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Foundations of an invariant theory of contact tran$ormations

By SOPHUS LIE in Christiania

Translated by D. H. Delphenich

Without a doubt, Jacobi's epoch-making papers on firstrpnoigtial differential
equations’) will always assume a distinguished place in sciencgtill, to some
mathematicians they seemed to be over-rated, or, irea@gt, not correctly assessed.
Namely, they propagated the impression that by means obikadnvestigations the
theory of first-order, partial differential equatiohad been brought to a conclusion.
Such an opinion must, however, be regarded as inconewat,that recent papers have
improved upon it, and, in turn, given new methods of intégratand have initiated
likewise fruitful directions of investigation.

In the present treatise, | will give a systematjoresentation of a new theory that |
have communicated to the Academy in Christiania in 1872 and 1B&8l make some
remarks in advance that refer to how my other invesbiga on partial differential
equations relate to the simultaneous papers of Mayertheédinany important papers of
this author, | have discussed only the ones that ast clmsely connected with my own
work.

Résumeé of some older investigations.

Starting from ageometricinvestigation of the relationship between Plucker’s line
geometry and general curvature theory, | was graduallyrdoser to the realm of partial
differential equations. Thus, it was readily conspicunusie that the mathematics that
Monge had employed to such great effect had abandonedintidtaseous use of
synthetic and analytic methods. It seems obvious tacfelfe paper “Ueber Complexe,
etc.” in these Ann., Bd. V) that suchnaixed method would lead to new results more
easily than pure analysis, which had been applied alexatiisively to the examination
of partial differential equations since the time of Mangenurture the hope that the
discoveries that | made might serve to reinforce sugiewpoint.

In 1871, | posed the problem for myself of working througt dacobi integration
method conceptually, and in particular, the Poissonhidgbeorem. It became clear to

") The first method of integration for first-order, partdifferential equations goes back to Pfaff
(1814). Somewhat later (1819), Cauchy gave a method thatowasléted in newer ways by Jacobi
(1837) and, in latter times, Mayer (Math. Ann., Bd. IV). Timisthod must be called the Cauchy method
and not the Jacobi-Hamilton. Finally, Jacobi 1837-1840 feuneéw method that was then first published
in 1862. 1 will call this latter method the Jacobi methand not the new Jacobi method, as is customary.
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me almost immediately that it was possible to giveeav method of integration) that
required fewer integrations than that of Jacobi, andefber did not use the Poisson-
Jacobi method, at all. This new method, which, likefthe other ones, began with the
search for an integral of the known simultaneous systepresented, in a sense, an
intermediate step between the Cauchy and Jacobi methtidaias based upon my
extensions of Cauchy’s method.

At the same time, Mayer) gave afundamental theorem | shall call itMayer’s
theorem- that allowed him to improve upon the Jacobi methodtegnating first-order,
partial differential equations essentially, as well Glebsch’s treatment of the Pfaff
problem. By it, he achieved, in particular, and admiytetly a completely different
route from my own, the same reduction in the numberpefations that were necessary
for the integration of a partial differential equatwirfirst order.

Thereatfter, | developed (Goéttinger Nachrichten, 1872, noa2jgneral approach to
the concept of a complete solution, by which | consedyevarked through the Pfaff
formulation of the integration problem and further expld it. By that means, |
eliminated,inter alia, certain shortcomings that were inherent to the iategr methods
up to that point in time.

| found the theory that was just cited purely syntheticconsiderationsvhen |
consequently generalized Monge’s concept of “charactefistiad used only simple
arguments from the modern theory of manifolds, moreovely old synthetic
representation of this theory, which | had developed onllggrmost general terms, was,
in an obvious way, satisfactory to only those readbed were quite familiar with
manifold considerations. Unfortunately, | have not foundtithe to present everything
thoroughly. | am therefore greatly indebted to Mayer, vilhanany elegant treatises)
has given a clear, analytical formulation and fouiotiabf these investigations, to the
extent that they are employed in the sequel. | rdferreader to the cited papers of
Mayer.

On the contents of this treatise.

In the investigation of partial differential equationBpse properties that remain
unchanged under arbitrary contact transformatiense., analytic transformations
deserve special attention ). Such a study is important becauisger alia, just such
properties come under consideration in the ordinary mdsthbintegration. In particular,
for first-order equations, to which this treatise is datfid, such investigations take on a
very simple and beautiful form. It is then possiblerésolve several fundamental
problems of the type spoken of. In this way, one achiewves, alia, the foundation of a
rational treatment of those first-order, partial eliintial equations, by whose integration,
one has already made some steps forwarll. always lets one decide how one must

") Abhandlungen der Akademie zu Christiania, 3 and 10, May 187#inG&r Nachrichten 1872, no.

) Math. Annalen, Bd. V, pp. 448; Géttinger Nachrichten 1872, no. 15.
™) Géttinger Nachrichten 1872, no. 24, 1873, no. 11; Math. AnnV/IBpp. 162, 192.

) Klein has directed my attention to the fact that imngnmathematical directions of inquiry, one is
dealing with the determination of properties that renr@variant under some group of transformations.
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proceed in order to resolve the matters that stillaianto be integrated by the simplest
means. In order to clarify this with a good exampl@nsider the equation:

F(Xl, ovy X9y P1, ,pg) =aq,

to whose integration, Hamilton and Jacobi were reduc#tkithree-body problem. As is
well-known, one knows eight integrals of the assedasimultaneous system. My
general theories now allow one to exhibit an equation:

f(X]_, .ovy X9, P1, ...,pg) =0,

whose integration implies that Bf= 0. Thus, this known result is reduced to its intcinsi
basis’). Apart from that, | give less weight to the nevegriation method of my treatise
than | do to thedeeper insight into the essence of first-order, partial differential
equationghat it gives one. Hopefully, my future researcH mmedy this situation.

Among the new theories in this paper, | also emphakseéllowing ones: LeF, P4,
and®; be functions ok, ..., X, p1, ..., Pn for which one has:

(F,®1)=0, F, d)=0.
The Poisson-Jacobi theorem then says that one aso ha
(F, (@1, ®)) = 0.
If one knows two solution®1, ®, of the equation:
(F,®)=0

then there is an operation that allows one to findrs¢geich solutions, in general.

| know prove that any operation that serves to make swwion known essentially
coincides with the stated one; thus, it will only beuassd that the type of operation in
guestion should be independent of the form of the fanéti

| found the following theory by the application ofcambined synthetic-analytic
method. If the editing had been less tiresome for meyuld have sought to develop
everything simultaneously in a synthetic and analytio/,wallowing the model of
Monge. Since | have very little confidence in my mdittalents, and am, moreover,
concerned with new investigations, | have then chosgméasent results in therdinary
analytical form. As a result, the first sectionpesially has lost its simplicity.
Fortunately, |1 can refer the reader to a beautiful ardeptionally simpleanalytic
foundation that Mayer has given on just the resulthefirst section).

*

) The previously-cited papers of Mayer and myself havergisdly reduced the three-body problem,
insofar as they simplified the integration of the ecpretti= 0.

") Géttinger Nachrichten, 1874, no. 13: “Ueber die Lie’scBeniihrungstransformationen.” Cf., also
the following note of Mayer.



PART ONE

Theory of contact transformations.

I will seek to develop the theory of contact transfations, which defines the
foundation for my work on partial differential equasomp to now, as well as my future
work, analytically and fon variables. As | already said, the cited paper of Mgyees
an elegant development of this theory thater alia, is to be preferred over my own
since it is direct, while my treatment rests uponGlebsch theory of the Pfaff problem.
(Cf., 88).

§ 1.
Definition of the concept of contact transformation.

1. The origin of the theory of contact transformatigaes back to Euler; later on,
Jacobi, in particular, presented the theory that appeagsimneonnection with his work
on the perturbation theory of developments. If | arhincorrect, | am then the first one
to explain the general meaning of that theory and emphats importance. | also
believe that | am the first to set down the truerss’) of these matters in a precise and
rigorous way; the term “contact transformation” amigied with me").

Before | define the concept of contact transformatidind it convenient to present
some simple geometric considerations that lead tantitisn in a natural way. Indeed, |
shall refer them only to a space of three dimensiousthey can still be extended to
arbitrary manifolds.

If the Cartesian point-space, in the ordinary sensé&efatord, were subjected to a
point transformation then surfaces would go to surfaces surfaces that contact each
other would to other such surfaces. Admittedly, there @xceptional cases that
transform in other ways, but they appear only in a linvtechber. However, besides the
point transformations, there are still other transfations that possess a useful character.
For instance, a dualistic transformatiam,genera) also takes surfaces to surfaces and
contacting surfaces to other such surfaces. Thuspiildlbe remarked that there are
unboundedly many surfaces — namely, the developable surfabas do not transform
into surfaces under a dualistic transformation, bwt mirves. In particular, all planes go
to the points of space.

It can be proved that, in addition to point transformations, there is amaestke
category of transformations that generally take surfaces to surfacesuafates that

") I recall, in particular, that | have shown that amptact transformation, in the Pliicker sense, is
based in a change of space element or the introductionnefvacoordinate system. This remark is
fundamental for a synthetic treatment of the theoffirsiforder, partial differential equations.

") After | published my first papers on contact transfaions, Darboux wrote to me at that point in
time that he, too, had been concerned with this thedrynust apologize that | could have derived no
benefit from his investigations, which were still unjisioed at that point in time. Du Bois-Reymond has
concerned himself with the contact transformatidre toiple-extended space. The results that his work on
partial differential equations contained are still camnplete.
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contact each other to other such surfaces. For such a transformatiois thett a point
transformation, there are unboundedly many surfaces that transform ine@scurin
particular, there arew® surfaces that go to the points of space.

This is, however, not a definition of the contachsfarmations of space; we have
given only the essential properties of them.

2. In previous treatises, | gave perhaps the following d&fmilf the independent
variablesx, .., Xn, the functionz of these variables, and the partial derivativeg with
respect toxs, .., Xn, Which might be callegy, .., p,, are coupled with a corresponding

I U

system of variableg, x, ..., X, p,, ..., p, in such a way that any quantity in either of
the two sequences:
Z X1y ...y Xny Py --s Pn,

U

Z, Xy ey Xy PLy s P
can be expressed in terms of quantities in the other segueso | called the
transformation in question eontact transformation However, this definition is not
sufficiently clear, and perhaps also not entirely ecrinsofar as it implicitly rests upon
assumptions that do not always apply. Thus, | shallce this definition with the
following one, which, in my opinion, completely captuties essence of things:

Definition. If Z, Xy, ..., Xy, P4, ..., Py are functions of ,z«, ..., X, p1, .., pn fOr
which one has:

(1) dz—zadxkzp(dz—z p.dx )
identically, then the equations:
(2) Z =27 X =X, p =P
define a transformation that shall be called a emtttransformation.
The fact that equations (2) always define a transfoomaests upon the fact that
equation (1) necessarily implies thatXs, ..., X,, P1, ..., Py, are mutually independent

functions.

Terminology. If F and® are functions og, X, ..., X, P1, ..., Pn then | will write, as
usual, F, @], instead of:

| OF [ 0 0P| 0P| oF oF
YA e p 22 |- e I
= | 0P, | 0% 0z) dplox 0z

and likewise, wheir and® do not include, (F, @), instead of:
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"Z:’:‘[GF oD 9D aFj

=\ op, ox, op, o,

If I wish to stress here th&t and® are considered to be functions»ef ..., p,, and
not perhapsc, ..., p,, then I will write E, ®)yp .
k=1
One knows that the Pfaffian express@lxkdx( can generally be reduced to a form
k=1

with n terms:
k

1
Xkd)g(: Fidfy+ ..., +F, dx, .

k=1

Here, according to Clebsch (Crelle’s Journal, Bd. 61, pp., 168) functionsf are an

arbitrary system of solutions é}%equaﬁons, which | will denote by the symbols:

((f)) =0, (€., fw) = 0.

8 2.
Determination of all contact transformations.

In these paragraphs, | will give two very differerdys of determining all contact
transformations. Thus, | shall base this on the knosstablished theory of Pfaffian
problems, which, in my opinion, should be placed infidneground of all investigations
of first-order, partial differential equations, ratliban the one that came about since the
time of Cauchy and Jacobi. In particular, | cannot Sefiity stress that the Pfaff
conception of the problem of integrating an equation:

F(z, X1, ..., %0, P1, -, Pn) =0
gives this theory a generality that is completelykilag in the ordinary theory.
Admittedly, no one seems to have commented on thdafmental asset of the Pfaffian
way of looking at things.

3. Let:
Xidxe + ... +Xons1 dXons+1

be a given Pfaffian expression whose canonical frimcludesn + 1 terms. If:

*) If a Pfaffian expressioX; dx + ... + X, dx, can be reduced tomterm formF, df; + ... +F,, df;,
and not to a form with less tharterms then | calF, df, + ... +F, df, acanonical form- ornormal form—
for the given expression.
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a(dfn+1 + F]_ df]_ + ... +Fn dfn)

is such a given form then, as is known, it is posdiblénd arbitrarily many canonical
forms:

,B(d¢n+1 + Py d¢1 + ... +D, d¢n)

In fact, in order to satisfy the equation:
k=n k=n

(3) dfves + Y Ff, =P (A + Y, P, dg, )
k=1 k=1

one chooseg + 1 equations between thand ¢ arbitrarily:

Mo=0, My=0, .., MNg=0,
and sets:
oMy + AN+ A M0 ) oM+ AT+ + AT )
of, ' of ., ’

Fi

= oMy +AM +--+A) : oM+ AT +--+A )
a¢i a¢n+l

If one eliminatesty, ..., Aq from the 2 + q + 1 equations and then solves themffor
andF; then one finds values for these quantities that fg8)llidentically.

4. By my definition, the problem of determining all ¢act transformations turns
into the problem of determining all the quantitisx , ..., X,, p, ..., p, in the most

general way as functions afx, ..., X, p1, ..., pr that make the equation:

k=n k=n
dZ =) pd% =p(dz-)" pdx)
k=1 k=1

true identically. How, since, xi, ..., pn are mutually independent quantities, we are
k=n

allowed to considedz —z p.dx  as the canonical form of an(2+ 1)-term Pfaffian
k=1

problem, and one then immediately obtains the follgwireorem from the known results
of Pfaff theory that were just given:

Theorem. 1. Every contact transformation can be obtainedha following way:
One takes & 1equations between thexz, ..., Xn, X, ..., X:
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and sets:
_ oM+ AN+ 4 A ) (M + AT +--+ A1)
HT 0x ' 0z ’
c_ M+ AN+ + AN ) oM+ AT +---+ AT )
“R 0 ' o7 |
i=1,..,n

If one eliminatesly, ..., Aq from the2n + q + 1 equations then the remainiram + 1
equations always determine a contact transformation between the two system

variables zx, ...,pnand z, x, ..., p;-

Jacobi likewise considered all of the transformat@md indeed asserted that they are
the most general transformations of a partial difieed equation of first order. We shall
not go into this assertion here, whose validitylikkewise not obvious,a priori.
Furthermore, Jacobi gave no explicit definition of tlencept of the most general
transformation of a partial differential equation io$tf order).

5. The determination of all contact transformatiomst twas just given isnter alia,
not satisfactory, since it introduces a classificabiboontact transformations in terms of
the value of the numbey, even if that was only implicit. However, suchlassification
in no way corresponds to the nature of things, insoférrasts upon a random choice, in
a sense. | shall thus give a new general methodhi®rdetermination of contact
transformations. If one were to apply it to a specede then it would be clearly
necessary to perform, not just differentiations and elititing, as in the usual method,
but also certain integrations, moreover. However,ighmpletely valid whenever one
is only dealing with the establishment of the concept.

It is known from the theory of the Pfaff problemsttbae can reduce ar(2 1)-term

expressionz X, dx to an ( + 1)-term expression in the following way: One takes an
k

arbitrary functiong of xy, ..., Xon+1, removes the quantitiesn+1 anddxn+1 by means of
the equations:

k=2n+1 a¢
@ =a, —dx =0,
k=1 OX, %

and thus obtains anzerm expression:

") | shall take this occasion to address two questidmes,second of which, in particular, seems
important:

1. Are there transformations that are not corttactsformations and for which contact of higher oiider
an invariant relation? — This question seems to beenesiwn the negative.

2. Do partial differential equations of higher order adiménsformations that are not contact
transformations? — This question must indeed be answetled &ffirmative. If this were the case then this
would open up an important domain of research.
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Xidx + ... + X5, dx,,,

whose coefficients includg in addition tox,, ..., Xon . One brings it into the form:

k=n k=n

Xgdx = D ®dgye
k=1 k=1
in the same way, and then replaces the quantitieish ¢ in @7, ..., ¢, such that these

functions go to functions ofy, ..., Xon+1 that will be denoted by, ..., @, . In this way,
the original (2 + 1)-term expression can take on the form:

® dg + D1 dy + ... + Dy dgn

where®, @4, ..., ®, are determined in the ordinary way. | add to this thetfat ¢,
..., 92 are defined by the Clebsch equations:

(#))=0. ((g=¢)) =0, (=1 ..m k=1, ..n).

6. By my definition, the problem of determining all conta@nsformations comes
k=n
down to the problem of bringing the Pfaffian expressian—z p.dx. , which already
k=1
possesses the canonical form, into a new canoniaalifothe most general way. To that
end, from the foregoing, one can proceed in the followiay:
One chooses a functiahof z, x,, ..., pn arbitrarily, and solves the equation:

Z=a
for p,, which might take the form:

Pn= f(Z, X1, ..vy Pn-1, a)

In so doing, one brings the expression:

dz—pidxg — ... — Pn-1 X1 —F dx
into the form:

YAdXE + ... +Y2dXE,
where X* are determined by the equations:
(x3)=0. ((x0. %)) =0, (=1,...0, k=1,...n)

In our case, as one easily discovers, these equatsuma the form:
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[pn—f, X31=0,  [X& X3 =0, f=1...n k=1, ..,n).

However, if follows from this that the quantiti¥s— that is, those functions af x,
..., pn that emerge when the quant#yis replaced wittZ in X* — are defined by the
system of equation3:

(A) [Z,X]=0, X XJ=0 (=1,...nk=1, ..,n)

If one knows functiong, Xy, ..., X, that fulfill these relations then it is possiblesatisfy
the equation:

k=n k=n
dZ-) RdX, =p(dz-) p.dx)
k=1 k=1

identically. The quantitiew, Pi, ..., P, will be determined byn + 1 of the & + 1
equations:

0Z
P

=0, (=1, ...,n).

X, 0z X, 9z X,
=p, —->R—%=-pp, —->PR
0%, 0x, ;kax op, ;kan

It must certainly be remarked that the functidnss, ..., X, are subject to no other
restriction than the demand that equatiih hust be fulfilled. The result obtained can
be summarized as follows:

Theorem I. If one knows # 1 mutually independent functions X, ..., X, of z X,
..., pn that fulfill the equations:

k=n k=n
dZ-) RdX, =p(dz-) p.dx)
k=1 k=1

identically then the relations:
Z =27 Xi' =X, p,' =B

define a contact transformation. The condition aopns that we just gave are not, by
themselves, sufficient, but they are necessary.

