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 Without a doubt, Jacobi’s epoch-making papers on first-order, partial differential 
equations *) will always assume a distinguished place in science.  Still, to some 
mathematicians they seemed to be over-rated, or, in any event, not correctly assessed.  
Namely, they propagated the impression that by means of Jacobi’s investigations the 
theory of first-order, partial differential equations had been brought to a conclusion.  
Such an opinion must, however, be regarded as incorrect, now that recent papers have 
improved upon it, and, in turn, given new methods of integration, and have initiated 
likewise fruitful directions of investigation. 
 In the present treatise, I will give a systematic representation of a new theory that I 
have communicated to the Academy in Christiania in 1872 and 1873.  I will make some 
remarks in advance that refer to how my other investigations on partial differential 
equations relate to the simultaneous papers of Mayer.  Of the many important papers of 
this author, I have discussed only the ones that are most closely connected with my own 
work. 
 

Résumé of some older investigations. 
 

 Starting from a geometric investigation of the relationship between Plücker’s line 
geometry and general curvature theory, I was gradually drawn over to the realm of partial 
differential equations.  Thus, it was readily conspicuous to me that the mathematics that 
Monge had employed to such great effect had abandoned the simultaneous use of 
synthetic and analytic methods.  It seems obvious to me (cf., the paper “Ueber Complexe, 
etc.” in these Ann., Bd. V) that such a mixed method would lead to new results more 
easily than pure analysis, which had been applied almost exclusively to the examination 
of partial differential equations since the time of Monge.  I nurture the hope that the 
discoveries that I made might serve to reinforce such a viewpoint. 
 In 1871, I posed the problem for myself of working through the Jacobi integration 
method conceptually, and in particular, the Poisson-Jacobi theorem.  It became clear to 

                                                
 *) The first method of integration for first-order, partial differential equations goes back to Pfaff 
(1814).  Somewhat later (1819), Cauchy gave a method that was formulated in newer ways by Jacobi 
(1837) and, in latter times, Mayer (Math. Ann., Bd. IV).  This method must be called the Cauchy method 
and not the Jacobi-Hamilton.  Finally, Jacobi 1837-1840 found a new method that was then first published 
in 1862.  I will call this latter method the Jacobi method, and not the new Jacobi method, as is customary. 
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me almost immediately that it was possible to give a new method of integration *) that 
required fewer integrations than that of Jacobi, and therefore did not use the Poisson-
Jacobi method, at all.  This new method, which, like all of the other ones, began with the 
search for an integral of the known simultaneous system, represented, in a sense, an 
intermediate step between the Cauchy and Jacobi methods.  It was based upon my 
extensions of Cauchy’s method. 
 At the same time, Mayer ** ) gave a fundamental theorem – I shall call it Mayer’s 
theorem – that allowed him to improve upon the Jacobi method of integrating first-order, 
partial differential equations essentially, as well as Clebsch’s treatment of the Pfaff 
problem.  By it, he achieved, in particular, and admittedly, by a completely different 
route from my own, the same reduction in the number of operations that were necessary 
for the integration of a partial differential equation of first order. 
 Thereafter, I developed (Göttinger Nachrichten, 1872, no. 25) a general approach to 
the concept of a complete solution, by which I consequently worked through the Pfaff 
formulation of the integration problem and further exploited it.  By that means, I 
eliminated, inter alia, certain shortcomings that were inherent to the integration methods 
up to that point in time. 
 I found the theory that was just cited by purely synthetic considerations when I 
consequently generalized Monge’s concept of “characteristic,” and used only simple 
arguments from the modern theory of manifolds, moreover.  My old synthetic 
representation of this theory, which I had developed only in the most general terms, was, 
in an obvious way, satisfactory to only those readers that were quite familiar with 
manifold considerations.  Unfortunately, I have not found the time to present everything 
thoroughly.  I am therefore greatly indebted to Mayer, who, in many elegant treatises *** ) 
has given a clear, analytical formulation and foundation of these investigations, to the 
extent that they are employed in the sequel.  I refer the reader to the cited papers of 
Mayer. 
 

On the contents of this treatise. 
 

 In the investigation of partial differential equations, those properties that remain 
unchanged under arbitrary contact transformations − i.e., analytic transformations − 
deserve special attention **** ).  Such a study is important because, inter alia, just such 
properties come under consideration in the ordinary methods of integration.  In particular, 
for first-order equations, to which this treatise is dedicated, such investigations take on a 
very simple and beautiful form.  It is then possible to resolve several fundamental 
problems of the type spoken of.  In this way, one achieves, inter alia, the foundation of a 
rational treatment of those first-order, partial differential equations, by whose integration, 
one has already made some steps forward.  It always lets one decide how one must 

                                                
 *) Abhandlungen der Akademie zu Christiania, 3 and 10, May 1872; Göttinger Nachrichten 1872, no. 
16. 
 ** ) Math. Annalen, Bd. V, pp. 448; Göttinger Nachrichten 1872, no. 15. 
 *** ) Göttinger Nachrichten 1872, no. 24, 1873, no. 11; Math. Ann., Bd VI, pp. 162, 192. 
 **** ) Klein has directed my attention to the fact that in many mathematical directions of inquiry, one is 
dealing with the determination of properties that remain invariant under some group of transformations. 
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proceed in order to resolve the matters that still remain to be integrated by the simplest 
means.  In order to clarify this with a good example, I consider the equation: 
 

F(x1, …, x9, p1, …, p9) = a, 
 

to whose integration, Hamilton and Jacobi were reduced in the three-body problem.  As is 
well-known, one knows eight integrals of the associated simultaneous system.  My 
general theories now allow one to exhibit an equation: 
 

f(x1, …, x9, p1, …, p9) = 0, 
 

whose integration implies that of F = 0.  Thus, this known result is reduced to its intrinsic 
basis *).  Apart from that, I give less weight to the new integration method of my treatise 
than I do to the deeper insight into the essence of first-order, partial differential 
equations that it gives one.  Hopefully, my future research will remedy this situation. 
 Among the new theories in this paper, I also emphasize the following ones: Let F, Φ1, 
and Φ2 be functions of x1, …, xn , p1, …, pn for which one has: 
 

(F, Φ1) = 0, (F, Φ2) = 0. 
 
The Poisson-Jacobi theorem then says that one also has: 
 

(F, (Φ1, Φ2)) = 0. 
 
If one knows two solutions Φ1, Φ2 of the equation: 
 

(F, Φ) = 0 
 
then there is an operation that allows one to find several such solutions, in general. 
 I know prove that any operation that serves to make new solution known essentially 
coincides with the stated one; thus, it will only be assumed that the type of operation in 
question should be independent of the form of the function F. 
 I found the following theory by the application of a combined synthetic-analytic 
method.  If the editing had been less tiresome for me, I would have sought to develop 
everything simultaneously in a synthetic and analytic way, following the model of 
Monge.  Since I have very little confidence in my editing talents, and am, moreover, 
concerned with new investigations, I have then chosen to present results in the ordinary 
analytical form.  As a result, the first section especially has lost its simplicity.  
Fortunately, I can refer the reader to a beautiful and exceptionally simple analytic 
foundation that Mayer has given on just the results of the first section ** ). 
 

                                                
 *) The previously-cited papers of Mayer and myself have essentially reduced the three-body problem, 
insofar as they simplified the integration of the equation f = 0. 
 ** ) Göttinger Nachrichten, 1874, no. 13: “Ueber die Lie’schen Berührungstransformationen.” Cf., also 
the following note of Mayer. 



PART ONE 
 

Theory of contact transformations. 
 

 I will seek to develop the theory of contact transformations, which defines the 
foundation for my work on partial differential equations up to now, as well as my future 
work, analytically and for n variables.  As I already said, the cited paper of Mayer gives 
an elegant development of this theory that, inter alia, is to be preferred over my own 
since it is direct, while my treatment rests upon the Clebsch theory of the Pfaff problem.  
(Cf., § 8). 
 

§ 1. 
 

Definition of the concept of contact transformation. 
 

 1.  The origin of the theory of contact transformations goes back to Euler; later on, 
Jacobi, in particular, presented the theory that appears here in connection with his work 
on the perturbation theory of developments.  If I am not incorrect, I am then the first one 
to explain the general meaning of that theory and emphasize its importance.  I also 
believe that I am the first to set down the true essence *) of these matters in a precise and 
rigorous way; the term “contact transformation” originated with me ** ). 
 Before I define the concept of contact transformation, I find it convenient to present 
some simple geometric considerations that lead to this notion in a natural way.  Indeed, I 
shall refer them only to a space of three dimensions, but they can still be extended to 
arbitrary manifolds. 
 If the Cartesian point-space, in the ordinary sense of the word, were subjected to a 
point transformation then surfaces would go to surfaces and surfaces that contact each 
other would to other such surfaces.  Admittedly, there are exceptional cases that 
transform in other ways, but they appear only in a limited number.  However, besides the 
point transformations, there are still other transformations that possess a useful character.  
For instance, a dualistic transformation, in general, also takes surfaces to surfaces and 
contacting surfaces to other such surfaces.  Thus, it should be remarked that there are 
unboundedly many surfaces – namely, the developable surfaces – that do not transform 
into surfaces under a dualistic transformation, but into curves.  In particular, all planes go 
to the points of space. 
 
 It can be proved that, in addition to point transformations, there is an extended 
category of transformations that generally take surfaces to surfaces and surfaces that 

                                                
 *) I recall, in particular, that I have shown that any contact transformation, in the Plücker sense, is 
based in a change of space element or the introduction of a new coordinate system.  This remark is 
fundamental for a synthetic treatment of the theory of first-order, partial differential equations. 
 ** ) After I published my first papers on contact transformations, Darboux wrote to me at that point in 
time that he, too, had been concerned with this theory.  I must apologize that I could have derived no 
benefit from his investigations, which were still unpublished at that point in time.  Du Bois-Reymond has 
concerned himself with the contact transformations of a triple-extended space.  The results that his work on 
partial differential equations contained are still not complete. 
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contact each other to other such surfaces.  For such a transformation that is not a point 
transformation, there are unboundedly many surfaces that transform into curves.  In 
particular, there are ∞3 surfaces that go to the points of space. 
 
 This is, however, not a definition of the contact transformations of space; we have 
given only the essential properties of them. 
 
 2.  In previous treatises, I gave perhaps the following definition: If the independent 
variables x1, .., xn, the function z of these variables, and the partial derivatives of z with 
respect to x1, .., xn, which might be called p1, .., pn, are coupled with a corresponding 
system of variables z′, 1x′ , …, nx′ , 1p′ , …, np′  in such a way that any quantity in either of 

the two sequences: 
  z,  x1, ...,   xn,  p1, …,  pn , 
  z′, 1x′ , …, nx′ , 1p′ , …, np′ , 

 
can be expressed in terms of quantities in the other sequence, so I called the 
transformation in question a contact transformation.  However, this definition is not 
sufficiently clear, and perhaps also not entirely correct, insofar as it implicitly rests upon 
assumptions that do not always apply.  Thus, I shall replace this definition with the 
following one, which, in my opinion, completely captures the essence of things: 
 
 Definition.   If Z, X1, …, Xn, P1, …, Pn are functions of z, x1, …, xn, p1, …, pn for 
which one has: 

(1)     dZ −
1

k n

k k
k

P dX
=

=
∑ = ρ (dz −

1

k n

k k
k

p dx
=

=
∑ ) 

 
identically, then the equations: 
 
(2)     z′ = Z,  ix′  = Xi, ip′  = Pi 

 
define a transformation that shall be called a contact transformation. 
 
 The fact that equations (2) always define a transformation rests upon the fact that 
equation (1) necessarily implies that Z, X1, …, Xn, P1, …, Pn are mutually independent 
functions. 
 
 Terminology.  If F and Φ are functions of z, x1, …, xn, p1, …, pn then I will write, as 
usual, [F, Φ], instead of: 
 

1

k n

k k
k k k k k

F F F
p p

p x z p x z

=

=

    ∂ ∂Φ ∂Φ ∂Φ ∂ ∂ + − +    ∂ ∂ ∂ ∂ ∂ ∂     
∑ , 

 
and likewise, when F and Φ do not include z, (F, Φ), instead of: 
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1

k n

k k k k k

F F

p x p x

=

=

 ∂ ∂Φ ∂Φ ∂− ∂ ∂ ∂ ∂ 
∑ . 

 
 If I wish to stress here that F and Φ are considered to be functions of x1, …, pn, and 
not perhaps 1x′ , …, np′ , then I will write (F, Φ)xp . 

 One knows that the Pfaffian expression 
1

1

k

k k
k

X dx
=

=
∑  can generally be reduced to a form 

with n terms: 
1

1

k

k k
k

X dx
=

=
∑ = F1 df1 + …., + Fn dxn . 

 
Here, according to Clebsch (Crelle’s Journal, Bd. 61, pp. 153), the functions f are an 

arbitrary system of solutions of 
( 1)

1 2

n n+
⋅

equations, which I will denote by the symbols: 

 
((fi)) = 0, ((fi, fk)) = 0. 

 
 

§ 2. 
 

Determination of all contact transformations. 
 

 In these paragraphs, I will give two very different ways of determining all contact 
transformations.  Thus, I shall base this on the known, established theory of Pfaffian 
problems, which, in my opinion, should be placed in the foreground of all investigations 
of first-order, partial differential equations, rather than the one that came about since the 
time of Cauchy and Jacobi.  In particular, I cannot sufficiently stress that the Pfaff 
conception of the problem of integrating an equation: 
 

F(z, x1, …, xn, p1, …, pn) = 0 
 
gives this theory a generality that is completely lacking in the ordinary theory.  
Admittedly, no one seems to have commented on this fundamental asset of the Pfaffian 
way of looking at things. 
 
 3.  Let: 

X1 dx1 + … + X2n+1 dx2n+1 
 

be a given Pfaffian expression whose canonical form *) includes n + 1 terms.  If: 
 

                                                
 *) If a Pfaffian expression X1 dx1 + … + Xm dxm can be reduced to a p-term form F1 df1 + … + Fm dfm , 
and not to a form with less than p terms then I call F1 df1 + … + Fp dfp  a canonical form – or normal form – 
for the given expression. 
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α (dfn+1 + F1 df1 + … + Fn dfn ) 
 

is such a given form then, as is known, it is possible to find arbitrarily many canonical 
forms: 

β (dϕn+1 + Φ1 dϕ1 + … + Φn dϕn ). 
 

In fact, in order to satisfy the equation: 
 

(3)     dfn+1 + 
1

k n

k k
k

F df
=

=
∑  = ρ (dϕn+1 + 

1

k n

k k
k

dϕ
=

=
Φ∑ ) 

 
one chooses q + 1 equations between the f and ϕ arbitrarily: 
 

Π0 = 0,  Π1 = 0,  …,  Πq = 0, 
and sets: 

    Fi = 0 1 1 0 1 1

1

( ) ( )
:q q q q

i nf f

λ λ λ λ

+

∂ Π + Π + + Π ∂ Π + Π + + Π
∂ ∂
⋯ ⋯

, 

 

    Φi = 0 1 1 0 1 1

1

( ) ( )
:q q q q

i n

λ λ λ λ
ϕ ϕ +

∂ Π + Π + + Π ∂ Π + Π + + Π
∂ ∂
⋯ ⋯

, 

 
     (i = 1, 2, …, n). 
 
 If one eliminates λ1, …, λq from the 2n + q + 1 equations and then solves them for fi 
and Fi then one finds values for these quantities that fulfill (3) identically. 
 
 4.  By my definition, the problem of determining all contact transformations turns 
into the problem of determining all the quantities z′, 1x′ , …, nx′ , 1p′ , …, np′  in the most 

general way as functions of z, x1, …, xn, p1, …, pn that make the equation: 
 

dz′ −
1

k n

k k
k

p dx
=

=

′ ′∑  = ρ (dz −
1

k n

k k
k

p dx
=

=
∑ ) 

 
true identically.  How, since z, x1, …, pn are mutually independent quantities, we are 

allowed to consider dz −
1

k n

k k
k

p dx
=

=
∑  as the canonical form of a (2n + 1)-term Pfaffian 

problem, and one then immediately obtains the following theorem from the known results 
of Pfaff theory that were just given: 
 
 Theorem. 1.  Every contact transformation can be obtained in the following way: 
One takes q + 1 equations between the z, x1, …, xn, 1x′ , …, nx′ : 

 
Π0 = 0,  Π1 = 0,  …,  Πq = 0, 
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and sets: 

   − pi  = 0 1 1 0 1 1( ) ( )
:q q q q

ix z

λ λ λ λ∂ Π + Π + + Π ∂ Π + Π + + Π
∂ ∂
⋯ ⋯

, 

   − ip′  = 0 1 1 0 1 1( ) ( )
:q q q q

ix z

λ λ λ λ∂ Π + Π + + Π ∂ Π + Π + + Π
′ ′∂ ∂
⋯ ⋯

, 

 
    (i = 1, …, n). 
 
 If one eliminates λ1, …, λq from the 2n + q + 1 equations then the remaining 2n + 1 
equations always determine a contact transformation between the two systems of 
variables z, x1, …, pn and z′, 1x′ , …, np′ . 

 
 Jacobi likewise considered all of the transformations and indeed asserted that they are 
the most general transformations of a partial differential equation of first order.  We shall 
not go into this assertion here, whose validity is likewise not obvious, a priori.  
Furthermore, Jacobi gave no explicit definition of the concept of the most general 
transformation of a partial differential equation of first order *). 
 
 5.  The determination of all contact transformations that was just given is, inter alia, 
not satisfactory, since it introduces a classification of contact transformations in terms of 
the value of the number q, even if that was only implicit.  However, such a classification 
in no way corresponds to the nature of things, insofar as it rests upon a random choice, in 
a sense.  I shall thus give a new general method for the determination of contact 
transformations.  If one were to apply it to a special case then it would be clearly 
necessary to perform, not just differentiations and eliminations, as in the usual method, 
but also certain integrations, moreover.  However, this is completely valid whenever one 
is only dealing with the establishment of the concept. 
 It is known from the theory of the Pfaff problems that one can reduce a (2n + 1)-term 
expression k k

k

X dx∑  to an (n + 1)-term expression in the following way: One takes an 

arbitrary function ϕ of x1, …, x2n+1, removes the quantities x2n+1 and dx2n+1 by means of 
the equations: 

ϕ  = a,  
2 1

1

k n

k
k k

dx
x

ϕ= +

=

∂
∂∑  = 0, 

 
and thus obtains a 2n-term expression: 
 

                                                
 *) I shall take this occasion to address two questions, the second of which, in particular, seems 
important: 
 1.  Are there transformations that are not contact transformations and for which contact of higher order is 
an invariant relation? – This question seems to be answered in the negative. 
 2.  Do partial differential equations of higher order admit transformations that are not contact 
transformations? – This question must indeed be answered in the affirmative.  If this were the case then this 
would open up an important domain of research. 
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1 1
aX dx  + … + 2 2

a
n nX dx , 

 
whose coefficients include a, in addition to x1, …, x2n .  One brings it into the form: 
 

1

k n
a a
k k

k

X dx
=

=
∑  = 

1

k n
a a
k k

k

dϕ
=

=
Φ∑  

 
in the same way, and then replaces the quantities a with ϕ in 1

aϕ , …, a
nϕ , such that these 

functions go to functions of x1, …, x2n+1 that will be denoted by ϕ1, …, ϕn .  In this way, 
the original (2n + 1)-term expression can take on the form: 
 

Φ dϕ + Φ1 dϕ1 + … + Φn dϕn , 
 
where Φ, Φ1, …, Φn are determined in the ordinary way.  I add to this the fact that 1

aϕ , 

…, a
nϕ  are defined by the Clebsch equations: 

 

( )( )a
iϕ = 0, ( )( ),a a

i kϕ ϕ  = 0, (i = 1, …, n), (k = 1, …, n). 

 
 6.  By my definition, the problem of determining all contact transformations comes 

down to the problem of bringing the Pfaffian expression dz −
1

k n

k k
k

p dx
=

=
∑ , which already 

possesses the canonical form, into a new canonical form in the most general way.  To that 
end, from the foregoing, one can proceed in the following way: 
 One chooses a function Z of z, x1, …, pn arbitrarily, and solves the equation: 
 

Z = a 
for pn, which might take the form: 
 

pn = f(z, x1, …, pn−1, a). 
 

In so doing, one brings the expression: 
 

dz – p1 dx1 − … − pn−1 dxn−1 – f dxn 
into the form: 

1 1
a aY dX  + … + a a

n nY dX , 

 
where a

iX  are determined by the equations: 

 

( )( )a
iX = 0, ( )( ),a a

i kX X  = 0, (i = 1, …, n), (k = 1, …, n). 

 
In our case, as one easily discovers, these equations assume the form: 
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[pn – f, a
iX ] = 0, [ , ]a a

i kX X  = 0,  (i = 1, …, n) (k = 1, …, n). 

 
 However, if follows from this that the quantities Xi − that is, those functions of z, x1, 
…, pn that emerge when the quantity a is replaced with Z in a

iX  − are defined by the 

system of equations *): 
 
(A)   [Z, Xi] = 0, [Xi, Xk] = 0 (i = 1, …, n) (k = 1, …, n) 
 
If one knows functions Z, X1, …, Xn that fulfill these relations then it is possible to satisfy 
the equation: 

dZ −
1

k n

k k
k

P dX
=

=
∑  = ρ (dz −

1

k n

k k
k

p dx
=

=
∑ ) 

 
identically.  The quantities ρ, P1, …, Pn will be determined by n + 1 of the 2n + 1 
equations: 
 

k
k

k k

XZ
P

z x

∂∂ −
∂ ∂∑ = ρ, k

k
ki i

XZ
P

x x

∂∂ −
∂ ∂∑  = − ρ pi , k

k
ki i

XZ
P

p p

∂∂ −
∂ ∂∑  = 0, (i = 1, …, n). 

 
 It must certainly be remarked that the functions Z, X1, …, Xn are subject to no other 
restriction than the demand that equation (A) must be fulfilled.  The result obtained can 
be summarized as follows: 
 
 Theorem I.  If one knows n + 1 mutually independent functions Z, X1, …, Xn of z, x1, 
…, pn that fulfill the equations: 
 

dZ −
1

k n

k k
k

P dX
=

=
∑  = ρ (dz −

1

k n

k k
k

p dx
=

=
∑ ) 

 
identically then the relations: 
 

z′ = Z,  ix′  = Xi, ip′  = Pi 

 
define a contact transformation.  The condition equations that we just gave are not, by 
themselves, sufficient, but they are necessary. 
 
 The fact that it is at all possible to find n + 1 functions H0, H1, …, Hn of z, x1, …, xn, 
p1, …, pn that pair-wise satisfy the conditions [Hi, Hk] = 0 rests upon the following 
theorem: 
 
 

                                                
 *) By the way, one can interpret this to mean a new formal treatment of the Pfaff problem. It is 
completely symmetric, which the Clebsch treatment is not. 
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 Theorem 2.  If H0, H1, …, Hq are functions of z, x1, …, xn, p1, …, pn and all [Hi, Hk] 
vanish then the linear equations: 
 

[H0, H] = 0, …, [Hq, H] = 0 
define a complete system *). 
 
