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PREFACE 
 

 The work of Grassmann (Ausdehnungslehre) and Combebiac’s tri-quaternions, which 
are based upon Hamilton’s quaternions, present themselves as remarkable geometric 
systems.  In his introduction, Combebiac said: “The procedures that were presented in 
Grassmann’s Ausdehnungslehre will realize this objective (a geometric analysis that is 
true for any reference system) if they are subjected to an absolutely systematic set of 
rules, which is a condition that has not been satisfied, in our view,” and since, on the 
other hand, it is difficult to choose between one or the other system, each of which is 
brilliant – one cannot have two conflicting truths regarding the same subject – we have 
been led to establish a synthesis of these two mathematical thoughts. 
 We would like to believe that we have succeeded in that task by imagining a 
synthesis that simultaneously encompasses the two preceding ones. 
 Our system is based upon a group of 32 elements, to which, we have attributed the 
name of “mu-lambda-group,” according to the letters of the alphabet that are adopted 
there, or the name of the “group of quadri-quaternions.” 
 During our study, we have encountered the new vehicle of “transformant” which is 
essentially the solution to several mathematical problems, and which, at the same time, 
one can have recourse to, with great advantage, in other fields of applications. 
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CHAPTER I 
 

Binary transformants. 
 
 

§ 1. – Origin of transformants. 
 

 One knows ([4], pp. 68) that when two substitutions: 
 

S
α β
γ δ
 
 
 

 and 1 1

1 1

S
α β
γ δ
 
 
 

 

 

1 1

1 1 1

,

,

x αξ βη
ξ α ξ β η

= +
 = +

  1 1

1 1 1

,y γξ δη
η γ ξ δ η

= +
 = +

 

 
are effected one after the other that will give the following composed substitution: 
 

A B
S

C D

 
 
 

 = 1 1

1 1

S S
α βα β
γ δγ δ
  
  

   
 = 1 1 1 1

1 1 1 1

S
αα βγ αβ βδ
γα δγ γβ δδ

+ + 
 + + 

. 

 
 These are then represented by complex units en (n = 1, 2, 3, 4), and by a composition 
(i.e., multiplication): 
 

1 1

1 1

S S
α βα β
γ δγ δ
  
  

   
 ≡ (α e1 + β e2 + γ e3 + δ e4) ⋅⋅⋅⋅ (α1 e1 + β1 e2 + γ1 e3 + δ1 e4). 

 
 This gives the following matrix: 

1 2 3 4

1 1 2

2 1 2

3 3 4

4 3 4

0 0

0 0

0 0

0 0

e e e e

e e e

e e e

e e e

e e e

 

 
 The multiplication becomes clearer with the adoption of complex units that have two 

indices.  The first index indicates the row in S
α β
γ δ
 
 
 

 and the second one indicates the 

column. 
 The Cayley square is then: 



Markič – Quadri-quaternions. 3 

11 12 21 22

11 11 12

12 11 12

21 21 22

22 21 22

0 0

0 0

0 0

0 0

e e e e

e e e

e e e

e e e

e e e

 

 
 The simple composition then follows from this that: 
 

if ;

0 if .
mn rs ms

mn rs

e e e n r

e e n r

⋅ = =
⋅ = ≠

 

 
 The enlargement to more units would present no difficulty, because the law of 
composition would remain the same. 
 It is to these quantities emn that we will attribute the name of “transformants.” 
 
 

§ 2. – Relationship between the units emn and the quaternion units,  
as well as the imaginary unit. 

 

 Note. – We denote the roots of unity by the symbol in = 1n − . 

 Suppose that we have three substitutions S, S1, S2 ([4], pp. 79), with the coefficients 
α, β, γ, δ, α1, β1, γ1, δ1, and α2, β2, γ2, δ2, resp., and the relation: 
 

SS1 = S2 
 

2

2

,

,

D i C

D i C

α
δ

= +
 = −

 2

2

,

.

B i A

B i A

β
γ

= − +
 = +

 

 
α1 = D1 + i2 C1 , etc., A, B, C, D (A1, …, A2, …, resp.) are real expressions. 
 Then: 
 A2 = (AD1 + DA1) + (BC1 – CB1), 
 B2 = (BD1 + DB1) + (CA1 – AC1), 
 C2 = (CD1 + DC1) + (AB1 – BA1), 
 D2 = − AA1 − BB1 − CC1 + DD1, 
and 

2 2 2 2
2 2 2 2A B C D+ + +  = (A2 + B2 + C2 + D2) ⋅⋅⋅⋅ 2 2 2 2

1 1 1 1( )A B C D+ + + . 

 
 For the quaternions ([1], pp. 56): 
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 q = w + ρ = w + x i + y j + z k, 
 r = w1 + ρ1 = w1 + x1 i + y1 j + z1 k . 
 
Upon changing the letters, in order to avoid collisions, one finds that: 
 

(w2 + x2 + y2 + z2) ⋅⋅⋅⋅ 2 2 2 2
1 1 1 1( )w x y z+ + +  

 = (ww1 – xx1  – yy1 – zz1)
2   

 + (wx1  + w1x + yz1 – zy1)
2 

 + (wy1  + w1y + zx1 – xz1)
2  

 + (wz1  + w1x + xy1 – yx1)
2, 

 
which is an algebraic formula that was derived by Euler. 
 A comparison with the preceding one gives: 
 

D2 ≡ ww1 – xx1  – yy1 – zz1, 
and consequently: 
 
 D  ≡ w, A ≡ x, B ≡ y, C ≡ z, 
 D1 ≡ w1, A1 ≡ x1, B1 ≡ y1, C1 ≡ z1 , 
 
and similarly: 

2

2

,

,

w i z

w i z

α
δ

= +
 = −

 2

2

,

,

y i x

y i x

β
γ

= − +
 = −

 

 

1 1 2 1

1 1 2 1

,

,

w i z

w i z

α
δ

= +
 = −

 1 1 2 1

1 1 2 1

,

.

y i x

y i x

β
γ

= − +
 = −

 

 Since: 
 

(D2 + A2 i + B2 j + C2 k) = (D + A i + B j + C k) ⋅⋅⋅⋅ (D1 + A1 i + B1 j + C1 k), 
 
and, on the other hand: 
 
 [(D  + i2 C)  e11 + (− B  + i2 A)  e12  + (B + i2 A)   e21  + (D − i2 C)   e22] 
 × [(D1 + i2 C1) e11 + (− B1 + i2 A1) e12 + (B1 + i2 A1) e21 + (D1 − i2 C1) e22] 
 = [(D2 + i2 C2) e11 + (− B2 + i2 A2) e12 + (B2 + i2 A2) e21 + (D2 − i2 C2) e22] , 
 
one can identify: 
 

D (e11 + e22) + C i2 (e11 − e22) + B (e21 − e12) + Ai2 (e12 + e21) = D + C k + B j + A i ; 
 
thus: 
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11 22

2 11 22

21 12

2 12 21

1,

( ) ,

,

( ) .

e e

i e e k

e e j

i e e i

+ =
− =
− =

+ =

 

 
 It is necessary that the left-hand sides of the four equations must obey the same laws 
as the right-hand sides; i.e.: 
 
 1) ij  =    k, 2) jk =    i, 3) ki =    j, 
 4) ji  = − k, 5) kj = − i, 6) ik = − j, 
 7) i2 = − 1, 8) j2 = − 1, 9) k2 = − 1. 
Verifications: 
 
 1) i2 (e12 + e21) (e21 − e12) = i2 (e11 − e22), 
 2) (e21 − e12) i2 (e11 − e22) = i2 (e21 + e12), 
 3) i2 (e11 − e22) i2 (e21 − e12) = i2 (e12 − e21) = e21 − e12, 
 4) (e21 − e12) i2 (e12 + e21) = i2 (e22 − e11) = − i2 (e11 − e22), 
 5) i2 (e11 − e21) (e21 − e12) = i2 (− e21 − e12) = − i2 (e12 + e21), 
 6) i2 (e12 + e21) i2 (e11 − e22) = − (e21 − e12), 
 7) [i2 (e12 + e21)]

2 = (e21 − e12) (e21 − e12) = − (e22 + e11), 
 8) (e21 − e12)

2 = (e21 − e12) (e21 − e12) = − e11 − e22 , 
 9) [i2 (e11 − e22)]

2 = − (e11 − e22) (e11 − e22) = − (e11 + e22). 
 
Let emn be expressed, inversely, in terms of i, j, k.  One will have: 
 

1
11 22

1
22 22

1
21 22

1
12 22

1) (1 ),

2) (1 ),

3) ( ),

4) ( ).

e i k

e i k

e j i i

e j i i

= −
= +
= −
= − +

 

 
 Here, as well, the right-hand sides must obey the law of emn ⋅⋅⋅⋅ ers .  For example: 
 
 1) e11 ⋅⋅⋅⋅ e22 = 0, 2) e11 ⋅⋅⋅⋅ e12 = e12 . 
Indeed: 
 1) 1 1

2 22 2(1 ) (1 )i k i k− ⋅ +    = 2 21
2 2 24 (1 )i k i k i k− + +  = 0, 

 2 1 1
2 22 2(1 ) ( )i k j i i− ⋅ − −  = 21

2 2 24 ( )j i kj i i i ki− + − +  
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   = 1
4 (− j – i2 i – i2 i – j) = − 1

2 (j + i2 i), etc. 

 
 Another example gives the surprising result that: 
 
 1) e12 ⋅⋅⋅⋅ e22 = e12 , 
 2) e22 ⋅⋅⋅⋅ e12 = 0. 
 
 The product is equal to the first factor, and the inversion of the same factor is equal to 
zero.  Effectively, one has: 
 
 1) − 1

2 (j + i2 i) ⋅⋅⋅⋅ 1
2 (1 + i2 k) = − 1

4 (j + i2 i + i2 jk + 2
2i ik ) 

= − 1
4 (j + i2 i + i2 i + j) = − 1

2 (j + i2 i), 

 
 2) − 1

2 (1 + i2 k) ⋅⋅⋅⋅ 1
2 (− j − i2 i) = − 1

4 (j + i2 kj + i2 i + 2
2i ki ) 

= − 1
4 (j − i2 i + i2 i − j) = 0. 

