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The foundations of the theory of infinite continuous 

transformation groups −−−− II. 
 

By Sophus Lie 
 

Translated by D. H. Delphenich 
 
 Now that we know that any infinite continuous group contains infinitely many 
independent linear transformations, we would now like to show that the entire theory of 
infinite continuous groups comes down to the examination of the infinitesimal 
transformations of such groups. 
 
 

§ 9.  The defining equations of the infinitesimal transformations 
of an infinite group. 

 
 1. As before, let: 
 

(1)   
2
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1 1 2

1 1
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n

W x x
x x x

 ∂∂ ∂
 ∂ ∂ ∂ 
⋯ ⋯ ⋯ ⋯

xx x
x x  = 0  (k = 1, 2, …) 

 
be the defining equations of the finite transformations of an infinite continuous group 
with pair-wise inverse transformations.  However, from now on, we would like to write: 
 

i

xν

∂
∂
x

 = xi,ν ,  
2

i

x xµ ν

∂
∂ ∂
x

= xi,µν , …, 

 
for the differential quotients of x with respect to x, such that our defining equations take 

the form: 
 
(2)  Wk(x1, …, xn, x1, …, xn , x1,1 , …, xn,n, x1,11, …) = 0  (k = 1, 2, …). 

 
 Should the infinitesimal transformation: 
 

Xf = 1
1

( , , )
n

i n
i i

fξ
=

∂
∂∑ ⋯x x
x
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belong to our group, then, from Theorem I, pp. 336 [here, pp. 317], it is necessary and 
sufficient that the system of differential equations (1) admit the infinitesimal 
transformation Xf, or, what amounts to the same thing, that the system of equations (2) in 
the variables x, x, xi , …, xi,µν , … admit the extended infinitesimal transformation: 

 

(3)    X(n)f = 
1 , , 1 ,

( )
n n

i
i

i ii i

f f
µ ν

µ ν µ ν

ξξ
= =

∂∂ ∂+
∂ ∂ ∂∑ ∑ ,x x
x x x

+ … 

 
Analytically, this condition may be expressed as follows: All expressions of the form: 
 

(4)    X(m)f =  
1 , , 1 ,

( )
n n

k i k
i

i ii i

W W
µ ν

µ ν µ ν

ξξ
= =

∂ ∂ ∂+
∂ ∂ ∂∑ ∑ ,x x
x x x

 + … 

vanish, due to (2). 
 
 2. Now, if: 
(5)      xi = Fi(x1, …, xn)  (i = 1, …, n) 

 
is any finite transformation of our group then equations (2) will be fulfilled identically 
under the substitutions: 

(6)    xi = Fi(x), xi,ν = iF

xν

∂
∂

, xi,µν = 
2

iF

x xµ ν

∂
∂ ∂

, … 

 
If we then think of equations (5) as having been solved for x1, …, xn : 
 
(7)      xi = Φi(x1, …, xn)  (i = 1, …, n), 

 
and further imagine these values of x1, …, xn as having been substituted in the 
expressions for xi,ν , xi,µν , … that follow from (6): 

 
(8)     xi,ν  = Φiν(x),  xi,µν = Φiµν(x), … 

 
then equations (2) must also go to mere identities under the substitution that is defined by 
(7) and (8).  However, we saw before that Xf is an infinitesimal transformation of our 
group when and only when the expression (4) vanishes due to (2).  Thus, we can also say: 
Xf is an infinitesimal transformation of our group when and only when the expression (4) 
always vanishes identically under the substitution (7), (8), which might also make the 
transformation (5) belong to our group.  If we imply the substitution (7), (8) by including 
the variables in square brackets then it emerges from this requirement that ξ1(x), …, ξn(x) 

must satisfy the differential equations: 
 

(9)  [X(m) Wk] = 
1 , , 1 1 ,

( )
n n n

k i k
i

i ii i

W W
µ ν

µ ν νµ ν

ξξ
= = =

  ∂ ∂ ∂+   ∂ ∂ ∂    
∑ ∑ ∑ ,x x

x x x
+ … = 0 (k = 1, 2, …). 
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 3. Obviously, we obtain infinitely many different differential equations for ξ1, …, ξn 
in this way, since our group indeed contains infinitely many different transformations (5).  
However, it may be shown that equations (9) are completely independent of the special 
choice of the transformation (5).  If one employs two different transformations (5) of our 
group for the definition of equations (9) then one obtains the same system of differential 
equations for ξ1, …, ξn in both cases. 
 In order to prove this assertion, we first remark that the form in which we have 
employed the system of equations (2) has no influence on the system of differential 
equations (9).  We then replace the system of equations (2) with the equivalent one: 
 

Uk(x1, …, xn, x1, …, xn, x1,1, …, xn,n, x1,11, …) = 0 (k = 1, 2, …) 

 
then the system of differential equations: 
 

[X(m) U1] = 0  (k = 1, 2, …) 
 

differs from the system (9) only in form, when we naturally assume that the same 
transformation (5) was employed both times for the substitution [ ].  In order to convince 
oneself of this, confer Theorie der Transformationsgruppen, Abschnitt I, pp. 109-111 
[Leipzig 1888]. 
 
 4. Now, if: 
(10)     xi = 1( , , )i nx x…F   (i = 1, …, n) 

 
is any other transformation of our group, and if one might obtain : 
 
(11)     xi = 1( , , )i nx xΨ …   (i = 1, …, n) 

 
from (5) and (10), by dropping the x then the transformation (11) would also belong to 

our group, and the transformation (10) can obviously be obtained when one first performs 
(11) and then (5). 
 We now recall Theorem II, pp. 338 (here, pp. 319).  From this theorem, the system of 
differential equations (1) preserves its form when we introduce the new variables 1x , …, 

nx  in place of x1, …, xn by means of the transformation (11) of our group.  If we then set: 

 

i

xν

∂
∂
x

 = ,i νx , 
2

i

x xµ ν

∂
∂ ∂
x

= ,i µνx , … 

and define the equations: 
 

(12) xi = ( ),i xΨ  xi,ν  = ,
1

n

i

x

x
ν

τ
τ ν=

∂
∂∑ x , xi,µν  = 

2

, ,
, 1 1

n n

i i

x x x

x x x x
ν π τ

τπ τ
τ π τν µ ν µ= =

∂ ∂ ∂+
∂ ∂ ∂ ∂∑ ∑x x , 

 
in which we think of all of the differential quotients: 
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x

x
ν

ν

∂
∂

, 
2x

x x
τ

ν µ

∂
∂ ∂

, … 

 
by means of (11) then under the substitution (12), the system of equations (2) goes to a 
system of equations: 
 
(13)  1 1 , 1,1 , , 1,11( , , , , , , , , )k n n n nU x x… … … …x x x x x = 0  (k = 1, 2, …) 

 
that is equivalent to the system of equations: 
 
(14)  1 1 , 1,1 , , 1,11( , , , , , , , , )k n n n nW x x… … … …x x x x x = 0  (k = 1, 2, …). 

 
If we would then like to form the system of differential equations that we get for ξ1, …, 
ξn by the use of the transformation (10) then, from the previous statements, we can use 
the system (13) in place of system (14) with no further assumptions. 
 
 5. In order to obtain the differential equations for the ξi(x) that follow from (10), we 

extend the infinitesimal transformation Xf, when we consider the x1, …, xn to be functions 

of 1x , …, nx : 

(15)   ( )mX f = 
1 , , 1 ,

( )
n n

i
i

i ii i

f f
µ ν

µ ν µ ν

ξξ
= =

∂∂ ∂+
∂ ∂ ∂∑ ∑ ,x x
x x x

+ …, 

 
and then define the expressions: 
 

(16)   ( )m
kX U  = 

1 , , 1 ,

( )
n n

k i k
i

i ii i

U U
µ ν

µ ν µ ν

ξξ
= =

∂ ∂ ∂+
∂ ∂ ∂∑ ∑ ,x x
x x x

+ …, 

 
and we finally make the substitution (17) into the expressions (16), which may be implied 
by curly brackets.  Then: 
 

(18)  ( ){ }m
kX U = 

1 , , 1 ,

( )
n n

k i k
i

i ii i

U U
µ ν

µ ν νµ ν

ξξ
= =

  ∂ ∂ ∂ +   ∂ ∂ ∂    
∑ ∑ ∑

n

,

=1

x x
x x x

+ … = 0 

 
are the differential equations for ξ1, …, ξn that one obtains by means of the 
transformation (10). 
 
 6. We will verify that the differential equations (18) and (9) are identical with each 
other. 
 Under the assumptions that were made, the functions W1, W2, …, go to U1, U2, … 
when the ix , ix , ,i µx , … are introduced in place of the xi, xi, xi,µν, … by means of (12).  