 Namely, if one sets [Hk, H] = Ak(H) and then forms the expressions Ai(Ak(H)) – 
Ak(Ai(H)), then one sees that they can be expressed linearly in terms of the Ai(H). 
 
 

§ 3. 
 

Contact transformations that take functions of 1x′ , …, np′  to functions of x1, …, pn . 

 
 I will now show the existence of a very important category of contact 
transformations.  The characteristic property of them consists of the idea that they take 
functions of 1x′ , …, np′  to functions of x1, …, pn .  Thus, if: 

 
z′ = Z, ix′  = Xi , = Pi  

 
are the equations of such a transformation then the quantities Xi and Pi do not include z at 
all, but only x1, …, pn .  In the first two sections, I gave two methods of finding arbitrarily 
many such transformations.  In the last section, I showed that both methods are general, 
in the sense that the one of them, as well as the other one, gives a transformation of type 
discussed. 
 In the foregoing paragraphs, we saw that the determination of all contact 
transformations follows immediately from the theory of the determinate cases of the Pfaff 
problem.  It lets us easily show that the reasoning of these paragraphs have a close 
connection with a new theory of the indeterminate case that goes back to Clebsch 
(Borchardt’s Journal, Bd. 61). 
 
 7.  If we choose q + 1 arbitrary equations between z′, 1x′ , …, nx′ , a, x1, …, xn that 

include z and z′ only in the combination z′ − Az, where A is a constant, put them into the 
form: 

                                                
 *) If q linear partial differential equations in n variables: 
 

Ai(H) = 0, …, Aq(H) = 0, 
 

which are independent of each other, have such a reciprocal relationship that each Ai(Ak(H)) – Ak(Ai(H)) can 
be expressed linearly in terms of the Ai(H) then, as Clebsch has proved (Borchardt’s Journal, Bd. 65), they 
have n – q different common solutions.  With Clebsch, I call such a system a complete system.  Clebsch 
based the integration of linear partial differential equations with common solutions on the consideration of 
such systems.  The corresponding theory for arbitrary – i.e., not just linear − equations was first given by 
Mayer.  Thus, it must be remarked that Mayer, as well as Clebsch, took his starting point from an idea that 
goes back to Bour.  Mayer has remarked on that subject that Bour’s formulation of this theory was not 
rigorous. 
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z′ − Az = 1 1( , , , , , )n nx x x x′ ′Π ⋯ ⋯ , 1 1( , , )nx x′Π ⋯ = 0, …, 1( , , )q nx x′Π ⋯ = 0, 

 
and search for the contact transformations that, from theorem 1, belong to these equations 
then we obtain the formula: 
 

  ip′  = 1
1

q
q

i i ix x x
λ λ

∂Π∂Π∂Π + + +
′ ′ ′∂ ∂ ∂

⋯ , 

  − Api = 1
1

q
q

i i ix x x
λ λ

∂Π∂Π∂Π + + +
∂ ∂ ∂

⋯ . 

 
 These 2n equations, combined with the q equations Π1 = 0, …, Πq = 0, express the ix′  

and ip′  in terms of only the x1, …, xn , p1, …, pn , and when one substitutes the values 

thus found into the equation z′ − Az = Π that would make it take the form: 
 

z′ = Az + F(x1, …, xn , p1, …, pn). 
Thus: 
 
 Theorem 3.  Equations between z′, 1x′ , …, nx′ , a, x1, …, xn that include z and z′ only 

in the combination z′ − Az define a contact transformation that is expressed by equations 
of the following form: 

z′ = Az + F, ix′ = Xi ; ip′ = Pi . 

 
Here, A is a constant, F, Xi , and Pi are functions of only x1, …, xn , p1, …, pn .  I refer to 
such a transformation briefly as a transformation between x, p. 
 
 8.  The method that we just developed for finding contact transformations between x, 
p has the inconvenient aspect that it introduces a classification that does not correspond to 
the nature of things, namely, in terms of the value of the number q.  The following 
method is free of this drawback; nonetheless, both methods have a self-sufficient 
justification.  I shall next present a lemma. 
 
 Theorem 4.  If X1, …, Xq are functions of x1, …, pn that pair-wise satisfy the 
conditions (Xi, Xk) = 0 then among the solutions F of the complete system (theorem 2): 
 

[X1, F] = 0, …, [Xq, F] = 0 
 
there is one of them that possesses the form Az + Π.  Here, A is a constant and Π is a 
function of only x1, …, pn . 
 
 Our theorem comes about from the fact that the equations: 
 

[X1, F] = 0, …, [Xq, F] = 0, 
F

z

∂
∂

= A 
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possess common solutions.  In order to verify this, we look for a function Φ of z, x1, …, 
pn, and F such that any solution of the equation Φ = const. gives a function F of the 
desired property.  It shows that Φ must fulfill the following relations: 
 

[X1, Φ] = 0, …, [Xq, Φ] = 0, A
z F

∂Φ ∂Φ+
∂ ∂

 = 0; 

 
however, as one easily verifies, these define a complete system.  Our theorem is thus 
proved. 
 Here, the following theorem, which I will need later, might find a place: 
 
 Theorem 5.  If one knows a solution F of the complete system: 
 

[X1, F] = 0, …, [Xq, F] = 0 
 

that possesses the form z + Π(x1, …, pn) then Az + AΠ + Ω(X1, …, Xn) is a general 
solution of it, and indeed, it is the most general one that is linear in z.  (Ω denotes an 
arbitrary function of the argument in question.) 
 
 Namely, let: 

F1 = A1z + Π1,  F2 = A2z + Π2 
 
be two solutions of the stated form.  Therefore, A2F – A1F, or, what amounts to the same 
thing, A2Π1 – A1Π2, in which z does not enter anywhere, also satisfies our complete 
system.  However, as is known, it follows from this that: 
 

A2Π1 – A1Π2 = W(X1, …, Xn), 
 
an equation that proves our theorem. 
 
 Theorem 6.  If X1, …, Xn are functions of x1, …, pn that satisfy the conditions (Xi, Xk) 
= 0 pair-wise then (theorem 4) there are functions of the form Az + Π(x1, …, pn) that 
fulfill all equations: 

[Xi, Az + Π] = 0, (i = 1, …, n), 
 

and thus (theorem I) it is possible to satisfy the equation: 
 

d(Az + Π) − 
1

k n

k k
k

P dX
=

=
∑ = ρ (dz −

1

k n

k k
k

p dx
=

=
∑ ). 

 
Thus, all of the Pi , as we likewise prove, are functions of x1, …, pn .  Thus, the contact 
transformation: 

z′ = Az + Π; ix′  = Xi , ip′  = Pi 
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possesses the property that it transforms functions of 1x′ , …, np′  into functions of x1, …, 

pn . 
 
 Therefore, if the equation: 
 

d(Az + Π) − 
1

k n

k k
k

P dX
=

=
∑ = ρ (dz −

1

k n

k k
k

p dx
=

=
∑ ) 

 
is to be satisfied identically then, since z does enter into Π, X1, …, Xn, one must have: 
 

A = ρ 
and: 

     k
k

ki i

X
P

p p

∂∂Π −
∂ ∂∑  = 0, 

     k
k

ki i

X
P

x x

∂∂Π −
∂ ∂∑  = − A pi , 

 
equations that show that all Pi depend upon only x1, …, pn . 
 
 9.  If one eliminates p1, …, pn from the equations: 
 
(a)     z′ = Az + Π, ix′  = Xi, 

in which: 
(Xi, Xk) = 0, [Az + Π, Xi] = 0, 

 
then one finds a number of equations of the form: 
 
(b)  z′ − Az = Ω( 1x′ , …, nx′ , x1, …, xn), Ω1( 1x′ , …, nx′ ) = 0,  …, Ωq( 1x′ , …, nx′ ) = 0. 

 
Thus, the latter method gives only such transformations that also can be obtained by the 
previously-developed method.  Now, since, conversely, a system of equations of the form 
(b), as we showed earlier, always leads to transformation equations of the form (a), it is 
clear that both of our methods overlap; their difference is only formal.  We will show that 
that they give us every contact transformation between x, p. 
 One obtains all contact transformations between x, p when one determines the 
quantities X1, …, Xn, P1, …, Pn in a general way as functions of x1, …, pn such that the 
equation: 

(e)     dZ −
1

k n

k k
k

P dX
=

=
∑ = ρ (dz −

1

k n

k k
k

p dx
=

=
∑ ) 

 
is true identically. By development, it will assume the form: 
 

U dz + i i i i
i i

V dx W dp+∑ ∑ = ρ (dz − i i
i

p dx∑ ), 
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where: 

   U = 
Z

z

∂
∂

, Vi = 1
1

n
n

i i i

XXZ
P P

x x x

∂∂∂ − − −
∂ ∂ ∂

⋯  

 

     Wi = 1
1

n
n

i i i

XXZ
P P

p p p

∂∂∂ − − −
∂ ∂ ∂

⋯ . 

 
We thus obtain 2n + 1 relations: 
 

   
Z

z

∂
∂

= ρ, 1
1

n
n

i i i

XXZ
P P

p p p

∂∂∂ − − −
∂ ∂ ∂

⋯  = 0 (i = 1, …, n) 

   1
1

n
n

i i i

XXZ
P P

x x x

∂∂∂ − − −
∂ ∂ ∂

⋯  = − ρ pi = − pi 
Z

z

∂
∂

 (i = 1, …, n), 

 
which shows that the differential quotients depend upon only x1, …, pn .  Thus, Z has the 
form: 

Z = Z1(z, x1, …, xn) + Z2(x1, …, pn), 
 

where Z1 must satisfy the following relations: 
 

1Z

z

∂
∂

= ρ, 
1

k n
k

k
ki i i

XZ Z
P

x x x

=

=

∂∂ ∂+ −
∂ ∂ ∂∑  = − pi 1Z

z

∂
∂

. 

 
By differentiation with respect to z it follows from the last one that: 
 

1

i

Z

x z

∂∂  
 ∂ ∂ 

 = 0, 1Z

z z

∂∂  
 ∂ ∂ 

 = 0,  (i = 1, …, n). 

 

Thus, 1Z

z

∂
∂

 is equal to a constant A – i.e., Z1 is linear relative to z.  With that, we have 

proved that Z possesses the form: 
 

Z = Az + Π( x1, …, pn). 
 
However, in the second paragraph we saw that the expressions [Z, Xi], [Xi, Xk] must 
necessarily vanish when the condition equation (c) is valid, and as a result, we can assert 
that the two methods that were given in this paragraph give every contact transformation 
between x, p. 
 I summarize the results of this paragraph in the following way: 
 
 Theorem I.  There is an extended category of contact transformations that possess 
the characteristic property that functions of 1x′ , …, np′  go to functions of x1, …, pn .  All 

such transformations possess the form: 
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z′ = Az + Π(x1, …, pn), ix′  = Xi, ip′  = Pi, 

 
where A denotes a constant.  Relations between z′, 1x′ , …, nx′ , z, x1, …, xn that include 

the quantities z′ and z only in the combination z′ – Az always determine such a function.  
On the other hand, if X1, …, Xn are functions of x1, …, pn such that all of the (Xi, Xk) are 
equal to zero then there always exists a function Az + Π(x1, …, pn) such that all 
expressions [Az + Π, Xi] vanish, and the equations: 
 

z′ = Az + Π, ix′  = Xi 

 
then, in turn, define a contact transformation of the stated type. 
 
 

§ 4. 
 

Presentation of some characteristic relations. 
 

 If the equations: 
 

z′ = Z,  ix′  = Xi, ip′  = Pi 

 
define a contact transformation between x, p then the functions Xi and Pi satisfy certain 
relations that will now be developed. 
 
 10.  I first address the following problem: I assume that X1, …, Xn, P1, …, Pn are 
given functions of x1, …, pn and that it is possible to find a function Az + Π(x1, …, pn) 
such that the equations: 

z′ = Az + Π, ix′  = Xi , ip′  = Pi 

 
define a contact transformation.  This will achieve the determination of the quantities A 
and Π in the most general way.  It will show that A is defined completely by the Xi and Pi 
and Π, up to an arbitrary constant. 
 Since ρ must be equal A, the identity equation: 
 

(d)    d(Az + Π) −
1

k n

k k
k

P dX
=

=
∑  = ρ (dz −

1

k n

k k
k

p dx
=

=
∑ ) 

reduces to: 
dΠ − k k

k

P dX∑ = − A k k
k

p dx∑ . 

 
This equation can be solved into the following 2n: 
 

k
k

ki i

X
P

x x

∂∂Π −
∂ ∂∑  = − A pi ; k

k
ki i

X
P

p p

∂∂Π −
∂ ∂∑  = 0. 
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 If one now differentiates with respect to pi and xi and sets the two expressions for 
2

i ix p

∂ Π
∂ ∂

 equal to each other then one finds: 

 

A = 
1

k n
k k k k

k i i i i

X P X P

x p p x

=

=

 ∂ ∂ ∂ ∂− ∂ ∂ ∂ ∂ 
∑  = Wi , 

 
in which i refers to any one of the numbers 1, …, n. 

 Above, we determined 
ix

∂Π
∂

 and 
ip

∂Π
∂

 as functions of x1, …, pn : 

 

ix

∂Π
∂

= Mi ,  
ip

∂Π
∂

 = Ni , 

by integration: 
 

Π = ∫ (M1 dx1 + … + Mn dxn + N1 dp1 + … + Nn dpn) + const. 
 

 The constant introduced is arbitrary, since Π only appears as the differential in (d).  
Therefore: 
 
 Theorem 7.  If X1, …, Xn, P1, …, Pn are given functions of x1, …, pn such that the 
equation: 

dZ − 
1

k n

k k
k

P dX
=

=
∑ = ρ (dz −

1

k n

k k
k

p dx
=

=
∑ ) 

 
is satisfied then this can happen in essentially only one way.  Z has (§ 3) the form Az + 
Π(x1, …, pn); A is a completely determined constant, and Π includes an arbitrary 
additive constant. 
 
 Corollary.   If X1, …, Pn are given functions of x1, …, pn , and the two systems of 
equations: 
     z′ = Z1,  ix′  = Xi, ip′ = Pi, 

and 
     z″ = Z2, ix′′  = Xi, ip′′ = Pi 

 
determine two contact transformations between x, p then Z1 – Z2 is a constant. 
 
 Incidentally, it is simple to prove this corollary directly. 
 
 11.  The characteristic relations that we mentioned rest upon the fact that, in a sense 
that we will likewise define (Theorems 8 and 11), the expression (ω1, ω2)x,p remains 
invariant under contact transformations. 
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 Theorem 8.  Let 1ω′  and 2ω′  be functions of z′, 1x′ , …, np′  that go to functions of z, x1, 

…, pn, which might be called ω1 and ω2, resp., under contact transformations.  If the 
expression 1 2 ,[ , ] x pω ω ′ ′′ ′  vanishes then this is also the case with [ω1, ω2]x,p . 

 
 If 1 2 ,[ , ] x pω ω ′ ′′ ′  vanishes then (theorem 2) it is possible to determine further functions 

3ω′ , …, 1nω +′  of z′, 1x′ , …, np′  such that all of the ,[ , ]i k x pω ω ′ ′′ ′  are equal to zero.  Then, 

however, (Theorem 1) one has an identity of the form: 
 

dz′ − 
1

k n

k k
k

p dx
=

=

′ ′∑  = 
1

1

k n

k k
k

dω
= +

=

′ ′Ω∑  . 

 
 If we now express z′, 1x′ , …, np′  in terms of z, x1, …, pn then the left-hand side of our 

equation goes to ρ (dz − k kp dx∑ ), and the transformed equation then possesses the form: 

 

ρ (dz −
1

k n

k k
k

p dx
=

=
∑ ) =

1

1

k n

k k
k

dω
= +

=
Ω∑ , 

    
if ω1, …, ωn+1 denote the functions of z, x1, …, pn that 1ω′ , …, 1nω +′  go to.  However, this 

new equation shows (Theorem I) that all of the [ωi, ωk]x,p = 0.  Thus, one also has, in 
particular, [ω1, ω2]x,p = 0. 
 
 Theorem 9.  If the equations: 
 

z′ = Z,  ix′  = Xi, ip′  = Pi 

 
define a contact transformation between x, p then all of the expressions (Pi, Pk) vanish, 
and when i = k, so do all (Xi, Pk). 
 
 We then know that the expressions ,( , )i k x px p ′ ′′ ′ , ,( , )i k x pp p ′ ′′ ′  are all equal to zero, so, 

from the foregoing theorem, ,( , )i k x pX P , ,( , )i k x pP P do, as well. 

 
 Theorem 10.  If the equations: 
 

z′ = Az + Π, ix′  = Xi, ip′  = Pi 

 
define a contact transformation between x, p then all of the expressions (X1, P1), …, (Xn, 
Pn) equal the constants A. 
 
 Namely, let F′ and Φ′ be two functions of 1x′ , …, np′  and let F, Φ be the 

corresponding functions of x1, …, pn .  We know that the expressions (F′, Φ′)x′,p′ and (F, 
Φ)x,p vanish simultaneously.  If we now consider that: 
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,( , )i k x px x′ ′ = ( , )i kx p′ ′ = ( , )i kp p′ ′  = 0 

then we find that: 

    (F, Φ)x,p = ,
1

( , )
k n

k k x p
k k k k k

F F
x p

x p p x

=

=

 ∂ ∂Φ ∂ ∂Φ ′ ′− ⋅ ′ ′ ′ ′∂ ∂ ∂ ∂ 
∑ , 

 
or, when we recall that F and Φ, when regarded as functions of 1x′ , …, np′ , are denoted 

by F′ and Φ′: 

    (F, Φ)x,p = ,
1

( , )
k n

k k x p
k k k k k

F F
x p

x p p x

=

=

 ′ ′ ′ ′∂ ∂Φ ∂ ∂Φ ′ ′− ⋅ ′ ′ ′ ′∂ ∂ ∂ ∂ 
∑ ; 

one further has: 

    (F′, Φ′)x′,p′  =
1

k n

k k k k k

F F

x p p x

=

=

 ′ ′ ′ ′∂ ∂Φ ∂ ∂Φ− ′ ′ ′ ′∂ ∂ ∂ ∂ 
∑ . 

 
In order for these expressions to vanish identically, one must necessarily have: 
 

1 1 ,( , )x px p′ ′ = 2 2 ,( , )x px p′ ′ = … = ,( , )n n x px p′ ′  = ,
1

1
( , )

i n

i i x p
i

x p
n

=

=

′ ′∑ . 

 
However, we previously found: 
 

1

k n
k k k k

k k k k k

x p x p

x p p x

=

=

 ′ ′ ′ ′∂ ∂ ∂ ∂− ′ ′ ′∂ ∂ ∂ ∂ 
∑ = Wi = A, 

so this means that: 

1

1 i n

i
i

W
n

=

=
∑  = A. 

 Now, one easily verifies that: 
 

1

1 i n

i
i

W
n

=

=
∑  = 

,)
1

1
( ,

x p

i n

i i
i

x p
n

=

=

′ ′∑ , 

so one has: 

,)
1

1
( ,

x p

i n

i i
i

x p
n

=

=

′ ′∑  = A, 

 
and, as a result, all of the expressions ,( , )i i x px p′ ′  equal zero. 

 
 Theorem 11.  If F′ and Φ′ are functions of 1x′ , …, np′  that go to the functions F and 

Φ of x1, …, pn , resp., then, at the same time, (F′, Φ′)x′,p′ goes to 
1

A
(F, Φ)x, p . 

 
 We then see that: 
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(F, Φ)x,p = ,
1

( , )
i n

i i x p
i i i i i

F F
x p

x p p x

=

=

 ′ ′ ′ ′∂ ∂Φ ∂ ∂Φ ′ ′− ′ ′ ′ ′∂ ∂ ∂ ∂ 
∑ , 

 
and furthermore, that: 

,( , )i i x px p′ ′ = A. 

One thus has: 
(F, Φ)x,p = A (F′, Φ′)x′,p′ . 

 
 With that, our assertion is proved. 
 
 12.  I would now like to show that the relations that we found are not only necessary, 
but also sufficient. 
 
 Theorem 12.  If X1, …, Xn, P1, …, Pn are functions of x1, …, pn that satisfy the 
relations: 

(Xi, Xk) = (Xi, Pk) = (Pi, Pk) = 0, (Xi, Pi) = A = const. 
 

then there is always one and essentially only one contact transformation of the form: 
 

z′ = F,  ix′  = Xi, ip′  = Pi . 

 
 Proof.  We take a function Az + Π that satisfies all relations: 
 

[Xi, Az + Ψ] = 0, 
 
and thus determine, as before, functions Π1, …, Πm such that the equation: 
 

d(Az + Ψ) – ∑ Πk dXk = A (dz – ∑ pk dxk) 
 

is verified identically; Thus, Π1, …, Πm will generally become other functions besides P1, 
…, Pm .  From the previous theorems, one now has: 
 

(Xi, Πk) = 0, (Xk, Πk) = A, 
 
and from our assumptions one has: 
 

(Xi, Pk) = 0, (Xk, Pk) = A, 
so one obtains: 

(Xi, Πk − Pk) = 0, (Xk, Πk  − Pk) = 0, 
from which: 

Πk − Pk = Wk (X1, …, Xk) 
and 

Pk = Πk − Wk . 
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 Now, one has: 
(Pi, Pk) = 0, 

or 
(Πi − Wi , Πk − Wk ) = 0, 

 
from which, upon consideration of the known relations: 
 

k

i

W

X

∂
∂

 = i

k

W

X

∂
∂

, 

one has: 

Wi = 1( , , )n

i

F X X

X

∂
∂
⋯

 

and it follows that: 

Pi = Πi − 
i

F

X

∂
∂

 

 If we now write the equation: 
 

d(Az + Ψ) − ∑ Πk dXk = A (dz − ∑ pk dxk) 
 

in the equivalent form: 
 

d(Az + Ψ – F) − ∑ k
k

F

X

 ∂Π − ∂ 
 dXk = A (dz − ∑ pk dxk) 

 
then we discover a function Z that satisfies the equation: 
 

dZ − ∑ Pk dXk = A (dz − ∑ pk dxk). 
 

 From Theorem 7: 
Az + Ψ – F + const. 

 
is the most general function that satisfies this requirement. 
 Since the variables x1, …, pn are independent of each other under the contact 
transformation between x, p, it is, in general, more convenient to write down the 
equations: 

ix′  = Xi, ip′  = Pi . 

 
 I finally summarize the results of this paragraph: 
 
 Theorem III.   If the 2n equations: 
 

ix′  = Xi, ip′  = Pi  
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define a contact transformation between x, p then one finds the following relations: 
 

(Xi, Xk) = (Xi, Pk) = (Pi, Pk) = 0, (Xi, Pi) = A = const. 
 

On the other hand, if these relations are valid then the first set of equations always 
determines a contact transformation. 
 
 This theorem may be generalized in the following way, moreover: 
 
 Theorem 13.  The following characteristic relations are true between the 2n + 1 
functions Z, X, P that determine a contact transformation: 
 

[Z, Xi] = [Xi, Xk] = [Xi, Pk] = [Pi, Pk] = 0 = [Z, Pi] – Pi [Xi, Pi], 
[X1, P1] = [X2, P2] = … = [Xn, Pn]. 

