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Theory of rectilinear systems of light rays,

An extension of the Gaussian theory of the cuneatifirsurfaces.

Chapter I. Historical introduction.

1) Systems of light rays in a medium whose elementary waverace is a sphere.

The first to investigate ray systems was Tschirnhauset682. He examined the
focal lines that arise under the reflection of patathys by a circle. However, the
equation that he proposed for it was flawed, as was shmywthe curators of the Paris
Academy Cassini, Mariotte, and de la Hire. This fifistitless search drew the attention
of mathematicians to that kind of curve, which were s@mognized to be the key to all
of the secrets of dioptrics and catoptrics. Moreegalty, men like Bernoulli, I'HOpital,
and Carré treated a ray system in the plane that araseh a way that parallel rays, or
ones that originated from a point, were reflected aaceéd from an arbitrary curve, and
gave methods for the calculation of the caustic cumwach consists of two separate
branches, in generdl)( It has a complicated nature; however, Quet&ethowed that it
could be developed from easily constructible epicycloidsickw are ordinarily much
simpler and serve the purpose well.

In 1810, Malus?Y) first began to develop a theory of that sort of rastesy in space,
which Dupin ¢), Hamilton ), and Gergonne®Y built upon. The reflecting or refracting
curve was now a surface, and the two branches of tfa lioe became two sheets of a
focal surface that was contacted by all of the raythefsystem, and it was upon this
basis that all of dioptrics and catoptrics rested.e Tain result was first presented by
Malus as the theorem:

When there is a surface to which all rays are perpendicular, thiéypmeserve that
property of being perpendicular to a surface, no matter how many tihess are
reflected or refracted from arbitrary surfaces.

As will emerge in what follows, those are, when tratesl into the language of
undulation theory, systems that will be possible onlymadia whose characteristic
elementary wave is the sphere. Most of the remaitiveprems have a purely
mathematical content; actually, all that is of iesdrto optics is the fact thane can

() One will find the geometric construction of raysteys of this type and their focal lines, which have
been reflected or refracted by 1, 2, 3, or 4 sphesiadhces in the optical tables of Schellbach and Engel.
() Mémoires de I'Acad. de Bruxelles Ill.
3 XIV letter of the Journal de I'Ecole polyt.
Développements de géométrieemoires I, IV.
“Theory of Systems of Rays,” Trans. of the IrishadcXV.
Annales de math. pur. et appl. XIV, XVI.
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Meibauer — Theory of rectilinear systems of light rays. 2

replace an arbitrary number of refracting or reflecting surfaces witkirgle one that
produces the same effect as all of them together.

2) General systems of light rays in arbitrary media.

No matter how interesting that special case mightwi®t still remains of much
greater importance for the theory is the investigatdmrectilinear ray systems that
possess no surfaces that intersect all of the raysepeicularly in complete generality,
and in a medium that is characterized by any of itmetgary wave surfaces. This
investigation was first carried out by Hamiltdi (

He began that quest with a general, third-order patrifizrential equation with 42
coefficients and 8 variables, namely, the startingtp@iry, z) of an arbitrary curved ray,
its end point X, Yy, Z), the colory, and a functiorV that characterizes the medium. He
succeeded in reducing the 42 coefficients to 10 of them thateparded as given
constants and divided into four groups. That gave him fabl@ms:

In the first oney, y, z, X, Y, Zare given, but the colgy is variable, and he stipulated
that the chromatic aberration of the various, infigitiglose rays of heterogeneous light
should be brief.

He also dispatched the second problem, wlyaseconstantso he was only dealing
with homogeneous light, with a few words.

In the third problem, the coloyand starting pointx y, z) are given, and he
considered a ray system at its end point, after it \@psatedly refracted. Namely, he
examined the surface that is perpendicular to that retgisyat its endpoints, and found
that its differential equation would fulfill the knowntegrability condition — so such a
surface would exist — only when the elementary wave sidathe final medium, which
he denoted by V, is a sphere, and the rays are alpergéndicular to a surface at the
starting point.

This problem is Malus’s Theorem, which we discussed above

The fourth problem relates to the interrelationship betwthe tangents to the rays at
the starting point and the tangents at the end poimice$amilton therefore considered
tangents instead of curved rays, he was actually dealilgoniy rectilinear ray systems.
In fact, a medium whose density or chemical natureesaccording to any rule can be
thought of as being decomposed into nothing but homogeneouss layeequal
refractivity.

The ray system will be rectilinear in any of theagets f). We shall also restrict
ourselves to rectilinear, monochromatic light rayammsotropic media.

() “Supplements to an essay on the theory of Systems \af 'Rérans. of the royal Irish Acad., vol.
XVI, pp. 7 and pp. 97.

() Pogg. Ann., 1833, Bd. XXVIII, pp. 633 and Bd. XXIX, pp. 324, andhfemmore, Phil. Mag., ser.
[1l, vol. 2, pp. 284. Hamilton himself spoke about the conté his investigations in the Report of the first
and second Meetings of the British Association for tldealcement of Science, pp. 545, in the following
way:

“The general problem that | have proposed to myselbgtics is to investigate the mathematical
consequences of the law of least action: a generabflawgion, in which is included, as it is well-known,
all the particular conditions of reflexion and refranti gradual and sudden, and the central idea from
which my whole method flows is the idea of one radézal characteristic relation for each optical system
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Perhaps it was due to the daunting investment of effarttive analytical apparatus
and geometric tools that the theory was gradually forgattese Hamilton. It was only
in recent times that Kummer returned to it and publishethemry of rectilinear,
mathematical ray systemd),(in which the optically-possible ones were included as a
special case.

He determined a ray through the cosigeg, ¢ of the angles that it made with the
coordinate axes, and through those poirts/,(2) of the so-called initial surface of the
ray system through which the ray system went. He tbhesidered these six variables to
be functions of two new independent variahleandv and, with Gauss, introduced the
following relations for the differential quotients:

1) dx=adu+a dyv, dy=b du+b' dv, dz=cdu+c dv.

From that, he defined the Gaussian functidnB, C; D, E, F. Analogous to them, he
set:
(2) dé=adu+da dy, dn7=bdu+b'dy, d{=cdu+c dyv,

and likewise calculatedl, B, ¢; ©, ¢, § from this.

With the help of that and some other functions, hkeloged the theory of
mathematical ray systems. We will speak about thaesub) the mathematical part of
this introduction.

At a later time, he also treated the question of wpidperties of light that actually
occur in nature follow from the general theory of neatlatical rays as optically-possible
and how Malus’s theorem follows as a special casembee inclusive optical theorem,
and presented it to the Berlin Academy of Sciefke (

Any infinitely-thin, optical ray bundle inside of a homogeneous, transparedium
has the property that its two focal planes for the wave surfacaghothat belong to this

of rays; that is, for each combination of straighbent or curved paths along which light is supposed to be
propagated according to the law of least action, thisackexistic relation being different for different
systems, and being such that the mathematical prapeftibe system can all be deduced from it.”

“...In the relation contemplated by me, the related thargs in general, in number eight, of which, six
are elements of position of two variable points in spaonsidered as visually connected, the seventh is an
index of color, and the eighth, which I call thiearacteristic function— because | find that in the manner
of its dependence on the seven foregoing are involvethallproperties of the system...is thetion
between two variable points, the word “action” in thene sense as in the known law of vision, which has
been already mentioned.”

