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On complexes- in particular, line and sphere complexes — with
applications to the theory of partial differential equations

By Sophus Lie in CHRISTIANIA

Translated by D. H. Delphenich

The rapid development of geometry in our century isisasell-known, intimately
linked with philosophical arguments about the essence aé€ian geometry, arguments
that were set down in their most general form by Plickéis early papers. For anyone
who proceeds in the spirit of Plicker's work, the thoutpatt one can employ every
curve that depends on three parameters as a spacenelgiheonvey nothing that is
essentially new, so if no one, as far as | know,phaisued this idea then | believe that the
reason for this is that no one has ascribed any prhatitity to that fact. | was led to
study the aforementioned theory when | discovered a remarkedsisformation that
represented a precise connection between lines of cugvatdrprincipal tangent curves,
and it is my intention to summarize the results thiditained in this way in the following
treatise.

In the first section, | concern myself with curvengplexes — that is, manifolds that
are composed of a three-fold infinitude of curves. Alfaes that are composed of a
single infinitude of curves from a given complex sgtisfpartial differential equation of
second order that admits a partial differential equatibfirst order as its singular first
integral. In this way, | obtain a new geometric iptetation for partial differential
equations of first order that presents a certain inteespecially when the complex in
guestion is a Plicker line complex. Just as the gergatienF(x, y, z, X, Y, Z2) =0, as
the aequatio directrix determines a reciprocity in space, | show that theulsaneous
system of equations:

Fix, v,z X, Y,2) =0, Fox, y,2 X,Y,2 =0

also establishes a correspondence between the sudawnes of two spaces. These two
types of transformations, together with all point sfanmations, are the only spatial
deformations for which contact is an invariant relatemd thus all such transformations
consist of either an exchange of space elements anttleeluction of a new coordinate
system. Finally, | consider the application of su@nsformations to partial differential
equations.

In the second section, | assume that the equakens O, F, = 0 are linear with
respect to both systems of variables, and indeed | examipasticular, the system:
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—Zz=x—-X+iY), (X-iY)z=y-Z

and the spatial structures that are determined by ithult transforms the lines in the
space ofX, y, 2) into spheres in the second space — i.e., all surfaoeeels that contain
two consecutive points of a line go over to the elemehtssphere. Lines that intersect
then map to spheres that contad@n this, | base an exact and — in my opinion —
fundamental connection between line geometry and sphere geometry, and, as a
consequence, between several projective and metric theories, a comivélobse main
interest resides in the fact that the principal tangent curves octigogame position in
the former geometry as the lines of curvature do in the latfEnis theory gives the
determination of the principal tangent curves for paldicisurfaces, especially, the
Kummer surfaces of fourth order with sixteen nodes. IFinaestablish that the most
general transformation of the space XfY, Z) for which, on the one hand, contact is an
invariant relation, and on the other, lines of curvatueecavariant curves, corresponds to
my map of the general linear or dualistic transformatibthe space ofx( y, 2). All of
these transformations can be composed from recipradaland parallel transformations
(dilatations).

In the third section | determine, with applicatiori® following concepts: Line and
sphere complex, line and sphere congruence, all paiffedeshtial equations of first and
second order whose characteristics are principal tangevescor lines of curvature on
the integral surfaces. Among the aforementioned equatiosecond order, | arrive at all
of them that possess a general first integral relaovevo given general first integrals,
and | then show that when a general first integrakgxiscan always be constructed, as
well as the associated singular first integral. Hdregome to the well-known
investigations of surfaces whose lines of curvature ameaplar spherical, surfaces that
possess a given spherical map, etc.

In the fourth section, | finally give some theorersittare connected with the
foregoing discussion.

While | was concerned with these developments, liwastive communication with
F. Klein, whom | must thank for many of the ideas thaterged, and more than is
possible for me to cite.

| also remark that the theory presented here has gpmins of contact with my
earlier investigations into the representation of thagimmaries. If | do not present my
current understanding of this connection here then tledause, on the one hand, | find
it, to some degree, casual, and on the other handydeetalo not wish to deviate from
the customary language of mathematiys.

") The most essential viewpoints and results ofttiestise can be found in a brief note (October, 1870)
and in two larger works (1871) that were recorded in théafetlungen der Akademie zu Christiana. |
communicated the connection between principal tangent cangsnes of curvature as being like the one
between line geometry and sphere geometry to thattgaai July, 1870. Cf., also the Comptes rendus of
October, 1870, as well as a note that Klein and mysdifighed in the Monatsberichten der Berliner
Akademie, 15 December 1870.



First section

On a new reciprocity in space

In the first two paragraphs of this section, | giveiaftwverview of some well-known
theories, in order to simplify the understanding of paplgr4. This latter paragraph
gives all of the assumptions that are necessary inr aodee able to understand the
second section; | will employ the following paragraphshmthird and fourth sections, as
well.

§ 1.

Reciprocity between two planes or two spzes

1. The Poncelet-Gergonne theory of reciprocity in trenelcan, as is known, be
developed from the equation:

(1) X(arx + byy + ¢1) + Y(ax + boy + ¢2) + (@sx + bsy +¢3) = 0,
or, what amounts to the same thing:
X(aX +aY + aZ) + y(biX + byY + bs) + (G X+ ¢ +¢3) =0,

assuming that one interprexsy and X, Y as the Cartesian point-coordinates of two
planes.

Namely, if one refers to two points whose coordinagtleies X, y) and , Y) satisfy
equation (1) asonjugatethen one can say that the points that are conjugasepoint
define a line in the second plane, and we regard the &teorresponding to the given
point. All points of a line have a common conjugatenpai the second plane, and thus
their corresponding lines go through this common point.

The two planes will thus be related to each othe(l)yin such a way that the lines
of each plane will be mapped to the points of the other one. The pointmeflahus
correspond to the lines that go through the image point ofhis reciprocal relationship
is the fundamental principle of the aforementionegiprecity.

Now, let a polygon be given in the one plane andchéndther one, a polygon whose
sides map to the vertices of the other one; fromfahegoing, it is then clear that the
vertices of the latter polygon also correspond to itiessof the former one, so the two
polygons have a reciprocal relationship. From thesegpaly, one obtains two curves
upon passing to the limit, which, as one discovers,aninocal to each other relative to
the equation (1). It is obvious that the tangents of earliecare mapped to the
reciprocal points of the other one.
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2. Pliicker”) based a generalization of the theory that we juseldped on the
interpretation of the general equation:

(2) F(x,y, X,Y) =0.

The points X, Y) that are conjugate to pointg, (y) now define a curveC that is
represented by (2), if one regards tlkey) as a parameter ani,(Y) as the running
coordinates; conversely, a poidy, (Y) defines conjugate pointg,(y) on a curvec, which
will likewise be represented by (2). The two planes wuiist be related to each other by
(2) in such a way that the points of the one planeespond to the curves of a net of
curves C orc) in the second one. Exactly as before, one se¢shé points of one curve
C correspond to those curveshat go through the image points@f

A curve polygon C,, C,, ..., C,) corresponds to a point-system,(pz, ..., pn), and
obviously these points lie pairwispi{ p2), (ps, ps), ... on those curves whose image
points are vertices of the given curvilinear polygon. @gsing to the limit, one also
obtains curves here that correspond to such curee< that envelope the other. Thus,
the reciprocity relationship is not complete in generidamely, ifX is the enveloping
curve of allC that are mapped to as the points of a curtleen certainly the given curve
oenvelops the that correspond to the pointsXfbut in general it is a second curve.

3. Pliicker’) based the general reciprocity between two spacasd R on the
general equation:
Fx, v,z X Y,2) =0.

In particular, wherF is linear with respect to both systems of varialbde® obtains the
Poncelet-Gergonne reciprocity between the points ameéplaf two spaces.

It is now my purpose in this treatise, and in the first sectioparticular, to consider
a new reciprocity that relates to Plucker's, which is determibgdthe system of
equations:

Fix, Y,z X, Y, 2Z) =0, F.(x,y,2 X, Y,2) =0,

assuming that one regargs, y, 2 and(X, Y, Z) as point-coordinates of two spaces r and
R.

§ 2.

Curves that depend upon three parameters can be
introduced as space elements

4. The transformation of geometric theorems that areecbasn the Poncelet-
Gergonne or Plicker reciprocity theory can, as GergandePliicker have suggested, be

") Analytisch geometrische Entwicklungen. v. 1, secondcediti
") | believe it is correct to attribute this reciptiycto Pliicker, although | can point to no place in
Plucker’s works where he explicitly laid out the reciptpoif spaces in this way.
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considered from a higher viewpoint, which we will likewg@e. The same is true for
our new reciprocity.

The Cartesian analytic geometry translates arbitrgepmetric theorems into
algebraic ones, and thus makes of the geometry of the,@atangible representation of
the algebra of two variables, and likewise, of the geoynof space, a representation of
an algebra that pertains to three variable quantifisw, Plicker especially directed his
remarks to the fact that the Cartesian geometry inclade®-fold arbitrariness.

Descartes represented a value system of two varirlledy by apointin the plane;
he has, as one cares to say, chosen the pointttee ldement of plane geometry, while
one can just as well use the line or even an arbitraoyparameter curve as the element.
However, one can, as is known, regard the transformation that medhate2oncelet-
Gergonne reciprocity as based on the transition from points as elenmefitees as
elements, and likewise the Pliicker reciproaityhe plane consists, to some extent, in the
transition from the point as element to a curve that depends upon two giaranas
element.

Furthermore, Descartes represented the value systeyh lpy those points in the
plane whose distance from two given lines — viz., iherdinate axes — were equalxo
andy, respectively; among the unbounded number of possible catedsystems, he
chose a particular one.

It is known that the advance of geometry in our cenivay essentially based on the
fact that the two aforementioned sources of arbitrasine the Cartesian representation
were clearly regarded as such, and it is thereforesglgloelated task for us to attempt to
take still more from this bountiful well.

5. The new theory that is presented in the followingtesldao the fact thaine can
employ any space curve that depends upon three parameters as a spaoé dicone
recalls, e.g., that the equations of a space line indmgieessential constants then one
sees that one can choose the straight lines thatysamhe condition to be the elements of
a space geometry that gives a tangible representdtian algebra with three variables.
However, since a system of linewiz., the Plicker line complex — will be distinguished
by this, it is obvious that a definite representatiorhefgiven type can find only limited
application. Meanwhile, when one is engaged in the stiidspace relative to a line
complex, it can therefore be very profitable to emglee lines of this complex as space
elements.

In metric geometryone distinguishes, for example, the infinitely distemaginary
circle and, as a result of this, the complex of imagy lines that intersect ignd it can
thus seem obvious, a priori, that if one is treating certain mgiroblems then it is
worthwhile to introduce these imaginary lines as elements.

Although we have just said, by way of example, th& gossible to choose the lines
of a line complex to be space elements, we must nelesth remark that this is
something quite different something more particular, if one wilfrom the ideas that
Plicker developed in his last work: “Neue Geometrie des Raugegrindet auf die
Betrachtung der geraden Linie als Raumelement.” Pliickerinaady) directed one’s
attention to the fact that it is possible to createepresentation of an algebra with

") Geometrie des Raumes, no. 258 (1816).
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arbitrarily many variables if one introduces a structurat tincludes just as many
parameters as a space element. In particular, he seddglest the line in space possesses
four coordinates, so one obtains a geometry of a mamitdfour dimensions when one
considers the line to be the element of space.

§ 3.

Curve complexes. New geometric interpretation of partiatlifferential
equations of first order. Principal tangent curves of dine complex.

6. Following Plicker, one calls the totality of all lindsat are subject tmne
condition, and which then depend uptbmee essential constants, lime complex By
analogy to this, in the following | will refer to anysdgm of curveg whose equations
include three independent parameters asee complex The equations:

(1) fi(x,y,z a,b,c) =0, fo(x,y,z a,b,c) =0,

in whicha, b, c are constants, thus represent a curve complex. fyeatitiation of these
two equations with respect 0y, z and eliminating the quantitiess b, c one obtains a
resultant:

(2) f(x, y, z, dx dy, d2 = 0,

which, if dx, dy, dz are regarded as the determining elements of a directgsociates
each point of space with a cone, namely, the totafityll directions of all curves of the
complexc that go through the point in question. | call this cdreetementary cone of
the complexilikewise, | employ the expressia@iementary direction of the compléx
order to indicate an arbitrary line elemedx, (dy, d2 of a curve of the complex The
totality of all elementary directions of the complex that correspgoral point defines the
elementary cone of the complex associated with the point in question.

A given system (1y or, as one can also say, a given curve complesrresponds to
a certain differential equatiori € 0); on the other hand, there are unboundedly many
systems (1) that lead to the same differential equdtier0). Namely, if one chooses an
arbitrary relation:

V(X Y, z, dx dy,d2 =0,

in which a denotes a constant, and if:
(3) p(x. Y,z a, B ) =0, paAx, ¥,z a, B, )) =0,
are the integrals of simultaneous systems:

f=0, ¢=0

then it is clear that equations (3) also give, by difiation with respect tg, y, z and
elimination of the quantitieg, £, y; the result:
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f=0.

There thus exist unboundedly many curve complexes whose equationsasgiisn
relation f(x, y, z, dx, dy, d2 = 0. Any curve of such a complex will envelop curcesf
the original complex, for which all their elements directions of the complex.

7. According to Monge, a partial differential equationfo$t order between the
variablesx, y, z is equivalent to the problem: Find the general surfacectirvgticts a cone
at each of its points according to an arbitrary rulhus, when one regardsy, z as
parameters in the given partial differential equation:

F(x,y,z p, ) =0,

while p andq are the plane coordinates, one can sayRhatO represents the general
equation of the aforementioned cone system in planedr@bes. Lagrange and Monge
have reduced the integration of a partial differentighiagion of first order to the
determination of a certain curve complex — the so-¢alearacteristics— by showing
that when a single infinitude of characteristics envelperve they always generate an
integral surface. One must remark that the differeatjaktion of the characteristics:

f(x,y, z dx, dy, dx=0,

can be regarded as equivalent to the partial differezgjiaation; namely, both equations
give the analytical definition of the aforemention@me system.

8. Now, let a partial differential equation of first ord®r be given, along with the
associated differential equation of the charactesi$tie 0, and finally, a triply infinite
number of curves that likewise satisfy = 0. Here, if we consider an arbitrary integral
surfaceUy, a characteristi& that lies on it, and furthermore, a curve of the clempy
that contact&o, then | assert that contacts the surfacedat three points.

Namely, if we call the two common, infinitely clopeints of the curvesy andk, p1
andp,, and furthermore, the subsequent points of our curwvasd ps, resp., then it is
clear that the elementary cone of the complex whesiex lies ap, includes the surface
element g2, ps, 77. Now, the cone contacts the integral surfdgealong the generators
p2 , ps and thus the elemenpy( ps, 7) likewise belongs to the surfat®, which thus
includes the pointz Our assertion is thus proved.

This theorem may be generalized by saying that wihdrasn consecutive points
points in common with the characteriskg (n + 1) intersection points af and the
integral surfacéJ, coincide.”)

