“Transformants: nouveau véhicule mathématique. Sythéseideaternions de Combebiac et du systéme
géométrigue de Grassmann calcul des quadriquaternions,” Ann. fde. ldes sci. de Toulouse (38
(1936), 103-148.

TRANSFORMANTS

A NEW MATHEMATICAL VEHICLE

A SYNTHESIS

OF COMBEBIAC'S TRI-QUATERNIONS
AND GRASSMANN’'S GEOMETRIC SYSTEM

THE CALCULUS OF QUADRI-QUATERNIONS

By Michel MARKIC (Markitch)
Professor emeritus, Ljubljana (Yugoslavia)

Translated by D. H. Delphenich

PREFACE

The work of Grassmani(sdehnungslehyeand Combebiac’s tri-quaternions, which
are based upon Hamilton's quaternions, present themsedvesnamrkable geometric
systems. In his introduction, Combebiac said: “The pioces that were presented in
Grassmann’Ausdehnungslehrwill realize this objective (a geometric analysisttisa
true for any reference system) if they are subjectednt@bsolutely systematic set of
rules, which is a condition that has not been sadisfie our view,” and since, on the
other hand, it is difficult to choose between one @r dther system, each of which is
brilliant — one cannot have two conflicting truths regagdine same subject — we have
been led to establish a synthesis of these two matiatizoughts.

We would like to believe that we have succeeded in thsk by imagining a
synthesis that simultaneously encompasses the two pngazuks.

Our system is based upon a group of 32 elements, to wikchave attributed the
name of “mu-lambda-group,” according to the letters of téadbet that are adopted
there, or the name of the “group of quadri-quaternions.”

During our study, we have encountered the new vehicle afstormant” which is
essentially the solution to several mathematical prab) and which, at the same time,
one can have recourse to, with great advantage, in feeltls of applications.
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CHAPTER |

Binary transformants.

8 1. — Origin of transformants.

One knows (], pp. 68) that when two substitutions:

S(a ’Bj and S[al 'Blj
y o Vi O

{ x=aé +pn, { y = V&, + o,

$=ag+ By, =Yg +of]
are effected one after the other that will give tH®¥ang composed substitution:
S(A Bj _ S[a ﬁj {al ﬁlj _ S(aaﬁ/)’yl aﬁﬁﬁé}
CD y o) n g Yo, + 9y, B+ 30,
These are then represented by complex enifs = 1, 2, 3, 4), and by a composition

(i.e., multiplication):

yo) K o

This gives the following matrix:

o

o
D
PR R D S Ry

£D | O|D | O | D

D

The multiplication becomes clearer with the adoptboomplex units that have two

a
indices. The first index indicates the rowﬁi{

’g j and the second one indicates the
y

column.
The Cayley square is then:
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The simple composition then follows from this that:

emnl:ers:ensif = [
en,8,=0 if nzr

The enlargement to more units would present néicdify, because the law of
composition would remain the same.
It is to these quantities,, that we will attribute the name of “transformahts.

§ 2. — Relationship between the unite,,and the quaternion units,
as well as the imaginary unit.

Note.— We denote the roots of unity by the symhat {/ 1.
Suppose that we have three substitut§ns,, S ([4], pp. 79), with the coefficients
a, By o ay, B, K, o, andae, B, 15, O, resp., and the relation:

S§=S

a=D+iC, B=-B+i,A
o0=D-iC, y= B+i,A

a =Dy +i2Cy, etc.,A/B,C,D (A, ..., Az ..., resp.) are real expressions.
Then:

A = (AD]_ + DA]_) + (BC]_ - CB;]_),
B, = (BD]_ + DB]_) + (CA]_ —AC]_),
C = (CDl + DCl) + (ABl - BAl),
D, =-AA, — BB; - CC, + DDy,

and

MBI+ G+ D= (A + B+ G D) (A + BY + 7+ D).

For the quaternionsi], pp. 56):
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g=w+p =w+Xxi+tyj+zKk
r=wi+p0 =w +Xi +y1j +zk.

Upon changing the letters, in order to avoid collisiamg finds that:

(W + X +y +2) OW + X+ Y+ Z)
= (W — X% —YY1 —22)?
+ (W +WiX +yz —zy)?
+ (Wyr +way + 2% —Xz)
+ Wz +Wix + Xy —yx)?,

which is an algebraic formula that was derived by Euler.
A comparison with the preceding one gives:

D2 =wwy — XX —YY1 —24,
and consequently:

D =w, A=X, B=y, C=z
D1 = wy, AL =X, B1 =y, Ci=2z,
and similarly:
a=w+i,z, B=-y+iX,
o0=w-i,z, y= y-iX
{ al = Wl + iZZl’ { ﬁl = _yl + iZXl’
51:W1_i221’ nh= Y1_i2X1-
Since:

(D2 +Ai+Bj+CK=(D+Ai+Bj+CKOD; +A11 +B1j +Ci K),
and, on the other hand:
[(D +izc) ell+(_B +i2A) €12 +(B+i2A) €1 +(D_iZC) eZZ]
X [(D1+i2C)en+ (-Bi+izA) e+ Br+izA) &1+ (D1-i2Cy) &)
= [(D2+i2C)en+ (-Ba+izA) e+t (Brt+izA) &1+ (D2-i12C)) &9,
one can identify:

Dent+ten)+Ch(ein—er)+B(ei—ep) +tAb(e2+en)=D+Ck+Bj+Ai;

thus:
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e;+e,=1,
(e, -e)=k
CYRCPEN
(e ,te) =1

It is necessary that the left-hand sides of the émurations must obey the same laws
as the right-hand sides; i.e.:

1) ij= k 2) jk= i, 3) ki= |,

4) ji=-k 5) kj=-1i, 6) ik=-j,

7) i=-1 8) j*=-1, 9) K¥=-1.
Verifications:

1) I2 (€12 + €21) (€21 — €12) =2 (€11 — €22),

2) (€21 —€12) 2 (€11 — €2) =i2 (€21 + €12),

3) I2 (€11 — €2) I2 (€21 — €12) =2 (€12 — €21) = €21 — €42,

4) (€1 —€1) iz (B2 + €21) =2 (€2~ €11) =—I2 (€11 — &),
5) I2 (€11 — €21) (€21~ €12) =2 (— &1~ €12) =— 2 (€12 + €21),
6) I2 (€12 + €21) 12 (B11 — €2) = — (€21 — €12),

7) iz e+ €0)]% = (€21~ €12) (21— €12) = — (€22 + €12),

8) (En-e2)’ =(1-6en) (e1—e)=—en-ex,

9) fiz2 (€11 — €2)]° = — (€11 — €22) (€11 — €22) = — (€11 + €22).

Let ennbe expressed, inversely, in terms,gf k. One will have:

1) €= %(1_ izk)1
2) &, = 3L+ ik),
3) ;.= 3(i-ij),
4) &, =—3(i+ij).

Here, as well, the right-hand sides must obey theoleam, (& . For example:

1) e B0 =0, 2) e [kBo=eyp.
Indeed:

1) 3-ik)B@EiK) =3@-ik+ik+ik?) =0,
2 A-iRB(j-ij) =)k -ij H k)
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=1(-j—izi—izi—j)==1( +i2i), etc.
Another example gives the surprising result that:

1) e (B =ep,
2) €2 (k12 = 0.