 
 

§ 3. −−−− The reciprocal value and the conjugate of a transformant. 
 

 Let t = α e11 + β e12 + γ e21 + δ e22 be a transformant. 

 The determinant of the transformant = determinant of the substitution S
α β
γ δ
 
 
 

 = αδ 

– βγ = ∆ t. 
 R t = t−1 is to be found. 
 We have ([4], pp. 68, 63): 
 

1 1

1 1

S S
α βα β
γ δγ δ
  

⋅   
   

 = 
1 0

0 1
S
 
 
 

. 

Therefore: 

 1) αα1 + βγ1 = 1, so a) α1 = 
δ

αδ βγ−
, 

 

 2) αβ1 + βδ1 = 1, so b) β1 = 
β

αδ βγ
−
−

, 

 

 3) γα1 + δγ1 = 1, so c) γ1 = 
γ

αδ βγ
−
−

, 

 

 4) γβ1 + δδ1 = 1, so d) δ1 = 
α

αδ βγ−
. 

One then finds that: 
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1 11 12 21 22
1 11 12 1 21 1 22 .

e e e e
t e e e e

δ β γ αα β γ δ
αδ αγ

− − − += + + + =
−

 

 
 One can refer to the numerator of this fraction as “conjugate” to t: “t” = Kt. 
 This gives us the right to make the following reflection: 
 If one sets δ = α, γ = − β then t will become: 
 
    t′ = α (e11 + e22) + β (e11 – e21) = α – β j =   q, 
 Kt′ = α (e11 + e22) − β (e11 – e21) = α + β j = Kq, 
 
according to Hamilton.  In addition: 
 

∆t′ = α2 + β 2 = qKq = Kq ⋅⋅⋅⋅ q = (Tq)2.  ([1], pp. 30) 
 

One thus has: 

t−1 = 
Kt

t∆
. 

 
 Upon multiplying the left and right sides by t, one will find that: 
 

1 = 
tKt

t∆
= 

Kt t

t

⋅
∆

, ∆t = tKt = Kt ⋅⋅⋅⋅ t. 

One can easily verify: 
K ⋅⋅⋅⋅ Kt = K2 t = t, 

and 
K(t t1) = Kt1 ⋅⋅⋅⋅ Kt  ([1], pp. 32). 

Thus: 
K(tKt) = K 2 t ⋅⋅⋅⋅ Kt = tKt. 

 
From this, tKt can only be an ordinary quantity.  It is equal to simply ∆t. 
 
 

§ 4. – Operator and operand (multiplier and multiplicand). 
 

 It is not necessary to identify the operand with the operator, as Hamilton did ([1], pp. 
40). 
 In what follows, we will employ the transformants emn as operators and the em (with 
just one index, which are Grassmann’s symbols) as operands. 
 The em represent pure geometric forms (points, lines, planes, etc.), and the 
transformants become dynames (reflections, rotations, and other motions). 
 We then stipulate the rule: 
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if ,

0 if ,
mn r m

mn r

e e e r n

e e r n

⋅ = =
⋅ = ≠

 

and conversely: 

if ,

0 if .
r mn n

r mn

e e e r m

e e r m

⋅ = =
⋅ = ≠

 

 
 When ρ = x e1 + y e2 changes into ρ′ = x′ e1 + y′ e2, there will exist a difference only 
in the case when the operator is found on the right or left. 
 
 N. B. – In the sequel, we will always multiply on the left, by analogy with y = ϕ(x). 
 
 In the case where the transformants are found on the right of ∑ em, one can put them 
on the left side without changing the result if one transposes the two indices of each term.  
In symbols: 
    t = α e11 + β e12 + γ e21 + δ e22 , 
 Wt = α e11 + β e21 + γ e12 + δ e22 ,  ρ = x e1 + y e2. 
One then has: 

t1(ρ t) = (t1Wt) ρ . 
 

 N. B. – Generally, t1(ρ t) ≠ (t1ρ) t .  Therefore, the operation is not associative.  By 
contrast, (t1 t) ρ = t1 (t ρ); likewise, (t2 t1) t = t2 (t1 t). 
 
 Thus: 

(t1 t) ρ = ρ W(t1 t) = t1 (t ρ) = (tρ) Wt1 = (ρ Wt) Wt1 = ρ (Wt Wt1). 
 

Consequently: 
W(t1 t) = Wt ⋅⋅⋅⋅ Wt1 . 

 
 When the operation W is performed on a product, it will be distributive and 
transposing. 
 The transformations that change the ∑ emn are transformants of degree two; in 
symbols, ∑ emn, rs .  They have the same relationship with the transformants of degree 
one, and follow the same rules, as the transformants of degree one that are inverse to ∑em. 
 
 

§ 5. – “Mutators,” special transformants of degree two. 
 

 Along with K, W, what other mutators exist that permute the indices and change the 
sign? 
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 Take the set: 
 

11 12 21 22

11 21 12 22

22 21 12 11 12 2 2 12

22 12 21 11

12 22 21 12 11

Definitions

1) Transpose the two indices in each term.

2) .

3) .

4) The index 2 i

t e e e e

Wt e e e e

Et e e e e W Z Z W

Kt e e e e EW WE

W t e e e e

α β γ δ

α β γ δ
α β γ δ
α β γ δ
α β γ δ

= + + +

= + + +
= − − + =
= − − + =
= + + +

12 22 12 21 11 12

2 11 12 21 22

2 11 21 12 22 2

s converted into the index 1, and vice versa.

5) .

6) Change the sign whenever the index appears.

7) .

W Wt e e e e WW

Z t e e e e

WZ t e e e e Z W

α β γ δ
α β γ δ
α β γ δ

= + + + =
= − − +
= − − + =

 
 We write these expressions more briefly as: 
 
 M0 ≡ 1, M1 ≡ W, M2 ≡ E, M2 ≡ K, 
 M4 ≡ W12 , M5 ≡ W12 W, M6 ≡ Z2 , M7 ≡ WZ2 . 
 
 The symbols form an Abelian group of eight elements; (see [5], pp. 91, 52). 
 
 N. B. – The interior squares of the Cayley square contain only indices. 
 
 The M with odd indices are transposing; the M with even indices are non-transposing. 
 The group of Mn is: 

0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 0 3 2 5 4 7 6

2 2 3 0 1 6 7 4 5

3 3 2 1 0 7 6 5 4

4 4 5 6 7 0 1 2 3

5 5 4 7 6 1 0 3 2

6 6 7 4 5 2 3 0 1

7 7 6 5 4 3 2 1 0

M

 

 
 The symbols Mn refer to the two indices of each term.  If we employ the same 
definitions on ρ = x e1 + y e2 – i.e., on just one index of each term – then we will write 
Mn(W, E, K, W12, Z2, …), instead of Mn(W, E, K, W12, Z2, …).  One sees that Mn 

coincides with Mn−1 : W ≡ 1, K ≡ E,  W12W ≡ W12, WZ2 ≡ WZ2 . 
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 The Mn form a group with a composition that is totally different from that of the Mn 

([5], pp. 93). 
0 2 4 6

0 0 2 4 6

2 2 0 6 4

4 4 6 0 2

6 6 4 2 0

− −

− −

M

 

 
 This is only a quarter of the Cayley square.  One finds the other operators by 
multiplying with – 1.  Thus, Mn (−Mn) = − (Mn, Mn), etc. 

 Z2 and W12 are of order two and E is of order four, and corresponds exactly to the 

“complementary feature” (trait de complément) of Grassmann’s school ([3], I, pp. 17). 
 Since: 
  ρ =    x e1 + y e2 , 
 Eρ = − y e1 + x e2 , 

 W12 ρ =    x e2 + y e1 , 

 Z2 ρ =    x e1 − y e2 , 

one can easily verify that: 
 

E ≡ e21 – e12 ,  W12  ≡ e12 + e21 , Z2 ≡ e11 – e22 . 

One thus has: 
 
(e21 – e12) e1 = e2 ,   and for Grassmann’s school | e1 = e2 , 
(e21 – e12) e2 = − e1 ,    “ “ “ | e2 = − e1 , 
(e21 – e12)

2 e1 = − (e11 + e22) = − e1  “ “ “ || e1 = | e2 = − e1 . 
 
Moreover: 

E = W12 Z2 = −Z2 W12 . 

 
 

§ 6. – Scalars, vectors, tensors, versors. 
 

 Just as we did for transformants, we distinguish scalars S, vectors V, tensors T, and 
versors U. 
 Let: 
     t = α e11 + β e12 + γ e21 + δ e22 = S t + Vt, 
 K t = α e22 − β e12 − γ e21 + δ e11 = S t − Vt. 
From this, we get: 
 
 1) 2S t = α e11 + α e22 + δ e22 + δ e22 = (α + δ) (e11 + e22) = α + δ. 
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1
2 ( ).St α β= +  

 
 2) 2Vt = t − K t = 2β e12 + 2γ e21 + α e11 − α e22 + δ e22 − δ e11 
   = 2β e12 + 2γ e21 + (α + δ) (e11 − e22). 
 

1
12 21 11 222 ( )( ).Vt e e e eβ γ α δ= + + − −  

Thus: 
(T t)2 = t ⋅⋅⋅⋅ K t = ∆t = αδ – βγ. 

 
In order for this to be true, one must have:: 
 

11 12 21 221
and .

e e e e
Tt Ut

Tt

α β γ δαδ βγ
αδ βγ

+ + += − = =
−

 

 
 

§ 7. – What complex quantities can be employed as coordinates  
in two-dimensional space? 

 
 There exist two possibilities: 
 
 I. The coordinates are composed from emn (∑emn , resp.). 
 II. They are xe1 (ye2, resp.). 
 
I. 
 1) Abscissa:   xe11 , Ordinate:   ye22 , 
 2)   “ xe11 , “ ye12 , 
 3) “ xe12 , “ ye21 , according to Hamilton, 
 4) “ xi = xi2 (e12 + e21) , “ yk = yi2 (e11 – e22). 
 