The fact that it is at all possible to fimdt+ 1 functionsHo, Hi, ..., Hy 0f z, X, ..., X,
p1, ..., pn that pair-wise satisfy the conditionsl;] Hy] = O rests upon the following
theorem:

) By the way, one can interpret this to mean a new dbrmeatment of the Pfaff problem. It is
completely symmetric, which the Clebsch treatmenbis
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Theorem 2. If Ho, Hy, ..., Hq are functions of,zx, ..., Xa, P1, ..., pn @and all[H;, Hy]
vanish then the linear equations:

_ [Ho,HI=0, ... [HqH=0
define a complete systein

Namely, if one setsHx, H] = A«(H) and then forms the expressioAgA«(H)) —
A«(Ai(H)), then one sees that they can be expressed lineadyms of thed;(H).

§ 3.

Contact transformations that take functions ofx;, ..., p, to functions ofxy, ..., pn .

I will now show the existence of a very important gaty of contact
transformations. The characteristic property of tleamsists of the idea that they take
functions ofx, ..., p, to functions ok, ...,pn. Thus, if:

Z=27Z % =X,=P

are the equations of such a transformation then the gjaadiandP; do not includez at

all, but onlyxs, ..., pn. Inthe first two sections, | gave two methods ndling arbitrarily
many such transformations. In the last sectiomolh®d that both methods are general,
in the sense that the one of them, as well as tiex one, gives a transformation of type
discussed.

In the foregoing paragraphs, we saw that the detenmmabf all contact
transformations follows immediately from the theofythe determinate cases of the Pfaff
problem. It lets us easily show that the reasoning e$ehparagraphs have a close
connection with a new theory of the indeterminate ddwse goes back to Clebsch
(Borchardt’s Journal, Bd. 61).

7. If we chooseg + 1 arbitrary equations betweeh x, ..., X, @ X, ..., X, that

includez andZ only in the combinatio@ — Az whereA is a constant, put them into the
form:

") If qlinear partial differential equations irvariables:
A(H) =0, ...,A(H) =0,

which are independent of each other, have such a redipetaigonship that each(A(H)) — A(A(H)) can

be expressed linearly in terms of théH) then, as Clebsch has proved (Borchardt’s Journal, BdilGs)
haven — gdifferent common solutions. With Clebsch, | calllsicsystem @omplete systemClebsch
based the integration of linear partial differentigi@ions with common solutions on the consideration of
such systems. The corresponding theory for arbitrarg.—riot just linear equations was first given by
Mayer. Thus, it must be remarked that Mayer, as walllasch, took his starting point from an idea that
goes back to Bour. Mayer has remarked on that subjecBtha’s formulation of this theory was not
rigorous.
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Z = AZ= 10K, % % ), T, %)= 0, oy T (%) =0,

and search for the contact transformations that, treearem 1, belong to these equations
then we obtain the formula:

pi’ :a_n+/]lan1+...+/] anq,
X tox 9%
-A :a_n+/]lan1+ + 1 9 4
0% 0% 1 0%

These 2 equations, combined with tlggequationg1, = 0, ...,y = 0, express the
and p in terms of only theq, ..., X\, P1, ..., pn , @and when one substitutes the values
thus found into the equatiah— Az=T1 that would make it take the form:

Z = Az+ F(Xl, ooy Xny P1s ...,pn).
Thus:

Theorem 3. Equations between,zx, ..., X, &, X, ..., X, that include z and only

in the combination'z Azdefine a contact transformation that is expressed by equations
of the following form:
Z=Az+F, x=X; p=P.

Here, A is a constant, F,; Xand R are functions of onlyix..., X,, p1, ..., pn . | refer to
such a transformation briefly as a transformation between x, p.

8. The method that we just developed for finding contactsformations betweeq
p has the inconvenient aspect that it introduces a datz#in that does not correspond to
the nature of things, namely, in terms of the valuehef numberg. The following
method is free of this drawback; nonetheless, bothhaust have a self-sufficient
justification. | shall next present a lemma.

Theorem 4. If Xy, ..., Xy are functions of x ..., p, that pair-wise satisfy the
conditions(X;, Xx) = 0then among the solutions F of the complete syéteaorem 2):

[X, F1=0, ..., X, F] =0

there is one of them that possesses the form Az Here, A is a constant and is a
function of only x ..., pn .

Our theorem comes about from the fact that the equsatio

[X, F]=0, ..., Xq F] = 0, %_';:A
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possess common solutions. In order to verify this,oe& for a function® of z, x, ...,
pn, andF such that any solution of the equatidn= const. gives a functioR of the
desired property. It shows thétmust fulfill the following relations:

NG
X, @] =0, ..., X, ®] =0, T=+AZZ =0,
D @] P, <] 0z ' oF

however, as one easily verifies, these define a cate@ystem. Our theorem is thus
proved.

Here, the following theorem, which | will need lateight find a place:

Theorem 5. If one knows a solution F of the complete system:

[X, F1=0, ..., X, F] =0

that possesses the form+A1(x, ..., pn) then Az + Al + Q(Xy, ..., X,) IS a general
solution of it, and indeed, it is the most general one that is linear i(Q denotes an
arbitrary function of the argument in questipn.

Namely, let:
Fi=Aiz+ 114, Fo=Az+T11,

be two solutions of the stated form. Therefdgs — A.F, or, what amounts to the same
thing, A1, — A4ll,, in which z does not enter anywhere, also satisfies our complete
system. However, as is known, it follows from tthiat:

Azrll —Alrlz = W(Xl, ceny Xn),

an equation that proves our theorem.

Theorem 6. If Xy, ..., X, are functions of ¥ ..., pn that satisfy the condition(;, Xx)
= 0 pair-wise then (theorem 4) there are functions of the form+ A{xy, ..., pn) that
fulfill all equations:

[Xi, Az+ ] =0, (i=1,...n),

and thus (theorem 1) it is possible to satisfy the equation:
k=n k=n
d(Az+1) - 3 RdX, = p(dz- 3 pdx).
k=1 k=1

Thus, all of the P, as we likewise prove, are functions @f x., p, . Thus, the contact
transformation:
Z=Az+MN; X =X, P =P
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!
n

possesses the property that it transforms functiong of.., p, into functions of x ...,

Pn.

Therefore, if the equation:
k=n k=n
d(Az+M) - 3 RdX, = p(dz- 3 pdx)
k=1 k=1

is to be satisfied identically then, sircdoes enter intdl, Xy, ..., X, one must have:

A=p
and:
Eﬂ:[-:i:Fi a)(k =0,
op < on
a_n_zF)kaxk
ox < 0%

=-A p,

equations that show that &8l depend upon onbg, ..., pn .
9. If one eliminate®y, ..., p» from the equations:

(@) Z=Az+MN, X =X,
in which:
(Xi,Xk):O, LA\Z+ I'I,Xi]:O,

then one finds a number of equations of the form:
(b) Z-Az=Q(X, ..., X, X1, ..., Xn),  Qai(X, ..., X)) =0, ....Qq(x, ..., X,) = 0.

Thus, the latter method gives only such transformatibasalso can be obtained by the
previously-developed method. Now, since, conversely, tesysf equations of the form
(b), as we showed earlier, always leads to transfoemaquations of the form (a), it is
clear that both of our methods overlap; their diffieesis only formal. We will show that
that they give usverycontact transformation betwegmp.

One obtains all contact transformations betweem when one determines the
guantitiesXy, ..., X, P1, ..., Py in @ general way as functions xf ..., p, such that the
equation:

k=n k=n
(e) dZ-y RdX, = p(dz-Y, p,dx)
k=1 k=1

is true identically. By development, it will assume tarm:

Udz+ Z\/idx +Zde=p(dz—Z pdx),
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where:
_62’ Vi az_pl%_..._naxn
0z 0X, 0x% 0X
Wi_a_z_pl%_..._aaxn.
op " 0n op

We thus obtain2+ 1 relations:

0z _ 0Z _ 0, _ X

~—=p = —Ll—.-P—=—"=0 1=1,...,n
0z op " ap p ( )
0z _dX X 0z .

Z-pi_...—pIn —_ =—p — 1=1,...,n),
x  ox "o PP==P ( )

which shows that the differential quotients depend upoyanl..., p, . Thus,Z has the
form:

Z=21(Z X, ..., %) + Zo(Xq, ..., Pr),
whereZ; must satisfy the following relations:

__, 9
' oz

By differentiation with respect it follows from the last one that:

i(aij _o, i(aij -0, (=1 ..n)
ox \ 0z 0z\ 0z

0Z, . . - . .
Thus, a—l Is equal to a constait — i.e.,Z; is linear relative t@ With that, we have
z

proved thaZ possesses the form:
Z=Az+T1( X, ..., Pn)-

However, in the second paragraph we saw that the epnssl, X, [X, XiJ must
necessarily vanish when the condition equation (c)lid,vand as a result, we can assert
that the two methods that were given in this paragragheyery contact transformation
betweerx, p.

| summarize the results of this paragraph in the fafigway:

Theorem |. There is an extended category of contact tramsé&bions that possess
the characteristic property that functions ®f, ..., p, go to functions of x ..., pn . All

such transformations possess the form:
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Z =Az+ (X, ..., Pn), X =X p =P,

where A denotes a constant. Relations betwkeK z..., X, z, X, ..., % that include

the quantities'zand z only in the combinatiohz Az always determine such a function.
On the other hand, if X..., X, are functions of ..., p, such that all of thé€X;, X) are
equal to zero then there always exists a function ARA(%;, ..., p,) such that all
expression$Az + I, X] vanish, and the equations:

Z=Az+I, X =X

then, in turn, define a contact transformation of the stated type.

8 4.
Presentation of some characteristic relations.

If the equations:
Z =27, Xi' =X, p,' =P

define a contact transformation betweem then the function¥; andP; satisfy certain
relations that will now be developed.

10. | first address the following problem: | assume that..., X,, P1, ..., P, are

given functions ofxy, ..., pn» and that it is possible to find a functiéaz + M(xy, ..., pn)
such that the equations:

Z=Az+MN, X =X, p =P

define a contact transformation. This will achieve die¢ermination of the quantities
andll in themost generalvay. It will show thatA is defined completely by th§ andP;
andll, up to an arbitrary constant.

Sincep must be equd, the identity equation:

k=n k=n
(d) d(Az+1) =) RdX, =p(dz-> pdx)
k=1 k=1
reduces to:
dr =) RdX,=-A> p.adx.
k k

This equation can be solved into the followirmg 2

an
=-Ap; —-YPR
P > R

an X,
P
ox 0%
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If one now differentiates with respect ppandx and sets the two expressions for
2

equal to each other then one finds:
ox opn

k=1

A:":“ 0X, OR, 09X, 0R W
ox op 0Jp O0X

in whichi refers to any one of the numbers 1,n..,

Above, we determine(%D andg—rI as functions oxy, ..., pn:
% Y

by integration:
M :J (Mpdxg + ... +Mpdx, + Ny dp + ... + N, dp,) + const.

The constant introduced is arbitrary, sifiteonly appears as the differential in (d).
Therefore:

Theorem 7. If Xy, ..., Xy, P1, ..., Py are givenfunctions of x ..., p, such that the
equation:

k=n k=n
dZ - ) RdX, = p(dz-) p,dx)
k=1 k=1

is satisfied then this can happen in essentially one way. Z ha&g 3) the form Az +
M, ..., pn); A is a completely determined constant, didincludes an arbitrary
additive constant.

Corollary. If Xy, ..., Py are given functions of1x..., pn, and the two systems of
equations:
2 =2, Xi' =X, p|'= P;,
and
? =25, Xi" =X, p," =P

determine two contact transformations betwegmtken 4 —Z; is a constant.
Incidentally, it is simple to prove this corollary elatly.
11. The characteristic relations that we mentioned upen the fact that, in a sense

that we will likewise define (Theorems 8 and 11), the espion (w, @w)xp remains
invariant under contact transformations.
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Theorem 8. Let«J and «J, be functions of'zx;, ..., p, that go to functions of, x,,

..., Pn, Which might be calledy and «», resp, under contact transformations. If the
expressiorfd, ai], ;, vanishes then this is also the case \th a]xp -

If [ad, ak], ; vanishes then (theorem 2) it is possible to determirtaeiufunctions

o, ..., d, ofZ, x, .., p, such that all of thdaf,«f], , are equal to zero. Then,
however, (Theorem 1) one has an identity of the form:

k=n+1

k=n
dZ - Y pd¥ = > Qddf, .
k=1 k=1

If we now expresg, X, ..., P,

n

in terms ofz, xy, ..., pn then the left-hand side of our
equation goes tp (dz—z p,dx ), and the transformed equation then possesses the form:

k=n+1

k=n
p(dz-) pdx) = Qda,
k=1 k=1

if a, ..., a1 denote the functions @f xi, ..., pnthatdaf, ..., aJ,, go to. However, this

new equation shows (Theorem I) that all of the [u]xp, = 0. Thus, one also has, in
particular, ka, a]xp= 0.

Theorem 9. If the equations:
zZ=27 )Q’ =Xi, pl' =P

define a contact transformation between x, p théwofathe expression@;, Py) vanish,
and when i = k, so do afK;, P).

We then know that the expressiofs, p,), ;. (B, B)., are all equal to zero, so,
from the foregoing theoren{X;,R), ,, (R, R), ,do, as well.

Theorem 10. If the equations:
Z=Az+MN, X =X, p =P

define a contact transformation between x, p tHeofahe expressionéXy, P1), ..., (X,
Pn) equal the constants A.

Namely, letF” and @' be two functions ofx, ..., p, and letF, ® be the

corresponding functions od, ..., pn . We know that the expressiors’(®')xy and F,
®)y,, vanish simultaneously. If we now consider that:
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(X, %) o= (X, B)= (P, A) =0
then we find that:
":”{GF o OF 00

(F, cD)x’p = ; ﬂa—p:( ﬂﬁj Eﬂx;, p{()x p’

or, when we recall thaé and®, when regarded as functions ®f, ..., p,, are denoted
by F and®':

K0 oF' 0" OF' 09’
lq)X = -
E P Z{ax; op, o, %

k=1

jtﬂx;, P)x pi

one further has:

K0l oF' 0" OF' 09’
r’ q)r <'n’ — — .
o Z{ax; P, ap, a&j

k=1

In order for these expressions to vanish identicallg, st necessarily have:
] U — ] U — —_ ] U —_ 1 = ] U
(Xl’ pl)x,p_ (XZ’ pz)x,p_ e (Xn’ pn)x,p - EZ(XU n)x,p .
i=1
However, we previously found:

0% 0P, Op 0%

[axk op, _ 0%, mjzw_A

k=1
so this means that:

Nz
Now, one easily verifies that:
1 i=n 1 i=n
_ W - ", J ,
n — i n = ()g n)xyp

so one has:
1 i=n
- "l ' = Al
rOICHLIN

and, as a result, all of the expressi¢ks ), , equal zero.

Theorem 11. If F’and @’ are functions ofx , ..., p, that go to the functions F and

® of x, ..., pn, resp., then, at the same tinde;, ®'), y goes to%\ (F, ®)y.p -

We then see that:
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D OF' 0" OF' 0’
F, ® xp = - -', ' )
9= 5| S o

i=1

and furthermore, that:
(X, By p=A
One thus has:
(F, q)))(’p = A (FI, q)’)x"p' .
With that, our assertion is proved.

12. 1 would now like to show that the relations thatfaend are not only necessary,
but also sufficient.

Theorem 12. If Xy, ..., Xy, P1, ..., Py are functions of % ..., p, that satisfy the
relations:
(Xi, X = (X, Po) = (Pi, Po) = 0, X, P) = A= const.
then there is always one and essentialtyy onecontact transformation of the form:
Z =F, Xi':Xi, pi':Pi.
Proof. We take a functioAz + I that satisfies all relations:

[X, Az+ W] =0,

and thus determine, as before, functibins..., Ny such that the equation:

d(Az+W) =2 M dX% = A (dz— . pedx)

is verified identically; Thudl1, ..., My, will generally become other functions besies
..., Pm. From the previous theorems, one now has:

(X, M) =0, K M) =A,
and from our assumptions one has:

X, P) =0, & Po)=A,
SO one obtains:
(X, M—=Py) =0, X, Mg =Py =0,
from which:
|_|k— Pk:Wk (Xl, ...,Xk)
and
Pk = |_|k - Wk.
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Now, one has:
(P, P) =0,
or
(Mi =W, M —Wk) =0,
from which, upon consideration of the known relations:
oW, _ ow,
oX,  oX,
one has:
w = FuXy)
0X;
and it follows that:
Pi = |'|i - a_F
0X;
If we now write the equation:
d(Az+W) - > M dXc= A (dz— 2 pe dx)
in the equivalent form:
oF
dAz+W-F)-2 | N, “o | = A (dz- 2. px dx)
k
then we discover a functiahthat satisfies the equation:
dZ - 2. P dXc= A (dz- 2. p dx).
From Theorem 7:
Az+W¥ —F + const.
is the most general function that satisfies thigineement.
Since the variablesy, ..., p, are independent of each other under the contact

transformation betweenr, p, it is, in general, more convenient to write dowhe

equations:
Xi' =Xi, p,' =p;.

| finally summarize the results of this paragraph:

Theorem lll. If the2n equations:

U

Xi' =X, ) =P



Lie — Foundations of an invariant theory of contaah$formations. 22

define a contact transformation between x, p then one finds the followatigme:
(X, X = %, P) = (P, P) =0, (%, P;) = A = const.

On the other hand, if these relations are valid then the first seigoétions always
determines a contact transformation.

This theorem may be generalized in the following wayraover:

Theorem 13. The following characteristic relations are true between 2het 1
functions ZX, P that determine a contact transformation:

[Z, Xi] = [Xi, Xk] = [Xi, Pk] = [Pi, Pk] =0= I_Z, Pi] — Pi [Xi, Pi],
[X]_, Pl] = [Xz, Pz] = ... = [Xn, Pn].

This theorem, which | will not need here and will there not prove here, plays an
important role in the theory of Pfaffian problems.

8§ 5.
Homogeneous contact transformations.

There is an important class of contact transfolwnatibetweerx, p that possess the
characteristic property that they take functionsaf..., p, that are homogeneous in the
differential quotients to other such functions. | widtermine all functions of this type,
which | callhomogeneous contact transformatiorSorresponding to them, | will refer
to functions ofx,, ..., p, that are homogeneous m, ..., p, briefly ashomogeneous
functions.

The importance of this new theory lies in the fdettit overlaps with thgeneral
theory of contact transformations from a certaandpoint.

13. Theorem 14. If X ..., X, are homogeneous functions of degree zero that pair-
wise give(X;, Xx) = Othen it is possible to satisfy the equation:

dZ -2 Py dx = A (dz- X px dx)
in such a way that all Pbecome homogeneous functions of degree one. The contact
transformation:
X =X, p=P

is then homogeneous; i.e., they transform homogeneous functions into homogeneous
functions of the same degree.