The product is equal to the first factor, and the invergsidhe same factor is equal to
zero. Effectively, one has:

1) —1( +i2l) B@A+ipK) ==1( +i2i +izjk +idk)
==3(+izi+izi+j)==3( +i2i),
2) i1 +iKOi(=j—izi) =—2( +i2kj +izi +iZki)

=—1( —ipi +ipi—j) =0.

8 3.— The reciprocal value and the conjugate of a transformant.

Lett=a e+ Lert+ yen + dexpbe atransformant.

a
The determinant of the transformant = determinant@Sﬂbstitutions( 'g j =aod
y

- py=At.
Rt=t"is to be found.
We have (], pp. 68, 63):

o) 1) (o3
y o K2 01

Therefore:

1) am +Byi=1, SO a) al:a’é_fﬁy’

2) aBi+pBa=1 so b)) A= -
, 25—y’
3) ym+ =1, SO C) MU= 4 ,
ao- By

4) yBi+da=1 so d) 4= a
’ ad-py’

One then finds that:
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5ell_ﬁe12_y%1+a %2.
ao-ay

t"=ae,+0e,+y,6+0,6,~

One can refer to the numerator of this fractioficasjugate” tot: “t” = Kt.
This gives us the right to make the following eefion:
If one set) = a, y=— LBthent will become:

t=a(ent+tey)+tfeun—-e)=a-4j= q
Kt' =a (e t+e) - Lenn—exn) =a+Lj=Ka,

according to Hamilton. In addition:

At = o + B% = qKq = Kq Oy = (Tg)*. ([1], pp. 30)

One thus has:

Upon multiplying the left and right sides hyone will find that:

1:ﬁ:@, At =tKt = Kt [3.
At At
One can easily verify:
K Kt =K%t =t,
and
K(t tp) = Kty [Kt ([, pp. 32).
Thus:

K(tKt) = K 2t [Kt = tKt.

From this,tKt can only be an ordinary quantity. It is equasitoply At.

8 4. — Operator and operand (multiplier and multiplicand).

It is not necessary to identify the operand whté bperator, as Hamilton didL{[ pp.
40).

In what follows, we will employ the transformams, as operators and tte (with
just one index, which are Grassmann’s symbols)asamds.

The e, represent pure geometric forms (points, lines,ngda etc.), and the
transformants become dynames (reflections, rotstiand other motions).

We then stipulate the rule:
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5

€ [B = & If 1=
en&=0 if rzn

and conversely:

e, =8gif r=m
elg,=0 if rzm

Whenp=x g +y & changes intgg =X e +Y &, there will exist a difference only
in the case when the operator is found on the riglfior

N. B.— In the sequel, we will always multiply on the ldfy analogy witly = ¢(x).

In the case where the transformants are found origheof . e, one can put them
on the left side without changing the result if on@$poses the two indices of each term.
In symbols:

t=aen+pfentyentoen,
Wt=aen+fBen+ yent+oie, p=xe+ye.
One then has:
ti(ot) = WY p.

N. B.— Generallyti(p t) # (t10) t . Therefore, the operation is not associative. By
contrast, (i t) o =t1 (t p); likewise, > t) t =tz (1 1).

Thus:
(t) o= p WMt t) =ts (t p) = (to) Wt = (0 Wl Wt = p (Wt WH).

Consequently:
W(tl t) =WtV .

When the operationV is performed on a product, it will be distributive and
transposing.

The transformations that change theen, are transformants of degree two; in
symbols,>. enmn s . They have the same relationship with the transdotenof degree
one, and follow the same rules, as the transfornwfrdegree one that are inverseie,.

8 5. — “Mutators,” special transformants of degree two.

Along with K, W, what other mutators exist that permute the indices hadge the
sign?
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t=ae,+pg,tye,toe,

Definitions

1) Wt=ae,+[e,tye+d ¢,
2) Et=ae,-fe,-yg+d g
3) Kt=ae,-Be,~-ye,+0 &,
4) Wyt=ae,+fe,tye,+0 g
5) WWt=ae,+[e+y g+d ¢
6) Zt=ae,-B&,~yetd e,
7) Wit=ae,-Fe-ye+d g

Transpose the two indices in each term.
W, 4= 4 W
EW= WE
The index 23 converted into the index 1, and viezsa
= WW
Change the sign whenever the index appears.
= ZW

We write these expressions more briefly as:

MOE:L, MlEWl
My =W, Ms =W W, Me =2, M;=W5%.

MZEEa MZEK,

The symbols form an Abelian group of eight elemesese §], pp. 91, 52).

N. B.— The interior squares of the Cayley square containindlges.

TheM with odd indices are transposing; tewith even indices are non-transposing.

The group oM, is:

M 01 2 3 45 6 7
0 01 2 3 456 7
1 1 03 25 47 6
2 2 3 01 6 7 45
3 3 21 07 6 5 4
4 4 56 7 01 2 3
5 5 4761 03 2
6 6 7 45 2 3 01
7 7 6 543 210

The symbolsM, refer to the two indices of each term. If we emypthe same
definitions onp=x @ +y & — i.e., on just one index of each term — then wewvite
MW, &, K, Wia, 2, ...), instead oM(W, E, K, Wiy, Z5, ...). One sees thati,

coincides withiM -1 W =1, K=& Wi W= Wi, WZ,=WZ, .
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The M, form a group with a composition that is totally differérom that of thev,
([S], pp. 93).

M| 0O 2 4 6
00 0 2 4 ¢
2l 2-0-6 4
4 4 6 0 2
6| 6-4-2 C

This is only a quarter of the Cayley square. @nds the other operators by
multiplying with — 1. ThusM,, (-M,) = - (M., M), etc.
Z, and Wi, are of order two and is of order four, and corresponds exactly to the

“complementary feature’tr@it de complémepf Grassmann’s schoolJj I, pp. 17).
Since:

P = Xetye,
Ep =-yat+xe,
Wip = Xetyaea,
Zop = Xa-ye,
one can easily verify that:
E=ey—en, Wiz =ep+en, Zr=Een—6exn.
One thus has:
(E1—€n) er=¢, and for Grassmann’s schook, F &,
(921—912)92:—91, 11 “ “ |62:—el,
(e1—en)’e=-(en+e)=—e “ “ “ le=|e=—e.

Moreover:
E= lezz = —Zz le.

8§ 6. — Scalars, vectors, tensors, versors.

Just as we did for transformants, we distinguishiassS, vectorsV, tensorsT, and
versorsu.
Let:
t=aen+fentyen+oen=St+VW,
Kt=aezx-fer-ye1+den1=St-Vt
From this, we get:

1) St=aert+taex+tden+tier=(a+J (enter)=a+o
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St=%(a+p).

2) At=t-Kt=2Bep+2ye+ae—aeyx+dey—den
=2Benx+2yen+ (a+ 9 (eu - ex).

Vt=pe,+ye,+1(a-9)( g~ &)

Thus:
(TH? =tKt=At=ad- By

In order for this to be true, one must have::

Tt=\ad-pBy and U=t =9%*F&*/e+08,

Tt Jas-py

8 7. — What complex quantities can be employed as coordinates
in two-dimensional space?

