jivy, ooy J

lvvl'“Vq .

Thus, it is clear from the outset that thare of order zero, th&, are of first order,
and so on. Since, in fact, equations (46) define a coengystem for any value dfthen
the principal solutions of the system (46) are likewasiacipal solutions of the system
(50) in each of the casd¢ = 0, 1, ...,q. It is self-explanatory that all differential
invariants of order zero up tpmay also be expressed by the+ ... +m functions (52).

36. It is, moreover, easy to prove that the infiniteditmansformations that are
defined by (43) are the only ones that leave each otittwtions (52) invariant.
In fact, should the infinitesimal transformation:

O
ﬁ—;émwi

leave any of the functions (52) invariant thenstnecessary and sufficient that the
expressions:

(53) X9, x93, ..., X9J

iy Vg

all vanish identically for all values of tle+ p, + ... +pq quantities:
SRIRITYD &80 3 TEIRTIT Sqp (nm...=1,..n).

A necessary condition for this is therefore tha #xpressions (53) vanish identically
under the substitution:

(54) Yor = Emm Yrmm= 00 oo X = 0 (r,mrm ..=1,..n

for all values of the;, ..., tn . In other wordsXf leaves the functions (52) invariant only
whené, ..., & satisfy them + ... +m, equations:

(55) x93) =0, ..., (X93 ) =0,

iV

where the parentheses imply that the substitutdi ljas been carried out.

As would follow easily from the properties of thancipal solutions (52), equations
(55) now represent precisety + ... +my independent linear, homogeneous differential
equations foté, ..., &, and indeed these differential equations are $olads themy +
... T My quantities:
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04 0
(48) T SR

in precisely the same way as we imagined equations (43) seived on pp. 383 [here,
pp. 355]. On the other hand, we known tkaalways leaves the functions (52) invariant
wheneveré,, ..., & fulfill equations (43). We can also conclude that equoati®5) are
nothing but equations (43) in another form.

With that, we have proved that equations (43) define tbst igeneral infinitesimal
transformation under which all of the functions (52pa@ invariant.

37. Finally, we still have to prove that, of thg differential invariants of order:

(56) Jru
one obtains precisely the required number by diffeséioti with respect txg, ..., X,
namely, mg:1 such differential invariants of ordeg ¢ 1) that are independent of each
other and the differential invariants of lower order.isTif also not difficult to do.

We know that differentiating (43) once with respectita.., xn produces just enough
equations of orderg¢ 1) for one to be able to solve for precisely: of the differential
quotients of the of order § + 1). Now, since the two systems (43) and (55) are
equivalent, this implies that timelin, expressions:

(57) -£{x©4w%) (r=1, ...n)

T

are independent of each other relativenge; of the differential quotients:

g+l
(58) AT
% .. .azcvq+1

On the other hand, it is clear that in them, expressions:

(59) [ilmwyj (r=1, .)
ox,

the coefficient of:

(60) ?i,rl-urq+l

is, in each case, the same as the coefficient efdifferential quotients (58) in the

expression that corresponds to (57). With that, tipessions (59) are independent of

each other relative toy.1 of the quantities (60). However, from this it followsat

among then Lim, differential invariants of ordegt 1):
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9
aXT IvVl"'Vq H

one actually finds preciselyy:1 of them that are independent of each other and the one
of lower order.

38. With these preparations, we are finally in a positmachieve the goal that set in
the beginning of § 12.
We now directly seek a system of partial differerggations:

(61) Wk(X]_, s Xy X1 e Ins 811 ) =0 ((: 1, 2, )

that defines the finite transformations of a certaiimite group, and indeed this group
shall include all of the infinitesimal transformationsattiare defined by (43), but no other
ones.

It is clear from the outset that the differentiquations (61), when they exist, must be
satisfied by the identity transformatigr= x , so the substitution:

(62) Li=X, Lir=4¢&r, i = o, ..,

when applied to (61), must yield nothing but identities. nirtbe developments on pp.
353-359 [here, pp. 331-336], it emerges, moreover, that equations(6ipe of ordeq
and that there must be precisety + ... + my = s of them that are independent of each
other.

39. From Theorem I, pp. 336 [here, pp. 317], the system ofrdiff@al equations
(61) must admit each of the infinitesimal transformadidthat are defined by (43). The
system of equations (61) in thet po + ... +pq variablesx, ri, tir, ..., assumes that one

has substituted the most general system of solutiof¢3)fin them for thef, ..., & .
Thus, it is, in turn, necessary and sufficient thatdystem of equations (61) admit the:

Po—Mp+ ... +Pg—My
infinitesimal transformations:

At At AT

that are defined on pp. 380 [here, pp. 353].