Proof: The fact that alK; are homogeneous of degree zero is expressed by:
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0, g O
top, T T"op,

or, what amounts to the same thing, by:
[z, Xi] = 0.
Now, since all X, Xi) are likewise zero, one can satisfy the equation:
dz- 2. Py dx = dz— 2. pc dx.

The quantitie®; then satisfy the relations:

oxX oxX
—+ ...+ P —=p,
0X, 0X,

oxX oxX
—+ ...+ P —" =0,
op op

and are, as a result, homogeneous functions of the deggee
If we apply the transformation:

U

Xi' =X, p = P;
to any homogeneous functions of degsesuch as:
prnm[g,...,&,gl,... pj

AR A
then they are converted into:

Pn’[H[xl,..., Xn’% ,...,Pglj’

which is again a homogeneous function of degree

23

14. 1 will now determine all homogeneous contact tramsfiiions of degree zerol

that pair-wise giveX;, Xs) = 0. One then has the relations:

[z X1] =0, ..., [z Xj] =0,

and thus (Theorem Bz + M (X4, ..., Xn), WwhereA denotes a constant afhld an arbitrary

function, is the most general function that is linieez that fulfills the relations:

[X1, F] =0, ..., Xn, F] = 0.
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One is now, in turn, dealing with the problem of deterngril in the most general way
such that the relations:
Z=Az+I, Xx =X, p =P

define a homogeneous contact transformation. The tgegjuation:

d(Az+ 1) = 2 P dX = A (dz- 2. pi dx)
gives:

N _5p & _pp on _ ng.
0, 0x, op op,

- k
These equations show that the quantdids 0x; anddll / op; must be of degree zero
and one, respectively, if they are not perhaps equaeto. Now,[1 is, however, of
degree zero and thads§l / dx; anddll / dp; must be of degree zero and — 1, respectively, if
they are non-zero. These considerations showdfhatox , as well a9l / dp; , must
vanish, sd1 is a constant — saf3 — andAz + B is the most general form of the desired
function.

15. If one eliminates the quantiti@s, ..., p, from the equations:
Z=Az+B, X =X
then one obtains relations of the form:
Z=Az+B, Qi(X, ... X, X, ..., %) =0, ...,Qq(X, ..., %) = 0.
Conversely, one may show that relations of this foatways determine a
homogeneous contact transformation.

From our general theory, one has that in order tothmdcontact transformation one
must append the following relations to the foregoing ones:

'
i

_AAQ, ++AQ,)

0%
_ 1 0(AQ,+---+A,Q,)
A 0x '

However, the form of these equations shows ttiaand p/ will be homogeneous
functions of degrees zero and one, resp  0f.., pn . Thus:

Theorem IV. If Xy, ..., X, are homogeneous functions of degree zero thatyise
give (X, Xi) = Othen the equations:
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Z=Az+B, X=X,

always determine a homogeneous contact transformation. Such a transformation can
also be obtained when one takes fjequations of the form:

Z=Az+B, QuX, ..., X, X, ..., %) =0 k=1, ...,

and looks for the corresponding contact transformation. Finally, it isesgifanatory
(Theorem llI) that when ..., X, P4, ..., P, are homogeneous functions of degrees zero
and one, respectively, that fulfill the relations:
(Xi, Xi) = (Xi, Po) = (P, Po) = 0; i, P) = A,
the equations:
X =X p =P

always determine a homogeneous contact transformation.

8 6.
Infinitesimal homogeneous contact transformations.
16. | say that a homogeneous contact transformation:
X =X p="P, X, P) =1
is infinitesimalif it can assume the form:
X =X+ &M, P =pi+ M,

wheree¢ is an infinitesimal quantityyl; andl; are homogeneous functions of degree zero
and one, respectively. | will show that there ®ajls a homogeneous function of degree
one whose partial derivatives with respecpitandx; are justM; and —I1;. This remark,
which will not be used further in this treatise, posseasksmdamental importance: For
me, it was the starting point of some recent investigatof transformation groups.

If one substitutes; + € M; andp; + £1;, in place ofX; andP;, resp., in the relations:

(X, X) = (X, P = (P, Py =0, x,P)=1

then one finds by developing them and dropping quantities ateatinfinitesimal of
second order that:

oM, _ oM, oM, __ an, on, _an,

op,  op X op ox  ox
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wherei andk may assume all possible values, and, in particularsdhee value. These
equations show that there is a funct®mof xi, ..., p, for which:

M; :aﬁ , M = —aﬁ .

op, 0X,
Here,® is subject to only the restriction tha®/dp, and 0P/0dx should be homogeneous
of degree zero and one, resp. One must then have:

<t 9 (o) S0 (0P _ 0P
Pe=—| = |=0, P = | =
= dp \dp = op, | Ox 0X;
from which:
12@, ‘L“’j:aﬁ 1Z(p 63}:63
ap 4\ “op ) ap ox 4\ “op ) ox

and by integrating and omitting some inessential constiiftdlows that:

oD
P =,
Zk: “ ap,

i.e., ® itself must be a homogeneous function of degree oreis &lso clear that
0®/dp and 0®/dx should be homogeneous of degree zero and first, resp., @hen
homogeneous of degree one.

For the sake of brevity, if we now s& and dp;, instead ofx — x and p - p;, resp.,

and denote any auxiliary variable bythen we can summarize the aforementioned as
follows:

Theorem V. Any infinitesimal homogeneous contact transforomapossesses the
form:

OX _ 0p _ &
oH T on %
op, 0%

here, H denotes any homogeneous function of degres.

") From this theorem it followsinter alia, as one easily recognizes, that the determinationl of a
infinitesimal contact transformation that take an equatio

f(z, X, .-, %0, P1, -5 Pn) = CONSL.

to itself overlaps with the integration of this equatidfor equations of higher order these two problems
are, in general, different, and for that reason, thély bave their independent justification.
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§7.
On an improvement of the Jacobi-Mayer method of integration.

The Jacobi method of integration, as well as thehlatiler and the Jacobi-Mayer
methods, rest upon the fact that wimefunctionsF;, .., F, of x4, ..., Xa, p1, ..., Pn pair-
wise give:

(Fi, F) =0,

and it is therefore possible to solve the equations:
Fl = all --,Fn :an

for the differential quotients, it is possible to imate each of these partial differential
equations. This requirement — viz., that our equations neusbloble for thep — implies,
as is known, certain difficulties that Jacobi has @leeduced, but still not completely.
One must therefore consider it to be an essential vepnent of the methods in question
that one can drop the stated requirement completelghals now be shown. | first
consider equations in which the unknown function engeqdicitly, and then ones in
which this is not the case.

k=2n

17. | base the discussion on the Clebsch theory oPta# problem. Letz X, dx,

k=1
be a given Pfaff expression that can be brought io-term form:

k=2n k=n
> X dx =D Fdf,.
k=1 k=1

From Clebsch, the quantifywill be determined from the simultaneous system:

((f)) =0, (€., fw) = 0.

If n functions off are found that satisfy them then it is possible to leixfaill 2n — 1
solutions of the equation:

(M) =0

by means of executable operations; i.e., to integrateetjuation. This known theorem
shall now be utilized.
Let ¢ be a function of, xg, ..., Xn, P1, ..., Pn-1 @and let:

dz—p1dxa — ... - pn-1 O¥-1 — @ X,

be the Pfaff expression, which can be reduced totanm formK; dH; + ... +K, dH, .
The simultaneous system that was given above themasdhe form:
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[Pn— ¢, Hi] =0, [Hi, Hq = 0,
and, as a result, we obtain the following theorem:
Theorem 15. If ¢, Hy, ..., Hy are given functions of, x, ..., X, p1, ..., pn that
pair-wise satisfy the equations:
[Pn—¢@, Hi] =0, [Hi, HJ =0
then it is always possible to exhibit i — 1 solutiondd of the equatiofip, — ¢, H] = 0.
If one considers that the integration of the equation:
Ph—¢ =0

by the Cauchy method comes down to the determinatiok sdlationsH to the equation
[pn — @, H] = 0 then one can state the following theorem:

Theorem 16. The integration of the partial differential equation:

Ph—@(Z X1, ..., %, P1, -y Pr-2) = 0

can always be achieved when one has found n mutually independent fungtiansHd
of Z X4, ..., X, P4, --., Pn-1 that satisfy all equations:

[Pn—¢, Hi] =0, [Hi, HJ = 0.
Therefore, it is entirely irrelevant whether onenghates alp from the equations:
Hi=ay, ...,Hh=an
or not. It is, in turn, conceivable that some of thesetionsH; do not include these
differential quotients at all.

This theorem may also be reproduced in the following way:

Theorem 17. If Ho, Hy, ..., H, are given functions of xy, ..., X,, p1, ..., pn that pair-
wise satisfy the equatiofid;, H,] then each of the equations #a; can be integrated.

Thus, we can formulate the Jacobi-Mayer integratiethiod in the following way:
Should the equation:

HO(Z, Xty ooy Xny P2y -eey pn) =
have been integrated, then one first looks for a sl of:

[Ho, H] =0
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that is different fromHo. This requires are— 1 operation). One then seeks a solution
H, of the complete system:
[Ho, H] = O, [H]_, H] =0

that is different fronHy andH; . By means of Mayer’s theorem, this happens by means
of a 2h — 3 operation. By means of a 2 5 operation, one then finds a solution of the
complete system:

[Ho, H] = O, [H]_, H] = O, [Hz, H] =0

that is different fronHp, Hi, andH, , etc. By means of a 1 operation, one ultimately
finds a solutiorH, of the complete system:

[Ho, H] = O, [H]_, H] = O, Cey [Hn—l, H] =0
that is different fronHop, Hy, ..., Ho-1. Thus, from the aforementioned developments, the
integration process can be considered to be concluded.
The foregoing theorem likewise includes the completatisa of the important
problem:
From the complete solution of a given partial differential equatiornrsifdrder:

HO(Z, X1, ..y Xny P1, ...,pn) =

find the complete solution of any other partial differential equation:
Hi(Z, X, %, A, B) = a0
that arises from the given one by means of any contact transformation,

a problem that Jacobi) was already involved with and was first rigorously sdimy
Mayer ™), if only for special types of contact transformasion
Namely, if:
z=7Z(X1, ..., %n, &4, ..., &)

is a complete solution of the given equatléfn= ap then one must have that thet 1
equations:

Z= Z p = a_z p e a_z
) 1 axl’ =3 MN axn
allow us to determine the + 1 constantsy, ai, ..., a, , and the value ofy that is

obtained from them must be a given functidy. If one further lets:

") By the term “armoperation,” | understand this to mean the discovery aftegral of a system oh
ordinary differential equations.

”) Nova Methodus, § 61 and Vorles. iiber Dynamik, pp. 469.

™) Géttinger Nachrichten, 1872, no. 21.
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al:Hll ,an :Hn

denote the value of the@ remaining constants theH,, Hi, ..., H, are mutually
independent functions that have the mutual relationship:

[Hi, Hk] =0.
Now, ifHy, ...,Hngo to H,, ..., H by the application of any contact transformation
that transformsHy into H; then H,, H;, ..., H, are also mutually independent

functions that, from Theorem 8, pair-wise satisfy¢geations:
[H,H.] =0.

From Theorem 17, one can thus obtain a complete soltdidthe transformed equation
H; = ag by just algebraic operations.

Since the complete solution to the partial diffelnéquationHy = ap requires no
further sort of integrations, as long as one has faurfidnctionsHs, ..., H, that are
independent of each other, as welHasand satisfy the conditions:

[Hi, H] =0,

one is then close to the concept of extending the Eenpolution that one immediately
calls then equations that are defined by these functions:

Hl = al, seny Hn = an
acomplete solutionf the given equatioHy = ap .
By establishing this extended definition of the complgitesn, one can immediately
say:
A contact transformation that takes the given partial differential equation:

HO(Z, X1, ..oy Xny P1, ...,pn) =

Hi(Z, %ok, By B) = a0

to the equation:

also simultaneously takes any complete solution of the former equatiocamete
solution of the latter one.

18. In order to be able to extend this theory to partiiedntial equations that do
not include the unknown function itself, we presentsdmmas.

Theorem 18. Let V be a function ofix..., Xm, Y1, ..., Yq that is defined by q linear
partial differential equations:
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LS VA= R \Y, _
X ==+ Yo =WilX, ..o, Xmy Y1, -, V) (i=1,...,09.
k=1 X, ‘=1 Y

If these equations possess a common solution of the form:
V=F+®(Xy, ..., Xm)
and if ® denotes an arbitrary function then alk’ére equal to zero.

Then, by assumption, the given equations shall befisdtsimultaneously by = F
and byV =F + ®. Therefore, one must have:

k=m
2 xik aﬁ =0.
k=1 0X,

However, this equation, as the assumptior xx shows immediately, can be true for an
arbitrary function® only when eaclxy = 0.

Theorem 19. Let V be a function ofix..., X, that is defined by q linear partial
differential equations:

=0 F ,
xika—:vvi(xl, ey Xn) i=1,..,0.
k=1 0%,

If these equations possess a common solution of the form:

V=F+®(&, ..., &),

and @ refers to an arbitrary function of the quantitiéswhich shall be known, then the
determination of V requires only one quadrature.

Namely, if one chooseasfunctionsys, ..., yq of X4, ..., X» such that no relation exists
betweenxy, ..., X Y1, ..., Yg» Which is always possible, and then introduces these
guantities as independent variables in our partial differdeatjgations then, from the
foregoing theorem, these equations take on the form:

Z—V=Q(51, coes §ngy Y11 -+, Ya), (i=1..0;
Y,

One then find¥/ by quadrature.

Theorem 20. If Xy, ..., X, are given functions of;X..., X, p1, ..., Pn that pair-wise
yield (X;, Xk) = Othen it is always possible to find a function Fzof, ..., p, that fulfills
all n equationgX;, F] = 0 by mere quadrature.
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Previously (Theorem 6), we saw that, in fact, the egmst
[X1, Az+T1] =0, ..., Xn, Az+T1] =0,

in which I denotes an unknown functionxf ..., p,, possess a common solution of the
form:
M+ d(Xy, ..., Xp);

here,® is an arbitrary function oXy, ..., X, , and thus, from the foregoing theorem, the
determination of1 is achieved by only one quadrature.
Moreover, we can also formulate the Jacobi-Mayethaw for the case in which the
equation in question does not include the unknown funetion
Should the equation:
X]_(Xl, cony Xy Py -y pn) =

be integrated, then one would first seek a solutipaf the equation:
X, X) =0

that is different fromX; by means of ar2— 2 operation, and then, by means oha-24
operation, a solutioks of the complete system:

X, X) =0, (X2, X)=0,

that is different fromX; and X,, etc. Ultimately, one would find a solutiof, of the
complete system:
(Xl, X) = 0, veey Q(n—l, X) =0

by means of a 2 operation. If this has happened thewoulel determine a functioAz
+ M(X1, ..., %, P1, ..., Pn) that satisfies all of the equations:

[X1, Az+T1] =0, ..., Xn, Az+T1] = 0.
The integration process of the foregoing number is tbnsladed.
§ 8.
Response to a remark of Mayer.
19. Since 1872, Mayer and | entered into a lively stateooimunication that was
inspiring to me in several directions. In particulanv#s at Mayer’s suggestion in 1873
that | sought to find an algebraic representation ofahegoing theory, which | had, for

the most part, found by considering manifolds. Thus,d prapared to find my analytic
form incomplete. In fact, Mayer immediately made ameare of some inaccuracies that |
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had perpetrated in that treatise. At the same timejdue the essential objectiorthat |
had employed the Clebsch theory of the Pfaff problem:

k=2n
z Xkd)g( :Fl df]_+ +Fn dfn

k=1

to a greater extent that Clebsch had proved. Namelyas only under the assumption
that the determinarR that is constructed from the elements:

: ::f?ZSL-— a)(k
%, 0x

does not vanish that Clebsch had proved that #re an arbitrary system of solutions to
the simultaneous equations:

((f)) =0, (€, ) = 0.
My response to him is that these equations, when malliply the determinant itself:
R((f) =0, R((ff)) =0,

define the quantitiesunder all circumstances.

Namely, let:
k=2n
> X dx =Fydfy + ... +F, df
k=1
and
k=2n

Zkay( :q)l d¢l+ +q)n d¢n
k=1

be two Pfaff expressions in the variabkeandy, resp., whose canonical forms include
terms. Each of the sequences:

f, ... fn, i, F”‘l,
Fn Fn
and
cIDl an—l
@, ..., ¢n, q)n, o

consist of functions, between which no functionddtien exists. Thus, one can choose
two functionsF(xy, ..., X2n) and®(y, ..., y2n) such that ther2equations:

) Cf, his note in the Géttinger Nachr., 1874, no. 13: “Webdie Lie’schen
Beruhrungstransformationen.”
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LI
F

fi: i —_—, F=0¢
¢ o,

determine a transformation between the two systemsgadfblesx andy. Such a
transformation, however, takes the one Pfaff exppast the other one, but multiplied
by a certain quantity. Thus:

If:

k=2n k=2n

D> Xy and > Ydy,
k=1 k=1

are two Pfaff expressions whose canonical formdecn terms then the one expression
can take on those properties of the other one iratain unperturbed under a change of
variables, when multiplied by a suitable quantity.

20. This important remark (which may be extended immediatelsrbitrary Pfaff
problems) also addresses the stated difficulty quiteyeasil

The vanishing or non-vanishing of the determinBnis, in fact, a property that
remains undisturbed when new variables are introducedeeth for Clebsch, the fact
thatR is equal to zero meant that an equation of the form:

k=2n

> X dx=dm +Mad7s + ... +1M, d7g
k=1

is possible. As a result, the vanishing or non-vanishinghefdeterminant can be
arranged by multiplication by a suitable quantity.

Now, let) X, dx be an expression whose determinant is non-vanishing. hdgse

a quantityp such that the determinant of the expres%m Xk dX Is non-vanishing.
Now, if:

(a) (6) =0, (€i.f9) =0
and
(b) (€)o=0, (€ f))o=0

are two simultaneous system that correspond to tiasexpressions then it is clear that
they can differ from each other only by a factor. Toantitiesfs, ..., f, , which must
satisfy the one system must, from the nature of thia¢g satisfy the second one.
Therefore, our equations (a) and (b) can take on a confionm that remains valid when
the determinant vanishes. For Clebsch, our equationheéddrm:

—ZZX—RK 0, —ZZ

of,, of
2R, =0,
0% 0%

which become illusory wheR = 0. By contrast, the equivalent equations:
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of  of
~ER =
0x 0%,

22 X5 Rk 0, 2250
are never illusory, because, in fact, the sub-deternari&ntmay not all vanish. These
equations are the ones that that defimader all situations, and in this form | have also
employed the Clebsch equations in the foregoing.

It should only be added here that the aforementionedpieitshould be regarded as
anintegrating factor.