9. The requirement that a surfaze F(X, y) should have three consecutive points in
common with a curve of the complexat each point can be expressed by a differential
equation of second ordé&, ), and indeed one easily sees that a single infinitude of

") Corresponding theorems are true for a space withkginaay number of dimensions.
") This differential equation has the following form:
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always defines an integral surface. One thus knows therglesecond integral of the
equationD, with two arbitrary functions. Now, the theoremla$t paragraph says that
the integral surfaces of the equatids— which, in general, will not be generated by
curves of the complex— will contact three points of@at each of its points, and thDg

is a singular first integral of our differential equatminsecond orderl assert that there
can be no other singular integral.

Namely, letd be an integral surface of the equatidnthat is not composed of curves
c. Through each point of the surface there thus go twwident curveg that contact it
at these points. From this, it follows that the agded elementary cone of the complex
contacts the surface, which thus satisfies the samei@qi®. The last two paragraphs
give the following noteworthy geometric interpretatiam partial differential equations
of first order between three variables.

The problem: Find all surfaces that have three consecutive points inaomvitih a
two-fold infinitude of curves of a given complex and express it by snudaa partial
differential equation of first order. All complexes whose equatsaisfy a given
relation:

f(x,y,z dx dy,d2 =0

lead to the same partial differential equation, and indeed the associateactastics
satisfy the equation= O.

10.Corollary. The problem: Find all surfaces whose two-fold infinitudprofcipal
tangents of a system belong to a given line complex and lead to a partiedrdiéfe
equation of first order whose characteristics will be enveloped bg bfi¢he complex.
In this case, the characteristics are principal tangent curveh@®fone system on the
integral surfaces).

I will suggest how one can prove this theorem independentl

The partial differential equation of first order what®racteristics are enveloped by
the lines of a line complex is, as is known, an esgion of the following problem: Find
the general surface that contacts the cone of the leempquestion at all of its points.
Now, the osculating plane of a curve whose tangentsngpeto a line complex is a
tangent plane to the corresponding cone of the compled, thus, in our case, the
osculating planes of the characteristics always cbritee associated integral surfaces.
As a result, the characteristics are principal tangentes.

Each line complex thus determines a three-fold infinitoflecurves that will be
enveloped by lines of the complex, and thus, posseszdperty that there are principal
tangent curves each surface that includes a single infinitusléch curves, assuming that
two consecutive curves among them always intersewtll ¢all these curves, which will
play an important role in the theory of line complexes, the third section of this
treatise) the principal tangent curves of the line complex.

Klein has remarked to me that the lines of the comfiex Pliicker referred to as
singular lines of the complex were principal tangent cunfeg. Were the complex

r+2Ns+N+t+M=0,
whereN andM depend upor, y, z p, .
") Darboux, to whom | communicated this theorem in 187@wkthis at the time. Cf., the beginning
and conclusion of part two.
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composed of the tangents of a surface or of linesnb&tsect a curve then all lines of the
complex would be singular lines and thus the principadeat curves of the complex, as
well.

§ 4.

The system of equation$1(x, y,z X, Y, 2) = 0,Fx(X, ¥,z X, Y, 2Z2) =0
determines a reciprocity between two spaces.

11.We now begin (cf., § 1) a study of the spatial recipydbat is determined by the
two equations:

1) Fix, v,z X, Y,2 =0,Fxx, v,z X, Y, Z) =0,
yvhen & v, 2 and ¥, Y, Z) are interpreted as the point coordinates of two spaaedR

).

If one refers to two pointx(y, 2) and ¥, Y, Z) whose coordinate values satisfy the
equations (1) asonjugatethen one can say that the poirXsY, Z) that are conjugate to
a point &, y, 2 define a curveC; it will be represented by (1), assuming that one regards
the x, y, z as parameters and tbe Y, Z, by comparison, as running coordinates. The
points of the spacethus correspond to a three-fold infinitude of cur@esind likewise a
curve complex appears in the spasehose curves are in the same relation to the points
of the spac®. The points of & thus have a common conjugate poinRjrand thus their
correspondingC is through this common point.

The two spaces r and R will be related to each other by equdfipns such a way
that the points of one space correspond to the curves of a complexsecthel space.
Curves of the complex that go through a given point thus map to the pdimescoirve of
the complex that corresponds to the given point.

12.0ne may now show that equations (1) determine a geremakacity between
lines of the two complexes, and indeed between curvesyticidar, that are enveloped
by the curves of the complexandC.

When two curves of the complex of the one space hgaena in common — which
obviously is not the case, in general — their image pdimton a curve of the complex of
the second space; in particular, one must remark thatirtfinitely close intersecting
curves of the complex correspond to points in the ofiparce whose infinitesimal
connecting line is a direction of the complex. Qwav considers a curve that is
enveloped by a single infinitude ofand theC that correspond to the points of thus latter
curve; it is obvious that any time two consecuti/entersect, their totality determines an
enveloping curve. If one performs the corresponding operatiorzdhen one obtains a
curve ¢ that is enveloped by curves of the compteand indeed | assert thatis just
the original curve:

") Structures in the spacewill be notated by small symbols; by comparison, | neege symbols for
all of the ones that belong to the spRce
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In order to prove this, one considers, on the oneal,hancurvilinear polygon
composed of curves of the complexand, on the other, the image points that are
associated with the aforementioned curves, which obwidigspair-wise on the curves
of the complexC, which correspond to the vertices of the given polygdinis new
polygon and the given one thus have a reciprocal resdtipn

By passing to the limit, one obtains two curves that are envelopéeé lbyives of the
complexes ¢ and C that have a reciprocal relationship such that the poitite ohe
correspond to those curves of the complex that envelop the second one.

Every curve that is enveloped by curves of the compléxus mapped, in a two-fold
way, to another curve that is likewise enveloped by cur¥ése complex that we refer to
asreciprocal to the given one with respect to the system of equa(iby; and obviously
when the equations of the one curve are given, onda@nmine those of the reciprocal
through simple operations — viz., differentiation and mlation. One must also remark
that theelementary directions of the complel, dy, d2 and (dX, dY, d2) are associated
with each other pair-wise as reciprocals) two curves that are enveloped by curves of
the complex, between which contact comes about, apped into the second space as
just such curves.

13.Along with other spatial constructions, equations (1)o aldetermine a
correspondence, and indeed in a two-fold manner, which igemarally acomplete
reciprocity, through.

The elementary cone of the complex, whose vertex ¢n a surfacé, always
intersects the corresponding tangent planeslines —n denotes the order of the cone of
the complex — and thus associates each point of tfeeceunithn elementary directions
of the complex. The continuous sequence of thesetidinscdefines a family of curves
that covers the surface times and will be collectively enveloped by curves of the
complexc. The corresponding curvésgenerate a surfa¢ethat we regard as the image
surface of the given one. The fact that the recipyaeiationship is not complete resides
in the fact that, in general, only one cueyoes through each point of the surf&ce
Moreover, a family of curve&' thus lives orfF that is likewise enveloped by curves of
the complexC, and indeedN — 1) suchX’ go through each point of our surface,
assuming thal denotes the order of the elementary cone of the cangblthe spacé&.
The reciprocals that are associated with the culvedefine a surface that, to some
extent, is associated with the given surface

As we saidn curveso go through each point of the surfd¢cend thus this point is
the image of a curve of the compléxhat contacts curvess; as a result, out contacts
the surfacd= in n points. On the other hand, only cheoes through each point of the
surfaceF, compared toN — 1) such¥’, and thus our point is the image of a curve of the
complexc that contact$ at one point, compared tdl ¢ 1) points. If we now introduce —
by analogy with the terminology that is used for lingsstems — the term$curve
congruence” and “focal surface) of a curve congruencethen we can summarize the
aforementioned in the following way:

") If one defines a curve congruence Hinaar partial differential equation of first order then the foca
surface is the one that one generally refers to asitiglar integral of the differential equation in
guestion.
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The points of a surface f are mapped to R, as a two-fold infinitidarees of the
complex C, as a curve congruence whose focal surface F we regdmel iasaige surface
of the given one. Likewise, the points of the surface F are mappedtws-fold
infinitude of curves ¢, and indeed the associated focal surface inchalgs/en surface f
as a reducible subset.

14.The previous considerations are also valid whemd F are surface elements.
Our reciprocity determines a correspondence between surfaceemlemA given
element of the spaaecorresponds to elements of the second space; on the other hand,
each element of the space corresponds étements inr. Thus, should equations (1) be
a complete reciprocity that is, a one-to-one correspondence between surce eis-
then the two numbens andN must be equal to 1. As | have remarked in passing, the
Ampere transformation (cf., § 7, 22.) belongs to theBy. comparison, we have found
that the correspondence between elementary direaticthe complex is single-valued in
general, and, in facipne obtains the clearest statement of our reciprocity when one
regards each figure as composed of elementary directions of the conkjgleexample,
we can say that the two-fold infinitude of elementary directionh@fcomplex of a
surface f is mapped to the elementary direction of the complex aothesponding
surface F.

Now, let a curvek be given, which we shall regard astw@bular surface of
infinitesimal cross sectionAll elementary directions of the complex thaensectk give
two-fold infinitudes of directions of the compledX, dY, dZ) whose totality, in general,
defines a surfac& that is the image ok. This definition of the image surface is
equivalent with the following twoF includes a single infinitude of curves that get
mapped to points of the curke All curves of the complexg that cutk are mapped to
points of the surfack.

The equation&i(x, y, z X, Y, Z2) = 0,Fa(x, ¥, z X, Y, Z) = 0 thus convert arbitrary
given structures into new ones, and they can thus senvansform geometric theorems
and problems. In the second section, we will give ingrdrtapplications of this
transformation principle for a particular form of timapping equations.

§ 5.

Determination of space transformations for which contact
Is an invariant relation.

15. As is well-known, transformations that can be egped as follows:

(1) X=fxy,zpd, Y=fxyzpaq, Z=fxy,znpq)

play an important role in the theory of partial diéfetial equations. Her@,andq, asP
and Q will later on, denote the partial derivativés / 0x, 0z / dy, 0Z |/ X, 0Z / Y.
Worthy of particular notice is the case in which expoessforP andQ can be derived
from equations (1) that likewise depend only upqry(z p, 9). Then our transformation
possesses the property that surfaces that contact gechwall go to other such surfaces,
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and indeed in these paragraphs | will give an apparently nelyte-geometric
classification of these transformations into thekesses.

Equations (1) associate an arbitrary surface elemewt £, p, q) with a point K, Y,

Z), and thus the elements of a surfdcall correspond to points of a surfaEethat
certainly can degenerate into a curve, if not a pdinbne lets a surfacavary in such a
way that a surface element itself remains unchangedthb@enorrespondin@l contact
each other at one (or several) common elemEntdVhenl1 degenerates into a curve
then, as a continuity argument shows, it includes twisecutive points of the elemeat
Finally, if ' were a point cone (infinitely small cone) then @auwid lie onE.

One now considers a three-fold infinitude of surfatékat is chosen completely
arbitrarily, along with the corresponding imalgan the second space, which is either a
surface, curve, or point cone. A surfagtw@iill be enveloped by a two-fold infinitude &f
and, from the foregoing remarks, the corresponding two-fdiditude of F will then
contact the image surfacé®. |In this, one finds a general definition of our
transformations.

16. If we choose, in particular, the surfadds be all point cones of the spacéhen
we find the analytical definition of the structufewhen we eliminatg andq from the
equations:

X=fxy,zpd, Y=fxyzpaq, Z=fxy, zp 0.

Three cases are possible here: Either there existooalglation between the(y, z p,

q), and then the transformationbelongs to the general reciprocity that was presented b
Plucker, or one finds two such relations that corresporte reciprocity that | gave, or
there exist three independent equations between the goundinates of the two spaces,
which is the case for all point transformations.

There are three distinct classes of transformations for which coistact invariant:
The first one corresponds to Pluckerian reciprocity of spaces, anmtkfined by the
aequatio directrix:

Fx,y,z X Y,2) =0.

The second one corresponds to the reciprocity presented by mh,isvdiefined by two
equations:
Fix, v,z X,Y,2) =0, F.(x, v,z X, Y,2) =0.

Finally, the third one encompasses all point transformations that are datsirby the
three equations ):

Fix, v,z X, Y,2) =0, F.(x, v,z X, Y,2) =0, Fs(x, v,z X,Y,2) =0.

*

) Cf., Du Bois-Reymond, partielle Differential-Gleighgen. § 75-81.

") For a space with dimensions there aredistinct classes of transformations for which conian
invariant relation. Iim denotes an arbitrary whole, positive number thabtslarger tham then we can
say that each class will be defined yequations between the coordinates of the new anddrares
spaces.
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The first two classes of transformations rest b@ introduction of a new space
element, and the last one, on the application of aco®xdinate system.

§ 6.
Transformations of partial differential equations.

17.Legendre) has given a general method of converting — in the layggo&modern
geometry — a partial differential equation involving poaoiordinatesx, y, z into one
involving plane coordinates u, v. One can thus also regardi, v as point coordinates
of a space that is reciprocally related to the given &hen one introduces the curves or
surfaces of a complex as space elements, it is likewise gosstibhnsform a differential
equation in the variables x, y, z into one in the coordinates X, ¥ih& mew elements.
Here, one must also remark that one can inteXyrét Z in the new equation as the point
coordinates of the spad®, and indeed this viewpoint will be predominant in our
presentation.

The analytical proof for the truth of the foregoingeaien lies in the fact that the
aforementioned exchange of space elements can be expbgsseans of five relations
betweenX,y, z p, q) and ¥, Y, Z, P, Q). However, when one substitutes the values of
Y, z, p, qwith X, Y, Z, P, Q in a partial differential equation:

Nxy.zp.ag=0

one obtains a new partial differential equation rdtforder. Geometrically, one can view
this in the following way:

Let a partial differential equation of first ordé(x, y, z, p, q) = 0 be given, as well as
all surfacesp that define a so-called complete integral; here, oust mecall that every
other integral surfacé will be enveloped by a single infinitude @t One further
considers the associated image surfa®esind F. We will prove that every is
enveloped by a single infinitude &f. From the developments of the last paragraph, it
follows that when two surfaces contact each other curae — i.e., they have a single
infinitude of surface elements in common — the imageasad have the same mutual
relationship. Having assumed this, one considers an aitegrfacef,, and then, all of
the singly infinite number ofpy that contact it in a characteristic, and finallye th
corresponding surfacds and®, . It is clear that eact®, contacts the surfadg in a
curve, soFq is the enveloping surface of tld® . We thus see that our transformation
takes all integral surfaces of a partial differentiguaionll(x, y, z p, q) = 0 to the
integral surfaces of a new partial differential equagX, Y, Z, P, Q) = 0, and that was
our assertion precisely.

18.We now consider a transformation that is defined by two curves obihglexes
c and C that are related to each other. If we apply them to theapalifferential

") The general picture of the so-called Legendre foamstion that is given here is due to Pliicker
entirely. (Crelle IX. 1831)
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equation of first order that is associated with the curve of the @nggB 3. 9)then the
corresponding differential equation in X, Y, Z decomposes into two equatio&s)f
which corresponds to the curve of the complex C precisely.