 We first examine the four combinations: The additions and subtractions according to 
the rules of a parallelogram of forces.  Consequently, in all four cases, each case will 
possess its proper multiplication. 
 The third case possesses a property that it gives points (lines, resp.) of two types 
according to whether the product is composed of an even or odd number of factors, 
respectively.  Cf., the multiplications: 
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 1) (x e11 + y e22)(x1 e11 + y1 e11) = x x1 e11 + y y1 e22 ; 
 
for the Grassmann school: 
 
   (x e1 + y e2) | (x1 e1 ,  y1 e2) = x x1 , y y1 , regarding the coefficients. 
 
  2) (x e11 + y e12)(x1 e11 + y1 e12) = x x1 e11 + x y1 e12 ; 
  3) (x e12 + y e21)(x1 e12 + y1 e21) = x1 y e11 + x y1 e11 ; 
 

(x1 y e22 + xy1 e11)(x2 e12 + y2 e21) = x y2 x1 e12 +  y x1 y2 e21 . 
 

However, we would not like to pursue this line of reasoning further.  We direct our 
attention to case II, in particular: abscissa: xe1, ordinate: ye2 . 
 
 

§ 8. – The geometric interpretation of the expressions ∑ xmn emn and ∑ xn en . 
 

 Let the coordinates of the point P be xe1 ≡ OP1 and ye2 ≡ OP2 , in such a way that: 
 

(ρ = xe1 + ye1) ≡ P ≡ (OP1 + OP2) ≡ (OP). 
 

 This determination of points follows the methods of quaternions; e1 and e2 are vectors 
in the sense of Grassmann (Ger.: Strecken).  See (fig. 1). 
 S2 

S12 
 P 

P1 
S1 

α 

S21 S12 
 

S2 

S1 
 

S21 
 

45o 

45o 

(ρ = OP) ≡ P, 
 
OP = OP1 + OP2 = ρ1 + ρ2 
 
(ρ = ρ1) ≡ P1,  (ρ = ρ2) ≡ P2. 

    The dashed lines represent 
reflecting lines. 

O 

 
Figure 1. 

 Definitions: 
 
 p1 ρ denotes the projection of ρ  onto the abscissa, 
 p2 ρ “ “ onto the ordinate, 
 p3 ρ “ “ onto the origin, 
 s1 ρ denotes the reflection of ρ  onto the abscissa, 
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 s2 ρ “ “ onto the ordinate, 
 s12 ρ “ “ onto the bisector of the first quadrant, 
 s21 ρ “ “ onto the bisector of the second quadrant, 
 s0 ρ “ “ onto the origin. 
 
 Finally, we let: 
 
 d1ρ denote the rotation of ρ by 90o around the abscissa, 
 d2ρ “ “ “ ordinate, 
 d3ρ “ “ “ third coordinate ⊥ d1 and d2 , 
 
 d1 is therefore ≡ k, d2 ≡ i, d3 ≡ j. 
 
 One then obviously has: 
 
 1) ρ′ = e11 ρ = p1 ρ, 
 2) ρ′ = e22 ρ = p2 ρ, 
 3) ρ′ = e22 (e11 ρ) = p2 (p1 ρ) = p2 ρ1 = ρ0 = 0. 
 
On the other hand: 
 
  ρ′ = (e22 e11)ρ = 0 ⋅⋅⋅⋅ ρ = 0, 
 
and similarly: 
 
  ρ′ = e11 (e22 ρ) = p1 (p2 ρ) = p1 ρ2 = ρ0 = 0. 
 
However, one also has: 
 
 ρ′ = p0 ρ = 0, from which, p0 = p1 p2 = p2 p1 . 
 
 4) ρ′ = e11 (e11 ρ) = e11 ρ = ρ1 = (e11 e11) ρ = e11 ρ = ρ1 . 
 
Similarly: 
 
  ρ′ = e21 (e22 ρ), 2

1p  = p1, 
2
2p  = p2 . 

  
 N. B. – One must distinguish between the origin as a reflecting dyname s0 and the 
origin as a purely geometric form ρ0 : s0 = − 1, ρ0 = 0. 
 
 5) ρ′ = e12 ρ = p1 s12 ρ = − p1 d3 ρ = − d3 p2 ρ = s12 p2 ρ, 
 
 6) ρ′ = e21 ρ = p2 s12 ρ =    p2 d3 ρ =    d3 p1 ρ = s12 p1 ρ. 
 
 Sums and geometric differences (from the parallelogram rule for forces). 
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 1) ρ′ = (e11 + e22) ρ = (p1 + p2) ρ = ρ, 
 
 2) ρ′ = (e11 − e22) ρ = (p1 − p2) ρ = s1 ρ, 
 
 3) ρ′ = (e21 + e12) ρ = (p2 + p1) s12 ρ = s12 ρ = (p2 − p1) d3 ρ = s2 d3 ρ = s12 ρ, 
 
 4) ρ′ = (e21 − e12) ρ = (p2 − p1) s12 ρ = s2 s12 ρ = d3 ρ , 
 
because it is obvious that p1 + p2 = 1, p1 − p2 = s1 , p2 − p1 = s2 . 
 Since: 
 e11 + e22 = 1, e11 − e22 = − i2 k, 
 e21 + e21 = − i2 i, e21 − e12 =  j, 
 
one has the geometric interpretation of these imaginary vectors of Hamilton in connection 
with ρ = x e1 + y e2 .  One has: 
 
 − i2 k ≡ s1, i2 k = s0 s1  = s1 s0   =  − s1 = s2 ,  
 − i2 i ≡ s12, i2 i  = s0 s12 = s12 s0 = − s12 = s21 . 
 
Now, one can also represent the emn as geometric sums: 
 
 1) e11 ρ = 1

2 (1 – i2 k) ρ = 1 1
12 2 sρ ρ+ ⋅ , 

 
 2) e22 ρ = 1

2 (1 + i2 k) ρ = 1 1
22 2 sρ ρ+ ⋅ , 

 
 3) e21 ρ = 1

2 (j – i2 i) ρ = 1 1
3 122 2d sρ ρ⋅ + ⋅ ,  (see fig. 2), 

 
 4) e12 ρ = 1

2 (− j – i2 i) ρ = − 1 1
3 122 2d sρ ρ⋅ + ⋅ . 

 
 

M′ 

P1 

P 

S1 

M 

S2 

P2 
 

M″ 
S1 O 

OM = 1
2 OP, 

 
 M′ = s1 M, 
 
M″ = s1 M. 

S2  
 

Figure 2.  Characteristic of reflecting lines. 
 

 These lines are completely distinct from ordinary, purely geometric lines; they have 
no direction, but only a position.  A rotation of 180o brings them back to the same 
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position, like multiplying by + 1.  One knows that the negative reflecting lines are 
perpendicular to the positive lines.  One must give a double rotational motion of 90o to 
the reflecting lines in order to bring them to the same position. 
  

Overview of the symbols that have been employed up to now. 
 

11 22

21 12 3

12 12 21 2 12

2 11 22 2 1

11 22 0

12 21 3 0 3 3 0

12 12 21 2 0 12 12 0 21

2 22 11 2 0 1 1 0 2

1) 1 1 1

2)

3)

4)

5) 1 ( ) 1 1

6)

7) ( )

8) .

A B C D

e e

e e j d

e e i i s

e e i k s

e e s

e e j d s d d s

e e i i s s s s s

e e i k s s s s s

+
−
+ −
− −

− − + − − =
− − − − = =

− − + = =
− − = =

E

W

Z

E

W

Z

 

 
 Column headings: 
 
 A. Change of indices and the sign of ρ. 
 B. Transformants with the same effect. 
 C. Corresponding Hamilton symbols. 
 D. Geometric interpretation (geometry of dynames). 
 
 The symbols in column D form the same group of eight members as the symbols in 
columns A and B (cf., § 5). 
 A quarter of the Cayley square will suffice for this: 
  

3 12 1

3 12 1

3 3 1 12

12 12 1 2

1 1 12 3

1

1 1

1

1

1

d s s

d s s

d d s s

s s s d

s s s d

− −

− −

 

 
 Since the complement E is itself composed of W12 and Z2 (viz., E = W12  ⋅⋅⋅⋅ Z2 , which 

is d3 = s12 s1), one sees that the other transformants are introduced into the Grassmann 
system organically, and that will permit an extended amplification of the system. 
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§ 9. – Geometry in the space of just one dimension. 
 

 We content ourselves with the following remark: If one of the two symbols e1, e2, or 
both of them, represent points then two-dimensional space will change into one-
dimensional space, and the results of the first geometry can be easily translated into the 
geometry of just one dimension. 



CHAPTER II 
 

Ternary transformants. – three-dimensional spaces. 
 
 

§ 10. – Reflections. 
 

 We have: 
ρ = x e1 + y e2 + z e3 ; 

 
en are vectors.  One has t = ∑ amn emn , i.e.: 
 

t = a11 e11 + a12 e12 + a13 e13 + a21 e21 + a22 e22 + a23 e23 + a31 e31 + a32 e32 + a33 e33 ; 
 
amn are ordinary quantities. 
 We confine our study to the elementary transformants.  They are the ones whose 
coefficients are ± 1, 0, and each of which appears in the same number between the three 
indices. 
 We look for the expressions for the reflections in terms of ∑ emn . 
 In general, one has: 
 
 1) t e1 = a11 e1 + a21 e2 + a31 e3 , 
 2) t e2 = a12 e1 + a22 e2 + a32 e3 , 
 3) t e3 = a13 e1 + a23 e2 + a33 e3 . 
 
One thus finds, for example, for s12, that: 
 
 1) t e1 = e2 , i.e., 1) a21 = 1, a11 = 0, a31 = 0, 
 2) t e2 = e1 ,  1) a12 = 1, a22 = 0, a32 = 0, 
 3) t e3 = − e3 ,  1) a33 = − 1, a23 = 0, a13 = 0. 
 
One then has: 

t = s12 = e21 + e12 – e33 . 
 