PART TWO

Theory of groups.

In this section, | will consider a sequence of funwib,, ..., Fr of X1, ..., Xn, P1, ...,
pn, and determine all of the relations that exist betwidem that remain unperturbed
under arbitrary contact transformations betwegn

U

X =X, p=Pi.
In order to be able to give the results the simplessible form, | will assume that the
constants X;, P) are equal to 1. This is, however, only a formal r&&n. In
connection with the results obtained, | will developational method that teaches one

how to exploit the circumstances that occur during ibegration of a first-order, partial
differential equation as best as possible.

§09.
Group. System in involution. Statement of two problems.

21. The theory that follows has its origin in the explintroduction of two concepts,
the first of which essentially goes back to Jacobi.

Definition. | say thatr mutually independent functions, ..., u. of x4, ..., X, P1, ---,
p. define aone-parameter grougvhen any ( , uy) can be expressed as a function of the
u. | say that any function of the quantitiebelonggo the group.

If the functionsuy, uy, ..., U, of an p-parameter group belong to a group with more
termsuy, ..., Uy, Ux1, ..., U then | say that the latter group contains the forome, or
that the former is aubgroupof the latter.

Theorem 21. If g relations exist betweew, ..., u. and therefore anyu(, w) is
expressible in terms of thesuch that one has:

(Ui ) Uk) = fik(ul, cery Ur)
then there is ar & g)-parameter group that ailbelong to.

Then, from our assumption, it is possible to find qu@stamong the — q quantities
u — say,us, ..., Uq — that can be expressed in terms of the remaining offeene
substitutes the values 0f 4.4, ..., U thus found into:

(Ui ) Uk) = fik(ul, . Ur)

then this expression assumes the form:
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(Ui, W) = P, ..., Ur—)
and as a result the, ..., ur define a group that g1, ..., Ur also belong to.
Theorem 22. If vy, ..., v belong to the group,, ..., u;, such that one has:
Vi = Vi(ug, ..., W),

and if Vs, ..., V; define mutually independent functions of théhenv;, ..., v, also define
anr-parameter group, which regardsaa®ther formof the given one.

Then, by our assumption, the ..., v, can also be regarded as mutually independent
functions of thex, ..., p.. Furthermore, one has:

9 3Y,

(ANEDY

(um, un),

m=1 n=1 aum aun
From which, it follows that\{, ) is a function of the quantitias and thus it is likewise
a function of the quantities

Definition. If uy, ..., u; define a group and alli(, u) vanish then the group shall be
called arr-parametesystem in involution.

| call two groupsy, ..., urandws, ..., W involutory groups when anyu(, w) = 0.
In Jacobi’s theory, systems in involutiag ..., ur that are subject to the bothersome
restriction that the equations:
Uu=a, ...k=a

should be solved farof the quantitiep play a fundamental role. The introduction of the
general concept of system in involution belongs to me.

Theorem 23. A contact transformation betweey ..., pn, X, ..., P;:
X =X, p, =P x,P)=1
takes the functions of anparameter groupy, ..., u; to the functions of a new-
parameter groups, ..., U. Thus, anyl, u) can be expressed in termswgf ..., U in
the same way as the correspondfogy, ) in termsu;, ..., u;.

Namely, we have seen (Theorem 11) that:

!

(U Uy = (U, Udp
Now, we assume that:
U Uy =fic (U, oo up),
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so we find that:
(Ui ) Uk)xp = fi (Ui, . U;),

or, when we recall that; , ..., u; are regarded as functionswaf ..., p,that are denoted

byu, ..., U
(Ui, Uk) :fik (Ul, cery Ur),

with which, our theorem is proved.

Corollary. A contact transformation takes a system in involutmmanother system
in involution.

22. | can now formulate the two main problems of thidtis@.

Problem 1. Let one be given two-parameter groupsg, ..., V. andvy, ...,Vv,. One
must decide whether there is a contact transformatiah transforms eack; into a

function ofwy, ..., v, or, as | will say, for the sake of brevity, thatng@orms the one
group into the other one.

We will see that any-parameter group can be characterized by a certain yeositi
whole number that is less than Should arnr-parameter group be capable of being
transformed into another one, then it would be necgssat sufficient that this number
would be the same for both groups. This important theaa@amalso be expressed as
follows: Anr-term group possesses only one property that is indepenidienfarm and
remains invariant under contact transformations. Thipgytg can be expressed in terms
of a positive whole number that is less than

Problem Il. Let one be given two systems of anfynctions:

F,...F and Fq ..., F
of x, ..., p, andXxs, ..., pn, resp. One must decide whether there is a contact
transformation:
Xi' =X, p,' =P (Xi Pi) =1

that transforms any, into the correspondingy .

The solution to this problem, which we will give in § 16also very simple.
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§ 10.
Reciprocal groups.

The analytical starting poin) for my investigations into groups was the following
theorem:

Theorem 24. If uy, ..., u is a group and/ is an unknown function of, ..., Xn, p1,
..., pn, then the linear equations:

W, V)=0, .., ,VN=0

define a complete system.

Proof. It is clear, to begin with, that these equationratgually independent, since
otherwise a sequence of functional determinants would lvaaisd as a result, there
would exist relations between, ..., U; , which are regarded as functionsxgf..., Xn, p1,

.., pn. HOwever, this contradicts our assumptions.

If we now writeAi(V), instead of i, V), then we find by carrying out the calculations
that™):

AAV) = AdAV)) = (Ui, W), V).

However, one has (no. 21):
SO one gets:

(W ug V) = Ji v+ L+ ey v,
ou, ou

AAY) - ALA(Y)) = %(Al,v) oo+ My,
U ou,

with which, our theorem is proved.

The complete system:

u,V)=0, .., t,V)=0,

has 21 — r solutionsv, , v» , ..., Von , between which no functional relation exists, and
any other solution can be represented as a functidresétquantities. Now, the Poisson-
Jacobi theorem says that amy, (W) is such a common solution. As a result, () is a
function of thev:

") It was by synthetic speculations about the Poissoablsheorem and the intrinsic essence of things
that led me to this theorem. | remark that it isrirenifolds that are generated by characteristic strips of
two or more equations that are to be examined.

") The fact that the two equations (V) = 0, Uy, V) = 0 imply that ((«, Uy), V) = is a well-known
proof of the Poisson-Jacobi theorem.
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(Vi, Vi) = @ik (V1 , V2, ..., Von),

I.e., i, V2, ...,Vony define a new group.
Therefore, the equations:
(V]_, U) = 0, ceny 6/2n—r, U) = 0,

define a complete system witlm 2 (2n — r) = r solutions. Obviouslyy, ..., u, satisfy
this system, whose solutions therefore all belongeéatiginal group. Thus:

Theorem VI. Any group 4, ..., U determines a second group wih — r terms that
has a completely reciprocal relationship to the first one. Any groupistensf all
functions that are in involution with the functions of the second group. Ueogsoups
shall be called reciprocal groups. 1 also frequently call the one grbepdlar groupof
the other one).

If ug, ..., ur andvy, ..., Von are two reciprocal groups that are takemytp..., u, and
v, ..., Vo, resp., by a contact transformation then these two g®ups are also

reciprocal groups. Then, since eaah, (k) vanishes, this is also the case (Theorem 8)
for any expressioru;,\,) .

§11.
The distinguished functions of a group.

24. A new fundamental concept will be introduced in this giaph.

Definition. Functions U that belong to a groupi,u..., u. and satisfy all the
relations:

(u,U=...=u,U)=0

shall be calledlistinguishedunctions.

It is clear that the number of mutually independentristished functions of a group
is independent of the form of the group. It is alsordleat a group withm distinguished
functions will go to a a group withm distinguished function under any contact

transformation.

Theorem 25. If mrelations exist between the functions of two recipkgoaups then
there arem functions that simultaneously belong to both groups.

Proof. | assume thaty, ..., ur andvs, ..., Vaon are two reciprocal groups, between
whose functionsn relations exist. We now recall that:

") A general theory of reciprocity is based upon thisr@o Any theorem about groups corresponds
to a reciprocal theorem. On the other hand, thegnwaps are possibly reciprocally inter-related by pair-
wise relations. These suggestions shall not be dekefapier, here.
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(Ui, w) =fi (Ug, ..., ), Vi, W) = @ik(Va, ..., Vony), (W, w =0,
and further consider Theorem 21, then this yieldsuhat., ur, v, ..., Von+ belongs to a
certain (2 —m)-parameter group:

Wll ERE] W2n—m
that can assume the form:

ull sy ur, Vll ---,V2n—r—m,
as well as the form:

Vll ---,V2n—r, ull ey Ur—m .
From this, it follows that then solutionsF, ..., Frn, of the complete system:

(W]_, F):O, feay WZn—m,F)zo
satisfy, on the one hand, the equations:
(u,F)=0, .., G, F) =0,

and thus belong to the group ..., von—, and, on the other hand, fulfill the equations:

(V]_ F) :0, . 6/2n—r F) :0,

and thus likewise belong to the growp ..., u. . There are then actualyfunctions that
belong to both groups.

Theorem 26. If a functionF simultaneously belongs to two reciprocal groups then it
is a distinguished function in both groups.

As an element of the growp, ..., Von, F then satisfies the equations:
(u, =0, .. 0, F)=0.
Now, F is a function of the quantitias and any such function that fulfills the equations
that we just presented is a distinguished function ofgtmip u;, ..., ur . In a
corresponding way, one sees thas a distinguished function of the group
Theorem 27. Any distinguished function of a group belongs to the reciirgroup.
Then, ifU is a distinguished function of the grouy ..., u, then the relations:

(u,U)y=0, .., G,U=0

are true; However, these are just the equations thatleusue ifU is to belong to the
reciprocal group.
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Theorem 28. Any distinguished function of a group is a distinguishedtion in the
reciprocal group.

This theorem follows as a corollary of the previous.tw

Theorem 29. If a groupu, ..., U containsm functionsUy, ..., U, thenm relations
exist between the functions of this group and those afetiprocal groups, ..., Vonr .

Ui, ..., U then belong to the two groups. If one then expresses, theone case, as
functions ofu and in the other case, functionswfand sets these expressions pair-wise
equal to each other then one finds the relations thapaike of:

F]_ (Ul, ceny Ur) = CDJ_ (Vl, ceny V2n—r),
Fm (Ul, ey Ur) = q)m (V]_, ey V2n—r).
| summarize the results of this paragraph in the fafigway:

Theorem VII. Two reciprocal groups contain the same distinguished functions, and
exactly as many relations exist between the functions of two realpgooups as the
number of distinguished functions that the groups contain. These relations dlaay
the form:

Fi(ug, ...,u) = ®i(vy, ..., Von) i=1,..m).

They simply express the idea that the m distinguished functions beltthegdiee group,
as well as the other.

25. | will show that the number of distinguished functi@as be determined in such
a way that one constructs a certain number of deterisirzand then examines whether
they and their sub-determinants of, P ... order vanish. If our group contains
distinguished functions then the determination requinas,an—1, ..., 3, 2, 1 operation,
respectively.

Let us, ..., ur be a group and lety be function ofus, ..., u. . Should it be a
distinguished function then it would be necessary arfitgirft that the equations:

(u,U)=0, ..., ,U)=0,
exist, or, when developed:
ou ou ou
Ay(U) = (Ug, u)— + (U, U)— + ... + U, U)— =0,
6ul 0 , u,

ou ou ou
Ao(U) = (g, Un)—— + (U, U)—— + ... + (U, U)—— =0,
ou 0 au

1 2 r
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ou ou ouU
A(U) = (U, U))— + (U, b)) — + ... + (U, Up)
ou ou 0

1 2 r

=0.

If one sets (i, uy) everywhere here, instead of the corresponding funétin, ..., u),
then one obtains linear, partial differential equations withindependent variables for
the determination of). Therefore, should the group containdistinguished functions
then ourr equations would have to be capable of being replacedrwitim of them that
define a complete system — say:

Ai(U) = 0, ...,A(U) = 0.

In order for this to be true, it is obviously requisitatth, _m.1(U), ..., A(U) could be
expressed linearly in terms 8i(U), ..., Ar-m(U). Conversely, it is clear that our m
equations define a complete system when this requiremédatfilled. The expression

Ai(AU)) — A(Ai(V)) is then expressed linearly in termsfafU), ..., A(U) as:
A(AV)) = AdA(Y)) = A1 A(V) + ...+ A A(U).

However, if one replacea; m1(U), ..., A(U) with their expressions in terms Af(U),
..., Ar-m(U) in this then one obtains relations of the form:

A(A()) = AdA(V)) = o1 Ag(U) + ...+ orm A (V)

with which our assertion is proved.
This then shows that one must construct the determinan

(U, ) (U, w) - (W, 4)
D= (u21u1) (u21 uz) (LE! lJ) .

(u,u) - - (y,y)

If this is non-zero then the expressiohgl), ..., A(U) are independent of each other,
and our group then has no distinguished functions. By &inifdhis determinant and
its 1% 2% ... (m — 1)"order sub-determinants vanish, while thé™order sub-
determinants do not vanish simultaneously, then among; @i there aren of them that
can be expressed in terms of the remaining ones, and hbugroup containsn
distinguished functions.

One can remark thdd is a skew determinant. Thus,rifdenotes an arbitrarydd
number therD is equal to zero, and in any case the group contaieglistinguished
function.

If one finds that our-parameter group, ..., U containsm distinguished functions
then, as is always possible, one takesm of the expressionéy(U) — say,A;(U), ...,
Ar-m(U) — that are mutually independent. The equations:
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AiU) =0, ..., Arm(U) = O,

in turn, define a complete system, wharesolutions are precisely the distinguished
functions of the group. As Mayer and | have remarkeduin grevious papers, their
determination requires only:

mm-1,..32,1

operations, respectively. If one applies Mayer’s thedieen one will very frequently be
able to determine the distinguished functions through swepler operations.

It is reasonable that whem distinguished functions are already known, the
determination of the remaining ones, in turn, requires onlyy, m —uy—-1, ..., 3,2, 1
operations.

Theorem VII. Should one wish to decide how many distinguished functions a group
U, ..., U contains, one would have to construct the determinant with r rowscunichics
whose elements are the quantit{ies u), when expressed as functions ef u., u, . If
these determinants should vanish, along with their sub-determinants 8f,1..., up to
(m —1)"order, then the group would have m distinguished functions. One finds them
when one chooses r — m of the r expressions:

AU = WY+ s Y
ou 0 ou

1 2 r

say, A(U), ..., Arn(V), that are mutually independent. The equations:
A(U) =0, ...,A(U) =0,
in turn, define a complete system whose m solutawasprecisely the distinguished
functions of the group. One thus finds them bynsiehm, m- 1, ..., 3, 2, Joperations.
§12.
Canonical form of a group.

In these paragraphs, we will first prove some lemamasshow that any group can be
brought into a remarkable form that | callganonicalform.

26. Theorem 30. If anr-parameter group contains more than 2 distinguished
functions then it is a system in involution, and thassgessesdistinguished functions.

Proof. Assume that the group, ..., u- possesses— 1 distinguished functiond,,
..., Urz1 . We wiill see that they must include yet another guabtion in a noteworthy
way. We then bring the group into the equivalent fady ..., U,—1, V, so sincdJ; is a
distinguished function, one must have:
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(Ul, V) =0.

(Uz, V) likewise vanishes, becausé is a distinguished function. In this way, we
recognize the existence of the relations:

(U,V)=0, ... U-,V)=0,

which show thaw is also a distinguished function. Our group thus actuakbgggses
distinguished functions.

Theorem 31. If u; is not a distinguished function of a grouwy ..., ur then there are
always function$=(u, ..., uy) that fulfill the equationyy, F) = 1.

Then, from our assumption, there are, in any casee sif the expressionsiy( Uy),
(U, ug), ..., (U, u) that do not vanish identically. Therefore, Rf denotes an
undetermined function afy, ..., U, then one has:

oF oF oF
ou ou ou

2 3 r

or, when one introduces the corresponding funcfi@fus, ..., u), instead of; u):

oF oF oF
fio—+f13 —+ ... +fy,
au, ou, ou,
is non-zero. Thus:
flza_F+f136_F+ +flr oF =1
au, ou, ou,

is a linear, partial differential equation whose sohsib satisfy the conditions:
(Ul, F) =1

Theorem 32. If the groupuy, ..., U, contains a sub-grou, ..., u, then the polar
group of the former is contained in the polar group ofdtter.

The parameters of the polar groupgf..., u, are then defined by:
(u,v) =0, ...,0,,V) =0, ..., r,v) =0,
and the parameters of the polar groupof.., u, satisfy the equations:

(uL, V) =0, ..., (p, V) = 0.

We see that the solutions of the former system asiefg the latter system, while the
converse is not true. The theorem is thus proved.
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Theorem 33. If the expressionug, uy) equals 1 then any group, Uy, ..., U can be
brought into the formu, w, u;, ..., U_,, where all ¢;, u;) and (i, u;) are equal to

zero, while all (1 , u,) can be expressed as functionsipf ..., u;_,.

Namely, if:
Vll ---,V2n—r,

is the polar group aiy, ..., U then by our assumption:
ull u21 Vll ---,V2n—r

is also a group whose £ 2)-parameter polar group:

! !

U, ey U,

is contained inu, ..., U, (Theorem 32), and is in involution with the group u, . It is

!

clear that no relation can exist betwegnuy, u;, ..., u,_,. Such a parameter could then
be brought into the form:

ur =W, u, ..., U_,)
and one would thus have:

, oV , oV
(Ul’ UZ) = (u1’ uz)_+--- + (ur—2’ uz)—’

I

ou, ou _,

an equation in which the right-hand side would sapwhile the left-hand side would

I

equal 1. However, this is absurd. Thusu,, u;, ..., U _, is one form of our group that
possesses the desired property.

Theorem 34. Any r-parameter group that is not a system in involuttam be
decomposed into a two-parameter group andran R)-parameter group that is in
involution with it.

By our assumption, the given groug, ..., U contains functions that are not in
involution with all of the remaining functions dfé group. We take one of them — say,
u; — and determine (Theorem 21) a second funaticof the group that gives:

(Ul, Uz) =1.

If we consider the previous theorem then we reamgnhe validity of our present
theorem.

27. A general and exceptionally important reductidraay group to aanonical
form flows from the foregoing theorems.
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Theorem 35. Any group can take on the fork, ..., X;, Py, ..., P,, where the
expressionsX; , X), (Xi , Py, (P, Py are equal to zero and aX;(, P;) are equal to 1.
This form is what | call @anonicalform.

Namely, if ourr-parameter group is a system in involution then it dlyelaas the
canonical form, and indeed,=r, = 0.

By contrast, ifu;, ..., U is not a system in involution then one decomposes it
(Theorem 34) into a two-parameter group andrand)-parameter group:

(A) xll Pll uil R | u;_z

that are both in involution. If the ¢ 2)-parameter group is a system in involution then
(A) is the canonical form for the original group, wherer — 1, ;= 1.