Namely, let a surfackbe given that contacts the associated elementagy abthe
complex at all of its points. At each surface elen{@, 13.), this cone determines
elementary directions of the complex, two of whicaals coincide. The curves dn
that are enveloped by curves of the compiethus separate into two families: The
characteristics of the surfat@and a family that covers ih 2)-fold. The points of our
surface are thus mapped to a two-fold infinitude of curme€ whose focal surface
divides into two surfacelB; andF,, and indeed the curves @contact the surfack; in
two coincident points, while it contacts the surf&geby comparison, an(- 2) isolated
points. Thus, from § 3.9, the surfa€gsatisfies the partial differential equation of first
order that is associated with the curves of the cam@lewnhile F, satisfies another
partial differential equation. Our assertion is thus/pdo

Our theorem is identical with the following one:

If a surface element of the space r contacts a elementary cone auntipdex then it
maps to R byn — 1) elements, among which, one is counted twice, and thus contacts an
elementary cone of the compléx

The curves of the complexes ¢ and C determine two partial difedreguiations of
first order whose characteristics are reciprocal curves w#spect to the equations E
O, Fz =0.

19.The latter form of our theorem gives the followingthod for the transformation
of partial differential equations of first order:

One determines the differential equati@q y, z, dx, dy, d2 = 0 of the characteristics
and chooses aarbitrary relation:

WXy, z, dx dy, dz X) = 0,
in which X denotes a constant. Let:
Fix, ¥,z X, Y, 2) =0, Fo(x, ¥,z X,Y,2) =0
be the integrals with two arbitrary constaxitandZ of the simultaneous systems:
f=0, ¢=0.

The equation&; = 0 andF, = 0 give, by differentiation and elimination, the résul

) An element of the one space corresponds, in gerienal(N, resp.) elements of the second space.
As a result, the elements of each space organize thesiseto groups of (N, resp.); we will say they are
associatecelements. If our transformation is definedtiyo equations k; = 0), .= 0) then, from the
development in the text, there is a four-fold infinitudeetgdments in any space that coincide with an
associated element, and indeed it is noteworthy that @nollement is mapped to a similar one in the
second space. The theorem of the text is also truesifiorm for transformations that are defineddmeg
equationF(x,y, z X, Y, Z2) = 0.



On complexes — in particular, line and sphere complexes 15

F3(x! Y! Z! d><5 dY, dZ) = 01
which we regard as determining a partial differential eqoatio

F{X,Y, Z’a_z,a_zj -0
aX 'Y

that can be found by conventional methods.

The given partial differential equation and the qust found(F, = 0) are equivalent
problems, in the sense that the associated charstits are reciprocal curves relative
to the system//= 0,F, = 0.

It is not difficult to recognize the truth of tHellowing two assertions, which |
present as examples:

If one transforms, according to the method givér, partial differential equation of
first order that is associated with a line comd®8, 10.) then the new equatiBn= 0 is
only of seconddegree. This originates in the fact that the linés line congruence
contact the focal surface @io points’).

By comparison, if one transforms the partial défatial equation (8 3, 9) that is
associated with a conic section complex then the diferential equation is generally of
third degree. This rests upon the fact that whénwafold infinitude of conic sections
define a congruence each conic section contactdotted surface in six points. As a
result, the new elementary cone of the complex sxbh order and thus of class thirty,
etc.

20. The following remarks, whose proof | will not gda, might find a place here:
a. Ifthe equatiori = O in the last paragraph possesses the form:

Xdx+Ydy+Zdz=0")

then the characteristics of the partial differdreeiguationF; = O are exactly those curves
that are represented By = 0,F, = 0, when one regards tRgy, zas parameters. We can
conclude from this that the essential propertiestred characteristics of a partial
differential equation of first order are the follmg ones:

The curves of a given complex are characteristics partial differential equation of
first order when each curve ) in an arbitrary congruence that belongs to the ctemp
contacts the focal surface at only one point. Thiuese focal surfaces will be omitted
from all such congruences whenever possible.

If the elementary cones of the complex in boticepasubdivide into pencils of lines
then the three-fold infinitude of curves of the qdex in each space lie onsngle
infinitude of surfaces; i.e., the equations:

") The simple form that was suggested here that the pdifferiential equation that is associated with
a line complex can assume is, from the explanation4r{c§., also the third section of this treatise),dohs
on the fact that one introduced the lines of the loragex in question as space elements.

") X, Y, Z shall denote arbitrary functions xfy, zhere.

Hokk

) Any curve of such a congruence intersects onlyinfinitely neighboring curve.
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f(x,y, z, dx, dy,d2 =0, Fs(X,Y, Z dX dY,d2) =0,

which are linear with respect to the differentials, banntegrated. This theorem is, as |
will show on another occasion, meaningful when oneksseall single-valued
transformations especially.

b. All transformations for which contact is an invariarglation possess the
characteristic property that the Monge-Ampere partiffeidintial equation of second
order:

At =) +Br+Cs+Dt+E =0

goes over to a similar equation. If the given equationitsda general first integral then
this is obviously also the case with the new one. , (&ftreatise of Boole in Crelle-
Borchardt’s Journal, bd. 61.)

c. In general, under our transformations a given elememntesponds to a finite
number of elements of the second space. Meanwhile, aherexcluded elements, which
are mapped to an unbounded number of elements. Withong) gaio a complete
discussion of this important theory, | remark that wlaenelement includes a singly
infinite number of directions of the complex it mus an excluded element. This is
immediately based upon the fact that in general an eleim¢ransformed into as many
elements as the number of directions of the complaixititontains (8§ 4, 13 and 14). If
the elementary cone of the complex of the spasighdivides into a planar pencil then we
obtain a three-fold infinitude of excluded elements in this space whose tptalit

corresponds to four-fold infinitude of elements that all envelop a cone of themex of
the spacé.



Second section.

The Pliicker line geometry’) may be transformed into
a sphere geometry.

In this section, | will consider a special case of pineviously-developed general
theory, namely, the one in which the two curve congdethat are related to each other
are line complexes. Thus, it is only a degenerate base will subject to a closer study.
However, | believe that the examination of all polesépecial cases merits attention, as
well as the general case.

87.
The two curve complexes are line complexes.

21 If we assume that the two equations of reciprociti vespect tox, y, z2) and
Y, Z) are linear:

X(axthyr gz 9+ Y ax by cu# Jht
Z(ayx+hyr gz d+(ax by g =0,

X(ax+By+y,z+0)+ Ma, ¥ B, ¥y, 29)+
Z(azX+ B y+ Yzt 0 +(a %+ B,y y, 20 ) =0

(1)

then obviously the points in the second space that ajagate to a given point define a
line. The two curve complexes are Plicker line compleaed thus equations (1)
determine a correspondence betweandR that possesses the following properties:

a) In each space, one finds a line complex whose lines map to pointssecthred
space.

b) When a point describes a line of the complex, it rotates the correspdnting
around the image point of the line that it runs through.

c) Curves whose tangents belong to the two complexes and are pairegijz®cal
to each other represent the idea that the tangents of one of them rhapptrits of the
other.

d) A surface f will be associated with a surface F in a twd-fohnner. On the one
hand, F is the focal surface of the line congruence whose lines pon@go the points
of f; on the other hand, the points of F are the image of all tangents gutfaee f that
belong to the line complex in questioh

e) On the aforementioned surfaces all curves are pair-wise conjugate.

") With regard to the theory of complexes, | assume thatkaoevs: Pliicker, Neue Geometrie des
Raumes...1868, 69; Klein, Zur Theorie der Complexe...Math. Ann. I, @nnot cite Battaglini’'s works
on line complexes, because they are inaccessible.to me

") That the reciprocity is not complete comes from fact that the surfade is the complete focal
surface of the associated congruence; on the other lemntings of the second congruence, except,for
envelop yet a second surface.
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f) A curve whose tangents belong to the complex in question corresponds, as a
conjugate, to a curve that is likewise enveloped by lines of the eomapd indeed
precisely that curve that we have referred to as reciprocal tgitren one.

The proof of the assertion made in e) is based in thethat a line of the complex
and a point that lies on it map to a point and a lindh@icomplex that goes through it.

22.Each of equations (1) determines a homographic correspandeteeen the
points and planes of the two spaces, and thus each oboyexes may be defined to be
the totality of all lines of intersection of homogragtilg corresponding planes or the
connecting line of homographically associated points.e Tine complex of second
degree that is determined by this is, from the investigatibfeye’), identical with the
line systems that Binet first considered as the tgtafitall stationary rotational axes of a
material body, and which several mathematicians, iticodar Chasles and Reyes, have
investigated later.

If the constants in equations (1) are specified thencttmplexes either occupy a
special reciprocal position — for example, they cama@de, a case that Reye considered
in his Geometrie der Lage, in which he maintained the saape of complexes that we
examined here, along with the theorem that we presemted— or they will themselves
be specified. Without going into a discussion of &l plossible cases here, | propose the
following two most important degenerate casgs

The two complexes can be special linear complexdsis case leads to the well-
known Ampere transformation, which then rests upon #o¢ that one introduces all
lines that intersect a fixed line as the space elenmestead of points or planes. The
eguations of the Ampére transformation, namely:

X=p, Y+y=0, Z-z-px=0
give the following two relations betweex ¢, z X, Y, 2):
Y+y=0, Z+z+Xx=0,
which obviously define a particular and symmetric formeiquations (1).
The one complex can go over to the totality of iakd ttl‘:"t intersect a fixed conic
section; the second complex is then a linear ongemeral ). | will examine this

degenerate case more closely in what follows undeagbemption that the fundamental
conic section is the infinitely distant circle.

) Reye, Geometrie der Lage, second edition, 1868, pp. 116-172.

") Lie, Reprasentation des Imaginéren, Acad. zu Christigfédruary and August 1869. The spatial
relationship that is considered in this treatise § 73,8 27-29 is identical with the present one. In § 25, |
discuss the first of the two degenerate cases.

™) Néther has already occasionally given this map ofitiear complex, which | meanwhile discovered
independently. (Gotting. Nachr. 1869: Zur Theorie derbafiische Functionen.) The viewpoint that is
fundamental for us, that the two spaces contain a comgiezerdines map to points of the second space is
not mentioned in the note that we spoke of. | would lk&utther add that | have not found the idea of
basing a correspondence between the surface elemepacds on the map of a complex discussed
anywhere.
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23.We know that the two curve complexes are line corg@avhen the equations of
reciprocity with respect to the two systems of vagal¥, y, 2 and K, Y, 2) are linear,
and we now pose the question of whether this suffi@gentlition is also necessary. As
we shall now show, this is generally the case when amds the condition that the
correspondence shall be one-to-one. Meanwhile, | temmat this question, which is
interesting in its own right, has no significanceha following theory.

If the one complex is a line complex then the eleargntone of the complex of the
second complex, which is a curve complex in general, musing@use into a number of
cones of second degree. In particular, were the omplex composed of tangents to a
surface then the elementary cone of the second cammlald decompose into a pencil
of lines. If one now poses the requirement that thp should be one-to-one then only
the following three cases are possible:

1) The two line complexes are general complexesanrsbdegree.

2) One of the complexes is a special complex ofrscegree, and the other one is
linear.

3) Both of the complexes are special linear.

We suggest, as one can show, that equafibrdefine the most general single-valued
reciprocal map of two line complexes, so the case in which both linplexas are
special linear ones is not taken into account complejely

If the two complexes are general complexes of seclegiee then, as one easily
verifies, the associated singularity surfaces arecanptedsurfaces. Namely, two plane
pencils of lines emanate from each point of the simgulaurface whose lines map to the
second space as the pointsook line. All lines of a pencil thus transform to a segl
point. The totality of all lines that have no indeparideap cannot be a complex, but at
best, a number of congruences. Since all plane peofciises whose vertices lie on a
curved surface necessarily define a complex, the singulatityace consists of planes,
and thus one may conclude that the two complexesfa®cond degree, of the type that
Binet first considered.

If a special complex of second degree and a general lomeaare mapped to each
other then,a priori, two cases can be imagined. The lines of the compiesecond
degree can intersect a conic section or envelop a sudhsecond degree. By an
argument that | will not go into here, | have proved thdy the first case exists.

§ 8.

Reciprocity between a linear complex and the totality oéll lines
that intersect the infinitely distant imaginary circle.

24.We now turn to the equations:

") One establishes a one-to-one correspondence bethe@tanes of linear pencils. One then relates
the lines of each plane dually with the points of toeresponding plane. In this way, one obtains a
reciprocal map of two special linear complexes thatasengeneral than the one that was determined by
Ampére’s equations.
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1) —Zz=x-X+1iY), (X-=iY)z=y-Z
which, as one sees, are linear with respeck,tg, £) and ¥, Y, Z), which thus determines
a correspondence between two line complexes. We dask the equations of this
complex in terms of the Plicker line coordinates.

Plucker wrote the equations of the straight line in tnenf

rzZ=x-p, sz=y-o.
and considered the five quantitiess, p, g, (ro—sp) as line coordinates. Thus, when
one regards th&, Y, Z in equations (1) as parameters, they represent a sypétkmes
whose coordinates satisfy the following relations:
r=-2, r=X+iy, s=X-1Y, s=/Z,

from which it emerges that:
(2) r+o=0.

The line complex in space is therefore a linear one, and indeed, a general linear
complex that includes the infinitely distant lineof thexy-plane.
In order to determine the complex in the spRcene replaces the system (1) with the

equivalent one:
—[Z——} Z=X- —[x+—y} ,
2 z 2 z

i_[z+—1} Z= Y—i[x—z} ,
2i z 2i z

which, by comparing them with the general equatmirs line:
3) RZ=X-P, SZ=Y-%,

gives the following relations:

R:EI:Z_E'}, PZE[X+X},
2 z 2 z

S:i_[z+—1] Z:i_[x—l]
2i z 2i z

and we thus find for the equation of the compleguestion:

(4) R+S+1=0.

") This line emerges as a fundamental constructioneofriip. | will sometimes refer to this line as the
fundamental line of the space
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Now, relations (3) give:
R = d_x , S= ﬂ ,
dz dz

and thus (4) can also be written in the following form:
dX +d¥* +dZ* = 0.

The line complex of the spaéewill be defined by the imaginary lines whose length are
equal to null).

Equations(1) relate the two spaces to each other in such a way that the poitis of t
space r correspond to the imaginary lines whose lengths are null, Whilgoints of the
space R map to the lines of the linear complexor= 0.

One must remark that when a point runs through a lineeo€omplex + s = 0 the
corresponding image line describes an infinitesimal sphwz., a point-sphere.

25. According to the general theory of reciprocal curve4,(82), when one knows a
curve whose tangents belong to a complex, the image thavés enveloped by lines of
the second complex may be determined by simple operatiais, differentiation and
elimination. Now, Lagrange has found the general equédioall curves whose tangents
intersect the imaginary circle, and thiisis also possible to write down the general
equation of those curves whose tangents belong to a linear complex.