However, at the same time, the infinitesimal transformation X(m)f is converted into ( )mX f  
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under the transformation (12).  X(m)f is then defined by the fact that it must leave invariant 
the system of Pfaffian equations: 
 

(19)  dxi − ,
1

n

i dxν ν
ν =
∑ x  = 0,  dxi,ν − ,

1

n

i dxνµ µ
µ=
∑ x = 0, …; 

 
on the other hand, ( )mX f  is defined by the fact that it leaves invariant the system: 

(20)  dxi − ,
1

n

i dxν ν
ν =
∑ x  = 0,  , ,

1

n

i id dxν νµ µ
µ=

−∑x x = 0, … 

 
However, the system (19) takes on the form (20) by means of the transformation (12), so 
X(m)f must take on the form ( )mX f  under the transformation (12). 
 This illuminates the fact that the expression (4) goes to the expression (16) under the 
substitution (12).  However, the left-hand sides of equations (18) arise from the 
expressions (16) by way of the substitution (17), so we can also say: The left-hand sides 
of equations (18) will be obtained from the expressions (4) when one first performs the 
substitution (12) and the substitution (17).  If we ultimately recall that the two 
transformations (11) and (5), when carried out one after the other, deliver the 
transformation (11), then we recognize that the two substitutions (12) and (17), when 
performed in succession, yield precisely the same thing as if we had performed just the 
substitution (7), (8).  The left-hand sides of equations (18) will then be obtained from the 
expressions (4) by the substitution (7), (8).  In other words: Equations (18) are identical 
with equations (9). 
 With that, we have proved that the particular choice of transformation (5) has no 
influence on the differential equations (9), just as the transformation (5) of our group may 
be chosen so that one still always obtains the same system of differential equations for 
ξ1(x), …, ξn(x). 

 
 7. We are therefore completely free to choose which transformation (5) of our group 
to use for the definition of the differential equations (9).  Naturally, everything becomes 
simplest when we let the transformation (5) coincide with the identity transformation, so 
that one then has xi,ν = εiν , where εiν  equals 1 whenever i = ν and vanishes whenever i ≠ 

ν, although the xi,µν , and likewise all differential quotients of higher order in the xi , are 

equal to zero; the differential equations (9) then assume the simple form: 
 

(21)   
1 , 1 ,0 0

( )
n n

k i k
i

i ii i

W W

ν ν ν

ξξ
= =

  ∂ ∂ ∂+   ∂ ∂ ∂    
∑ ∑x

x x x
+ … = 0 (k = 1, 2, …), 

 
 
where the symbol 0 on the square bracket means that one must set all xi = xi, all xi,ν = εiν , 

and all xi,µν , … equal to zero. 
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 If one thinks of the system of equations (2) as being solved before one uses them for 
the definition of the differential equations (21) then one sees that the system of 
differential equations (21) is of the same order as the system (1) and that it contains just 
as many independent equations as that one.  It is likewise clear that all of the differential 
equations that are derivable from (21) by differentiation and elimination whose order 
does not exceed the order of (21) already follow from (21) without differentiations. 
 
 8. The differential equations (21), whose most general solutions ξ1(x), …, ξn(x) 

determine the most general infinitesimal transformation: 
 

Xf  = 
1

( )
n

i
i i

fξ
=

∂
∂∑ x
x

 

 
of our group, are what we shall call the defining equations of the infinitesimal 
transformations of this group. 
 These defining equations (21) possess a characteristic property.  Namely, if Xf and: 
 

Yf = 
1

( )
n

i
i i

fη
=

∂
∂∑ x
x

 

 
are two infinitesimal transformations of our group then, from Theorem IV, pp. 348 [here, 
pp. 327]: 

(X Y) = 
, 1

n
i i

i
i i

f
ν

ν ν ν

η ξξ η
=

 ∂ ∂ ∂− ∂ ∂ ∂ 
∑

x x x
 

 
is also always an infinitesimal transformation of the group.  In other words: when ξ1, …, 
ξn and η1, …, ηn  are any two systems of solutions of the differential equations (21) then: 
 

, 1

n
i i

i
i

ν
ν ν ν

η ξξ η
=

 ∂ ∂− ∂ ∂ 
∑

x x
  (i = 1, …, n) 

 
is likewise a system of solutions of (21). 
 We summarize the results obtained in: 
 
 Theorem V.  If the finite transformations of an infinite continuous group can be 
defined by a finite number of partial differential equations then the infinitesimal 
transformations contained in this group may also be defined by a finite number of 
differential equations, where the latter differential equations have the form: 
 

(22)  
2

1
1 , 1 , , 1

( ) ( ) ( )
n n n

i i
ki ki ki

i i i
ν µν

ν µ νν µ ν

ξ ξα ξ α α
= = =

∂ ∂+ +
∂ ∂ ∂∑ ∑ ∑x x x
x x x

+ … = 0, 

 



Lie. – The foundations of the theory of infinite continuous transformations groups – II           7 

so they are linear and homogeneous in ξ1(x), …, ξn(x), and their differential quotients 

possess the following property, in addition: If ξ1, …, ξn and η1, …, ηn  are any two 
systems of solutions of the differential equations (22) then: 
 

, 1

n
i i

i
i

ν
ν ν ν

η ξξ η
=

 ∂ ∂− ∂ ∂ 
∑

x x
  (i = 1, …, n) 

 
is a system of solutions of (22). 
 
 9. The foregoing theorem shall be referred to as the First Fundamental Theorem of 
the theorem of infinite continuous groups; it corresponds to the theorem that r 
independent infinitesimal transformations: 
 

Xk f = 1
1

( , , )
n

ki n
i i

f
x x

x
ξ

=

∂
∂∑ …  

 
of an r-parameter group satisfy the pair-wise relationships: 
 

(Xi Xk) = 
1

r

iks s
s

c X f
=
∑    (i, k = 1, …, r). 

 
 The theorem that was proved above – viz., that the differential equations (9) are 
independent of the choice of the transformation (5) – has its analogue in the theory of 
finite groups: As might be remarked in passing, it corresponds to the theorem that the 
finite equations: 

ix′  = fi(x1, …, xn, a1, …, ar)  (i = 1, …, n) 

 
satisfy the differential equations of an r-parameter group of the form: 
 

i

k

x

a

′∂
∂

 = 1 1
1

( , , ) ( , , )
r

jk r ji n
j

a a x xξ
=

′ ′Ψ∑ … …   (i = 1, …, n; k = 1, …, r). 

 
 

§ 10.  Infinite groups of infinitesimal transformations. 
Differential invariants of such groups. 

 
 10. In the previous paragraphs, we have seen that the infinitesimal transformations of 
an infinitely continuous group can be defined by a system of partial differential equations 
that possesses a certain special property: It is linear and homogeneous in the ξi and their 
differential quotients.  From any two of its systems of solutions, one can derive a third 
system of solutions by a certain operation.  Finally, its most general system of solutions 
does not depend upon merely a finite number of arbitrary constants – the latter property 



Lie. – The foundations of the theory of infinite continuous transformations groups – II           8 

follows from the fact that any infinite group contains an infinite number of independent 
infinitesimal transformations. 
 A closely-related problem is to confirm that, conversely, any system of partial 
differential equations that possesses the aforementioned property defines the infinitesimal 
transformations of an infinite group.  It is therefore natural for us to now consider an 
arbitrary system of partial differential equations that fulfills the given requirements. 
 
 11. We thus imagine that we are now given an arbitrary system of linear, 
homogeneous partial differential equations: 
 

(22)   
1 1

( ) ( )
n n

i
ki i ki

i i
ν

ν

ξα ξ α
= =

∂+
∂∑ ∑x x
x

 + … = 0  (k = 1, 2, …) 

 
that possesses the following two properties: 
 
 1.  The most general system of solutions of (22) shall not depend upon just a finite 
number of arbitrary constants. 
 
 2.  Whenever ξ1(x), …, ξn(x) and η1(x), …, ηn(x) are any two systems of solutions of 

(22): 

, 1

n
i i

i
i

ν
ν ν ν

η ξξ η
=

 ∂ ∂− ∂ ∂ 
∑

x x
  (i = 1, …, n) 

 
is likewise a system of solutions of (22). 
 
 In addition, corresponding to the assumptions on pp. 318 [here, pp. 302], we make the 
following assumption: If q is the order of the system (22) then all differential equations of 
order r and less that can be derived from (22) by differentiations and eliminations already 
follow from (22) without differentiation. 
 Obviously, our system (22) defines a family of infinitely many independent 
infinitesimal transformations, and in fact only one family, that always contains, along 
with the two infinitesimal transformations Xf and Yf, likewise the infinitesimal 
transformations a Xf + b Yf.  This suggests that one refer to such a family as an infinite 
group of infinitesimal transformations.   We pose the following definition: 
 
 A family of infinitely many independent infinitesimal transformations shall be called 
an infinite group of infinitesimal transformations when it is defined by a system of 
differential equations of the form (22) that possesses the aforementioned property. 
 
 12. From Theorem V, it follows that the infinitesimal transformations of an infinite 
group always define an infinite group of infinitesimal transformations.  Later, we will see 
that conversely, the infinitesimal transformations of an infinite group of infinitesimal 
transformations are also always the infinitesimal transformations of a certain infinite 
group.  If that were true to begin with then naturally there would be no point in speaking 
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of infinite groups of infinitesimal transformations; however, although this manner of 
expression is superfluous, it is nevertheless very convenient and advantageous. 
 We will next prove that any infinite group of infinitesimal transformations determines 
infinitely many differential invariants.  From this, one can show without any difficulty 
that also any infinite group of finite transformations determines such differential 
invariants.  By considering certain differential invariants of a particular nature we will 
then prove in the next paragraph that any infinite group of infinitesimal transformations 
consists of the infinitesimal transformations of a certain infinite group. 
 