If u, ..., u_, is not a system in involution then one decomposes this 2)-
parameter group into a two-parameter group and arj-parameter group:

n

X2, Pa, Uf, vy Uy
With that, the original group assumes the form:
Xy, P1, X2, P2, Uy, ..y U,

that is the desired canonical form if the—(4)-parameter group is a system in involution.

One proceeds in this way, until one ultimately comeay- afterq decompositions — to
an ¢ — 2y)-parameter groupy®, ..., u®, that is a system in involution. Consequently:

xll Pll x21 P21 Xq, Pq, ufq), sy u(q)

r-2q
is the canonical form of theparameter group. Here, one hasr —q, £ =q.

Theorem 36. In a canonical grouly, ..., Xgrm, P, ..., Pq, theXg:1, ..., X+m are the
only distinguished functions.

Namely, ifl1 belongs to the given canonical group then one wilehav

or orl
Xi, M) =——, Pi,|_| = - —.
( ) oR ( ) 0X;

ShouldlT then be a distinguished function then one would haveue: ha

a_rl:O’ a_rl:O
9P P
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fori=1, ...,q;i.e.,Mis merely a function oXg:1, ..., Xg+m.
Theorem 37. If Xy, ..., Xgrm, Py, ..., Pq satisfy the relations:
X, X)) =X ,Pg=(Pi,P) =0, &, P) =1,

and there is thus no relation betwegm, ..., Xq+:m then our 8 + mfunctions define a @
+ m)-parameter group.

Our theorem emerges from the fact that, under themggns that we made, no
relation exists between oug 2 m functions. If that were the case then, in any evang,
of them would contain one of they ZuantitiesXy, ..., Xq, P1, ..., Pq — say,X; — and
could thus take on the form:

X1 =W(Xz, ..., Xg+m , P1, ..., Pg).
However, it would follow from this that:
(X1, P1) = (W, Py),
which is contradictory, in that the left-hand side eguaand the right-hand side equals 0.

Theorem 38. The difference between the number of parameteasgroup and the
number of its distinguished functions is an even number.

Any group can then take on the form:
XJ_, ...,Xq+m, P]_, ey Pq,

whereXg:1, ..., Xg+m are the distinguished functions; the stated differestbaan equal

to 9.

Corollary 1. A 2g-parameter group contains eithey@& 29— 2 or 21— 4, ..., or 2 or
no distinguished functions.

Corollary 2. A (29 + 1)-parameter group contains eithgr21 or -1, ..., or 3 or
1 distinguished functions. Such a group then always ctntdileasbne distinguished
function.

We finally summarize our results.

Theorem IX. Any group can take on the form:

XJ_, ...,Xq+m y P]_, ey Pq,
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where the following relations exist:
(Xi,Xk):(Xi,Pk):(Pi,Pk):O, O(i,Pi):l.

Here, X1, ..., Xq+m are the distinguished functions of the group. The difference between
the number of parameters and the number of distinguished functions is alwaysnan e
number.

§ 13.
Determination of the invariant properties of a group.
28.We next show that one can always find canonical grolgssdontain a given
canonical group. Therefore, we shall deal with thst fof the two problems that we

posed in the beginning of this section.

Theorem 39. If Xy, ..., Xg+m, P1, ..., Pq IS @ canonical group then there are always
functionsPq.1 that fulfill the equations:

(Xi ) I:)q+1) = (Pi ) Pq+1) =0, 0(q+1 ) I:)q+1) =0.

ConsequentlyXy, ..., Xg+m, P1, ..., Pg+1 IS @ new canonical group that contains the given
one.

In fact:

(A Xty ooey Xgy Xgt2s -y Xgems P1y -, Pyq

is obviously a group whose polar group contadpns, and perhaps possesses the form:
(B) Xq+1, U, Uy, ...

Now, Xq+1 does not belong to the group)( and is therefore (Theorem 27) not a

distinguished function off), so the latter group contains (Theorem 31) functiéns
that yield:

(Xq+1 , Pq+1) =1.

However, because it belongs to the graB) &ny such functioRq.1 is in involution with
all functions of the group), and thus possesses all of the desired properties.

Theorem 40. If Xy, ..., Xq+m, P1, ..., Pqis @ canonical group then there are always
further function®g.1, Pg+2, ..., Pgrm Such that:

XJ_, ...,Xq+m, P]_, ...,Pq+m

define a new canonical group that contains the given one.
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This theorem is obtained immediately bymaifiold application of the foregoing one.
Theorem 41. If Xy, ..., Xy, Py, ..., Pqis a canonical group armgi< n then there are
always functionsXq+1 that are in involution with the functions of our group.

Consequently:
X1, «ooy Xgt1, P1, -0, Py

is a new canonical group that contains the given one.

Any function that belongs to the polar group of the gigemup then possesses the
properties that we required of the desired funckgn.

Theorem 42. If Xy, ..., Xg+m, P1, ..., Pqis @ canonical group then there are always
further functionsXg+me1, ..., Xn, Pg+1, ..., Pn such that:

X1y ooy Xy P1, ooty Pn
is also a canonical group.

From theorem 40, there is then a canonical group:
XJ_, ...,Xq+m, P]_, ey Pq+m
that contains the given one. Thereatfter, by meatiseofem 41, one finds a canonical
group:
xll ---,Xq+rm-1, Pll ey Pq+m

and thus (Theorem 39), a canonical group:

xll ey Xq‘HTH'll Pll ey Pq+rm—1 ’
etc.

29. In Part | (Theorem lll), we saw that equationshaf form:
X =X, P =P
in whichX; andP; denote functions of, ..., p, that fulfill the conditions:
(X, X =X, P)=(Fi,Pq)=0, *i,P)=1,

always determine a contact transformation. By theafsthis theorem, we can now
prove the following theorem, and in so doing, resolve probie

Theorem X. If two r-parameter group possess just as many distinguished functions
then there is always a contact transformation that takes the one group dthdre On
the other hand, this condition is not just sufficient, but also necessary.
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Letu,, ..., U be functions ok, ..., Xn, P1, ..., Pn @nd letw,, ..., w, be functions of;,
ey Yoo 78, ..., TH . Ifug, ..., U, as well asv, ..., W, then define a group, and both
groups possess the same number of distinguished fund¢tiensthe two groups can
assume the canonical forms:

X, ...,Xy, Py, ...,P.,anle, ...,Yy, My, ..., M, ,

respectively. Moreover, from Theorem 42, there aregdwunctionsX, P of xi, ..., pn
andY, I of yy, ..., 7& such that:

Xy, ooy Xny P1, oo, P anle, ceey Yn, My, o, My,
are also, in turn, canonical groups. Therefore:
X =X, P =P,
as well as:
X =Y, p =0,
is a contact transformation. However, it alsodat from this that therRequations:
Xi=Y, Pi =1,
define a contact transformation, and one sees thaframsformation takes the one group
to the other one.

With that, the first part of our theorem is proved. Thst part of it follows
immediately from the fact that for any contact transfation the number of terms and
the number of distinguished functions of a group remaimamged (§ 9 and § 11).

Corollary. The only properties of a group that are independent of the form of the
group and remain unchanged by a contact transformation are the number of parameters
and the number of distinguished functions.

8§ 14.
Invariant relations between a group and a subgroup of it.

| shall now address the following problem:

Problem. Let two r-parameter groups be given, each of which contains a
parameter subgroup. Decide whether there is a contact transformatiotakiest the one
r-parameter group and its subgroup into the second r-parameter group and itoapbgr

respectively.

30. First, some lemmas.
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Theorem 43. Letuy, ..., U be a group that is contained in a larger groyp.., U,
.., U . Furthermore, leU be a function of the latter group. If our groups conte
common distinguished functions then the equations:

(u,U)=0,..,(,U)=0

define a complete system whose- p solutionswi, ..., wi—, define a new group. In
particular, ifuy, ..., u, contains no distinguished function then:

UJ_, ...,Up, W]_, ...,Wr—p y

is a form of the groupy, ..., U, which is thereby decomposed into two involutory groups
U, ..., Up andwy, ..., W—p .

In fact, letvy, ..., van be the polar group af, ..., u, . Previously (Theorem VII), we
saw that any relation between thandv possesses the form:

F(uy, ...,u) =P(vy, ..., Von),

whereF is a distinguished function of the group ..., u,. From our assumption, this
group contains no distinguished functions of the f&{m, ..., uy). There then exists no
functional relation betweeu, ..., Uy, V1, ..., Vonr. As a result, these quantities define a
group, and the equations:

(A) (ULVV):Q --w(Jr,VV):O! 6/11\/\0:01 ---16/2n—r,V\0:0
define a complete system whase p solutionsw, ..., W, , as solutions of:

(vi,W)=0, .., {on+, W) =0,

belong to the group, ..., ur.
The fact thatv, ..., w—, define a group follows from the fact that from thesd3on-
Jacobi theorem anyv, w) is a solution of the system)

In particular, ifuy, ..., up, contains no distinguished functions then there exists no
relation betweem, ..., U, andwi, ..., W, since (Theorem VII) one would then have
the form:

F(uy, ..., Up) = D(wWy, ..., W),
whereF would be a distinguished function of the graup..., u.. Thus:
Uty ..oy Upy, WA, .oy Wep
is a form of the groupy, ..., u-that is then decomposed into two involutory groups.

Theorem 44. If Xy, ..., Xg, P1, ..., Py Is a canonical group that is contained in a
groupG thenG can assume the canonical foxm ..., X, Py, ..., P, .
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We then decompog<g into the two involutory groups:
XJ_, ...,XQ,P]_, ...,Pa and W]_, ,Wp
by using the foregoing theorems, and then bwng..., w, into a canonical form:
XQ+1, ...,Xﬁ, Pa+1, aey Py
then
X1, ooy X, P1, ..., Py

is obviously the desired canonical form&f

Theorem 45. If a groupG contains a system in involutioky, ..., X,, and if no
function of theX is a distinguished function & then this group can assume the
canonical form:

X1, coiy Xoy ooy Xa, P, oy, Poy oo, Pg.

Namely, letXy, ..., Xp, U, ..., Ur-p be a form forG, and letvy, ..., von be its polar
group. From our assumption, there exists no relatiomdan theX and thev. Therefore:

x21 ERE] xplvll ---,V2n—r

define a group whose polar group (Theorem 32) is contain@daimd contain¥; . This
polar group thus possesses the form:

X]_, caey Xp, Wi, ...,Wr_2p+1 (G')
X1 is not (Theorem 27) a distinguished functionGhso that group contains (Theorem
31) a functiorP; that yields:
(Xl, Pl) =1.
With that, the grougss, which is contained i®', is brought into the form:

X1, Py, Xo, ... Xy, @1, ...

It can therefore (Theorem 43) be decomposed into twdutory groups, one of which is
X1, P1, while the other one contails, ..., X,, and possesses the form:

!

r-p-1*

Xz, Xp, Ui, ey u

This group contains no distinguished function of the fdffX,, ..., X,), so it can
likewise be decomposed into two involutory groups:

Xo, P> and Xa, ...,Xp, Uf, caey u’
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In order to go further in this way, we finally brigginto the desired form.

Theorem 46. Now, suppose we are given a grdeipvith r parametersy, ..., ur and
a subgroup of ity, ..., U, that hasw distinguished functionXj, ..., Xz in common with
G. If:

xll '--lXZlew+la ---,xwi-a, Pw’rl, ---,Pwi-a,xwi-cﬂl, ---,Xw+a+,8

is a canonical form for the subgroup tl&mran always assume the canonical form:
xll '--lXZHl xw+l, ---,xw+a+,8, "'lxyl Pw’rl, ey PZD*'O"",B! Pd_ .

Then, from our assumption:

xw+l, '--lxﬂalPWll ---apwi-a (G’)

define a groupG' that is contained irG. Therefore, from Theorem 4% can be
decomposed into two involutory grou@ andG", the latter of which obviously contains
the functionsXy, ..., Xg, Xztat1, ..., Xararp, and thus possesses the form:

xll '--lXZHl XZD+H+11 ---,xw+a+,8, Ull U21 (G")'

Now, G" contains the system in involutiogig+1, ..., Xera+p, Which contains no
distinguished function o&". If we then apply the previous theorem then we see@hat
can assume the form:

xll '--lXZlelD*'CH'll ---,xw+a+,8, "'lxyl PZD+U+11 ---,Pw+a+,8, Pd_ .

With that, the groufs, which consists of the functions of the two gro@sandG", is
brought into the desired form.

Corollary. If a group hasw distinguished functions with a common subgroup then
these two groups can assume the canonical forms:

X1, ooy Xy Xty ooy Xy oot Xy Pty ooy Pgy oy Py
X]_, ...,xw,xw+1, ...,me, caay Pw+]_, ...,Pma, ...,xw+a+]_, ,Xﬁ

31. We can now resolve the problem that was posed abeégening of this
paragraph.

Theorem XI. Let two groups G and'Ge given with the same number of parameters
and distinguished functions. Any of the two groups further contains a subgrotp g (g
respectively) with the same number of parameters and distinguishetmhgncEinally,

G, as well as G might havew distinguished functions in common with the subgroup in
guestion. Consequently, there is a contact transformation that simultapeakst G
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and g to Gand d, respectively. Conversely, such a transformation is possiblé af al
the stated conditions are fulfilled.

Namely, from the previous corollary, if we brimgand G into the simultaneous
canonical forms:

Xll '--lXZlelD*'la ---,xwi-a, ey Pw’rl, ---,Pwi-a, '--lXZD+H+ll '--lxﬂl
Xty +oos gy Xrts oves X oos Xys Part s oves Pgy vons P,

resp., then it is possible to briggandG' into the simultaneous canonical forms:

X oy P X5,
Xoy oy X0y Po

v Py e X,

w+a w+a+l 1

1 ﬂl'--lP(Sl

il 1 e
ol 1 e
resp. Thus, (see the proof of TheoremG(tan be transformed int@' in such a way
that X; andP; go to the corresponding’ and P', resp. Therefore, it is obvious trgt

will simultaneously go t@'. Thus, the requirements presented are sufficienfatiiehat
they are necessary comes from the fact that tHatereo relations that remain invariant
under contact transformations.

Corollary.  All invariant relations between a group and a subgroup hell
determined by the number of common distinguished functmmgled with the number
of parameters and distinguished functions in both grolpsm the foregoing, the latter
numbers define the individual invariants of each of thegwaips.

This suggests the question of how one must proceed if on&l wke to investigate
how many common distinguished functions a graup..., Up, ..., Ur and a subgroup,,
..., U of it contain.

If one denotes a function af, ..., u. by F then it is clear that the stated functions are
defined by the simultaneous equations:

oF oF

(uF)=0,.. F) =0, =0, ..,—
ou,

=0.

One thus examines how many common solutions that tdepsgions have in the usual
way. If there arew of them then their determination requires w— 1, ..., 3, 2, 1
operations. Therefore:

Theorem 47. If one knows a group and a subgroup of it then one céh, v
integration, decide how many distinguished functions thatd two groups have in
common. If there arevof them then one finds them by meanswmfw- 1, ..., 3, 2, 1
operations.

Finally, | also need the following theorem:
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Theorem 48. Letuy, ..., Uy, ..., U be a group, and let, ..., u, be a subgroup of it
that haswdistinguished functions in common with it. If one thetsF denote a function
of u, ..., ur then the equations:

(u,F)=0,...,0,,F) =0

haver — p + wcommon solutions, and can therefore be replaced gvithto equations
that define an involutory system.

Our groups can then be brought into the simultaneous cahdoims:

xll '--lXZlelD*'la ---,xw+a+,8, "'lxyl Pw’rl, '--lPlD+U+ﬂl ---,PJ,
Xll '--lXZlelD*'la ---,xwi-a, ey Pw’rl, ---,Pwi-a, '--lXZD+H+ll ---,xw+a+,8,

resp. As a result:
xll '--lXZHl XZD+H+11 "'lxyl Pw+a+,8+l, ey Pd_

are those functions of the larger group that are inlitiam with all functions of the
subgroup. If one now makes a simple count then one reesgtiie validity of our
theorem.

§ 15.

Determination of the system of involution that is includedn a group.

32. Theorem 49. (m + g)-parameter systems in involution can be selected &aom
group withm distinguished functions amd + 2q terms.

Such a group then possesses the canonical form:
XJ_, ...,Xq+m, P]_, sy Pq,
and hereXy, ..., Xq+m define a system in involution witif- m parameters.

Theorem 50. A system in involution that is contained in & (m)-parameter group
with m distinguished functions can consist of at nmgpsin functions.

Then, letd,, ..., P, be a system in involution that contains the grup.., Xg+m, P41,
..., Pq. One determines further functioXsandP such that:

Xy, ooy X0, P oo Pa

is a canonical group, between whose functions it is kntvat no relation can exist.
There is now a function of the system in involution:

xq+rm—1, ey Xn
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that is in involution with all functions of the originalayp, in particular, withd, ...,
®,, as well. Therefore:
xq+rm—1, ---,Xn ) q)ll ey q)I/

is a system in involution witlr + n —q —m mutually independent functions. However, it
is known that a system in involution contains at nmgsarameters, so one must have:

v+n—gq-m<n,
that is:
v<g+m,

and that was precisely our assertion.

We now show how one must proceed in general in ordeselect systems in
involution with as many parameters as possible fromangyroup.

If uy, ..., Uxgq+1 IS @ given group witim distinguished functiond, ..., Un then one
first finds the latter by integrating the system:

(Ul, U) =0, ..., (qu+1, U) =0,

which requiresn, m—1, ..., 3, 2, 1 operations. We know thht ..., Un belong to aq +
m)-parameter system in involution of our group.

Thereupon, one takes an arbitrary, but not distinguishedtion of the group — e.g.,
u; — and determines a further functibfus, uy, ...) from the equation:

2g+m

=3 (ul,uk)gTF =0,

k

This partial differential equation, in which oneplaces (i, u) with the corresponding
function of theu everywhere, possessest 1 known solutions, namely;, ..., Uy, Up ;
one thus finds a further solutiéi= w, by means of @ — 2 operations.
One then defines:
(u, F)=0, Mm,F)=0

with the two functionsu; andws, replaces Wi, ug) and (v, uy) with the functions in
guestion ofu, and thus obtains a complete system that consligtgso equations in @+
m with m + 2 known solutions, namelys, ..., Un, U1, Wo . One then finds a further
common solutioms by 29 — 4 operations.

When one goes further in this way, one recognihat the determination of & ¢
m)-parameter system in involution in ag(2 m)-parameter group witn distinguished
functions generally requires:

mm-1,..,32,1,@-2, -4, ...,4,2
operations.

33. This method can be replaced with another onerduatires simpler integrations,
as long as the given group contains a known sulpgrou
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Therefore, let a grou@ with a known subgroupg be given. One seeks a system in
involution inG that has as many parameters as possible. To thiseadirst determines
the @ common distinguished functiond,, ..., Ug of our two groups. This requires
(Theorem 47):

operations. One then seeks the remainihg  distinguished functions thatcontains
by means of:
m-om-w-1,...,3,2,1

operations (8 11, conclusion).
After one has found all of the distinguished functiohshe groupg in this way, one
then determines a system in involution:

Ul, ceny Uw, Uy, ...,Up

that is contained ig and has the largest possible number of parameters usimgethod
that was previously described.