In order for us to not stray from our objective, we lshat go further into the simple
geometric relations that exist between reciprocal curféise two complexes).

The correspondence that is determined by equation (1) detthe surfaces of both
spaces possesses some peculiarities, which | willjodefscribe, while referring to the
general developments of paragraph 4.

If the surface has a general position mthen its tangents that belong to the linear
complex envelop a second surfaiebesides. We will call the curves that lie on both
these surfaces, and whose tangents are lines of theleonmr and g5 .  The
corresponding reciprocal curv@sandZ s generatéhe samesurfaceF that is the image
of the given surfacg as well as the image of the surfatce

By comparison, if one takes an arbitrary surf@cie the spac® then the lines of the
complex that contacb envelop no other surface. The cureesf our surface that are
enveloped by lines of the complex defineimeducible family that coversb twice. The
reciprocal curvesr generate the image surface, which includes no other cuWeEse
tangents belong to the linear complex.

Finally, | must point out that our map converts thilowing two problems into each
other:Determine the edge of regression of the developable surface on theudaak of

") Following the more convenient French terminologyefer to any line that intersects the infinitely
distant imaginary circle aslime of null length

”) 1 would like to remark on this that a vertex on the oneve corresponds to a stationary tangent in
the second space. Generally, stationary tangents aggregular singularitiesvhen one regards curves as
line structures; that is, as enveloped by the linesgofencomplex.
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a congruence whose lines belong to a linear compled;Find the geodetic curves on a
given surface whose lengths are null.

26. Later, | will sometimes lean on the following tw@trems:

a. A surface F of fi order that contains the infinitely distant imaginary circle as a p-
fold line is the image of a congruence whose order and class are equoat ).

Namely, an imaginary line whose length is null cktg (n — p) points that lie in
finite space, and therefore just as many lines of timgrc@nce in question go through
each point of the spaage However, for a congruence that belongs to a comples
known that that the class equals the order.

b. A curve C of nth order that cuts the imaginary circle in p points masline
surface of2n —p)™" order.

Namely, a line of the linear complex o= 0 cuts the line surface in question in just
as many points as the cur@and an infinitesimal cone have in common, while the
infinitely distant points are not to be counted withrh.

§ 0.
The Plucker line geometry can be transformed into a sgre geometry.

27.1n this paragraph, | will establish a fundamental connection between the Pliicke
line geometry and a geometry whose element is the sphere.

Equations (1) of the last paragraph transform the lifiéiseospace into the spheres
of the second space, and indeed in a two-fold manner. Gméhbkand, from a previous
theorem (26. a), those lines of the linear complexc = 0 that cut an arbitrary line,
and thus the associated reciprocal pblavith respect to the complex, as well, go to the
points of a sphere. On the other hand, the pointseolintbsl; andl, transform into the
rectilinear generators of this sphere (26. b).

By the following analytical argument, one finds theatiens that exist between the
coordinates of the linds andl,, and, on the other hand, the center coordindte¥, Z',
and the radiusl’ of the corresponding sphere. If:

rz=x—p, Sz=y-0o

are the equations of the linkr|,, and one recalls that the lines of the complexo =
0 can be represented as follows:

-Zz=x-X+1iY), X-=iY)z=y-Y

then one sees that y, z must be eliminated from these four equations in ordethier
lines (1) to be subject to the condition that theylgut In this way, one finds that the
coordinatesX, Y, Z of our lines of the complex, or, what comes dowrhe game thing,
the coordinateX; Y, Z of the corresponding image point, satisfy the refatio

[X=+9P°+[Y-(6-pP+[Z-(0-N]*=[0+1]"
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Our previous assertion is proved analytically by this. Wike, we obtain the following
formulas:

(2) X =r+g Y =p-s Z=p-r, +tH =0+,
or the equivalent ones:
3) p=3(X +iY"), s=1(X' =1Y'), 0=3(Z £iH"), r=-1(Z F iH"),

in which one can omit the primes with no further restms. In our way of looking at
things, a point of the space R is a sphere whose radius is infisitelll

Formulas’) (2) and (3) show that a given line in the spagoes to a completely
determined spheréy contrast, a given sphef¥, Y, Z, H’] maps to two lines:

(X, Y, Z, +H), X, Y, Z, - H),
which are reciprocal polars with respect to the linear complex:
+tH=r+0=0.

When one setBl equal to zero, equations like this obviously determineititggesvalued
relation between the point-spheres of the sppaared lines of the complex = 0.

A plane- that is, a sphere whose radius is infinitely largeansforms according to
equations (2) into two linds andl,, which cut the infinitely distant line of the~plane.
Thus, from the foregoing, the points of the litkgandl, are the image of all lines in our
plane that go through the points of the associated maagcircle. In particular, a plane
that contacts the imaginary circle maps to a linthefcomplex that is parallel to thg-
plane.

28.Two intersecting lines | andl map to spheres, between which contact exists.

The reciprocal polars of the given line with respectthe complexH = 0 then
intersect, and thus contain the image spheres of twomon lines that belong to
different generators. However, if the intersectidntwo surfaces of second degree
decompose into a conic section and a line pair thersuhfaces contact each other in
three points, namely, the double points of the inteimeaurve. The two spheres thus
have three contact points, among which, two of theeriraaginary and infinitely distant
and do not come under consideration. Analytically, orevgs our theorem in the
following way: The condition of intersection for the two lines:

Mz=X-p0, [2Z=X— 0,
SIZZ=Y— 01, SZ=X-— 03
will be represented by:

) As Klein has remarked to me, the relation betweae hBnd sphere geometry can be derived
immediately from these formulas, when coupled with thelydinally-based theorems of the next
paragraph.
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(ri—r)(ai— )~ (sa—s) (o —p2) = 0,
and, by an application of formulas (3), this equation goes
(X1 =X2)® + (Y1 = Yo)* + (Z1 — Z2)* = (H1 £ Ho)?,

that is, to theeondition that the two image spheres must contact each other.
Two spheres that contact each other transform into two line pairs whos&lmut
position is such that each line of the one pair cuts a line of the secend

§ 10.

Various maps.

29.0ne considers the lines of a planar pencil of linethénspace, along with the
associated reciprocal polars with respedtite 0, which likewise defines a planar pencil
of lines, and finally, the corresponding image spheréss dasy to recognize that all of
the these spheres contain two common lines, narttedypnes that correspond to the
apexes of the two pencils of lines, and thus our spheretaatoeach other at the
intersection point of these two linesThe lines of a planar pencil of lines map to all
spheres that contact each other in a common pdinam this, it follows that a surfade
and all of its tangents at a given point map to a serdaxl all spheres that contact it at a
point (8 5, 15). This finds its simplest expression enftdillowing theorem:

Under our map, all surface elements of the space r that contain twoccbinse
points of a line go to elements of the corresponding image sphere.

A lines that lies in the surfad¢eéhat also contacts it at infinitely many points witl &
sphere that contacts the image surface infinitely oftee., in a curve. From this, one
may conclude that a line surface in a sphere envelopeytdurface). A developable
surface is transformed into the enveloping surface sigly infinite number of spheres
that are subject to the condition that any two consexwines contact each other. One
thus obtains the imaginary line surfaces that were dered by Monge, whose two
families of lines of curvature coincide in the rectilinganerators. From the remark that
a line surface goes to a sphere envelope, it followsatbatface of second degree, which,
as is well-known, indeed contains two families of linteansforms into a surface that can
be regarded as a sphere envelope in two ways, and wedimd¢ain the most general
surface that possesses this propertyDihpin cyclide

30. From a previous theorem, it follows immediately thktines that cut a fixed line
map to spheres that intersect a given sphere, andhwgekhow the map of thepecial
linear complexes.

The equation ofeneral linear line complexas, from Plucker:

1) fo—sp) +mr+no+pp+qs+t=0,

and from this, the equation of the correspondimgar sphere complexesnerges:
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C+Y+Z2-H)+MX+NY+PZ+QH+T=0)).

Here,M, N, P, Q, T denote constants that depend upgm, p, g, t, while X, Y, Z, H are
regarded as inhomogeneous sphere coordinates.
As one easily sees, the latter equation determinesphéires that intersect a fixed
sphere:
C+Y+Z)+MX+NY+PZ+T=0

at a constant angle, and indeed this sphere is thgeiof all lines that likewise belong to
the given complexes (1) amti= 0. If the simultaneous invariant of these two caxes
is equal to zero, when they are in involution, then, aseasily convinces oneself, the
constant angle in question is equal t8.90

The spheres that intersect a given sphere at a constant angle transfortineidines
of two linear complexes that are conjugate to each other with respddt=00. In
particular, the spheres that are orthogonal to a given sphere are the imagfes lofes
of a linear complex that is involution with respect te19.

An equation of the form:

(2) ar+t+bo+cp+ds+e=0

gives a linear equation between the sphere coordingtés Z, H, and therefore the
sphere complex in question will be defined by all spheregntetect a given plane at a
constant angle. One can also conclude from this tti@tcomplex (2) contains the
infinitely distant line of thexy-plane so the complexes (2) add= O intersect each other
along a linear congruence whose directrices are pavatlelthexy-plane. Finally, when
the complexes (2) artd = 0 are in involution, one obtains all spheres wiuesgers lie in
a fixed plane.
As one easily verifies, the four complexes:

:0=,0+ iY=0=p-5,
0=0-5 H=0=0+r

lie pair-wise in involution, and thus contain a commae that is infinitely distant in the
xy-plane. Thus, the five complexes:

X=0,Y=0,Z=0, H=0, const. =0,

in which one counts the last one twice, because it is a special coifae is in
involution with itself, define a system that can be regarded as a degerasst of the six
fundamental complexes of Klein. It is obvious that one can likewgard the four
sphere-coordinates X, Y, Z, H as inhomogeneous line coordinates.

Finally, it is also remarkable that each of the singlmitude of line complexes that
can be represented by the equation:

") This equation may also be written as follows:

(X =Xo0)? + (Y= Yo)? + (Z—Zo)? + (iH —iHo)? = const.
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H = const.

map to all spheres of a given magnitude. These congplaxatact each other along a
common special congruence whose two directrices coimgitlee infinitely distant lines
of thexy-plane. The lines of this congruence map to all plaim&iscontact the infinitely
distant imaginary circle.

31.1t is known to be an immediate consequence of thekBilapproach that whdn
= 0 andl; = 0 are the equations of two linear complexes, the mquat

li+ulb=0,

in which u denotes a parameter, represents a family of lineaples®es that contain a
common linear congruence. Our map transforms this theorte the following one:

The spheres K that intersect two fixed sphereanfl $ at given angles Vand \b
have the same relationship to infinitely spheres S. There are tlved ®ill contact all K,
corresponding to the directrices of the aforementioned congruence.

The variable line complek + u |, = O intersects the complest = 0 in a linear
congruence whose two directrices describe a surfacecohdalegree: the intersection
surface of three complexés= 0,1, = 0,H = 0, and therefore the aforementioned sphere
S envelops a Dupin cyclide, which certainly degenerat@sarncircle common to one of
these spheres.

Here, | would like to point out that our map in intemggtin that it takes
discontinuous line groups into corresponding sphere groupsexBmple, from the well-
known theory of the 27 lines on the surface of third degres;onclude the existence of
a group consisting of 27 spheres, such that any ten gpiheres contact the group. In
other words, sphere configurations go to singular line gardtions.

§ 11.

Correspondence between problems that relate to spheye
and ones that relate to lines.

32. In this paragraph, we address some well-known, and siergle, problems that
relate to the spheres that are subject to certain itcom&l by considering the
corresponding line problems.

a. How many spheres contact four given spheres?

The four given spheres transform into four line-pdiisAy), (12, A2), (I3, A3), (14, As).

If we now take a line from each pair and assemble the lines thus obtained into a
group then one seeks the two transversals of this grdvg.find 16 different groups,
which are meanwhile pair-wise conjugate with respett 00, like, for instance:

[1 421314 A1l A3 As.

Obviously, the two transversal pairs:
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thtt ©nn

of two such groups are self-conjugate, and thus map tawoesspheres.There arel6
spheres that contact four spheres, which organize3mairs.

b. How many spheres intersect four given spheres in given angles?

Spheres that intersect a given sphere at the saneaegmages of the lines of two
linear complexes that are conjugate to each other regpect toH = 0. We must
therefore consider four pairs of linear complexesiq), (12, A2), (Is, A3), (4, A1), and first
arrange into groups of four in all possible ways, in suclagp that two complexes of a
group never have the same index, then find all linashiglang to the four complexes of
each group. Four linear complexes contain two common, liaed thus when one
proceeds as in the first problem, one obtains 16 splymeged into 8 pairs as the
solution to our problem.

Our problem simplifies when one or more of the gigegles are equal to 90f the
spheres orthogonal to one sphere map to the linese@fomplex that is in involution
with H = 0. Finally, if all four angles are equal to°3Ben one asks about the common
lines of four linear complexes that are in involutiothwH = 0. The two lines thus
obtained are conjugate with respecHa 0, and there is therefoomly one sphere that
intersects four given spheres orthogonally.

c. Construct all spheres that intersect five given spheres at the aaghe

Our map converts this problem into that of arranging diven pairs of linesl{, A1),

(I2, A2), ..., (s, As) in all possible ways into groups of 5, but with thenieson that no
two lines of a group can have the same index, and then fintlilngear complexes that
always contains all the lines of one group. There ardifé&ent groups that are pair-
wise conjugate with respect tb = 0. Corresponding to them, we obtain 32 pair-wise
conjugate linear complexes that map to 16 linear sphere cxaspldhe 16 spheres, such
that each of the spheres intersects such a complmnatant angles, are the solutions to
our problem.

Two line groups such as:

[1 A2 A3 lals 11 A2 A3ls A5

include four common lined (A, As ly), and thus the corresponding linear complexes
intersect each other in a linear congruence whosectdees d;, d, are the two
transversals of the four lines in question. The complexO0 intersects this congruence
in a surface of second degree that is the image of la,ar@mely, the intersection circle
of two of the spheres we seek, which are, howevso, thle two spheres that correspond
to di, d;. These latter spheres may now also be defined by sthah¢hey contact four
of the five given ones, and one can therefore deterfivieeircles on each of the sixteen
spheres that intersect five given ones at the same,agguming that one can construct
the spheres that contact four given ones.



On complexes — in particular, line and sphere complexes 28

§12.

Our map takes the principal tangent curves of a surfacéto the
lines of curvature of the image surface-.

33.The map that was discussed in the past paragraphs hgtéatadeal of interest
due to the following remarkable theorem:

The lines of curvature of a surface F transform into line surfacesdbwatiact the
image surface f along principal tangent curves.