 13. The infinite group of infinitesimal transformations transforms the variables x1, …, 

xn .  To these variables, we add certain auxiliary variables y1, …, yl that are not 

transformed by our group at all, and we reserve the right to choose the number of these 
auxiliary variables as needed.  The n + l variables: x1, …, xn, h1, …, hn will then be 

transformed under our group by an infinitesimal transformation of the form: 
 

1 1

n lf f
ν µ

ν µν µ

ξ η
= =

∂ ∂+
∂ ∂∑ ∑
x y

, 

 
where the ξν and ην are defined by (22) and the equations: 
 

(23)   

2 2

2

0, 0, 0,

0, 0, 0, 0,

ν ν ν

µ µ π µ π

µ µ µ
µ

π ν π ρ

ξ ξ ξ

η η η
η

 ∂ ∂ ∂= = = ∂ ∂ ∂ ∂ ∂


∂ ∂ ∂ = = = = ∂ ∂ ∂ ∂

⋯

…

,
y y y y x

y x y y

 

 
If q is the order of the system (22) then we imagine that all differential quotients up to 
order q of the ξ and η with respect to the x and y have been included. 

 Among the n + l variables x1, …, xn, y1, …, yl, we consider a certain number of them – 

say, n – to be independent, and write them as z1, …, zn, while we regard the remaining n 

+ l – n = l of them to be functions of the z1, …, zn , and call them u1, …, un .  Our infinite 

group of infnitesimal transformations then transforms the n + l = n + l variables z1, …, zn , 

u1, …, un by an infinitesimal transformation: 

 

Zf = 1 1 1 1
1 1

( , , , , , ) ( , , , , , )
f f

z z u u z z u u
z uν µ

ν µν µ

ζ ω
= =

∂ ∂+
∂ ∂∑ ∑… … … …

n l

n l n l  

 
that is, in turn, defined by certain linear, homogeneous, partial differential equations: 
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(24)  

1 1

, 1 , 1

1 1

( , ) ( , )

( , ) ( , )

( , ) ( , ) 0

k k

k k

k k

z u z u

z u z u
z u

z u z u
u z

ν ν µ µ
ν µ

µν
ντ µπ

ν τ µ πτ π

µν
νµ µν

ν µ µ ν

β ζ γ ω

ωζβ γ

ωζβ γ

= =

= =

= =


 +

 ∂∂+ + ∂ ∂
  ∂∂  ′ ′+ + = 
 ∂ ∂  

∑ ∑

∑ ∑

∑∑ ⋯

n l

n l

n l

(k = 1, 2, …). 

 
One clearly obtains these differential equations (24) when one replaces the x, y, ξ, and η 

in (22) and (23) with the z, u, ζ, and ω.  Among equations (24), one finds some, in 
particular, that express the idea that l of the functions ζ1, …, ζn, ω1, …, ωl vanish, along 

with all of their differential quotients up to order q.  Furthermore, some of the equations 
express the idea that for n of the functions ζν, ωµ, all of the differential quotients with 
respect to y1, …, yl vanish. 

 It is self-explanatory that equations (24) define an infinite group of infinitesimal 
transformations and that this group transforms the variables in precisely the same way as 
the infinite group of infinitesimal transformations that is defined by (22). 
 
 14. We now extend the infinitesimal transformation Zf by including all differential 
quotients: 

u

z
µ

ν

∂
∂

 = uµ,ν , 
2u

z z
µ

ν τ

∂
∂ ∂

= uµ,ντ , … 

 
perhaps up to order N, inclusive.  Thus, we nonetheless do not yet consider that the ξν and 
ωµ  satisfy the differential equations (21).  The extended transformation in question, 
which we call Z(N)f, is defined by the fact that it leaves invariant the system of Pfaffian 
equations: 

(25)  duµ − ,
1

u dzµ ν ν
ν =
∑
n

= 0,  duµ,ν − ,
1

u dzµ ντ τ
τ =
∑
n

= 0, … 

 
The expressions: 

Z(N) uµ,ν , Z(N) uµ,ντ , … 
 

then become linear, homogeneous functions of ζ1, …, ζn, ω1, …, ωl and their differential 

quotients.  Therefore, we can write Z(N) f in the following way: 
 

Z(N) f = 
1 1 , 1 , 1

A f B f A f B f
z u

µν
ν ν µ µ ντ µπ

ν µ ν τ µ πτ π

ωζζ ω
= = = =

∂∂+ + +
∂ ∂∑ ∑ ∑ ∑

n l n l

 

+ 
1

f f
u z

µν
νµ µν

ν µ µ ν

ωζ
=

 ∂∂ + ∂ ∂  
∑∑
n l

=1

A B + …, 
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where the Aν f, Bν f, Aντ f, … are completely well-defined infinitesimal transformations in 
the variables: 

zν , uµ , uµ,ν , uµ,ντ , … 
 

that do not include the ζν , ωµ, or any of their differential quotients, at all. 
 
 15. Now, the differential equations (24) might also be considered. 
 We would like to assume that precisely m0 independent equations of zero order can be 
defined from (24): 

(240)   (0) (0)

1 1

( , ) ( , )j jz u z uν ν µ µ
ν µ

α ζ β ω
= =

+∑ ∑
n l

 = 0  (j = 1, …, m0), 

 
as well as precisely m1 independent equations of first order: 
 

(241)  

(1) (1) (1) (1)

1 1 , 1 , 1

(1) (1)

1 1

0

k k k k

k k

z u

u z

µν
ν ν µ µ ντ µπ

ν µ ν τ µ πτ π

µν
νµ µν

ν µ µ ν

ωζα ζ β ω α β

ωζγ ϑ

= = = =

= =

∂ ∂+ + + ∂ ∂


 ∂∂  + + =  ∂ ∂  

∑ ∑ ∑ ∑

∑∑

n l n l

n l
 (k = 1, …, m1), 

 
from which, not all of the differential quotients of first order can be removed, and so on, 
such that finally there are precisely mq independent equations of order q (24q), from 
which not all of the differential quotients of order q can be removed. 
 The system of m0 + m1 + … + mq mutually independent equations: 
 
(26)    (240), (241), …, (24q) 
 
is then equivalent to the system (24), and one can be sure that only such equations of 
order q and less can be derived by differentiation and elimination starting with (24) that 
already follow from (26) without differentiation.  In addition, it must be remarked that 
among the assumptions that were made, the number m0 is equal to at least l, the number 
m1 is equal to at least ll + 2nl, and so on. 
 
 16. If the number N that appeared above is greater than q then we must also include 
the differential quotients of order (q + 1) up to N in the ζν and ωµ .  We thus differentiate 
equations (24q) N – q more times with respect to z1, …, zn and u1, …, ul , and obtain, in 

this way, mq+1 independent equations of order q + 1, from which not all differential 
quotients of order q + 1 can be removed, until finally we obtain mN independent equations 
of order N, from which not all differential quotients of order N can be removed.  The 
system of equations: 
(27)    (240), (241), …, (24N) 
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then subsumes all linear, homogeneous relations that exist between the general solutions 
ζ1, …, ζn , ω1, …, ωl of the differential equations (24) and the differential quotients of 

these solutions of first up to Nth order. 
 
 17. We now think of the system of equations (27) as having been solved for m0 of the 
functions ζν , ωµ , and then for m1 of the differential quotients of first order: 
 

z
ν

τ

ζ∂
∂

, 
u

ν

µ

ζ∂
∂

, 
z

µ

ν

ω∂
∂

, 
u

µ

π

ω∂
∂

, 

 
and so on, until finally, for mN of the differential quotients of Nth order of the ζν , ωµ .  
We substitute the expressions thus found in the infinitesimal transformation Z(N)f that was 
defined above, and obtain an abbreviated infinitesimal transformation: 
 

( )NZ f = 
, ,

A f B f A f B f
z u

µν
ν ν µ µ ντ µπ

ν τ µ πτ π

ωζζ ω
∂∂+ + +

∂ ∂∑ ∑ ∑ ∑  

+ 
,

f f
u z

µν
νµ µπ

µ ν µ ν

ωζ ∂∂ + ∂ ∂  
∑ A B  + … 

 
Here, the A fν , B fµ , …, like the Aν f, Bµ f, … before, are completely well-defined 

infinitesimal transformations in the variables: 
 

zν ,    uµ ,    uµ,ν ,    uµ,ντ , … 
 

except that now not all of the n + l = n + l functions ζν , ωµ  appear, but only n + l – m0 = 

ε0 of them, and furthermore, of the (n + l)2 differential quotients of first order of the ζν , 
ωµ , only: 

(n + l)2 − m1 = ε1, 
 

and in general, only εk of the differential quotients of order k of the ζν , ωµ .  The numbers 
in question ε0, ε1, ε2, … are thus clearly independent of the number l, and are already 
completely well-defined by equations (22), a situation that will likewise be of use to us. 
 