There exist two possibilities:

I. The coordinates are composed freg (Xenn, resp.).
lI. They arexe (ye, resp.).

1) Abscissa:xe1, Ordinate: yex,

2) ‘ €1, Y yen,

3) “ Xel2, “ ye1, according to Hamilton,
4) ‘ Xi = Xiz (€12 + €21) , ‘ yk=yiz (€11 — €22).

We first examine the four combinations: The additi and subtractions according to
the rules of a parallelogram of forces. Conseduyemt all four cases, each case will
possess its proper multiplication.

The third case possesses a property that it groa#s (lines, resp.) of two types
according to whether the product is composed otwn or odd number of factors,
respectively. Cf., the multiplications:
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1) Xeirtyer)(xertyien) =xxe1+tyvnen;
for the Grassmann school:
Xeaetye)| ke, 1) =XX,Y¥, regarding the coefficients.

2) Xert+tyer)(xiemtyien) =xxen+tXyen;
3) Xezst+tye)(xientyier) =xiyen+Xyen;

X1y @2tXy1€i)(Xe €12+ Y2€21) =X Yo X €2+ Y X Y2 €21
However, we would not like to pursue this line of reasoninghéur We direct our
attention to case I, in particular: abscisea,; ordinateye .
8 8. — The geometric interpretation of the expressions Xmn €nnand 2. X, €, .
Let the coordinates of the poiAtbexe, = OP; andye, = OP, , in such a way that:
(0=xe +ye) =P = (0P, + OP,) = (OP).

This determination of points follows the methods of quedas;e; ande, are vectors
in the sense of Grassmann (G8&treckeh Seefig. 1).

(p=OP) =P,
OP=0P,+0OP,=p + 0,
(0=p) =Py, (0=p02) =P2.
The dashed lines represent
Stz 21 reflecting lines.
S
Figure 1.

Definitions:

p. o denotes the projection gf onto the abscissa,
p2 o “ ¢ onto the ordinate,
ps o “ “ onto the origin,

s o denotes the reflection @f onto the abscissa,
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S P “ “ onto the ordinate,

Si2 0 “ “ onto the bisector of the first quadrant,

1 0 “ “ onto the bisector of the second quadrant,
S ‘ “ onto the origin.

Finally, we let:
dio  denote the rotation gf by 9¢ around the abscissa,
(07Y9) “ “ “ ordinate,
dspo “ “ “ third coordinateld d; andd;,
d; is thereforee k, dx =1, d3 =].

One then obviously has:

1) d=eup=pp
2) p=exp=pp
3) f=exup)=p@mA=pr=m=0.
On the other hand:
O =(@2e1)p=000=0,
and similarly:
O=eunEp)=p1(EP20)=p=m=0.
However, one also has:
O =pop=0, fromwhich, pp=pip2=p2p1.
4) Pg=en(enp=enp=p=(@u161)p=€1P=p1.
Similarly:
2 2

O =ex (€2 p), P, =Py, P, =P2.

N. B.— One must distinguish between the origin as a tefgadynames, and the
origin as a purely geometric form : ss=-1, 0 =0.

5) f=enp=piSp=-pbBpo=-dGRo=S2mkpA

6) =1 p=pS2p= P2zp= pLo=S2ppP.

Sums and geometric differences (from the parallelogdenfor forces).
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1) d=(Eun+ter)p=(Pr1+pP) p=p
2) f=E@1-e)p=P1—P) P=S1 5
3) f=Enten) p=(P2+pP) S12p=S12p=(P2-pP1) B P=%03 0=S12 5,
4) pg=E1-€e) p=(2—p) S12 =S S120=03 0,
because it is obvious thpt + p2 = 1,p1 —P2=S1, P2 —P1=S .
Since:
enten=1, e —en=-lixk
&1+ e =—lzl, &1~ €12= |,

one has the geometric interpretation of these imagwectors of Hamilton in connection
with p=xe +y e . One has:

—ibk=s, k=S =519 = —-S=9%,
=21 =gy, 2l =9S12=S129 =~ S12= 1.

Now, one can also represent tig as geometric sums:
1) enp=51-i:K p=3p+350p,
2) enp=1(1+i2K) p=1p+isp,
3) enp=3(-i2i)p=d,3 p+s,3p, (sedfig. 2),

4) epp=3(-j-i2i)p=-d,Gp+s,3p.

Figure 2. Characteristic of reflecting lines.

These lines are completely distinct from ordinary, [yugeometric lines; they have
no direction, but only a position. A rotation of 286rings them back to the same
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position, like multiplying by + 1. One knows that thegagve reflecting lines are
perpendicular to the positive lines. One must give a dawldgional motion of 90to
the reflecting lines in order to bring them to the sansatijon.

Overview of the symbols that have been employed up to now.

A B C D
1) 1 €+t €, 1 1
2) & €1~ & J d;
3) | W, €t ey — S
49| z €176 —ik S
5) -1 _(en+%2) -1 1= 5
6)| ¢ €, "6 —j|~&=54=d3
|- W, | - (elz + e21) izi SoS= S®T %
8)| -2, €~ & i,k $3= 3¢ 2

Column headings:

Change of indices and the signomof
Transformants with the same effect.
Corresponding Hamilton symbols.

Geometric interpretation (geometry of dynames).

OO w>

The symbols in columb form the same group of eight members as the symbols in
columnsA andB (cf., § 5).
A quarter of the Cayley square will suffice for this:

11 dii S §
11 1, dyj s,1 §
i it e B
G ]%) 7li7s) %
Se % 8! 116
S|S!1-%!-d 1

Since the complemestis itself composed ofVi, and 2, (viz., £ = Wi, 022, which

is d3 = 512 S1), one sees that the other transformants are intrddnte the Grassmann
system organically, and that will permit an extended dicgtion of the system.
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8 9. — Geometry in the space of just one dimension.

We content ourselves with the following remark: If @ighe two symbol, e, or
both of them, represent points then two-dimensional speilechange into one-
dimensional space, and the results of the first gegneain be easily translated into the
geometry of just one dimension.
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Ternary transformants. — three-dimensional spaces.

8 10. — Reflections.

We have:
p=xXxegtyet+zeg,;

e, are vectors. One h&s > ann €nn, I.€.:

t=an e tapp etz €zt ap €1 +ax 6o+ a3 +az &1+ a6 +az3€s3;

amn are ordinary quantities.

We confine our study to the elementary transformanteey Tare the ones whose
coefficients are £ 1, 0, and each of which appearsersa#me number between the three
indices.

We look for the expressions for the reflections im&ofX. ey, .

In general, one has:

1) teg=a;1e +ax e +as 6,
2) te-ape +tape +ape;,
3) tes=aize +axpe +asse;.

One thus finds, for example, fei, that:

1) te=e, i.e., )anx=1 a;1=0, az1 =0,
2) te=e, 1) a1o=1, ax»n=0, az =0,
3) tes=-e3, 1) agz=-1, a»3=0, a;3=0.

One then has:
t=Sp=6e1+er—6s3.

One finds the following expressions for the nine reihgctlines and the nine
reflecting planes in the same manner:

St = €11—€x—Es3, Oh =—S, nh=1, 2,3,
S =—€e1tep—ess, Omn==—Sm, Mn=1,2 3,
S =— €11 —€x+tess,

S12= €12t e —Es3,

S1=—€12—61 ~ €33,
S3=—€11t+tepntens,
S32= €11 —632— €3,
S31= €31—exntes,
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S13= —€31— € —€13.