 
 This theorem, which I will not need here and will therefore not prove here, plays an 
important role in the theory of Pfaffian problems. 
 
 

§ 5. 
 

Homogeneous contact transformations. 
 

 There is an important class of contact transformations between x, p that possess the 
characteristic property that they take functions of 1x′ , …, np′  that are homogeneous in the 

differential quotients to other such functions.  I will determine all functions of this type, 
which I call homogeneous contact transformations.  Corresponding to them, I will refer 
to functions of x1, …, pn that are homogeneous in p1, …, pn briefly as homogeneous 
functions. 
 The importance of this new theory lies in the fact that it overlaps with the general 
theory of contact transformations from a certain standpoint. 
 

 13.  Theorem 14.  If X1, …, Xn are homogeneous functions of degree zero that pair-
wise give (Xi, Xk) =  0 then it is possible to satisfy the equation: 
 

dZ − ∑ Pk dxk = A (dz − ∑ pk dxk) 
 
in such a way that all Pi become homogeneous functions of degree one.  The contact 
transformation: 

ix′  = Xi , ip′ = Pi 

 
is then homogeneous; i.e., they transform homogeneous functions into homogeneous 
functions of the same degree. 
 
 Proof:  The fact that all Xi are homogeneous of degree zero is expressed by: 
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1
1

iX
p

p

∂
∂

+ … + i
n

n

X
p

p

∂
∂

 = 0, 

 
or, what amounts to the same thing, by: 
 

[z, Xi] = 0. 
 

Now, since all (Xi, Xk) are likewise zero, one can satisfy the equation: 
 

dz − ∑ Pk dxk = dz – ∑ pk dxk . 
 

The quantities Pi then satisfy the relations: 
 

     1
1

i

X
P

x

∂
∂

+ … + n
n

i

X
P

x

∂
∂

= pi, 

     1
1

i

X
P

p

∂
∂

+ … + n
n

i

X
P

p

∂
∂

 = 0, 

 
and are, as a result, homogeneous functions of the degree one. 
 If we apply the transformation: 
 

ix′  = Xi, ip′  = Pi 

 
to any homogeneous functions of degree s, such as: 
 

11
1, , , , , n

n n
n n

pp
p H x x

p p
− ′′′ ′ ′⋅  ′ ′ 

⋯ ⋯ , 

then they are converted into: 

11
1, , , , , n

n n
n n

PP
P H X X

P P
− 

′ ⋅  
 
⋯ ⋯ , 

 
which is again a homogeneous function of degree s. 
 
 14.  I will now determine all homogeneous contact transformations of degree zerol 
that pair-wise give (Xi, Xk) = 0.  One then has the relations: 
 

[z, X1] = 0, …, [z, Xn] = 0, 
 
and thus (Theorem 5) Az + Π(X1, …, Xn), where A denotes a constant and Π, an arbitrary 
function, is the most general function that is linear in z that fulfills the relations: 
 

[X1, F] = 0, …, [Xn, F] = 0. 
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One is now, in turn, dealing with the problem of determining Π in the most general way 
such that the relations: 

z′ = Az + Π, ix′  = Xi, ip′  = Pi 

 
define a homogeneous contact transformation.  The identity equation: 
 

d(Az + Π) − ∑ Pk dXk = A (dz − ∑ pk dxk) 
gives: 

ix

∂Π
∂

 = k
k

i

X
P

x

∂
∂∑ − A pk ,  

ip

∂Π
∂

 = k
k

i

X
P

p

∂
∂∑ . 

 
 These equations show that the quantities ∂Π / ∂xi and ∂Π / ∂pi must be of degree zero 
and one, respectively, if they are not perhaps equal to zero.  Now, Π is, however, of 
degree zero and thus ∂Π / ∂xi and ∂Π / ∂pi must be of degree zero and – 1, respectively, if 
they are non-zero.  These considerations show that ∂Π / ∂xi , as well as ∂Π / ∂pi , must 
vanish, so Π is a constant – say, B – and Az + B is the most general form of the desired 
function. 
 
 15.  If one eliminates the quantities p1, …, pn from the equations: 
 

z′ = Az + B, ix′  = Xi 

 
then one obtains relations of the form: 
 

z′ = Az + B, Ω1( 1x′ , …, nx′ , x1, …, xn) = 0, …, Ωq( 1x′ , …, xn) = 0. 

 
 Conversely, one may show that relations of this form always determine a 
homogeneous contact transformation. 
 From our general theory, one has that in order to find this contact transformation one 
must append the following relations to the foregoing ones: 
 

     ip′ = 1 1( )q q

ix

λ λ∂ Ω + + Ω
′∂
⋯

, 

     pi = − 1 1( )1 q q

iA x

λ λ∂ Ω + + Ω
∂
⋯

. 

 
 However, the form of these equations shows that ix′  and ip′  will be homogeneous 

functions of degrees zero and one, resp., of p1, …, pn .  Thus: 
 
 Theorem IV.  If X1, …, Xn are homogeneous functions of degree zero that pair-wise 
give (Xi, Xk) = 0 then the equations: 
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z′ = Az + B, ix′ = Xi, 

 
always determine a homogeneous contact transformation.  Such a transformation can 
also be obtained when one takes q + 1 equations of the form: 
 

z′ = Az + B, Ωk( 1x′ , …, nx′ , x1, …, xn) = 0  (k = 1, …, q) 

 
and looks for the corresponding contact transformation.  Finally, it is self-explanatory 
(Theorem III) that when X1, …, Xn, P1, …, Pn are homogeneous functions of degrees zero 
and one, respectively, that fulfill the relations: 
 

(Xi, Xk) = (Xi, Pk) = (Pi, Pk) = 0; (Xi, Pi) = A, 
the equations: 

ix′  = Xi, ip′ = Pi 

 
always determine a homogeneous contact transformation. 
 
 

§ 6. 
 

Infinitesimal homogeneous contact transformations. 
 

 16.  I say that a homogeneous contact transformation: 
 

ix′  = Xi, ip′ = Pi , (Xi, Pi) =1 

 
is infinitesimal if it can assume the form: 
 

ix′  = xi + ε Mi,  ip′ = pi + ε Πi, 

 
where ε is an infinitesimal quantity, Mi and Πi are homogeneous functions of degree zero 
and one, respectively.  I will show that there is always a homogeneous function of degree 
one whose partial derivatives with respect to pi and xi are just Mi and – Πi .  This remark, 
which will not be used further in this treatise, possesses a fundamental importance: For 
me, it was the starting point of some recent investigations of transformation groups. 
 If one substitutes xi + ε Mi and pi + ε Πi ,  in place of Xi and Pi, resp., in the relations: 
 

(Xi, Xk) = (Xi, Pk) = (Pi, Pk) = 0, (Xi, Pi) = 1 
 
then one finds by developing them and dropping quantities that are infinitesimal of 
second order that: 
 

i

k

M

p

∂
∂

 = k

i

M

p

∂
∂

,  i

k

M

x

∂
∂

= − k

ip

∂Π
∂

, i

kx

∂Π
∂

= k

ix

∂Π
∂

, 
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where i and k may assume all possible values, and, in particular, the same value.  These 
equations show that there is a function Φ of x1, …, pn for which: 
 

Mi =
ip

∂Φ
∂

, Πi = −
ix

∂Φ
∂

. 

 
Here, Φ is subject to only the restriction that ip∂Φ ∂ and ix∂Φ ∂ should be homogeneous 

of degree zero and one, resp.  One must then have: 
 

1

k n

k
k k i

p
p p

=

=

 ∂ ∂Φ
 ∂ ∂ 

∑  = 0,  
1

k n

k
k k i

p
p x

=

=

 ∂ ∂Φ
 ∂ ∂ 

∑  = 
ix

∂Φ
∂

, 

from which: 

k
ki k

p
p p

 ∂ ∂Φ
 ∂ ∂ 

∑ =
ip

∂Φ
∂

, k
ki k

p
x p

 ∂ ∂Φ
 ∂ ∂ 

∑ =
ix

∂Φ
∂

, 

 
and by integrating and omitting some inessential constants, it follows that: 
 

k
k k

p
p

∂Φ
∂∑ = Φ, 

 
i.e., Φ itself must be a homogeneous function of degree one.  It is also clear that 

ip∂Φ ∂ and ix∂Φ ∂ should be homogeneous of degree zero and first, resp., when Φ is 

homogeneous of degree one. 
 For the sake of brevity, if we now set δxi and δpi, instead of ix′ − xi and ip′ − pi, resp., 

and denote any auxiliary variable by t then we can summarize the aforementioned as 
follows: 
 
 Theorem V.  Any infinitesimal homogeneous contact transformation possesses the 
form: 

i

i

x
H

p

δ
∂
∂

 = i

i

p
H

x

δ
∂−
∂

= δt; 

 
here, H denotes any homogeneous function of degree one *). 
 
 
                                                
 *) From this theorem it follows, inter alia, as one easily recognizes, that the determination of all 
infinitesimal contact transformation that take an equation: 
 

f(z, x1, …, xn , p1, …, pn) = const. 
 
to itself overlaps with the integration of this equation.  For equations of higher order these two problems 
are, in general, different, and for that reason, they both have their independent justification. 
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§ 7. 
 

On an improvement of the Jacobi-Mayer method of integration. 
 

 The Jacobi method of integration, as well as the Jacobi-Weiler and the Jacobi-Mayer 
methods, rest upon the fact that when n functions F1, .., Fn of x1, …, xn, p1, …, pn pair-
wise give: 

(Fi, Fk) = 0, 
 

and it is therefore possible to solve the equations: 
 

F1 = a1, .., Fn = an 
 
for the differential quotients, it is possible to integrate each of these partial differential 
equations.  This requirement – viz., that our equations must be soluble for the p – implies, 
as is known, certain difficulties that Jacobi has indeed reduced, but still not completely.  
One must therefore consider it to be an essential improvement of the methods in question 
that one can drop the stated requirement completely, as shall now be shown.  I first 
consider equations in which the unknown function enters explicitly, and then ones in 
which this is not the case. 
 

 17.  I base the discussion on the Clebsch theory of the Pfaff problem.  Let 
2

1

k n

k k
k

X dx
=

=
∑  

be a given Pfaff expression that can be brought into the n-term form: 
 

2

1

k n

k k
k

X dx
=

=
∑  = 

1

k n

k k
k

F df
=

=
∑ . 

 
From Clebsch, the quantity f will be determined from the simultaneous system: 
 

((fi)) = 0, ((fi, fk)) = 0. 
 

If n functions of f are found that satisfy them then it is possible to exhibit all 2n – 1 
solutions of the equation: 

((f)) = 0 
 

by means of executable operations; i.e., to integrate this equation.  This known theorem 
shall now be utilized. 
 Let ϕ be a function of z, x1, …, xn, p1, …, pn−1 and let: 
 

dz – p1 dx1 − … - pn−1 dxn−1 – ϕ dxn 
 

be the Pfaff expression, which can be reduced to an n-term form K1 dH1 + … + Kn dHn .  
The simultaneous system that was given above then assumes the form: 
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[pn – ϕ, Hi] = 0, [Hi, Hk] = 0, 
 
and, as a result, we obtain the following theorem: 
 
 Theorem 15.  If ϕ, H1, …, Hn are given functions of z, x1, …, xn , p1, …, pn−1 that 
pair-wise satisfy the equations: 

[pn – ϕ, Hi] = 0, [Hi, Hk] = 0 
 
then it is always possible to exhibit all 2n – 1 solutions H of the equation [pn – ϕ, H] = 0. 
 
 If one considers that the integration of the equation: 
 

pn – ϕ  = 0 
 
by the Cauchy method comes down to the determination of all solutions H to the equation 
[pn – ϕ, H] = 0 then one can state the following theorem: 
 
 Theorem 16.  The integration of the partial differential equation: 
 

pn – ϕ (z, x1, …, xn, p1, …, pn−1) = 0 
 
can always be achieved when one has found n mutually independent functions H1, …, Hn 
of z, x1, …, xn, p1, …, pn−1 that satisfy all equations: 
 

[pn – ϕ, Hi] = 0, [Hi, Hk] = 0. 
 
Therefore, it is entirely irrelevant whether one eliminates all p from the equations: 
 

H1 = a1, …, Hn = an 
 
or not.  It is, in turn, conceivable that some of these functions Hi do not include these 
differential quotients at all. 
 This theorem may also be reproduced in the following way: 
 
 Theorem 17.  If H0, H1, …, Hn are given functions of z, x1, …, xn, p1, …, pn  that pair-
wise satisfy the equations [Hi, Hλ] then each of the equations Hi = ai can be integrated. 
 
 Thus, we can formulate the Jacobi-Mayer integration method in the following way: 
 Should the equation: 

H0(z, x1, …, xn, p1, …, pn) = a0 
 

have been integrated, then one first looks for a solution H1 of: 
 

[H0, H] = 0 
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that is different from H0.  This requires a 2n – 1 operation *).  One then seeks a solution 
H2 of the complete system: 

[H0, H] = 0, [H1, H] = 0 
 
that is different from H0 and H1 .  By means of Mayer’s theorem, this happens by means 
of a 2n – 3 operation.  By means of a 2n – 5 operation, one then finds a solution of the 
complete system: 

[H0, H] = 0, [H1, H] = 0, [H2, H] = 0 
 

that is different from H0, H1, and H2 , etc.  By means of a 1 operation, one ultimately 
finds a solution Hn of the complete system: 
 

[H0, H] = 0, [H1, H] = 0, …, [Hn−1, H] = 0 
 
that is different from H0, H1, …, Hn−1 .  Thus, from the aforementioned developments, the 
integration process can be considered to be concluded. 
 The foregoing theorem likewise includes the complete solution of the important 
problem: 
 

From the complete solution of a given partial differential equation of first order: 
 

H0(z, x1, …, xn, p1, …, pn) = a0 
 
find the complete solution of any other partial differential equation: 
 

0 1 1( , , , , , , )n nH z x x p p′ ′ ′ ′ ′ ′⋯ ⋯  = a0 

 
that arises from the given one by means of any contact transformation, 

 
a problem that Jacobi ** ) was already involved with and was first rigorously solved by 
Mayer *** ), if only for special types of contact transformations. 
 Namely, if: 

z = Z(x1, …, xn, a1, …, an) 

is a complete solution of the given equation H0 = a0 then one must have that the n + 1 
equations: 

z = Z, p1 = 
1

Z

x

∂
∂

, …, pn = 
n

Z

x

∂
∂

 

 
allow us to determine the n + 1 constants a0, a1, …, an , and the value of a0 that is 
obtained from them must be a given function H0 .  If one further lets: 

                                                
 *) By the term “an m operation,” I understand this to mean the discovery of an integral of a system of m 
ordinary differential equations. 
 ** ) Nova Methodus, § 61 and Vorles. über Dynamik, pp. 469. 
 *** ) Göttinger Nachrichten, 1872, no. 21. 
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a1 = H1, …, an = Hn 
 

denote the value of the n remaining constants then H0, H1, …, Hn are mutually 
independent functions that have the mutual relationship: 
 

[Hi, Hk] = 0. 
 
 Now, if H1, …, Hn go to 1H ′ , …, nH ′  by the application of any contact transformation 

that transforms H0 into 0H ′  then 0H ′ , 1H ′ , …, nH ′  are also mutually independent 

functions that, from Theorem 8, pair-wise satisfy the equations: 
 

[ , ]i kH H′ ′  = 0. 

 
From Theorem 17, one can thus obtain a complete solution to the transformed equation 

0H ′  = a0 by just algebraic operations. 

 Since the complete solution to the partial differential equation H0 = a0 requires no 
further sort of integrations, as long as one has found n functions H1, …, Hn that are 
independent of each other, as well as H0, and satisfy the conditions: 
 

[Hi, Hk] = 0, 
 
one is then close to the concept of extending the complete solution that one immediately 
calls the n equations that are defined by these functions: 
 

H1 = a1, …, Hn = an 
 
a complete solution of the given equation H0 = a0 . 
 By establishing this extended definition of the complete system, one can immediately 
say: 
 
 A contact transformation that takes the given partial differential equation: 
 

H0(z, x1, …, xn, p1, …, pn) = a0 
to the equation: 

0 1 1( , , , , , , )n nH z x x p p′ ′ ′ ′ ′ ′⋯ ⋯  = a0 

 
also simultaneously takes any complete solution of the former equation to a complete 
solution of the latter one. 
 
 18.  In order to be able to extend this theory to partial differential equations that do 
not include the unknown function itself, we present some lemmas. 
 
 Theorem 18.  Let V be a function of x1, …, xm, y1, …, yq that is defined by q linear 
partial differential equations: 
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1 1

k qk m

ik ik
k kk k

V V
X Y

x y

==

= =

∂ ∂+
∂ ∂∑ ∑  = Wi(x1, …, xm, y1, …, yq)  (i = 1, …, q). 

 
If these equations possess a common solution of the form: 
 

V = F + Φ(x1, …, xm) 
 
and if Φ denotes an arbitrary function then all Xik are equal to zero. 
 
 Then, by assumption, the given equations shall be satisfied simultaneously by V = F 
and by V = F + Φ.  Therefore, one must have: 
 

1

k m

ik
k k

X
x

=

=

∂Φ
∂∑ = 0. 

 
However, this equation, as the assumption Φ = xk shows immediately, can be true for an 
arbitrary function Φ only when each Xik = 0. 
 
 Theorem 19.  Let V be a function of x1, …, xn that is defined by q linear partial 
differential equations: 
 

1

k n

ik
k k

F
X

x

=

=

∂
∂∑ = Wi(x1, …, xn)  (i = 1, …, q). 

 
If these equations possess a common solution of the form: 
 

V = F + Φ(ξ1, …, ξn), 
 
and Φ refers to an arbitrary function of the quantities ξ, which shall be known, then the 
determination of V requires only one quadrature. 
 
 Namely, if one chooses q functions y1, …, yq of x1, …, xn such that no relation exists 
between x1, …, xn−q, y1, …, yq, which is always possible, and then introduces these 
quantities as independent variables in our partial differential equations then, from the 
foregoing theorem, these equations take on the form: 
 

i

V

y

∂
∂

= Ω(ξ1, …, ξn−q, y1, …, yq), (i = 1, …, q); 

 
One then finds V by quadrature. 
 
 Theorem 20.  If X1, …, Xn are given functions of x1, …, xn, p1, …, pn that pair-wise 
yield (Xi, Xk) = 0 then it is always possible to find a function F of z, x1, …, pn that fulfills 
all n equations [Xi, F] = 0 by mere quadrature. 
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 Previously (Theorem 6), we saw that, in fact, the equations: 
 

[X1, Az + Π] = 0, …, [Xn, Az + Π] = 0, 
 
in which Π denotes an unknown function of x1, …, pn , possess a common solution of the 
form: 

Π + Φ(X1, …, Xn); 
 

here, Φ is an arbitrary function of X1, …, Xn , and thus, from the foregoing theorem, the 
determination of Π is achieved by only one quadrature. 
 Moreover, we can also formulate the Jacobi-Mayer method for the case in which the 
equation in question does not include the unknown function z. 
 Should the equation: 

X1(x1, …, xn, p1, …, pn) = a1 
 

be integrated, then one would first seek a solution X2 of the equation: 
 

(X1, X) = 0 
 
that is different from X1 by means of a 2n – 2 operation, and then, by means of a 2n – 4 
operation, a solution X3 of the complete system: 
 

(X1, X) = 0, (X2, X) = 0, 
 

that is different from X1 and X2, etc.  Ultimately, one would find a solution Xn of the 
complete system: 

(X1, X) = 0, …, (Xn−1, X) = 0 
 
by means of a 2 operation.  If this has happened then one would determine a function Az 
+ Π(x1, …, xn, p1, …, pn) that satisfies all of the equations: 
 

[X1, Az + Π] = 0, …, [Xn, Az + Π] = 0. 
 

The integration process of the foregoing number is thus concluded. 
 

§ 8. 
 

Response to a remark of Mayer. 
 

 19.  Since 1872, Mayer and I entered into a lively state of communication that was 
inspiring to me in several directions.  In particular, it was at Mayer’s suggestion in 1873 
that I sought to find an algebraic representation of the foregoing theory, which I had, for 
the most part, found by considering manifolds.  Thus, I was prepared to find my analytic 
form incomplete.  In fact, Mayer immediately made me aware of some inaccuracies that I 
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had perpetrated in that treatise.  At the same time, he made the essential objection *) that I 
had employed the Clebsch theory of the Pfaff problem: 
 

2

1

k n

k k
k

X dx
=

=
∑  = F1 df1 + … + Fn dfn 

 
to a greater extent that Clebsch had proved.  Namely, it was only under the assumption 
that the determinant R that is constructed from the elements: 
 

aik = i k

k i

X X

x x

∂ ∂−
∂ ∂

 

 
does not vanish that Clebsch had proved that the f are an arbitrary system of solutions to 
the simultaneous equations: 

((fi)) = 0, ((fi, fk)) = 0. 
 
My response to him is that these equations, when multiplied by the determinant itself: 
 

R ((fi)) = 0, R ((fi, fk)) = 0, 
 
define the quantities f under all circumstances. 
 Namely, let: 

2

1

k n

k k
k

X dx
=

=
∑  = F1 df1 + … + Fn dfn 

and 
2

1

k n

k k
k

Y dy
=

=
∑  = Φ1 dϕ1 + … + Φn dϕn 

 
be two Pfaff expressions in the variables x and y, resp., whose canonical forms include n 
terms.  Each of the sequences: 
 

f, …, fn, 1

n

F

F
, …, 1n

n

F

F
− , 

and 

ϕ, …, ϕn, 1

n

Φ
Φ

, …, 1n

n

−Φ
Φ

 

 
consist of functions, between which no functional relation exists.  Thus, one can choose 
two functions F(x1, …, x2n) and Φ(y1, …, y2n) such that the 2n equations: 

                                                
 *) Cf., his note in the Göttinger Nachr., 1874, no. 13: “Ueber die Lie’schen 
Berührungstransformationen.” 
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fi = ϕi,  k

n

F

F
= k

n

Φ
Φ

, F = Φ 

 
determine a transformation between the two systems of variables x and y.  Such a 
transformation, however, takes the one Pfaff expression to the other one, but multiplied 
by a certain quantity.  Thus: 
 
 If:  

2

1

k n

k k
k

X dx
=

=
∑  and 

2

1

k n

k k
k

Y dy
=

=
∑  

 
are two Pfaff expressions whose canonical forms include n terms then the one expression 
can take on those properties of the other one that remain unperturbed under a change of 
variables, when multiplied by a suitable quantity. 
 
 20.  This important remark (which may be extended immediately to arbitrary Pfaff 
problems) also addresses the stated difficulty quite easily. 
 The vanishing or non-vanishing of the determinant R is, in fact, a property that 
remains undisturbed when new variables are introduced.  Indeed, for Clebsch, the fact 
that R is equal to zero meant that an equation of the form: 
 

2

1

k n

k k
k

X dx
=

=
∑ = dπ1 + Π2 dπ2 + … + Πn dπn 

 
is possible.  As a result, the vanishing or non-vanishing of the determinant can be 
arranged by multiplication by a suitable quantity. 