 18. With these preparations, we can finally prove that the infinite group of 
infinitesimal transformations that are defined by equations (24) possess differential 
invariants. 
 A differential invariant of the group in question is any function of z1, …, zn , u1 , …, ul 

and the differential quotients of the uµ with respect to the zν that remains invariant under 
any infinitesimal transformation of the group: 
 

Zf = 
1 1

f f

z uν µ
ν µν µ

ζ ω
= =

∂ ∂+
∂ ∂∑ ∑

n l

. 
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The determination of all differential invariants of order N of the group (24) then comes 
down to the determination of all functions of: 
 
(28)    zν ,    uµ ,    uµ,ν ,    uµ,ντ , … 

 
that admit the infinitesimal transformation, which then assumes that ζ1, …, ζn , ω1, …, ωl 
are understood to be the most general system of solutions of the differential equations 
(24). 
 Now, only ε0 + ε1 + … + εN of the quantities: 
 

ζν ,     ωµ ,    
z

ν

τ

ζ∂
∂

,    
u

ν

µ

ζ∂
∂

,    
z

µ

ν

ω∂
∂

,    
u

µ

π

ω∂
∂

, … 

 
enter into ( )NZ f , and these ε0 + … + εN quantities are not coupled by any linear, 

homogeneous relation, if ζ1, …, ζn , ω1, …, ωl refers to the most general system of 

solutions (24).  Thus, a function of the variables (28) can admit the infinitesimal 
transformation ( )NZ f when and only when it is a common solution of the ε0 + … + εN 
linear partial differential equations: 
 

(29)   
0, 0, 0, 0,

0, 0,

A f B f A f B f

f f
ν µ ντ µπ

νµ µν

 = = = =
 = = ⋯A B

 

 
 We will prove that equations (29) determine a complete system that has at most ε0 + 
… + εN parameters. 
 
 19. If ζ1, …, ζn , ω1, …, ωl means the most general system of solutions of (24) then 

the expression ( )NZ f obviously represents the most general infinitesimal transformation 
that includes a certain infinite group of infinitesimal transformations in the variables (28).  
Therefore, if: 

Zk f = 
1 1

k k

f f

z uν µ
ν µν µ

ζ ω
= =

∂ ∂+
∂ ∂∑ ∑

n l

 (k = 1, 2) 

 
are any two infinitesimal transformations of the group that is defined by (24), and we set: 
 

(Z1 Z2) = 
1 1

f f

z uν µ
ν µν µ

ϕ ϑ
= =

∂ ∂+
∂ ∂∑ ∑

n l

 = Z f, 

 
then the three infinitesimal transformations: 
 

( )
1

NZ f ,   ( )
2

NZ f ,    ( )N fZ  

are related by: 
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( ( )
1

NZ f ,   ( )
2

NZ f ) = ( )N fZ . 

 
In other words: The totality of all linear, partial differential equations that one obtains 
when one thinks of all solutions of (24) as having been substituted for ζ1, …, ζn , ω1, …, 

ωl  in: 
( )NZ f = 0 

 
defines a complete system in the variables (28).  However, since the ε0 + … + εN 
quantities: 

ζν , ωµ , 
z

ν

τ

ζ∂
∂

, 
u

µ

π

ω∂
∂

, … 

 
that enter into ( )NZ f cannot be coupled by a linear, homogeneous relation as long as ζ1, 

…, ζn , ω1, …, ωn  is an arbitrary system of solutions of (24), the expressions: 

 
    ( )A Aν τ , ( )A Bν µ , ( )A Aν τρ , … 

      ( )B Bµ π , ( )B Aµ ντ , … 

        ( )A Aντ σρ , … 

 
can all be expressed linearly and homogeneously in terms of the: 
 

A fν ,   B fµ ,   A fντ ,    … 

 
with coefficients that are functions of the variables (28).  However, that means nothing 
more than the fact that equations (29) define a complete system that has at most ε0 + … + 
εN parameters. 
 
 20.  The question of whether the infinite group that is defined by (24) possesses Nth 
order differential invariants is now resolved when we succeed in proving that the 
complete system (29) possesses solutions. 
 Such solutions will always exist when the number of variables (28) that appear in (29) 
is larger than the number of mutually independent ones in equations (29).  Now, we know 
that among equations (29) at most ε0 + … + εN of them are mutually independent.  On the 
other hand, we know that the numbers ε0, ε1, …, εN  are independent of l, while we can, 
on the contrary, make the number of variables (28) as large as we want by a suitable 
choice of l.  Thus, the complete system (29) always has a solution when we choose l in a 
suitable way. 
 If we now turn from the group (24) to the group that is defined by (22) then we 
obtain: 
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 Theorem 9.  Any infinite group of infinitesimal transformations in the variables x1, 

…, xn  possesses differential invariants in any event when one appends a certain number 

of variables y1, …, yl  to the variables x1, …, xn that are not transformed by the group.  If 

one has chosen l in a suitable way, and one considers that among the variables x1, …, xn , 

y1, …, yl , some of them are functions of the other ones then all differential invariants of 

Nth order of the group can be found by integration of a complete system, in which the x, 

the y, and the differential quotients of the dependent ones with respect to the independent 

ones appear as variables. 
 
 21.  It is indeed self-explanatory, although it must still be mentioned, that the 
differential invariants of an infinite group of infinitesimal transformations also remain 
invariant under all one-parameter groups that are generated by the infinitesimal 
transformations of the group. 
 Moreover, one can also ask whether there are systems of differential equations of Nth 
order that remain invariant under the group that is defined by (22).  Obviously, one finds 
systems of this type when one determines all systems of equations in the variables (28) 
that admit the infinitesimal transformations: 
 

A fν ,    B fµ ,    A fντ ,    B fµπ , … 

 
Admittedly, one must still examine whether the system of differential equations is 
integrable in the individual cases. 
 
 

§ 11.  Any infinite continuous group of finite transformation 
possess differential invariants. 

 
 22. We again think of an infinite group of finite transformations as being defined by a 
system of partial differential equations: 
 

(30)  
2

1 1
1 1 2

1 1

, , , , , , , , , , ,n
k n n

n

W x x
x x x

 ∂∂ ∂
 ∂ ∂ ∂ 
⋯ ⋯ ⋯ ⋯ ⋯

xx x
x x = 0  (k = 1, 2, …). 

 
Let the defining equations of the infinitesimal transformations of these group be: 
 

(31)   
1 , 1

( ) ( )
n n

i
k ki

i

x x
xν ν ν

ν ν ν

ξα ξ α
= =

∂+
∂∑ ∑  + … = 0 (k = 1, 2, …). 

 
 Among the assumptions that were made, the infinitesimal transformations that were 
defined by (31) define an infinite group of infinitesimal transformations, and naturally 
any differential invariant of the group that is defined by (30) is likewise a differential 
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invariant of the group of infinitesimal transformations defined by (31).  We assert that, 
conversely, any differential invariant of the latter group is also one of the former. 
 
 23. Let: 
(32)    xi = Fi(x1, …, xn; ε)  (i = 1, …, n) 

 
be any family of ∞1 transformations of group (30).  This family yields the identity 
transformation for ε = 0, and the Fi might still be regular for ε = 0. 
 With the guidance of the previous paragraphs, we next define differential invariants 
of the infinite group of infinitesimal transformations (31).  We then append certain 
variables y1, …, yl  to the x1, …, xn that are not transformed under the group.  Among the 
variables x1, …, xn, y1, …, yl, we consider nν of them, which might be called z1, …, zn, to 

be independent, while the remaining n + l – n = l of them u1, …, ul are functions of z1, …, 

zn .  Let: 
J(z1, …, zn, u1, …, ul, u1,1, …, ul,n , u1,11, …) 

 
be any one of the differential invariants of Nth order that arise in this way. 
 Under the transformations (32), the variables x1, …, xn, y1, …, yl will be transformed 
as follows: 

xi = Fi(x1, …, xn, ε), yµ = yµ  (i = 1, …, n; µ = 1, …, l). 

 
If we write these transformations in z1, …, zn, u1, …, ul  as: 

 

(33)  1 1

1 1

( , , , , , , )

( , , , , , , )
i i z z u u

z z u uµ µ

ε
ε

= Ψ
 = Χ

⋯ ⋯

⋯ ⋯

n l

n l

z

u
 (i = 1, …, n; µ = 1, …, l) 

 
then it emerges from our assertion above that J should remain invariant under the ∞1 
transformations (33). 
 
 24. In order to prove that this is the case, we proceed as we did in the proof of 
Theorem 2 on pp. 330 [here, pp. 312]. 
 We imagine that equations (33) have been solved for z1, …, zn, u1, …, ul, which might 

yield: 

(34)  1 1

1 1

( , , , , , , )

( , , , , , , )
i iz

uµ µ

ε
ε

 = Ψ
 = Χ

⋯ ⋯

⋯ ⋯

n l

n l

z z u u

z z u u
 (i = 1, …, n; µ = 1, …, l). 

 
Furthermore, we define the equations: 
 

    id

dε
z

= 
,

( , , )i

z u X

z u ε
ε =Ψ =

∂Ψ 
 ∂ 

 = ζi(z, u, ε), 
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d

d
µ

ε
u

= 
,

( , , )

z u X

X z uµ ε
ε =Ψ =

∂ 
 ∂ 

 = ωµ(z, u, ε). 