The tangents to the surfatare converted into spheres that confaetnd thus the
thought comes to mind that the principal tangents offthmer surface map to the
principal spheres of the latter one. This is, in fHet,case. Namely, the surfdoeill be
intersected by a principal tangent at three coincidemttgoand three consecutive lines
that lie on the image sphere contact the surfaceThe intersection curve of these
surfaces thus has a cusp at the point in question, aadessilt, the sphere is a principal
sphere. If one now further remarks that the directibtinis cusp is the tangent to a line
of curvature then one sees that two consecutive poitpaohcipal tangent curve map to
two imaginary lines that contaét in consecutive points of a line of curvature, so all
points of the principal tangent curve transform into theegators of a line surface that
contactd along a line of curvature. However, our theorem fedldrom this (8 7, 21c).

The following two examples confirm our theorem: A sghgansforms into a linear
congruence whose focal surface can be regarded as tliréetices. Now, it is known
that every curve that lies on a sphere is a line ofature, and in fact, the directrices of a
linear congruence are also principal tangent curves to leecsurface that is associated
with this congruence. On the other hand, we know thparboloidf maps to a Dupin
cyclide. Now the line surfaces of the complex¢s= 0, which contacf along its
principal tangent curves — viz., the rectilinear genesatorare themselves of second
degree, and we thus again find the well-known theorentliedines of curvature of the
Dupin cyclide are two families of circles.

As an interesting application of our theorem oneamarsider the following:

The Kummer surface of fourth order with sixteen nodes has algebraicigai
tangent curves of sixteenth order that define the complete contactection of the
surface with line surfaces of eighth order.

The Kummer surface of fourth order with sixteen naggas is well-known, the focal
surface of the general congruence of second order arsd ¢lass line system (8 8, 26a),
when it belongs tdd = 0, maps to a surface of fourth ordlar and thud~, includes the
infinitely distant imaginary circle as the double-comsiection. Now, Darboux and
Moutard have found that the lines of curvature of sushréaceF, are curves of eighth
order. They intersect the imaginary circle at ejghints, and thus (8 8, 26b) their image
surfaces are line surfaces of eighth order whose generate double tangents of the
Kummer surface. Our theorem follows from this immeslia

) Klein, to whom | communicated that the principal tangenves are algebraic, found that they are
identical with a curve system that he has already densil previously from a different standpoint (these
Annals, Il., pp. 219). Confer our joint paper in the Morigsichten der Berliner Akademie, December
1870.
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It is obvious that also the degenerate cases of tmenkar surface — e.g., theave
surface the Pliicker complex surfaces, the Steilesurface of fourth order and third
class, some line surfaces of fourth order with two doubés Ithat can coincide, the line
surfaces of third order, etc. — have algebraic princapajent curves.

34.Darboux has shown that on any surface, in general,canegive a line of
curvature that lies in finite space, namely, the adnteurve with the imaginary
developable that is circumscribed by the given surfacetengnaginary circle, as well.

Correspondingly, in general, a principal tangent curve can be given on the focal
surface of any congruence that belongs to a linear complex that is the gedouets of
all points for which the tangent plane is likewise the plane associatldthve linear
complex at the point in question.

The infinitely distant spheres that contact a serfadivide into two systems: first,
the points of the surface, and second, the points ofatbeementioned imaginary
developables.

Thus, the lines of the linear complelx= 0, which contacts the image surfdcalso
divide into a system of double tangents and the totalitglloines that contadt at the
points of a curve. This curve is, however, as the image of an imagileysurface that
contactsF along a line of curvature, a principal tangent curvd.ofhis determination
will thus be illusory if not the congruence, but itedb surface — or really, a reducible
subset of it — is given, in general. Namely, on a sartae generally finds only a finite
number of points whose tangent planes are associatednipoint in question through a
linear complex. The foregoing finds its simplest expogss the following theorem:

If a surface is its own reciprocal polar with respect to a lineamplex then it
includes a principal tangent curve whose tangents belong to the complexs Thi
distinguished curve can be determined by differentiation and eliminatjon.

One remarks that each line surface whose generatorgylde a linear complex is its
own reciprocal polar with respect to the complex,s® may state the following
theorem:

On any line surface that is included in a linear complex there genelalya
principal tangent curve” ) whose tangents belong to the complex. It can always be
found without integration.

Clebsch has now shown (Borchardt’s Journal, Bd. 6&)whan a principal tangent
curve is known on a line surface, besides the generdatmsdetermination of the
remaining ones comes down to a quadratdreus, finding the principal tangent curves
on a ruled surface that belongs to a linear complex depends only upon a quadrature.

If we apply our transformation method to this theo@nClebsch, as well as to the
consequence it leads to, then we obtain the followaagtheorems:

") Clebsch has found the principal tangent curves of thie& surface; they are curves of fourth order
(Borchardt's Journal, Bd. 67).

") This curve is, from a remark of Klein, likewise aaiof four-point of the surface.

™) An interesting application of this theorem is thedaling one: According to Pliicker, the lines of a
linear congruence belong a singly infinite number of lineanplexes. As a result, every ruled surface
whose lines intersect two fixed lines contains a single infiniafdelgebraic principal tangent curves,
among which, each will be enveloped by the lines of a linear cerfgilealso Cremona, Annali di mat.
Ser. I, t. 1).
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If a non-circular line of curvature is known on a tubular surface (spleenelope)
then the remaining ones can be found by quadrature.

If a single infinitude of spheres intersect a sphere S at a corssigtd then one can
first find a line of curvature by differentiation and elimination, and tbetermine the
other ones by quadrature.

The fact that one can find a line of curvature on thaltutsurface in question can be
concluded immediately from the fact that this surface #e spheres intersect each
other at a constant angle. The intersection curveuwsanline of curvature on the sphere
S and thus, from a well-known theorem, has the samtetionship with the tubular
surface.

§ 13.

Correlations between transformations of the two spaces

35.As we know (8 5), our map can be expressed by equationddtaimine each
guantity in one of the groups:

XY,z p, a), X, Y, Z,P,Q)

as functions of the quantities in the second group. Nbw@,space — e.gr, — were
subjected to a transformation under which surfaces tha@acoeach other go to other
such surfaces then the corresponding conversion of thadsepace possesses the same
property. The aforementioned transformation is expresgdide equations betweew(

Vi, Z1, P1, G1) and &, Y2, z1, P2, Gz), Where the two indices refer to the two stateshef
spacer, and by means of the mapping equations these relatioie §oe relations
between Xy, Y1, Z1, P1, Q1) and &z, Y, Z1, P2, Q2), from which, our assertion is proved.

If we restrict ourselves to linear transformatiofshe space then we find amongst
the corresponding conversions of the second space:oéibma (translations, rotations,
and screw motions), parallel transformatiofps— which we understand to mean the
transition from a surface to a parallel surface — @wgprocal transformations that were
given by Bonnet, reciprocal transformation with respgect cyclide, etc., which all,
because they correspond to linear transformationseo$pphce, possess the property of
taking lines of curvature to lines of curvature in the trammséd surface. Finally, | prove
that these transformations of the spRcare the only ones that take surfaces that contact
each other into other such surfaces.

36.1f we next consider those linear point transformatiaisthe spacer that
correspond tdinear conversions of the second spaces then it is cleamté can look at
linear transformations of the spaBefor which the infinitely distant imaginary circle
preserves its position, and conversely we obtain allth@m. Namely, such a
transformation takes, on the one hand, a line thatsmtés the infinitely distant circle to
just such lines, and, on the other hand, spheres toesphard thus the corresponding

*

) Cf., Bonnet’s dilatation.
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conversion of space is likewise a point and line transformation; i.e.lireear point
transformation, which was to be proved.

The general linear transformation for which the imaginary circle retaisiposition
contains seven essential constants, and, as is welikkngan be composed of
translations, rotations, and similarity transforrmati. The corresponding conversion of
the space, which likewise depends upon seven constants, can themabacterized by
saying that it takes the linear compldx= 0 and a line in it (const. = 0) to themselves.
This transformation is likewisthe most general one that transforms a special linear
congruence to itself.

By an analytical argument, one finds, in the followingywthat aranslationof the
spaceR corresponds to a linear point-transformation of theespa A translation, when
regarded as a sphere transformation, is expressed by th@esua

X1 =X2+A Y1=Y2+B, Z43=2+C, H;=H;,
and they give, by using formulas (2) in § 9:
rh=ro+a, S =% +b, p=p+e o=c;+d
By substituting this expression in the equations foraggtt line:
MZ=X—0, SI1Z=Yy-0i,
one finds the definition of the transformation in quost
=2, X1=X+tazn+c, yi=y2+bz+d

Likewise, it is easy to determine a conversion of spacer that corresponds to
similarity transformation. The equations:

X1=mX, Yi=mY,, Zi=m%, Hi=mhk
give, by an application of the formulas (2) of § 9:

rn=mr, S=ms, PL=Mpy, =Moo,
equations that can define a transformation that carbalstetermined by:

=2, X1=mxz, yi=my-.
The latter equations define a linear point transformatioger which the points of two
lines preserve their position.
By a geometric argument, | will prove that rotatiomaitions of the spade also go

to transformations of just that sort. L&te the rotational axis, and lgt, N be the two

points of the imaginary circle that are not displacedHhgyrotation. It is then obvious
that all imaginary lines that cét and likewise go throughl or N, preserve their position
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under rotation, and consequently the image points thahss@ciated with these lines,
which lie on two lines, also remain unchanged under theseonding conversion of the
space.

37. A transformation by reciprocal radaf the spac® transforms points into points,
spheres into spheres, and finally, lines that interdeetirhaginary circle into similar
lines, and thus the corresponding conversion of the spage a linear point
transformation that takes the linear compiex O to itself. If one further remarks that
each transformation by reciprocal radii leaves thetgoand rectilinear generators of a
sphere unchanged then one sees that under the corregpor@diprocal point
transformation of the spaaethe points of two lines keep their position. Klein has
remarked that this transformation can be composed ofregiprocal transformations
with respect to two linear complexes that are in latron, and indeed, in our case= 0
is the one complex, while the other one is mapped teybieem of spheres that intersect
perpendicularly under the transformation that is basegeciprocal radii.

A surfaceF that goes to itself under a transformation by redgl radii is thus
mapped to a congruence in the spadhat is its own polar with respect to a linear
complex that is involution with respect kb= 0. The associated focal surface is its own
reciprocal polar with respect to each of the two cowgdethat lie in involution, and
consequently the system of its double tangents decompusethiee congruences, one
of which the complexd = 0 belongs to, while the latter is included in the second
complex.

38.0ne considers the most general line transformationbeotpace under which
intersection of two lines is an invariant relation, amdhe other hand, in the spdethe
corresponding conversion that obviously takes spheresspiteres, and spheres that
contact each other into other ones of that type. Unler aforementioned line
transformations, all tangents of a surface transfotmtimose of a second one, and thus,
in particular, the principal tangents of the two surfam@sespond to each other, whether
the transformation in question is a linear point trams&dion or a linear dualistic
transformation. Under the corresponding transfoiomabf the spacer all three-fold
infinitude of spheres that contact a surfd&ego to all spheres that have the same
relationship to another surfa¢e, and, in particular, the principal spheres of the two
surfaces correspond to each other. From this, itvislithat the lines of curvature of the
surface correspond to each other, in the sense thaedw@ation:

(1) F(X1, Y1, Z1, P, Q1) =0

is true for all points of a line of curvature Bnthen the equation that one obtains when
one replaces the values of the quantités Y, Zi1, P1, Q1) in (1) with (X3, Yz, Z5, P2, Qo)
is also true for all points of line of curvature Bn.

I will now prove that we obtain all transformations for which, on the one hand,
contact is an invariant relation, and, on the other, lines of curvature @rar@nt curves
when we apply our map to all linear point transformations (or linear dualist
conversions) of the space R.
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To prove this, | remark that there are two typesuofases whose curves are all lines
of curvature: spheres and imaginary developable surfacesctimddin the infinitely
distant imaginary circle. It is clear that the deditransformation must take each such
surface into one that likewise belongs to one ofdhestegories, and indeed, one then
conjectures that, in particular, spheres must go tersgh This is also the case. Namely,
the aforementioned imaginary developables satisfy the@pdifferential equation:

1+P*+Q* =0,

and thus the corresponding surfaces aiso satisfy a partial differential equation of first
order:

F(x,y,zp,q) =0.

Among the integral surfaces themselves, one can find at antbsee-fold infinitude of
spheres, and thus spheres cannot generally go to imadeaippables.

Our transformation is thus a sphere transformato, indeed by our assumptions,
one for which spheres that contact each other go tor adbheh spheres. The
corresponding conversion of spaceis thus aline transformation for which the
intersection of lines is an invariant relation, and thigell-known to be the case for the
linear point transformations and the linear dualistingfarmations.

If one remarks that all point transformations for whlioes of curvature are covariant
curves takeinfinitesimal spheres tanfinitesimal curves, and that consequently these
conversions are the most general point transformationswhich similarity at the
smallest scale is preserved then one can statellbwifay theorem:

Under our map, all linear transformations of the space r that take the earijpt O
to itself go to all point transformations for which similarity at theallest scale is
preserved.

Likewise, upon considering our previous theorem, we againwittibut difficulty
the following theorem that was first proved by Liouville:

Each point transformation for which similarity at the smallest sajgeserved may
be the composition of a transformation through reciprocal radii and a motion.

39. As is well-known parallel transformations- by which, we mean transitions from
one surface to a parallel surface — take lines of curvatunees of curvature, and in fact
it is easy to recognize that they are the imagesnetti transformations of the space
From (36), the equations:

X1 =X, Y1=Y2, Zy =25, Hi=H;+A
correspond to relations of the following form:

7 = o, X1=Xt+tazn+bh, yi=Yy>+bz+d,

from which my assertion is proved.
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Bonnet has often considered a transformation thdefieed by the equations:

Z) =iZ,\J1+P?+Q2, X1 = X1+ P2 Xo, Yi=Y1+Q:2Z,.

Bonnet showed that this transformation is a recalrone, that the lines of curvature go
to lines of curvature, and finally, that the redais:

(1) {1 =1Hy, Hi=-i1¢

come about, assuming thdi andH, denote the curvature radii of corresponding points
and that{; and{; are thez-ordinates of the associated curvature centers.

The Bonnet transformation is, as we will likewiseve, the image of a reciprocal
conversion of the space r with respect to the lirceenplex:

Z+iH=0.

From Klein, the coordinates of two lineXy( Y1, Zi1, Hi), (X2, Y2, Zo, Hp) that are
conjugate to each other with respect to this coxngdeisfy the relations:

X]_:Xz, Y]_:Yz, Z]_:in, H]_:—iZz.

However, wherk, Y, Z, H are regarded as sphere coordinates, these eqdBtermine
a correspondence be*tween all spheres of the spade,in fact, the same one as the
Bonnet transformation)

As is well-known, among the linear transformatioot space, the reciprocal
conversions with respect to surfaces of secondegeglay a fundamental role, and this is
closely related to the consideration of the comesiing linear sphere transformations.
The same can be said of the two sphere groupsDafpen cyclide, and indeed in the
following: A given sphere&), contacts two spheres from each gr&@upS, andz,, %, ;
Now, as is known, there are fifteen spheres besiahat contact thesg andZ, and
among them, one chooses the @adhat is associated wit@; in the well-known sense.
Q1 andQ;, are associated with each other by the sphereféoramstion in question. What
is especially noteworthy is the case in which tlee@egators of the one system on the
original surface of second degree that we assumledd to the linear complext = 0. In
that case, the cyclide reduces to a circle, anthdumore, the sphere transformation is a
point transformation. Here, we thus find a dististped conformal point transformation
under which a circle that lies in finite space esie as a fundamental structure.