 Now, let ∑ Xk dxk be an expression whose determinant is non-vanishing.  We choose 

a quantity ρ such that the determinant of the expression ∑ ρ Xk dxk is non-vanishing.  
Now, if: 
(a)     ((fi)) = 0, ((fi, fk)) = 0 
and 
(b)     ((fi))ρ = 0, ((fi, fk))ρ = 0 
 
are two simultaneous system that correspond to these two expressions then it is clear that 
they can differ from each other only by a factor.  The quantities f1, …, fn , which must 
satisfy the one system must, from the nature of things, also satisfy the second one.  
Therefore, our equations (a) and (b) can take on a common form that remains valid when 
the determinant vanishes.  For Clebsch, our equations had the form: 
 

1
i ik

i k k

f
X R

R x

∂
∂∑∑ = 0, 

1
ik

i k i k

ff
R

R x x
βα ∂∂

∂ ∂∑∑  = 0, 

 
which become illusory when R = 0.  By contrast, the equivalent equations: 
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i ik
i k k

f
X R

x

∂
∂∑∑ = 0,  ik

i k i k

ff
R

x x
βα ∂∂

∂ ∂∑∑ = 0, 

 
are never illusory, because, in fact, the sub-determinants Rik may not all vanish.  These 
equations are the ones that that define f under all situations, and in this form I have also 
employed the Clebsch equations in the foregoing. 
 It should only be added here that the aforementioned multiplier should be regarded as 
an integrating factor. 



PART TWO 
 

Theory of groups. 
 
 In this section, I will consider a sequence of functions F1, …, Fr of x1, …, xn, p1, …, 
pn, and determine all of the relations that exist between them that remain unperturbed 
under arbitrary contact transformations between x, p: 
 

ix′  = Xi , ip′  = Pi . 

 
In order to be able to give the results the simplest possible form, I will assume that the 
constants (Xi, Pi) are equal to 1.  This is, however, only a formal restriction.  In 
connection with the results obtained, I will develop a rational method that teaches one 
how to exploit the circumstances that occur during the integration of a first-order, partial 
differential equation as best as possible. 
 

§ 9. 
 

Group.  System in involution.  Statement of two problems. 
 

 21.  The theory that follows has its origin in the explicit introduction of two concepts, 
the first of which essentially goes back to Jacobi. 
 
 Definition .  I say that r mutually independent functions u1, …, ur of x1, …, xn, p1, …, 
pn define a one-parameter group when any (ui , uk) can be expressed as a function of the 
u.  I say that any function of the quantities u belongs to the group. 
 
 If the functions u1, u2, …, uρ of an ρ-parameter group belong to a group with more 
terms u1, …, uρ , uρ+1, …, ur then I say that the latter group contains the former one, or 
that the former is a subgroup of the latter. 
 
 Theorem 21.  If q relations exist between u1, …, ur and therefore any (ui , uk) is 
expressible in terms of the u such that one has: 
 

(ui , uk) = fik(u1, …, ur) 
 

then there is an (r – q)-parameter group that all u belong to. 
 
 Then, from our assumption, it is possible to find quantities among the r – q quantities 
u – say, u1, …, ur−q − that can be expressed in terms of the remaining ones.  If one 
substitutes the values of ur−q+1, …, ur thus found into: 
 

(ui , uk) = fik(u1, …, ur) 
 
then this expression assumes the form: 
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(ui , uk) = ϕik(u1, …, ur−q) 
 
and as a result the u1, …, ur−q define a group that ur−q+1, …, ur also belong to. 
 
 Theorem 22.  If v1, …, vr belong to the group u1, …, ur, such that one has: 
 

vi = Vi(u1, …, ur), 
 

and if V1, …, Vr define mutually independent functions of the u then v1, …, vr also define 
an r-parameter group, which regards as another form of the given one. 
 
 Then, by our assumption, the v1, …, vr can also be regarded as mutually independent 
functions of the x1, …, pn .  Furthermore, one has: 
 

(vi , vk) = 
1 1

r r
i k

m n m n

V V

u u= =

∂ ∂
∂ ∂∑∑ (um , un), 

 
From which, it follows that (vi , vk) is a function of the quantities u, and thus it is likewise 
a function of the quantities v. 
 
 Definition.   If u1, …, ur define a group and all (ui , uk) vanish then the group shall be 
called an r-parameter system in involution. 
 
 I call two groups u1, …, ur and w1, …, wr involutory groups when any (ui , wk) = 0. 
 In Jacobi’s theory, systems in involution u1, …, ur that are subject to the bothersome 
restriction that the equations: 

u1 = a1 , …, ur = ar  
 
should be solved for r of the quantities p play a fundamental role.  The introduction of the 
general concept of system in involution belongs to me. 
 
 Theorem 23.  A contact transformation between x1, …, pn, 1x′ , …, np′ : 

 

ix′ = Xi,  np′  = Pi  (Xi, Pi) = 1 

 
takes the functions of an r-parameter group 1u′ , …, ru′  to the functions of a new r-

parameter group u1, …, ur .  Thus, any (ui , uk) can be expressed in terms of u1, …, ur in 
the same way as the corresponding ( , )i ku u′ ′  in terms 1u′ , …, ru′ . 

 
 Namely, we have seen (Theorem 11) that: 
 

( , )i k x pu u ′ ′′ ′  = (ui , uk)xp . 

Now, we assume that: 
( , )i k x pu u ′ ′′ ′  = fik ( 1u′ , …, ru′ ), 



Lie – Foundations of an invariant theory of contact transformations.                   38 

so we find that: 
(ui , uk)xp = fik ( 1u′ , …, ru′ ), 

 
or, when we recall that 1u′ , …, ru′  are regarded as functions of u1, …, pn that are denoted 

by u1, …, ur : 
(ui , uk) = fik (u1, …, ur), 

 
with which, our theorem is proved. 
 
 Corollary.   A contact transformation takes a system in involution to another system 
in involution. 
 
 22.  I can now formulate the two main problems of this section. 
 
 Problem 1.  Let one be given two r-parameter groups 1v′ , …, rv′  and v1, …, vr .  One 

must decide whether there is a contact transformation that transforms each iv′  into a 

function of v1, …, vr, or, as I will say, for the sake of brevity, that transforms the one 
group into the other one. 
 
 We will see that any r-parameter group can be characterized by a certain positive 
whole number that is less than r.  Should an r-parameter group be capable of being 
transformed into another one, then it would be necessary and sufficient that this number 
would be the same for both groups.  This important theorem can also be expressed as 
follows: An r-term group possesses only one property that is independent of its form and 
remains invariant under contact transformations.  This property can be expressed in terms 
of a positive whole number that is less than r. 
 
 Problem II.   Let one be given two systems of any r functions: 
 

1F ′ , …, rF ′  and F1, …, Fr 

 
 of 1x′ , …, np′  and x1, …, pn, resp.  One must decide whether there is a contact 

transformation: 

ix′  = Xi , ip′  = Pi (Xi Pi) = 1 

 
that transforms any kF ′  into the corresponding Fk . 

 
 The solution to this problem, which we will give in § 16, is also very simple. 
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§ 10. 
 

Reciprocal groups. 
 

 The analytical starting point *) for my investigations into groups was the following 
theorem: 
 
 Theorem 24.  If u1, …, ur is a group and V is an unknown function of x1, …, xn, p1, 
…, pn, then the r linear equations: 
 

(u1 , V) = 0, …, (ur , V) = 0 
define a complete system. 
 
 Proof.  It is clear, to begin with, that these equation are mutually independent, since 
otherwise a sequence of functional determinants would vanish, and as a result, there 
would exist relations between u1, …, ur , which are regarded as functions of x1, …, xn, p1, 
…, pn.  However, this contradicts our assumptions. 
 
 If we now write Ai(V), instead of (ui , V), then we find by carrying out the calculations 
that ** ): 

Ai(Ak(V)) − Ak(Ai(V)) = ((ui , uk), V). 
 
However, one has (no. 21): 

(ui , uk) = fik (u1, …, ur), 
so one gets: 

((ui , uk), V) = 
1

ikf

u

∂
∂

(u1 , V) + … + ik

r

f

u

∂
∂

(ur , V), 

i.e.: 

Ai(Ak(V)) − Ak(Ai(V)) = 
1

ikf

u

∂
∂

(A1 , V) + … + ik

r

f

u

∂
∂

(Ar , V), 

 
with which, our theorem is proved. 
 
 The complete system: 

 (u1 , V) = 0, …, (ur , V) = 0, 
 
has 2n – r solutions v1 , v2 , …, v2n−r , between which no functional relation exists, and 
any other solution can be represented as a function of these quantities.  Now, the Poisson-
Jacobi theorem says that any (vi , vk) is such a common solution.  As a result, (vi , vk) is a 
function of the v: 

                                                
 *) It was by synthetic speculations about the Poisson-Jacobi theorem and the intrinsic essence of things 
that led me to this theorem.  I remark that it is the manifolds that are generated by characteristic strips of 
two or more equations that are to be examined. 
 ** ) The fact that the two equations (u1 , V) = 0, (u2 , V) = 0 imply that ((u1 , u2), V) = is a well-known 
proof of the Poisson-Jacobi theorem. 
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(vi , vk) = ϕik (v1 , v2 , …, v2n−r), 
 
i.e.,  v1 , v2 , …, v2n−r define a new group. 
 Therefore, the equations: 

(v1 , U) = 0, …, (v2n−r , U) = 0, 
 

define a complete system with 2n – (2n – r) = r solutions.  Obviously, u1, …, ur satisfy 
this system, whose solutions therefore all belong to the original group.  Thus: 
 
 Theorem VI.  Any group u1, …, ur determines a second group with 2n – r terms that 
has a completely reciprocal relationship to the first one.  Any group consists of all 
functions that are in involution with the functions of the second group.  Two such groups 
shall be called reciprocal groups.  I also frequently call the one group the polar group of 
the other one *). 
 
 If u1, …, ur and v1, …, v2n−r are two reciprocal groups that are taken to 1u′ , …, ru′  and 

1v′ , …, 2n rv −′ , resp., by a contact transformation then these two new groups are also 

reciprocal groups.  Then, since each (ui , uk) vanishes, this is also the case (Theorem 8) 
for any expression ( , )i ku v′ ′ . 

 
§ 11. 

 
The distinguished functions of a group. 

 
 24.  A new fundamental concept will be introduced in this paragraph. 
 
 Definition.   Functions U that belong to a group u1, …, ur and satisfy all the 
relations: 

(u1 , U) = … = (ur , U) = 0 
 

shall be called distinguished functions. 
 
 It is clear that the number of mutually independent distinguished functions of a group 
is independent of the form of the group.  It is also clear that a group with m distinguished 
functions will go to a a group with m distinguished function under any contact 
transformation. 
 
 Theorem 25.  If m relations exist between the functions of two reciprocal groups then 
there are m functions that simultaneously belong to both groups. 
 
 Proof.  I assume that u1, …, ur and v1, …, v2n−r are two reciprocal groups, between 
whose functions m relations exist.  We now recall that: 

                                                
 *) A general theory of reciprocity is based upon this theorem.  Any theorem about groups corresponds 
to a reciprocal theorem.  On the other hand, the two groups are possibly reciprocally inter-related by pair-
wise relations.  These suggestions shall not be developed further, here. 
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(ui , uk) = fik (u1, …, ur), (vi , vk) = ϕik(v1, …, v2n−r), (ui , vk) = 0, 
 
and further consider Theorem 21, then this yields that u1, …, ur, v1, …, v2n−r belongs to a 
certain (2n – m)-parameter group: 

W1, …, W2n−m  
that can assume the form: 

u1, …, ur, v1, …, v2n−r−m , 
as well as the form: 

v1, …, v2n−r , u1, …, ur−m . 
 

From this, it follows that the m solutions F1, …, Fm of the complete system: 
 

(W1, F) = 0, …, (W2n−m , F) = 0 
 

satisfy, on the one hand, the equations: 
 

(u1 , F) = 0, …, (ur , F) = 0, 
 
and thus belong to the group v1, …, v2n−r , and, on the other hand, fulfill the equations: 
 

(v1 F) = 0, …, (v2n−r F) = 0, 
 
and thus likewise belong to the group u1, …, ur .  There are then actually m functions that 
belong to both groups. 
 
 Theorem 26.  If a function F simultaneously belongs to two reciprocal groups then it 
is a distinguished function in both groups. 
 
 As an element of the group v1, …, v2n−r , F then satisfies the equations: 
 

(u1, F) = 0, …, (ur, F) = 0. 
 
Now, F is a function of the quantities u, and any such function that fulfills the equations 
that we just presented is a distinguished function of the group u1, …, ur .  In a 
corresponding way, one sees that F is a distinguished function of the group v. 
 
 Theorem 27.  Any distinguished function of a group belongs to the reciprocal group. 
 
 Then, if U is a distinguished function of the group u1, …, ur then the relations: 
 

(u1, U) = 0, …, (ur, U) = 0 
 
are true; However, these are just the equations that must be true if U is to belong to the 
reciprocal group. 
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 Theorem 28.  Any distinguished function of a group is a distinguished function in the 
reciprocal group. 
 
 This theorem follows as a corollary of the previous two. 
 
 Theorem 29.  If a group u1, …, ur contains m functions U1, …, Ur  then m relations 
exist between the functions of this group and those of the reciprocal group v1, …, v2n−r . 
 
 U1, …, Ur then belong to the two groups.  If one then expresses them, in one case, as 
functions of u and in the other case, functions of v, and sets these expressions pair-wise 
equal to each other then one finds the relations that we spoke of: 
 

F1 (u1, …, ur) = Φ1 (v1, …, v2n−r), 
………………………………, 

Fm (u1, …, ur) = Φm (v1, …, v2n−r). 
 

 I summarize the results of this paragraph in the following way: 
 
 Theorem VII.   Two reciprocal groups contain the same distinguished functions, and 
exactly as many relations exist between the functions of two reciprocal groups as the 
number of distinguished functions that the groups contain.  These relations always have 
the form: 

Fi(u1, …, ur) = Φi(v1, …, v2n−r)  (i = 1, …, m). 
 

They simply express the idea that the m distinguished functions belong to the one group, 
as well as the other. 
 
 25.  I will show that the number of distinguished functions can be determined in such 
a way that one constructs a certain number of determinants and then examines whether 
they and their sub-determinants of 1st, 2nd, … order vanish.  If our group contains m 
distinguished functions then the determination requires an m, m – 1, …, 3, 2, 1 operation, 
respectively. 
 Let u1, …, ur be a group and let U be function of u1, …, ur .  Should it be a 
distinguished function then it would be necessary and sufficient that the equations: 
 

(u1, U) = 0, …, (ur , U) = 0, 
exist, or, when developed: 
 

A1(U) = (u1, u1)
1

U

u

∂
∂

 + (u1, u2)
2

U

u

∂
∂

 + … + (u1, ur)
r

U

u

∂
∂

 = 0, 

 

A2(U) = (u2, u1)
1

U

u

∂
∂

 + (u2, u2)
2

U

u

∂
∂

 + … + (u2, ur)
r

U

u

∂
∂

 = 0, 

…………………………………………………………, 
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Ar(U) = (ur, u1)
1

U

u

∂
∂

 + (ur, u2)
2

U

u

∂
∂

 + … + (ur, ur)
r

U

u

∂
∂

 = 0. 

 
If one sets (ui, uk) everywhere here, instead of the corresponding function fik(u1, …, ur), 
then one obtains r linear, partial differential equations with r independent variables for 
the determination of U.  Therefore, should the group contain m distinguished functions 
then our r equations would have to be capable of being replaced with r − m of them that 
define a complete system – say: 
 

A1(U) = 0, …, Ar−m(U) = 0.   
 
In order for this to be true, it is obviously requisite that Ar−m+1(U), …, Ar(U) could be 
expressed linearly in terms of A1(U), …, Ar−m(U).  Conversely, it is clear that our r – m 
equations define a complete system when this requirement is fulfilled.  The expression 
Ai(Ak(U)) − Ak(Ai(U)) is then expressed linearly in terms of A1(U), …, Ar(U) as: 
 

Ai(Ak(U)) − Ak(Ai(U)) = λ1 A1(U) + …+ λr Ar(U). 
 

However, if one replaces Ar−m+1(U), …, Ar(U) with their expressions in terms of A1(U), 
…, Ar−m(U) in this then one obtains relations of the form: 
 

Ai(Ak(U)) − Ak(Ai(U)) = ρ1 A1(U) + …+ ρr−m Ar−m(U), 
 
with which our assertion is proved. 
 This then shows that one must construct the determinant: 
 

D = 

1 1 1 2 1

2 1 2 2 2

1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , )

r

r

r r r

u u u u u u

u u u u u u

u u u u

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯ ⋯

. 

 
If this is non-zero then the expressions A1(U), …, Ar(U) are independent of each other, 
and our group then has no distinguished functions.  By contrast, if this determinant and 
its 1st, 2nd, …(m – 1)th-order sub-determinants vanish, while the mth-order sub-
determinants do not vanish simultaneously, then among the Ai(U) there are m of them that 
can be expressed in terms of the remaining ones, and thus the group contains m 
distinguished functions. 
 One can remark that D is a skew determinant.  Thus, if r denotes an arbitrary odd 
number then D is equal to zero, and in any case the group contains one distinguished 
function. 
 If one finds that our r-parameter group u1, …, ur contains m distinguished functions 
then, as is always possible, one takes r – m of the expressions Ak(U) – say, A1(U), …, 
Ar−m(U) – that are mutually independent.  The equations: 
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A1(U) = 0, …, Ar−m(U) = 0, 
 
in turn, define a complete system, whose m solutions are precisely the distinguished 
functions of the group.  As Mayer and I have remarked in our previous papers, their 
determination requires only: 

m, m – 1, …, 3, 2, 1 
 

operations, respectively.  If one applies Mayer’s theorem then one will very frequently be 
able to determine the distinguished functions through even simpler operations. 
 It is reasonable that when m distinguished functions are already known, the 
determination of the remaining ones, in turn, requires only m – µ, m – µ – 1, …, 3, 2, 1 
operations. 
 
 Theorem VII.   Should one wish to decide how many distinguished functions a group 
u1, …, ur contains, one would have to construct the determinant with r rows and columns 
whose elements are the quantities (ui, uk), when expressed as functions of u1, …, ur .  If 
these determinants should vanish, along with their sub-determinants of 1st, 2nd, …, up to 
(m – 1)th-order, then the group would have m distinguished functions.  One finds them 
when one chooses r – m of the r expressions: 
 

Ai(U) = (ui, u1)
1

U

u

∂
∂

+ (ui, u2)
2

U

u

∂
∂

+ … + (ui, ur)
r

U

u

∂
∂

, 

 
say, A1(U), …, Ar−m(U), that are mutually independent.  The equations: 
 

A1(U) = 0, …, Ar−m(U) = 0, 
 
in turn, define a complete system whose m solutions are precisely the distinguished 
functions of the group.  One thus finds them by means of m, m – 1, …, 3, 2, 1 operations. 
 
 

§ 12. 
 

Canonical form of a group. 
 

 In these paragraphs, we will first prove some lemmas and show that any group can be 
brought into a remarkable form that I call its canonical form. 
 
 26.  Theorem 30.  If an r-parameter group contains more than r – 2 distinguished 
functions then it is a system in involution, and thus possesses r distinguished functions. 
 
 Proof.  Assume that the group u1, …, ur possesses r – 1 distinguished functions U1, 
…, Ur−1 .  We will see that they must include yet another such function in a noteworthy 
way.  We then bring the group into the equivalent form  U1, …, Ur−1, V, so since U1 is a 
distinguished function, one must have: 
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(U1, V) = 0. 
 

(U2, V) likewise vanishes, because U2 is a distinguished function.  In this way, we 
recognize the existence of the relations: 
 

(U1, V) = 0, …, (Ur−1, V) = 0, 
 
which show that V is also a distinguished function.  Our group thus actually possesses r 
distinguished functions. 
 
 Theorem 31.  If u1 is not a distinguished function of a group u1, …, ur then there are 
always functions F(u1, …, ur) that fulfill the equation (u1, F)  = 1. 
 
 Then, from our assumption, there are, in any case, some of the expressions (u1, u2), 
(u1, u3), …, (u1, ur) that do not vanish identically.  Therefore, if F denotes an 
undetermined function of u1, …, ur then one has: 
 

(u1, u2)
2

F

u

∂
∂

+ (u1, u3)
3

F

u

∂
∂

+ … + (u1, ur)
r

F

u

∂
∂

, 

 
or, when one introduces the corresponding function  f1k(u1, …, u), instead of (u1 uk): 
 

f12 
2

F

u

∂
∂

+ f13 
3

F

u

∂
∂

+ … + f1r 
r

F

u

∂
∂

 

is non-zero.  Thus: 

f12 
2

F

u

∂
∂

+ f13 
3

F

u

∂
∂

+ … + f1r 
r

F

u

∂
∂

 = 1 

 
is a linear, partial differential equation whose solutions F satisfy the conditions: 
 

(u1, F) = 1. 
 

 Theorem 32.  If the group u1, …, ur contains a sub-group u1, …, uρ then the polar 
group of the former is contained in the polar group of the latter. 
 
 The parameters of the polar group of u1, …, ur are then defined by: 
 

(u1, v) = 0, …, (uρ , v) = 0, …, (ur , v) = 0, 
 
and the parameters of the polar group of u1, …, uρ satisfy the equations: 
 

(u1, V) = 0, …, (uρ , V) = 0. 
 
We see that the solutions of the former system also satisfy the latter system, while the 
converse is not true.  The theorem is thus proved. 
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 Theorem 33.  If the expression (u1, u2) equals 1 then any group u1, u2, …, ur can be 
brought into the form u1, u2, 1u′ , …, 2ru −′ , where all (u1, ku′ ) and (u2, ku′ ) are equal to 

zero, while all ( iu′ , ku′ ) can be expressed as functions of 1u′ , …, 2ru −′ . 

 
 Namely, if: 

v1, …, v2n−r , 
 

is the polar group of u1, …, ur then by our assumption: 
 

u1, u2, v1, …, v2n−r  
 
is also a group whose (r − 2)-parameter polar group: 
 

1u′ , …, 2ru −′  

 
is contained in u1, …, ur (Theorem 32), and is in involution with the group u1, u2 .  It is 
clear that no relation can exist between u1, u2, 1u′ , …, 2ru −′ .  Such a parameter could then 

be brought into the form: 
u1 = Ψ(u2, 1u′ , …, 2ru −′ ) 

and one would thus have: 

(u1, u2) = 1 2
1

( , )u u
u

∂Ψ′
′∂

+… + 2 2
2

( , )r
r

u u
u−

−

∂Ψ′
′∂

, 

 
an equation in which the right-hand side would vanish, while the left-hand side would 
equal 1.  However, this is absurd.  Thus, u1, u2, 1u′ , …, 2ru −′  is one form of our group that 

possesses the desired property. 
 
 Theorem 34.  Any r-parameter group that is not a system in involution can be 
decomposed into a two-parameter group and an (r − 2)-parameter group that is in 
involution with it. 
 
