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The infinitesimal contact transformations of mechanics. 
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Translated D. H. Delphenich 

 
 On various occasions, I have already emphasized the importance of the general 
concept of infinitesimal contact transformation.  The purpose of the following Note is, 
first, to point out some interesting examples that come about by simply computing with 
such transformations.  At the same time, I wish to direct attention to the remarkable 
character of a noteworthy category of infinitesimal transformations that play a role in 
mechanics. 
 

1. 
 

 An infinitesimal transformation in the variables x1, …, xn, p1, …, pn: 
 
     δxκ = ξκ(x1, …, xn, p1, …, pn) δt, 
     δpκ = πκ(x1, …, xn, p1, …, pn) δt, 
 
is a homogeneous contact transformation when it fulfills the condition equation: 
 

p dx
t κ κ

δ
δ ∑

= 0 = i idx p dκ κπ ξ+∑ ∑ . 

 
This implies 1) the fact that the ξκ and πκ possess the form: 
 

ξκ  = 
H

pκ

∂
∂

, πκ  = − 
H

xκ

∂
∂

, 

 
and the fact that H is homogeneous of first order with respect to the p1, …, pn . 
 Therefore, the equations: 
 

δxκ = 
H

pκ

∂
∂

δt,  δpκ  = − 
H

xκ

∂
∂

dt (κ = 1, 2, …, n), 

 

                                                
 1) Archiv for Mathematik og Naturvidenskab, Bd. 2, Christiana 1877; cf., also Math. Annalen, Bd. 
VIII, 1874, pp. 239. 
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determine the most general infinitesimal homogeneous contact transformation in the 
variables x1, …, xn, p1, …, pn . 
 If one sets, e.g., n = 3 and: 

H = 2 2 2
1 2 3p p p+ +  

 
then one obtains an infinitesimal contact transformation of the three-fold extended space 
x1, x2, x3: 

δxk = 
2 2 2
1 2 3

p

p p p
κ

+ +
dt, δpk = 0, 

 
which obviously fulfills the relations: 
 

1

1

x

p

δ
 = 2

2

x

p

δ
= 3

3

x

p

δ
,  δpk = 0, 

 
2 2 2
1 2 3x x xδ δ δ+ +  = δt. 

 
It then takes all surface elements x1, x2, x3, p1, p2, p3 of the space x1, x2, x3 the same 
distance δt along the normal to the element in question. 
 Our contact transformation is then an infinitesimal parallel transformation: It takes 
any surface into an infinitely close parallel surface. 
 We now pose the problem of finding the most general infinitesimal homogeneous 
contact transformation: 

δxκ = 
H

pκ

∂
∂

δt,  δpκ  = − 
H

xκ

∂
∂

dt 

 
in the n-fold extended space of x1, …, xn that takes any element x, p along a direction δx1, 
…, δxn that is perpendicular to the element in question such that one has the equations: 
 

1

1

x

p

δ
 = 2

2

x

p

δ
= … = n

n

x

p

δ
. 

 
This problem finds its analytical expression in the equations: 
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∂
∂
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∂
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∂
∂
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the first of which says that H depends upon the quantities: 
 

2 2
1 2p p+ +⋯ ,  x1, …, xn , 

 
while the last one shows that H has the form: 
 

(1)     H = Ω(x1, …, xn) 
2 2 2
1 2 np p p+ + +⋯ . 

 
 With that, we know an extended category of infinitesimal homogeneous contact 
transformation of the n-fold extended space that possesses the property that any element 
proceeds in the direction of the associated normal. 
 If such an infinitesimal transformation were repeated infinitely often then this would 
generate ∞1 finite contact transformations that would define a one-parameter group.  If all 
of the transformations of this group were performed on a manifold: 
 

W(x1, x2, …, xn) = 0 
 
then this would generate a family of ∞1 manifolds: 
 

π(x1, …, xn) = const. 
 

whose orthogonal trajectories are the orbits 1) of the infinitesimal contact transformations 
in question. 
 It is now very noteworthy that the infinitesimal contact transformations of the form 
(1) play a preeminent role in mechanics. 
 The motion of a system of points will be, in fact, defined by a partial differential 
equation of first order: 
 

22

1 n

W W

x x

  ∂ ∂+ +   ∂ ∂   
⋯  − 2U(x1, …, xn) – 2h = 0 

 
that can be written in the following way: 
 
(2)     2 2

1 np p+ +⋯  − 2(U + h) = 0. 