The expression: 

Zf = 
1 1

( , , ) ( , , )i i
i i

f f
z u z u

z uµ µ

ζ ε ω ε
= =

∂ ∂+
∂ ∂∑ ∑

n l

 

 
then represents an infinitesimal transformation for each ε, under which z1, …, zn, u1, …, 
ul  will be transformed by the infinite group (30) (cf., pp. 324-326 and Theorem III, pp. 

342 [here, pp. 306-308 and pp. 322].  One then has: 
 

Z(N) J(z1, …, zn, u1, …, ul) ≡ 0. 

 
 If we now make the substitution (33) in the function: 
 

J(z1, …, zn, u1, …, ul, u1,1, …) 

 
then we obtain an equation of the form: 
 
(35)  J(z1, …, zn, u1, …, ul, u1,1, …) = X(ε; z1, …, zn, u1, …, ul, u1,1, …), 

 
and it obviously becomes: 
 

X

ε
∂
∂

= Z(N) J(z1, …, zn, u1, …, ul, u1,1, …) ≡ 0, 

 
where Z(N)f is obtained from Z(N) when one replaces z1, …, zn, u1, …, ul with the 

corresponding German symbols.  From this, it follows that X is free of ε, and that the 
value of X will be found when one sets ε = 0 in equation (35). 
 For ε = 0, however, (33) goes to the identity transformation, so equation (35), which 
comes about by means of (33), has the simple form: 
 
(36)  J(z1, …, zn, u1, …, ul, u1,1, …) = J(z1, …, zn, u1, …, ul, u1,1, …). 

 
In other words: The function J(z, u, u1,1, …) remains invariant under each of the ∞1 
transformations (33). 
 
 25.  With that, the aforementioned assertion is proved and we have that: 
 
 Theorem VI.  Any infinite continuous group whose finite transformations can be 
defined by a system of partial differential equations: 
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(30)   1
1 1

1

, , , , , , ,kW x x
x

 ∂
 ∂ 
… … …n n

x
x x  = 0  (k = 1, 2, …) 

 
simultaneously possesses differential invariants when one appends a certain number of 
variables y1, …, yl that are not transformed under the group to the x1, …, xn . 
 In order to define such differential invariants, one must, for a suitable choice of l, 
consider any of the variables x1, …, xn, y1, …, yl to be functions of the remaining ones.  
The differential invariants are then functions of x1, …, xn, y1, …, yl and the differential 
quotients of the independent variables with respect to the dependent ones.  As differential 
invariants, they are characterized by the fact that they preserve their form under any 
transformation of the infinite group. 
 The differential invariants in question may be defined, moreover, to be the differential 
invariants of the infinite group of infinitesimal transformations that are defined by the 
infinitesimal transformations of the group that is determined by (30).  Their number is 
unbounded, but all differential invariants of given order can be found by the integration 
of a certain complete system. 
 

§ 12.  The infinite group of all point transformations in n variables. 
 

 26.  From now on, our problem is to prove the converse of Theorem V, and thus to 
show that any infinite group of infinitesimal transformations consists of infinitesimal 
transformations of a certain infinite group of finite transformations.  We will thus employ 
the fact that the defining equations of the finite transformations of an infinite group 
remain invariant, in a certain sense, under the infinitesimal transformations of this group 
(Theorem I, pp. 336 [here, pp. 317]). 
 Now, if an infinite group of infinitesimal transformations is given then we will show 
that a system of differential equations remains invariant under this group, which defines 
an infinite group of finite transformations, and indeed an infinite group whose 
infinitesimal transformations define precisely the given infinite group of infinitesimal 
transformations. 
 Before we commence the implied investigation in full generality, we would like to 
treat a particularly simple case.  We will arrive at the result that will later essentially 
simplify the definition of the aforementioned invariant system of differential equations in 
the case of an arbitrary infinite group of infinitesimal transformations. 
 
 27.  We consider the infinite group of all infinitesimal transformations: 
 

Xf = 1
1

( , , )
n

i n
i i

fξ
=

∂
∂∑ …x x
x

 

 
in the n variables x1, …, xn .  This case is especially simple for the fact that we know from 

the outset that the group of infinitesimal transformations in question consists of all of the 
infinitesimal transformations of the infinite group of all finite transformations in x1, …, 

xn.  From Theorem VI, the differential invariants of our infinite group of infinitesimal 
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transformations are likewise the differential invariants of the infinite group of all finite 
transformations in x1, …, xn . 

 To the variables x1, …, xn, we append n more variables x1, …, xn that are not 

transformed by Xf at all.  We regard x1, …, xn as functions of x1, …, xn, and look for all 

functions of: 

x1, …, xn , 
i

xν

∂
∂
x

 = xi,ν , 
2

i

x xν τ

∂
∂ ∂
x

= xi,ντ , … 

 
that remain invariant under all infinitesimal transformations X f.  These functions are then 
naturally certain differential invariants of the infinite group of all transformations in x1, 

…, xn . 

 
 28.  It is now clear that there are no functions of only x1, …, xn that remain invariant 

under all infinitesimal transformations X f.  The n infinitesimal transformations: 
 

1

f∂
∂x

, …, 
n

f∂
∂x

 

 
then already possess no common invariant. 
 If we now extend X f by the inclusion of the xi,ν then we get: 

 

X(1) f = Xf + ,
, , 1 ,

n
i

i i

f
ν τ

ν τ ν τ

ξ
=

∂ ∂
∂ ∂∑ x
x x

. 

 
Any function of xi and xi,ν  that remains invariant under all infinitesimal transformations X 

f must therefore fulfill the equations: 
 

(37)  
1

f∂
∂x

= 0, …, 
n

f∂
∂x

= 0, ,
1 ,

n

i

f
ν τ

τ τ=

∂
∂∑ x
x

= 0  (ν, i = 1, …, n). 

 
The first n of them say that the function f is free of x1, …, xn ; the last nn likewise show 

that it is free of the xi,ν , so the determinant: 

 
∆ = 1,1 ,n n±∑ ⋯x x  

does not vanish identically. 
 There is therefore also no differential invariant of first order with the desired 
behavior; on the contrary, the equation ∆ = 0 obviously represents a differential equation 
of first order that is invariant under our infinite group. 
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 29.  If we also include the xi,ντ  then we obtain the extended infinitesimal 

transformation: 

X(2)f = X(1)f + 
2

, ,
, , 1 1 , 1 , ,

1

2

n n n
i i

i i

fντ
ρ ν π τ

ν τ ρ ρ πρ ρ π ν τ

ε ξ ξ
= = =

 + ∂ ∂ ∂ + ∂ ∂ ∂ ∂  
∑ ∑ ∑ x x

x x x x
, 

 
from Xf, where, as usual, εντ  vanishes when ν ≠ τ and has the value 1 when ν = τ.  This 
εντ  is introduced because one has xi,ντ = xi,τν , and the differential quotient of f with respect 

to xi,ντ  may then be considered only once.  Thus, should a function of the xi , xi,ν , xi,ντ  

remain invariant under all infinitesimal transformations Xf then it must satisfy the 
equations: 

(38)   

1

, ,
1 , 1, ,

, ,
, 1 ,

0, 0,

1
0,

2

(1 ) 0.

n

n n

i i

n

i

f f

f f

f

ντ
ρ τ ρ ντ

τ ν ττ ντ

ντ ρ ν π τ
ν τ ντ

ε

ε

= =

=

 ∂ ∂= =
∂ ∂

 +∂ ∂ + = ∂ ∂
 ∂
 + =

∂

∑ ∑

∑

⋯

x x

x x
x x

x x
x

 

 
 The equations in the last row of (38) may be written as follows: 
 

, ,
1 1 ,

(1 )
n n

i

f
ρ ν ντ π τ

ν τ ντ

ε
= =

∂+
∂∑ ∑x x
x

 = 0, 

 
so, since ∆ does not vanish, they imply the equations: 
 

,
1 ,

(1 )
n

i

f
ντ π τ

τ ντ

ε
=

∂+
∂∑ x
x

 = 0. 

 
On the same grounds, this, in turn, implies the equations: 
 

,i

f

ντ

∂
∂x

= 0 (i, ν, τ = 1, …, n), 

 
which shows that f is free of xi,ντ .  However, since we have already seen that there are no 

differential invariants of first order with the desired behavior, it is thus also proved that 
there are none of second order. 
 
 30.  In order to prove in general that for any arbitrary N no differential invariants of 
Nth order exist with the desired behavior, we imagine that Xf has been extended by the 
inclusion of the differential quotients xi , xi,ν , xi,ντ  up to Nth order.  We can briefly write 

the infinitesimal transformation that comes about as: 
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(39)  X(N) f 
1

2

1 , 1 , 1, ,

( ) ( )
( )

N

n n n
i i

i
i i ii i i

f f f

x x xν νν ν ν ν ν

ξ ξξ
= = =

∂ ∂∂ ∂ ∂= + + +
∂ ∂ ∂ ∂ ∂ ∂∑ ∑ ∑⋯

⋯

x x
x
x x x

, 

 
where the summation symbols ν1, ν2, …, νN must satisfy the conditions: 
 

ν1 ≤ ν2 ≤ ν3 ≤ … ≤νN . 
 