We now recall the properties of these infinitesitnahsformations, and imagine that
the system of equations (61) must be fulfilled identicaliger the substitution (62), so
we see that the system of equations (61) must be exgrésgseelations among the
solutions of the complete system:

Af=0, A, f=0,..,A, ., f=0.
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The complete system [certainly] possesses precisetys independent solutions,
namely, first of allx, ..., X,, and secondly, the differential invariants (52), which we
would like to briefly calldy, ..., Js. Now, since the system (61) must contain precisely
independent equations, and since it certainly yields noaelagtween jusk,, ..., X, it
must necessarily be soluble fyr ..., Js, and thus have the form:

(63) Jk[;l,...,;n,% % j = (X, - %) k=1, ...,9,
0x 0,

where thegi refer to the functions o4, ..., X,that arise frondx by the substitution (62).

40. The equations (63) represent a system of differergizteons ordeq for y, ...,
tn . Due to the properties of the differential invariadts..., Js, it is certain that no

equation of ordeq or less can be derived from (63) by differentiation ahchination
that does not already follow from (63) with no diffetiation. Therefore, equations (63)
define a family of finite transformations that includée tdentity transformation. We
assert that this family defines a group, and that the grogpestion nothing other than
the infinitesimal transformations that are defined by (43).

Let:
(64) =R, ..., %) (i=1,..n)
and:
(65) r =Bi(es, -.ohtn) (=1, ...n)

be two arbitrary transformations of the family theefined by (63). One then proves
that the transformation:

(66) = Fi(F1¥), ..., Fa(X) (=1 ..n)
always belongs to this family, as well.

41. By the assumptions that were made, gheatisfy the differential equations (63)
as functions ofg, ..., X, and ther; satisfy the differential equations:

, , O or,
(63) Jk[;l,...,;l,ﬁ,..., ! j = ai(t1, s 1) k=1, ...,9
or, or,
as functions ofts, ..., tn . Thus, as functions of;, ..., x», the ¢ satisfy certain

differential equations:

Y
(67) uk[ﬁ,...,xq,;l,...,;l,ﬁ i j: A(F1(¥), ..., Fn(X) k=1, ...9
or, O,

that one obtains from (63from the substitution:
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or 0 0p OX.
(68) ui = Fi(x), =y S
Or, TZ:;‘GXT or,

in which one must, however, imagine that the differempiedtients of thex; with respect
to ther, are expressed in termsxaf ..., X, by means of (64).

The system (67) naturally consistssahdependent equations and has the same order
as the system (63). Ostensibly, its form depends upochtiiee of transformation (64).
However, we will see that in reality it does not depepdn it.

42. The system (63obviously admits all infinitesimal transformations:
. of
Xf = (xgsee0r ) —
Z;,f (&1 20) o

that belong to the family that was defined by (48)oreover, it will be satisfied by the
substitutiony; = x; identically. From this, it follows that the syst€67) likewise admits

all of the infinitesimal transformation§f in question, and that under the substitution:
(69) i =Filx1, ..., %) (=1, ..n)

it is fulfilled identically. The system (67) is wocompletely determined by these two
properties, so it must, in fact, possess the edoen:

. . Or; or,
Jk[xl,...,xl,—axl - j = AdX, - Xn) k=1, ...,9.
L, 0

n

The functions are thus to be chosen such that one obtains gobluhidentities under

the substitution (69); in other word&: = ax.
Thus, the system (67) may be brought into the form

, , ox, or,
(70) Jk[xl,...,xl,ﬁ -

o, "o j = a(X1, ...y Xn) k=1, ...,9,

n

which is independent of the special choice of Hamgformation (64). However, with
this, it is proved that the transformation (66) @& belongs to the family that is defined
by (63), so this family defines a group, as we rdede

43. Finally, it is not difficult to show that the gip that is defined by (63) includes

all of the infinitesimal transformations that amfided by (43), but no other ones.
In fact, from Theorem I, pp. 336 [here, pp. 31§ transformation:

i = Fi(xa, ..., %) i=1,..n)
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belongs to the group that is defined by (63) when and only weesystem of partial
differential equations (63) remains invariant under thesfaamation:

(71) t =Fi(rs, ..m), X =X i=1,..n).