 
Now, for a long time, I have remarked that the integration of any partial differential 
equation: 

                                                
 1) If all transformations of a one-parameter group of contact transformations performed on an element 
then this produce ∞1 locations whose point locus will be referred to in the text as the orbit of the 
infinitesimal transformation in question. 
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ϕ(x1, …, xn, p1, …, pn) – a = 0 
 
can be achieved by considering the infinitesimal contact transformation whose 
characteristic function is ϕ – a, and which determines the associated one-parameter group 
of contact transformations.  In the present case, however, an important simplification 
enters into the picture that brings equation (2) into the form: 
 

2 2 2
1 2

2( )
np p p

U h

+ + +
+
⋯

 = 1. 

 
Here, the left-hand side is homogeneous of first order in p1, …, pn; it thus represents an 
infinitesimal homogeneous contact transformation that belongs to the aforementioned 
general category. 
 Some interesting conclusions may be drawn from this remark.  On the other hand, it 
would be simple to extend the present considerations to the case in which the coordinates 
xκ were coupled by given relations. 
 

2. 
 

 We now pose the problem (in three-fold extended space) of finding all infinitesimal 
contact transformations that take lines of curvature into other such curves. 
 If we denote the partial derivatives of a function f with respect to x1, x2, x3 by p1, p2, 
p3, as usual, then the curvature lines of the surface f(x1, x2, x3) = 0 can be defined by the 
differential equation: 
 

dp1 (p2 dx3 – p3 dx2) + dp2 (p3 dx2 – p1 dx3) + dp3 (p1 dx2 – p2 dx1) = 0, 
 
or by the equivalent one: 

∆ = 
1 2 3

1 2 3

1 2 3

dp dp dp

p p p

dx dx dx

 = 0. 

 
Our problem can therefore be formulated in the following way: 
 
 Find all infinitesimal homogeneous contact transformations: 
 

δxκ = 
H

pκ

∂
∂

δt,  δpκ  = − 
H

xκ

∂
∂

dt 

 
that leave the systems of equations: 
 
(3)     ∆ = 0,  p1 dx1 + … + pn dxn = 0 
invariant. 
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 The homogeneous function H must then be chosen in such a way that the expression: 
 

t

δ
δ
∆

 

 
vanishes as a result of the system of equations (3). 
 By evaluating it, one comes to: 
 

t

δ
δ
∆

 = − 

1 2 3
1 2 3 1 2 3

1 2 3 1 2 3
1 2 3

1 2 3

1 2 3
1 2 3

H H H
d d d dp dp dp

x x x dp dp dp
H H H

p p p p p p
x x x

dx dx dx H H H
d d ddx dx dx

x x x

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂− +
∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

. 

 
This expression is a homogeneous function of second degree in the differentials dp1, dp2, 
dp3, dx1, dx2, dx3 whose coefficients depend upon only the x, p.  An equation: 
 

(4)    
t

δ
δ
∆

 = λ∆ + ( )p dx dx dpκ κ κ κ κ κκ κ κ
α β+∑ ∑ ∑  

 
is valid identically in the aforementioned differentials, in which λ, α1, …, β3 denote 
functions of x, p.  Both sides of this equation are homogeneous functions of second 
degree in the differentials dx, dp.  Therefore, if the corresponding coefficients on the left-
hand and right-hand sides were computed and set equal to each other then this would 
yield some relations that would give differential equations after eliminating the auxiliary 
quantities λ, α, β that determine H. 
 Among the terms on the right-hand side of equation (4), one finds none that have the 
form ν dpi dpj .  One then obtains, with no further assumptions, six of the equations that 
are free of α, β, and λ, which can be written, with the use of the abbreviation: 
 