If we imagine that the differentiations that were implied in (39) have been carried out 
then we get: 

(40)  X(N) f = 
1

1

, ,
1 , 1 , 1 1

( ) ( )
( )

N

N

Nn n n
i i

i i i i
i i i N

A f A f A fτ τ τ
τ τ ττ

ξ ξξ
= = =

∂ ∂+ + +
∂ ∂ ∂∑ ∑ ∑ ⋯

⋯

⋯

⋯

x x
x

x x x
, 

 
where the Ai f, Ai,τ  f, … mean certain infinitesimal transformations in the variables x1 , xi,ν, 

…, and where τ1, …, τN must satisfy the same conditions as ν1, …, νN did above. 
 Now, should there be a function of the x and its differential quotients up to Nth order 

that remains invariant under all infinitesimal transformations X f then it must satisfy all of 
the equations: 
(41)    Ai f = 0,    Ai,τ  f = 0, …, 

1, NiA fτ τ⋯ = 0. 

 
However, it is easy to see that these equations are independent of each other and can only 
be satisfied when f is free of the x and their differential quotients. 

 In fact, the xi are undetermined functions of x1, …, xn . It thus suffices to verify that 

the equations (41) are then also independent of each other when one substitutes any well-
defined functions of the x for the xi in their coefficients – say, xi = xi .  However, if we 

make the substitution xi = xi in the coefficients of (41), or, more precisely, the 

substitution: 
(42)  xi = xi ,  xi,ν = εiν , xi,ντ  = … = 

1, Ni ν ν⋯x  = 0, 

 
then this easily gives: 
 

Ai f = 
i

f∂
∂x

, Ai,τ f = 
,i

f

τ

∂
∂x

, …, 
1, NiA fτ τ⋯  = 

1, Ni

f

τ τ

∂
∂

⋯

x
. 

 
One sees this immediately, when one carries out the substitution (42) on the coefficients 
of the two forms (39) and (40) of X(N)f and compares the two expressions obtained with 
each other, in which one must observe that ξ1, …, ξn are arbitrary functions of their 
arguments. 
 With that, it is proved that equations (41) are independent of each other, and the 
vanishing of all differential quotients: 
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i

f∂
∂x

, 
,i

f

τ

∂
∂x

, …, 
1, Ni

f

τ τ

∂
∂

⋯

x
 

 
is implied by this; there are therefore also no differential invariants of Nth order with the 
desired behavior. 
 

§ 13.  The second fundamental theorem. 
 

 31.  Now, let an arbitrary infinite group of infinitesimal transformations be given 
once more, and, in fact, by a system of partial differential equations: 
 

(43)   
1 , 1

( ) ( )
n n

i
ki i ki

i i
ν

ν ν

ξα ξ α
= =

∂+
∂∑ ∑x x
x

+ … = 0  (k = 1, 2, …). 

 
We assume that this system is of order q, and that no new equations of order q and less 
can be derived by differentiation and elimination.  The most general system of solutions 
of (43) shall naturally not depend upon merely a finite number of arbitrary constants. 
 We understand N to mean any positive whole number, which can also be larger than 
q.  If N > q then we append to (43) all equations of order (q + 1), …, N that come about 
by differentiation.  We imagine that the system thus obtained is then solved in a way that 
is similar to the one on pp. 367 [here, pp. 342], namely, for m0, m1, …, mN of the 
differential quotients of order zero, one, …, N, resp., and indeed such that one always has 
that mν of the pν differential quotients of order n are expressible in terms of the remaining 
pν − mν and ones of lower order. 
 From now on, we consider x1, …, xn to be functions of certain variables x1, …, xn that 

are not transformed at all, and look for all functions of: 
 

xi , i

xν

∂
∂
x

 = xi,ν ,    
2

i

x xν τ

∂
∂ ∂
x

= xi,ντ , … 

 
that remain invariant under all of the infinitesimal transformations that are defined by 
(43). 
 
 32.  We extend the infinitesimal transformation: 
 

X f = 1
1

( , , )
n

i n
i i

fξ
=

∂
∂∑ …x x
x

 

 
by the inclusion of all differential quotients xi,ν , … up to Nth order: 

 

(40)  X(N) f = 
1

1

, ,
1 , 1 , 1 1

( ) ( )
( )

N

N

Nn n n
i i

i i i i
i i i N

A f A f A fτ τ τ
τ τ ττ

ξ ξξ
= = =

∂ ∂+ + +
∂ ∂ ∂∑ ∑ ∑ ⋯

⋯

⋯

⋯

x x
x

x x x
. 
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In this infinitesimal transformation, we now express, by means of (43), all of the mν 
differential quotients of order ν of the ξi in terms of the pν – mν remaining ones and the 
ones of lower order, and obtain an abbreviated infinitesimal transformation: 
 

( )NX f = 
1

1

, ,
1 , 1 , 1 1

( ) ( )
( )

N

N

Nn n n
i i

i i i i
i i i N

A f A f A fτ τ τ
τ τ ττ

ξ ξξ
= = =

∂ ∂+ + +
∂ ∂ ∂∑ ∑ ∑ ⋯

⋯

⋯

⋯

x x
x

x x x
, 

 
in which, of the ξi, only p0 – m0 of them enter in, while ultimately, of the differential 
quotients of order ν of the ξi, only pν – mν of them enter in.  The iA f , ,iA fτ , … are Ai f, 

Ai,τ f, …, and in fact, one has: 
 

(44)  

,

, , , ,
, , ,

( ) ( )

( ) ( )

i i i i

i i i i

A f A f A f A f

A f A f A f A f

µ µ µν µ ν
µ µ

ν ν µν µ ν µνπ µ νπ
µ ν µ ν π

ϕ ϕ

ψ ψ

 = + + +

 = + + +




∑ ∑

∑ ∑

⋯

⋯

⋯

x x

x x  

 
Under the substitution (42), one will then have: 
 

(45)  

,

,
, , ,, , ,

( ) ( )

( ) ( )

i i i
i

i i i
i

f f f
A f

f f f
A f

µ µν
µ µµ µ ν

ν µν µνπ
µ ν µ ν πν µ ν µ νπ

ϕ ϕ

ψ ψ

∂ ∂ ∂ = + + + ∂ ∂ ∂

 ∂ ∂ ∂= + + + ∂ ∂ ∂




∑ ∑

∑ ∑

⋯

⋯

⋯

x x
x x x

x x
x x x

 

 
in which obviously no other differential quotients: 
 

,

f

µ ν

∂
∂x

 

 
enter into the iA f  than the ones for which the ,iA fτ  are solved, and so on. 

 
 33.  The differential invariants that we seek are obviously the common solutions to 
the p0 – m0 + … + pN – mN linear, partial differential equations: 
 
(46)   iA f  = 0, ,iA fτ = 0, …, 

1, NiA fτ τ⋯ = 0. 

 
Of these equations, we already know that they determine a complete system (see pp. 369, 
et seq. [here, pp. 344, et seq.]).  In our case, they are, moreover, obviously independent of 
each other, so they define a complete system of p0 – m0 + … + pN – mN parameters, and 
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since they contain p0 + … + pN independent variables, they have precisely m0 + … + mN  
common independent solutions. 
 The statement is true for any value of N, so our infinite group of infinitesimal 
transformations possesses the following differential invariants with the desired behavior: 
Precisely m0 independent differential invariants of order zero: 
 
    0

1( , , )nJµ …x x    (µ = 1, …, m0), 

 
precisely m1 differential invariants of first order: 
 
    1

1 1,1 ,( , , , , , )n n nJµ … …x x x x  (µ = 1, …, m1) 

 
that are independent of each other the 0Jµ , and ultimately, mN differential invariants of Nth 

order that are independent of each other and the ones of lower order. 
 The differential invariants that we spoke of possess some important properties.  
Namely, first of all, one can derive arbitrarily many new differential invariants of higher 
order from any of them by simply differentiating.  Secondly, as long as all differential 
quotients of order q are given, one can arrive at all differential invariants of (q + 1)th and 
higher order by differentiation.  Finally, the totality of all differential invariants of order 
zero up to q (and higher) is only invariant under the infinitesimal transformations that are 
defined by (43), but none of them in the variables x1, …, xn . 

 
 34.  The first property can be seen quite simply.  Namely, if: 
 

J(x1, …, xn, x1,1, …) 

 
is any differential invariant of order N – 1 with the given property then, as a function of 
the x1, …, xn, J satisfies the equation: 
 

(47)    dJ − 
1

n J
dx

x ν
ν ν=

∂
∂∑  = 0, 

where ∂J : ∂xν has the form: 
 

J

xν

∂
∂

 = , ,
1 , 1 ,

n n

i i
i ii i

J J
ν τν

τ τ= =

∂ ∂+
∂ ∂∑ ∑x x
x x

+ … 

 
Now, if X f is an arbitrary infinitesimal transformation of the group that is defined by (43) 
then X(N) J ≡ 0, and likewise, one has: 

( )N J
X

xν

 ∂
 ∂ 

 ≡ 0, 
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so X(N)f must leave invariant the system of Pfaffian forms that is defined by equation (47) 
and the equations: 

dxi − ,
1

n

i dxν ν
ν =
∑ x  = 0,  

1 1 1 1, ,
1

N N

n

i id dxτ τ τ τ ν ν
ν

− −
=

−∑⋯ ⋯
x x = 0. 