 By our assumption, the given group u1, …, ur contains functions that are not in 
involution with all of the remaining functions of the group.  We take one of them – say, 
u1 – and determine (Theorem 21) a second function u2 of the group that gives: 
 

(u1, u2) = 1. 
 

If we consider the previous theorem then we recognize the validity of our present 
theorem. 
 
 27.  A general and exceptionally important reduction of any group to a canonical 
form flows from the foregoing theorems. 
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 Theorem 35.  Any group can take on the form X1, …, Xr , P1, …, Pµ , where the 
expressions (Xi , Xk), (Xi , Pk), (Pi , Pk) are equal to zero and all (Xi , Pi) are equal to 1.  
This form is what I call a canonical form. 
 
 Namely, if our r-parameter group is a system in involution then it already has the 
canonical form, and indeed, ν = r, µ = 0. 
 By contrast, if u1, …, ur is not a system in involution then one decomposes it 
(Theorem 34) into a two-parameter group and an (r − 2)-parameter group: 
 
(A)      X1, P1, 1u′ , …, 2ru −′  

 
that are both in involution.  If the (r – 2)-parameter group is a system in involution then 
(A) is the canonical form for the original group, where ν = r − 1, µ = 1. 
 If 1u′ , …, 2ru −′  is not a system in involution then one decomposes this (r – 2)-

parameter group into a two-parameter group and an (r − 4)-parameter group: 
 

X2, P2, 1u′′ , …, 4ru −′′ . 

 
With that, the original group assumes the form: 
 

X1, P1, X2, P2, 1u′′ , …, 4ru −′′  

 
that is the desired canonical form if the (r – 4)-parameter group is a system in involution.  
One proceeds in this way, until one ultimately comes – say, after q decompositions – to 
an (r – 2q)-parameter group ( )

1
qu , …, ( )

2
q

r qu −  that is a system in involution.  Consequently: 

 
X1, P1, X2, P2, … Xq, Pq, 

( )
1

qu , …, ( )
2

q
r qu −  

 
is the canonical form of the r-parameter group.  Here, one has ν = r − q, µ = q. 
 
 Theorem 36.  In a canonical group X1, …, Xq+m , P1, …, Pq , the Xq+1, …, Xq+m  are the 
only distinguished functions. 
 
 Namely, if Π belongs to the given canonical group then one will have: 
 

(Xi , Π) = 
iP

∂Π
∂

,  (Pi , Π) =  − 
iX

∂Π
∂

. 

 
Should Π then be a distinguished function then one would have to have: 
 

iP

∂Π
∂

 = 0, 
iX

∂Π
∂

 = 0 
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for i = 1, …, q; i.e., Π is merely a function of Xq+1, …, Xq+m . 
 
 Theorem 37.  If X1, …, Xq+m , P1, …, Pq  satisfy the relations: 
 

(Xi , Xk) = (Xi , Pk) = (Pi , Pk) = 0,  (Xi , Pi) = 1, 
 

and there is thus no relation between Xq+1, …, Xq+m then our 2q + m functions define a (2q 
+ m)-parameter group. 
 
 Our theorem emerges from the fact that, under the assumptions that we made, no 
relation exists between our 2q + m functions.  If that were the case then, in any event, one 
of them would contain one of the 2q quantities X1, …, Xq , P1, …, Pq  − say, X1 – and 
could thus take on the form: 
 

X1 = W(X2, …, Xq+m , P1, …, Pq). 
 

However, it would follow from this that: 
 

(X1, P1) = (W, P1), 
 
which is contradictory, in that the left-hand side equals 1 and the right-hand side equals 0. 
 
 Theorem 38.  The difference between the number of parameters in a group and the 
number of its distinguished functions is an even number. 
 
 Any group can then take on the form: 
 

X1, …, Xq+m , P1, …, Pq , 
 
where Xq+1 , …, Xq+m  are the distinguished functions; the stated difference is then equal 
to 2q. 
 
 Corollary 1.  A 2q-parameter group contains either 2q or 2q − 2 or 2q – 4, …, or 2 or 
no distinguished functions. 
 
 Corollary 2.  A (2q + 1)-parameter group contains either 2q + 1 or 2q – 1, …, or 3 or 
1 distinguished functions.  Such a group then always contains at least one distinguished 
function. 
 
 We finally summarize our results. 
 
 Theorem IX.  Any group can take on the form: 
 

X1, …, Xq+m , P1, …, Pq , 
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where the following relations exist: 
 

(Xi , Xk) = (Xi , Pk) = (Pi , Pk) = 0,  (Xi , Pi) = 1. 
 

Here, Xq+1, …, Xq+m are the distinguished functions of the group.  The difference between 
the number of parameters and the number of distinguished functions is always an even 
number. 
 

§ 13. 
 

Determination of the invariant properties of a group. 
 

 28. We next show that one can always find canonical groups that contain a given 
canonical group.  Therefore, we shall deal with the first of the two problems that we 
posed in the beginning of this section. 
 
 Theorem 39.  If X1, …, Xq+m, P1, …, Pq is a canonical group then there are always 
functions Pq+1 that fulfill the equations: 
 

(Xi , Pq+1) = (Pi , Pq+1) = 0, (Xq+1 , Pq+1) = 0. 
 

Consequently, X1, …, Xq+m, P1, …, Pq+1 is a new canonical group that contains the given 
one. 
 
 In fact: 
(A)     X1, …, Xq, Xq+2, …, Xq+m, P1, …, Pq 
 
is obviously a group whose polar group contains Xq+1, and perhaps possesses the form: 
 
(B)     Xq+1, U1, U2, … 
 
Now, Xq+1 does not belong to the group (A), and is therefore (Theorem 27) not a 
distinguished function of (B), so the latter group contains (Theorem 31) functions Pq+1 
that yield: 

(Xq+1 , Pq+1) = 1. 
 
However, because it belongs to the group (B), any such function Pq+1 is in involution with 
all functions of the group (A), and thus possesses all of the desired properties. 
 
 Theorem 40.  If X1, …, Xq+m, P1, …, Pq is a canonical group then there are always 
further functions Pq+1, Pq+2, …, Pq+m such that: 
 

X1, …, Xq+m, P1, …, Pq+m 
 
define a new canonical group that contains the given one. 
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 This theorem is obtained immediately by an m-fold application of the foregoing one. 
 
 Theorem 41.  If X1, …, Xq, P1, …, Pq is a canonical group and q < n then there are 
always functions Xq+1 that are in involution with the functions of our group.  
Consequently: 

X1, …, Xq+1, P1, …, Pq 
 
is a new canonical group that contains the given one. 
 
 Any function that belongs to the polar group of the given group then possesses the 
properties that we required of the desired function Xq+1 . 
 
 Theorem 42.  If X1, …, Xq+m, P1, …, Pq is a canonical group then there are always 
further functions Xq+m+1, …, Xn , Pq+1, …, Pn  such that: 
 

X1, …, Xn , P1, …, Pn 
is also a canonical group. 
 
 From theorem 40, there is then a canonical group: 
 

X1, …, Xq+m, P1, …, Pq+m 
 
 that contains the given one.  Thereafter, by means of theorem 41, one finds a canonical 
group: 

X1, …, Xq+m+1, P1, …, Pq+m 
 

and thus (Theorem 39), a canonical group: 
 

X1, …, Xq+m+1, P1, …, Pq+m+1 , 
etc. 
 
 29.  In Part I (Theorem III), we saw that equations of the form: 
 

ix′  = Xi, ip′  = Pi, 

 
in which Xi and Pi denote functions of x1, …, pn that fulfill the conditions: 
 

(Xi , Xk) = (Xi , Pk) = (Pi , Pk) = 0,  (Xi , Pi) = 1, 
 

always determine a contact transformation.  By the use of this theorem, we can now 
prove the following theorem, and in so doing, resolve problem I: 
 
 Theorem X.  If two r-parameter group possess just as many distinguished functions 
then there is always a contact transformation that takes the one group to the other.  On 
the other hand, this condition is not just sufficient, but also necessary. 
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 Let u1, …, ur be functions of x1, …, xn, p1, …, pn and let w1, …, wr be functions of y1, 
…, yn, π1, …, πn .  If u1, …, ur , as well as w1, …, wr , then define a group, and both 
groups possess the same number of distinguished functions then the two groups can 
assume the canonical forms: 

X1, …, Xµ , P1, …, Pν and Y1, …, Yµ , Π1, …, Πν  , 
 
respectively.  Moreover, from Theorem 42, there are always functions X, P of x1, …, pn 
and Y, Π of y1, …, πn  such that: 
 

X1, …, Xn, P1, …, Pn and Y1, …, Yn , Π1, …, Πn  , 
 
are also, in turn, canonical groups.  Therefore: 
 

ix′  = Xi, ip′  = Pi, 

as well as: 

ix′  = Yi, ip′  = Πi, 

 
is a contact transformation.  However, it also follows from this that the 2n equations: 
 

Xi = Yi , Pi = Πi 
 
define a contact transformation, and one sees that this transformation takes the one group 
to the other one. 
 With that, the first part of our theorem is proved.  The last part of it follows 
immediately from the fact that for any contact transformation the number of terms and 
the number of distinguished functions of a group remain unchanged (§ 9 and § 11). 
 
 Corollary.   The only properties of a group that are independent of the form of the 
group and remain unchanged by a contact transformation are the number of parameters 
and the number of distinguished functions. 
 
 

§ 14. 
 

Invariant relations between a group and a subgroup of it. 
 
 I shall now address the following problem: 
 
 Problem.  Let two r-parameter groups be given, each of which contains a ρ-
parameter subgroup.  Decide whether there is a contact transformation that takes the one 
r-parameter group and its subgroup into the second r-parameter group and its subgroup, 
respectively. 
 
 30.  First, some lemmas. 
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 Theorem 43.  Let u1, …, ur be a group that is contained in a larger group u1, …, uρ , 
…, ur .  Furthermore, let U be a function of the latter group.  If our groups contain no 
common distinguished functions then the equations: 
 

(u1 , U) = 0, …, (ur , U) = 0 
 

define a complete system whose r – ρ solutions w1, …, wr−ρ  define a new group.  In 
particular, if u1, …, uρ  contains no distinguished function then: 
 

u1, …, uρ , w1, …, wr−ρ  , 
 
is a form of the group u1, …, ur, which is thereby decomposed into two involutory groups 
u1, …, uρ  and w1, …, wr−ρ  . 
 In fact, let v1, …, v2n−r be the polar group of u1, …, ur .  Previously (Theorem VII), we 
saw that any relation between the u and v possesses the form: 
 

F(u1, …, ur) = Φ(v1, …, v2n−r), 
 

where F is a distinguished function of the group u1, …, ur .  From our assumption, this 
group contains no distinguished functions of the form F(u1, …, uρ).  There then exists no 
functional relation between u1, …, uρ , v1, …, v2n−r .  As a result, these quantities define a 
group, and the equations: 
 
(A)   (u1, W) = 0, …, (ur, W) = 0, (v1, W) = 0, …, (v2n−r , W) = 0 
 
define a complete system whose r – ρ solutions w1, …, wr−ρ , as solutions of: 
 

(v1 , W) = 0, …, (v2n−r , W) = 0, 
 
belong to the group u1, …, ur . 
 The fact that w1, …, wr−ρ define a group follows from the fact that from the Poisson-
Jacobi theorem any (wi , wk) is a solution of the system (A). 
 In particular, if u1, …, uρ  contains no distinguished functions then there exists no 
relation between u1, …, uρ and w1, …, wr−ρ , since (Theorem VII) one would then have 
the form: 

F(u1, …, uρ  ) = Φ(w1, …, wr−ρ), 
 
where F would be a distinguished function of the group u1, …, ur .  Thus: 
 

u1, …, uρ , w1, …, wr−ρ  
 

is a form of the group u1, …, ur that is then decomposed into two involutory groups. 
 
 Theorem 44.  If X1, …, Xα , P1, …, Pα is a canonical group that is contained in a 
group G then G can assume the canonical form X1, …, Xβ , P1, …, Pγ  . 
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 We then decompose G into the two involutory groups: 
 

X1, …, Xα , P1, …, Pα   and w1, …, wρ  
 
by using the foregoing theorems, and then bring w1, …, wρ  into a canonical form: 
 

Xα+1, …, Xβ , Pα+1, …, Pγ 
then 

X1, …, Xβ , P1, …, Pγ 
 
is obviously the desired canonical form of G. 
 
 Theorem 45.  If a group G contains a system in involution X1, …, Xρ , and if no 
function of the X is a distinguished function in G then this group can assume the 
canonical form: 

X1, …,  Xρ , …, Xα , P1, …, ,  Pρ , …, Pβ . 
 

 Namely, let X1, …,  Xρ , u1, …, ur−ρ be a form for G, and let v1, …, v2n−r be its polar 
group.  From our assumption, there exists no relation between the X and the v.  Therefore: 
 

X2, …,  Xρ , v1, …, v2n−r 
 
define a group whose polar group (Theorem 32) is contained in G and contains X1 .  This 
polar group thus possesses the form: 
 

X1, …,  Xρ , w1, …, wr−2ρ+1  (G′). 
 

X1 is not (Theorem 27) a distinguished function in G′ so that group contains (Theorem 
31) a function P1 that yields: 

(X1, P1) = 1. 
 

With that, the group G, which is contained in G′, is brought into the form: 
 

X1, P1, X2, … Xρ, ϕ1, … 
 

It can therefore (Theorem 43) be decomposed into two involutory groups, one of which is 
X1, P1, while the other one contains X2, …,  Xρ , and possesses the form: 
 

X2, … Xρ , 1u′ , …, 1ru ρ− −′ . 

 
This group contains no distinguished function of the form F(X2, …,  Xρ ), so it can 
likewise be decomposed into two involutory groups: 
 

X2, P2  and  X3, …, Xρ , 1u′′ , …, 2ru ρ− −′′ . 
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In order to go further in this way, we finally bring G into the desired form. 
 
 Theorem 46.  Now, suppose we are given a group G with r parameters u1, …, ur and 
a subgroup of it u1, …, uρ that has ϖ distinguished functions X1, …, Xϖ in common with 
G.  If: 

X1, …, Xϖ , Xϖ +1, …, Xϖ+α , Pϖ+1 , …, Pϖ+α , Xϖ+α+1 , …, Xϖ+α+β  
 

is a canonical form for the subgroup then G can always assume the canonical form: 
 

X1, …, Xϖ , Xϖ +1, …, Xϖ+α +β, …, Xγ , Pϖ+1 , …, Pϖ+α +β , Pδ  . 
 

Then, from our assumption: 
 

Xϖ +1, …, Xϖ+α , Pϖ+1 , …, Pϖ+α  (G′) 
 

define a group G′ that is contained in G.  Therefore, from Theorem 43, G can be 
decomposed into two involutory groups G′ and G″, the latter of which obviously contains 
the functions X1, …, Xϖ , Xϖ+α+1 , …, Xϖ+α+β , and thus possesses the form: 
 

X1, …, Xϖ , Xϖ+α+1 , …, Xϖ+α+β , U1, U2, … (G″). 
 

Now, G″ contains the system in involution Xϖ+α+1 , …, Xϖ+α+β , which contains no 
distinguished function of G″.  If we then apply the previous theorem then we see that G″ 
can assume the form: 
 

X1, …, Xϖ , Xϖ+α+1 , …, Xϖ+α+β , …, Xγ , Pϖ+α+1 , …, Pϖ+α +β , Pδ  . 
 
With that, the group G, which consists of the functions of the two groups G′ and G″, is 
brought into the desired form. 
 
 Corollary.   If a group has ϖ distinguished functions with a common subgroup then 
these two groups can assume the canonical forms: 
 
   X1, …, Xϖ , Xϖ+1 , …, Xβ , …, Xγ , Pϖ+1 , …, Pβ , …, Pδ  , 
   X1, …, Xϖ , Xϖ+1 , …, Xϖ+α , …,   Pϖ+1 , …, Pϖ+α , …, Xϖ+α+1 , …, Xβ  . 

 
 31.  We can now resolve the problem that was posed at the beginning of this 
paragraph. 
 
 Theorem XI.  Let two groups G and G′ be given with the same number of parameters 
and distinguished functions.  Any of the two groups further contains a subgroup g (g′, 
respectively) with the same number of parameters and distinguished functions.  Finally, 
G, as well as G′, might have ϖ distinguished functions in common with the subgroup in 
question.  Consequently, there is a contact transformation that simultaneously takes G 
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and g to G′ and g′, respectively.  Conversely, such a transformation is possible if all of 
the stated conditions are fulfilled. 
 
 Namely, from the previous corollary, if we bring g and G into the simultaneous 
canonical forms: 
 
   X1, …, Xϖ , Xϖ+1 , …, Xϖ+α , …,   Pϖ+1 , …, Pϖ+α , …, Xϖ+α+1 , …, Xβ  , 
   X1, …, Xϖ , Xϖ+1 , …, Xβ , …, Xγ , Pϖ+1 , …, Pβ , …, Pδ , 
 
resp., then it is possible to bring g′ and G′ into the simultaneous canonical forms: 
 
   1X ′ , …, Xϖ′  , 1Xϖ +′  , …, Xϖ α+′ , …,    1Pϖ +′ , …, Pϖ α+′ , …, 1Xϖ α+ +′  , …, Xβ′  , 

   1X ′ , …, Xϖ′ , 1Xϖ +′  , …, Xβ′ , …, Xγ′ , 1Pϖ +′ , …, Pβ′ , …, Pδ′ , 
 
resp.  Thus, (see the proof of Theorem X) G can be transformed into G′ in such a way 
that Xi and Pi go to the corresponding iX ′  and iP′ , resp.  Therefore, it is obvious that g 

will simultaneously go to g′.  Thus, the requirements presented are sufficient; the fact that 
they are necessary comes from the fact that they relate to relations that remain invariant 
under contact transformations. 
 
 Corollary.   All invariant relations between a group and a subgroup will be 
determined by the number of common distinguished functions, coupled with the number 
of parameters and distinguished functions in both groups.  From the foregoing, the latter 
numbers define the individual invariants of each of the two groups. 
 
 This suggests the question of how one must proceed if one would like to investigate 
how many common distinguished functions a group u1, …, uρ , …, ur and a subgroup u1, 
…, ur of it contain. 
 If one denotes a function of u1, …, ur by F then it is clear that the stated functions are 
defined by the simultaneous equations: 
 

(u1 F) = 0, …, (ur F) = 0, 
1

F

uρ +

∂
∂

 = 0, …, 
r

F

u

∂
∂

 = 0. 

 
One thus examines how many common solutions that these equations have in the usual 
way.  If there are ϖ of them then their determination requires ϖ, ϖ – 1, …, 3, 2, 1 
operations.  Therefore: 
 
 Theorem 47.  If one knows a group and a subgroup of it then one can, with no 
integration, decide how many distinguished functions that these two groups have in 
common.  If there are ϖ of them then one finds them by means of ϖ, ϖ – 1, …, 3, 2, 1 
operations. 
 
 Finally, I also need the following theorem: 
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 Theorem 48.  Let u1, …, uρ , …, ur be a group, and let u1, …, uρ  be a subgroup of it 
that has ϖ distinguished functions in common with it.  If one then lets F denote a function 
of u1, …, ur  then the equations: 

(u1, F) = 0, …, (uρ , F) = 0 
 
have r − ρ + ϖ common solutions, and can therefore be replaced with ρ – ϖ equations 
that define an involutory system. 
 
 Our groups can then be brought into the simultaneous canonical forms: 
 
   X1, …, Xϖ , Xϖ+1 , …, Xϖ+α+β , …, Xγ , Pϖ+1 , …, Pϖ+α+β , …, Pδ , 
   X1, …, Xϖ , Xϖ+1 , …, Xϖ+α , …,   Pϖ+1 , …, Pϖ+α , …, Xϖ+α+1 , …, Xϖ+α+β  , 
 
resp.  As a result: 

X1, …, Xϖ , Xϖ+α+1 , …, Xγ , Pϖ+α+β +1, …, Pδ  
 
are those functions of the larger group that are in involution with all functions of the 
subgroup.  If one now makes a simple count then one recognizes the validity of our 
theorem. 
 

§ 15. 
 

Determination of the system of involution that is included in a group. 
 

 32.  Theorem 49.  (m + q)-parameter systems in involution can be selected from a 
group with m distinguished functions and m + 2q terms. 
 
 Such a group then possesses the canonical form: 
 

X1, …, Xq+m, P1, …, Pq, 
 

and here X1, …, Xq+m define a system in involution with q+ m parameters. 
 
 Theorem 50.  A system in involution that is contained in a (2q + m)-parameter group 
with m distinguished functions can consist of at most q+ m functions. 
 
 Then, let Φ1, …, Φν be a system in involution that contains the group X1, …, Xq+m, P1, 
…, Pq .  One determines further functions X and P such that: 
 

X1, …, Xn , P1, …, Pn 
 
is a canonical group, between whose functions it is known that no relation can exist.  
There is now a function of the system in involution: 
 

Xq+m+1, …, Xn 
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that is in involution with all functions of the original group, in particular, with Φ1, …, 
Φν , as well.  Therefore: 

Xq+m+1, …, Xn , Φ1, …, Φν  
 

is a system in involution with ν + n – q – m mutually independent functions.  However, it 
is known that a system in involution contains at most n parameters, so one must have: 
 

ν + n – q – m < n, 
that is: 

ν < q + m, 
and that was precisely our assertion. 
 We now show how one must proceed in general in order to select systems in 
involution with as many parameters as possible from a given group. 
 If u1, …, u2q+1 is a given group with m distinguished functions U1, …, Um then one 
first finds the latter by integrating the system: 
 

(u1 , U) = 0, …, (u2q+1 , U) = 0, 
 

which requires m, m – 1, …, 3, 2, 1 operations.  We know that U1, …, Um belong to a (q + 
m)-parameter system in involution of our group. 
 Thereupon, one takes an arbitrary, but not distinguished, function of the group – e.g., 
u1 – and determines a further function F(u1, u2, …) from the equation: 
 

(u1, F) = 
2

1
1

( , )
q m

k
k k

F
u u

u

+

=

∂
∂∑  = 0. 

 
This partial differential equation, in which one replaces (u1, uk) with the corresponding 
function of the u everywhere, possesses m + 1 known solutions, namely, U1, …, Um, u1 ; 
one thus finds a further solution F = w2 by means of 2q − 2 operations. 
 One then defines: 

(u1, F) = 0, (w2 , F) = 0 
 
with the two functions u1 and w2, replaces (u1, uk) and (w2, uk) with the functions in 
question of u, and thus obtains a complete system that consists of two equations in 2q + 
m with m + 2 known solutions, namely, U1, …, Um, u1, w2 .  One then finds a further 
common solution w3 by 2q − 4 operations. 
 When one goes further in this way, one recognizes that the determination of a (q + 
m)-parameter system in involution in a (2q + m)-parameter group with m distinguished 
functions generally requires: 
 

m, m – 1, …, 3, 2, 1, 2q − 2, 2q – 4, …, 4, 2 
operations. 
 