*

) The Bonnet transformation associated the points afespéth spheres whose centers lie in a plane.
Here, if one replaces the sphere each time witinteesection circle of it with each plane then oinel$ an
interesting connection between the Bonnet transfooma#ind an idea that originated with Mdobius
(Abhandlungen der Séchs. Akad. 1854). Here, this suggedtiethef an element of a three-dimensional
geometry of circles in the plane, where one usesaheeccoordinates and radii for those coordinates.
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| summarize the most important result of these paragriapihe following manner:
Under my map, one finds the correspondences:

a. All linear point transformations anda. All transformations for which contact
linear dualistic transformations of space.| along lines of curvature is an invariant

relation.
b. All ¥ linear transformations for whichb. All conformal point transformations of
a linear line complex goes to itself. space.

c. All linear »'° transformations that takec. All conformal point transformations that
a special linear congruence into itself. are homographic transformations for
which the infinitely distant imaginary circle
preserves its position.

These developments give rise to some importantideoFor example, let us cite:

All transformations for which lines that intersect go to other suwbslican, from a
remark of Klein, be composed of reciprocal transformations with o¢sjeea linear
complex. Correspondingly, one finds that all of our transformations fornwimes of
curvature are covariant structures can be composed of transformations through
reciprocal radii and parallel transformations (dilatations).

If one, as Klein has proposed, considers the line oremwnplexes upon basing the
coordinatesX, Y, Z, H on a metric geometry in four variables then one edisitis that
my linear sphere transformation is identical with tlality of all conformal point
transformations of this sphere spage.

Meanwhile, | hope to be able to give an exhaustive repganof the latter theory
in another treatise whose main objective will be the ggonof a space af dimensions,
and indeed to give it for such a spacg.

Christiania, 10 October 1871.

) I have presented the corresponding theorem in then@éttNachrichten (1871, no. 7) for a space of
n dimensions. Moreover, let it be remarked that alfa@wonal point transformations of a spaRecan be
composed of motions, similarity transformations, amthdformations through reciprocal radii. Thus, in
connection with this, one has the theorem that wher, ..., X, are given functions ofy, y», ..., ¥, such
thaty d = D(yy, Y2 ..., ¥n) 2 dy?, one also has an equation of the form:

1=n 1=n
2 (6=X)2 =M1 Y, o Yo) (Y V) Z (MW7
i=1 i=1

™) I further suggest that every theorem in line or sphewnetry can be transformed in an interesting
way into a theorem about surfaces that emerge fromaritrarily chosen one by the application of all
translations and parallel transformations. Theofalhg two remarks are also important, which were
presented to me too late to find a place in the textnlthd line spaceg, there are, as is known, two types
of transformation for which lines that intersect gatber such lines. The corresponding transformations
of the spaceR do not divide into two classes when point coordinates are #sichones. 2) Line
transformations for which (const. = 0) keeps its pasitll give transformations @& for which surfaces
with a common spherical image go to other such surfatike new spherical image arises from the old one
by a conformal point transformation of the image sphé&tes Bonnet transformation belongs to them.



Part Il.

In the first part of this treatise, | believe that vgathe first complete analytic-
geometric interpretation of all space transformatitmrswhich contact is an invariant
relation. In particular, | considered a singular relaghip — I call it aphere mapfor the
sake of brevity — that takes the lines in a spate spheres in a spaé® which was
understood to mean that all surface elements that cedtawo consecutive points of line
went to elements of a sphere. On this, | based aspreamd— in my opinion -
fundamental connection between line geometry and spbemmetry, and as a
consequence, between several projective and metriceébedn particular, | showed that
the principal tangent curves of surfddeansform into the lines of curvature of the image
surfacer.

Since | have just used the words “sphere geometry,” I fauher remark that my
understanding of such a geometry up to now would not exist suhlémd already
addressed many particular problems and theories that telapheres. However, after |
sent the following treatise to Darboux in a somewhat different form that appeared for
the first time in the Berichten der Akademie zu Chns#ain the summer of 1871, |
learned that in 1868 he submitted an as-yet-unpublished ¢&réatise Paris Academy, in
which he addressed the same sphere systems thatddledesphere complexes. On the
same occasion, he communicated to me that he had jysiredea note in which he
treated several problems that | had considered in paragi&phsd 24 of my recent
treatise. In the following, when it is at all possibl will make citations in which | will
refer to Darboux’s relevant papers, which will hopefalbpear soon.

However, if sphere geometry exists on a par with §gemetry then the peculiar
connection between these two disciplines seems tolbease first pointed out by myself.
Plicker, whom one must thank exclusively for the ideawifg a tangible representation
of an algebra with four or more variables, chose theetb be the element of the sp&te

The validity of his choice is not in doubt, but ibwd, in my opinion, be likewise
appropriate to use the sphere. Certainly, line geonpeisgesses advantages that sphere
geometry lacks; the converse is, however, also trues ddmes from the fact that the
line, as well as the sphere, appeal to the imaginati@nspecial way, and, on the other
hand, the fact that there is a simple cycle of splramesformations that correspond to
those line transformations for which intersectionngrevariant relation.Ilt would thus be
profitable to develop line geometry and sphere geometry side byasitldave begun to
do, when one always evaluates the results in one geometry in tetmesotiiér one using
my map. If | have sometimes arrived at difficult problerhen this is essentially due to
the fact that lalternately established the presentation in terms of lines and epher
have retained this method, which was, for me, the péttiscovery, in my present
presentation, although | fear that the frequent switchfrgeometric pictures will create
difficulties for the reader.

) I learned of the recent relations between Darbowdsk and my own from the editor. Cf., the
conclusion.



Third Section
On the theory of partial differential equations in threevariables.

In this section, | will seek to apply, on the one thathe geometric concepts that
Plucker introduced in his last works, and, on the otherafinementioned developments
in the theory of partial differential equations. Oresily recognizes that under the
aforementioned transformation a partial differentiquaion of arbitrary order whose
characteristics arerincipal tangent curveson the integral surfaces will go to a
differential equation of the same order whose charstics ardines of curvature One
can base an interesting parallelism between severpbriant classes of partial
differential equations. Along with them, | include, a& will see later, certain
differential equations whose characteristicsgaedetic curves.

The following developments will have, to some exteisingular character, insofar as
| will only be concerned witlspecial classes of differential equations. Thus, | must
suggest that the path that we follow here, namely trigmtment of partial differential
equations in connection with an extended geometric nosie@ms to be a method by
which one can expect progress in the direction thandé set out in.

On some partial differential equations of first order.

First, | consider three classes of partial diffeledrequations of first order that can be
transformed into each other, and which | will denoteth®y symbolsD;1, D1, Dy3, for
brevity.

1) Di1. The characteristics are principal tangent curvethenntegral surfaces. To
a certain extent, as | will show later, the equatidnscorrespond to line complexes and
line congruences.

2) Di2. The characteristics are lines of curvature. Each Byg corresponds to
either a sphere complex or a sphere congruence.

3) Dis. The characteristics are geodetic curvesH Henotes an arbitrary, known
function ofx, y, z, and, as usuap, g denote the partial derivatives pivith respect to
andy then eaclb;3 can be written as follows:

2 2 2
M- g+ (G_Hj {GHJ {GHJ -

0X oy 0z a_y 9z

These equations are, we remark, onlgefonddegree with respect fpandg.

From the contents of the following chapter, | furthaggest that the determination of
geodetic curves on a surface, to some extent, comestlfi@imtegration of a particular
Di,or D1;. As a result, the theory of geodetic curves up to nambe realized in the
new theory of Pliicker complexes.
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§ 14.

Partial differential equations of first order whose chasacteristics are
principal tangent curves on the integral surfaces.

40.We have found (83.10) that when the characteristic curvagartial differential
equation of first order are enveloped by the lines of aclimaplex, the characteristics are
principal tangent curves on the integral surfacks.On the other hand, it is easy to
recognize that each line congruence corresponddit@ar partial differential equation
of first order whose double infinitude of characteristesnamely, the lines of the
congruence — appear as principal tangent curves in theahsegfaces. Conversely, we
will prove that there are no other partial differehéiquations of first order that possess
this property than those of the two types.

If we write a general partial differential equatiorficgt order in the form:

F(x,y,zp.a)=0

then we must regard as a function oX, y, z, p, g that is determined in a general manner
such that at any arbitrary point of an integral surféeedirection of the characteristic
coincides with that of the trajectory. Namely, tiveo aforementioned directions lie
harmonically with respect to the two corresponding ppalctangents, and if they thus
coincide then they will likewise be identical with angipal tangent. Following Monge,
however, the equations:

oF oF oF oF oF OoF
—dy—-——adx=0, —+p— |dx+| —+g— |dy=0
op Y 0q (ax pazj (ay azj y

determine the directions of the characteristics andr#jectory, respectively, and thus
our problem comes down to that of determining the genatagral of the partial
differential equation:
(1) a_F(a_F.i. pa_Fj.i.a_F 6_F+ qa_F =0

op \ 0x 0z) 0qloy 0z

This equation may be integrated by the usual methods; sieacgould then obtain the
solution in a form that is not easy to interpret,wik find it preferable to approach it in
an indirect way.

41. If we first assume that the desired partial diffeiedreéquationF = 0 is nonlinear
then, as is well-known, it corresponds to a thred-fafinitude of characteristics, and
thus these curves satisfy omgeequation of the form:

") In the course of a conversation in the summer of 18&@hdlix communicated to me that he was
aware at that time of the theorem that every limagex determines a partial differential equation of first
order whose characteristics are principal tangent curves
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f(x,y, z, dx, dy,d2 = 0.

Here, if we re placg andz with the equivalent expressions:

_ (ydx— xdy+ xdy _xdz—( xdz zdx
y - ) Z=
dx dx

then the equation of the characteristics Q) takes the form:

xdx, dy, dz (x dz—z dx, (y dx—x dy), ¢(X)] = O,

and indeed we know that wheitx) is a constant, and only then, the characteristitds wi
be enveloped by the lines of a line complex. When omeaiminates the quantities,
dy, dzfrom the equations:

X=0, Xoc =PP, Xy =PCQ  Xo,=— P

according to the ordinary rules, in whighfalls away, one obtains the original partial
differential equationK = 0) in the form:

X, Y, 2, p, 4, ()] =0,

and indeed one wonders here whether the expregstam satisfy equation (1) in other
cases than wheg(x) is a constant.

If one carries out the operations arthat are given by (1) then what remains is a
reduction that is based on the fact that in the goase7satisfies equation (1), namely:

dmdn

dp dg dx
an equation that splits into three equations:

a_lT:O’ a_lT:O, %
ap Y ox

If 077/ dp is equal to zero them does not enter into the equatiars O at all, and it can
then be put into thienear form:

q=o(x Y, 2);

however, we have casually excluded this case. The equatidsp = 0 anddz/ 0x = 0
say, respectively, thardoes not contain the quantigyand thatg is a constant, and thus
my initial assertion is proved, insofar as it reldtesonlinear equations.

We now go on to the case in whi€h= 0 is a linear partial differential equation.
There is then a two-fold infinitude of characterist@sd it is easy to recognize that they
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must be straight lines if the property in question isrterethe picture. Namely, if we
consider a poinp that goes through a characteristjcand finally, a variable infinitely
close characteristic’. It is clear that the tangent plane of the corredmonintegral
surface at the poird varies withc'; however, this plane shall osculate the cura this
point, and thug must possess the property that its points correspoan itadeterminate
osculating plane. This is, however, the case onlgti@ight lines.

The results derived thereby may be summarized in tlseviog manner:

There are two distinct classes of partial differential equationfirsif order whose
characteristics are principal tangent curves on the integral sugac@ne of them
consists of linear differential equations whose rectilinear charadtesisdefine a
congruence. The other class corresponds to the Pliicker line complée, sense, that
the characteristics of such a differential equation will be envelopethdyines of the
complex. Thus, the problem of integration comes down to this: Finchdse general
surface whose two-fold infinitude of principal tangents belong to a systargiven line
complex. We denote the totality of these two classes bynibelsp. )

If D11 corresponds to a line congruence then the associatdddoface is its singular
integral. In the second case, as Klein has remarkedetoone finds the developable
surfaces of singular lines amongst the integral surfagles\g with the singularity
surfaces of the line complex in question.

42.1n connection with the contents of this paragraph,l@gethe following theorem:

On a surface, there are a single infinitude of curvesseltangents belong to a given
line complex. If these curves have an enveloping cunwich is not true, in general
then two cases are possible: Either the surface cerfaetcone of the complex whose
vertex lie on the enveloping curve, and then it is goalctangent curve, or the tangents
to the enveloping curve are double edges of the cone @bthplex in question; in the
latter case, one can conclude nothing.

It was by an application of this theorem that | deteadithe principal tangent curves
of the tetrahedrally-symmetric surfaces (Gotting. Machan., 1870). [Clebsch, by
another method that | will discuss later, was alreledlyto this determination without
having published anything about it. Later (Bulletin, Nov., 18f@p, 8), Darboux
obtained the same result as a corollary to a gedetarmination.] Each tetrahedrally-
symmetric surface has the aformentioned relationship aitine complex whose lines
intersect the fundamental tetrahedron associated théhsurface with constant double
ratios.

") Klein remarked to me that the results of this paragn be proved quite easily and lucidly by a
geometric argument.
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§ 15.

Partial differential equations of first order whose chasacteristics are
lines of curvature on the integral surfaces.

43.We know that our sphere map takes the elements ofwifecef to the elements
of a surface~. Obviously, a pair-wise union between all curves oftthe surfaces is
thus established, and indeed, the principal tangent curviesnoparticular, correspond to
the lines of curvature oR. From this, it follows that two surfacésandf, that contact
each other along a principal tangent curve generally garfaced-; andF, that have the
same relationship along a line of curvature. This theditam suffers an exception
(which admittedly will not come under consideratiortha sequel), and in order to make
everything as clear as possible, | will not go into ittar here.)

From 8§ 6.18, 20, we known that when two spacasdR are reciprocally related to
each other by a system of equations:

Fix, v,z X, Y,2) =0, F.(x, v,z X, Y,2) =0,

a surface element of one space that contacts an dkmyerone of the complex is
mapped to a similar element in the other space. Noweneral, in any space there is
obviously afour-fold infinitude of elements in this distinguished position. tewer, if
the elementary cone of the complex in the spaseaplane pencil of lines then there is
only athree-foldinfinitude of such elements in— | denote it with the notatiom— that
corresponds to thiur-fold infinitude of distinguished elements in the spacdr. An
element e then corresponds to a single infinitude of elements E.