“l have assigned, for the variation of this chanastie, corresponding to any infinitesimal variatians
the positions on which it depends, a fundamental forname,| consider areducible to the study of this
one characteristic function, by means of this one fundamental foraiuthe problems of mathematical
optics, respecting all imaginable imaginations of mirrors, lshseystals, and atmospheres, and though
among these problems of mathematical optics, it is amt mtended to include investigations respecting
the phenomena of interference, yet it is to percéim the nature of the quality, which | called the
characteristic, and which is the hypothesis of unduiati® thetime of propagation of light fronone
variable point to anothethat the study of this function must be useful in suckstigations also. My own
researches, however, have been hitherto chiefly ditéctthe consequences of the law of least action, and
to the properties of optical systems, and systemeireral.”

() Crelle’s Journal, Bd. 57.

() Monatsberichte der Akad. der Wissenschaften zu B&(iduly 1860.
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medium, whose center will be assumed to lie on the axis of thmunalfe, will cut out
two curves that intersect each other in conjugate directions. Anguadle that has this
property will also be optically-representable.

We have had no proof of this apparently complicated theamed its noteworthy
corollaries up to now. In the following treatise, tiaal emerge as one aspect of a more
general theorem whose other aspect offers a comparabjgersce of interesting
consequence, and it is only when one combines both adpattene rises to simple
generality.

More and more, optics and the theory of curved surfamgge into each other, and
the latter is already just as indispensable to opidhainfinitesimal calculus.

In the next paragraph, we would thus like to recall esarhthe lessons from the
theory of surfaces that are indispensable to omied,then go into the infinitely-thin ray
bundles.

§ 2. Mathematical introduction.
3) The curvature of surfaces, according to Dupin.

It is well-known that the curvature of surfaces candiscussed, either with the help
of Euler’s principal radii of curvature, in which one p@gpecial attention to the normals
to the surfaces, or by means of the Gaussian curvatineh welates to an auxiliary
sphere with radius = 1, or finally, by applying the Dupidi¢atrix, for which one starts
with the properties of tangent planes. The Euler methadeful only for rays that are all
perpendicular to a surface. Gauss’'s method would have drately value only for
media whose elementary wave surfaces are spherdsadmittedly allows a very
appreciable generalization to other media. By contthet,Dupin way of looking at
things is of greatest importance for the theory of sgstems, precisely because it is
connected with tangential planes, and one often doedhawa to base the tangential
planes on the elementary wave surfaces of lightill briefly explain that method'.

If one draws a tangential plane through any poiny,(2) of a curved surface then the
tangential plane will cut out parallel plane curves whaegree will depend upon the
nature of the curved surface. Among this family of pargilanes, however, the two
planes that are infinitely-close to the tangentiahpl will be distinguished. Namely, the
ones that continually cut out an infinitely-small cosection from the surface, which is
called theindicatrix () of the point %, y, z). At concave-concave points of the surface,
where it is known that the inequaliy—rt < 0 for the two partial differential quotients
s, t is true, the surface will lie completely on one sideéhe tangential plane. One of
these two infinitely-close and parallel planes wilkkrgfore have no intersection at all
with the surface, but only an imaginary one. HoweveD@sin showed, the other one
will cut out a real ellipse.

() Charles DupinDeveloppements de Géométrisémoires | and II.

() Cournot, Théorie des fonctionk pp. 488. The indicatrix will result from the interSen of the
surface with two infinitely-close planes, both of winiare parallel to the tangent plane, and between which,
it will be found.
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If the surface is concave-convex, o-rt > 0, then it will lie on both sides of the
tangential plane, and each of the two infinitely-clgseallel planes will cut out a
hyperbola. All that remains is the case in whith-rt = 0. We are then dealing with a
developable at the poink,(y, 2. Only one of the two parallel planes that are itdig-
close to the tangential plane will enter the surfadé cut out a real, infinitely-small
parabola; only an imaginary intersection will exist tloe other one.

These infinitely-small conic sections have all of gh@perties of ordinary conic
sections and also possess conjugate diameters.

Any diameter of the indicatrix is tangent to the scefaand the conjugate diameters
are conjugate tangents to the surface.

If we go from our tangential plane &, {, 20 on the surface in any direction that is
determined bydy / dx to a neighboring tangential plane then both of tlfened will
intersect in a line whose direction will be determibgdy / ox.

The directions that are determined @y / dx and oy / & will now always be
conjugate diameters of the indicatrix, and thus conjugatgeints. If, s, t are the two
partial differential quotients of the poinx, (y, 2 on the surface then Dupin gives the
following equation for these conjugate directions:

r+s%Y

ﬂ’__ OX

() o S
X g+t

OX

4) The infinitely-thin mathematical ray bundle.

Later on, we will regard the ray system as a sunndividual, infinitely-thin, ray
bundles whose properties we will examine, and then Wleambine them into systems
again. Here, we would thus like to clarify the terine“individual parts of an infinitely-
thin ray bundle.”

An infinitely-thin ray bundle is any part of a ray systémat consists of a well-
defined ray — called thaxis — along with all of its infinitely-close, neighboring em
Kummer’sbase points for the shortest distarficem the axis to the neighboring rays (for
Hamilton: foci by projection) all lie on a well-de&d part of the axis that is bounded by
the two limit points of the shortest distandéoci of extreme projection, resp.). The
shortest distances at these two points will definiglat engle with each other, and those
two planes that go through one of these shortestndssaat the limit points and the axis
of the bundle will be callegrincipal planes(planes of extreme projection, resp.).
Furthermore, there will be, in general, two pointstisa axis of any infinitely-thin ray
bundle — viz., théocal points— where a neighboring ray will intersect the axis. e
planes in which the axis is intersected by an infinitdbse ray will be théocal planes
(Hamilton: planes of vergency). A plane that is perprrdr to the axis will cut a small,
closed curve out of the bundle. This curve will degendrdtea line at the two focal
points, namely, aectilinear cross-sectiorfguiding line, resp.), which all rays will go
through, and which will lie in the focal plane. Thegknbetween the rectilinear cross-
sections will be measured by the angle between thal fdanes. Since the entire ray



Meibauer — Theory of rectilinear systems of light rays. 6

system can be regarded as consisting of nothing but inyuhigl bundles, the two
rectilinear cross-sections will yield the elementsheftwo sheets of the focal surface.

Both sheets of the focal surface will be contacte@dlbyays of the system; any two
infinitely-close rays will always intersect on themAny plane that can be drawn through
any two such rays will be a focal plane for a bundig] likewise, a tangential plane to
the focal surface. The family of first focal plane#l contact the first sheet of the focal
surface, and the contact planes to the second ongywalthe family of second focal
planes. Thusthe anglethat the two sheets define with each other on their intersection
curve will be measured by the angle between the focal planes at theluadlipoints of
the intersection curve.

In addition to the ordinary, infinitely-thin ray bundlekere is yet another kind,
which are callegrincipal rays Namely, whereas the axis of the ordinary bundiaas
by only two of its infinitely-close rays — viz., tliecal rays— for the principal rays, all of
the infinitely-close rays will intersect the axis,dam fact at one and the same point,
which will be called theprincipal focus. Any plane that goes through the axis will then
become a focal plane. The angle between the twd [itenaes, which will be denoted by
¥, ceases to possess a well-define value, and one will get

0
4 tany=—
4) =5

as the characteristic feature of principal rays.