 33.  This method can be replaced with another one that requires simpler integrations, 
as long as the given group contains a known subgroup. 
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 Therefore, let a group G with a known subgroup g be given.  One seeks a system in 
involution in G that has as many parameters as possible.  To this end, one first determines 
the ϖ common distinguished functions U1, …, Uϖ of our two groups.  This requires 
(Theorem 47): 

ϖ, ϖ – 1, …, 3, 2, 1 
 
operations.  One then seeks the remaining m′ − ϖ distinguished functions that g contains 
by means of: 

m′ − ϖ, m′ − ϖ − 1, …, 3, 2, 1 
 

operations (§ 11, conclusion). 
 After one has found all of the distinguished functions of the group g in this way, one 
then determines a system in involution: 
 

U1, …, Uϖ , u1, …, uρ  
 
that is contained in g and has the largest possible number of parameters using the method 
that was previously described. 
 Of the m distinguished functions of the group G, one now already knows ϖ of them, 
namely, U1, …, Uϖ .  One then finds the m – ϖ remaining ones Uϖ +1 , …, Um by means 
of: 

m – ϖ, m – ϖ − 1, …, 3, 2, 1 
 

operations.  One then knows all of the distinguished functions: 
 

U1, …, Um 
 
of the group G, and, in addition, a system in involution: 
 

u1, …, uρ  
 

that is contained in G whose functions are independent of the U.  One now proceeds as in 
the general case. 
 Still greater simplifications emerge when, e.g., the subgroup g itself contains a known 
subgroup.  Without going into all of the cases the can arise, I only emphasize that in each 
case my general theory allows one to give the number and order of the necessary 
integrations a priori. 
 
 Theorem XII.   A group with m distinguished functions and 2q + m parameters 
contains systems in involution with q + m parameters.  The determination of such systems 
generally requires: 
 

m, m – 1, …, 3, 2, 1, 2q − 2, 2q – 4, …, 4, 2 
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operations.  If one already knows such subgroups then simplifications in the integration 
arise that can always be given a priori.  Our group contains no system in involution with 
more than q + m parameters. 
 
 34.  In this section, I prove that there is a maximum number for the distinguished 
functions in a group with more than n parameters.  An important theorem follows from 
this about groups that contain the largest possible number of distinguished functions. 
 A group with m distinguished functions and 2q + m parameters contains (q + m)-
parameter systems in involution, so one must have: 
 

q + m ≤ n. 
 

If we call the number of parameters r then this condition assumes the form: 
 

2

r m+ ≤ n. 

 
Finally, if we call the number of parameters n + k then we obtain the third form: 
 

m ≤ n – k, 
 

which says that the when the number of parameters is larger than n, the number of 
distinguished functions has a maximum value. 
 
 Theorem XIII.   If a given group u1, …, un+k possesses the largest possible number of 
distinguished functions Φ1, …, Φn−k then the integration of the system in involution: 
 

Φ1 = a1,  …, Φn−k = an−k 
 
requires only permissible operations. 
 
 My extension of Cauchy’s method then says that the integration of a system in 
involution: 

Φ1 = a1,  …, Φn−k = an−k 
 
can be accomplished when all solutions of the complete system: 
 

(Φ1 , F) = 0, …, (Φn−k , F) = 0 
 

are found.  However, such solutions are just u1, …, un+k , and indeed there are no others.  
My theorem is thus proved. 
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§ 16. 
 

Resolution of the main problem. 
 
 We first solve a special case of the second main problem, and in so doing, show that 
the general problem can revert to this special case. 
 
 35.  We assume that F1, …, Fr and 1F ′ , …, rF ′  are two r-parameter groups.  We will 

deduce whether there is a contact transformation that takes any Fi into the corresponding 

iF ′ .  If such a transformation exists then (Theorem 11) it would take the equation: 

 
(Fi , Fk)xp = Ωik(F1, …, Fr) 

into 
( , )i k x pF F ′ ′′ ′  = Ωik( 1F ′ , …, rF ′ ). 

 
Should the stated transformation then be possible then any ( )i k x pF F ′ ′′ ′  would have to be 

expressible in terms of 1F ′ , …, rF ′  in the same way that the corresponding (Fi Fk)xp are 

expressible in terms of the F1, …, Fr .  Conversely, it can be shown that this necessary 
condition is also sufficient. 
 In fact, let F1, …, Fr and 1F ′ , …, rF ′  be two such r-parameter groups such that: 

 
(A)   (Fi , Fk) = Ωik(F1, …, Fr), ( , )i kF F′ ′  = ik

′Ω ( 1F ′ , …, rF ′ ), 
 
and let X1, …, Xα , X1, …, Xβ , where: 
 

Xi = Φi(F1, …, Fr), Pi = Ψi(F1, …, Fr) 
 

be a canonical form for the former group. 
 I define the functions: 
 

iX ′  = Φi( 1F ′ , …, rF ′ ),  iP′  = Ψi( 1F ′ , …, rF ′ ) 
 
and the expressions: 

( , )i kX X′ ′ , ( , )i kX P′ ′ , ( , )i kP P′ ′ , 

 
which, due to (A), are the same functions of 1F ′ , …, rF ′  that: 

 
(Xi , Xk), (Xi , Pk), (Pi , Pk) 

 
are of F1, …, Fr.  However, from our assumption, the relations: 
 

(Xi , Xk) = (Xi , Pk) = (Pi , Pk) = 0,  (Xi , Pi) = 1, 
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are true, so one also finds that the corresponding equations: 
 

( , )i kX X′ ′ = ( , )i kX P′ ′  = ( , )i kP P′ ′ = 0, ( , )i iX P′ ′  = 1 

 
are true.  Now, 1X ′ , …, Xα′ , 1P′ , …, Pβ′  are obviously mutually independent functions, 

so: 

1X ′ , …, Xα′ , 1P′ , …, Pβ′  

 
is a canonical form for the group 1F ′ , …, rF ′ .  As a result (Theorem X), there is a contact 

transformation that transforms any Xi and Pi into the corresponding iX ′  and iP′ .  Thus, as 

one immediately sees, any Fi goes to the corresponding iF ′ .  Thus: 

 
 Theorem 51.  Let F1, …, Fr  and 1F ′ , …, rF ′  be two r-parameter groups.  Should a 

contact transformation be given that takes any Fi to the corresponding iF ′  then it would 

be necessary and sufficient that any (Fi , Fk) be expressible in terms of F1, …, Fr  as the 
corresponding ( , )i kF F′ ′  are in terms of 1F ′ , …, rF ′ . 
 
 36.  We can now address the general problem. 
 Therefore, let two systems of functions F1, …, Fr  and 1F ′ , …, rF ′  be given.  One 

must decide whether there is a contact transformation that takes every Fi to the 
corresponding iF ′ . 
 It is first of all clear that we can assume that all of the Fi (and likewise, all of theiF ′ ) 
are mutually independent; if, e.g., only F1, …, Fα  were mutually independent, and by 
contrast: 

Fα+k = Wk(F1, …, Fα)  (k = 1, …, r − α) 
 

then obviously 1F ′ , …, Fα′  would also be mutually independent, while the remaining 

kFα +′  would be expressible in terms of the 1F ′ , …, Fα′ : 
 

kFα +′  = Wk( 1F ′ , …, Fα′ ). 
 

However, if this is the case then it is also clear that a contact transformation that 
transforms F1, …, Fα into 1F ′ , …, Fα′ , resp., simultaneously takes Fα+1 , …, Fr to 1Fα +′ , 

…, rF ′ , resp. 

 Thus, let F1, …, Fr, and likewise 1F ′ , …, rF ′ , be mutually independent.  If the desired 

contact transformation exists then it would take every (Fi, Fk) to the corresponding 
( , )i kF F′ ′ .  I now define new functions by setting: 

 

(1) (1)( , )
a b

F F  = Fr+1 , ( 2 ) ( 2 )( , )
a b

F F  = Fr+2 ,  …, ( ) ( )( , )
a b

F Fρ ρ  = Fr+ρ , 
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where the numbers a(k) and b(k) are subject to the restriction that one must have: 
 

a(k) < r + ρ, b(k) < r + ρ, 
 

and that Fr+k cannot be expressible in terms of F1, …, Fr, …, Fr+k−1 .  I proceed as far as 
possible in this way; i.e., until I have found the groups: 
 

F1, …, Fr, …, Fr+ρ 
 

that are determined by F1, …, Fr and which contain at most 2n parameters.   If I now set: 
 

( ) ( )( , )k ka b
F F′ ′  = r kF +′  

 
in a corresponding way then the desired contact transformation must transform every Fr+k 
into the corresponding r kF +′ .  Therefore: 

 

1F ′ , …, rF ′ , …, rF ρ+′  

 
must also define a group.  Furthermore, from the previous theorems, any ( , )i kF F′ ′  can be 

expressed in terms of 1F ′ , …, rF ρ+′  in the same way as the corresponding (Fi , Fk) is in 

terms of F1, …, Fr .  On the other hand, from the above, this necessary requirement is also 
sufficient.  Therefore: 
 
 Theorem XIV.  Let two systems of functions: 
 

F1, …, Fα and 1F ′ , …, Fα′  
 
of x, p and x′, p′, resp., be given.  If one wishes to decide whether there is a contact 
transformation that transforms any Fi into the corresponding iF ′ then one should proceed 

in the following way:  Among the F, one takes r mutually independent ones – say, F1, …, 
Fr – in terms of which the remaining ones can be expressed: 
 

Fr+k = Wk(F1, …, Fr)   (k = 1, …, α − r). 
 

A first condition is then that 1F ′ , …, rF ′  should be independent functions, in terms of 

which, the r kF +′  could be expressed in a corresponding way: 

 

r kF +′  = Wk( 1F ′ , …, rF ′ ). 
 

If this is the case then one defines the group that is determined by F1, …, Fr when one 
sets: 

(1) (1)( , )
a b

F F  = Fr+1 , …, ( ) ( )( , )k ka b
F F  = Fr+k , 
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and thus chooses the numbers a(k), b(k) in such that one always has: 
 

a(k) < r + k, b(k) < r + k, 
 

and that one Fr+k is expressible in terms of F1, …, Fr+k−1 .  Let: 
 

F1, …, Fr+ρ 
 
be one of the groups that are obtained in this way.  If one then sets, in a corresponding 
way: 

(1) (1)( , )
a b

F F′ ′  = 1rF +′ , …, ( ) ( )( , )k ka b
F F′ ′  = rF ρ+′  

then the functions: 

1F ′ , …, rF ρ+′  

 
must also define a group with r + ρ parameters, and in addition, any ( , )i kF F′ ′  of this 

group must be expressible in terms of 1F ′ , …, rF ρ+′  in the same way as the corresponding 

(Fi , Fk) are expressible in terms of F1, …, Fr+ρ .  If all of the conditions are verified then 
the desired transformation is possible. 
 
 This theorem determines all of the relations that exist between the given functions F1, 
…, Fα that remain unchanged under contact transformations.  As one sees, all such 
relations can be expressed by means of the differential symbols (Φ, Π), when coupled 
with finite functional relations. 
 . 

 
§ 17. 

 
Integration methods that are based on the previous developments. 

 
 37.  I assume that a system in involution: 
 

F1 = C1, …, Fq = Cq 
 

is supposed to be integrated and that one already knows a sequence of functions Φ1, …, 
Φr that all satisfy the equations: 

(Fi , Φ) = 0. 
 
If one can find no further solutions by means of the Poisson-Jacobi theorem then F1, …, 
Fq, Φ1, …, Φr define a group in which F1, …, Fq are distinguished functions.  If there are, 
in addition, µ such functions: 

Fq+1, …, Fq+µ , 
 

then (§ 11, conclusion) one determines them by means of: 
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µ, µ – 1, …, 3, 2, 1 
operations.  Consequently: 

F1 = C1, …, Fq+µ = Cq+µ 
 
is a new system in involution with r – µ known solutions Φ1, …, Φr – µ of the q+ m 
equations (Fi Φ) = 0, and the integration of the given system in involution is converted 
into that of the new system. 
 One then remarks that r – µ must be an even number.  r – µ is then the difference 
between the number of parameters r + q and the number of distinguished functions q + µ, 
and, from a previous theorem (Theorem IX), it is then an even number. 
 
 38.  We are thus led to the especially important problem of integrating a system in 
involution: 

F1 = C1, …, Fq+µ = Cq+µ 
 
in the simplest possible way when one knows 2q solutions Φ1, …, Φ2q of the system (Fi 
Φ) = 0 that, together with the F, define a group whose only distinguished functions are 
the F. 
 To that end, one exhibits the complete system: 
 

(F1, F) = 0, …, (Fm , F) = 0, (Φ1 , F) = 0, …, (Φ2q , F) = 0, 
 
among whose 2n – 2q – m solutions m are already known, namely, F1, …, Fm .  One 
determines a further solution Fm+1 by means of a: 
 

2n − 2q – 2m 
 
operation.  On this, it must be remarked that Fm+1 cannot belong to the group F1, …, Fm, 
Φ1, …, Φ2q .  F1, …, Fm are then the only functions of this group that likewise belong to 
the polar group and, from our procedure, Fm+1 is not a function of F1, …, Fm . 
 With that, our problem is reduced to that of the integration of the system in 
involution: 

F1 = C1, …, Fm+1  = Cm+1  
 
with 2q solutions Φ1, …, Φ2q of the corresponding complete system (Fi , Φ) = 0.  Here, 
we go further in the same manner.  We then pose the complete system: 
 

(F1 , F) = 0, …, (Fm+1 , F) = 0,   (Φ1 , F) = 0, …, (Φ2q , F) = 0, 
 
among whose 2n – 2q – m – 1 solutions m + 1 of them are known, namely, F1, …, Fm+1 .  
We determine a further solution Fm+2 by means of a: 
 

2n – 2q – 2m – 2 
 

operation, and remark, as before, that Fm+2 cannot belong to the group F1, …, Fm+1 . 
 We then treat the system in involution: 
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F1 = C1, …, Fm+2  = Cm+2  
 
with the unknown solutions Φ1, …, Φ2q to the equations (Fi , Φ) = 0, and find a function 
Fm+3 by means of a: 

2n – 2q – 2m – 4 
 
operation, and then a function Fm+4 by means of a: 
 

2n – 2q – 2m – 6 
 
operation, etc., until finally we get a function Fn – q by means of a: 
 

2 
operation. 
 With that, the integration of the original system in involution is converted into that of 
the system: 

F1 = C1, …, Fn−q  = Cn−q  
with 2q known solutions: 

Φ1, …, Φ2q 
 
of the n – q equations (Fi , Φ) = 0.  However, the integration of this system will be 
accomplished (Theorem XIII) by my extension of Cauchy’s method with nothing further.  
Therefore: 
 
 Theorem 52.  The integration of a system in involution: 
 

F1 = C1, …, Fm  = Cm  
 
with 2q known solutions Φ1, …, Φ2q of the m equations: 
 

(F1 Φ) = 0, …, (Fm Φ) = 0 
requires a: 

2n – 2q – 2m, 2n – 2q – 2m – 2, …, 6, 4, 2 
operation, while a: 
 

2n – 2q – 2m, 2n – 2q – 2m – 1, 2n – 2q – 2m – 2,…, 3, 2, 1 
 
operation would be required for the direct application of the extended Cauchy method.  In 
this, it is assumed that the application of the Poisson-Jacobi theorem gives no further 
solutions Φ, that is, that F1, …, Fm, Φ1, …, Φ2q do not define a group, and that the F are 
the only distinguished functions of this group. 
 If we then combine the content of the foregoing paragraph then we obtain the 
following theorem, which gives the most important simplification of the integrations that 
one can deduce from the foregoing in a schematic way. 
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 Theorem XV.  Should one wish to integrate a system in involution: 
 

F1 = C1, …, Fq  = Cq , 
 
and one then knows 2n + m solutions Φ1, …, Φ2n+2 of the q equations (Fi , Φ) = 0 that 
define a group, along with F1, …, Fq , that contains m distinguished functions, in addition 
to F, then the execution of our integration procedure would require an: 
 

m, m – 1, m – 2, …, 3, 2, 1, 
2n – 2q – 2ν – 2m, 2n – 2q – 2ν – 2m – 2, …, 6, 4, 2. 

 
operation.  The direct application of the extended Cauchy method requires a: 
 

2n – 2q – 2n – m, 2n – 2q – 2n – m – 1, …, 3, 2, 1 
 
operation.  In general, the Jacobi method would make much less use of the functions Φ. 
 
 Moreover, one easily recognizes that still greater simplifications can often be 
achieved, namely, when one already knows subgroups. 
 
 39.  In order to compare the accomplishments of this theory with that of the extended 
Cauchy method, I shall go back to the previously-found (no. 34) relation between the 
number r of parameters and the number m of distinguished functions of a group: 
 

2

r m+
 ≤ n. 

 
In the present case, since the group: 
 

F1, …, Fq, Φ1, …, Φ2r+m 
 
contains 2ν + m + q parameters and q + m distinguished functions, this equation assumes 
the following form: 

2 2 2

2

q mν + +
 ≤ n 

or 
2n – 2ν – 2q – 2m ≥ 0. 

We first consider the case: 
2n – 2ν – 2q – 2m > 0, 

and then the case: 
2n – 2ν – 2q – 2m = 0. 

 
 A.  If 

2n – 2ν – 2q – 2m > 0 
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then one easily convinces oneself that the new method requires simpler integrations that 
the previous method.  Then, in this case, one has: 
 

2n – 2ν – 2q – m > m, 
and therefore the numbers: 

m, m – 1, …, 3, 2, 1, 
2n – 2ν – 2q – 2m, 2n – 2ν – 2q – 2m − 2, …, 4, 2 

 
are smaller than the numbers: 
 

2n – 2ν – 2q – 2m, 2n – 2ν – 2q – 2m − 1, …, 3, 2, 1. 
 

 B. By contrast, in the case: 
2n – 2ν – 2q – 2m = 0, 

 
the two methods require just as many operations.  Namely, in this case, the new method 
requires an: 

m, m – 1, …, 3, 2, 1 
 
operation, while the old one requires a: 
 

2n– 2q – 2ν  – m, 2n – 2q – 2ν  – 2m − 1, …, 3, 2, 1 
 
operation, which comes to precisely the same thing. 
 Finally, we would like to consider the case q = 1 somewhat closer.  One must 
integrate an equation: 

F(x1, …, xn, p1, …, pn) = const., 
 

and one knows 2ν + m solutions Φ1, …, Φ2ν+m of the equation (F, Φ) = 0, from which no 
new solution can be found by applying the Poisson-Jacobi theorem.  We assume that the 
group: 

F, Φ1, …, Φ2ν+m 
 

contains m distinguished functions, in addition to F. 
 If the number of known solutions is: 
 

2ν + m < n – 1 
here, and thus also: 

m < n – 1 
then one will have: 

2ν + 2m < 2n – 2, 
so 

2n − 2ν − 2m – 2 >  0. 
 

From our reasoning above, our method thus requires simpler integrations than the Cauchy 
method, in this case. 
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 Now, let: 
2ν + m = n – 1. 

 
If ν = 0 then m = n – 1, and the equations: 
 

F = C,  Φ1 = C1,  …, Φn−1 = Cn−1 
 
define a system in involution whose integration using my improvement of the Jacobi 
method requires only a quadrature in all situations. 
 By contract, if: 

2ν + m = n – 1 
and 

ν > 0 
then one has: 

m ≤ n – 3, 
and then: 

2ν + 2m ≤ 2n – 4, 
or 

2n − 2ν − 2m – 2 > 0. 
 
Therefore, the new theory, in turn, requires simpler operations than Cauchy’s in this case. 
 Finally, if 2ν + m is equal to 2 then one can either choose one of the two known 
solutions, and then apply Jacobi’s method, or also employ both of them and follow the 
theory above.  Both methods require just as many integrations.  This situation, i.e., that 
one can derive the same benefits from one known solution as from two of them, in no 
way represents a defect of the method.  It can be proved that it lies in the nature of things.  
If 2ν + m is greater than 2 then I do not need to compare my new method with Jacobi’s.  
In that case, the latter is in the background of Cauchy’s. 
 We now consider the case: 

2ν + m ≥ n. 
 

From my previous argument, the unfavorable case in which my method offers no 
simplification shall emerge when: 

2n – 2n – 2m – 2 = 0. 
 

This condition enters in when the group: 
 

F, Φ1, …, Φ2ν+m 
 
contains the largest possible number of distinguished functions, and otherwise never.  
Thus: 
 
 Theore, XVI.  Should one wish to integrate an equation: 
 

F(x1, …, xn , p1, …, pn) = const., 
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and one knows more than two solutions Φ1, … Φr of the equation (F, Φ) = 0 then my new 
theory always simplifies the background integration difficulties, assuming only that: 
 

r ≥ n, 
 
along with the demand that the group F, Φ1, … Φr should contain the largest possible 
number of distinguished functions, in which case, my method demands just as many 
integrations as the older theory. 

 
 

§ 18. 
 

Schematically executed examples. 
 

 40.  In order to make the meaning of the foregoing theories emerge clearly, I will treat 
some examples schematically. 
 
 A.  Let: 

p10 – f(x1, …, x10, p1, …, p9) = 0 
 

be given, with seven known solutions ϕ1, …, ϕ7 of the equation (p10 – f, ϕ) = 0, which, 
together with p10 – f, define a group.  Here, four different cases are imaginable that 
require a different treatment. 
 
 1) Our group contains only one distinguished function besides p10 – f.  In that case, 
the background integration process requires a: 
 

1, 10, 8, 6, 4, 2 
operation. 
 
 2) Our group contains three distinguished functions besides p10 – f.  In that case, a: 
 

3, 2, 1, 8, 6, 4, 2 
operation is necessary. 
 3) If the group contains five distinguished functions then besides p10 – f then a: 
 

5, 4, 3, 2, 1, 6, 4, 2 
operation is necessary. 
 4) Finally, if the group is a system in involution then only a: 
 

4, 2 
operation is necessary. 
 
 Previously, one wished only to treat the latter case in such a simple way, and indeed 
this only when the system in involution in question fulfilled the known condition (§ 7).  
The remaining cases were not known.  One always required an: 
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11, 10, 9, 8, …, 3, 2, 1 
 

operation, or with the use of Jacobi’s theory of multipliers, an: 
 

11, 10, 9, …, 4, 3, 2 
operation. 
 I summarize this example by means of the following table: 

 
1 distinguished function 1, 10, 8, 6, 4, 2 
3 distinguished functions 3, 2, 1, 8, 6, 4, 2 
5 distinguished functions 5, 4, 3, 2, 1, 6, 4, 2 
7 distinguished functions 4, 2 
Except in the last case, with the use of 
the theory of multipliers, one previously 
needed the following operations 

11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 

 
 B.  Let: 

p10 – f = 0 
 

be given, with 8 known solutions ϕ1, …, ϕ8 to the equation (p10 – f, ϕ) = 0.  They, along 
with p10 – f define a group that contains 8 or 6 or 4 or 2 or no distinguished functions in 
addition to p10 – f.  The following table gives the necessary operations in these cases. 
 

no distinguished functions 10, 8, 6, 4, 2 
2 distinguished functions 2, 1, 8, 6, 4, 2 
4 distinguished functions 4, 3, 2, 1, 6, 4, 2 
6 distinguished functions 6, 5, 4, 3, 2, 1, 4, 2 
8 distinguished functions 3 
Except in the last case, with the use of 
the theory of multipliers, one previously 
needed the following operations 

10, 9, 8, 7, 6, 5, 4, 3, 2 

 
 C. Let: 

p10 – f = 0 
 

be given, with 12 known solutions ϕ1, …, ϕ12 to the equation (p10 – f, ϕ) = 0, from which, 
no further ones could be derived by using the Poisson-Jacobi theorem.  The following 
table explains the possible cases, as compared to the older method. 
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no distinguished function 6, 4, 2 
2 distinguished functions 2, 1, 4, 2 
4 distinguished functions 4, 3, 2, 1, 2 
6 distinguished functions 6, 5, 4, 3, 2, 1 
Except in the last case, with the use of 
the theory of multipliers, one previously 
needed the operations 

6, 5, 4, 3, 2 

 
 
 Except in the last case, my theory thus gives a reduction in the number of 
integrations. 
 