This is true especially for our sphere map. Oome distinguished element goes
through each point af, namely, the one that is associated with the poiguestion by
the linear compleX = 0. On the other hand, the distinguished elemérae the ones
that satisfy the equation:

1+P?+Q*=0,

whereP andQ shall denote the partial derivativesZoWith respect taX andY, as before.
As a geometric argument showitsis always the single infinitude of elements E that are
connected with a line of null length that correspond to these elemimtiseespace r.

44.From the developments above, we can state thevioliptheorem:

If two surfaces fand % contact each other along a principal tangent curve, and the
tangents to this curve do not belong to the linear complex then the imégeesut and
F. contact each other along a line of curvature. In the excluded cagangknts to the
surfaces f and % that go through a point of the common principal tangent curve belong
to the complex H: O, and then one can only conclude that the image surfacEs &e

") We must defer to another work a thorough discussioallasf the peculiarities that come about
under the Nother map of linear complexes and my own sph&pethat was based upon it with respect to
the fundamental structures of the two spaces.
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inscribed in a common developable surface that includes the infinitédydimaginary
circle (8 26, 84Db).

If one considers the fact that there is no partiéidntial equation whose curvilinear
characteristics are all enveloped by lines of lihear complexH = 0 then one may
conclude (8 6.17) that our sphere map takes Baginto a partial differential equation
whose characteristics are lines of curvature. Omther hand, we obtain all differential
equations with this property in this way, because thevotig theorem is true without
exception:

Two surfaced=; andF; that contact each other along a line of curvature gnage
surfaces i that contact each other along a common principal targyewve.

The result obtained in the foregoing paragraphs goes @vee following one:

There are two distinct classes of partial differential equationfirsif order whose
characteristics are lines of curvature on the integral surfaces.atpus of the first class
can thus be characterized by saying that they admit the totality ofvth#old infinitude
of spheres — a sphere congruence — as a complete integral. The gergynall imill thus
consist of a tubular surface, and its circular lines of curvature heedharacteristics.
The second corresponds to the sphere complexes. Geometricallprottiem of
integrating such a differential equation comes down to this: Find the mosraje
surface whose two-fold infinitude of principal spheres belong to a systeangiven
complex. | will denote the totality of these two classedgymbol . )

45. In his work: Partielle Differential-Gleichungenpages 127-129, Du Bois-
Reymond has posed the problem that we just raised. Abcw itemarked that if the
characteristics are lines of curvature then this als® d¢ase with the trajectories.
However, characteristics and trajectories then iatéreach other orthogonally, and
therefore the stated problem (8 14.40) will come down ¢ointegration of the partial
differential equation:

oF | oOF Bif oF oF | oF QF oF oF | OF oF
——+ +0—||——| —+ + +— - =0.
ax{ap q(p op qaqﬂ 6y{6p p[ ap qa—qﬂ 02{'@6—;) qa_J

Du Bois-Reymond carried out this integration in somey\&@mple cases ), and thus
raised the conjecture that no substantial analytidatulties would arise in the general
case, as well. In any case, the present solution bagain special interest.

Here, it might also be appropriate to remark thawd surface$; andf, have contact
of n™ order with each other along a principal tangent curve therimage surfaces in
general have the same relationship along a line of auevatAs a consequence, under
our sphere map, a partial differential equatiom®Bforder whose characteristics are a
system of principal tangent curves on the integral sesfadll go to an equation of the
same order whose characteristics are a systemesfdihcurvature.

") Darboux has communicated to me that he has also retngrke the problem of determining a
surface by a property of the principal spheres, in ainestanse, leads only to a partial differential equation
of first order. (Cf., the citation to Darboux in 8§ 24.)

") The first two types ob;, for Du Bois-Reymond were: The developable surfacdsciraimscribe a
surface and the surfaces of rotation that are assdodth a given axis, which correspondactmgruences
in alinear sphere complex. The geometric meaning of his third g/pet clear to me.
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46. | will mention here how some metric theories bargeneralized.

As is known, the concept of the lines of curvatura stirface can be extended in the
following way: Let there be given a four-fold infinitudd surfacesU, an arbitrary
surfaceF, and a poinp on it. There is always sométhat has a stationary contact with
F atp, and thus- intersects in a curve with a cusp. If one consitleestangent to this
cusp then the continuous sequence of mutually intersecdsariated directions define
curves that | will refer to as thé-lines of curvatureof the surfacé-.

The case in which all can be derived from a certain surfa&eby the application of
all translations and parallel transformations is wodhyote. All theories about lines of
curvature, and especially the ones that are given intrihédise, can be extended, in a
certain sense, to this case (8 13, conclusion). thas, by way of example, always
possible to find all surfaces whos&klines of curvature possess the property that the
surface normals that are erected at its points ardlgdandgth a plane. Namely, by a
certain transformation, this problem corresponds to tia¢ Bonnet solved: Find all
surfaces with planar lines of curvature. One furthertha validity of the theorems:

a) If a surface is mapped to a sphere by the ordinarjotetthen théJ-lines of
curvature go to a family afrthogonalcurves.

b) The determination of thd-lines of curvature of a surfade can come down to
finding the lines of curvature of a certain other surf@ce

In particular, ifUy andF are minimal surfaces or surfaces that are parall&hém
then ® is also a surface of that type, and thus thénes of curvature of can be
determined.

The case in which all surfaces are similatJtand similarly located also deserves a
special examination. The directions of thdines of curvature that are associated with a
point then have a harmonic position pair-wise with ressfmethe principal tangents of the
surface, as they do with respect to the principal tangénbe stationary contacting.

Finally, if one assumes that &ll are an infinitely cylinders — i.e., a straight lines —
then theU-lines of curvature are identical with the principalgant curves to the surface
in question.

§ 16.

Partial differential equations of first order whose chasacteristics are
geodetic curves on the integral surfaces.

47.The developments of this paragraph may be based upavethienown theorem:
If two surfacesl andU have a contact ofi" order with each other along a line of
curvature then their center surfac@sandC, have the same relationship with respect to a
common geodetic curve.

If one considers, on the one hand, the integral sesfaaf aD;, and among them, the
surfacedJ of a complete integral, and on the other hand, thecaged center surfac€s
and C, then one easily sees (8 6, 17) that the surf@estisfy a partial differential
equation of first ordeD;3 whose characteristics are geodetic curves and thusitiages
Cn define a complete integral.
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In general, we can say that the integral surfacespaitial differential equation of’
order D, whose characteristics are a system of lines of tuwreacorrespond to center
surfaces that satisfy a differential equation of thene orderD,3, and indeed the
characteristics of a system are geodetic curyes.

From the above, any Pcorresponds to a differential equation whose characteristics
are geodetic curves; the converse, by comparison, is not true, andaseguence the
Dn3 are not the only partial differential equations that possess the progeatytheir
characteristics are geodetic curves.

48. For the determination of the general form of the equai;3, we choose another
path, in which we lean on the theory of reciprocal ewmomplexes that was developed in
section one.

Namely, let an arbitrary line complex be given ia #pace and let a corresponding
sphere complex be given that may be represented by an equation:

F(X, Y, Z H) = 0.

Thus, on the one hand one must reg&sdY, Z, H as line coordinates (8 10.30) with
respect to four linear complexes that lie pair-wisenwolution, and, on the other hand, as
sphere coordinatedf we now regard the centéX, Y, Z) of an arbitrary spher€X, Y, Z,
H) of the aforementioned sphere complex as the image of thgXn¥sz, H) then we
obtain a map of the line compleX§ Y, Z, H) = 0to the point space Rnder which each
line of the complex corresponds to a definite point, witiéze is a number of lines in the
complex that map to the same point, namely, therasreany lines as the degree of the
equationF(X, Y, Z, H) = 0 with respect tél. The lines of the complex that go through a
point correspond to the points of cui@eand it is clear thadll C define a curve complex
that has a reciprocal relationship to our line compless we considered in the first
section. Here, we must recall that the partial deifiial equations of first order that are
associated with two reciprocal curve complexes are atpnt’/to each other in the sense
that the solution of the one gives that of the other.

In the equations of a line:

rz=x—p, Sz=y-g

if one substitutes (8§ 9.27) the values:

p=3(X+iY), s= $(X-1iY),
o=1(Z+ iH), r=—<(Z ¥ iH)
then the relations:
—(ZF IH)z=2-(X+1Y),
X=-iY)z =2y—-(Z% iH),

") Integral surfaces that correspond to a differentjahéion ofn™ order whose center surfaces satisfy a
certain equation ofn(+ 1)" order. Besides the center surfaces, the latter equptissesses still more
integral surfaces in the general case.



On complexes — in particular, line and sphere complexes 45

in which one regardl as the function oX, Y, Z that is determined biy(X, Y, Z, H) = 0,
determine the aforementioned map of the two spaceenefnow (8 3.6) differentiates
with respect t&, Y, Z:
—(dZF dH) z=- (dX+idY),
dX—=idY)z=- (dZ£ dH),

and eliminates, y, z between these two (and the original) equations therobtains the
differential equation of the curve complex in R:

dX? +d¥Y? +dZ? + (i dH)? = 0,
which one can also write:
dX® +d¥Y +dZ? = dH?,

an equation whose geometric meaning is that the two spf¢r¥gsz, H) and (X + AX, Y
+ AY, Z + AZ, H + AH) contact each other, so the corresponding lines intersect each
other.

The elementary cones of the complex:

oH oH oH jz
oY 07

dX? +dY? +dZ2 = (a—xdx +— dY+— dZ| ,

as their equation shows, contact the infinitely distamaginary circle in its two
intersection points with the plane:

OH g+ v 47— 0
X ey Tz

and thus they are the cones of revolution whose axsepsss the direction cosinést /
0X, 0H / dY, 0H / 0Z. We thus obtain the following obvious presentation of thirve
complex:

The elementary cones of the complexes, whose apexes lies on @nyashitface in
the family H= const are cones of revolution whose axes are the corresponding normals
to the surface in question. The angles of these cones vary, expuidieon:

dX? +d¥? +dZ* = dH’

shows, in such a way that the infinitely close surfacesGand H= C + AC cut out
segments of the same magnitude from the generators of this cone. higoimnfollows,
as we will likewise show, that the surfaces H = C intdr#iee integral surfaces of our
D13 in equidistant curves; thus, the associated orthogonal curves are, asovenk
geodetic lines and likewise characteristics with respect toOhe. This geometric
interpretation of a [; easily gives the general formula for them:
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2
a_H a_HQ___ ’1+ PZ R/ ZH (GHJ 1,

oX Y 0Z

an equation that we find later by an analytical method.

One considers an arbitrary cutkzéhat lies orH = C and the points of the elementary
cones of the complex that are associated with hipsg infinitesimal intersection curve
with the surfaceH = C + AC determines two enveloping curvks among which we
choose one of them; it is known that the surface shat lies betweek andk' is an
integral surface. By repeating this operation, dnds a family of curvex in the
successive surfacé$t = C whose totality defines an integral surface, and ti follows
from the foregoing that all of tHeare equidistant curves. Now, the tangents kcaad
the axis of the associated cone of the complexlarays perpendicular to each other, and
this cone contacts the integral surface in questiimg a direction that likewise
intersects the tangent toorthogonally. The characteristics and the curves k define an
orthogonal system, as we asserted earli&dhe curvek are, however, equidistant, and
thus we again find the theorem that the charatiesief aD13 are geodetic curves on the
integral surfaces.

In order to determine the partial differential etjon that is associated with the
differential equation:

2
oH oH oH Zj 0,

W=dX +d¥ +dZ - (——dX+——dY+——d
X oY 9z

one must eliminate the quantitieX, dY, dZ from the equations:

a_W:pP a_W:pQ a_W:—p
X ) B V4 ’

and one thus finds fdhe general form of the partial differential equationsg D

2
a_H g_iQ——_1/1+P2+QR/ ZH (aHj -1,

oX Y 0z

assuming that H denotes an arbitrary known function of X, Y, Z.

From our previous developments (8§ 6.18), it folotvat the integration of ;3 can
come down to the determination of the principabtart curves of the corresponding line
complexes. The characteristics in question ane itheeed reciprocal curves with respect
to the mapping equations:

—-ZFH)z=X-X+1Y),
X=iY)z=2y—-(Z+H),
and if one thus knows the general equation of @aesy®of curves then one finds the

general equation of the other one by differentraand elimination. On the other hand, if
we say that the integration o3 is equivalent to that of B, then what emerges from
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this, geometrically speaking, is that instead of detengiai surface by a property of the
principal cone, we look for the center surface. Bommployed such a transformation
for his determination of all surfaces with planar or sigla¢lines of curvature.

| communicated the aforementioned form fobg to the Akademie zu Christiania
(October, 1870) in a note in which | presented the tbltagsesD;1, D1, D13, among
other things. One obtains a symmetric form when osegthe problem in the following
manner: Find an equatiaP(X, Y, Z, H) = 0 such that when it is combined with that of the
sphere complex in questidh(X, Y, Z, H) = 0 it givesZ as the required function &fand
Y. | thank Klein for this remark (or really somethingttlsaequivalent to it), who was led
to it during his own line-geometric investigations (cf., seeond paper that follows this
one). On the other hand, Darboux just communicated t@Quwber, 1871) that he had
found a corresponding form by investigating sphere complexe

| shall summarize the most important result of theee foregoing paragraphs as
follows:

Partial differential equations ofhorder whose characteristics are principal tangent
curves or lines of curvature and a class whose characteristics ad@ege lines define
equivalent problems in the sense that they can be transformed into eacimoénsely.

In particular, if n equalsl then these problems correspond to examinations of
congruences and complexes whose elements are straight lines or spheres.

Here, it should also be remarked that just as themecigcle of conversions that take
the equationsD,; into equations of the same type — namely, all linear tpoin
transformations, together with all dualistic deformasiaf space- there is also a cycle
of conversions that preserves the character of theiegsiB,, andD,s .

§17.

On line complexes that possess infinitesimal linearansformations
into themselves.)

49. Line complexes that can be represented by an equatibe tdrm:
F(X,Y,2)=0
map to the spheres whose centers lie on the suffaceY, Z) = 0. This sphere complex
will now obviously be taken to itself by aarbitrary parallel transformation, or, what
amounts to the same thing, amfinitesimal one, and thus we can, from § 13.38,
characterize the line compldX(X, Y, Z) = 0 by saying that it admits an infinitesimal
transformation of the form:

7 = o, X1=Xt+tazn+bh, yi=y>+C2+d.

*

) Cf.,, Sur une certaine famille de courbes et de surfdog¥lein and Lie¢ Comptes rendus, 1870.
Ueber vertauschbare lineare TransformatiormsrKlein and Lie, Math. Ann. Bd. 4.
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One now remarks that the problem of finding the generadseinivhose center of
curvature lies on a given surface comes down to the problefinding the geodetic
curves of that surface. Our previous theories thustgaédollowing interesting theorem:
The determination of the principal tangent curves of the line comig}éxXyFz) = 0 and
the search for the geodetic curves on the surfg2e ¥, Z) = O are equivalent problems.
One must remark that the degree of the line complegualedo the order of the surface;
however, while the surface is arbitrary, the complexstnpossess the aforementioned
infinitesimal transformation into itself.