§ 3. Optical introduction.
5) Huyghens's principle(®).

As is known, one can present the spreading of lighthfa luminous point using
Huyghens’s principle in such a way that, as one assuing®pagates in all directions
from the luminous point as if were the center of stutbance with a velocity that
depends upon the elasticity of the medium around thenawmsipoint. In a homogeneous
medium, light will propagate with the same velocityaihdirections, which is equal g
and aftert seconds, it will have spread from the luminous p8itd the outer surface of a
sphere of radiust, and any line, such &A that connects a poi&t on the sphere surface
to Swill be called aight ray. After t' more seconds have elapsed, the light fwmill
have spread froi8to the outer surface of a sphere of radiis-t') = vt + vt'. However,
we will now get the same wave surface when we cortistrgphere of radiugt’ at any
point of the spherical surface that was described.atThis family of spheres will be
enveloped by the desired spherical wave surface. In avddistinguish them, we will
call any of the auxiliary spheres in that familyedamentary wavehowever, we will call
the enveloping sphere of radi$ + t') aprincipal wave. Obviously, a light ray that goes
through the poinA’ of the principal wave will also meet the center afsth elementary
waves that contact the principal wavefat

() Christiani HugeniiTractatus de LumineAmstelodami, 1628.
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If the medium is a uniaxial crystal then afteseconds the extraordinary rays from a
disturbance at a luminous pofain the medium would have spread out to an ellipsoid of
rotation ABC, and in order to know how far the light will have adeed aftert + t'
seconds, one constructs an ellipsoid of rotagioofor this uniaxial medium at the tinte
and locates one of them at every poinABIC, such that the elementary wasx are all
congruent and simiarly-oriented to each other, correlipgrio the optical axis of the
medium in question, such that the ellipsoid of rotatibat tenvelopes this family of
elementary waves will be the desired principal wave.e Obtains the ray that goes
through the poinf’ of this principal wave when one conneétswith the center of that
elementary wave that contact the principal wava'ate., it has a common tangent to it
at A.

These elementary waves are purely mathematical remtishs, without there being
any necessity for ascribing any physical interpretationheon. Should they exist in
reality, and should the points of the surf&d&C be regarded as actual centers of optical
disturbances from which light will spread out, such ak#s fronS then one must first
express that as a hypothesis. So many physicists sdeamddeen inclined to introduce
this hypothesis that is therefore superflous; indeed,eéms to aggravate one’s
understanding.

How useful it is to consider a family of elementargves instead of a principal wave
can be illustrated easily by an example. A principal evélvat is initially curved
according to a well-defined mathematical rule is benughsa way that it is broken into
an irregular surface, or such that it has piece-wigtered a slippage at an anistropic
location in the medium. Light rays are now no langg&aight lines fromS to the
individual points of the principal waveBC. Moreover, for an infinitely-small timet, |
construct a family of infinitely-small elementary ves, and let the principal wave
contact one of them at every point in order to obtaetangents to the light rays at the
endpoints.

6) Extension of Huyghens’s principle.

That is how far this theory has been developed up ta nbworder to go a step
further, we direct our attention to a special case.

A plane principal wav@®©X comes in from an infinitely-distant luminous poirfter
t seconds, it is found #&B, such thaDA = vt.

In a homogeneous mediuiB will contact a family of elementary spheres thateha
radiusvt and their centers o@X. However, that will come down to the same thing as
when | consider any other surface — efB — to be the locus of the centers of
disturbance, and on it, also spheres, but described vffiéneat radii, according to the
measure of time that the light has used along its fpath the points of the surfadéB’
to those of the surfackB. At A’, one will havet = AA /v ; atB, one will havet =BB' /

v. At A, | construct a sphere with radid#\’; atB’, | construct one with radiuBB'. At

the points between then, one will have other measoretinie. We can calN'B' the
initial surface of the ray systenand obviously any ray can be determined when one
knows the cosineg, 1, { of its angles with the coordinate axes and the coaebray, z

of those points at which it enters the initial surfAtg'.
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Figure 1.

Obviously, there is a host of surfaces IK®' that one can choose to be the initial
surface.

Huyghens’s principal has thus been extended in two stépst, we had a luminous
point, from which, light spread out in all directions sitaneously like a center of
disturbance until it reached the wave surface. Tharonly one time and one center of
disturbance. We then saw how the time indeed elapsgdim instead of one center of
disturbance, an entire family of points would be regardedemters of disturbances.
Finally, we also obtained nothing but different timestfue elementary waves when we
chose the locus of the disturbance points to be, h®fptincipal wave, but any other
initial surface of the ray system. The method thusssbs of taking things apart, and as
it so frequently happens in mathematics, it will be gasddy the introduction of a great
degree of arbitrariness, to approach any given problem classtly in any special case
by the determination of the arbitrary time and space quesntit

We return to our special case. The ray buAdB'B meets the surfac&kC and will
be partly refracted and partly reflected. Let the meéa principal wave b€D and let
the reflected one bEE. Just as we could also previously consider any curved surfac
that intersects the incident bundle, instead of th&lemt principal waveAB, to be the
locus of disturbance centers, we will also be frew o regard, not only the principal
wavesCD andCE themselves, but, in fact, any other surface that tésshe refracted
or reflected light bundle, as the geometric locushefdisturbance centers.

However, for some entirely specialized purposes, tisesiesurface that can be chosen
to be the locus of disturbance centers after a meaduime in this case, because, in fact,
it intersects all three bundles, and then possesseproperty of being eligible for all
three of them at once. That is the refracted sui@eln this case, it is then simpler to
choose, not the three principal waves, but this refrastethce CA to be the initial
surface of the three ray bundles. However, the tfaedlies of elementary waves with
their centers of disturbance @A will always remain a purely geometrical tool with no
physical existence.



Chapter Il. Systems of light rays that occur in nature.

8 4. Alight ray.

7) Geometric construction of a light ray by means of principal
and elementary waves.

One can think of mathematical ray systems as beingvessanto nothing but
infinitely-thin ray bundles. We shall now temporamigt consider such a system and not
look for the properties that makes it into a light burttlet actually occurs in nature, but
we shall now consider a single light ray, and indeedhisynumber, a light ray shall be
constructed with guidance from the optical part of theoduction in regard to the
individual examples of the methods that were presentéd.the next number, its
equations shall be presented and the general functiorss rf@athematical ray that were
mentioned in the introduction will be specialized to tase of an optical ray. The
examination of an infinitely-thin ray bundle of lightrchrst begin in the next paragraph.

We choose an entirely arbitrary curved surface tahieeprincipal wave, and an
elementary wave that is as general as possible fantingely-small timedt, except that
the elementary wave, as would follow from its natureist be a closed surface and
contain a center of disturbance in its interior. edéry point of the principal wave, one of
the elementary waves will contact congruent and antgHoriented surfaces. Any line
that connects any poimd of the principal wave with the disturbance center hadf t
elementary wave that contacts the principal wava atwhich will thenhave the same
tangential plane with it at A will be a light ray. In doubly-refracting (or even tipily-
refracting) media we will consider each sheet of tihementary wave, and for
polychromatic light, we will consider each color bseilf.