The o, are the reflecting planesy, YZ ZX that are perpendicular 8 ; one could then
say Imn U Snn -
In three-dimensional space, the negative reflectmgslibecome reflecting lines that
are perpendicular to the lines, and vice versa.
In addition:
1l = eantexntess,
So =~ (Ern + &2 +6€33).

Note.— The notations are the same as in chapter |, 8 &idgplaneXY. One obtains
notations for the other two plan¥Z, ZX by a circular permutation of the indices 1, 2, 3,
and notably the indices 1, 2 of the platbecome 2, 3 in the planéZ and 3, 1 in the
planezZX.

8§ 11. — Rotations around the coordinate axes.

There are three fourth-order operators that perfor@@ arotation in the left-hand
sense (i.elevogyrous:

di=ep—e3ten, d'=-ep+es+en,
dr=ez—€e+en, d' =—enz+ey+en,
d3 =& —en+es3, d' =—-en+ep+egs.
d2 =-ep-ep+en=s, dy =d,’
df =-es-enten=%, dl =1, n=1,2,3,

di =—en-ep+ten=s;.
One can easily confirm that:

s2s =03, (S128) =dt =g} =590.
Moreover:
hbhdb=e—-ent+tes=S;.

The operators 151, S, S, Siz $1, &, d;* form a group of eight members of the
following type 8 = 1(1) + 5(2) + 2(4); i.e., among the eigl@mbers, 1 is of degree 1, 5
are of degree 2, and 2 are of degree 4.

The subgroup 151, &, s has type 4 = 1(1) + 3(2).

One will obtain two other groups of eight members & same type by circular
permutations of the indices 1, 2, 3. (See the group of 2dbees in § 13.)
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Note.— It is remarkable that in three-dimensional space caneaot generally identify
k, 1, ] with dy, do, d3 .

di = k only with regard to the points of the planig as operands.
Similarly:

d> =i with regard to the points of the plad,
and
ds=j “ “ “ “ XY

as operands.
By contrastd; (d,, ds, resp.) effect the rotation of all points of tri-dinsgonal space
around the corresponding axes.

Cf.,d, &3 =e3; as opposed tigj)) =— 1.

8 12. — OperatorsD,, Dy .

S =(Erter—eg) d-e1+ep+es)=—ept+esz—en,

which then gives a new operator.

One obtains eight operators in this manner. Thegcefd counterclockwise (i.e.,
levogyrous) rotation through 12@round the axes, which forms equal angles with the
three coordinates and pass through the origin. Theyfdheré order, and one can call
themregular since they transpose all three indiceg,adnd each of them once.

They are:

1) Do= en+ex+ern, 5) D= ent+exs+te,
2) Di=—€nx— €3 +6€3, 6) Di=—exn—e3+e,
3) D= €31 —€3—érn, 7) D= ez—enpten,
4) D3=—en—€i3+en, 8) Ds=—ex—-enten.

Do forms equal angles with tl@X, OY, OZ axes,

D4 “ “ “ OY, OX’, OZ axes,
D> “ “ “ OX’, OY’, OZ axes,
D3 “ “ “ oY/, OX, OZ axes.

Direction D, = — directionD, .
(see Fig. 3)
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T One sees that:
Y D,=WD,,n=0,1,2,3,
X" & X and
v Dn= D' = D?.
7
Figure 3.

The operator®d,, Dn, sv, 1;n =0, 1, 2, 3m=1, 2, 3, form a group of twelve
members of type 12 = 1(1) + 3(2) + 8(3). (See, § 13.)

§ 13. — The composed group.

The combination of the groups that were studied up to rowams a group of 24
members of type: 24 = 1(1) + 9(2) + 6(4) + 8(3).

(See the table on pp. 124 of the original article.)



CHAPTER Il

Quaternary transformants.

8 14. — Fundamental explanations.
t:zxmna“nn1 ml nzol 11 21 3

Above all, we are interested in the transformahéd have the same composition as

the Hamilton symbols j, k.
There are two series of such transformants:

) 71=e—e3+ep—ep, ) 7, =esx—ex—ep t+ep,
T =ep—e+ep—ex, T, =e;z—en—ep+ey,
Tz=en—en+e3z—exn, T, =e1—en—ep+eyp,

T, =73, etc. 7T, =1, , etc.

T? =—(ep+enn+ep+e)=—1, and likewise 7, =-1, n=1,2 3.

As for the operand =xp e + X3 €1 + X € + X3 €3, We can interpret it in two ways:
First, all foure, are vectors. Thenr € ...) is a point in four-dimensional space and-(
0) is the origin.

On the contrary, if only one of the four quantitggsymbolizes a point thenwill be
a point in tri-dimensional space.

We choose the simpler option and choesé¢o be the origin, whiles;, &, e; are
vectors in the coordinate directions.

In that way, a point with coordinatgs/ Xo, X2 / Xo, X3 / Xo Will be represented by:

M=X&t+tXi€+tX&+X3E8=X € t+ L.

8 15. — The representation of the equations given by Olinde Radues and
Combebiac([2], pp. 8, 11)or quaternary transformants.

I

We writex', y', Z in place ofx, y, z (X, X,, X in place ofxi, y1, z, resp.), while
appendings and x; .

One will then have:
m =tm,
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m=2 6, m =X &, n=0,1,2 3.

t =2@pB-mlhtafi-af)eot (a,+ai-a,-al)en
+t2m -t ) e+ 2ozt acm) e+ 2@ f—a i+ a B—a ) €0
+2mamtrao ) en+ (@l —al+ai-al)en+ 2 as— o ) €3

12 -t al-a3/p) et 2(0s 01— ao L) €1
+t2mmtam) et (ai-al-ai+ad e+ (al+al+ai+al)ew.

The transformantrepresents a displacement whose axis has the cooslinate
Pos . h: Pos . Pas . Ps; . Pro

a a, a, B+ 0’0,300'1 B, + aoﬁoaz B+ aoﬁoaa
Yat+aital ¢ al+al+al TP al+ai+al

where the rotation anglef2and the shift along the axigiare given by the relations:

a By

cotg= : n=
2 2 2
\/al +0’2 +0'3

- 2 2 2
\/al ta, ta,

Upon annulling theG,, n = 0, 1, 2, 3 int, one will obtain the formulas of Olinde
Rodrigues ], pp. 8), when transformed into transformants.

If A, &, v are the angles that the rotational axis makes \wéhcoordinates axes, and
24 is the angle of rotation then one will have thdofeing relations:

a, a a.
cotA = L , cotu = 2 , cotv= E ,
Jar +a; +a;g Jarg +a; +a;g Jar© +a; +a;g
a,
cot 9= 0

2 2 2 2
\/ao ta,ta,ta,

§ 16. — Reflections.
I. —A reflecting pointwith the equation:

m=e+agt+tbe+ce
gives the relation:
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‘m=2ag,+2bg,+2ce- &~ £ £ £

Note.— The ‘§” in “*m” is an upper index on the left side that is given th&érname
speculumwe shall use such indices for certain transformants.

It was by this line of intuition that we obtained tie¢éation below.