 One finds the following expressions for the nine reflecting lines and the nine 
reflecting planes in the same manner: 
 
 s1  =    e11 – e22 – e33 , σn   = − sn , n = 1, 2, 3, 
 s2  = − e11 + e22 – e33 , σmn = − smn , m, n = 1, 2, 3, 
 s3  = − e11 – e22 + e33 , 
 s12 =    e12 + e21 − e33 , 
 s21 = − e12 – e21 − e33 , 
 s23 = − e11 + e32 + e23 , 
 s32 = − e11 – e32 − e23 , 
 s31 =    e31 – e22 + e13 , 
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 s13 =  − e31 – e22 − e13 . 
 
The σn are the reflecting planes XY, YZ, ZX that are perpendicular to sn ; one could then 
say σmn ⊥ smn . 
 In three-dimensional space, the negative reflecting lines become reflecting lines that 
are perpendicular to the lines, and vice versa. 
 In addition: 
 1  =     e11 + e22 + e33 , 
 s0 = − (e11 + e22 + e33). 
 
 Note. – The notations are the same as in chapter I, § 8 for the plane XY.  One obtains 
notations for the other two planes YZ, ZX by a circular permutation of the indices 1, 2, 3, 
and notably the indices 1, 2 of the plane XY become 2, 3 in the plane YZ and 3, 1 in the 
plane ZX. 
 
 

§ 11. – Rotations around the coordinate axes. 
 

 There are three fourth-order operators that perform a 90o rotation in the left-hand 
sense (i.e., levogyrous): 
 
 d1 = e32 – e23 + e11 , 

1
1d−  = − e32 + e23 + e11 , 

 d2 = e13 – e31 + e22 , 
1

2d−  = − e13 + e31 + e22 , 

 d3 = e21 – e12 + e33 , 
1

3d−  = − e21 + e12 + e33 . 

 
 2

1d  = − e22 − e33 + e11 = s1 ,  
3
nd  = 1

nd−  

 2
2d  = − e33 − e11 + e22 = s2 ,  

4
nd  = 1, n = 1, 2, 3, 

 2
3d  = − e11 − e22 + e33 = s3 . 

 
One can easily confirm that: 
 

s12 s1 = d3 , (s12 s1)
−1 = d−1 = 1 1

1 12s s− −  = s1 s12 . 

Moreover: 
d1 d2 d3 = e31 − e22 + e13 = s31 . 

 
 The operators 1, s1, s2, s3, s12, s21, d3, 

1
3d−  form a group of eight members of the 

following type 8 = 1(1) + 5(2) + 2(4); i.e., among the eight members, 1 is of degree 1, 5 
are of degree 2, and 2 are of degree 4. 
 The subgroup 1, s1, s2, s3 has type 4 = 1(1) + 3(2). 
 One will obtain two other groups of eight members of the same type by circular 
permutations of the indices 1, 2, 3.  (See the group of 24 members in § 13.) 
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 Note. – It is remarkable that in three-dimensional space, one cannot generally identify 
k, i, j with d1, d2, d3 . 
 
 d1 ≡ k only with regard to the points of the plane YZ as operands. 
 
Similarly: 
 
 d2 ≡ i with regard to the points of the plane ZX, 
and 
 d3 ≡ j “ “ “ “     XY 
 
as operands. 
 By contrast, d1 (d2, d3, resp.) effect the rotation of all points of tri-dimensional space 
around the corresponding axes. 
 
 Cf., d2 e3 = e3 ; as opposed to i(j) = − 1. 
 
 

§ 12. – Operators Dn, Dn . 

 
s12 ⋅⋅⋅⋅ s21 = (e12 + e21 – e33) ⋅⋅⋅⋅ (− e11 + e32 + e23) = − e32 + e13 – e24 , 

 
which then gives a new operator. 
 One obtains eight operators in this manner.  They effect a counterclockwise (i.e., 
levogyrous) rotation through 120o around the axes, which forms equal angles with the 
three coordinates and pass through the origin.  They are of third order, and one can call 
them regular since they transpose all three indices of ρ, and each of them once. 
 They are: 
 
 1) D0 =    e21 + e32 + e12 , 5) D0 =    e12 + e23 + e31 , 

 2) D1 = − e12 − e31 + e23 , 6) D1 = − e21 − e13 + e32 , 

 3) D2 =    e31 − e23 − e12 , 7) D2 =    e13 − e32 + e21 , 

 4) D3 = − e32 − e13 + e21 , 8) D3 = − e23 − e31 + e12 . 

 
 D0 forms equal angles with the OX, OY, OZ axes, 

 D1 “ “ “ OY, OX′, OZ axes, 

 D2 “ “ “ OX′, OY′, OZ axes, 

 D3 “ “ “ OY′, OX, OZ axes. 

 
Direction Dn = − direction Dn . 

(see Fig. 3) 
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O X X′ 

Z 

Z′ 

Y 

Y′ 

One sees that: 
 
    Dn = W Dn , n = 0, 1, 2, 3, 

 
and 
 
    Dn = 1

n
−
D  = 2

nD . 

 
 
  Figure 3. 

 
 The operators Dn, Dn, sm, 1; n = 0, 1, 2, 3, m = 1, 2, 3, form a group of twelve 

members of type 12 = 1(1) + 3(2) + 8(3).  (See, § 13.) 
 
 

§ 13. – The composed group. 
 

 The combination of the groups that were studied up to now contains a group of 24 
members of type: 24 = 1(1) + 9(2) + 6(4) + 8(3). 
 

(See the table on pp. 124 of the original article.) 
 

 
 
 
 



CHAPTER III 
 

Quaternary transformants. 
 
 

§ 14. – Fundamental explanations. 
 

 
t = ∑ xmn emn ,  m, n = 0, 1, 2, 3. 

 
 
 Above all, we are interested in the transformants that have the same composition as 
the Hamilton symbols i, j, k. 
 There are two series of such transformants: 
 
 I) T1 = e32 – e23 + e01 – e10 , II) 1′T  = e32 – e23 − e01 + e10 , 

  T2 = e12 – e31 + e02 – e20 ,  2′T  = e13 – e31 − e02 + e20 , 

  T3 = e21 – e12 + e03 – e30 ,  3′T  = e21 – e12 − e03 + e30 , 

 
 T1T2 = T3 , etc. 1 2′ ′T T  = 3′T , etc. 

 
2

nT  = − (e00 + e11 + e22 + e33) = − 1, and likewise 2
n
′T  = − 1,  n = 1, 2, 3. 

 
 As for the operand r = x0 e0 + x1 e1 + x2 e2 + x3 e3 , we can interpret it in two ways: 
First, all four en are vectors.  Then, (r = …) is a point in four-dimensional space and (r = 
0) is the origin. 
 On the contrary, if only one of the four quantities en symbolizes a point then r will be 
a point in tri-dimensional space. 
 We choose the simpler option and choose e0 to be the origin, while e1, e2, e3 are 
vectors in the coordinate directions. 
 In that way, a point with coordinates x1 / x0 , x2 / x0 , x3 / x0  will be represented by: 
 

m = x0 e0 + x1 e1 + x2 e2 + x3 e3 = x0 e0 + ρ. 
 
 

§ 15. – The representation of the equations given by Olinde Rodrigues and 
Combebiac ([2], pp. 8, 11) for quaternary transformants.  

 
 We write x′, y′, z′ in place of x, y, z ( 1x′ , 2x′ , 3x′  in place of x1, y1, z1, resp.), while 

appending x0 and 0x′ . 

 One will then have: 
m′ = tm, 
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m = ∑ xn en ,  m′ = n nx e′ ⋅∑ ,  n = 0, 1, 2, 3. 

 
 t  = 2(α2 β3 – α3 β2 + α0 β1 – α1 β0) e10 + 2 2 2 2

0 1 2 3( )α α α α+ − − e11 

 + 2(α1 α2 – α0 α3) e12 + 2(α1 α3 + α0 α2) e13 + 2(α3 β1 – α1 β3 + α0 β2 – α2 β0) e20 
 + 2(α2 α1 + α0 α3) e21 + 2 2 2 2

0 1 2 3( )α α α α− + − e22 + 2(α2 α3 − α0 α1) e23  

  + 2(α1 β2 – α2 β1 + α0 β3 – α3 β0) e30 + 2(α3 α1 − α0 α2) e31 
  + 2(α3 α2 + α0 α1) e32 + 2 2 2 2

0 1 2 3( )α α α α− − + e33 + 2 2 2 2
0 1 2 3( )α α α α+ + + e00 . 

 
The transformant t represents a displacement whose axis has the coordinates: 
 

01

1

p

α
: 02

2

p

α
: 03

3

p

α
: 23

0 0 1
1 2 2 2

1 2 3

p
α β αβ

α α α
+

+ +

 : 31

0 0 2
2 2 2 2

1 2 3

p
α β αβ

α α α
+

+ +

 : 12

0 0 3
3 2 2 2

1 2 3

p
α β αβ

α α α
+

+ +

, 

 
where the rotation angle 2ϑ and the shift along the axis 2η are given by the relations: 
 

cot ϑ = 0

2 2 2
1 2 3

α
α α α+ +

, η = − 0

2 2 2
1 2 3

β
α α α+ +

. 

 
 Upon annulling the βn, n = 0, 1, 2, 3 in t, one will obtain the formulas of Olinde 
Rodrigues ([2], pp. 8), when transformed into transformants. 
 If λ, µ, ν are the angles that the rotational axis makes with the coordinates axes, and 
2ϑ is the angle of rotation then one will have the following relations: 
 

cot λ = 1

2 2 2
1 2 3

α
α α α+ +

, cot µ = 2

2 2 2
1 2 3

α
α α α+ +

, cot ν = 3

2 2 2
1 2 3

α
α α α+ +

, 

 

cot ϑ = 0

2 2 2 2
0 1 2 3

α
α α α α+ + +

. 

 
 

§ 16. – Reflections. 
 

 I. – A reflecting point with the equation: 
 

m = e0 + a e1 + b e2 + c e3 
gives the relation: 
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10 20 30 00 11 22 332 2 2 .sm ae be ce e e e e= + + − − − −  

 
 Note. – The “s” in “ sm” is an upper index on the left side that is given the Latin name 
speculum; we shall use such indices for certain transformants. 
 It was by this line of intuition that we obtained the relation below. 
 