H

pκ

∂
∂

= Hκ , 

in the following way: 

(5)     

2 3 3 2
1

3 1 1 3
2

1 2 2 1
3

( ) 0,

( ) 0,

( ) 0,

p H p H
p

p H p H
p

p H p H
p

 ∂ − =∂
 ∂ − =∂
 ∂ − =

∂
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(6)   

1 3 1 3 2 3 3 2
1 2

1 2 2 1 3 1 1 3
2 3

2 3 3 2 1 2 2 1
3 1

( ) ( ) 0,

( ) ( ) 0,

( ) ( ) 0.

p H p H p H p H
p p

p H p H p H p H
p p

p H p H p H p H
p p

 ∂ ∂− + − =∂ ∂
 ∂ ∂− + − = ∂ ∂
 ∂ ∂− + − =

∂ ∂

 

 
The first three give, by integration: 
 

(7)    
2 3 3 2 32 2 3 1 2 3

3 1 1 3 13 2 3 1 2 3

1 2 2 1 21 2 3 1 2 3

( , , , , ),

( , , , , ),

( , , , , ),

p H p H K p p x x x

p H p H K p p x x x

p H p H K p p x x x

− =
 − =
 − =

 

 
and it is therefore obvious that Kij, like H itself, must be of first order in the p; by 
replacing the values thus found, equations (6) take on the form: 
 

13 3 1 1 2 3 32 2 3

1 2

( , , , , ) ( , , )K p p x x x K p p x

p p

∂ ∂+
∂ ∂

 = 0, 1321

2 3

KK

p p

∂∂ +
∂ ∂

= 0, 32 21

3 1

K K

p p

∂ ∂+
∂ ∂

 = 0, 

 
and will thus be fulfilled in the most general way by expressions of the form: 
 
     K13 = µ13(x) p1 – µ21(x) p3 , 
     K21 = µ21(x) p2 – µ32(x) p1 , 
     K32 = µ32(x) p3 – µ13(x) p2 . 
 
 As a result, equations (7) go to the following ones: 
 

1 21

1

H

p

µ+
 = 2 32

2

H

p

µ+
 = 3 13

3

H

p

µ+
, 

 
which can be written in the following way when one introduces an auxiliary variable ρ: 
 

(8)     
1 1 21

2 2 32

3 3 13

,

,

.

H p

H p

H p

ρ µ
ρ µ
ρ µ

= −
 = −
 = −

 

 
Here, H1, H2, H3 are the differential quotients of H with respect to p1, p2, and p3; thus, the 
known integrability conditions give the equations: 
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∂
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ρ∂
∂

, 

such that ρ must have the form: 
 

ρ = 2 2 2
1 2 3 1 2 3( , , , )P p p p x x x+ + . 

 
If this value of ρ were replaced in (8) then we would obtain three equations for the 
determination of H, and since, on the other hand, we know that H is homogeneous of first 
degree in the p, we can set: 
 

H = Ω(x1, …, xn) 
2 2 2
1 2 np p p+ + +⋯ + 

3

1 2 3
1

( , , )x x x pκ κ
κ

ξ
=
∑ . 