Conclusions:

sz I:Isml = (28.2 e+ ...)(2alelo+ )
=2(@—a1) e+ 202 —b1) e +2(c2 —C1) €30 + 1;

l=ep+en+entess.
Moreover, the origin has the equation:
°Mo = €0 — €11~ €22 — €33,
as a reflecting point sinee=b=c=0.
ll. — The reflecting line.
It follows from formulas @], pp. 11, 13) that forp = 0, 2= 9%, 2 = 180, since cot
7=0 (cos? =0, resp.):

a=0 and (K =0.
If one acceptsa priori, that:

al+ai+a?=codA+codu+codv=1
then one will haveg, = 1, just as = 1, and if 8" has linear coordinates:

Po. P Pos. P, P Py

al aZ a3 ﬁl ﬁ 2 ﬁ 3

then one will have:

where:
M= +X1 6 +X & + X363, m=e+x6+X%6+ Xg,
and
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d=> 8,8,y MM0123,

where:

an:alz_ag_a; a,=200, a =204, a 208 a8 )
a, =204, a-22:_0'214'0'22_0'231 A= 20 g, a, 2B rapl )
8, =204, a,=2040,, a33:_021_022+0231 =208 ra B )

8= 8, =83 =0, a,=1.

One getss, = 5 = S = 0 fordoy, which is a line that passes through the origin, and if
one considers that cas= a1, cosy = az, cosv= a3, with af +a’ +a’ = 1, then one
will find that:

*do = (alz _022 —af) e+ 2;mas en + 20005 €13
+ 2001 €1+ (07 +aZ—a?) e + 20005 €23
++ 230 €31 + 203 €30+ (—Q7 —ai+al) ez + ey

lll. — The reflecting plane.
It suffices to choose a pointon a line at a distance from the origin:

ae+bhe+cea, a=ha, b=ha, c=has,

because then:
*p =°do Om ="m OFdp .

p is a plane that is perpendicular to the igehat passes through the pammt

*‘mPd, = *p=2ag,+2bg+2 cg+ g
_(alz_azz_as)ell_zazalezl_zaglesl
—20'10'2812—(—0'i+0'22—0'§) €,~ 20 q £
—2000;€3;~ 20 1 £, (azl_ 0'22'*' 0'23) €33

*do C¥m gives the same result, because the coeffi@gmdf > am, enn, Which is equal to:

2a (af-a’-ab) + bR oz + X P a3,
will then become:

(@) -aa;—aa;+2ap5+20q7)
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=2h(ai+aai+aal) =ha(af +a’+al)=2hm = 2a.

One has similar expressions #@p andagp .

The multiplication of the factor¥n, °d, °p, ... in arbitrary quantities (the operations
are associative) permits one to form various dyna($e=e f].)

For exampleim, or % *m (in German: “Quirl,” p], pp. 59, 60, 63, 165), represents
an ascending rotational motion of 280Two parallel lines or two parallel planes or two

points express a translatory motion. Two arbitrdaygs effect a rotation around the line
of intersection, etc.

Note.— The multiplication oft(t; ... t,) does not need to be realized, since

(tty...t)ym=t[ty ... tam)].

8§ 16 a). (Continued)

If the reflecting poing,, is found in the plang then one knows tham [fp = Sp OFm
=%d, °d O %p passes througim. If three planes are mutually perpendicular: peLl p; O
ps [ p1 then the lines of intersection will be, as well:

d1Dd2Dd3Dd1 and dlez,dszg,d3Dp3.

“*m’ is the point of intersection.
One then has:

*m Ofd, = °d, Om="p,,
*m Cfpn = %pn Om ="°d,, , *pn Cfdn = %dn Ofpn = °m, n=1,2,3.

This gives an Abelian group with eight members, because:

sm2 — sdnz — sp2 =1.

Take the simplest case: vizm™is the origin,d, are the coordinate axes, gndare
the coordinate planes. It will then follow from thar@ke Rodrigues equations, or direct
calculation, that the effect of reflection e} e, &, esis:

M = o — €11 — €2 — €33,
Splzeoo—el1+ezz+€‘33, th =ep+€11-€2- 63,

Sp22900+911—922+€‘33, th =ep—€enn+en—63,
Sp32900+911+922—€‘33, s =ep—€n1—-€en+es.
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8 17. — Transformants that are isomorphic with their operands.

Up to now, the only questions to be addressed were difitise geometric addition of
the operandg x, &, and the multiplication of them by transformants;¢hbas been no
agreement on the composition rule for the operands #ieess i.e..en €, . It can obey
various rules, such as those of Grassmann or Hamilionhe latter case, we will write
“hy”, instead of &,” — where ‘h” should suggest then namle(dmilton)” — or also A,".

Furthermorehy, hy, hy, hs correspond to 1, j, k, respectively. Meanwhile, it must be
remarked thahy can be supplied with the unit “1” only in conjunction with and never

in conjunction with the transformartts,, , where:
“hoo+ hir + o+ hgs=1"  and  ‘hyp Cho = hy".

We let “h,” denote the isomorphic transformant if it is founddsefh,” — i.e., apre-

positive transformant- and by *h,” if it is found after ‘h,” — i.e., a post-positive
transformant.

For the inversion of the indices/ 0%h, (W O'h,, resp.), we write briefly' °h_"
("*h ", resp.).

Here is an overview of the pre-positive and post-p@&sisomorphic transformants:

1 =hoo+ hy1 + oo + hea =%ho = "ho

Oh1:h32—h23+h10—h(31, :h1:h32—h23—h10+h()1,
Oh2:h13—h31+h20—hoz, *h2:h13—h31—h20+hoz,
Oh3:h21—h12+f'tso—ho3, hs = hp1 — 12— hgo + hos .

One sees thah, are identical withZ,, and hy, with 7 , § 14.
One confirms the following rules by calculation:

1) hm hy = Thy = hy Ohy = h D,
2) °hn Ohy ="y BPh, °(hm hy) =% CPha,  “(hi he) = hi Ohi,
3) (°h, h)Ohs ="hy (he Ohy) = (°h CFh) Ch,.

By contrast, for the non-isomorphic transformants wnll have { ey) t1 # t(en t1), in
general.

4) (h)™ =", and fh)™="h,.
In order for this to be true, one must have:
Ohl |jh1 = Sdl )

th |jh2 = Sdz )
%hg Ohs =°ds (see § 16a),
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since “Ch, Ohy) Ch,” is derived from ®h; Ch, O hy) ™.

We have thus arrived at two ways of approaching isomorparsformants: first,
based upon the same composition, and second, by concludmgthieo effect of the
transformants on the operands. We then arrive atrd thethod: developing the
transformants from the Cayley square for the giaym = 0, 1, 2, 3 (properly speaking,
the first quadrant of the square, since most of the mesrdrer distinguished from the
other ones only by their signs).

h,1ih,ilh,jlhk
hA[ R hihih
hilh i-hih i-h
Rl h i-hi-hi h
h,k| h i h i—ni—n

We denote the following the operations with a semi4zolo

hm ;s by = hmp.
From this, one then has:

Ohs:z' hm; hn=2" hpn = zhshnahn,

where:
s = index of the left column that is exterior to tiosv,
m = index of the squares interior to the rgw
n = index in the upper row, correspondingioin such a way that:

“hg hy = hiy.