§ 19. 
 

Suggestions for some further simplifications of the integration. 
 

 41.  The great importance of the integration theory that was developed lies especially 
in the fact that in the treatment of a first-order, partial differential equations by the 
methods that Mayer and I gave in the Spring of 1872, one often finds oneself in the 
following position: 
 A system in involution: 

F1, = C1,  …, Fm = Cm 
 

is to be integrated, and one already knows a sequence of functions Φ1, …, Φr that satisfy 
all of the equations (Fi , Φ) = 0. 
 It therefore seems natural to pose the question: How must one proceed in order to 
reduce the background integrations as much as possible in regard to their number and 
order? 
 Those simplifications that are thus always achieved are given in the last paragraphs.  
All that remains to be shown is how one can exploit the situations that can arise in the 
further treatment of the problem to the best advantage. 
 Let a system in involution be given: 
 

F1, = C1,  …, Fm = Cm 
 
with r solutions Φ1, …, Φr that satisfy the m equations (Fi,  Φ) = 0, from which no further 
solution can be calculated by the use of the Poisson-Jacobi theorem.  (In this, we can 
assume that the group F1, …, Fm, Φ1, …, Φr contains no distinguished functions other 
than F.  In the contrary case, one can determine them and then add those functions to F.) 
 From our general theory, we pose the complete system: 
 

(F1,  F) = 0, …, (Fm,  F) = 0, (Φ1,  F) = 0, …, (Φr,  F) = 0 
 
and seek common solution of it that is different from F1, …, Fm by the use of Mayer’s 
theorem.  If one succeeds in determining such a solution then, as is known, one very 
often simultaneously finds more of them – perhaps ρ of them: 
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Π1, …, Πρ . 
 
It is now conceivable that the application of the Poisson-Jacobi theorem gives still further 
solutions Π *).  In any case, one can always calculate the group that is determined by our 
functions: 

F1, …, Fm, Φ1, …, Φr, Π1, …, Πϖ  . 
 

The original problem is thus reduced to the integration of the system in involution: 
 

F1 = C1, …, Fm = Cm , 
 

with the known solutions Φ1, …, Φr, Π1, …, Πϖ . 
 Before one goes any further here, one must, as usual, investigate whether the group 
F1, …, Fm, Φ1, …, Φr, Π1, …, Πϖ  contains still more distinguished functions besides the 
F.  If such functions exist then one determines them, and thereby our problem again 
assumes the original form: 
 A system in involution: 

F1 = C1, …, Fm+q = Cm+q , 
 
with k known solutions Ω1, …, Ωk  of the m+q equations (Fi , Ω) = 0 is to be integrated, 
where the F are the only distinguished functions of the group in question.  Here, one 
proceeds in the same way. 

_______ 
 

 Here, the remark can find its place that the foregoing theory can take on another form, 
in part, namely, by applying a theorem that has a close connection with my new method 
of integration: 
 
 Theorem XVI.  Let a system in involution be given: 
 

F1 = C1, …, Fm = Cm , 
 
in the variables x1, …, xn, p1, …, pn, and let Φ1, …, Φq be known solutions of the m 
equations (Fi , Φ) = 0.  One can, in turn, reduce the system in involution to a single 
equation of the form: 

f(x1, …, xn−m , p1, …, pn−m) = const., 
 

in such a way that the integration of this one equation amounts to that of the system in 
involution, and q solutions ϕ1, …, ϕq of (f, ϕ) = 0 can likewise be given. 

 
 
  
 
 

                                                
 *) I have convinced myself that this case can actually arise by an example. 
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§ 20. 
 

Treatment of the three-body problem using my general method. 
 

 42.  It is known that Hamilton and Jacobi have shown that any problem in celestial 
mechanics can be expressed by a certain first-order, partial differential equation: 
 

H(x1, …, xn, p1, …, pn) = a. 
 
The known integrals of the simultaneous differential equations that the problem in 
question immediately defines give just as many solutions of the linear equation: 
 

(H, F) = 0. 
 

 My general theory now teaches us how one must employ the known solutions in any 
individual case in order to reduce the background integrations as much as possible in 
regard to their number and order.  As an example, I shall choose the three-body problem, 
and thus first assume that one body is fixed.  I will then give a direct treatment of the 
general case. 
 If three material bodies, one of which is fixed, move by means of their mutual 
attraction then the three-surface theorem is valid.  I denote the partial differential 
equation that expresses the problem by: 
 

H(x1, …, x6, p1, …, p6) = a, 
 
and the three solutions of the equation (H, F) = 0 that correspond to the surface theorem 
by: 

F1, F2, F3 . 
As is known, the relations: 
 

(F1 , F2) = F3, (F2 , F3) = F1, (F3 , F1) = F2 
 
exist between them, and therefore F1, F2, F3 define a three-parameter group that is not a 
system in involution, and therefore contains one distinguished function Φ.  The same 
thing will be determined by any two of the equations: 
 

 (F1 , Φ) = 0 = F3 
2F

∂Φ
∂

 − F2 
3F

∂Φ
∂

, 

 

 (F2 , Φ) = 0 = − F3 
1F

∂Φ
∂

 + F1 
3F

∂Φ
∂

, 

 

 (F3 , Φ) = 0 = F2 
1F

∂Φ
∂

 − F1 
2F

∂Φ
∂

. 
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Here, if one integrates by the usual rules then one finds that: 
 

Φ = 2 2 2
1 2 3F F F+ + . 

 
It is clear that the four-parameter group: 
 

H, F1, F2, F3 
 
contains two distinguished functions: 
 

H and 2 2 2
1 2 3F F F+ + . 

 
Thus, any system in involution that contains this group consists of at most three 
parameters.  One such system is: 
 

H = a, F1 = b,  2 2 2
1 2 3F F F+ +  = c. 

 
The original problem is then reduced to the integration of this system.  However, my new 
integration method teaches us that it is always possible to exhibit an equation of the form: 
 

f(x1, …, x4, p1, …, p4) = 0 
 
that is equivalent to the system in involution above.  From Mayer’s and my older theory, 
the solution of the original problem thus requires only a: 
 

6, 4, 2 
operation. 
 
 43.  Now, let: 

H(x1, …, x9, p1, …, p9) = a 
 

be the partial differential equation that is equivalent to the general three-body problem.  
Let: 

ϕ 1, ϕ 2, ϕ 3 
 

be the three solutions of the equation (H, ϕ) = 0 that correspond to the three center-of-
mass integrals, and furthermore let: 

ϕ 4, ϕ 5, ϕ 6 
 
be three solutions that correspond to the surface theorems, and finally, let: 
 

ϕ 7, ϕ 8, ϕ 9 
 

be the solutions that arise from the center-of-mass integrals by eliminating time.  One 
must then remark that one relation: 
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ϕ 1ϕ 7 + ϕ 2ϕ 8 + ϕ 3ϕ 9 = 0 
 
exists between the 9 functions.  The functions ϕ 1, …, ϕ 8 define an eight-parameter 
group.  We will find that it contains two distinguished functions, and that as a result, it is 
possible to select five-parameter systems in involution from our group. 
 From our general theory, we must exhibit the determinant with 8 rows and columns 
that is defined by all (ϕi , ϕk): 

∆ = 
1 1 1 8

8 1 8 8

( , ) ( , )

( , ) ( , )

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

⋯

⋯ ⋯ ⋯

⋯

. 

One finds that: 

∆ = 

3 2 3

3 1 3

2 1 2 1

3 2 6 5 9

3 1 6 1 9

2 1 5 4 8 7

3 2 4 8 9

3 1 9 7 9

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0

0 0 0

0 0

0 0 0

0 0 0

M

M

M M

M M M

M M M

ϕ ϕ ϕ
ϕ ϕ ϕ
ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ ϕ

−
− −

− −
− −

− − −
− − −

− −
− − −

, 

 
where M is a constant, and ϕ 9 is determined by the identity: 
 

ϕ 1ϕ 7 + ϕ 2ϕ 8 + ϕ 3ϕ 9 = 0. 
 
The calculation of the determinant shows that it is equal to zero.  Thus, our group 
contains, in any case, one, and as a result, at least two, distinguished functions.  If it had 
more than two such functions then there number would be four or larger.  However, all 
sub-determinants of second and third order would then vanish, and one verifies, with no 
difficulty, that there are sub-determinants of third (and also second) order that are non-
zero.  Therefore, our group has two distinguished functions and thus contains systems in 
involution with five parameters, and none with more than five parameters.  If such a 
system is found then its parameters, together with H, define a 6-parameter system in 
involution whose integration by my method can be reduced to that of a single equation: 
 

f(x1, …, x4, p1, …, p4) = 0. 
 

In order to select a five-parameter system in involution by the simplest possible 
operations (§ 15, 33) from the eight-parameter group, we remark that ϕ 1, ϕ 2 , ϕ 3 , ϕ 4 , 
ϕ 5 , ϕ 6 define a six-parameter subgroup that contains the system in involution ϕ 1, ϕ 2 , 
ϕ 3 .  If we examine the determinant of the six-parameter group then we find that this 
group also possesses two distinguished functions.  Thus, it contains systems in involution 
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with four parameters and none with more than four.  We seek such a system that 
possesses the form: 

ϕ 1, ϕ 2 , ϕ 3 , Φ(ϕ 1, ϕ 2 , ϕ 3 , ϕ 4 , ϕ 5 , ϕ 6). 
 

The function Φ will be determined by two of the equations: 
 

(ϕ 1 , Φ) = 0, (ϕ 2 , Φ) = 0, (ϕ 3 , Φ) = 0, 
 
which, by developing and substituting the values of (ϕ i , ϕ k), assume the form: 
 

   ϕ 3 
5ϕ

∂Φ
∂

− ϕ 2 
6ϕ

∂Φ
∂

 = 0, 

 

− ϕ 3 
4ϕ

∂Φ
∂

+ ϕ 1 
6ϕ

∂Φ
∂

 = 0. 

 
If one integrates these by the usual rules then one finds that: 
 

Φ = ϕ 1ϕ 4 + ϕ 2ϕ 5 + ϕ 3ϕ 6 . 
 
We thus know one four-parameter system in involution: 
 
(A)     ϕ 1, ϕ 2 , ϕ 3 , ϕ 1ϕ 4 + ϕ 2ϕ 5 + ϕ 3ϕ 6 
 
of the eight-parameter group.  In order to now find five-parameter systems in involution, 
we need to determine only one function Π of the group that is in involution with the 
functions (A).  When one follows the usual rules, one finds Π to be the function: 
 

(Mϕ 4 – ϕ 7)2 + (Mϕ 5 – ϕ 8)2 + (Mϕ 6 – ϕ 9)2. 
 

With that, the desired system in involution is found *).  After that, an elimination will 
give an equation of the form: 

f(x1, …, x4, p1, …, p4) = 0, 
 

to which the integration of the three-body problem will reduce.  This known result is thus 
reduced by its intrinsic nature. 
 Before Mayer and I published our integration method in the year 1872, the solution of 
the problem by the Jacobi-Weiler method required a: 
 

6, 4, 4, 2, 2 
 
operation.  Our work showed that only a: 

                                                
 *) Clebsch reduced the integration to the system in involution that was presented here in his lectures on 
the three-body problem.  
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6, 4, 2 
operation was required. 
 It is self-explanatory that the reasoning of this paragraph extend to the general 
problem of n bodies with no further assumptions *). 
 
 

                                                
 *) I will develop the mechanics of an n-fold extended manifold with constant scalar curvature on 
another occasion.  The integrals of the equations of motion, which have their basis in the free mobility of 
the space in question, can be presented by means of a general principle that I will give at another time.  
This treatise will then show how one is to employ these integrals best.  It is not known to me whether the 
theory that I just suggested has already been presented. 



Part three 
 

Theory of homogeneous groups. 
 
 In this Part, I will consider a number of homogeneous functions H1, …, Hr of x1, .., xn, 
p1, …, pn and determine all of the relations that exist between them that remain 
unchanged under homogeneous contact transformations.  At the same time, the 
corresponding problem for arbitrary functions of z, x1, .., xn, p1, …, pn that are subject to 
arbitrary contact transformations will be solved. 
 

§ 21. 
 

Homogeneous groups. 
 

 44.  First, we shall introduce a new concept.  It rests upon the following theorem: 
 
 Theorem 53.  If Hα and Hβ are homogeneous functions of degree α and β, resp. then 
(Hα , Hβ) is homogeneous of degree (α + β + 1). 
 
 One then has: 

(Hα , Hβ) = 
1

n

i i i i i

H HH H

x p p x
β βα α

=

∂ ∂ ∂ ∂− ∂ ∂ ∂ ∂ 
∑ . 

 
Now, ∂Hα / ∂xi and ∂Hβ / ∂xi are homogeneous of degree α and β, resp.  Furthermore, 
∂Hα / ∂pi and ∂Hβ / ∂pi are homogeneous of degree α − 1 and β − 1, resp.  Therefore, 

i i

HH

x p
βα ∂∂ ⋅

∂ ∂
, as well as 

i i

HH

p x
βα ∂∂ ⋅

∂ ∂
, are of degree α + β + 1.  Thus, (Hα , Hβ) is also of 

degree α + β + 1. 
 
 Corollary.   If two or more homogeneous functions H1, …, Hρ generate an r-
parameter group then in any form in which they are featured they consist of r 
homogeneous parameters.  As far as that is concerned, one must remark that functions 
that belong to such a group are not homogeneous, in general. 
 
 Definition.   An r-parameter group is called homogeneous when it contains r 
homogeneous, mutually independent functions. 
 
 Theorem 54.  If H1, …, Hr are homogeneous functions that define a group, and F 

denotes an arbitrary function of this group then 
1

n

k
k k

F
p

p=

∂
∂∑  also belongs to our group. 

 
 When one first sums over k, and in so doing recalls that all Hi are homogeneous – 
perhaps, of degree s − the equation: 
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1

n

k
k k

F
p

p=

∂
∂∑  = 

1 1

n r
i

k
k i i k

HF
p

H p= =

∂∂
∂ ∂∑∑  

goes to: 

1

n

k
k k

F
p

p=

∂
∂∑ = 

1

r

i i
i i

F
s H

H=

∂ ⋅
∂∑ . 

 
However, the right-hand side is a function of H1, …, Hr, here. 
 

 Theorem 55.  If K1, …, Kr define a group that possesses the property that 
1

n

k
k k

K
p

p=

∂
∂∑  

can be expressed in terms of K then the group is homogeneous. 
 
 Namely, if some of the expressions: 
 

1

n

k
k k

K
p

p=

∂
∂∑ = Ωi(K1, …, Kr) 

are non-zero then the equation: 

1

n

k
k k

p
p=

∂Φ
∂∑  = Φ, 

or the corresponding one: 

1

r

i
i iK=

∂ΦΩ
∂∑  = Φ, 

 
is a linear, partial differential equation with r mutually independent solutions: 
 

Φ1, …, Φr 
 
that are homogeneous of degree 1 and belong to our group.  Finally, if all Ωi are equal to 
zero then this means that all K are of degree zero; the group is also homogeneous in this 
case. 
 
 Theorem 56.  If all functions of a homogeneous group have degree zero then the 
group is a system in involution. 
 
 In fact, let N1, …, Nr be functions of degree zero that define an r-parameter group.  If 
the expression (Ni, Nk) is non-zero then (Theorem 53) it must be of degree – 1.  Now, it 
is, however, possible to express a function of degree – 1 in terms of quantities of N1, …, 
Nr of degree zero.  Thus, all (Ni, Nk) must be zero, and the group is a system in 
involution. 
 
 Theorem 57.  If a homogeneous group contains functions that are not all of degree 
zero then the group can take the form N1, …, Nr−1, H.  Here, all N functions are of degree 
zero and H is a function of degree one. 
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 Namely, if H1, …, Hr are homogeneous functions of our group then it is always 
possible, when one replaces each H with a certain power of it, to given the group a form: 
 

N1, …, Nρ, Hρ+1, …, Hr 
 

that includes only parameters of degree zero and one.  Now, if one sets: 
 

1

r

H

H
ρ +  = Nρ+1, …, 1r

r

H

H
−  = Nr−1 

then 
N1, …, Nr−1, H 

 
is a form for our group that fulfills the stated requirements. 
 
 

§ 22. 
 

The polar group and the distinguished functions of a homogeneous group 
are homogeneous. 

 
 45.  The theory of this Part rests upon a theorem that we will now prove.  First, we 
give a lemma. 
 
 Theorem 58.  The equations: 
 

(H, K) = 0, 
1

n

k
k k

H
p

p=

∂
∂∑ = s H, 

 
in which s denotes a constant, imply the following one: 
 

1

,
n

k
k k

K
H p

p=

 ∂
 ∂ 
∑  = 0. 

 If we set: 

A(H) = (H, K),  B(H) = 
1

n

k
k k

H
p

p=

∂
∂∑ − s H 

 
then, since A(0) = B(0) = 0, any common solution H of our two equations is also a 
solution of the equation: 

A(B(H)) – B(A(H)) = 0. 
 

However, by performing the calculations one finds that: 
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A(B(H)) – B(A(H)) = (H, K) − 
1

,
n

k
k k

K
H p

p=

 ∂
 ∂ 
∑ . 

 
Thus, our two equations do, in fact, imply the third one: 
 

1

,
n

k
k k

K
H p

p=

 ∂
 ∂ 
∑  = 0. 

 
 Theorem XVIII.   The polar group of a homogeneous group is homogeneous. 
 
 Proof.  Let H1, …, Hr be homogeneous functions that define an r-parameter group, 
and let K1, …, K2n−r be the polar group.  The equations: 
 

(Hi , Kρ) = 0, 
1

n
i

k
k k

H
p

p=

∂
∂∑ = si Hi , 

 
are, in turn, valid, which, from the foregoing theorem, implies the following ones: 
 

1

,
n

i k
k k

K
H p

p
ρ

=

∂ 
 ∂ 

∑  = 0  (i = 1, …, r). 

 

Therefore, the group K1, …, K2n−r possesses the property that the expression 
1

n

k
k k

K
p

p
ρ

=

∂
∂∑  

is a function of the quantities K1, …, K2n−r, in any case.  Thus (Theorem 55), K1, …, K2n−r 
define a homogeneous group. 
 
 Theorem 59.  Let H1, …, Hr be a homogeneous group.  The equations: 
 

(H1 , Φ) = 0, …, (Hr , Φ) = 0,  
1

n

k
k k

p
p=

∂Φ
∂∑ = 0, 

 
in turn, define a complete system if the last equation is not an accidental algebraic 
consequence of the remaining ones. 
 
 The polar group of H1, …, Hr is, in fact, homogeneous, and thus possesses (Theorem 
57) either the form N1, …, N2n−r , H or the form N1, …, N2n−r .  In the first case, there are 
2n – r − 1 of the 2n – r solutions of the complete system: 
 
(A)     (H1, Φ) = 0, …, (Hr, Φ) = 0, 
 
namely, N1, …, N2n−r , that likewise satisfy the equation: 
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(B)      
1

n

k
k k

p
p=

∂Φ
∂∑  = 0. 

Thus: 

(H1, Φ) = 0, …, (Hr, Φ) = 0, 
1

n

k
k k

p
p=

∂Φ
∂∑ = 0, 

 
in turn, define a complete system.  In the second case, all solutions of equations (A) are 
likewise solutions of (B), an equation that is then a consequence, and indeed and 
algebraic consequence, of (A). 
 It must be remarked that in this last case one must have r ≥ n.  The polar group, since 
it consists of functions of degree zero, is then (Theorem 56) a system in involution, and 
can thus contain at most n parameters. 
 With the use of the last theorem, I will give an integration method for the equation: 
 

11
1 1, , , , , n

n
n n

pp
N x x

p p
− 

 
 
⋯ ⋯  = const. 

 
that agrees with Mayer’s and my previous theories in regard to the number and order of 
necessary integrations. 
 I pose the complete system: 

(N1 ,  F) = 0, 
1

n

k
k k

F
p

p=

∂
∂∑ = 0, 

 
and determine a solution N2 of it by means of a 2n – 3 operation.  N1, N2 is, in turn, a 
system in involution.  I pose the complete system: 
 

(N1, F) = 0, (N2, F) = 0, 
1

n

k
k k

F
p

p=

∂
∂∑ = 0, 

 
and determine a solution N3 of it that is different from N1 and N2  by means of a 2n – 5 
operation.  In this way, one finally finds a system in involution: 
 

N1 = a1, N2 = a2, …, Nn = an . 
 

One eliminates the differential quotients p1, …, pn from these equations, which is always 
possible, since the p appear only as ratios, then one obtains an equation in x1, …, xn, or 
more in some situations, that represents the one complete solution of the given equation. 
 
 46.  We now turn to the distinguished functions of homogeneous groups. 
 
 Theorem XIX.  The distinguished functions of a homogeneous group define a 
homogeneous group. 
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 Namely, let H1, …, Hr be a homogeneous group, and let K1, …, K2n−r be its polar 
group.  If these two groups possess m common distinguished functions then (Theorem 
VII) it is always possible to choose r – m parameters in the first group – say, H1, …, Hr−m 
− such that no relation exists between the 2n – m quantities: 
 

H1, …, Hr−m , K1, …, K2n−r . 
 

These functions, in turn, define a group, and indeed a homogeneous group, whose polar 
group, which must likewise be homogeneous, consists of the distinguished functions of 
the original group (Theorem 25, proof).  Our theorem is thus proved. 
 
 Theorem 60.  If some of the m distinguished functions of a homogeneous group have 
non-zero degrees then one can determine all of the distinguished functions by means of 
an: 

m – 1, m – 2, …, 3, 2, 1, 1 
 

operation.  My older method required an m, m – 1, …, 3, 2, 1 operation. 
 
 Proof.  We restrict ourselves to the case in which our group already possesses the 
form N1, …, Nr−1 .  If we denote a function of N1, …, Nr−1  by N then the equations: 
 

(N1, N) = 0, …, (Nr−1, N) = 0, (H, N) = 0, 
 
or, when they are developed: 
 

(α)    
1

1
1

( , )
r

k
k k

N N
N

−

=

∂
∂∑

N
 = 0, …, 

1

1

( , )
r

k
k k

H N
N

−

=

∂
∂∑

N
 = 0, 

 
determine the distinguished functions of degree zero.  Now, the (Ni , Nk) are functions of 
degree – 1, and (H, Nk) is a function of degree zero in N1, …, Nr−1, H .  Therefore, this 
expression must have the form: 
 

(Ni, Nk) = 1 1( , , )ik rf N N

H
−…

, 

 
(H, Nk) = ϕik (N1, …, Nr−1). 