 Conclusions: 
 
 sm2 ⋅⋅⋅⋅  sm1 = (2 a2 e10 + …)(2 a1 e10 + …)  

= 2(a2 – a1) e10 + 2(b2 – b1) e20 +2(c2 – c1) e30 + 1; 
 

1 = e00 + e11 + e22 + e33 . 
 

 Moreover, the origin has the equation: 
  

sm0 = e00 − e11 − e22 − e33 , 
 
as a reflecting point since a = b = c = 0. 
 

II. – The reflecting line. 
 

 It follows from formulas ([2], pp. 11, 13) that for η = 0, ϑ = 90o, 2ϑ = 180o, since cot 
ϑ = 0 (cos ϑ = 0, resp.): 

α0 = 0      and      β0 = 0. 
If one accepts, a priori, that: 
 

2 2 2
1 2 3α α α+ +  = cos2 λ + cos2 µ + cos2 ν = 1 

 
then one will have 0x′  = 1, just as x0 = 1, and if “d” has linear coordinates: 

 

01

1

p

α
: 02

2

p

α
: 03

3

p

α
: 23

1

p

β
: 31

2

p

β
: 12

3

p

β
 

then one will have: 
m′ = sd ⋅⋅⋅⋅ m, 

where: 
m = e0 + x1 e1 + x2 e2 + x3 e3 ,  m′ = e0 + 1 1 2 2 3 3x e x e x e′ ′ ′+ + , 

and 
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2 2 2
11 1 2 3 12 1 2 13 1 3 10 2 3 3 2

2 2 2
21 2 1 22 1 2 3 23 2 3 20 3 1 1 3

2 2 2
31 3 1 22 3 2 33 1 2 3 30 1 2 2 1

01 02 0

, , 0,1,2,3,

where :

, 2 , 2 , 2( ),

2 , , 2 , 2( ),

2 , 2 , , 2( ),

s
mn mnd a e m n

a a a a

a a a a

a a a a

a a a

α α α α α α α α β α β
α α α α α α α α β α β
α α α α α α α α β α β

= =

= − − = = = −
= = − + − = = −
= = = − − + = −
= =

∑

3 000, 1.a= =

 

 
 One gets β1 = β2 = β3 = 0 for d0, which is a line that passes through the origin, and if 
one considers that cos λ = α1 , cos µ = α2 , cos ν = α3 , with 2 2 2

1 2 3α α α+ +  = 1, then one 

will find that: 
 sd0 = 2 2 2

1 2 3( )α α α− −  e11 + 2α1α2 e12 + 2α1α3 e13 

 + 2α2α1 e21 + 2 2 2
1 2 3( )α α α− + − e22 + 2α2α3 e23 

 + + 2α3α1 e31 + 2α3α2 e32 + 2 2 2
1 2 3( )α α α− − + e33 + e00 . 

 
III. – The reflecting plane. 

 
 It suffices to choose a point m on a line at a distance from the origin: 
 

a e1 + b e2 + c e3 , a = hα1 , b = hα2 , c = hα3 , 
 
because then: 

sp = sd0 ⋅⋅⋅⋅ sm = sm ⋅⋅⋅⋅ sd0 . 
 
p is a plane that is perpendicular to the line d0 that passes through the point m. 
 

0 10 20 30 00
2 2 2
1 2 3 11 2 1 21 3 1 31

2 2 2
1 2 12 1 2 3 22 3 2 32

2 2 2
1 3 13 2 3 23 1 2 3 33

2 2 2

( ) 2 2

2 ( ) 2

2 2 ( ) .

s s sm d p ae be ce e

e e e

e e e

e e e

α α α α α α α
α α α α α α α
α α α α α α α

⋅ = = + + +
− − − − −
− − − + − −
− − − − +

 

 
sd0 ⋅⋅⋅⋅ sm gives the same result, because the coefficient a10 of ∑ amn emn , which is equal to: 
 

2a 2 2 2
1 2 3( )α α α− −  + 2b ⋅⋅⋅⋅ 2α1 α2 + 2c ⋅⋅⋅⋅ 2α1 α3 , 

will then become: 
  2h 3 2 2 2 2

1 1 2 1 3 1 2 1 3( 2 2 )α α α α α α α α α− − + +  
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 = 2h 3 2 2
1 1 2 1 3( )α α α α α+ +  = 2hα1

2 2 2
1 2 3( )α α α+ + = 2hα1 = 2a. 

 
One has similar expressions for a20 and a30 . 
 The multiplication of the factors sm, sd, sp, … in arbitrary quantities (the operations 
are associative) permits one to form various dynames. (See [6].) 
 For example, sm sp, or sp sm (in German: “Quirl,” [6], pp. 59, 60, 63, 165), represents 
an ascending rotational motion of 180o.  Two parallel lines or two parallel planes or two 
points express a translatory motion.  Two arbitrary planes effect a rotation around the line 
of intersection, etc. 
 
 Note. – The multiplication of (t t1 … tn) does not need to be realized, since 
 

(t t1 … tn) m = t [t1 … (tn m)]. 
 
 

§ 16 a). – (Continued). 
 

 If the reflecting point em is found in the plane sp then one knows that sm ⋅⋅⋅⋅ sp = sp ⋅⋅⋅⋅ sm 
= sd, sd ⊥ sp passes through sm.  If three planes are mutually perpendicular: i.e., p1 ⊥ p2 ⊥ 
p3 ⊥ p1 then the lines of intersection will be, as well: 
 

d1 ⊥ d2 ⊥ d3 ⊥ d1 and d1 ⊥ p2 , d2 ⊥ p3 , d3 ⊥ p3 . 
 
“sm” is the point of intersection. 
 One then has: 

sm ⋅⋅⋅⋅ sdn = sdn ⋅⋅⋅⋅ sm = spn , 
sm ⋅⋅⋅⋅ spn = spn ⋅⋅⋅⋅ sm = sdn , 

spn ⋅⋅⋅⋅ sdn = sdn ⋅⋅⋅⋅ spn = sm , n = 1, 2, 3. 
 

 
 This gives an Abelian group with eight members, because: 
 

 sm2 = sdn
2 = sp2 = 1. 
 

 Take the simplest case: viz., “m” is the origin, dn are the coordinate axes, and pn are 
the coordinate planes.  It will then follow from the Olinde Rodrigues equations, or direct 
calculation, that the effect of reflection on e0, e1, e2, e3 is: 
 

sm = e00 – e11 – e22 – e33 , 
 

 sp1 = e00 – e11 + e22 + e33 , 
sd1 = e00 + e11 − e22 − e33 , 

 sp2 = e00 + e11 − e22 + e33 , 
sd2 = e00 − e11 + e22 − e33 , 

 sp3 = e00 + e11 + e22 − e33 , 
sd3 = e00 − e11 − e22 + e33 . 
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§ 17. – Transformants that are isomorphic with their operands. 
 

  Up to now, the only questions to be addressed were those of the geometric addition of 
the operands ∑ xn en and the multiplication of them by transformants; there has been no 
agreement on the composition rule for the operands themselves; i.e., em en .  It can obey 
various rules, such as those of Grassmann or Hamilton.  In the latter case, we will write 
“hn”, instead of “en” − where “h” should suggest then name “h(amilton)” – or also “λn”. 
  Furthermore, h0, h1, h2, h3 correspond to 1, i, j, k, respectively.  Meanwhile, it must be 
remarked that h0 can be supplied with the unit “1” only in conjunction with hn, and never 
in conjunction with the transformants hmn , where: 
 

“h00 + h11 + h22 + h33 = 1” and “hn0 ⋅⋅⋅⋅ h0 = hn”. 
 
 We let “0hn” denote the isomorphic transformant if it is found before “hn” – i.e., a pre-
positive transformant – and by “*hn” if it is found after “hn” – i.e., a post-positive 
transformant. 
 For the inversion of the indices W ⋅⋅⋅⋅ 0hn (W ⋅⋅⋅⋅ *hn, resp.), we write briefly 0" "mh  

(" "mh∗ , resp.). 

 Here is an overview of the pre-positive and post-positive isomorphic transformants: 
 

1 = h00 + h11 + h22 + h33 = 0h0 = *h0 , 
  
 0h1 = h32 − h23 + h10 − h01 , 

*h1 = h32 − h23 − h10 + h01 , 
 0h2 = h13 − h31 + h20 − h02 , 

*h2 = h13 − h31 − h20 + h02 , 
 0h3 = h21 − h12 + h30 − h03 , 

*h3 = h21 − h12 − h30 + h03 . 
 
One sees that 0hn are identical with n

′T , and *hn, with Tn , § 14. 

One confirms the following rules by calculation: 
 
 1) hm hn = 0hm ⋅⋅⋅⋅ hn = hm ⋅⋅⋅⋅ *hn = nh∗ ⋅⋅⋅⋅ hm , 

 2) 0hm ⋅⋅⋅⋅ *hn = *hn ⋅⋅⋅⋅ 0hm , 0(hm hn) = 0hm ⋅⋅⋅⋅ 0hn , 
*(hm hn) = *hm ⋅⋅⋅⋅ *hn , 

 3) 0( )m nh h⋅ɶ ⋅⋅⋅⋅ *hs = 0hm (hm ⋅⋅⋅⋅ *hn) = 0( )m sh h∗⋅ɶ ⋅⋅⋅⋅ hn . 

 
By contrast, for the non-isomorphic transformants, one will have (t em) t1 ≠ t(em t1), in 
general. 
 
 4) (*hn)

−1 = nh∗  and (0hn)
−1 = 0

nh . 

 
In order for this to be true, one must have: 
 
  0h1 ⋅⋅⋅⋅ *h1 = sd1 , 
  0h2 ⋅⋅⋅⋅ *h2 = sd2 , 
  0h3 ⋅⋅⋅⋅ *h3 = sd3   (see § 16a), 
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since “(0h1 ⋅⋅⋅⋅ *h1) ⋅⋅⋅⋅ hn” is derived from “0h1 ⋅⋅⋅⋅ hn ⋅⋅⋅⋅ (*h1)
−1”. 

 We have thus arrived at two ways of approaching isomorphic transformants: first, 
based upon the same composition, and second, by concluding from the effect of the 
transformants on the operands.  We then arrive at a third method: developing the 
transformants from the Cayley square for the group hn, n = 0, 1, 2, 3 (properly speaking, 
the first quadrant of the square, since most of the members are distinguished from the 
other ones only by their signs). 
 