Of them distinguished functions of the gro one now already knows of them,
namely,Us, ..., Ug. One then finds then — wremaining oned) 541, ..., Unby means
of:

m-om-w-1,..,3 2,1

operations. One then knows all of the distinguishedtfans:
U]_, sy Um
of the groupG, and, in addition, a system in involution:
UJ_, sy Up
that is contained i® whose functions are independent oftheOne now proceeds as in
the general case.

Still greater simplifications emerge when, e.g., tegsoupg itself contains a known
subgroup. Without going into all of the cases the cae drisnly emphasize that in each
case my general theory allows one to give the numbdraader of the necessary
integrationsa priori.

Theorem XII. A group with m distinguished functions a@d + m parameters

contains systems in involution with+gqn parameters. The determination of such systems
generally requires:

mm-1,..3218-2 -4, .. 42
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operations. If one already knows such subgroups then simplifications intéigeation
arise that can always be given a priori. Our group contains no systamofution with
more than g+ m parameters.

34. In this section, | prove that there is a maximum nunfbethe distinguished
functions in a group with more thanparameters. An important theorem follows from
this about groups that contain the largest possible nuaofilokstinguished functions.

A group withm distinguished functions andy2+ m parameters containg| ¢ m)-
parameter systems in involution, so one must have:

g+rmsn.

If we call the number of parameterghen this condition assumes the form:

r+m
<
2
Finally, if we call the number of parameters k then we obtain the third form:

m<n-=Kk,

which says that the when the number of parameterarged thann, the number of
distinguished functions has a maximum value.

Theorem XIIl. If a given group y ..., Un:k possesses the largest possible number of
distinguished function®y, ..., ®, then the integration of the system in involution:

q)l:all 1q)n—k:an—k
requires only permissible operations.

My extension of Cauchy’'s method then says that the mtiegr of a system in
involution:

q)l:all 1q)n—k:an—k
can be accomplished when all solutions of the comgletem:
(P1,F) =0, ..., Pr«,F) =0

are found. However, such solutions are just.., uwk , and indeed there are no others.
My theorem is thus proved.
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§ 16.
Resolution of the main problem.

We first solve a special case of the second maibl@mg and in so doing, show that
the general problem can revert to this special case.

35. We assume thdt, ...,F andF/, ..., F' are twor-parameter groups. We will

deduce whether there is a contact transformatiortdkat anyF; into the corresponding
F'. If such a transformation exists then (Theorem 1Wpitld take the equation:

(Fi ) Fk)xp = Qik(Fl, ceny Fr)
into

r

(Fi"Fk')x'p' :Qik(F', ceny F').

Should the stated transformation then be possible ther(R F),, would have to be

expressible in terms o, ..., F' in the same way that the correspondiRgHy),, are

expressible in terms of tHe, ..., F,. Conversely, it can be shown that this necessary
condition is also sufficient.
In fact, letF,, ...,FrandF/, ..., F' be two suchi-parameter groups such that:

(A) Fi, F) =Qu(Fq, ..., F), (F F)=Q (F/, .., F),

and letXy, ..., Xg, X4, ..., Xg, where:
X = CDi(Fl, ceey Fr), P = l-|Ji(|:1, ceey Fr)

be a canonical form for the former group.
| define the functions:

X! =®(F, ..., F), P =Wi(F, ... F)

r r

and the expressions:
X\, %), (X R), (R, R),

which, due to4), are the same functions &f, ..., F' that:
(Xi ) X, X, Py, Pi, Py
are ofF4, ..., F. However, from our assumption, the relations:

X, X)) =, Py =(Pi,P) =0, *i,P)=1,
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are true, so one also finds that the corresponding egsation

(X!, X)=(X',R)=(P,R)=0, (X ,P)=1

are true. Now, X[, ..., X;, B, ..., P, are obviously mutually independent functions,
so:

Xiy o X By By
is a canonical form for the groug’, ..., F'. As a result (Theorem X), there is a contact

transformation that transforms ayandP; into the corresponding(; and R". Thus, as
one immediately sees, aRygoes to the correspondirf§f. Thus:

Theorem 51. Let R, ..., F, and F/, ..., F' be two r-parameter groups. Should a
contact transformation be given that takes anyoRhe correspondingd=" then it would
be necessary and sufficient that Ry, F«) be expressible in terms of,F.., F, as the
corresponding(F', F,) are in terms ofF/, ..., F'.

r

36. We can now address the general problem.

Therefore, let two systems of functioRg ..., F, and F/, ..., F' be given. One
must decide whether there is a contact transformatia takes everyr to the
correspondingF'.

It is first of all clear that we can assume thabéliheF; (and likewise, all of thg.")

are mutually independent; if, e.g., oty ..., F, were mutually independent, and by
contrast:

Fa+k:Wk(F]_, ...,Fa) (k:]., ,I'—O')
then obviouslyF/, ..., F, would also be mutually independent, while the remaining
F,.. would be expressible in terms of thg, ..., F;:
Fl.. =W(F/, ..., F)).

However, if this is the case then it is also cldaatta contact transformation that

transformsFy, ..., Fginto F/', ..., F,, resp., simultaneously takés., ..., F, to F,,;,
.., F', resp.
Thus, letFy, ..., F;, and likewiseF/, ..., F', be mutually independent. If the desired

contact transformation exists then it would take eu@fy Fi) to the corresponding
(R, F). I now define new functions by setting:

(Fa(l)l Fb(l)) = Fr+1 y (F (2)1 Fb(z)) = Fr+2 y ey (F

a a

)1 Fb(m) =Frip,
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where the numbe® andb® are subject to the restriction that one must have:
a(k)<r+p’ b(k)<r+p’

and thatF.x cannot be expressible in termskaf ..., F, ..., Fr1 . | proceed as far as
possible in this way; i.e., until | have found the groups:

Fl, ey Fr, ey Fr+p
that are determined By, ..., F, and which contain at mosh®arameters. If | now set:
(F;m J Ft:m) = Fr'+k

in a corresponding way then the desired contact transfommaust transform evey,.«
into the corresponding’,, . Therefore:

r+k *

must also define a group. Furthermore, from the previousehes, any(F',F/) can be
expressed in terms &/, ..., F, in the same way as the correspondifg, ) is in
terms off,, ..., F,. Onthe other hand, from the above, this necessgurement is also
sufficient. Therefore:

Theorem XIV. Let two systems of functions:

Fi, ...,Feand F/, ..., F,

a

of x, p and % p, resp., be given. If one wishes to decide whether there is actont
transformation that transforms any ifto the correspondingr'then one should proceed

in the following way: Among the F, one takes r mutually independent aags k, ...,
Fr — in terms of which the remaining ones can be expressed:

Fr+k:Wk(Fl, ---,Fr) (k:]., ,O'—I')

A first condition is then thaf/, ..., F' should be independent functions, in terms of
which, theF/,, could be expressed in a corresponding way:

F. =W«(F, ..., F).

r

If this is the case then one defines the group that is determinEgd by, F. when one
sets:

(Fa(l)l Fb(l)) = Fr+1 y reey (Fa(k) ’ Fb(k)) = Fr+k y
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and thus chooses the numbet &% in such that one always has:
a¥<r+k b®<r+k
and that one Fx is expressible in terms ofF.., Fr«-1. Let:
Fi, ..., Frep

be one of the groups that are obtained in this way. If one then setspmeaponding
way:
(F;(l)’ Fb’u)) = Fr'+1’ T (F;m J Fé(k)) = Fr’+p
then the functions:
F,.. F

r+p

must also define a group with+4 p parameters, and in addition, an§F',F’) of this
group must be expressible in terms/jf, ..., F, ) in the same way as the corresponding
(Fi , F) are expressible in terms ofF.., Fr+,. If all of the conditions are verified then
the desired transformation is possible.

This theorem determines all of the relations thastedoetween the given functiofs,
..., Fo that remain unchanged under contact transformations. oe sees, all such
relations can be expressed by means of the diffefesymbols P, 1), when coupled
with finite functional relations.

§17.
Integration methods that are based on the previous developments
37. | assume that a system in involution:
F1=Cy ...,Fqg=Cq

is supposed to be integrated and that one already knoveggi@anse of function®y, ...,
@, that all satisfy the equations:
(Fi ) CD) =0.

If one can find no further solutions by means of the Boiskcobi theorem the, ...,
Fo @1, ..., P, define a group in whicky, ..., Fq are distinguished functions. If there are,
in addition,z such functions:

Fat1, -oor Forus

then (8 11, conclusion) one determines them by means of:
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umu-1,..321
operations. Consequently:
Fi= C]_, ceey Fq+/1 = Cq+/1

IS a new system in involution with— ¢ known solutions®d,, ..., ®, _ , of theg+ m
equations & ®) = 0, and the integration of the given system in involuis converted
into that of the new system.

One then remarks that— # must be an even number.— x4 is then the difference
between the number of parametersq and the number of distinguished functians .,
and, from a previous theorem (Theorem 1X), it is taareven number.

38. We are thus led to the especially important problemmtgigrating a system in
involution:
Fi= C]_, ceey Fq+/1 = Cq+/1

in the simplest possible way when one knowss@lutions®;, ..., ®,q of the systemHK;
®) = 0 that, together with thE, define a group whose only distinguished functions are
theF.

To that end, one exhibits the complete system:

(F,F)=0,...,6m,F) =0, @1,F)=0,...,Pq,F)=0,

among whose 12— 23 — m solutionsm are already known, namelf#, ..., Fn. One
determines a further solutidty.1 by means of a:

2n—-2q—-2m

operation. On this, it must be remarked that; cannot belong to the grod, ..., Fm,
Py, ..., Dyq. Fy, ..., Fmare then the only functions of this group that likewiséong to
the polar group and, from our procedufg;; is not a function oF;, ..., Fn,.
With that, our problem is reduced to that of the integratof the system in
involution:
F,= C]_, vy Fre = Cm+1

with 29 solutions®y, ..., @ of the corresponding complete systeff,(®) = 0. Here,
we go further in the same manner. We then pose theletagystem:

(Fl,F):O, ...,Q:m+1,|:):0, GD]_,F):O, ...,@zq,F)ZO,

among whoser2— 20 — m— 1 solutionsn + 1 of them are known, namebl;, ..., Fn1 .
We determine a further solutidi.» by means of a:

2n— 20— 2m-2

operation, and remark, as before, that, cannot belong to the grod, ..., Frn1.
We then treat the system in involution:



Lie — Foundations of an invariant theory of contaah$formations. 65

F1=Cq ..., Fm2 = G2

with the unknown solution®;, ..., @ to the equationsd, ®) = 0, and find a function
Fm+3 by means of a:
2n—-q-2n-4

operation, and then a functiéi..4 by means of a:
2n—-20-2n-6
operation, etc., until finally we get a functien- 4 by means of a:

2
operation.
With that, the integration of the original systemnrolution is converted into that of
the system:
Fi=Cy ..., Fn_q = Cn-q
with 2g known solutions:
P, ..., Dy

of then — gqequations i , ®) = 0. However, the integration of this system will be
accomplished (Theorem XIlll) by my extension of Caucmg&thod with nothing further.
Therefore:

Theorem 52. The integration of a system in involution:
Fl = C]_, . Fm = Cm
with 29 known solutionspy, ..., ®,q of them equations:

(Fi9)=0,..,fm®P)=0
requires a:
2n—-24-2n, 2n-Q9-2m-2, ..., 6,4, 2
operation, while a:

2n—-2-2m M-2q-2m-1, h-2q-2m-2,..., 3,2, 1

operation would be required for the direct applicatiothefextended Cauchy method. In
this, it is assumed that the application of B@sson-Jacobtheorem gives no further
solutions®, that is, thaF, ..., Fm, @1, ..., P2y do not define a group, and that there
the only distinguished functions of this group.

If we then combine the content of the foregoing pardgrdqen we obtain the
following theorem, which gives the most important sifigation of the integrations that
one can deduce from the foregoing in a schematic way.
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Theorem XV. Should one wish to integrate a system in involution:
Fl = C]_, . Fq = Cq ,
and one then know2n + m solutions®y, ..., P22 Of the q equationdF; , ) = O that
define a group, along withsF..., Fq, that contains m distinguished functions, in addition

to F, then the execution of our integration procedure would require an:

mm-1m-2,..,3 2,1,
n-g-Zv-an2n-xy-22v-2m-2, ..., 6,4, 2.

operation. The direct application of the extended Cauchy method requires a:
2n-y3-n-man-xy-2n-m-1,...,3,2,1
operation. In general, the Jacobi method would make much less usewfdtientsd.

Moreover, one easily recognizes that still greatenpkfications can often be
achieved, namely, when one already knows subgroups.

39. In order to compare the accomplishments of this thedttythat of the extended
Cauchy method, | shall go back to the previously-found (no.r@ajion between the
numberr of parameters and the numimeof distinguished functions of a group:

r+m
2

<n

In the present case, since the group:
Fl, ey Fq, q)]_, ...,q)2r+m

contains Z + m + g parameters ang + m distinguished functions, this equation assumes
the following form:
2v+2g+2m
————<n
2
or
2n—-2v—-20-2n= 0.
We first consider the case:
2n—-2v—-20-2n> 0,
and then the case:
2n—-2v-20-2n=0.

2n-2v-q-2m>0
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then one easily convinces oneself that the new me#ugpdres simpler integrations that
the previous method. Then, in this case, one has:

2n—-2v—-xQg-m>m,
and therefore the numbers:
mm-1, ..., 3, 2,1,
2n—-2v-g-2m2n-2v-9q-2m-2, ..., 4,2

are smaller than the numbers:
2n-2v-gyg-2m2n-2v-9-2n-1, ..., 3,2, 1.

B. By contrast, in the case:
2n—-2v—-20-2n=0,

the two methods require just as many operations. Nainelljs case, the new method
requires an:
mm-1,..,32,1

operation, while the old one requires a:
2-20-2v -m2n-29-2v -2n-1, ...,3,2,1

operation, which comes to precisely the same thing.
Finally, we would like to consider the cage= 1 somewhat closer. One must
integrate an equation:

F(X1, ..., Xn, P1, ..., Pn) = CONSL.,

and one knows 2+ m solutions®s, ..., P24, Of the equationK, ®) = 0, from which no
new solution can be found by applying the Poisson-Jacebrém. We assume that the
group:

F, ®q, ..., Popim

containsm distinguished functions, in addition o
If the number of known solutions is:

2v+m<n-1
here, and thus also:
m<n-1
then one will have:
2v+2m<2n-2,
SO
2n-2v-2m-2> 0.

From our reasoning above, our method thus requires simgadgrations than the Cauchy
method, in this case.
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Now, let:
2v+m=n-1.

If v=0thenm=n-1, and the equations:

F=C, ®; =Cy, vy P =Ch
define a system in involution whose integration using my ivgmeent of the Jacobi
method requires only a quadrature in all situations.

By contract, if:
2v+m=n-1

and
v>0
then one has:
m<n-3,
and then:
2v+2m< 2n—4,
or

2n-2v-2m-2>0.

Therefore, the new theory, in turn, requires simpparations than Cauchy’s in this case.

Finally, if 2v + mis equal to 2 then one can either choose one of thekhown
solutions, and then apply Jacobi's method, or also empitly d&f them and follow the
theory above. Both methods require just as many iniegsat This situation, i.e., that
one can derive the same benefits from one known solaisofrom two of them, in no
way represents a defect of the method. It can beegrthat it lies in the nature of things.
If 2v + mis greater than 2 then | do not need to compare mynmetlvod with Jacobi’s.
In that case, the latter is in the background of Cauchy’s

We now consider the case:

2v+mz=n.

From my previous argument, the unfavorable case in whichmathod offers no
simplification shall emerge when:

2n-nN-2n-2=0.
This condition enters in when the group:

Fl q)la ey cDZw—m

contains the largest possible number of distinguished iins;tand otherwise never.
Thus:

Theore, XVI. Should one wish to integrate an equation:

F(Xt, .-y X, P1s ---, Pn) = CONSL.,
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and one knows more than two solutigns ... @, of the equatiorfF, ®) = Othen my new
theory always simplifies the background integration difficulties, assyonly that:

rz2n,

along with the demand that the group®, ... ®, should contain the largest possible
number of distinguished functions, in which case, my method demands juangs m
integrations as the older theory.

§ 18.
Schematically executed examples.

40. In order to make the meaning of the foregoing theoriesgarclearly, | will treat
some examples schematically.

A. Let:
P10 —f(X1, ..., X10, P1, +--, Pg) =0

be given, with seven known solutiogs, ..., ¢ of the equationgyo —f, ¢) = 0, which,
together withpyo — f, define a group. Here, four different cases are imagntiat
require a different treatment.

1) Our group contains only one distinguished function begige-f. In that case,
the background integration process requires a:

1,10,8,6,4,2
operation.

2) Our group contains three distinguished functions bepidesf. In that case, a:

3,2,1,8,6,4,2
operation is necessary.
3) If the group contains five distinguished functiorenthesidep;o —f then a:

54,32/16,4,2
operation is necessary.
4) Finally, if the group is a system in involution tharly a:

4,2
operation is necessary.

Previously, one wished only to treat the latter casiah a simple way, and indeed
this only when the system in involution in question fudfilithe known condition (8 7).
The remaining cases were not knowdne always required an:
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11,10,9,8, ...,3,2,1

operation, or with the use of Jacobi’s theory of miiéig, an:

operation.

11, 10,9, ..., 4,3

, 2

| summarize this example by means of the following table

1 distinguished function 1,10,8,6,4,2

3 distinguished functions 3,2,1,8,6,4,2

5 distinguished functions 543,2,1,6,4,2
7 distinguished functions 4,2

Except in the last case, with the use @
the theory of multipliers, one previous

f11, 10,9, 8,7, 6,5, 4, 3, 2,
ly

needed the following operations

B. Let:

plO—f =0

70

be given, with 8 known solutiorng, ..., ¢s to the equationpgo —f, @) = 0. They, along
with p1o —f define a group that contains 8 or 6 or 4 or 2 or no distihgdigunctions in

addition top;o —f. The following table gives the necessary operatiotisese cases.

no distinguished functions

2 distinguished functions

4 distinguished functions

6 distinguished functions

8 distinguished functions

Except in the last case, with the use @
the theory of multipliers, one previous

needed the following operations

f10, 9, 8, 7, 6, 5, 4, 3,
ly

C. Let:

plO—f =0

be given, with 12 known solution, ..., ¢1» to the equationpgo —f, ¢) = 0, from which,
no further ones could be derived by using the Poisson-JHoediem. The following
table explains the possible cases, as compared to thenwdtieod.
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no distinguished function 6, 4,2

2 distinguished functions 2,1,4, 2

4 distinguished functions 4,3,2,1, 2

6 distinguished functions 6,5 4,3, 2 1
Except in the last case, with the use af6, 5, 4, 3, 2

the theory of multipliers, one previously

needed the operations

Except in the last case, my theory thus gives a remuadn the number of
integrations.