Since all elementary waves that contact the priheyaeve are not only similar, but
also similarly-oriented, that will allow us to intnack a simplification that will have great
significance for what follows.

Namely, we replace the family of elementary waveth a single one that is
congruent and similarly-oriented to the other ones,hawdits center of disturbance at the
coordinate origir0D. Let the elementary waves that contacted the pahevave atA up
to now be ones whose centers of disturbance we Haftedsto O. The principal and
elementary waves will then no longer have a commogeatial plane a#, but the
tangential plane to the elementary wave will onlyplagallel to the other one &t and
will contact the elementary wave At — The construction of a light ray in this way will
take the following formOne draws a tangential plane to the principal wave at A, and
also a tangential plane that is parallel to it on the elementary wave wteger of
disturbance is at O, and which contacts the latter plane’ as@the light ray will be a
line through A that is parallel to the radius of the elementary wave OA

The analogy between this new way of looking at thiagd Gaussian curvature
comes to mind, and in fact, the entire method canderded as an extension of it, which
will be move to the foreground later on. If the eletagy wave is a sphere then we will
have its curvature; the rays will then become nornaeike principal wave.
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We then have one principal wave and only a single eifeanewave. However, such
gross analogies between them can also present thvemskat one must never exchange
one with the other, but always establish that the nayst belong to the principal wave
and the radius vectors, which are parallel and correspgro them, must belong to the
elementary waves. If the center of disturbancedresne of the rays then, in this case, it
will indeed coincide with its corresponding radius of éfementary wave. However, the
rays that are infinitely-close to it are still onlyrphel to its corresponding radius, and do
not all possibly go through the center of disturbance.

8) Analytical equations for a light ray as a function of the priripal
and elementary waves.

The equations for a light ray shall now be presentedoes through the poink'(y,
Z) and defines angles with the coordinate axes whoseesoaieé, 7, ¢, so its equations
will be:

5) x—x:Y—y:z—z

¢ n ¢

if X, Y, Z are the running coordinates. If the poixit ¥/, Z) lies on the principal wave=
F(u, v) then one will have:
(6) X =u ¥y =v, Z=Fu,Vv),

and the tangential plane that contacts the principaéwa¥’, y, Z) will be:
(7) Z-Z =P(X-Xx) +Q(Y-Y),
if X, Y, Z are the running coordinates, aRdQ denote the first differential quotients of

the principal wave. The tangential plane that corredpaio this will contact the
elementary wave at the point ¢, 2), and let its equation be, by analogy with the above:

(8) Z-Z =p(X-X) +q(Y-Y).

Since the planes that are represented by equationsd {8rare parallel, one must
have:

9 Q=q, P=p,

which are then condition equations for the poirts/(2) and &', Yy, Z) to correspond to
each other. Moreover, since the radiusf the elementary wave at, {/, z2) has the same
direction cosineg, 7, {as the ray at', y', Z itself, one will then have the equations:
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X X
5:_:—1
P R+y+7Z
y y
(11) n===F—,
P X+y+Z
Z:E :—Z
p «/x2+y2+zzl

By substituting these values féy 77, { into the equations of the light ray in (5), one
will get:
(11) x—x:Y—y:z—z,
X z

<

which are equations that depend upon only the principal and eti@mevaves.

It still remains for us to calculate the Gaussian tions that we already mentioned in
the mathematical part of the introduction for this sgemdae. If known that Gaus?) (
introduced the following relations into analysis:

dx=adu+a dyv, dy=b du+b dv, dz=cdu+c dv,
and further:
(12) A=Dbc -bc, B=cd -Ca, C=ab —a'b,
and
E=a®+b’+¢, F=ad +bb +c¢, G=a’+b?+c?2
When equation (6) is differentiated, that will give:
dx =du, dy =dy, dZ =P du+Q dv
A comparison of this formula with the one in (12) wikld:
a=1,a=0;, b=0,b=1;, c=P,c=Q.
With the help of this, one will find that:
A=-P, B=-Q, C=1; E=1+P>, F=PQ G=1+Q"

If we differentiate formulas (10) then that will phace the similar Kummer values
that were also mentioned already:

_C(Y+2)+ Axz g = XCy-B2

a= (X2+ y2+ z2)3/2 J (x2+y2+ 22)3/2’

() Gausspisquisitiones generales circa superficies curvas.
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b= C(xX*+ Z)+ Ayz ,__~Y(Cx-B)
(X2+ y2+ z2)3/2 ! (X2+ y2+ Z2)3/2’

_ A(X + yP)+ Cxz

. —-P(xX* + ) + Cyz
- (x2+y2+ Z2)3/2 1

(X2+y2+ Z2)3/2 '

I

c =

These are the values of the functions that apgearethe Kummer treatise on
mathematical ray systems when they are specializetie way that is necessary for
optical ray systems.

8 5. An infinitely-thin bundle of light rays.
9) Corresponding directions, in general.

In the previous paragraphs, we were concernedthéltonstruction and equations of
a light ray. It is now easy to examine two infalytclose rays, and indeed, should the
one of them be the axis of an infinitely-thin raynble; the other one can be any ray that
is infinitely-close to it. If the equation of aht ray is, as above:

(11) X—X:Y—y:Z—z”
X y z

for the two corresponding pointg (y', Z) and &, y, 2 on the principal and elementary
wave, respectively, then an infinitely-close raylod system will have the equations:

X=(X+d¥) _Y-(y+dy) _Z-(Z+d)
X+ dx y+dy z+dz

dy / dx will determine the direction of the principal wawehen one goes from the
intersection pointX, y', Z) of the axis of the bundle to the intersectiomp@’ + dx, y'
+ dy, Z + dZ) of a neighboring ray, andy / dx will determine the corresponding
direction on the elementary wave by which one gallfrom &, y, 2) to x +dx, y +dy, z
+ d2).

| have proved two theorems about these directionshe principal and elementary
wave that are determined by / dX anddy / dx in an analytical way in a treatis8 (
“Ueber allgemeine Strahlensysteme des Lights iscleeden Medien.” Namely, as in
the introduction “ifdy’ / k' determines the direction that is conjugateyd dxX, anddy /
o determines the direction that is conjugatedto/ dx then the directions that are
determined byy' / &' andody / ox will be parallel; i.e., one will havey / ox' = dy | XK.”

() Meibauer, Zeitschrift fiir Mathematik un Physik, Vlghrg. 1863.
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“Conversely, if one knows thaly’ / ox = dy / X then the directions that are
determined bydy / dx, anddy / dx will correspond to each other.” | went on to the
second partial differential quotients by differentiategggations (9), which yielded:

rdx+ssy=Rdx+Sdy, sdxtdy=Sdx+Tdy.

With the help of these equatiorty;/ dx can be expressed in termsdyf/ dx, and if one
replacesly / dx in that expression with its values in the Dupin exgices

oy
R+ S=2L
dy __ X

X g, 7Oy
oX

3)

then that will yield:

(13) ). &

r+s9Y

ﬂ’__ OX

(3 o S
X g+t

OX

a comparison of these equations will yield that:

oy _ 9y
ox OX

Due to the importance of this theorem for what folpw simple proof of it shall be
given that is linked to geometric considerations.