0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

,1 , , ,

,1

,

,

,

h h i h j h k

h h h h h

h i h h h h

h j h h h h

h k h h h h

− −
− −

− −

 

 
We denote the following the operations with a semi-colon: 
 

hm ; hn = hmn . 
From this, one then has: 

0hs = ∑′ hm ; hn = ∑′ hmn = ;s n n
n

h h h∑ , 

where: 
  s = index of the left column that is exterior to the row, 
 m = index of the squares interior to the row s, 
 n = index in the upper row, corresponding to m, in such a way that: 
 

“hs hn = hm”. 
 

One must be careful with the signs in this. 
 One finds the post-positive transformants in the same manner, except that one must 
switch the row with the column; namely: 
 

*hs = ∑″ hm ; hn = ∑″ hmn = ;m m s
m

h h h∑ , 

where 
 s = index in the upper row of the column, 
 m = indices in the exterior left column, 
 n = indices in the interior squares of the column s, in such a manner that: 
 

hm hs = hn . 
 
 This method is applicable to all of the other groups. 
 The composition of the quantities 0hm and *hn will result in a group of 32 members of 
the type: 32 = 1(1) + 19(2) + 12(4), with a subgroup of operators: 
 

± (1, 0h1, 
*h2, 

0h1 ⋅⋅⋅⋅ *h2,  
0h2 ⋅⋅⋅⋅ *h1, 

 0h2 ⋅⋅⋅⋅ *h3, 
 0h3 ⋅⋅⋅⋅ *h1, 

0h3 ⋅⋅⋅⋅ *h3). 



Markič – Quadri-quaternions. 28 

§ 18. – The transformants of higher degree. 
 

 One can deduce “transformants of transformants” − or second-degree transformants – 
from the group of 32 members that was mentioned above in the same manner.  To that 
end, we write the operators 0hm ⋅⋅⋅⋅ *hn in that sequence as h(mn), and 0hm = 0hm ⋅⋅⋅⋅ *h0 = h(m0) , 
*hn = 0h0 ⋅⋅⋅⋅ *hn = h(0n) .  Since “*hn” and “0hr” commute, a product (0hm ⋅⋅⋅⋅ *hn) ⋅⋅⋅⋅ (0hr ⋅⋅⋅⋅ *hs) will 
be equal to 0hp ⋅⋅⋅⋅ *hq = h(pq) .  Therefore, the desired transformant will have the form: 0h(mn) 
= ∑′ h(pq)(rs) , which is a polynomial with 16 terms, etc. 
 On the other hand, one can derive 0(hmn) [

*(hmn), resp.] directly from the square: 
 

00 01 02 03 10 11

01 10 11 12 13 0 0

h h h h h h

h h h h h

⋯

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

⋯

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

 

 For example: 
0(h10) = h10,00 + h11,01 + h12,02 + h13,03 , 

 
which is a polynomial with four terms. 
 One must therefore distinguish 0h(mn) from *hmn [*h(mn) from *hmn , resp.], and 
furthermore, from 0(hmn) [

*(hmn), resp.]. 
 Meanwhile, since: 

h(10) = 0h1 = h32 − h23 + h10 – h01 , 
 
0h(10) = 00h1 can also be represented by: 
 

0h32 − 0h23 + 0h10 – 0h01 . 
 
 One likewise gets *0hn , 

0*hn , and ** hn , upon replacing h with 0h [*h, resp.] in the 
formulas for 0hn [

*hn, resp.]. 
 Therefore, 0hmn = 0hm ; 0hn , etc. (see, § 22a). 
 
 

§ 19. – The elective transformants. 
 

If one has a quaternion: 
q = a0 h0 + a1 h1 + a2 h2 + a3 h3 

 
then “h00” will have the same effect on the quaternion as the Hamilton symbol “S”. 
 
(Scalar): 

h00 q ≡ S q = a0 h0 . 
 
 In the same fashion, “h11 + h22 + h33“ is identical with “V” (vector). 
 Moreover: 

K(conjugate) ≡ h00 – h11 – h22 – h33 
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and 
K2 ≡ h00 + h11 + h22 + h33 = 1. 

 One verifies, in turn, that: 
 

SS = S,  VV = V, KS = SK = S,  KV = VK = − V, 
 

SV = VS = 0.    ([1], pp. 43) 
 
 

____________ 
 

 
 
 
 
 



CHAPTER IV 
 

Bi-quaternary and quadri-quaternary transformants,  Polar 
and axial vectors.  Mu-nu-group and mu-lambda-group.  The 
isomorphic transformants that are derived from these two 
groups. 
 

§ 20. – Polar and axial vectors. 
 

 The discussions up to now have given no motive for distinguishing the two kinds of 
vectors.  At present, we would like to denote the former by v1, v2, v3 and the latter by λ1, 
λ 2, λ 3 , both of which are in the coordinate directions with the tensor 1;  v0 (λ0, resp.) are 
then first-order operators. 
 One must enforce the following rule for their composition ([7], pp. 23): 
 
 The vectorial product of two polar vectors, as well as two axial vectors is an axial 
vector. 
 The vectorial product of a polar vector and an axial vector is a polar vector. 
 
 Therefore, λn relates to νn in the same way that “+1” does to “−1,” or as a real number 
does to an imaginary number. 
 From this, one has: 
 
 λ1 λ2 = λ3 = − λ2 λ1, ν1ν2 = ν3 , 

2
1λ = − 1, 

 λ2 λ3 = λ1 = − λ3 λ2, ν2ν3 = ν1 , 
2
2λ = − 1, 

 λ3 λ1 = λ2 = − λ1 λ3, ν3ν1 = ν2 , 
2
3λ = − 1. 

 
Moreover ([7], pp. 23): 
 
 Under multiplication by a pseudo-scalar, an axial vector will become a polar vector, 
and vice versa, a polar vector will become an axial vector. 
 
 This “pseudo-scalar” will be denoted by “l”.  We will show that “l” is not presumed 
to be a scalar, nor a pseudo-scalar, but a true second-order complex operator that has 
some properties in common with scalars.  (“l” commutes with the two vectors, and its 
isomorphic transformant has a constitution that is similar to that of the transformant t = 
1.) 
 One has: 
 l v1 = λ1 , l λ1 = ν1 , 
 l v2 = λ2 , l λ2 = ν2 , 
 l v3 = λ3 , l λ3 = ν3 . 
From this: 
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 1) l ⋅⋅⋅⋅ l ⋅⋅⋅⋅ λ1 = l v1 = λ1 ,  2 1,l =  

 
 2) v1 v2 = lλ1 ⋅⋅⋅⋅ lλ1 = λ3 = λ1 λ2 = l(λ1 l) λ2 = l(lλ1) λ2 . 
 
Therefore: 

1 1;l lλ λ=  and, in general: , 1,2,3.n nl l nλ λ= =  

 

 3) lλ1 ⋅⋅⋅⋅ lλ1 = 1 2 1,ν ν = −   because lλ1 ⋅⋅⋅⋅ lλ1 = llλ1λ2 , 

 

 4) lλ2 ⋅⋅⋅⋅ lλ1 = v2 v1 = ll λ2λ1 = − λ3 = − v1 v2 , 2 1 1 2.ν ν ν ν= −  

 
 Note. – According to Hamilton, 2

nλ  = − 1.  Abraham ([7], pp. 14) writes the scalar 

product 2
nλ  = + 1, so one must write strictly SA ⋅⋅⋅⋅ 2

nλ  = + 1, while for Hamilton’s school, 

SH ⋅⋅⋅⋅ 2
nλ  = − 1, which is naturally permitted.  Then, SA ≡ − λ00, and by contrast, SH ≡ +λ00 

= − SA . 
 
 With that, the composition of the operators ± (1, l, λ1, λ2, λ3, v1, v2, v3) is well-defined 
and gives a group of sixteen members of the type 16 = 1(1) + 3(2) + 12(4). 
 One must keep in mind that λn , n = 0, 1, 2, 3 forms a group by itself, while this is not 
the case with ± νn ; ± ν will form a group only in conjunction with ± λn . 
 The corresponding isomorphic transformants contain eight different indices and can 
be referred to as bi-quaternary. 
 However, we shall not dwell on this, since we wish to envision quadri-quaternary 
transformants. 
 
 

§ 21. – Mu-nu-group and mu-lambda-group. 
 

 If we add the origin ± µ ≡ ± v4 to ± vm , ± λn then we will double the number of 
operators. 
 We are in agreement with Grassmann, for whom: 
 

e0 (1 + | ) e0 = e0 e0 + e0 | e0 = 0 + 1 = 1, 
 
as well as with Combebiac, for whom µ2 = 1, if we set µ2 = 2

4ν  = 1. 

 The other rules of composition follow from a prior comparison with the Grassmann 
symbols. 
 Once more, let e0 be the origin, and by contrast, e1, e2, e3 must be the terminal points 
of the vectors that were denoted by these letters above (§ 14).  For now, the latter will be 
ε1, ε2, ε3  and ε0 ≡ e0 . 
 Then: 
 ε1 = e1 – e0 , 
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 ε2 = e2 – e0 , 
 ε3 = e3 – e0 . 
 
 N. B. – Grassmann denoted the direction of en by “e0 – en”, which is merely a question 
of convention. 
 
 One then has: 
  ν1 ≡ ε1 = – e0  + e1 , 
 ν2 ≡ ε2 = – e0  + e2 , 
 ν3 ≡ ε3 = – e0  + e3 . 

 
One can then pose the equations: 
 

ε1 ε2 ≡ (e1 – e0)(e2 – e0) = e1 e2 – e0 e2 − e1 e0 + e0 e0 = e0 e1 + e1 e2 + e2 e0 ≠ (e3 – e0) 
 
only along with ν1ν2 = λ3 ≠ ν3 . 
 We will use the synonymous expressions “polar vector,” “difference of two points,” 
“points at infinity” for the symbols ν1, ν2, ν3 .  A polar vector permits a displacement 
parallel to itself in all of tri-dimensional space. 