 
 We can now decompose our problem into two simpler problems. 
 Namely, if we remark that the quantity H and its differential quotients enter into the 
condition equation (4) linearly and homogeneously then we immediately recognize that 
the most general value of H can be represented as the sum of two particular values of this 
quantity, which we find when we, on the one hand, set Ω equal to zero and, on the other, 
set ξ equal to zero. 
 As is known, the problem of finding the most general infinitesimal point 
transformation: 

H = ξ1 p1 + ξ2 p2 + ξ3 p3  
 
that leaves the differential equation of the curvature lines invariant subsumes the problem 
that LIOUVILLE treated of determining all conformal point transformations of ordinary 
space. 
 We therefore need to find only the most general infinitesimal homogeneous contact 
transformation of the special form: 
 

H = Ω(x1, …, xn) 
2 2 2
1 2 np p p+ + +⋯  

 
that takes curvature lines to other ones.  If we enter these special values of H in (4) then 
we obtain the relations: 

2

2
1x

∂ Ω
∂

= 
2

2
2x

∂ Ω
∂

 = 
2

2
3x

∂ Ω
∂

,  
2

i jx x

∂ Ω
∂ ∂

= 0, 

 
for the determination of Ω, which show that H possesses the form: 
 

(9)   2 2 2 2 2 2
1 2 3 1 1 2 2 3 3 1 2 3{ ( ) 2 2 2 }a x x x b x b x b x c p p p+ + + + + + + + . 

 
 If one sets, e.g.: 
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a = b1 = b2 = b3 = 0,  c = 1 
then one gets: 

H = 2 2 2
1 2 3p p p+ + ; 

 
the corresponding transformation is an infinitesimal parallel transformation.  On the other 
hand, if one sets: 

a = 1,  c = 2 2 2
1 2 3b b b+ +  

then H takes on the form: 
 

H′ = [(x1 + b1)
2 + (x2 + b2)

2 + (x3 + b3)
2] 2 2 2

1 2 3p p p+ + , 

 
or, after introducing the new variables: 
 

xκ′  = 
2 2 2

1 1 2 2 3 3( ) ( ) ( )

x b

x b x b x b
κ κ+

+ + + + +
, 

the form: 

H′ = 2 2 2
1 2 3p p p′ ′ ′+ + . 

 
 The infinitesimal transformation H′ is therefore similar to an infinitesimal parallel 
transformation by means of a transformation through reciprocal radii. 
 If one takes an arbitrary infinitesimal transformation H of the form (9), determines 
the associated one-parameter group, and performs of the all transformations on a 
completely arbitrary surface then one obtains ∞1 surfaces that belong to an orthogonal 
system.  Thus, formula (9) delivers the most general infinitesimal contact transformation 
of this kind. 
 One obtains a more general method of construction for orthogonal systems when one 
regards the coefficients a1, b1, b2, b3, c in (9) as functions of a parameter. 
 I will exhibit the connection between my older method for the construction of 
orthogonal systems and the problems of mechanics in more detail on another occasion. 
 
 

3. 
 

 If a differential equation of second order admits a continuous group of 
transformations then from my older investigations only the following cases are possible: 
 
 1) The group is similar to the eight-parameter group: 
 
(I)    p,   q,   xq,   xp,   yp,   yq,   x2p + xyq,   xyp + y2q, 
 
which leaves only one differential second order invariant, namely, y″ = 0. 
 
 2) The group is similar with the three-parameter group: 
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(II)     p,   2xp + yq,  x2p + xyq, 
 
which leaves invariant the ∞1 differential equations of second order: 
 

y3 y″ = A = const. 
 
 3) The group is similar to the group: 
 
(III)   p + q,  xp + yq, x2p + y2q, 
 
which leaves invariant the ∞1 differential equations of second order: 
 

(x – y) y′−3/2 y″ + 2(y′1/2 + y′−1/2) = a = const. 
 

 4) The group is similar to the group: 
 
(IV)    p, q, xp + (x + y) q, 
 
which leaves invariant the ∞1 differential equations of second order: 
 

y″ + k e−y′ = 0  (k = const.) 
 

 5) The group is similar to the group: 
 
(V)    p, q, xp + c yq,  c ≠ 0, c ≠ ∞, c ≠ 1, 
 
which leaves invariant the ∞1 differential equations of second order: 
 

2

1

c

cy y
−
−′′ ′  = a = const. 

 
 6) The group is similar to the group: 
 
(VI)     p, q, 
 
which leaves invariant any second-order differential equation of the form: 
 

y″ − f(y′) = 0. 
 