As Dupin proved (see the Introduction), the two tangkpt@énes atX, y, 2) and & +
dx, y +dy, z+ d2 will intersect in a direction that is conjugatedy/ dx, from which, one
will determinedy / . The same is true for the tangential plane‘at/( Z) and & +
dx, y + dy, Z + dZ); its line of intersection will also be determined by / .
However, these two intersections will arise in twarresponding pairs — i.e., parallel
planes — so they must be parallel, and one must have:

9y _ %y

ox OX'
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which was to be proved. The directions that are detedig@y / &x anddy’ / &K' do not
correspond, in general. In a similar way, one canetbat, converselydy/ dx anddy /
dx will correspond whemy / ox = oy’ | .

We then have the theorems:

1) If one has any pair of corresponding directions on the principal and elementary
waves then the directions that are conjugate to them will be parallel.

2) If one has any pair of parallel tangents at corresponding points, one of which is
on the principal wave, and the other of which is on the elementary wWwaeme,the
directions that are conjugate to them will correspond to each other.

These two theorems seem to have not been noticead,ngw. | first published then
in my inaugural dissertation)(

By means of their reciprocity, any theorem that coacludes from them for the
principal wave and its rays will find an analogue for #lementary wave and its
corresponding radius vectors. When one is, perhapstingea theorem on the
relationship between rays and the curvature of the pahegiave then its analogue must
address the curvature of the elementary wave and itgorship to the radius vectors,
but not its relationship to the rays. For examples theorem that all rays in a
homogeneous medium must be perpendicular to the prinegozd will have the trivial
analogue: The radii are perpendicular to the sphere. rays fall into the domain of the
principal wave, but the radii fall into the domain of tlementary wave.

10) Corresponding directions in focal planes.

Concerning the corresponding directions that were ttaatthe two theorems above,
the most interesting one is the one by which one goes the axis of the bundle to the
focal ray, which (see above) cuts the axis at a fpoait, and which will correspond to
that direction.

The origin of our rectangular coordinate system aljehels at the center of
disturbance. We now draw tleaxis parallel to the axis of the ray bundle, such itha
coincides with the radius, which corresponds with the eakthe bundle. The rest of the
coordinate system will remain temporarily undetermined.

Once that is established, we turn to the focal pldhwill go through the axis of the
bundle and the focal ray. The plane that corresptmdise focal plane will go through
the Z-axis and the radius that is parallel to the focal rayereforethe focal plane is
parallel to its corresponding planelf dy / dX denotes the direction in which one goes
from the axis of the bundle to the focal ray atyd/ dx denotes the corresponding one
thendy / dx anddy/ dx will determine the positions of two parallel planes] ane will
have the following formula for the focal plane:

() Meibauer,De generalibus et infinite tenuibus luminus fascibus, praecipushiipstallis Berlin,
1861. (Published by Lauderits)



Meibauer — Theory of rectilinear systems of light rays. 15

dx dx

In words: If the direction that is determined by'dydX lies in a focal plane then the
corresponding direction on the elementary wave will be parallel to it.

From Theorem 1, one first ha%l_x 5_y However, if—= y = dy

: then secondly,
ox  oX dx  dx

from Theorem 2, the directions that are determlneelé—gyand gy' must henceforth also
X

correspond. Now? and— oy have the same properties as the va#u%sand 32;

X ox dx
that will just as well determine the position of adbplane, namely, the second one. As

a result, we will obtain the following two fundamentaorems:

and

3) The two focal planes intersect each other on the principal wavenjugate
directions.

4) The planes that correspond to the focal planes intersect each other on the
elementary wave in conjugate directions.

For the positions of the focal planes, one can ptéke equations:

oy
dy_ r +55
dx o, 9Y
(14) 5ny
R+ s
dy _ " Tox
A
ox

It is now easy to derive the theorem that Kummer pitesieto the Berlin Academy of
Science that was mentioned in the introduction. I, fadgs only necessary to transfer
the coordinate origin, along with the center of distuckato the axis of the ray bundle.
The focal planes will then coincide will the planéstt correspond with them, and the
coordinate axis will lie on the axis of the bundle. this special casehe focal planes
will also intersect on the elementary wave in conjugate direc{ns

() Hamilton seems to have already known not only tiésitem, but also Theorem 3. At least, one will
find the following passage in the Transactions of theaRlish Acad., vol. XVIII, pp. 122:

“Thus, we are led to consider a series of waves @orasurfaceV; similar and similarly-placed, and
determined in shape, but not in size, by the uniform amedROM: our family of waves], and then to seek
the limiting surface of this set, which osculateshe given surface® [ROM: our principal wave], and it
follows that the conjugate planes of vergency [ROM: oualfptanes] in a uniform medium acenjugate
planes of each medium surface [ROM: elementary wavefnd also of the surface ROM: principal
wave],determined by the whole combinatibn
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In general, the principal and elementary wave can lbawge a first-order contact,
such that one will hav® = p, Q = g. However, the second-order partial differential
guotients do not naturally need to be equal, in turn. Fumitver, the indicatrices will be
at corresponding points of them, and the conjugate damef the one are in no way
parallel to the all of the conjugate diameters of theiobne. However, it is henceforth
conceivable that at least one pair of such diametgparallel under the corresponding
indicatrices. The theorem above shows thate is only one such pair, and that this pair
of conjugate diameters will lie in both of the focal plan€khis theorem is true, not
merely for the principal and elementary waves, but &soany two arbitrary curved
surfaces, after one strips away the optical accesstrom the theory of surfaces.

11) The angle between focal planes.

The main value that the Theorems in 3) and 4) haaad we will go into this after
the present number consists of the fact that they give one the meansxfwess the
angleybetween the focal planes as a function of the p@h@nd elementary waves.

In our coordinate system, the focal planes are perpeéadito thexy coordinate
plane, andix / dy is therefore the trigonometric tangent to the amgikat the first focal
plane makes with thez coordinate plane. Likewiséx / dy' is the trigonometric tangent
to the angleg that the second focal plane makes with Kzeplane, the following
expressions arise:

dy _dy oy _ oy
—Z =L =tana, 2L =-2L =tang 0Oy=0p-0a,
dx dX ox oX A y=HE

and it follows that:

(15) tany=tanB- a) = M ]
1+tana tans

If we replacedy / dx anddy' / &' with the values taar and tans in equations (14),
which represent the positions of the focal plarefuactions of the principal wave and
elementary wave, then that will give:

(16) tang = - w
S+ Ttang’

(17) tanB= - r +stang
s+ttang

The three variableg, £, ycan be determined from equations (15), (16), (1gter
on, we will define an equation in the single valeatan yby eliminating tana and tang.
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Sincell a and] S have entirely analogous meanings, one of them can kdéedmi
By eliminating tang from (15), (16), (17), two new equations in only two variabiell
arise. Namely, (15) and (16) will yield:

Ttar o+ 2Stam + R
Stafa+ (R- T)tang - S

(18) tany=-

and from formulas (15) and (17), one will get:

ttafag+ XStaro +r

19 tany=- :
(19) 4 stana+ (r—t)tana - s

These two equations shall be examined in the cleagdter, or rather just one of them,
since one can read off the result for the other lopenalogy. The one will give the
connection between the angkdetween the focal planes and the elemBntS T of the
principal waves; the other one will linkwith the elementary wave.