For this to be true, it is, in turn, obviously necessary sufficient that the transformation
(71) leaves invariant each of théunctions:

o, o,
Jk[;l,...,xl,a—i,...,a; j k=1, ...9.

Now, we have seen on pp. 385 [here, pp. 357] that the infm@sransformations that
are defined by (43) are the only ones that leave all fumi, ..., Jsinvariant. Thus, we
can conclude that these infinitesimal transformatemesthe only ones that belong to the
group that was defined by (63).

44. We can now express the second fundamental theoréhe itheory of infinite
groups. It reads as follows:

Theorem VII. Let a system of s independent linear, homogeneous, partial
differential equations be given:

(72) 3,08+ 8,05 . =0 k=1,..9

iv=1 axv

that possesses the following properties: It shall be of order g andyselalino equations
of order q or less by differentiation and elimination that are independer{72)t
Furthermore, its most general system of solutions shall not meeplgnd upon a finite
number of arbitrary constants. Finally, §, ..., & and ., ..., 7, are two solutions of
(72) then:

v=1 v

| £ 9 _, 94 -
Z[aax ””axvj (=1, ..n)

is a system of solutions.
By these assumptions, the systér2) defines the most general infinitesimal
transformation:

o, _of
Xf= —
Z:;‘gl or,

of a certain infinite group. The finite transfortitas of this group are determined by s
independent partial differential equations of oraeof the form:

0 0
(73) Jk[xl,...,xl,ﬁ -

ox " ax j = a(X1, ...y Xn) k=1, ...,9,
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which go to just identities under the substitutipa x; ; moreover, the functions,J..., Js
have the property that they remain invariant under any transformation:

t =Fi(r, - ) i=1,..n)

that belongs to the infinite group. If the equati¢i®) are given then one can find
equationg73) by integrating a complete system

45. It is self-explanatory that the infinite group cansaall one-parameter groups
that are generated by the infinitesimal transformatibas are defined by (72), although
it contains no one-parameter group. Whether, conygraely of its transformations
belong to one of the one-parameter groups that weréaned, and whether it therefore
consists of nothing but one-parameter groups is still uddddcf. pp. 344 [here, pp.
323, et seq.no. 31]).

A similar theorem for infinite groups of contact tremmsmations of anr{ + 1)-fold
extended space, Xi, ..., Xn, P1, ..., pn follows from Theorem VII with no further
assumptions. Certain linear, homogeneous, partial eiffed equations appear instead
of equations (72) that preserve an unknown fundfibaind 2 + 1 independent variables
Z X1, ...y %o, P1, ..., Pn- The most general solutioV of these equations is then the
characteristic function of the most general infinited contact transformation that
belongs to the group of contact transformations in questi

Finally, let it be emphasized that the foregoing dgualents deliver a new basis for
the theory of finite continuous groups (cf., pp. 3&0seq[here, pp. 304, no. 6]).

8 14. Concluding remarks.

46. The foundations of the theory of infinite groups is tlaud. 1 will now say a few
words about the special problems of this theory thavélalready resolved.

The concepts of transitive and intransitive may beiedhrover to infinite groups
immediately. If the defining equations of the infinitealntransformations of an infinite
group are given then one can always decide whether the groupansitive or not, and,
in addition, one can also determine all systems of eangthat are invariant under the
group, and indeed, by forming the determinants and integratmglete systems.

In the same way, one can systematically and asyaligit{asystatisch carry over the
concepts of primitive and imprimitive to infinite groups.heTconcepts of connection,
iIsomorphism, simple group, invariant subgroup, and derived groupbmapplied to
infinite groups.

Already in the year 1883, | published a determination oinéiite groups of point
transformations in the plane (Ges. d. Wiss. zu Chnistifthis collection, v. V, Abh.
XI). In recent times, | have further determined aifinite, irreducible groups of
contact transformations of the plane, and an impbitkass of groups of this type in the
space oh + 1 dimensions. Likewise, | have arrived at the desoripaf all primitive,
infinite groups of point transformations of the ordingpace and at least a certain class
of groups of this type in the spacenodimensions.
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47. The investigations that were mentioned here shall bespell in the third part of
my theory of transformation groups. The general thélway was detailed in the present
work shall appear there in a revamped form. For #egan, the present treatise, like the
first treatise of Herrn Professor Engel, was developethking a manuscript of mine as

its basis.