Among the linear tangent complexes of the sphere @K, Y, Z) = 0, | consider
the following one:

Fo (x-x)+ 2o (v- )+ %o (z- =0,
0X, oY, 07,

whose spheres intersect a tangent plane of thacg&f{X, Y, Z2) = 0 orthogonally (8
10.30). An arbitrary parallel transformation takée given complex, as well as the
tangent complex to itself, and thus we see thatetlm®mplexes contact each other in a
single infinitude of common spheres. As a redi, complexF(X, Y, Z) = 0 may be
regarded as the envelope of a two-fold infinitudéirear complexes. If we turn to the
representation of lines then we can define cormadipg line complexes to be envelopes
of a two-fold infinitude of linear complexes thatean involution with each other with
respect to a given linear complek= 0, and, in addition, contain a common line in it
(viz., the fundamental line of the spagécf., 8 10.30).

A two-fold infinitude of linear complexes that ireinvolution and contain a line of
the latter complex, moreover, envelopes a line dexnphose principal tangent curves
may be determined by seeking the geodetic cunese@tain surface.

In the next section, | will come back to the comeof this paragraph.

50. By the developments of the foregoing paragrapie will be led to pose the
problem of whether the determination of the priatipangent curves can always be
simplified when the line complex in question admig infinitesimal linear
transformation. The answer lies immediately in af@ementioned papers of Klein and
myself (cf., especially these Annalen, Bd. 4, pf). 8 Namely, we have directed our
attention to the fact that when an infinitesimangformation is known for a structure,
the determination of other structures that havergerturbed relationship with the given
one under the transformation in question can beplffied by a suitable choice of
coordinates, in general.

Thus, one must apply those curves that define geemetric locus for the
infinitesimal path that all points of space deserimder the transformation in question.
In particular, if we assume that the known transfation is a linear one then these curves
will be just the ones that Klein and myself exardime the form of space curv&¥ One
arranges the two-fold infinitude of curv&¥ in question in two ways into families of
surfaces:

Ul = A, Uz =B.

Thus, each surfacd; or U, goes to itself under the associated transformati@ne
further chooses a third family: namely, those stefa
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V=C

that emerge from an arbitrary one by the continuous @pn of the transformation in
guestion, and therefot@ shall be the parameter of the transformation.

If one now introducell;, U,, andV as the point coordinates then, by way of example,
the equation of each surface that admits a transfamatisumes the form:

F(Ul, Uz) =0.

Likewise, one can write a partial differential egaatiof first order whose totality of
elementary cones of the complex remains unchanged tineldransformation, in the

following way:
Flu,u, Y Vo
ou, ou,

which is, as is well-known, a step forward. In pattcpthis is the case with th#; of a
line complex that remains unchanged in its own right.

If we consider, for example, the four linear comp$Xe= 0,Y=0,Z = 0,H = 0 that
are pair-wise in involution, and a line complex whose eguas the following one:

F(é,i’_zjzo
H'H'H

then it is clear that each transformation amonrgsirfinitude:
X1=mX, Yi=m, Z1=m 2, Hi=mh

takes our complex into itself, and thus the assedi®i; assumes the form above. As
will be shown in the next section, a complex ofsetdegree with 17 constants belongs
to them, and indeed the same is true for the generaplex of second degree whose
singularity surface is a ruled surface. The comgdeof second degree with 18 and 19
constants admit no infinitesimal linear transforimat’)

51. Likewise, for the investigation of spatial stnuets that admit two infinitesimal
and permutable linear transformations it is prdferato make a special choice of
coordinates. First, one takes the single infiretodl surfaces:

%%ﬁzj = 0 may also be defined as the envelope of a two-folditudle of
linear complexes that are in involution with two givermpdexes. Among the principal tangent curves of
such a complex, there is a single infinitude of distinguidlaenilies. Each of them consists of a single
infinitude of curves of a linear complé& + Y2 + Z2—H? = 0. The aforementioned theorem is, at the same
time, a transformation and a generalization of thd-kmebwn theorem: Among the geodetic curves of a
surface there is a single infinitude of them whose tasgetersect the imaginary circle. The line complex
that is considered here possesses the characterigpiertyr that its singularity surfaces are ruled surfaces
with two straight guide lines. Each curved princigaident curve of such a ruled surface will also be

enveloped by the lines of a linear comp¥éx+ Y* + Z2 —H? = const.

) The line complexF(
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V=A

that remain unchanged under our transformations. Oribeefuchooses two distinct
infinitesimal transformationss, yfrom our closed system, and finally, two surfa&as
andC, . By a continuous application of the transformatifrasd yto these surfaces, one
obtains two families of surfaces:

Ul:B, U2:Cl

whereB andC denote transformation constants. If one now chodses, U, for point
coordinates then thdd;; of a line complex that remains unchanged under our
transformations takes on the form:

F V,a_v,a_v =0
U, 'au,

As is known, the integration of this equation comes dtona quadrature.

We thus come to a class of complexes whose prindgaent curves can be
determined. Among them, one finds, e.g., the complexecbrsl degree whose
singularity surface decomposes into two surfaces of seategree, which then
necessarily have four generators in question.

By way of example, one obtains a general determinaifothe geodetic curves on
any screw surface here. The totality of all spheresselctenters lie on such a surface
admits two permutable, infinitesimal transformatiors iself, namely, a screw motion
and a parallel transformation, and, from § 13, such detwnsof the sphere spaée
correspond to linear point transformations of the line spacerhus, theDi; whose
integration is equivalent to the determination of eachdgio curve belong to the
category that was mentioned in no. 51, from which, mg@®n is proved.

If one seeks the geodetic curves on a surface that admibfinitesimal linear
transformation for which the imaginary sphere cil@eps its position then one can, by
the method that was set down in no. 50, convert thibl@no into the integration of an
ordinary differential equation of first order in two vdilies. The lines of curvature and
principal tangent curves of this surface can be detern{iGéd the paper cited, Math.
Ann., Bd. 4, pp. 84.)

52.As a last example, | consider the well-known probl&md all surfaces whose
normals belong to a given line complex. Abel Transon has shown that this problem,
which leads immediately to an equation of the form:

F(x,y,z p, ) =0,

") It is, perhaps, nowhere stated explicitly that thisblmm is, in a certain sense, equivalent to the
following one: Find all surfaces that contain a fanofygeodetic curves whose tangents belong to a given
line complex. If one omits the developable surfaces fitee line complex in question then one expresses
the aforementioned probleimmediatelyby a partial differential equation of first order.



On complexes — in particular, line and sphere complexes 51

always admits a simplification) The same thing can be supported by the following
simple remark of Darboux (Bulletin, Nov., 1870, pp. 3): Tgarallel surfaces to an
integral surface are themselves integral surfaces.tofakty of all integral surfaces thus
admits an infinitesimal parallel transformation, ahdstthe equatioR = 0 belongs to the
category in number 50.

If we now assume that the line complex admits dmitesimal motion therk = 0
will be integrable. This is especially the case whendomplex can be described by the
rotation of a line congruence around a fixed axis. To thelong the linear complexes,
and in fact, it is also known although it is, perhaps, nowhere stated explicitihat all
screw surfaces that correspond to a certain screvoms#itisfy the specified equatién
=0.7) To them, belongs a complex of second degree wtingelarity surface consists
of a sphere and two parallel tangent planes to it, aradlyf, the well-known complex
whose lines intersect a tetrahedron with constant doabées, under the assumption that
two tetrahedral vertices lie on the imaginary sphéeidec

Darboux found, by means of his aforementioned remark, tthexe is another
homographic particularization of this complex that Biretd Chasles considered,
namely, the ones whose associated equd&tionO can be integrated. This also allows
one to conclude that in this case, as Reye has remaokedcan give a two-fold
infinitude of surfaces of second degree whose normaléaseof the complex.

§ 18.

Trajectory circle. Trajectory curve.

53.0n any sphere of a sphere complex there lies a disghngpl circle that can be
regarded, to some extent, as the neighboring sphererdén to clarify the meaning of
this statement, and to find the equation of this cinclereover, it will be preferable to
resort to line geometry.

Following Plucker, there is a single infinitude of lineamplexes that contact a given
complexF(X, Y, Z, H) = 0 in a line Xo, Yo, Zo, Ho) that belongs to it; we understand this
to mean that the infinitely close lines are all comnomnhese complexes. A tangential
complex is distinguished in our coordinate system, ngrited following one:

Mo (x - x5+ To (v )+ o
X, oY, 37,

H-Hy= (Z— %)

When we revert to the sphere picture, this consisédl spheres that intersect the plane:

Journal de I'Ecole Polytéchnique, 1861.

") A linear complex admits two infinitesimal and permutaihotions. As a consequence, the
associatedF = 0 possesseshree infinitesimal and permutable transformations intself. The
corresponding partial differential equation of the line spaadmits three such transformations, which are
linear point transformations. From this, one may concludg, éat each screw motion gives a two-fold
infinitude of screw surfaces on which the screw limeguestion are lines of curvature.



On complexes — in particular, line and sphere complexes 52

_ 9H,

—Ho= X, (X=Xp)+ °(Y ¥)+ Z:(Z— %)

like the sphere:
= (X=Xo)* + (Y=Y)* + (Z - Z0)".

One sees that the last two equations, or theecti@t they represent, defines the
neighboring spheres. In particular, the sphefg Yo, Zo, Ho) will contact a single
infinitude of neighboring spheres at the pointsto$ circle. One can remark that our
circle likewise lies on the elementary cone ofc¢bhenplex:

2 2 2 _ aHo o 0
(X=Xo)" + (Y-Y)"+(Z-Z9)" = oX. (X =Xp) + (Y ¥+ azo(Z %)

that is associated with the spheétg and this is geometrically evident since this cone
defines all directions from which one must go wkaarting at the pointd, Yo, Zo) if the
associated sphere should contact the original ¥geYq, Zo, Ho).

One now recalls the geometric meaning of the pmblintegrate thé;, that is
associated with a sphere complex, so one seese#itdt integral surface that has a
stationary contact with the coréy contacts it at a point of a circle; Thus, as Il wil
likewise prove, the associated tangEiit (see the figure) to the circle is the always the
corresponding trajectory direction of the integraiface.

The linePO, whereO is the center of our sphere,
contacts— namely, atO — a geodetic curve that lies
on the center surface of our integral curve whose
tangents meet the integral surface at the points of
/: characteristic (viz., a line of curvature). If wew let
P' denote one of these points that lies infinitelysel
to P then the plane OPP osculates the
aforementioned geodetic curve atO, and
consequently is perpendicular to the pla@€T,
which likewise contacts the elementary cone of the
complex:

2 2 2 _ 0 0 0 _
(X=Xo)" + (Y-Y)"+(Z-Z9)" = {ax (X=Xo) + (Y ¥+ Zo(Z %)

along the lineOP and the center surface at the pdnt The elementary lin®T thus
intersects the direction of curvatufP orthogonally; PT is the direction of the
trajectory. We shall then call our circle the ecpry circle of the sphetdy .

Any sphere of a sphere complex will contact neighgospheres of the complex at
points of a certain circle. All integral surfaced the associated {3, for which the
sphere is a principal sphere, contact it at a paht circle, and thus the corresponding
tangent to the circle is always a trajectory ditect This circle, which | refer to as the
trajectory circle, plays a meaningful role in thevestigation of sphere complexes.
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All spheres of a space that contact a given spbkeeecomplex at the points of the
trajectory circle define a sphere congruence that isnlage of that special linear line
congruence that is common to all of the linear tangeotimplexes that are associated
with a line of the complex.

54.0ne obtains a tangible statement of the problemtegrating a giver;, in the
following way: Every partial differential equation fufst degree:

Fx,y,zpa)=0

selects a four-fold infinitude of surface elements otsgaom the five-fold infinitude of
all of them. In particular, the surface elements tt@arrespond to &, distribute
themselves into a three-fold infinitude of familiescle®af which is defined by a single
infinitude of elements that lie on a sphere of theegicomplex and connect with the
trajectory circle on it.

Here, the following remark might find a place, thaieocan find the differential
equation betweelX, Y, Z, dX dY, dZthat the trajectories of the associaieg satisfy
from the equation of a sphere complex= F(X, Y, 2) in the following way: One
eliminatesXo, Yo, Zo from the two equations of the trajectory circles:

U= (X=X’ + (Y=Y’ +Z-Z)°+ HZ =0,

Mo (x-x,)+Hoy-yy+ Moz 720,

V=Hp+
oX, oy, 37,

and the corresponding differential equations:

Y 4+ Y v Y yz= 0
X ey ez
N ax+ Y qy+2Y g4z= o0
X ey Y az

and the desired equation emerges.

Finally, in order to find the partial differentiafuatiorD; itself from the equation of
the sphere complex one can proceed in the followiay: The trajectory circle satisfies
the equation:

" o+ O oH oH,

S XX+ (Y=Y o

(2= 4) =0,

so the surface elements of our sphere that conadtie circle, which therefore satisfy
the equatioD,,, further satisfy the following relations:

H,P 7_70=_~Ho

J1+P?+ Q" P eQ Ji+PP+Q?

(2) X-X=
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Upon substituting these values in (1), one finds that:

J1+P?+ Q% + pHo | QaHO oH, 0,

X, <oy, 0z,

and in this equation one must replace XoeYo, Zo with the values of these quantities
that one takes from (2), as expressed in terms ¥fZ, P, andQ.

In the latter analytical developments, we alwaysught ofHy as being a given
function ofXo, Yo, Zo.

55. Among the elementary cones of the complex Df awhose apexes lie in a plane,
there is a single infinitude of them that contdwgs plane. The locus of the apexes in
guestion is a curve whose tangent (as a trajectory direction) is abvagrpendicular to
the contact direction of the corresponding coneth@fcomplex (viz., the direction of the
characteristic). The curve may also be defined as tgeometric locus of all surface
elements of our plane that satisfy the givep.D One can likewise determine all
elementary cones of the complex whose apexes lanarbitrary sphere and look for the
locus of points whose associated cone contactsgihere. | also assert thhe tangents
of this curve and the corresponding contact direction to the cone are orthogdmal.
order to prove this, all that is required is tofpem a transformation through reciprocal
radii in such a way that the sphere goes to a @adehe sphere complex goes to another
sphere complex. We call the aforementioned cunedrajectory curveof our sphere,
and it is clear that when the sphere belongs t@dingplex the trajectory curve splits into
the trajectory circle and a second curve. We dsm say thathe trajectory curve of a
sphere is the geometric locus of all surface elements on itahsflysthe given b .

If the sphere is infinitesimal then the surfacenents of the sphere that connect with
the trajectory curve envelop the elementary cortb@tomplex in question.

The cone whose apex lies at the center of anranpisphere, and which contains the
trajectory curves of it, goes to the correspondmaymal conewhen the sphere is
infinitesimal; that is, to a cone whose generatesnormals to all integral surfaces that
go through the point in question.