For any theorem about the elementary wave, thdr@amppear an analogous one that
pertains to the principal wave, although the formwhich those analogous theorems are
expressed can deviate very much from each other.

| have determined the axis of an infinitely-thayrbundle at the poink'( y', Z) of the
principal wave, and if | know thél a that its first focal plane subtends with the
coordinate plane then the angle between the fdaakp can be computed for this well-
define ray bundle by means of equation (18). FRgrather value oy, | will get another
ray bundle that possesses another apgénd if tana runs through all possible values
from O too then all possible ray bundles will be producedtf@se particular values of
R, S T, i.e., this particular point of the principal wave

The geometric process by which one can typify the generation of alblpossy
bundles using the first method then consists of a rotation of the fiedtglame around
the axis of the bundle.

In the next paragraphs, we will examine which baydles are possible for a given
point of the elementary wave. This question welfluce to the discussion of the nature
and evolution of the function tgnn equation (19) when tam varies.



Chapter Ill. The focal surface of a ray system, according tohte first method.

8 6. The dependency of the focal surface upon the propesief elementary waves.
12) The maximum angle between focal planes.

As we did before when we went from simple light raysay bundles, we will now
rise from that to general ray systems of light. Tbeal planes are then (see the
Introduction) tangential planes to the two sheetsheffocal surface, ang means the
angle by which the sheets intersect, which will alsoobémportance to the general
theory of curved surfaces when one considers the elamyewave as the generalized
Gaussian curvature and the principal wave as the initiédce of the ray system.

The first question that one must actually answer véllwhether principal rays are
even possible when tgn= 0 / 0; the answer will read= 0,s=0,t = 0. It will then
emerge that either equation (18) or (19) will be suitabfettie discussion of principal
rays. The second method will then give some indinatioout it.

The next thing shall be to examine whether the fundam y can assume, perhaps, a
maximum value under the variation @f and whether and when it increases to infinity.
The denominator on the right in formula (19) will vanish

(20) taﬁa+% tana—1=0.

This is the condition for one to have tgn= o, so the two focal planes are
perpendicular to each othéj.( It follows from (20) that:

t—r+./(r —t)*+4s?
(21) tana = r-t

2s

which will give the position that the first focal pamust have in order for one to hgve
= 1/ 2. Since the square root is always real, thereawilays be two such positions for
the first focal plane. However, since the last t@mni20) is — 1, the product of the two
roots of tana will be equal to — 1. The two positions of the fiistal plane, where the
second one is perpendicular to it, will themselvepdrpendicular to each other; the two
focal planes will only be switched with each othefherefore, at any point of the

() The expression (20) also occurs in the theory of prihdigersections. Thus, the condition

2

+td

(j—i) +r—std—y —1 = 0 for the principal planes to be perpendicular to ettedr avas well-known to Monge
X

in his Application de I'Analyse a la Géométrigust as the normal to the point in question inptirecipal
intersection was intersected by the neighboring dmar®t here, in the general theory, the bundle axis and
the focal rays on the principal wave, which are gaheskew, will intersect in the focal planes. For
Monge, thez-axis was parallel to the normal at the point in questiane, it is parallel to the axis of the
light bundle.
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elementary wave there will always be just one positibthe planes that correspond to
the focal planes where they are also perpendiculeadh other.
One will have tamr = 0/ 0 in (21) when:

(22) s=0, r=t.
If o1 andp, are the principal radii of curvature then it is kngdwom Euler, that fos
=0:
1 1
PL=—, 2= —,
r t

and it will follow from (22) that:
PL=pP2.

Therefore, if the elementary wave is a sphere @pthint to which it is applied is an
umbilical point then there will be no well-defined pasitiof the first focal plane, where
y=rrl 2, since all of the light bundles will have the leng= 77/ 2. It emerges from this
that: The focal planes of all ray bundles in homogesemedia, and even the ordinary
ray bundles in uniaxial crystals, and finally, the ayndles whose axes run parallel to
the optical axes in uniaxial crystals, will be pergentar to each other' The
rotational axis will meet an ellipsoid of rotation, whishthe extraordinary elementary
wave of a uniaxial crystal, at an umbilical point. Fradat was said above, one can
derive the theorem that was found previously for theeerdy system: The focal surfaces
of all possible ray systems in homogeneous mediaintéksect at right angles. They
will do the same thing in uniaxial crystals for the ordyneay systems. (If the focal
planes are perpendicular to each other then theycuwiiticide with Kummer’s principal
planes, and the focal points will coincide with thrailipoints of the shortest distance. As
a result, if the focal surfaces are perpendiculamthether then they will coincide with
the limit surfaces.) For the theory of surfaces,dpleerical elementary wave is the true
Gaussian curvature, which the principal wave is the initialenaf a ray system. The
rays that are generated in this way will be normalh® initial surface, whose two
surfaces of principal curvature centers will intersecpgedicularly.

13) The minimum angle between focal planes.

The function tany in (19) will possess a minimum, but not a maximum. The
numerator of the right-hand side might vanish, so:

() This theorem was first found by Hamilton:

“When the medium is ordinary, as well as uniform, ttiem osculating surfacdg [ROM: elementary
waves] are spheres, and the directions of extreme dscullROM: the directions, along which the
“principal planes” of the principal wave will interseare the rectangular directions of the lines of
curvature on the surfadé [ROM: principal wave], which is now perpendicular tetrays; in this case,
therefore, and more generally when a ray in a uniforedium corresponds to an umbilical point on the
medium surfac#/;, the planes of vergency [ROM: focal planes] cut thefasa and the surfadéto which
it osculates in two rectangular directions.”
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ttarf @+ 2Stana +r = 0,

st -1t

t

or:

(23) tana =

The position of the first focal plane will thus teetermined, while the second one will
coincide with it. There will always be two such posisavhers” —rt > 0, so the point of
the elementary wave will then be concave-convex. isAknown, there are then four
places that are bounded by four circles on the Fresmes surface'j.

The two focal planes that coincide in oAewill intersect the elementary wave along
the direction of the infinitely large radius of curvatuog what amounts to the same
thing, in the direction of the asymptotes to the hypecbwmidicatrix, which one can
derive from Dupin).

However, if$ —rt = 0 then it is well-known that one will be dealing wéttpoint that
can be osculated by a developable surface. Sfeet > 0 inside of the four circles on
the Fresnel wave surface, and is less than zero euisithem, one will have? —rt = 0
on the circles themselves. However, one will finteiinal conical refraction on those
circles. If one would like to study the properties afdbsurfaces with internal conical
refraction then one would have to s&t—rt = 0. From (23), tam will then be equal to —
s/tand tany=0/0. This 0/ 0 suggests only an apparent indeterminadytharefore
no principal rays will appear here. This case shatrémted more specifically in a later
section.

Finally, if haves’ —rt < 0 in (23) — i.e., the point of the elementary waveoiscave-
concave — then tao will be imaginary. No ray bundle will then exist thbse points
whose focal planes coincide, and all of the focales@s$ that they generate will have two
sheets.

In this case- where tanycannot vanish — a minimum calculation will be necessary
Therefore, in:

ttaf g+ X tara +r

19 tany=-
(19) 4 stana + 2(r—t)tamr - s

() Hamilton, Irish Acad., XVII.

Plicker, “Discussion de la forme générale des ondes dus@s,” Crelle’s Journal, Bd. XIX.