 
Thus, ∂J / ∂xν is actually a differential invariant of order N. 
 
 35.  In order to prove the other two properties of our differential invariants, we must 
elaborate somewhat. 
 Equations (43) were soluble for m0 + … + mq of the ξi and their differential quotients 
of order one up to q; we would like to denote the quantities in question by: 
 

(48)    ξi , iξ∂
∂ nx

, …, 
1 q

q
iξ∂

∂ ∂⋯n nx x
. 

 
In addition, we would like to assume that the coefficients in the solutions of (43) are 
regular for x1 = 0, …, xq = 0. 

 If we now choose N = q then we can write equations (46) more precisely: 
 
(50)   A fi  = 0, ,A fi n  = 0, …,   

1, q
A f

⋯i n n  = 0, 

 
where the indices i, n must range through the same values as in (49).   If we further recall 

the form (45) that the A fi , … assume under the substitution (42) then we recognize that 

the equations (50) can be solved for the differential quotients: 
 

f∂
∂ ix

, 
,

f∂
∂ i nx

, …, 
1, q

f∂
∂

⋯i n nx
, 

 
and that the coefficients in the equations thus solved are regular for the system of values: 
 

xτ = 0,    xτ,π = ετπ ,    xτ,π = 0, …  (τ, π, ρ, … = 1, …, n). 

 
 As solutions of the complete system (50), we can thus employ its m0 + … + mq 
principal solutions for: 
 
(51)  xτ = 0,  xτ,π = ετπ ,  xτ,π = 0, …, 

1, q⋯i n nx  = 0. 

 
This principal solutions are ordinary power series in the n + p1 + … + pq quantities: 
 

x1 , …, xn,   xτ,π − ετπ ,  
1 2,τ π πx , …, 

1, qτ π π⋯x  (τ, π, π1, … = 1, …, n); 

 
under the substitution (51), the series reduces to the quantities: 
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xi , xi,ν , …, 
1, qi ν ν⋯x , 

 
where the indices i, n, … must range through the same values as in (48); for that reason, 
we would like to call them: 
(52)     Ji, Ji,ν , …, 

1, qiJ ν ν⋯ . 

 
 Thus, it is clear from the outset that the Ji are of order zero, the Ji,ν  are of first order, 
and so on.  Since, in fact, equations (46) define a complete system for any value of N then 
the principal solutions of the system (46) are likewise principal solutions of the system 
(50) in each of the cases N = 0, 1, …, q.  It is self-explanatory that all differential 
invariants of order zero up to q may also be expressed by the m0 + … + mq functions (52). 
 
 36.  It is, moreover, easy to prove that the infinitesimal transformations that are 
defined by (43) are the only ones that leave each of the functions (52) invariant. 
 In fact, should the infinitesimal transformation: 
 

Xf =
1

( )
n

i
i i

fξ
=

∂
∂∑ x
x

 

 
leave any of the functions (52) invariant then it is necessary and sufficient that the 
expressions: 
(53)    X(q)Ji ,  X(q)Ji,ν , …, 

1

( )
, q

q
iX J ν ν⋯  

 
all vanish identically for all values of the n + p1 + … + pq quantities: 
 

x1 , …, xn, xτ,ν , …, 
1, qτ π π⋯x ,  (τ, π, … = 1, …, n). 

 
A necessary condition for this is therefore that the expressions (53) vanish identically 
under the substitution: 
 
(54)  xτ,π  = ετπ , 

1 2,τ π πx = 0, …, 
1, qτ π π⋯x = 0 (τ, π, π1, … = 1, …, n) 

 
for all values of the x1 , …, xn .  In other words: Xf leaves the functions (52) invariant only 

when ξ1, …, ξn satisfy the m0 + … + mq equations: 
 
(55)    (X(q)Ji) = 0, …, 

1

( )
,( )

q

q
iX J ν ν⋯  = 0, 

 
where the parentheses imply that the substitution (54) has been carried out. 
 As would follow easily from the properties of the principal solutions (52), equations 
(55) now represent precisely m0 + … + mq independent linear, homogeneous differential 
equations for ξ1, …, ξn , and indeed these differential equations are soluble for the m0 + 
… + mq quantities: 
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(48)    ξi , i

ν

ξ∂
∂x

, …, 
1 q

q
i

ν ν

ξ∂
∂ ∂⋯x x

, 

 
in precisely the same way as we imagined equations (43) being solved on pp. 383 [here, 
pp. 355].  On the other hand, we known that Xf always leaves the functions (52) invariant 
whenever ξ1, …, ξn  fulfill equations (43).  We can also conclude that equations (55) are 
nothing but equations (43) in another form. 
 With that, we have proved that equations (43) define the most general infinitesimal 
transformation under which all of the functions (52) remain invariant. 
 
 37.  Finally, we still have to prove that, of the mq differential invariants of order q: 
 
(56)     

1, qiJ ν ν⋯ , 

 
one obtains precisely the required number by differentiation with respect to x1, …, xn, 
namely, mq+1 such differential invariants of order (q + 1) that are independent of each 
other and the differential invariants of lower order.  This is also not difficult to do. 
 We know that differentiating (43) once with respect to x1, …, xn produces just enough 

equations of order (q+ 1) for one to be able to solve for precisely mq+1 of the differential 
quotients of the ξ of order (q + 1).  Now, since the two systems (43) and (55) are 
equivalent, this implies that the n ⋅⋅⋅⋅ mq expressions: 
 

(57)     ( )1

( )
, q

q
iX J ν ν

τ

∂
∂ ⋯

x
  (τ = 1, …, n) 

 
are independent of each other relative to mq+1 of the differential quotients: 
 

(58)     
1 1

1

q

q
i

ν ν

ξ

+

+∂
∂ ∂⋯x x

. 

 
On the other hand, it is clear that in the n ⋅ mq expressions: 
 

(59)     
1, qiJ

x ν ν
τ

 ∂
 ∂ 

⋯

  (τ = 1, …, n), 

the coefficient of: 
(60)     

1 1, qi τ τ +⋯

x  

 
is, in each case, the same as the coefficient of the differential quotients (58) in the 
expression that corresponds to (57).  With that, the expressions (59) are independent of 
each other relative to mq+1 of the quantities (60).  However, from this it follows that 
among the n ⋅ mq differential invariants of order (q+ 1): 
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1, qiJ
x ν ν

τ

∂
∂ ⋯

, 

 
one actually finds precisely mq+1 of them that are independent of each other and the ones 
of lower order. 
 
 38.  With these preparations, we are finally in a position to achieve the goal that set in 
the beginning of § 12. 
 We now directly seek a system of partial differential equations: 
 
(61)   Wk(x1, …, xn , x1, …, xn, x1,1, …) = 0  (k = 1, 2, …) 

 
that defines the finite transformations of a certain infinite group, and indeed this group 
shall include all of the infinitesimal transformations that are defined by (43), but no other 
ones. 
 It is clear from the outset that the differential equations (61), when they exist, must be 
satisfied by the identity transformation xi = xi , so the substitution: 

 
(62)    xi = xi ,  xi,τ = εiτ , xi,τν = 0, …, 

 
when applied to (61), must yield nothing but identities.  From the developments on pp. 
353-359 [here, pp. 331-336], it emerges, moreover, that equations (61) must be of order q 
and that there must be precisely m0 + … + mq = s of them that are independent of each 
other. 
 
 39.  From Theorem I, pp. 336 [here, pp. 317], the system of differential equations 
(61) must admit each of the infinitesimal transformations that are defined by (43).  The 
system of equations (61) in the n + p0 + … + pq variables xi, xi , xi,τ , …, assumes that one 

has substituted the most general system of solutions of (43) in them for the ξ1, …, ξn .  
Thus, it is, in turn, necessary and sufficient that the system of equations (61) admit the: 
 

p0 – m0 + … + pq – mq 
infinitesimal transformations: 

iA f , ,iA fτ , …, 
1, qiA fτ τ⋯  

 
that are defined on pp. 380 [here, pp. 353]. 
 We now recall the properties of these infinitesimal transformations, and imagine that 
the system of equations (61) must be fulfilled identically under the substitution (62), so 
we see that the system of equations (61) must be expressed by relations among the 
solutions of the complete system: 
 

iA f = 0, ,iA fτ = 0, …, 
1, qiA fτ τ⋯ = 0. 
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 The complete system [certainly] possesses precisely n + s independent solutions, 
namely, first of all, x1, …, xn, and secondly, the s differential invariants (52), which we 
would like to briefly call J1, …, Js .  Now, since the system (61) must contain precisely s 
independent equations, and since it certainly yields no relation between just x1, …, xn, it 
must necessarily be soluble for J1, …, Js , and thus have the form: 
 

(63)  1
1

1

, , , , , ,n
k n

n

J
x x

 ∂∂
 ∂ ∂ 
… … …

xx
x x  = αk(x1, …, xn) (k = 1, …, s), 

 
where the αk refer to the functions of x1, …, xn that arise from Jk by the substitution (62). 
 