 
By substituting these values, one converts equations (α), when one multiplies the first r − 
1 of them by H, into r equations that only contain the r − 1 independent variables N1, …, 
Nr−1; the variable H has vanished completely.  One now establishes how many common 
solutions our r linear equations possess in the usual way.  If they have m of them – i.e., if 
all distinguished functions are of degree zero – then, as usual, their determination 
requires: 

m – 1, m − 2, …, 3, 2, 1 
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operations.  After one has determined m – 1 distinguished functions of degree zero in this 
way, one finds a further distinguished function that is not of degree zero by one more 
operation. 
 

§ 23. 
 

Canonical forms for homogeneous groups. 
 
 We shall first prove some lemmas.  We then present two canonical forms; any 
homogeneous group can assume the one or the other of these two forms.  For the sake of 
convenience, I will always need that symbol P in the sequel in order to denote a 
homogeneous function of degree one. 
 
 47.  Theorem 61.  Among the functions F of a homogeneous group N1, …, Nr−1, P 
that satisfy the equation: 

(N1, F) = 1, 
 
there is one that has degree one, and thus possesses the form P ⋅⋅⋅⋅ N (N1, …, Nr−1).  
Obviously, N1 cannot be a distinguished function. 
 
 By performing the calculation, we then find that: 
 

(N1, PN) = (N1, P) N + (N1, N) P, 
or 

(N1, PN) = (N1, P) N + 
1

1
1

( , )
r

k
k k

N N P
N

−

=

∂
∂∑

N
. 

 
Here, (N1, P) has degree zero, while (N1, Nk) has degree – 1, and thus (N1, Nk) P also has 
degree zero.  Therefore, these expressions, which are known functions of N1, …, Nr−1, P, 
must then have the form: 
  (N1, P)  = ϕ(N1, …, Nr−1), 
  (N1, Nk) P = fk(N1, …, Nr−1). 
 
By substituting these values, however, the equation (N1, PN) = 1 is converted into the 
following one: 

ϕ ⋅⋅⋅⋅ N + 
1

1

r

k
k k

f
N

−

=

∂
∂∑

N
 = 1, 

 
which no longer contains P, at all, and is a linear, partial differential equation with the 
independent variables N1, …, Nr−1.  If N is an arbitrary solution of it then P N is a 
function of degree one of our group that fulfills the requirements of our theorem. 
 
 Theorem 62.  A homogeneous group of the form N1, …, Nr−1, P contains functions 
N(N1, …, Nr−1) of degree zero that satisfy the equation: 
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(P, N) = 1, 
 

when one naturally assumes that P is not a distinguished function. 
 
 One then has: 

(P, N) = 
1

1

( , )
r

k
k k

P N
N

−

=

∂
∂∑

N
, 

 
and (P, Nk), as functions of degree zero, must be expressible in terms of only N1, …, Nr−1 .  
Thus, if: 

(P, Nk) = fk(N1, …, Nr−1) 
then 

1

1

r

k
k k

f
N

−

=

∂
∂∑

N
= 1 

 
is a linear, partial differential equation on N and the independent variables N1, …, Nr−1 
whose solutions belong to our group, and have the desired relationship with the given 
function P. 
 
 Theorem 63.  If a homogeneous group N1, …, Nr−1, P contains a two-parameter 
subgroup N1, P then the (r − 2)-parameter subgroup that is in involution with the two-
parameter one is also homogeneous (Theorem 34). 
 
 Namely, if H1, …, H2n−r is the polar group of N1, …, Nr−1, P then it is known that: 
 

H1, …, H2n−r , N1, P 
 

is a homogeneous group whose homogeneous polar group is just the (r – 2)-parameter 
subgroup that we spoke of.  Our theorem is thereby proved. 
 
 48.  Theorem XX.  A homogeneous group can always assume the form: 
 

X1, P1, …, Xq, Pq, U1, …, Um . 
 

Here, Xi and Pi are functions of degree zero and one, resp., that have the known 
reciprocal relationships. U1, …, Um are the distinguished functions of the group that 
define a homogeneous group, in their own right. 
 
 Proof.  If the given homogeneous group H1, …, Hr is a system in involution then it 
already has the desired form.  If that is not the case then one takes X1 to be a function of 
degree zero and then determines a function of degree one P1 of the group from the first 
theorem of this paragraph using the equation: 
 

(X1, P1) = 1. 
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One then determines (prev. theorem) the homogeneous (r – 2)-parameter subgroup: 
 

(1)
1H , …, (1)

2rH −  

 
that is in involution with X1, P1.  With that, the original group assumes the form: 
 

X1, P1, 
(1)
1H , …, (1)

2rH − . 

 
If (1)

1H , …, (1)
2rH −  is a system in involution then the original group is already in the 

desired form.  If that is not the case then we decompose (1)
1H , …, (1)

2rH −  into two 

homogeneous groups X2, P2 and (2)
1H , …, (2)

4rH −  that are in involution, from which the 

original group assumes the form: 
 

X1, P1, X2, P2, 
(2)
1H , …, (2)

4rH − . 

 
If (2)

1H , …, (2)
4rH −  is a system in involution then the desired form has been found.  In the 

contrary case, we perform another decomposition, etc. 
 If finitely many decompositions – say, q – are possible then our group has assumed 
the desired form: 

X1, P1, …, Xq, Pq, 
( )
1

qH , …, ( )
2

q
r qH − . 

 
Here, two further cases are now conceivable.  Either all of the distinguished functions are 
of degree zero, or there are some distinguished functions whose degree is non-zero.  
Thus: 
 
 Corollary 1.  If all distinguished functions of a homogeneous group are of degree 
zero then: 

X1, P1, …, Xq, Pq, Xq+1, …, Xq+m 
 
is the canonical form of the group.  Here Xi and Pi denote functions of degree zero and 
one, resp., that have the known mutual relationships. 
 
 Corollary 2.  If a homogeneous group contains distinguished functions that are not of 
degree zero then: 

X1, P1, …, Xq, Pq, Xq+1, …, Xq+m−1, Pq+m , 
 
or, what amounts to the same thing: 
 

X1, P1, …, Xq, Pq, Pq+1, …, Pq+m , 
 
is the canonical form of the group. 
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 The arguments at the end of the foregoing paragraph show how one decides whether a 
given homogeneous group belongs to the one or the other of the two stated categories. 
 
 

§ 24. 
 

Invariant properties of a homogeneous group. 
 
 I will now prove that the only properties of a homogeneous group that are 
independent of the form of it, and thus remain unchanged under arbitrary homogeneous 
contact transformations (which obviously always take the given group to a new 
homogeneous group) can be expressed by means of three positive whole numbers: 
 1) The number of parameters. 
 2) The number of distinguished functions. 
 3) The number of distinguished functions of degree zero. 
 
 For this investigation, I embark upon a path that is very similar to the one that I 
followed in § 13, to which I shall refer. 
 
 49.  First, I consider groups whose distinguished functions are all of degree zero. 
 
 Theorem 64.  If X1, …, Xq+m, P1, …, Pq define a homogeneous group then there are 
always functions Pq+1 such that X1, …, Xq+m, P1, …, Pq+1 defines a new canonical 
homogeneous group that envelops the given one. 
 
 The polar group of X1, …, Xq, Xq+2, …, Xq+m, P1, …, Pq+1 is then homogeneous and 
contains Xq+1, which is not a distinguished function.  From the second theorem of the 
foregoing paragraph, our polar group thus contains functions of degree one – say, Pq+1 − 
that yield: 

(Xq+1, Pq+1) = 1, 
 
and thus satisfy all of our requirements. 
 
 Theorem 65.  If X1, …, Xq+m, P1, …, Pq define a homogeneous group then there are 
always functions Pq+1, …, Pq+m such that X1, …, Xq+m, P1, …, Pq+m is a canonical 
homogeneous group that envelops the original one. 
 
 This theorem is obtained immediately upon an m-fold application of the previous one. 
 
 Theorem 66.   X1, …, Xq, P1, …, Pq define a homogeneous group and q < m then 
there is always a function Xq+1 of degree zero that is in involution with our group.  X1, …, 
Xq+1, P1, …, Pq is, in turn, a new canonical group that envelops the given one. 
 
 The polar group of X1, …, Xq, P1, …, Pq is then homogeneous, and consists of at least 
two parameters.  It therefore contains at least one function of degree zero that satisfies 
our requirements. 



Lie – Foundations of an invariant theory of contact transformations.                   88 

 Theorem 67.  If X1, …, Xq, P1, …, Pq is a homogeneous group then there are always 
further functions X and P of degree zero and one, resp., such that X1, …, Xn, P1, …, Pn 
define a canonical homogeneous group that envelops the given one. 
 
 This theorem follows as corollary to the previous one. 
 
 Theorem XXI.  If two homogeneous groups whose distinguished functions are all of 
degree zero possess equally many parameters and equally many distinguished functions 
then there are always homogeneous contact transformations that take the one group to 
the other one. 
 
 Proof.  Let the parameters of one group be functions of x1, …, pn, and the other, 
functions of 1x′ , …, np′ , respectively.  From the assumptions made, the two groups can 

assume the canonical forms: 
X1, …, Xq+m, P1, …, Pq 

1X ′ , …, q mX +′ , 1P′ , …, qP′ , 
 

where the X, P are naturally functions of the x, p, and the X′, P′ are functions of the x′, p′. 
 From the foregoing theorem, there are always further functions X, P (X′, P′, resp.) 
such that: 

X1, …, Xn, P1, …, Pn  and 1X ′ , …, nX ′ , 1P′ , …, nP′ , 
 

in turn, define canonical homogeneous groups. 
 From Theorem X (proof), the 2n equations: 
 

Xi = iX ′ , Pi = iP′  
 

thus define a contact transformation.  However, this takes the one group to the other one; 
it is, moreover, homogeneous, so the theorem is proved. 
   
 50.  We now turn to the homogeneous groups with distinguished functions that are 
not all of degree zero. 
 
 Theorem 68.  If X1, …, Xq, P1, …, Pq+m define a canonical homogeneous group then 
there are always functions Xq+1 such that X1, …, Xq+1, P1, …, Pq+m , in turn, is a canonical 
homogeneous group that envelops the given one. 
 
 The polar group of X1, …, Xq, P1, …, Pq, Pq+2, …, Pq+m is homogeneous and contains 
Pq+1, which is not a distinguished function of it.  Therefore (Theorem 62), this group 
contains functions of degree zero that yield: 
 

(Pq+1, Xq+1) = 1, 
and thus satisfy our requirements. 
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 Theorem 69.  If X1, …, Xq, P1, …, Pq+m is a canonical homogeneous group then there 
are always functions Xq+1, …, X+m such that X1, …, Xq+m, P1, …, Pq+m defines a canonical 
homogeneous group that envelops the given one. 
 
 This theorem arises immediately from the m-fold application of the previous one. 
 
 Theorem 70.  If X1, …, Xq, P1, …, Pq+m define a canonical homogeneous group then 
there are always further functions X and P such that X1, …, Xn, P1, …, Pn defines a 
canonical homogeneous group that envelops the given one. 
 
  This theorem follows by successive application of the previous theorems of this 
paragraph. 
 
 Theorem XXII.   If two homogeneous groups whose distinguished functions are not 
all of degree zero possess just as many parameters and distinguished functions then there 
is always a homogeneous contact transformation that takes the one group to the other. 
 
 From our assumptions, our group can then assume one of the two canonical forms: 
 

X1, …, Xq, P1, …, Pq+m and 1X ′ , …, qX ′ , 1P′ , …, q mP +′ , 

 
resp., where all X, P are functions of x1, …, pn , and all X′, P′ are functions of 1x′ , …, 1p′ .  
Therefore, there are further functions X, P and X′, P′ such that: 
 

X1, …, Xn, P1, …, Pn and 1X ′ , …, nX ′ , 1P′ , …, nP′  
 
is also a canonical homogeneous group.  Thus, the 2n equations: 
 

Xi = iX ′ , Pi = iP′ , 
 

in turn, define a homogeneous contact transformation that takes the two groups to each 
other. 
 
 Corollary.   The only properties of a homogeneous group that are independent of its 
form and remain unchanged under homogeneous contact transformations are: 
 1) The number r of parameters. 
 2) The number m of distinguished functions. 
 3) The number of distinguished functions of degree zero, which must be equal to 
either m or m + 1.  
 Here, r is a positive whole number that cannot be greater than 2n.  Moreover, we 
have found in the foregoing Part that r – m must be a positive even number, and finally, 
that r+ m is equal to at most 2n. 
 

________ 
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 51.  There are no obstacles at all to extending the theory of paragraphs 14, 15, and 16 
to homogeneous functions and homogeneous contact transformations. 
 This shows that the invariant relations between a homogeneous group and a 
homogeneous subgroup are determined completely by way of eight numbers.  The first 
six of them define the individual invariant properties of each of the two homogeneous 
groups.  The last two are the number ϖ of common distinguished functions and the 
number, ϖ or ϖ – 1, of common distinguished functions of degree zero. 
 Should one select a system in involution from a homogeneous group, then it would 
always be possible to arrive at a reduction in the order of the necessary integrations. 
 Should one decide whether r given homogeneous functions H1, …, Hr can go to 1H ′ , 
…, rH ′ , resp., by a homogeneous contact transformation, then one could always assume 

(§ 16) that all of the Hi, and likewise, all of the iH ′ , are mutually independent.  A first 

requirement is that the corresponding functions of the two systems should be of the same 
degree.  If this demand is fulfilled then one determines, as in § 16, the two groups: 
 

H1, …, Hr, …, Hα and 1H ′ , …, rH ′ , …, Hα ′′  

 
that are determined by our groups.  Here, α′ must be equal to α, and furthermore, every 
( , )i kH H′ ′  must be expressible in terms of theiH ′  in the same way that the corresponding 

(Hi , Hk) are expressible in terms of the Hi .  If all of these requirements are fulfilled then 
one recognizes that the desired transformation is possible, and indeed, it will obviously 
be a homogeneous transformation. 
 With that, all of the relations between H1, …, Hr that remain invariant under arbitrary 
homogeneous contact transformations are found. 
 
 

§ 25. 
 

Reductions of the integration that are based on the foregoing developments. 
 
 The foregoing theories show how one can exploit the circumstances that arise in the 
integration of a partial differential equation: 
 

F(z, x1, …, xn−1, p1, …, pn−1) = 0 
 
to the best advantage.  As I proved in § 17, 18, and 19, especially, I can restrict myself to 
the following. 
 
 52.  I assume that a system in involution of degree zero: 
 

N1 = C1, …, Nq = Cq 
 
is to be integrated, and that one knows a number of homogeneous functions H1, …, Hr 
that satisfy all of the equations (Ni , Hk) = 0.  If it were impossible to determine further 
functions H by means of the Poisson-Jacobi theorem then N1, …, Nq, H1, …, Hq would 
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define a homogeneous group.  We now first consider the case in which this group 
contains distinguished functions that are not of degree zero, and then the case where all of 
the distinguished functions are of degree zero. 
 
 A.  If the group N1, …, Nq, H1, …, Hr contains, in addition to N1, …, Nq, m 
distinguished functions: 

Nq+1, …, Nq+m−1, H 
 
that are not all of degree zero then one determines them (Theorem 60) by means of: 
 

m – 1, m – 2, …, 3, 2, 1, 1 
 

operations.  Thereupon, one poses the problem of integrating the system in involution: 
 

N1 = C1, …, Nq+m = Cq+m , 
 

with r – m homogeneous solutions H1, …, Hr−m of the q + m equations (Nk , H) = 0, in the 
simplest possible way.  To this end, one exhibits the equations: 
 
(A)   (N1 , H) = 0, …, (Nq+m , H) = 0, (H1, N) = 0, …, (Hr−m, N) = 0, 
 

1

n

k
k k

N
p

p=

∂
∂∑  = 0, 

 
which must define a complete system.  In fact, if the polar group of the group: 
 

N1, …, Nq+m, H1, …, Hr−m 
 
consisted of only functions of degree zero then this polar group would be identical with 
the totality of all distinguished functions N1, …, Nq+m .  However, the integration of our 
system in involution would (Theorem XIII) already be considered to be achieved; we 
thus do not need to consider this case.  One knows m + q solutions N1, …, Nq+m of the 
complete system (A); one then finds a further solution Nq+m+1 by means of a: 
 

2n – 2q – r – m – 1 
 

operation.  With that, everything is reduced to the integration of the system in involution: 
 

N1 = C1, …, Nq+m+1 = Cq+m+1 , 
 

with r – m solutions H1, …, Hr−m of the system (Ni , H) = 0.  One now proceeds in an 
analogous way, and determines a function Nq+m+2 by means of a: 
 

2n – 2q – r – m – 3 
 
operation, etc., and finally determines a last function N by means of a 1-operation. 
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 With that, from my previous argument (Theorem XIII), the integration process is 
concluded. 
 

§ 26. 
 

Completion of the theory of the Poisson-Jacobi theorem. 
 

 The Poisson-Jacobi theorem is capable of a completion that I will now give.  First, I 
consider arbitrary functions of x1, …, pn, and then homogeneous functions of x, p. 
 
 53.  If ϕ1 and ϕ2 are solutions of the equation: 
 

(f, ϕ) = 0 
 

then the Poisson-Jacobi theorem says that (ϕ1,ϕ2) is also such a solution. 
 There are some related theorems, of which I will cite the following one, which 
originates with Laurent: 
 If ϕ = ϕ1, …, ϕk, ψ1, …, ϕk are any 2k solutions of the equation (f, ϕ) = 0 then: 
 

1 1 1

1 1

k k k

k k

x x p pλ λ λ λ λ λ

ϕ ψϕ ψ∂ ∂∂ ∂±
∂ ∂ ∂ ∂∑ ∑

⋯

⋯ ⋯  

is always one, too. 
 Mayer drew my attention to this theorem, and remarked that the same way would 
probably give those solutions that one could obtain by the successive application of the 
Poisson-Jacobi theorem.  As a response to that, I can advise him of the theory of this 
paragraph. 
 
 Theorem 71.  If all common solutions F of the equations: 
 

(Φ1, F) = 0, …, (Φq, F) = 0 
 
also simultaneously satisfy the equation: 
 

(Π, F) = 0 
 

then Π belongs to the group Φ1, …, Φq that is determined by  Φ1, …, Φq, …, Φr . 
 
 The common solutions of the given q equations are then the solutions of the complete 
system: 

(Φ1, F) = 0, …, (Φr, F) = 0. 
 

If one denotes them by F1, …, F2n−r then one must have: 
 

(Π, F1) = 0, …, (Π, F2n−r) = 0, 
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that is, Π must belong to the polar group of F1, …, F2n−r .  However, this polar group is 
just Φ1, …, Φr itself. 
 This immediately yields the following remarkable theorem: 
 
 Theorem XXIII.   Of one knows any q solutions Φ1, …, Φq of the equation: 
 

(F, Φ) = 0, 
 

and one finds a further solution Π from these solutions by any sort of operations that are 
entirely independent of the form of the function F then Π always belongs to the group 
that is determined by Φ1, …, Φq . 
 
 54.  This theorem is no longer correct when the function F is subjected to certain 
restrictions.  I will consider the important case in which F is a homogeneous function, 
and develop a corresponding theory for it. 
 We have previously seen (Theorem 54) that any homogeneous group that contains a 
function Φ must likewise contain the function: 
 

1

n

k
k k

p
p=

∂Φ
∂∑ , 

 
and that, conversely (Theorem 55), a group Φ1, …, Φr is homogeneous when any: 
 

1

n
i

k
k k

p
p=

∂Φ
∂∑  

 
can be expressed in terms of the Φ.  As a result, I can speak about the homogeneous 
group that is determined by a given function, and likewise about the homogeneous group 
that is determined by several given functions. 
 
 Theorem 72.  Let F be a homogeneous function, let Φ be any function that is related 
to it by way of: 

(F, Φ) = 0, 
 

and finally, let Φ1, …, Φr be the homogeneous group that is determined by Φ.  All 
equations (F, Φk) = 0 are then true. 
 
 This theorem is a consequence of a previous one (Theorem 58), namely, that the 
equation: 

(F, Φ) = 0  
implies the following one: 

1

,
k n

k
k k

F p
p

−

=

 ∂Φ
 ∂ 
∑  = 0, 
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when coupled with the Poisson-Jacobi theorem. 
 
 Theorem 73.  Let F be a homogeneous function, and let Φ1, …, Φq be given 
functions that are each in involution with F – i.e., they yield (F, Φk) = 0.  If one then 
denotes the homogeneous group that is determined by Φ1, …, Φq by Φ1, …, Φq, …, Φq 
then the new functions Φ are also in involution with F. 
 
 This theorem is a consequence of the foregoing one, when coupled with the Poisson-
Jacobi theorem. 
 
 Theorem 74.  If all of the common homogeneous solutions F of the equations: 
 

(Φ1, F) = 0, …, (Φq, F) = 0 
likewise satisfy the relation: 

(Π, F) = 0 
 

then Π belongs to the homogeneous group Φ1, …, Φq, …, Φq that is determined by Φ1, 
…, Φq . 
 
 The common homogeneous solutions F to the given q equations are then the 
homogeneous solutions to the complete system: 
 

(Φ1, F) = 0, …, (Φr, F) = 0. 
 
There are 2n – r such solutions F1, …, F2n−r that define the polar group of Φ1, …, Φr  
precisely. 
 We then have the theorem: 
 
 Theorem XXIV.   If one knows any q solutions Φ1, …, Φq to the equation: 
 

(F, Φ) = 0, 
 
in which F denotes a homogeneous function, and one finds a further solution Π by way of 
any sort of operations that are independent of the form of the homogeneous function F 
then Π also belongs to the homogeneous group that is determined by Φ1, …, Φq . 
 
 Finally, one can develop an analogous theory for the case in which F is homogeneous 
of degree zero.  In that way, one would obtain some remarkable results.  Namely, one 
would, a priori, recognize the possibility of some simplifications to the integrations that I 
arrived at in § 25 in a different way. 
 In closing, I shall pose a general problem: 
 Let H1, …, Hα be homogeneous functions of degree one that have such a reciprocal 
relationship that any (Hi, Hk) can be expressed as a linear function with constant 
coefficients of the H: 
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(Hi, Hk) = 
1

ikC H
α

ω ω
ω=
∑ . 

 
I then say that all H define a transformation group, and thus consider all linear functions 
of the H that have the form: 

d1 H1 + d2 H2 + … + dα Hα 
 
as being equivalent to the H themselves.  I now ask what the properties are of a given 
transformation group that remain invariant under homogeneous contact transformations.  
I have found that there are a limited number of types of transformation groups.  Further 
research is necessary in order to clarify the precise sense, validity, and meaning of this 
assertion. 
 
 Christiania, 5 July 1874. 
 

__________ 
 