(® Hamilton described this case as follows (Irish AcxWl|, pp. 85):

“The two planes of vergency close up in one placee fito vergencies [ROM: focal rays] reduce
themselves to a single vergency, corresponding to thgdesplane, and the two guiding lines [ROM:
rectilinear cross-section] reduce themselves taglesguiding line.”

() Dupin,Développements de Géométrie:

“In order to know what values ap [ROM: tan a, here] one must start with in order for the radii of
curvature to be positive whafivaries in one sense, and negative whieraries in the opposite sense, one
needs only to suppose that:

r+25g+tyf=0

—st\ & -1t

t

or

[ROM: and that is the same equation as (23).]
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one must set the partial differential quotient of yawith respect to taar equal to zero.
(2ttany+ 2) [starf a + (r —t) tana—s] — (2stany+r —t)(ttarf a + 2Stana +r) = 0,

or

S(r+t)+/S(r+ 2 +[r(r —t) +2s?[( r-1) —27

tana = >
t(r—t)-2s

or more simply:

2 2 2
(24) tang = s(r+t)i\/(rt s)+[(2r t)*+45s7] .
t(r-t)—-2s

The sign of the quantity under the square root signdeiliend upon onlgt —s*. For
concave-concave points, there will therefore alwagstwo positions of the first focal
plane whereyis a minimum, which will be determined from the value$24). In order
to find this minimum, the expression for tamn (24) should be substituted into equation
(19). However, in order to arrive at an understandalsigltreone should make use of a
coordinate change in the latter, which was also dorigumpyn, Hamilton, and Monge.

Up to now, only theZ-axis was parallel to the axis of the ray bundle;xhandyz
coordinate planes could then rotate around it. We woutd kgrange that:

s=0.

The position of the first focal plane will be deterndnigy (21), in whichl pwill be a
right angle. The same equation will give the valueréf2 for @ whens = 0. The first
focal plane will lie in theyzplane. In the new coordinates, the mutually-perpendicular
focal planes will be thexz and yz coordinate planes. However, since the mutually-
perpendicular focal planes lie on the principal planas,principal planes will play the
role of coordinate planes far= 0, and that is the basis upon which Hamilton emphasized
that one should choose the principal planes to be catedpianes.

Fors= 0, equation (19) turns into:

r+t tan’ a

25 tany=— ——,
(25) 4 (r —t)tana

and (24) will become:

(26) tana = i\E :

The two equations, when combined, will give:

£24rt _ 2.0, [p,
r-t e

tany=-

when one setg, = 1 /r, o, = 1 /t, as the desired minimum of the angle
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As is known, one will always have:

2tana

tan 2y = —,
1-tana

and it will follows, upon substituting tam=+ +/r /t , that:

tan 2o = - izﬁ,
r—t
SO
tan 2o = tany,
and
O2a=0y

The smallest value gfis then found to be@ If one observes formula (26) then one

will also have:
tan? = \ﬁ = [P
2 Nt \p

for any coordinate system, atitht light bundle will have the smalldstyfor whichtan y
/ 2 equals the square root of the quotient of the ppalcradii of curvature.

Figure 2.

As an example, we choose the ellipsoid of rotatibaxtraordinary rays in a uniaxial
crystal. Such an ellipsoid of rotation is presdnteFig. 2. Lefc be the rotational semi-
axis and leta be the semi-minor axis. Amongst all of the raydies that are possible
for the pointA, the one that possesses the smallegtwill be the one for which tap/ 2
= \/p.!p,. Letthe elipseBCDE be the intersection of the ellipsoid whose semjpma

axis isr and semi-minor axis & with a plane that is parallel to the tangentiaing atA.

a.2
Now, since it is known tha@: — , one will get the equation:
P>
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_a
.

tan

NI

However, from the laws of undulation theory, and r will be the oscillation
amplitudes of the ordinary and extraordinary lightsrayA, and of the light bundles that
are possible a, the one that has the smallywill be theone for which tary/ 2 equals
the quotient of the oscillation amplitudes on the buadis AO.

Since tany/ 2 < 1,01 | o> must be andchtel) fraction; if o1 / p» > 1 then one will

takeo, / o1 .
For a point of the equator on the ellipsoid of rotagtmme will have:

2
P

The minimum ofy will get smaller asa / ¢ gets smaller; i.e., as the birefringent
energy of the crystal gets larger.

=tan

olo
N I

8 7. The dependency of focal surfaces on the propertiesgincipal waves.
14) The angleyas a function of the principal wave.

As we did with equation (19), from now on, we shall pestevith (18). The
previous paragraph answered the question: “Which bundlgmasible for a given point
of the elementary wave?” The theorem that we atrates suitable only in special cases
for deriving theorems for the entire rays system fronbecause only the radii of the
elementary waves, but not the rays, have an immed@taection with those waves.
However, for the investigation of a line bundle at anpof the principal wave it will be
possible to combine the bundles into a ray system landettilinear cross-sections into
focal surfaces. At the same time, we will cast angé towards the general theory of
surfaces for which the elementary wave is the extendeeatire model. Now, if the
elementary wave remains unconsidered then the varigusystems will be examined
that can belong to one and the same principal wave Wiegrate found in other media.

If the denominator on the right-hand side of:

Ttarfa + 2Staro+ R
Starf a + 2(R- T)taro — S

(18) tany=-

vanishes then the analogue of the previous expressall be:

T-Rt(R-TY?+4 S

2S

tana =
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At any point of the principal wave there will alwaysist positions — but generally
only a single one- for which the focal planes are mutually perpendicidad amongst
all of the ray systems that are possible for a aemaincipal wave, according to the
variety of the media, there will be, in general, oahe of them whose focal surfaces
intersect rectangularly.

ForS=0,R =T, one will have tare = 0 / 0, and ifP, andP, denote the principal
radii of curvature then one will find, in turn:

Py =Ps,

which is the condition for spherical curvature. Splanincipal waves — which might
exist in a medium wherever one desires — possess ocdy $arfaces that intersect at
right angles. If one regards a purely mathematicatpal wave as an initial surface for
the ray system then one can say: If the initiafesigr is a sphere then so are all of the
focal surfaces that are generated by a ray systemawitrbitrary curvature model and
intersect perpendicularly. Conversely, it is knowat tiwhen the sphere is the curvature
model any initial surface will generate ray systemswitutually-perpendicular center-
of-curvature surfaces.
If the value for taryvanishes in the denominator then:

-S+J S - RT
S .

tana =

At any concave-convex point of the principal wave thetebe two light bundles for
which the two focal planes coincide, and that singtalfplane will go through one of
the two asymptotes to the indicatrix. As is known, éh@symptotes will be the straight
lines that are possible on concave-convex surfaces. @gshaifl of the ray systems of a
concave-convex principal wave, there will always ex&i that possess a focal surface
with only one sheet. This can be expressed mathenhatasaFor any concave-convex
initial surface, one can find two curvature modtiat generate ray systems that have
simple focal surfaces. The tangential planes is tbcal surface will cut out the two
systems of directions that exist on the concaveeomitial surface that have vanishing
curvature.

With the help of a minimum argument, one gets:

tana =

S(R+ /(R 9[( R JF+4 %
T(R-T)-2S ’

from which, it will follow that ray systems with suagimple focal surfaces for concave-
convex principal waves are impossible.
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15) Ray systems with imaginary focal surfaces.
Before we go on to the second method, we shall, ceelgrdevelop tarr as a

function of tany from equation (18). That will permit a glimpse into &emingly-
esoteric essence of rays that emanate from focicas.