§ 19.
Suggestions for some further simplifications of the integrabn.

41. The great importance of the integration theory tead developed lies especially
in the fact that in the treatment of a first-order,tiphdifferential equations by the
methods that Mayer and | gave in the Spring of 1872, ona& diftds oneself in the
following position:

A system in involution:

Fl,:C]_, veny Fm:Cm

is to be integrated, and one already knowsguencef functions®;, ..., ®, that satisfy
all of the equationsH , ®) = 0.

It therefore seems natural to pose the question: hhost one proceed in order to
reduce the background integrations as much as possible in tegtreir number and
order?

Those simplifications that are thus always achievedymen in the last paragraphs.
All that remains to be shown is how one can explut $ituations that can arise in the
further treatment of the problem to the best advantage.

Let a system in involution be given:

Fl,:C]_, faay Fm:Cm

with r solutions®y, ..., ®, that satisfy then equationsk;, ®) =0, from which no further

solution can be calculated by the use of the Poissambil#doeorem. (In this, we can

assume that the grol, ..., Fn, @y, ..., ®, contains no distinguished functions other

thanF. In the contrary case, one can determine them amdaitid those functions ko)
From our general theory, we pose the complete system:

(F, F)=0, ..., €En F)=0, @y, F)=0, ..,@, F)=0

and seek common solution of it that is different frbm ..., Fy, by the use of Mayer’s
theorem. If one succeeds in determining such a soluten, tas is known, one very
often simultaneously finds more of them — perhap$them:



Lie — Foundations of an invariant theory of contaah$formations. 72

I_I]_, ,I_Ip

It is now conceivable that the application of the BamsJacobi theorem gives still further
solutionsl 7). In any case, one can always calculate the grougstdatermined by our
functions:

Fi, ..., Fmy @1, ..., P, My, ..., Mg .

The original problem is thus reduced to the integratioh®flstem in involution:
Fl = C]_, . Fm = Cm,

with the known solution®y, ..., &y, My, ..., MNg.
Before one goes any further here, one must, as usuadtigate whether the group
Fi, ..., Fm, @1, ..., &, My, ..., Mg contains still more distinguished functions besides the
F. If such functions exist then one determines them,thackby our problem again
assumes the original form:
A system in involution:
F,= C]_, . Fm+q = Cm+q,

with k known solution€2,, ..., Q¢ of them+q equationsK;, Q) = 0 is to be integrated,
where theF are the only distinguished functions of the group in tjoles Here, one
proceeds in the same way.

Here, the remark can find its place that the foregtiiegry can take on another form,
in part, namely, by applying a theorem that has a closeection with my new method
of integration:

Theorem XVI. Let a system in involution be given:
Fl = C]_, . Fm = Cm,

in the variables<, ..., X\, P, ..., pn, and let®d,, ..., ®q be known solutions of the
equations i, ®) = 0. One can, in turn, reduce the system in involutioa gingle
equation of the form:

f(X1, ..., Xn-m, P1, ---, Pn-m) = CONSL.,

in such a way that the integration of this one equatimounts to that of the system in
involution, andq solutionsgs, ..., @4 of (f, ) = 0 can likewise be given.

") I have convinced myself that this case can agtaaise by an example.
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§ 20.
Treatment of the three-body problem using my general method.

42. It is known that Hamilton and Jacobi have shown #mt problem in celestial
mechanics can be expressed by a certain first-orderlg#fterential equation:

H(X1, ..., %, P1, ---» Pn) =&

The known integrals of the simultaneous differentiglations that the problem in
guestion immediately defines give just as many solutibtiseolinear equation:

(H, F) = 0.

My general theory now teaches us how one must gntp® known solutions in any
individual case in order to reduce the background integratisnauech as possible in
regard to their number and order. As an example, | shathse the three-body problem,
and thus first assume that one body is fixed. | thiéin give a direct treatment of the
general case.

If three material bodies, one of which is fixed, mdwe means of their mutual
attraction then the three-surface theorem is valid.denote the partial differential
equation that expresses the problem by:

H(Xl, vy X6y P1, ...,pe) =34,

and the three solutions of the equatibh) ) = 0 that correspond to the surface theorem
by:

Fi, F2, F3.
As is known, the relations:

(F1,F2) =F3, (F2,F3) =Fq, (F3,F1) =F2

exist between them, and therefdig F,, F3 define a three-parameter group that is not a
system in involution, and therefore contaorse distinguished functior®. The same
thing will be determined by any two of the equations:

(Fl,CD):O: F3a£—|:za£,
oF, oF,
(FZ,CD):O:— F36£ +Fla£,
oF, oF,
0P 0P

E. o =0=F 2 -F, %%
(Fs, @) “oF, o,



Lie — Foundations of an invariant theory of contaah$formations. 74

Here, if one integrates by the usual rules then one fivats
®=F?+F +F2.
It is clear that the four-parameter group:
H, F1, F2, F3
contains two distinguished functions:
HandF?+F/+F/.

Thus, any system in involution that contains this group etmsdf at most three
parameters. One such system is:

H=a Fi=Dh, F2+F2+F2=c.

The original problem is then reduced to the integratiothisfsystem. However, my new
integration method teaches us that it is always p@ssbéxhibit an equation of the form:

f(X]_, ey X4, P1, ...,p4) =0

that is equivalent to the system in involution aboveonFMayer’s and my older theory,
the solution of the original problem thus requires only a:

6, 4, 2
operation.

43. Now, let:
H(Xl, vy X9, P1y -y pg) =a

be the partial differential equation that is equivalenthe general three-body problem.
Let:

P92 @3

be the three solutions of the equatidh ¢) = O that correspond to the three center-of-
mass integrals, and furthermore let:

PaPs Po

be three solutions that correspond to the surface thepashdinally, let:

$7. 08 Po

be the solutions that arise from the center-of-mategials by eliminating time. One
must then remark that one relation:
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P17+ Popsgt+P3pe=0

exists between the 9 functions. The functighs ..., ¢ g define an eight-parameter
group. We will find that it contains two distinguishechdtions, and that as a result, it is
possible to select five-parameter systems in involutiom our group.

From our general theory, we must exhibit the deternimgth 8 rows and columns

that is defined by alld;, ¢):
(¢1’¢1) (¢1’¢8)
A= -« . .|
(¢8’¢1) (¢8’¢8)
One finds that:
0 0 0 ¢3 _¢2 0 M¢3

0 0 ¢, 0 ¢ -Mg, 0
0 0 ¢, -9 0 Mg, -Mg,
¢ 9, 0 ¢ ¢ 0 P
~¢, 0 ¢ ¢ 0 ¢ 9 0
9, —¢ 0 ¢, 0 ¢ -9,

0 Mg, -Mg, 0 ¢, ¢ 0 Mg,
-Mg, 0 Mg, ¢, 0 ¢,-Mg, 0

o O O O

whereM is a constant, and ¢ is determined by the identity:

P17+ Popst+ Pape=0.

The calculation of the determinant shows that iedual to zero. Thus, our group
contains, in any case, one, and as a result, attieastlistinguished functions. If it had
more than two such functions then there number would lnedolarger. However, all
sub-determinants of second and third order would then vaamshone verifies, with no
difficulty, that there are sub-determinants of thiathd also second) order that are non-
zero. Therefore, our group has two distinguished funstand thus contains systems in
involution with five parameters, and none with more tifige parameters. If such a
system is found then its parameters, together Witldefine a 6-parameter system in
involution whose integration by my method can be reducélktioof a single equation:

f(X]_, ey X4, P1, ...,p4) =0.

In order to select a five-parameter system in involutipn the simplest possible
operations (8 15, 33) from the eight-parameter group, warkethatg 1, ¢, @¢3, @4,
@5, ¢ 6 define a six-parameter subgroup that contains the syst@miolutiong 1, ¢,
@3 . If we examine the determinant of the six-parameteugithen we find that this
group also possesses two distinguished functions. Thumjthins systems in involution
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with four parameters and none with more than four. Wk seich a system that
possesses the form:

P1, 92,93, D(P1, P2, P3, P4, Ps5,Po)

The function® will be determined by two of the equations:

(#1,9)=0, @2,9)=0, @3, P)=0,

which, by developing and substituting the valuesgof, @ ), assume the form:

o oD
¢3a_¢5 ¢26—¢6—0,
o oD
¢36_¢4+¢16_¢6 =0.

If one integrates these by the usual rules then one thadis

P=@1ps+ @205+ P3ps.

We thus know one four-parameter system in involution:

(A $1, 92,93, 9104+ P2ps+P3pe

of the eight-parameter group. In order to now find fda@ameter systems in involution,
we need to determine only one functibnof the group that is in involution with the
functions A). When one follows the usual rules, one fint® be the function:

(M@ s—p7)°+ MPs—pg)°+ Mps—@o).

With that, the desired system in involution is fould After that, an elimination will
give an equation of the form:
f(X]_, e X4, P1y -y p4) = 0,

to which the integration of the three-body problem vatluce. This known result is thus
reduced by its intrinsic nature.
Before Mayer and | published our integration method iryda 1872, the solution of
the problem by the Jacobi-Weiler method required a:
6,4,4,2, 2

operation. Our work showed that only a:

") Clebsch reduced the integration to the system ialimion that was presented here in his lectures on
the three-body problem.
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6, 4, 2
operation was required.
It is self-explanatory that the reasoning of this paplgrextend to the general
problem ofn bodies with no further assumptions

*

) I will develop the mechanics of amfold extended manifold with constant scalar curvatune o
another occasion. The integrals of the equatiomsation, which have their basis in the free mobibfy
the space in question, can be presented by means of algaireriple that | will give at another time.
This treatise will then show how one is to employ ¢hiedegrals best. It is not known to me whether the
theory that | just suggested has already been presented.



Part three

Theory of homogeneous groups.

In this Part, | will consider a number of homogeneawstionsHs, ..., Hy of Xg, .., X,
p1, ..., pn and determine all of the relations that exist betweemthhat remain
unchanged under homogeneous contact transformations. heAtsame time, the
corresponding problem for arbitrary functionszpks, .., X, p1, ..., pn that are subject to
arbitrary contact transformations will be solved.

§ 21.
Homogeneous groups.

44. First, we shall introduce a new concept. It restswtpe following theorem:

Theorem 53. If Hy andHg are homogeneous functions of degoeand S, resp. then
(Ha, Hp) is homogeneous of degree { S+ 1).

One then has:

(Ha, Hp) = Zn‘,[aaH” M, _oH, aH/”j.
X 0p 0p 0x

i=1

Now, 0H, / 0x; anddHg / 0x are homogeneous of degreeand S, resp. Furthermore,
OH. / dpi anddHz / op;i are homogeneous of degree- 1 andS — 1, resp. Therefore,

oH oH
aH—”E—I—ﬂ, as well asaH—”E-l—ﬂ, are of degreer + S+ 1. Thus, ., Hp is also of

ox  dn op. 0%
degreea + £+ 1.

Corollary. If two or more homogeneous functiohs, ..., H, generate arm-
parameter group then in any form in which they are featuhey consist ofr
homogeneous parameters. As far as that is concernednost remark that functions
that belong to such a group are not homogeneous, in general.

Definition. An r-parameter group is calledhomogeneousnvhen it contains r
homogeneous, mutually independent functions.

Theorem 54. If Hy, ..., H, are homogeneous functions that define a group,Fand

denotes an arbitrary function of this group trEnpka—F also belongs to our group.
k=1 Py

When one first sums ovég and in so doing recalls that &l are homogeneous —
perhaps, of degree- the equation:
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D OF _ & OF OH,
2Pap, " &% o on,
goes to:

‘. oF
Zpk _ZSG?EHW

op, i=1 i

However, the right-hand side is a functiorHaf ..., H;, here.

Theorem 55. If Ky, ..., K, define a group that possesses the propertyZElﬂg—K

k=1 Py
can be expressed in termskothen the group is homogeneous.

Namely, if some of the expressions:

i pk——Q(Kl, . Kr)

are non-zero then the equation:

or the corresponding one:

r q) _
2% =

i=1
is a linear, partial differential equation withmutually independent solutions:
q)]_, ceay q)r

that are homogeneous of degree 1 and belong to our grouply,Rfrel Q; are equal to
zero then this means that Kllare of degree zero; the group is also homogeneous in this
case.

Theorem 56. If all functions of a homogeneous group have degree temm the
group is a system in involution.

In fact, letNs, ..., N; be functions of degree zero that defingguarameter group. If
the expressionN;, Nx) is non-zero then (Theorem 53) it must be of degree Ndw, it
is, however, possible to express a function of degreen+telrms of quantities dfiy, ...,
N; of degree zero. Thus, alN( Ni) must be zero, and the group is a system in
involution.

Theorem 57. If a homogeneous group contains functions that are lhotf degree
zero then the group can take the fa¥m ..., N;-1, H. Here, allN functions are of degree
zero andH is a function of degree one.
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Namely, if Hy, ..., H, are homogeneous functions of our group then it is always
possible, when one replaces e&tith a certain power of it, to given the group a form:

N]_, ey Np, Hp+1, ...,Hr

that includes only parameters of degree zero and one. iNowe sets:

H . H
H”rl =Npa, -, Hfr-l =Nr-1
then
Ni, ..., N1, H

is a form for our group that fulfills the stated reqments.

§ 22.

The polar group and the distinguished functions of a homogeoes group
are homogeneous.

45. The theory of this Part rests upon a theorem tleatwll now prove. First, we
give a lemma.

Theorem 58. The equations:
(H,K) =0, 2 pk——
in which s denotes a constant, imply the follovong:

A oK
H)) po— | =
[ ; kapkj

AH)=H K,  BH= p 6—“—

k=1

If we set:

then, sinceA(0) = B(0) = 0, any common solutiod of our two equations is also a
solution of the equation:
A(B(H)) —B(A(H)) =0

However, by performing the calculations one finds that:
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k=1

AGB(H)) —BAH)) = H, K) - [H Sh, ZTKJ

Thus, our two equations do, in fact, imply the third one:

0 oK
H, p.— | =
[ ; kapkj

Theorem XVIII. The polar group of a homogeneous group is homogeneous.

Proof. LetH,, ..., H- be homogeneous functions that definergrarameter group,
and letKy, ..., Konr be the polar group. The equations:

n OH,
(Hi, Ky =0, zpk =s Hi,
1 0P,

are, in turn, valid, which, from the foregoing theorémplies the following ones:

[H Zn:pk apkj (=1, ..,r).

k=1

n. 0K
Therefore, the groufs, ..., Kon—r possesses the property that the expresﬁ’ppk £

k=1 Py
is a function of the quantitids,, ..., Konr, in any case. Thus (Theorem 5K), ..., Ko
define a homogeneous group.

Theorem 59. LetHy, ..., H; be a homogeneous group. The equations:
Lo 0P
(Hi,®) =0, ..., :,P) =0, > P 6_

k=1

in turn, define a complete system if the last equationois an accidental algebraic
consequence of the remaining ones.

The polar group ofl4, ..., H; is, in fact, homogeneous, and thus possesses (Theorem
57) either the forniNy, ..., Non—r , H or the formNg, ..., Non—r . In the first case, there are
2n—r — 1 of the 2 —r solutions of the complete system:

(A Hy, @) =0, ...,,P)=0

namely,Ns, ..., Non , that likewise satisfy the equation:
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0 fh[0)
(B) > p-— =0
k=1 Py
Thus:
(Hy, ®) =0, ..., H:, @) =0, zpka__ :

k

in turn, define a complete system. In the second edissplutions of equation\j are
likewise solutions of B), an equation that is then a consequence, and indeed and
algebraic consequence, @¥)(

It must be remarked that in this last case one mysgtrhan. The polar group, since
it consists of functions of degree zero, is then (Téeo56) a system in involution, and
can thus contain at mostparameters.

With the use of the last theorem, | will give aregration method for the equation:

P, Poa | —
N,| X, -, X ,— ,-- ,——= | = const.
1[)9 A P, j

that agrees with Mayer’s and my previous theories inrdegathe number and order of
necessary integrations.
| pose the complete system:

n

N F)=0, 3 p a—F ,

k=1

and determine a solutiox, of it by means of arR— 3 operation.Ni, Ny is, in turn, a
system in involution. | pose the complete system:

(N, F)=0, (F)=0, ipk——,

and determine a solutidds of it that is different fronN; andN, by means of are— 5
operation. In this way, one finally finds a systemmivoilution:

N; = ay, N2 = a, ...,  Nn=an
One eliminates the differential quotieqts ..., p, from these equations, which is always
possible, since thp appear only as ratios, then one obtains an equatigi in, X,, or
more in some situations, that represents the one etengdlution of the given equation.

46. We now turn to the distinguished functions of homogaseroups.

Theorem XIX. The distinguished functions of a homogeneous grdefne a
homogeneous group.
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Namely, letHy, ..., H, be a homogeneous group, andHKet ..., Ko, be its polar
group. If these two groups possessommon distinguished functions then (Theorem
VII) it is always possible to choose- mparameters in the first group — sély, ..., Hi-m
— such that no relation exists between the-2n quantities:

Hll ey Hr—m, Kll ey K2n—r .

These functions, in turn, define a group, and indeed a homogegeoup, whose polar
group, which must likewise be homogeneous, consists adigtimguished functions of
the original group (Theorem 25, proof). Our theorem is pinaged.

Theorem 60. If some of the m distinguished functions of a homogeneous group have
non-zero degrees then one can determine all of the distinguished functioesy oh
an:
m-1m-2,...,3,2,1,1

operation. My older method required anmm— 1, ..., 3, 2, loperation.

Proof. We restrict ourselves to the case in which our growgadyr possesses the
form Ny, ..., Nr-1. If we denote a function &, ..., N.-1 by N then the equations:

(Nl, N):O, veey (\Ir—la N):O, G",N):O,

or, when they are developed:

r-1 aN
a N, N)— =0, ...,
(a (N N3

k=

r

oN
oN,

-1
(H,N,) =0,
=)

k=

determine the distinguished functions of degree.zédow, the K , Ny) are functions of
degree — 1, andH( Ny) is a function of degree zero M, ..., N1, H . Therefore, this
expression must have the form:

(Ni, Nk) - fik(Nlil‘_i" Nr—l) ,

(H, Nk) = ¢ik (Nl, . Nr—l)-

By substituting these values, one converts equaii@n when one multiplies the first—
1 of them byH, intor equations that only contain the- 1 independent variablés, ...,
N;-1; the variableH has vanished completely. One now establishesrhany common
solutions our linear equations possess in the usual way. if leem of them — i.e., if
all distinguished functions are of degree zero enthas usual, their determination
requires:

m-1m-2,..3 21
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operations. After one has determimad- 1 distinguished functions of degree zero in this
way, one finds a further distinguished function thatds of degree zero by one more
operation.

§ 23.
Canonical forms for homogeneous groups.