 7) The group is similar to the group: 
 
(VII)     p, xp + yq, 
 
which leaves invariant any second-order differential equation of the form: 
 

y″ − y f(y′) = 0. 
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 8) The group is similar to the group p that leaves invariant any second-order 
differential equation of the special form: 
 

y″ − f(y, y′) = 0. 
 
 We would now like to assume, in particular, that a second-order differential equation 
of the special form: 
(10)   y″ − f3(x, y) y′3 + f2(x, y) y′2 + f1(x, y) y′ + f(x, y) = 0 
 
is present.  Since any point transformation takes a differential equation of this form to 
another such equation, we can likewise conclude that the group of such equations never 
possesses the form (IV), and that it possesses the form (I) only when the differential 
equation in question can be converted into y″ = 0 by a point transformation.  On the other 
hand, if the group of a differential equation (10) possesses the form (III) then this 
differential equation can take on the form: 
 

(x – y) y″ + 2y′2 + 2y′ = 0, 
 

and consequently, also the form y″ = 0.  Finally, if the group of a differential equation 
(10) possesses the form (V) then the constant c fulfills one of the four equations: 
 

2

1

c

c

−
−

 = 3, 
2

1

c

c

−
−

 = 2, 
2

1

c

c

−
−

 = 1, 
2

1

c

c

−
−

 = 0. 

 
From the foregoing, among the three corresponding values: 
 

c = 
1

2
,  c = 0,  c = ∞,  c = 2, 

 
only the two obviously equivalent values: 
 

c = 
1

2
,  c = 2 

 
come under consideration.  Therefore, it is easy to see that the corresponding differential 
equation of second order: 

y″ − a = 0 
 
can take on the form y″ = 0 by a suitable choice of variables. 
 This simple argument, which can be carried further, gives, inter alia, the following 
theorem: 
 
 If the family of geodetic curves on a surface whose curvature is not constant admits 
more than two independent infinitesimal transformations then these transformations 
generate a three-parameter group that possesses the canonical form p, 2xp + yp, x2p + 
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xyq.  In the inconvenient cases, the determination of the family of curves in question 
requires the integration of a Riccati equation of first order.  The three-parameter group 
always leaves invariant a family that consists of ∞1 geodetic curves. 
 
 

4. 
 

 If an r-parameter continuous group of real transformations of a simple manifold x is 
present then one sees, when one fixes a real point x = a, that the corresponding ∞r−1 real 
transformations define a real subgroup.  In this way, one finds ∞1 real (r – 1)-parameter 
subgroups. 
 From this, it follows that any real group of the simple manifold x can take on one of 
the three forms: 

p;  p, xp;  p, xp, x2p 
 
by a real change of variables. 
 If a real group of point transformations of a plane leaves only one differential 
equation of first (second, resp.) order invariant then this differential equation is real; if it 
leaves two and only two differential equations of first order invariant then the 
transformations are either both real or conjugate imaginary. 
 When one connects these remarks with my general determination of all r-parameter 
groups of a plane then one finds, with no new computations, canonical forms − so to 
speak − into which all real r-parameter groups of point transformations of a plane can be 
brought by real changes of variables. 
 Only for the case in which the group in question leaves invariant two and only two 
families of curves ϕ(x, y) = a, ψ(x, y) = b that are pair-wise conjugate imaginary do new 
canonical forms appear.  One finds them when one exhibits all real groups of point 
transformations that take circles to circles; one achieves this objective even more quickly 
when one replaces the x, y in the groups that I presented (Math. Ann., Bd. XVI, pp. 524, 
C) with the new variables x, y by the substitution: 

 
x = x + ih, y = x – ih, 

 
and thus demands that the r-parameter group that emerges should include r real 
independent infinitesimal transformations. 
 Similar arguments give all real infinite continuous groups of point transformations of 
the plane, all real projective continuous groups of the plane, etc. 
 

________ 
 