As for λn with n = 1, 2, 3, 
λ3, for example, is equal to 
e0 e1 + e1 e2 + e2 e0 , 
namely, a sum of segments 
of three lines that form a 
closed figure that is a 
triangle that is traversed in 
the positive sense, as seen 
from e2 .  (See Fig. 4). 
 The segments of the 
fixed lines can have a 
translatory displacement 
only along their lines.  
They permit a conversion 
into a parallelogram: 
 
= e1e2 + e0e3 = e1e2 − e3e0, 
 
which is a sum of two anti-
parallel segments or the 
difference of two parallel 
segments that have the 

same lengths. 
 Since e2 e0 = e0 e4, and according to the rule for geometric addition, one will have e0 
e1 + e0 e4 = e0e5 .  This parallelogram can be converted into another parallelogram in its 
plane or in a parallel plane under the single condition that its tensor, which is equal to the 
twice the area of the triangle e0 e1 e2, remain unaltered. 

 

e4 

e0 

e3 

e2 

e1 

e5 

Figure 4. 
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 Ultimately, these parallelograms can be identified with the unique closed line in their 
planes, with the line of intersection of the planes parallel to the parallelograms; i.e., with 
the line at infinity. 
 The Hamilton symbols i, j, k correspond to these parallelograms exactly, as their 
composition shows; they are thus exclusively axial vectors. 
 When Hamilton used lines perpendicular to the parallelograms in place of them, with 
lengths that were equal to the areas of the latter, they were auxiliary axial vectors, which 
are very useful for certain constructions, but ultimately they must be converted into 
parallelograms again. 
 We use the expressions “axial vector,” “parallelogram,” difference of two segments,” 
line at infinity.” 
 The other rules of composition are easily obtained by starting with the following 
considerations: 
 
 1) µ v1 = e0 (e1 – e0) = e0 e1 = δ1 , 
 
so a segment that is part of a fixed line will move only along the line that carries it. 
 Moreover: 

v1 µ = e0 (e1 – e0) = e1 e0 = − e0 e1 , 
so 

1 1 ,µν ν µ= −  

and similarly for the other indices. 
 
 2) µ λ3 = e0 (e0 e1 + e1 e2 + e2 e0) = e0 e1 e2 , 
 
which is part of a fixed plane = π3 that moves in the plane that carries it. 
 

λ3 µ = (e0 e1 + e1 e2 + e2 e0) e0 = e1 e2 e0 = e0 e1 e2 ; 
thus: 

3 3 ,µλ λ µ=  

as with the school of Combebiac. 
 One will find the corresponding equations by a circular permutation of the indices 1, 
2, 3. 
 3) All that remains to be discussed is “µ l.”  The geometric significance of “l” results 
from the following reflection: 
 

l λ3 λ3 = v3 λ3 = − l = (e3 – e0)(e0e1 + e1e2 + e2e0) = e3e0e1 + e3e1e2 + e3e2e0 − e0e1e2 , 
l = e0 e1 e2 + e0 e2 e3 + e0 e3 e1 + e3 e2 e1 , 

(See Fig. 5) 
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 From this, “l” will represent the surface of the 
tetrahedron e0e1e2e3.  The figure is displaceable, 
translatory, and rotatory in all of space, and equatable 
with the plane at infinity.  Since the trinomial e0 e2 e3 
+ e0 e3 e1 + e3 e2 e1 can be transformed in a plane 
parallel to e0e1e2 with the same area and the opposite 
position.  “l” will therefore be the difference between 
two fixed parallel planes that have the same area and 
can thus be equated with the plane at infinity, which 
is the unique closed plane that is a surface of the 
tetrahedron. 
 The two parallel planes delimit a cube with six (3! 
= 6) times the volume of the tetrahedron e0e1e2 e3 .  

This volume is the tensor of the figure. 
 One finally has: 

lµ  = − µ ⋅⋅⋅⋅ v1 λ1 = + v1 λ1 ⋅⋅⋅⋅ µ = lµ−  = − Ψ. 

 
One obtains the same result by the Grassmann algebra, since: 
 

lµ = (e0 e1 e2 + e0 e2 e3 + e0 e3 e1 + e3 e2 e1) e0 = e3 e2 e1e0 , 
and 

µ l = e0 (e0 e1 e2 + e0 e2 e3 + e0 e3 e1 + e3 e2 e1) = e0 e3 e2 e1 = − e3 e2 e1e0 . 
 
 l µ = Ψ is then a fourth-order, three-dimensional quantity; i.e., a geometric solid. 
 Unlike Grassmann, we do not set e0 e1 e2 e3 equal to the unity directly, but set it equal 
to Ψ; however, Ψ4 = 1. 
 At present, one can construct a Cayley square for this group of 32 members.  In order 
to do that, it will naturally suffice to consider just the first quadrant of the square.  [See 
Table I. (*)] 
 One can denote the operators of the aforementioned group by just one letter that has 
sixteen different indices – for example, ± ln , n = 0, 1, …, 15. 
 In another manner, one can denote these operators by two letters, each of which has 
four indices – for example, µm νn or µm λn ; m, n = 0, 1, 2, 3. 
 We shall appeal to this latter method in order to avoid indices that appear twice. 
 By analogy with compound words, we call µm a determinative operator and νn (λn, 
resp.) a primitive operator. 
 At any moment, one can pass to one letter with sixteen indices by writing: 
 

µmνn = ν(mn) ,  [µmλn = λ(mn), resp.], 
 
where (mn) = 4m + n, m, n = 0, 1, 2, 3.  In this sequence: 
 

νn ⋅⋅⋅⋅ µm = µrνs = ν(rs) . 
 
                                                
 (*) DHD: The Table is on page 139 of the original article.  

 

e2 

e1 
 

e0 
 

e3 

Figure 5 
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 Moreover, µ0, µ1, µ2, µ3 correspond to 1, µ, Ψ, l, respectively.  For example, one then 
has µ1ν0 = ν(10) = ν4, which is the origin, while νn and λn preserve their previous 
significance.  One will then have: 
 

µ0ν0 ≡ µ0 λ0 ≡ 1, µ0νn ≡ νn , µ0 λn ≡ λn , 
 

µmν0 ≡ µm λ0 ≡ µm, µ1 ≡ µ ,  µ2 ≡ Ψ,  µ3 ≡ l, 
 

µ1νm ≡ δm , µ2νm ≡ − πm , µ3νm ≡ λm , m = 1, 2, 3. 
Moreover: 
    µ1νm = µ1 l ⋅⋅⋅⋅ l νm = − Ψ⋅⋅⋅⋅ λm = − µ2 λm , 
 
    µ2νm = µ2 l ⋅⋅⋅⋅ l νm = − µ⋅⋅⋅⋅ λm = − µ2 λm , 
 
    µ3νm = µ3 l ⋅⋅⋅⋅ l νm = ll  ⋅⋅⋅⋅ λm = µ0 λm , 
 
    µ0νm = µ0 l ⋅⋅⋅⋅ l νm = l ⋅⋅⋅⋅ λm = µ3 λm . 
 
[See Table II and III (*).] 
 One advantage of the µ-λ-group, which is opposite to the µ-ν-group, is that all the µm 
commute with all the λm . 
 
 
§ 22. – The pre-positive and post-positive isomorphic transformants that are derived 

from Tables II and III.  
 

 Since the various letters (µ, ν [µ, λ, resp.]) commute with their indices, the indices of 
equal letters preserve their sequence; one can stipulate the rule: 
 

; ( ; )( ; ), [ ; ( ; )( ; ), resp.].m n r s m r n s m n r s m r n sµ ν µ ν µ µ ν ν µ λ µ λ µ µ λ λ= =  

 

                                                
 (*) Tables II and III are on pages 140 and 141, resp. of the original article.  The comment at the bottom 
of both pages translates as: “The interior squares refer to only the indices in the sequence µ, ν, and their 
signs.” 
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Table IIa).  Pre-positive transformants. 
 

It results from Table II that: 
 
0(µ0 ν0) = (   µ00 + µ11 + µ22 + µ33) (ν00 + ν11 + ν22 + ν33), 
0(µ1 ν0) = (   µ01 + µ10 − µ23 − µ32) (  “      ), 
0(µ2 ν0) = (− µ02 + µ20 + µ31 − µ13) (  “      ), 
0(µ3 ν0) = (   µ03 + µ30 + µ12 + µ21) (  “      ); 
 
0(µ0 ν1) = (µ00 − µ11 − µ22 + µ33)(ν10 − ν01) + (   µ30 + µ03 + µ12 + µ21) (ν32 − ν23), 
0(µ1 ν1) = (µ10 − µ01 − µ23 + µ32)( “     ) + (   µ02 − µ20 − µ31 + µ13) ( “     ), 
0(µ2ν1)  = (µ20 + µ02 − µ31 − µ13)( “     ) + (− µ01 − µ10 + µ32 + µ23) ( “     ), 
0(µ3ν1)  = (µ30 + µ03 − µ12 − µ21)( “     ) + (   µ00 − µ11 + µ22 + µ33) ( “     ); 
 
0(µ0ν2)  = (µ00 − µ11 − µ22 + µ33)(ν20 − ν02) + (   µ30 + µ03 + µ12 + µ21) (ν13 − ν31), 
0(µ1ν2)  = (µ10 − µ01 − µ23 + µ32)( “     ) + (   µ02 − µ20 − µ31 + µ13) ( “     ), 
0(µ2 ν2) = (µ20 + µ02 − µ31 − µ13)( “     ) + (− µ01 − µ10 + µ32 + µ23) ( “     ), 
0(µ3ν2)  = (µ30 + µ03 − µ12 − µ21)( “     ) + (   µ00 − µ11 + µ22 + µ33) ( “     ); 
 
0(µ0ν3)  = (µ00 − µ11 − µ22 + µ33)(ν30 − ν03) + (   µ30 + µ03 + µ12 + µ21) (ν21 − ν12), 
0(µ1ν3)  = (µ10 − µ01 − µ23 + µ32)( “     ) + (   µ02 − µ20 − µ31 + µ13) ( “     ), 
0(µ2ν3)  = (µ20 + µ02 − µ31 − µ13)( “     ) + (− µ01 − µ10 + µ32 + µ23) ( “     ), 
0(µ3ν3)  = (µ30 + µ03 − µ12 − µ21)( “     ) + (   µ00 − µ11 + µ22 + µ33) ( “     ). 
 