We shall first prove some lemmas. We then present ¢anonical forms; any
homogeneous group can assume the one or the other ofwltekems. For the sake of
convenience, | will always need that symib®lin the sequel in order to denote a
homogeneous function of degree one.

47. Theorem 61. Among the functiong of a homogeneous grolh, ..., Ni-1, P
that satisfy the equation:
(N1, F) =1,

there is one that has degree one, and thus possessésrthP ON (Ni, ..., Ni-1).
Obviously,N; cannot be a distinguished function.

By performing the calculation, we then find that:

(N1, PN) = (N3, P) N + (N1, N) P,
or

r-1 aN
(N1, PN) = (N3, P) N + D" (N;, N, ) P—.
=] oN,

Here, (1, P) has degree zero, whildl{, Ny) has degree — 1, and thidi,(Ny) P also has
degree zero. Therefore, these expressions, whickr@wn functions oy, ..., Ni-1, P,
must then have the form:

(N1, P) = @(Ny, ..., Nr-a),

(Nl, Nk) P= fk(Nl, ceny Nr—l)-

By substituting these values, however, the equ@hegnPN) = 1 is converted into the
following one:
<, ON
N+ > f =1
¢ kZ 3N

k

which no longer containB, at all, and is a linear, partial differential etjon with the
independent variableN;, ..., N.-;. If N is an arbitrary solution of it theR N is a
function of degree one of our group that fulfiletrequirements of our theorem.

Theorem 62. A homogeneous group of the fol, ..., Nr-1, P contains functions
N(Ny, ..., N-1) of degree zero that satisfy the equation:
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(P,N)=1,
when one naturally assumes tRat not a distinguished function.
One then has:

oN
oN, '

(PN =3 (PN

and @, Ny, as functions of degree zero, must be expressitilErms of onlyNy, ..., Ni—1.
Thus, if:

(P, Nk) = fk(Nl, ceny Nr—l)
then

is a linear, partial differential equation on N ah@ independent variablés, ..., Ni—;
whose solutions belong to our group, and have #dwredl relationship with the given
functionP.

Theorem 63. If a homogeneous groul,, ..., Nr-1, P contains a two-parameter
subgroupNs, P then the ( — 2)-parameter subgroup that is in involution witle tfvo-
parameter one is also homogeneous (Theorem 34).

Namely, ifHi, ..., Haonr is the polar group dfl, ..., N1, P then it is known that:
H]_, ceay H2n—r, Nl, P

is a homogeneous group whose homogeneous polap ggqgust the  — 2)-parameter
subgroup that we spoke of. Our theorem is thepebyed.

48. Theorem XX. A homogeneous group can always assume the form:
X1, P1, .oy Xgy Pgy Ug, ...y, Un.

Here, X and R are functions of degree zero and one, resp., tlate the known
reciprocal relationships. 4 ..., Uy are the distinguished functions of the group that
define a homogeneous group, in their own right.

Proof. If the given homogeneous grotfy, ..., H; is a system in involution then it
already has the desired form. If that is not thgecthen one take§ to be a function of
degree zero and then determines a function of degmeP; of the group from the first
theorem of this paragraph using the equation:

(Xl, Pl) =1.
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One then determines (prev. theorem) the homogeneesu8){parameter subgroup:
HO e HE,
I | r—
that is in involution withX;, P1. With that, the original group assumes the form:

Xy, Py, HY, ..., HY,.
If H®, ..., HY, is a system in involution then the original group is adsein the
desired form. If that is not the case then we decoengd¥’, ..., HY, into two
homogeneous groupé, P, and H®, ..., H® that are in involution, from which the
original group assumes the form:

X1, Py, X2, P, H?, ., HE).

If H?, ..., H®, is a system in involution then the desired form has tieend. In the

contrary case, we perform another decomposition, etc.
If finitely many decompositions — sag|,— are possible then our group has assumed
the desired form:
X1, P1, ..oy Xqy Pgy H?, ., HY)

r-2q *

Here, two further cases are now conceivable. Eithef #he distinguished functions are
of degree zero, or there are some distinguished fusctidrose degree is non-zero.
Thus:

Corollary 1. If all distinguished functions of a homogeneous group are of degree
zero then:

xll Pll "'lqu qu xq+1l ---,xq+m

is the canonical form of the group. Hereaxd R denote functions of degree zero and
one, resp., that have the known mutual relationships.

Corollary 2. If a homogeneous group contains distinguished functions that are not of
degree zero then:

xll Pll ey qu qu xq+1l ey xq+m—l, Pq+m,
or, what amounts to the same thing:
xll Pll ey qu qu Pq+1l ey Pq+m,

is the canonical form of the group.
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The arguments at the end of the foregoing paragraph lstravone decides whether a
given homogeneous group belongs to the one or the other bi/d stated categories.

§ 24.
Invariant properties of a homogeneous group.

I will now prove that the only properties of a homogere group that are
independent of the form of it, and thus remain unchanged @mbirary homogeneous
contact transformations (which obviously always take given group to a new
homogeneougroup) can be expressed by means of three positive whaleens:

1) The number of parameters.

2) The number of distinguished functions.

3) The number of distinguished functions of degree zero.

For this investigation, | embark upon a path that is vemylai to the one that |
followed in § 13, to which | shall refer.

49. First, | consider groups whose distinguished functionsibd degree zero.

Theorem 64. If Xy, ..., Xq+m, P1, ..., Pq define a homogeneous group then there are
always functionsPq:1 such thatXi, ..., Xgm, P1, ..., Pg+1 defines a new canonical
homogeneous group that envelops the given one.

The polar group oKy, ..., Xq, Xg+2, ..., Xg+m, P1, ..., Pg+1 is then homogeneous and
containsXq+1, Which is not a distinguished function. From the sectheorem of the
foregoing paragraph, our polar group thus contains functbdsgree one — safg:1 —
that yield:

(xq+1l Pq+1) = 11
and thus satisfy all of our requirements.

Theorem 65. If Xy, ..., Xq+m, P1, ..., Pq define a homogeneous group then there are
always functionsPg+1, ..., Pg+sm such thatXy, ..., Xgm P1, ..., Pg+m is @ canonical
homogeneous group that envelops the original one.

This theorem is obtained immediately upomafold application of the previous one.

Theorem 66. Xi, ..., Xq, Py, ..., Pq define a homogeneous group an& m then
there is always a functioXy:1 of degree zero that is in involution with our grouf, ...,
Xg+1, P, ..., Pq s, in turn, a new canonical group that envelops thengivee.

The polar group oXy, ..., Xy, Ps, ..., Pqis then homogeneous, and consists of at least
two parameters. It therefore contains at leastfonetion of degree zero that satisfies
our requirements.
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Theorem 67. If Xy, ..., Xy, P4, ..., Pq is @ homogeneous group then there are always
further functionsX andP of degree zero and one, resp., such Xaat.., X,, Py, ..., Py
define a canonical homogeneous group that envelops theayeen

This theorem follows as corollary to the previous one.

Theorem XXI. If two homogeneous groups whose distinguished functions are all of
degree zero possess equally many parameters and equally many distinguinsttiechs
then there are always homogeneous contact transformations that take theoopear
the other one.

Proof. Let the parameters of one group be functionsipf.., p,, and the other,
functions of x, ..., p,, respectively. From the assumptions made, the twopgrean

assume the canonical forms:
X1y vooy Xgrmy Py o0y Pg
Xy oo Xgoms By ooy B
where theX, P are naturally functions of the p, and theX', P’ are functions of th&', p'.
From the foregoing theorem, there are always furlinectionsX, P (X', P', resp.)
such that:
X1, cony Xy P1, o, Pand X7, ..o, X],

in turn, define canonical homogeneous groups.
From Theorem X (proof), thenZzquations:
Xi = Xi' ) Pi = R’

thus define a contact transformation. However, ties$ the one group to the other one;
it is, moreover, homogeneous, so the theorem is proved.

50. We now turn to the homogeneous groups with distinguiéinections that are
not all of degree zero.

Theorem 68. If X4, ..., Xq, P4, ..., P+m define a canonical homogeneous group then
there are always functiong:1 such thaiXy, ..., Xg+1, P1, ..., Pgsm , in turn, is a canonical
homogeneous group that envelops the given one.

The polar group oXy, ..., Xq, P1, ..., Py, Pgs2, ..., Pq+mis homogeneous and contains
Pg+1, Which is not a distinguished function of it. TherefdiTheorem 62), this group
contains functions of degree zero that yield:

(Pq+1l Xq+1) = 11
and thus satisfy our requirements.
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Theorem 69. If X, ..., Xq, Py, ..., Pg+m iS @ canonical homogeneous group then there
are always functionXg.1, ..., Xem such thalXy, ..., Xgrm, Ps, ..., Pg+m defines a canonical
homogeneous group that envelops the given one.

This theorem arises immediately from thdold application of the previous one.

Theorem 70. If X4, ..., Xq, P1, ..., P+m define a canonical homogeneous group then
there are always further functiodsand P such thatXi, ..., Xn, P1, ..., P, defines a
canonical homogeneous group that envelops the given one.

This theorem follows by successive application of thevipus theorems of this
paragraph.

Theorem XXII. If two homogeneous groups whose distinguished functions are not
all of degree zero possess just as many parameters and distinguishexhfutien there
is always a homogeneous contact transformation that takes the one group to the othe

From our assumptions, our group can then assume d@he o canonical forms:

X1, ooy Xqo P1y oo Pgsmand X!, ..., X!, P, ., P!

q+m?

U

resp., where al, P are functions ok, ..., pn, and allX', P" are functions ofx, ..., p;.
Therefore, there are further functiodsP andX', P’ such that:

Xty ooy Xn, P1, ooy Prand X/, ..., XU,
is also a canonical homogeneous group. Thus,rtleg@ations:

Xi:xi’l Pi:Pi’l

in turn, define a homogeneous contact transformationtétkas the two groups to each
other.

Corollary. The only properties of a homogeneous group that are independent of its
form and remain unchanged under homogeneous contact transformations are:

1) The number r of parameters.

2) The number m of distinguished functions

3) The number of distinguished functions of degree zero, which must be equal t
either m or m+ 1.

Here, r is a positive whole number that cannot be greater BmanMoreover, we
have found in the foregoing Part that r — m must be a positive even nuantddinally,
that r+ mis equal to at mos2n.
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51. There are no obstacles at all to extending theryhaioparagraphs 14, 15, and 16
to homogeneous functions and homogeneous contact transrsna

This shows that the invariant relations between a lemeous group and a
homogeneous subgroup are determined completely by way tdf rmignbers. The first
six of them define the individual invariant properties atle of the two homogeneous
groups. The last two are the numhkmerof common distinguished functions and the
number,cwor w— 1, of common distinguished functions of degree zero.

Should one select a system in involution from a homeges group, then it would
always be possible to arrive at a reduction in the arfigtre necessary integrations.

Should one decide whethegiven homogeneous functiohs, ..., H, can go toH,,

.., H,;, resp., by a homogeneous contact transformation, therc@uld always assume
(8 16) that all of theH;, and likewise, all of theH,, are mutually independent. A first

requirement is that the corresponding functions otwesystems should be of the same
degree. If this demand is fulfilled then one determinge#) & 16, the two groups:

H]_, ...,Hr, ...,Ha and H]’_, ey H’, ceay H':

r a

that are determined by our groups. Heremust be equal tar, and furthermore, every
(H/, H;) must be expressible in terms of the in the same way that the corresponding

(Hi , Hy) are expressible in terms of the. If all of these requirements are fulfilled then
one recognizes that the desired transformation is pessibt indeed, it will obviously
be ahomogeneousgansformation.

With that, all of the relations betweél, ..., H; that remain invariant under arbitrary
homogeneous contact transformations are found.

§ 25.

Reductions of the integration that are based on the foregoingestelopments.

The foregoing theories show how one can exploicift@imstances that arise in the
integration of a partial differential equation:

F(Z, X1, ooy Xn-1, P1y -y pn—l) =0

to the best advantage. As | proved in § 17, 18, and 19, dfpdaian restrict myself to
the following.

52. | assume that a system in involution of degree zero:
N]_ :C]_, saay Nq:Cq
is to be integrated, and that one knows a number obgeneous functionsy, ..., H,

that satisfy all of the equationBli(, Hy) = 0. If it were impossible to determine further
functionsH by means of the Poisson-Jacobi theorem ten.., Ng, Hy, ..., Hy would
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define a homogeneous group. We now first consider the itasvhich this group
contains distinguished functions that are not of degee® and then the case where all of
the distinguished functions are of degree zero.
A. If the groupNy, ..., Ng, Hy, ..., Hy contains, in addition tdNy, ..., Ng, m
distinguished functions:
Nq+1l ey Nq+m—l, H
that are not all of degree zero then one determines {Rle@orem 60) by means of:
m-1m-2,...,3,2,1,1
operations. Thereupon, one poses the problem of integtae system in involution:

N1 = Cq, ---,Nq+m:Cq+m,

with r — mhomogeneous solutiots, ..., H,-mof theq + m equationsNi, H) = 0, in the
simplest possible way. To this end, one exhibits the emsati

(A (N1, H) =0, ..., Ngrm, H) = 0, H,N)=0, .., H-mN=0

$p N -

=) 6
which must define a complete system. In fact, if thiarmpgroup of the group:

N]_, ceay Nq+m, H]_, ceay Hr—m
consisted of only functions of degree zero then this pgriaunp would be identical with
the totality of all distinguished functioms, ..., Ng+m. However, the integration of our
system in involution would (Theorem XIlll) already be adesed to be achieved; we
thus do not need to consider this case. One kmowsg solutionsN;, ..., Ngm Of the
complete systemA); one then finds a further solutidy.m+1 by means of a:
2n—-2Q9-r—-m-1

operation. With that, everything is reduced to the irtign of the system in involution:

N1 =Cy, ..., Nq+m+1 = Cq+m+1 )

with r — m solutionsHs, ..., H;, of the systeml,, H) = 0. One now proceeds in an
analogous way, and determines a funchign.., by means of a:

2n-Q-r-m-3

operation, etc., and finally determines a last fundNdsy means of a 1-operation.
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With that, from my previous argument (Theorem Xlk)e integration process is
concluded.

8 26.
Completion of the theory of the Poisson-Jacobi theorem.

The Poisson-Jacobi theorem is capable of a complétain will now give. First, |
consider arbitrary functions &f, ..., pn, and then homogeneous functionxqgg.

53. If ¢ andg, are solutions of the equation:

(f,9)=0

then the Poisson-Jacobi theorem says iha#4) is also such a solution.

There are some related theorems, of which | wik ¢he following one, which
originates with Laurent:

If @ =¢1, ..., & U, ..., §c are any R solutions of the equatiof, ) = 0 then:

5 300, 0600, 0u,
Py axﬁl axﬂk 0 p/‘l 0 Qlk

is always one, too.

Mayer drew my attention to this theorem, and remarkedl the same way would
probably give those solutions that one could obtain bysticeessive application of the
Poisson-Jacobi theorem. As a response to that, hdase him of the theory of this
paragraph.

Theorem 71. If all common solution§ of the equations:

(P, F) =0, ..., g, F) =0
also simultaneously satisfy the equation:
(n,F) =0
thenll belongs to the group;, ..., P4 that is determined bypy, ..., @, ..., P; .

The common solutions of the givgrequations are then the solutions of the complete
system:
(P, F) =0, .. 0@,F=0.
If one denotes them W, ..., Fan then one must have:

(I'I, Fl) = 0, veny ‘\_l, F2n—r) = 0,
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that is,I1 must belong to the polar group®f, ..., Fon+ . However, this polar group is
just @y, ..., O, itself.
This immediately yields the following remarkable theorem:

Theorem XXIII. Of one knows any ¢ solutiods, ..., ®q0f the equation:
(F,®)=0

and one finds a further solutidin from these solutions by any sort of operations that are
entirely independent of the form of the function F thlealways belongs to the group
that is determined b®;, ..., ®q.

54. This theorem is no longer correct when the funckois subjected to certain
restrictions. | will consider the important case ihieh F is a homogeneous function,
and develop a corresponding theory for it.

We have previously seen (Theorem 54) that any homogeneows tat contains a
function® must likewise contain the function:

zpk

apk

and that, conversely (Theorem 55), a gr@yp..., ®,is homogeneous when any:

n

0P
z pka_

k=1

can be expressed in terms of e As a result, | can speak about the homogeneous
group that is determined by a given function, and likewiseithe homogeneous group
that is determined by several given functions.

Theorem 72. Let F be a homogeneous function, etbe any function that is related
to it by way of:
(F,®)=0

and finally, let®, ..., ®; be the homogeneous group that is determinedbbyAll
equationsk, ®,) = 0 are then true.

This theorem is a consequence of a previous one (TheaBgmamely, that the

equation:
(F,®)=0

FEna o

implies the following one:
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when coupled with the Poisson-Jacobi theorem.

Theorem 73. Let F be a homogeneous function, and ¢, ..., ®, be given
functions that are each in involution wikh— i.e., they yield E, ®y) = 0. If one then
denotes the homogeneous group that is determineh,by., ®q by @, ..., Dy, ..., Pq
then the new function® are also in involution witlf.

This theorem is a consequence of the foregoing one, adwgried with the Poisson-
Jacobi theorem.

Theorem 74. If all of the commorhomogeneousolutionsF of the equations:

(P1,F) =0, ..., q, F) =0
likewise satisfy the relation:
(mM,F)=0

thenl belongs to the homogeneous graky ..., @, ..., Pq that is determined by,
o Pq.

The common homogeneous solutioRsto the givenq equations are then the
homogeneous solutions to the complete system:

(QDJ_, F) =0, ..., @r, F) =0.

There are & —r such solutionsg-4, ..., Fon+ that define the polar group dfy, ..., @,
precisely.
We then have the theorem:

Theorem XXIV. If one knows any q solutiods, ..., ®4 to the equation:
(F, @) =0,

in which F denotes a homogeneous function, and one finds a further sélubypmay of
any sort of operations that are independent of the form of the homogeneous fenction
thenl1 also belongs to the homogeneous group that is determinég, by, @ .

Finally, one can develop an analogous theory for the icashichF is homogeneous
of degree zero. In that way, one would obtain some nieabe results. Namely, one
would, a priori, recognize the possibility of some simplificationghe integrations that |
arrived at in 8 25 in a different way.

In closing, | shall pose a general problem:

Let Hy, ..., H; be homogeneous functions of degree one that haveasustiprocal
relationship that anyH;, Hy) can be expressed as a linear function with constant
coefficients of theH:
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a

(Hi, Hk) = ZC;'j Hw.

w=1

| then say that alH define atransformation groupand thus consider all linear functions
of theH that have the form:
diHi+doHx + ... +dsHg

as being equivalent to the themselves. | now ask what the properties are of@ngi
transformation group that remain invariant under homogeneoutsict transformations.

| have found that there ardimited numberof types of transformation groups. Further
research is necessary in order to clarify the presesse, validity, and meaning of this
assertion.

Christiania, 5 July 1874.