One must be careful with the signs in this.
One finds the post-positive transformants in thme manner, except that one must
switch the row with the column; namely:

*hs =" hm;hh=2" hpn = zhm, hmhs,

where
S = index in the upper row of the column,
m = indices in the exterior left column,
n = indices in the interior squares of the colusnim such a manner that:

hm hs =hy .
This method is applicable to all of the o}her grau
The composition of the quantitifs,, and”h, will result in a group of 32 members of
the type: 32 = 1(1) + 19(2) + 12(4), with a subgrad operators:

+ (1, %hy, "hy, °hy Ohy, °hy Ohy, °hy Ohs, °hs Ohy, °hs Ohy).
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8 18. — The transformants of higher degree.

One can deduce “transformants of transformantsf second-degre&ransformants —
from the group of 32 members that was mentioned above isatine manner. To that
end, we write the operatolis, 'h, in that sequence &y, and’hy, = °hm Oho = o),
"hn = %ho Ohn = hon . Since *hy” and “°h,” commute, a producfi, Ohy) OCh, Ohe) will
be equal téh, Ohy = hpg . Therefore, the desired transformant will havefemen: ®himy
=2 Ppgs) » Which is a polynomial with 16 terms, etc.

On the other hand, one can defifen) [ (hmn), resp.] directly from the square:

|hoo:hm: hozl ho3: th! hu:

| - i ____|___'T__
hb1 he ! hy !t h,! hgt 000
e T T

I R B B

For example:
0 _
(h10) = h1o,00+ h11,01+ 1202+ hus o3,

which is a polynomial with four terms.

One must therefore dlstanU|s%(mn) from “hmn [h(mn) from ‘hmn , resp.], and
furthermore, fron®(hmo) [ (hmr), resp.].

Meanwhile, since:

N0y = %y =hsp = hs + hig—hog,
%h10)=%hy can also be represented by:
%hsz = %has + %hyo —Chos.
One likewise gets’h, , “h, , and” h, , upon replacindy with °h ['h, resp.] in the

formulas for’h, [ hn, resp.].
Therefore’hm, = °hn ; %h, , etc. (see, § 22a).

8§ 19. — The elective transformants.

If one has a quaternion:
g=agho+arhy +ahy +azhs

then ‘hye” will have the same effect on the quaternion agHamilton symbol S'.

(Scalar):
hooq=Sg=agho.

In the same fashionhii + hy, + hss" is identical with vV’ (vector).
Moreover:

K(conjugate)e hoo — hy11 —hoo —has



and
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K?=hgo+ hyg +hop + haz = 1.,

One verifies, in turn, that:

SS=§ vVv=YV,

KS=SK=S§

SV=VS=0.

29

KV=VK=-YV,

(0. pp. 43)



CHAPTER IV

Bi-quaternary and quadri-quaternary transformants, Polar
and axial vectors. Mu-nu-group and mu-lambda-group The
iIsomorphic transformants that are derived from the® two
groups.

8 20. — Polar and axial vectors.

The discussions up to now have given no motive fstirdjuishing the two kinds of
vectors. At present, we would like to denote the farbyevs, 2, v3 and the latter by,
A2, A3, both of which are in the coordinate directions with tinsor 1;vp (Ao, resp.) are
then first-order operators.

One must enforce the following rule for their composit{[7], pp. 23):

The vectorial product of two polar vectors, as well as two axialoveas an axial
vector.
The vectorial product of a polar vector and an axial vector is a polaovect

Therefore A, relates to;, in the same way that “+1” does tel,” or as a real number
does to an imaginary number.
From this, one has:

A2 = A3 == A2 A4, =13, AlZ:—]_’
A2 A3=A1 == A3 A2, L3 =, AZZ:—]_’
A3AL1=A2=—- A1 A3, Vsl = o, A;:—l_

Moreover ([7], pp- 23):

Under multiplication by a pseudo-scalar, an axial vector will become a peletor,
and vice versa, a polar vector will become an axial vector.

This “pseudo-scalar” will be denoted by.“ We will show that I” is not presumed
to be a scalar, nor a pseudo-scalar, but a true secondemaplex operator that has
some properties in common with scalarsl” ¢ommutes with the two vectors, and its
isomorphic transformant has a constitution that iglainto that of the transformamt=

1)
One has:

lvi=A1, [ Ai=w,

Ivo=A5, A =v,

|V3:A3, |A3:V3-

From this:
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1)||:|D41:|V1:A1, |2:1,

2) V1 Vo = |A1 Dﬂl :A3 :Alﬂz = |(A1 |) Az = |(|A1) Az.

Therefore:
Al=IA; | and, in general: A =14, n=123.
3) IAAdA=|vy,=-1 because (A1 OA1 =1A1A2,
4) |/]2 D/]l :V2V1:|| /]2/]1:—/]3:—V1V2, V,V, ==V, V..

Note.— According to Hamilton)?> = — 1. Abraham ({], pp. 14) writes the scalar
productA? = + 1, so one must write strict§ 04 = + 1, while for Hamilton’s school,
S 04?2 == 1, which is naturally permitted. The® = — Aoo, and by contras§y = +Aoo
=-S.

With that, the composition of the operators +l(H, Az, A3, Vi, Vo, V) is well-defined
and gives a group of sixteen members of the type 1@) + 3(2) + 12(4).

One must keep in mind thag, n=0, 1, 2, 3 forms a group by itself, while thasniot
the case with #/,; £ v will form a group only in conjunction with #; .

The corresponding isomorphic transformants corgagiht different indices and can
be referred to asi-quaternary.

However, we shall not dwell on this, since we wishenvision quadri-quaternary
transformants.

8 21. — Mu-nu-group and mu-lambda-group.

If we add the origin %/ = £ v4 to £V, , = A, then we will double the number of
operators.
We are in agreement with Grassmann, for whom:

eo(l+|)o=ee+e|eg=0+1=1,

as well as with Combebiac, for whquh = 1, if we seg/ = v2 = 1.

The other rules of composition follow from a pricymparison with the Grassmann
symbols.

Once more, legy be the origin, and by contrast, €, e; must be the terminal points
of the vectors that were denoted by these lettarsea(8 14). For now, the latter will be
&, & & andg =g .

Then:

& =6 —6,
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&£ =6—6,
&B=6—6.

N. B.— Grassmann denoted the directiomaby “ey —e,”, which is merely a question
of convention.

One then has:
V=E&a=—-6 tey,
WEg=—-6 t+6,
B=E&g=—6 t6;.

One can then pose the equations:
aeo=e—g)(e-a)—ae-—ge-—eagtgaeg-geteateaz(es—a)

only along withviv, = A3 # 13,

We will use the synonymous expressions “polar vectdifference of two points,”
“points at infinity” for the symbolss, W, 5. A polar vector permits a displacement
parallel to itself in all of tri-dimensional space.

As for A, withn =1, 2, 3,
€ As, for example, is equal to
& 6 t 6 & + & &,
namely, a sum of segments
& of three lines that form a
closed figure that is a
triangle that is traversed in
s \ the positive sense, as seen
frome,. (See Fig. 4).
The segments of the

& — e, fixed lines can have a
translatory  displacement

/ \ only along their lines.
They permit a conversion

into a parallelogram:

[ =616 + €63 = €16 — €36y,

which is a sum of two anti-
parallel segments or the
Figure 4. difference of two parallel
segments that have the

same lengths.