 One easily shows that µmνn ; µrνs gives the same results as (µm; µr)(νn;νs). 
 
 1) µmνn ; µrνs = ν(mn) ; ν(rs) = ν(mn) (rs) . 
 
  ν(mn) (rs) ⋅⋅⋅⋅ ν(rs) = ν(mn) = µmνn ; 
 
 2) (µm; µr)(νn;νs) = µmr ⋅⋅⋅⋅νns , 
 
  µmr ⋅⋅⋅⋅νns ⋅⋅⋅⋅ ν(rs) = µmr µr ⋅⋅⋅⋅νns νs = µmνn = ν(mn) . 
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Table IIb).  Post-positive transformants. 
 
*(µ0 ν0) = (µ00 + µ11 + µ22 + µ33) (ν00 + ν11 + ν22 + ν33), 
*(µ1 ν0) = (µ01 + µ10 + µ23 + µ32) (ν00 − ν11 − ν22 − ν33), 
*(µ2 ν0) = (µ02 − µ20 + µ31 − µ13) (ν00 − ν11 − ν22 − ν33), 
*(µ3 ν0) = (µ03 + µ30 − µ12 − µ21) (ν00 + ν11 + ν22 + ν33); 
 
*(µ0 ν1) = (   µ00 + µ11 + µ22 + µ33)(ν01 − ν10) + (µ30 + µ03 − µ12 − µ21) (ν32 − ν23), 
*(µ1 ν1) = (   µ10 + µ01 + µ23 + µ32)( “        ) + (µ02 − µ20 + µ31 − µ13) ( “     ), 
*(µ2 ν1) = (− µ20 + µ02 + µ31 − µ13)( “        ) + (µ01 + µ10 + µ32 + µ23) ( “     ), 
*(µ3 ν1) = (   µ30 + µ03 − µ12 − µ21)( “        ) + (µ00 + µ11 + µ22 + µ33) ( “     ); 
 
*(µ0 ν2) = (   µ00 + µ11 + µ22 + µ33)(ν02 − ν20) + (µ30 + µ03 − µ12 − µ21) (ν13 − ν31), 
*(µ1 ν2) = (   µ10 + µ01 + µ23 + µ32)( “        ) + (µ02 − µ20 + µ31 − µ13) ( “     ), 
*(µ2 ν2) = (− µ20 + µ02 + µ31 − µ13)( “        ) + (µ01 + µ10 + µ32 + µ23) ( “     ), 
*(µ3 ν2) = (   µ30 + µ03 − µ12 − µ21)( “        ) + (µ00 + µ11 + µ22 + µ33) ( “     ); 
 
*(µ0 ν3) = (   µ00 + µ11 + µ22 + µ33)(ν03 − ν30) + (µ30 + µ03 − µ12 − µ21) (ν21 − ν12), 
*(µ1 ν3) = (   µ10 + µ01 + µ23 + µ32)( “        ) + (µ02 − µ20 + µ31 − µ13) ( “     ), 
*(µ2 ν3) = (− µ20 + µ02 + µ31 − µ13)( “        ) + (µ01 + µ10 + µ32 + µ23) ( “     ), 
*(µ3 ν3) = (   µ30 + µ03 − µ12 − µ21)( “        ) + (µ00 + µ11 + µ22 + µ33) ( “     ); 

 
 

Table IIIa).  Pre-positive transformants. 
 

0(µ0 λ0) = (   µ00 + µ11 + µ22 + µ33) (λ00 + λl1 + λ22 + λ33), 
0(µ1 λ0) = (   µ01 + µ10 − µ23 − µ32) (  “      ), 
0(µ2 λ0) = (− µ02 + µ20 + µ31 − µ13) (  “      ), 
0(µ3 λ0) = (   µ03 + µ30 + µ12 + µ21) (  “      ); 
 
0(µ0 λ1) = (   µ00 + µ11 + µ22 + µ33) (λ10 − λ01 + λ32 − λ23), 
0(µ1 λ1) = (   µ01 + µ10 − µ23 − µ32) (  “      ), 
0(µ2 λ1) = (− µ02 + µ20 + µ31 − µ13) (  “      ), 
0(µ3 λ1) = (   µ03 + µ30 + µ12 + µ21) (  “      ); 
 
0(µ0 λ2) = (   µ00 + µ11 + µ22 + µ33) (λ20 − λ02 + λ13 − λ31), 
0(µ1 λ2) = (   µ01 + µ10 − µ23 − µ32) (  “      ), 
0(µ2 λ2) = (− µ02 + µ20 + µ31 − µ13) (  “      ), 
0(µ3 λ2) = (   µ03 + µ30 + µ12 + µ21) (  “      ); 
 
0(µ0 λ3) = (   µ00 + µ11 + µ22 + µ33) (λ30 − λ03 + λ21 − λ12), 
0(µ1 λ3) = (   µ01 + µ10 − µ23 − µ32) (  “      ), 
0(µ2 λ3) = (− µ02 + µ20 + µ31 − µ13) (  “      ), 
0(µ3 λ3) = (   µ03 + µ30 + µ12 + µ21) (  “      ). 
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Table IIIb).  Post-positive transformants. 
 

*(µ0 λ0) = (µ00 + µ11 + µ22 + µ33) (   λ00 + λl1 + λ22 + λ33), 
*(µ1 λ0) = (µ01 + µ10 + µ23 + µ32) (  “      ), 
*(µ2 λ0) = (µ02 − µ20 + µ31 − µ13) (  “      ), 
*(µ3 λ0) = (µ03 + µ30 − µ12 − µ21) (  “      ); 
 
*(µ0 λ1) = (µ00 + µ11 + µ22 + µ33) (−λ10 + λ01 + λ32 − λ23), 
*(µ1 λ1) = (µ01 + µ10 + µ23 + µ32) (  “       ), 
*(µ2 λ1) = (µ02 − µ20 + µ31 − µ13) (  “       ), 
*(µ3 λ1) = (µ03 + µ30 − µ12 − µ21) (  “       ); 
 
*(µ0 λ2) = (µ00 + µ11 + µ22 + µ33) (−λ20 + λ02 + λ13 − λ31), 
*(µ1 λ2) = (µ01 + µ10 + µ23 + µ32) (  “       ), 
*(µ2 λ2) = (µ02 − µ20 + µ31 − µ13) (  “       ), 
*(µ3 λ2) = (µ03 + µ30 − µ12 − µ21) (  “       ); 
 
*(µ0 λ3) = (µ00 + µ11 + µ22 + µ33) (  λ30 − λ03 + λ21 − λ12), 
*(µ1 λ3) = (µ01 + µ10 + µ23 + µ32) (  “       ), 
*(µ2 λ3) = (µ02 − µ20 + µ31 − µ13) (  “       ), 
*(µ3 λ3) = (µ03 + µ30 − µ12 − µ21) (  “       ). 
 
 The advantage of the operators 0(µm λn) [

*(µm λn), resp.] over 0(µm νn) [
*(µm νn), resp.] 

pops into view. 
 If one puts the common factors outside then one will get a monomial in each case. 
 One does not need to perform the multiplication ∑ µmn ∑ λrs .  Observe that: 
 

∑ µmn ⋅⋅⋅⋅ ∑ λrs  ⋅⋅⋅⋅ µp λq = [∑ µmn ⋅⋅⋅⋅ µp (∑λrs ⋅⋅⋅⋅ λq] . 
In addition: 

0(µm λn) = 0µm ⋅⋅⋅⋅ 0λn and *(µm λn) = *µm ⋅⋅⋅⋅ *λn . 
 

 The λn correspond exactly to the axial vectors hn in § 17 and that also the µn form a 
proper group: 

0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

µ µ µ µ
µ µ µ µ µ
µ µ µ µ µ
µ µ µ µ µ
µ µ µ µ µ

− −
− −

 

 
 In this group, one can, in turn, develop the isomorphic transformants that are in 
agreement with the ones in Table III (as well as Table II). 
 One can also represent them by the axial vectors hn, and in fact: 
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0µ0 = *µ0 = 0h0 = *h0 , 
 

 0µ0 = − 0h0 ⋅⋅⋅⋅*h3 , 
*µ1 = 0h3 ⋅⋅⋅⋅*h2 , 

 0µ2 = − *h2 , 
*µ2 = − 0h2 , 

 0µ3 = 0h2 ⋅⋅⋅⋅*h1 , 
*µ3 = − 0h1. 

 
 § 22 a).  (Continued). – The preceding method is also applicable to § 18.  Since one 
must regard 0h and *h as if they were two different letters, one can write: 
 

0hm ⋅⋅⋅⋅*hn ; 
0hr ⋅⋅⋅⋅*hs = (0hm ; 0hr) (

*hn ; 
*hs) = 0hmr ⋅⋅⋅⋅*hns , 

 
and one finds from the group 0hm ⋅⋅⋅⋅*hn that: 
 
 00h1 = (0h10 − 0h01 + 0h32 − 0h23)(

*h00 + *h11 + *h22 + *h33), 
 *0h1 = (0h01 − 0h10 + 0h32 − 0h23)(

  “       ), 
 0*h1 = (0h00 + 0h11 + 0h22 + 0h33)(

*h10 − *h01 + *h32 − *h23), 
 ** h1 = (  “   )(*h01 − *h10 + *h32 − *h23). 
One sees that: 
 
 00h1 = 0(0h1 ⋅⋅⋅⋅ *h0) = 00h1 ⋅⋅⋅⋅ 0*h0 ,  
 *0h1 = *(0h1 ⋅⋅⋅⋅ *h0) = *0h1 ⋅⋅⋅⋅ ** h0 ,  
 0*h1 = 0(0h0 ⋅⋅⋅⋅ *h1) = 00h0 ⋅⋅⋅⋅ 0*h0 ,  
 ** h1 = *(0h0 ⋅⋅⋅⋅ *h1) = *0h0 ⋅⋅⋅⋅ ** h0 , etc.  (To be continued…) 
 
 

______________ 
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