 40.  The equations (63) represent a system of differential equations order q for x1, …, 

xn .  Due to the properties of the differential invariants J1, …, Js , it is certain that no 

equation of order q or less can be derived from (63) by differentiation and elimination 
that does not already follow from (63) with no differentiation.  Therefore, equations (63) 
define a family of finite transformations that includes the identity transformation.  We 
assert that this family defines a group, and that the group in question nothing other than 
the infinitesimal transformations that are defined by (43). 
 Let: 
(64)    xi = Fi(x1, …, xn)   (i = 1, …, n) 

and: 
(65)    i

′x  = Fi(x1, …, xn)   (i = 1, …, n) 

 
be two arbitrary transformations of the family that is defined by (63).  One then proves 
that the transformation: 
(66)    i

′x  = Fi(F1(x), …, Fn(x))  (i = 1, …, n) 

 
always belongs to this family, as well. 
 
 41.  By the assumptions that were made, the xi satisfy the differential equations (63) 

as functions of x1, …, xn, and the i
′x  satisfy the differential equations: 

 

(63′)   1
1 1

1

, , , , , ,n
k

n

J
 ′′ ∂∂′ ′ ∂ ∂ 
… … …

xx
x x

x x
 = αk(x1, …, xn)  (k = 1, …, s) 

 
as functions of x1, …, xn .  Thus, as functions of x1, …, xn , the i

′x  satisfy certain 

differential equations: 
 

(67) 1
1 1 1

1

, , , , , , , , ,n
k n

n

U x x
 ′′ ∂∂′ ′ ∂ ∂ 
… … … …

xx
x x

x x
= αk(F1(x), …, Fn(x)) (k = 1, …, s) 

 
that one obtains from (63′) from the substitution: 
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(68)    xi = Fi(x), i

ν

′∂
∂
x

x
 = 

1

n
i x

x
τ

τ τ ν=

′∂ ∂
∂ ∂∑
x

x
, …, 

 
in which one must, however, imagine that the differential quotients of the xτ with respect 
to the xν are expressed in terms of x1, …, xn by means of (64). 

 The system (67) naturally consists of s independent equations and has the same order 
as the system (63).  Ostensibly, its form depends upon the choice of transformation (64).  
However, we will see that in reality it does not depend upon it. 
 
 42.  The system (63′) obviously admits all infinitesimal transformations: 
 

     X′f = 1
1

( , , )
n

i n
i i

fξ
=

∂′ ′
′∂∑ …x x
x

 

 
that belong to the family that was defined by (43).  Moreover, it will be satisfied by the 
substitution i

′x  = xi identically.  From this, it follows that the system (67) likewise admits 

all of the infinitesimal transformations X′f in question, and that under the substitution: 
 
(69)    i

′x  = Fi(x1, …, xn)   (i = 1, …, n) 

 
it is fulfilled identically.  The system (67) is now completely determined by these two 
properties, so it must, in fact, possess the earlier form: 
 

1
1 1

1

, , , , , ,n
k

n

J
 ′′ ∂∂′ ′ ∂ ∂ 
… … …

xx
x x

x x
 = βk(x1, …, xn)  (k = 1, …, s). 

 
The functions βk are thus to be chosen such that one obtains nothing but identities under 
the substitution (69); in other words: βk = αk . 
 Thus, the system (67) may be brought into the form: 
 

(70)  1
1 1

1

, , , , , ,n
k

n

J
 ′′ ∂∂′ ′ ∂ ∂ 
… … …

xx
x x

x x
 = αk(x1, …, xn) (k = 1, …, s), 

 
which is independent of the special choice of the transformation (64).  However, with 
this, it is proved that the transformation (66) always belongs to the family that is defined 
by (63), so this family defines a group, as we asserted. 
 
 43.  Finally, it is not difficult to show that the group that is defined by (63) includes 
all of the infinitesimal transformations that are defined by (43), but no other ones. 
 In fact, from Theorem I, pp. 336 [here, pp. 317], the transformation: 
 

xi = Fi(x1, …, xn)  (i = 1, …, n) 
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belongs to the group that is defined by (63) when and only when the system of partial 
differential equations (63) remains invariant under the transformation: 
 
(71)   i

′x  = Fi(x1, …, xn), ix′  = xi  (i = 1, …, n). 

 
For this to be true, it is, in turn, obviously necessary and sufficient that the transformation 
(71) leaves invariant each of the s functions: 
 

1
1 1

1

, , , , , ,n
k

n

J
x x

 ∂∂
 ∂ ∂ 
… … …

xx
x x   (k = 1, …, s). 

 
Now, we have seen on pp. 385 [here, pp. 357] that the infinitesimal transformations that 
are defined by (43) are the only ones that leave all functions J1, …, Js invariant.  Thus, we 
can conclude that these infinitesimal transformations are the only ones that belong to the 
group that was defined by (63). 
 
 44.  We can now express the second fundamental theorem in the theory of infinite 
groups.  It reads as follows: 
 
 Theorem VII.  Let a system of s independent linear, homogeneous, partial 
differential equations be given: 
 

(72)  
1 , 1

( ) ( )
n n

i
ki i ki

i i
ν

ν ν

ξα ξ α
= =

∂+
∂∑ ∑x x
x

 + … = 0  (k = 1, …, s) 

 
that possesses the following properties: It shall be of order q and shall yield no equations 
of order q or less by differentiation and elimination that are independent of (72).  
Furthermore, its most general system of solutions shall not merely depend upon a finite 
number of arbitrary constants.  Finally, if ξ1, …, ξn and η1, …, ηn are two solutions of 
(72) then: 

1

n
i i

ν ν
ν ν ν

η ξξ η
=

 ∂ ∂− ∂ ∂ 
∑

x x
  (i = 1, …, n) 

is a system of solutions. 
 By these assumptions, the system (72) defines the most general infinitesimal 
transformation: 

Xf = 
1

n

i
i i

fξ
=

∂
∂∑
x

 

 
of a certain infinite group.  The finite transformations of this group are determined by s 
independent partial differential equations of order q of the form: 
 

(73)  1
1 1

1

, , , , , ,n
k

n

J
x x

 ∂∂
 ∂ ∂ 
… … …

xx
x x  = αk(x1, …, xn) (k = 1, …, s), 
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which go to just identities under the substitution xi = xi ; moreover, the functions J1, …, Js 

have the property that they remain invariant under any transformation: 
 

i
′x  = Fi(x1, …, xn)  (i = 1, …, n) 

 
that belongs to the infinite group.  If the equations (72) are given then one can find 
equations (73) by integrating a complete system. 
 
 45.  It is self-explanatory that the infinite group contains all one-parameter groups 
that are generated by the infinitesimal transformations that are defined by (72), although 
it contains no one-parameter group.  Whether, conversely, any of its transformations 
belong to one of the one-parameter groups that were mentioned, and whether it therefore 
consists of nothing but one-parameter groups is still undecided (cf. pp. 344 [here, pp. 
323, et seq., no. 31]). 
 A similar theorem for infinite groups of contact transformations of an (n + 1)-fold 
extended space z, x1, …, xn, p1, …, pn follows from Theorem VII with no further 
assumptions.  Certain linear, homogeneous, partial differential equations appear instead 
of equations (72) that preserve an unknown function W and 2n + 1 independent variables 
z, x1, …, xn, p1, …, pn .  The most general solution W of these equations is then the 
characteristic function of the most general infinitesimal contact transformation that 
belongs to the group of contact transformations in question. 
 Finally, let it be emphasized that the foregoing developments deliver a new basis for 
the theory of finite continuous groups (cf., pp. 320, et seq. [here, pp. 304, no. 6]). 
 
 

§ 14.  Concluding remarks. 
 

 46.  The foundations of the theory of infinite groups is thus laid.  I will now say a few 
words about the special problems of this theory that I have already resolved. 
 The concepts of transitive and intransitive may be carried over to infinite groups 
immediately.  If the defining equations of the infinitesimal transformations of an infinite 
group are given then one can always decide whether the group is intransitive or not, and, 
in addition, one can also determine all systems of equations that are invariant under the 
group, and indeed, by forming the determinants and integrating complete systems. 
 In the same way, one can systematically and asystatically (asystatisch) carry over the 
concepts of primitive and imprimitive to infinite groups.  The concepts of connection, 
isomorphism, simple group, invariant subgroup, and derived group may be applied to 
infinite groups. 
 Already in the year 1883, I published a determination of all infinite groups of point 
transformations in the plane (Ges. d. Wiss. zu Christiania [this collection, v. V, Abh. 
XIII]).  In recent times, I have further determined all infinite, irreducible groups of 
contact transformations of the plane, and an important class of groups of this type in the 
space of n + 1 dimensions.  Likewise, I have arrived at the description of all primitive, 
infinite groups of point transformations of the ordinary space and at least a certain class 
of groups of this type in the space of n dimensions. 
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 47.  The investigations that were mentioned here shall be published in the third part of 
my theory of transformation groups.  The general theory that was detailed in the present 
work shall appear there in a revamped form.  For that reason, the present treatise, like the 
first treatise of Herrn Professor Engel, was developed by taking a manuscript of mine as 
its basis. 
 
 
 
 
 
 
 