Sincee; e = & &, and according to the rule for geometric addition, wilehave ey
e + e e =ee . This parallelogram can be converted into anotheilplgram in its
plane or in a parallel plane under the single conditinat its tensor, which is equal to the
twice the area of the triangdg e; e, remain unaltered.
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Ultimately, these parallelograms can be identified whith unique closed line in their
planes, with the line of intersection of the plapasallel to the parallelograms; i.e., with
the line at infinity.

The Hamilton symbols, j, k correspond to these parallelograms exactly, as their
composition shows; they are thus exclusively axialomsct

When Hamilton used lines perpendicular to the pargitalms in place of them, with
lengths that were equal to the areas of the lattey,Wleeeauxiliary axial vectors, which
are very useful for certain constructions, but ultimatiyy must be converted into
parallelograms again.

We use the expressions “axial vector,” “parallelogtatifference of two segments,”
line at infinity.”

The other rules of composition are easily obtained thytisg with the following
considerations:

1) uvi=&(e1—&) =&e =4,

S0 a segment that is part of a fixed line will move @ibng the line that carries it.
Moreover:
Vi=e(e1—€)=€e1&=—&€,
SO

HV, =~V A,

and similarly for the other indices.
2) fh=a (e teete e) =6 e,
which is part of a fixed plane & that moves in the plane that carries it.

ALU=(E@eteet+teaag)ag=-e =6 e;
thus:

HAs = A,

as with the school of Combebiac.

One will find the corresponding equations by @ular permutation of the indices 1,
2, 3.

3) All that remains to be discussed isl®” The geometric significance of*“results
from the following reflection:

[ A3 A3 =Vv3 A3 =—1 = (&5 — &) (eve1 + €16 + e26p) = E360€] + E3816 + €366 — eI,
| =epeetayees+ ez + 3606,
(See Fig. 5)



Marki¢ — Quadri-quaternions. 34

From this, " will represent the surface of the
tetrahedroneeiees.  The figure is displaceable,
translatory, and rotatory in all of space, and equatable
with the plane at infinity. Since the trinommle; e3
+ @636 + e e e can be transformed in a plane
parallel toepeie; with the same area and the opposite
position. 1” will therefore be the difference between
two fixed parallel planes that have the same area and
can thus be equated with the plane at infinity, which
is the unique closed plane that is a surface of the
tetrahedron.

Figure & The two parallel planes delimit a cube with six (3!
= 6) times the volume of the tetrahedreye.e; €; .
This volume is the tensor of the figure.
One finally has:

,UI :—,UD/]_A]_:'FV]_A]_EKI: —,U| ==y,

One obtains the same result by the Grassmann algaice;

U= (ee+ene e+ e+ 636:6) & = 36616,
and

Ul =6 (nE1& + &6+ @636+ 636,6) 366 =~ &36,616).

| =W is then a fourth-order, three-dimensional quantity, aggeometric solid.

Unlike Grassmann, we do not sgk; e, e; equal to the unity directly, but set it equal
to W; however W’ = 1.

At present, one can construct a Cayley square fogthigp of 32 members. In order
to do that, it will naturally suffice to consider juke first quadrant of the square. [See
Table I. ()]

One can denote the operators of the aforementioned gsojust one letter that has
sixteen different indices — for examplel,n=0, 1, ..., 15.

In another manner, one can denote these operatovgobigtters, each of which has
four indices — for exampl@m Vn Of tinAn; m,n=0, 1, 2, 3.

We shall appeal to this latter method in order to avoitt@sdithat appear twice.

By analogy with compound words, we call a determinative operatoand v, (/An,
resp.) gorimitive operator

At any moment, one can pass to one letter with sixtedices by writing:

HmVn = Vi) » [tmAn = /](mn), resp.],
where (nn) =4m+n,m n=0, 1, 2, 3. In this sequence:

Vn Oltim = th Vs = Virs) -

() DHD: The Table is on page 139 of the original article.
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Moreover, Lo, th, Lo, (s correspond to 1y, W, |, respectively. For example, one then
has (1o = Va0) = Vs, Which is the origin, whilev, and A, preserve their previous
significance. One will then have:

HoVo = toAo =1, HoVa = Vo, HoAn = An,
HoVo = iAo = fhny fA = U, =W, M3 =1,
HVn=E n,  Vn=—Th, MBVn=An, m=1 2 3.
Moreover:
MV =l O V== WAL= — b Am,
oV = (ol O Vn == ffllAn= = (b Am,
MV = 1 O Vi =1l A= o Am,
HoVin = ol O Vi =1 A= s A
[See Table Il and 111'}.]

One advantage of the A-group, which is opposite to thev-group, is that all thes,
commute with all thel, .

8 22. — The pre-positive and post-positive isomorphic transformas that are derived
from Tables Il and 111

Since the various letterg,(v [, A, resp.]) commute with their indices, the indices of
equal letters preserve their sequence; one can stipldatale:

UV s V= (U 1)V V), [l st A = YA A ) respl].

() Tables Il and Ill are on pages 140 and 141, resp. of thimararticle. The comment at the bottom
of both pages translates as: “The interior squares t@fenly the indices in the sequengev, and their
signs.”
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Table lla). Pre-positive transformants.

It results from Table Il that:

O(,Uo Vo) = ( foo + tha + oo + [hs3) (Voo + Vi1 + Voo + Us3),

2('“1 Vo) = ( fo1 + fho — L3 — [42) ( ’ ),
(L2 Vo) = (= Moz + fbo + [B1— [h3) ( ) ),
s Vo) = ( Hos + a0 + fhiz + fo3) ( ) );

O(,Uo V1) = (Loo — fh1 — o2 + B3)(Vio— Vor) + ( o + Loz + th2 + Lb1) (Va2 — e3),

)+ ( Ho2— foo— [B1+ [h3) (
) + (& oy — fhio+ Ha2 + [h3) (
)+ ( Hoo— fh1+ fb2+ [43) (

O 1) = (L0 = Ho1 — Hos + 132)(
%tev1) = (too+ oz — Ha1 — 143)(
0(,u3 Vi) = (Uso+ Loz — th2 — Lo1)(

<)
<)
N

O(,Uo Vo) = (Uoo— fh1 — o2 + [s3)(Voo — Voo) + ( Mo+ Loz + fh2 + [b1) (Viz — Va1),

)+ ( Ho2— foo— [B1+ [h3) (
) + (& oy — fhio+ a2 + [h23) (
)+ ( Hoo— fh1+ [b2+ [k3) (

%tavs) = (o= tor — oz + fs2)(
0(,le Vo) = (Lo + toz — 31 — th3)(
0(,u3 Vo) = (Uso+ toz — th2 — Lo1)(

<)
<)
N

O(,Uo Vs) = (Loo— th1— L2 + [s3)(Vso— Vo3) + ( Lo+ Loz + fh2 + [b1) (Vo1 — Vi),

)+ ( Ho2— foo— [B1+ [h3) (
) + (& oy — fhio+ Ha2 + [h3) (
) + (Moo= fh1+ [b2+ [43) (

%avs) = (o= Hor — oz + fs2)(
%tevs) = (too+ tor — Ha1 — 1413)(
0(,u3 V) = (Uso+ tos — th2 — Lo1)(

« ),
“ ),
“ ).

One easily shows that,vh; 4 Vs gives the same results as.(( 1) (Va; Vs).

1) tmbn; thVs= Vimn) s Yrs) = Vimn) (rs) -
Vinn) (rs) rs) = Vimn) = M ;
2) (,Um; 1) (Vi Vo) = e s,

Hinr Whs sy = U e Dhns Vs = mVn = Vimny) -
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Marki¢ — Quadri-quaternions.

Table llIb). Post-positive transformants.

:(,Uo Vo) = (Loo + fh1 + oo + 133) (Voo + Vi1 + Voo + Ua3),
(Lt Vo) = (Lo1 + fho + Loz + [32) (Voo — V11— Va2 — Va3),
:(,Uz Vo) = (Lo2 — Moo + 1 — fh3) (Voo — Vi1 — Vo2 — Va3),
(13 Vo) = (Loz + o — 2 — [b1) (Voo + V11 + Voo + Ua3);

*(,Uo Vi) = ( foo + fh1+ o2 + La3)(Vor — Vio) + (Uso + Loz — Lth2 — Lo1) (Va2 — Vog),

) + Wo2 — oo+ b1 — th3) (
) + ot + fho+ a2+ 3) (
) + oo+ a1 + Lo+ s3) (

:(,ul Vi) = ( fho+ Hor + ez + [432)(
*(,le Vi) = (= Lo + toz + 31— f13)(
(s V1) = ( fso + Loz — fh2 — L1)(

<))
<)
N

*(,Uo Vo) = ( foo + fh1+ oo + L3) (Vo2 — Vao) + (Uso + Loz — Lth2 — 1) (Viz — Va1),

:(,ul Vo) = (1 fho+ Hor + Loz + [432)(
*(,Uz Vo) = (= oo + oz + a1 — th3)(
(L o) = ( o+ toz — tho — th1)(

) + Wo2 — oo+ L1 — th3) (
) + ot + fho+ B2+ 3) (
) + oo+ i1 + Lo+ s3) (

<))
<)
N

*(,Uo V3) = ( foo + fh1+ o2 + La3)(Voz — Vao) + (Uso + Loz — Lth2 — 1) (Vo1 — Vi2),

) + Wo2 — oo+ b1 — Lh3) (
) + ot + fho+ B2+ L3) (
) + oo+ a1 + Lo+ s3) (

:(,ul Va) = ( fho+ Hor + ez + [432)(
*(,le Va) = (= Lo + toz + 31— f13)(
(L V3) = ( o+ oz — tho — to1)(

Table llla). Pre-positive transformants.

O(,Uo Ao) = ( oo+ fa1 + b2 + Ua3) (Moo + A + A22 + Asg),

%t Ao) = ( Hor + tho— ths = 152) ( ) ),
%o Ao) = (= oz + floo + a1 — 143) ( ) ),
%z Ao) = ( oz + o+ thz + fb1) ( ) );
%o A1) = ( oo + fha1 + Lo + s3) (Ao — Aor + Azz — Aa),
%t M) = ( Hor + tho— ths = 152) ( ) ),
%o A1) = (= oz + floo + a1 — 143) ( ) ),
% M) = ( oz + o+ thz + fb1) ( ) );
%o A2) = ( oo + fh1 + Lo + s3) (Moo — Ao + A1z — Asy),
%t A2) = ( Hor + fho— ths = 152) ( ) ),
%o A2) = (= oz + floo + a1 — 143) ( ) ),
% A2) = ( oz + o+ thz + fb1) ( ) );
%o A3) = ( oo + fha1 + Lo + Lis3) (Aso — Aoz + Ao1 — A1),
%t As) = ( Hor + fho— Loz = 152) ( ) ),
%o As) = (= oz + foo + a1 — 43) ( ) ),
%z As) = ( oz + o+ thz + fb1) ( ) )-

<))
<)
B
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Marki¢ — Quadri-quaternions.

Table llIb). Post-positive transformants.

*(,Uo Ao) = (oo + Ll + Loz + is3) ( Aoo + A + A2z + Azg),

(1 Ao) = (Uor + Lho + b3+ 132) ( ‘ )
(L Ao) = (o2 — Lo + 1~ 143) ( ‘ ),
“(1s Ao) = (tos + a0 — fho = L) ( ‘ );
*(,Uo A1) = (loo + fhus + oo + [a3) (—A10+ Aot + A32— A23),

(A1) = (Uor + Lho + b3+ 132) ( ‘ )
(L A1) = (o2 — Lo + L1 = £43) ( ‘ ),
(s A1) = (os + a0 — fho = L) ( ‘ );
(,Uo A2) = (Loo + fhus + oo + [ha3) (—A20+ Aoz + /113 Az1),

(,Ul A2) = (Lo1 + tho + Loz + 1) ( )
(L2 A2) = (o2 = oo+ o1 = 1413) ( ’ ),
(s A2) = (Uos + Lo — fhz — L21) ( ‘ );
*(,Uo A3) = (Loo + fhus + o2 + [33) ( Azo— Aoz + A21— A1),

(41 As) = (Uor + o+ Lhs+ 1h32) ( ’ ),
(U2 As) = (Uoz = foo+ s1 = fh13) ( ’ ),
(s A3) = (Uos + Lzo — fhz — L2a) ( ‘ )-

38

The advantage of the operat®gm An) [ (tn An), resp.] ovef(um vh) [ (tin W), resp.]

pops into view.

If one puts the common factors outside then onegstlla monomial in each case.
One does not need to perform the multiplicafiopmn 2. As . Observe that:

2 Hoon L Ars H7 /]q = [ Hmn 73 Ars mq] .
In addition:

O A) =% A, and (i An) = i O A,

The A, correspond exactly to the axial vectbrsn 8 17 and that also the form a

proper group:

Fol thi Hri M
Ho | Mot iy Mol My
——q-——t———F————H———=
| g Mo —Hs | —Hs
I e B I I
Ho| oy Hs) “Hoy —Hy
| sl ty ) Myl Ho

In this group, one can, in turn, develop the isomorphiostemants that are in

agreement with the ones in Table Il (as well as THble

One can also represent them by the axial vebttpend in fact:



Marki¢ — Quadri-quaternions.

% ="t ="ho="ho,

39

O =— Sho Chs, :,Ul =%y Ch,
O,Uzz— ho, *,Uzz—ohz,
O,113 =, [y, M3 == %hy.
§ 22 a) (Continued) — The preceding method is also applicable to § 18. ®inee
must regardh and’h as if they were two different letters, one can evrit
Ohm Ehn ; Ohr Ehs = (Ohm ; Ohr) (*hn ; *hs) = Ohmr Ehns )
and one finds from the grodpn, Ch, that:
?Ohl = (Ohlo h01 + h32 - hzs)( hoo + a1 + h22 + h33)
ihl = Cho1 = °hyo + °hay — hzs)( . . . )
i hy = (Ohoo +%hyg + g + h33)( hio - *h01 + *h32 - *h23),
hy = ( ! )(ho1 = "hio + "haz = hyg).
One sees that:
%h, =°Ch; Ohe) =% F'he ,
*Ohl ="(°hy Oho) =°hy D' ho,
h, = (hotih)— %o F'ho
“hy ="(°ho Ohy) =°ho D' ho , etc. o be continued)..
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