Ttarfg + 2Starr + R

(18) @Y= S a+ 2(R- Ttam - <
gives:
ang < O~ Rtany- 25+ \[(R Ttany+ 29 - 4( Say+ T(R Sap |
2(Stany+T)
or
g (T~ Rtany- 25t/ (R T tafy+ 4(3- Rk taby |
2(Stany+T)
SO:
(T-Rtany- 25t * JI(R TP sify+ 4(%- RY
tana = cosy .
2(Stany+T)

For any value of; this equation will produce two values af In fact, the second
value will give the position of the second focahmé. If the quantity under the square
root sign vanishes then there will be only value o and the two focal planes will
coincide. When that happens will depend merelynuppe curvature of the surfaces, but
not ony. The sign of the quantity under the square rapt will then be determined by
just$¥ —RT.

If & —RTtakes on a sufficiently large value themwill become imaginary, and one
is dealing with light bundles with imaginary, rdiciar cross-sections.Such light
bundles are thus possible only at concave-convex poilsn, & — RT cannot approach
zero very closely, since the concave-convex cherauft the surface must be strongly
imprinted on it; namely, it is wheld yit large that ray systems with no focal surfacas c
be possible. At most]y should still refer to a ray system with a one-sbedocal
surface.



Chapter IV. The focal surfaces of a ray system, according tdvé¢ second method.

8§ 8. 16) The interrelationships between principal and eteentary waves.

The equations:

tanf - tax
tany = ———,
1+tana tans
+
tang = R Stan,B’
S+ Ttang
+
tang = r +stang
s+ ttang

have provided the value for tann (18) and (19). In this chapter, an equatioallste
discussed that contains only one of the three angh its conclusion, we would also
like to cast a fleeting glance towards the equati@t only involved] a. The last two
eqguations can then be brought into the form:

R+S(tana +tanp) + Ttanatang =0,
r+s(tana +tana) + ttanatana =0,

or
tanag +tang = - Tr—RT’
Ts— St

tana danf = Sr—Rs

Ts— St

The first equation can assume the following form:

\/ (tana + tanB §— 4tamr tap
1+ tana tang '

tany=+

If one substitutes the two values above for daf tan S and tana Otan S into this
then it will become:

JTr=RHZ-4(Sr- RY( Ts St
(Ts— S)+( S Rs

tany=+

or

JTr+Rt-259°-4(8- RJ( % It

27 =%
@7 e ST-R-§t )
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It is this equation, most especially, that is suitedht task of discussing the inter-
relationships between principal and elementary wavesglss their common effect on
the ray bundle. As a result, the evolution of tinection tany can be investigated in two
ways, namely, one can first vaR; S T and keep, s, t constant. One is then dealing
with a definite point of the elementary wave, whil@ tprincipal wave takes on all
possible forms. Secondli®, S T can remain constant, white s, t vary. Indeed, if the
elementary wave is not able to assume different fahes it will be well-defined for any
medium, and also it cannot rotate if it has a fixed pmsitor its center; however, one can
rotate the entire medium, along with the elementayes that are established in it — e.g.,
a crystal — and preserve the principal waves that emeiige Trhis geometric process is
more intuitive than the rotation of the first fogddne around its axis.

Admittedly, in that variation of the second partidfifetential quotients, one must
proceed with some foresight. At the singular pointsseheinctions will then become
discontinuous, and the equations for the indicatrix legle their validity. Fortunately,
however, the focal planes will intersect on botHaegs along conjugate directions, and
when the elementary wave has failed in its duty, otigake the principal wave. Due to
the complete symmetry in the equation above, it is owgessarily to perform the
calculation once; the result can then be immedjaiglitted from the other operations.

8 9. The second method.
17) The principal rays.

Before we begin a deeper investigation, the case where
tany= 0
0

shall be singled out. We square the equation above:

@t = (Tr+Rt-2S9* - 4( &- RZT( el
[S(r=9 - R-T]

and set the numerator and denominator of it, whierentiated with respect tB, S T
equal to 0. The denominator gives:

2[Sr-tH)—-s(R-=-T](r—-t—s+9s) =0,
or
Sr-t)—-s(R-T=0.
The numerator gives:

2(Mr+Rt—BY(r+t—X)+4EE-n)(R+T-29 =0.

These two condition equations for the principgbravill be satisfied when:
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1) R=0,5=0,T=0,
or when:
2) R=r,S=s T=t.

Had one differentiated with respectrics, t then the last formula would still be true,
and in place of the one before it, one would havedhewing ones:

3) r=0,s=0,t=0,

which we will again discard, since they refer to a pkleenentary wave or turning points
on it, which are not present. The first group of equatis independent aof s, t, so it
will be true for any medium. It states thatany medium, plane principal waves will
possess only principal rayslf the middle group of equations is true then phecipal
and elementary waves will have second-order congaxt the fact that principal rays will
arise is obvious. The two corresponding points will therelengruent indicatrices with
conjugate diameters, of which each pair on the one imthaail be parallel to a pair on
the other one. All of the planes that go throughbilnedle axis will then be focal planes.

The following cases might serve to explain this: dmlogeneous media, the principal
wave must be a sphere in order for the elementary wavave second-order contact.
Therefore,in homogeneous media, the ray bundles are planar, and spherical principal
waves are all principal rays. The ray bundles of spherical principal waves have
rectangular focal planes, in general, but in homogenaoedia they will turn into
principal rays. On the four distinguished circles & Fresnel elementary wave, where
conical refraction exists, it is known that they vinét osculated by a developable surface,
and one can saamongst the ray bundles that admit internal conical refraction, one will
find principal rays whose corresponding point on the principal wave will be plana
osculated by a developable.

Finally, in complete generality, if the initial suréaof the ray system has a second-
order contact with the curvature model then it will gsssa principal ray at that point. If
two surfaces are congruent then a system of princigal wath a principal focal point
will arise.

18) The common influence of the principal and elementary ave
on the focal surface of a ray system.

If one lets the denominator on the right-hand side of:

(27) any=+ JTr+Rt-259°-4(8- RJ( % It
- S(T-R-3t )

vanish, in order to learn when y= 77/ 2, then:

Sr-t)-R-T=0
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would yield nothing new, and it will be satisfied by O0,r =t or S= 0,R=T. Whether
[0 ycan further equal zero will depend upon whether it is p@stibsatisfy:

4 (F—RT) (¥ —rt) = (Tr + Rt— 2592

Since the right-hand side is always positi&,« RT) and € —rt) must always have the
same sign. Therefore, the two focal planes canc®nonly when the principal and
elementary wave have the same type of curvature, aaheled, they must both be
concave-convex, since, as was shown above, suchHigidles cannot be present at
concave-convex points, or el§é y would possess a minimum value at that place. In
order to find this minimum, the value of fapwill be differentiated with respect ® S,

T, whiler, s, t are kept constant:

RTr+R)—S§(r+t—-x)+4E&-rt) R+T-2][r-1) —s(R = T]?
+2[S(r=10)=s(R=T](r=1 [(Tr + Rt— 2S9]?
—4 & -RT) (¥ -r1t) = 0.

The common factor of Hr — t) — (R — T)] can be removed from this, since it adds
nothing new.

One treats a definite point, (S, t) of the elementary wave through which @axis
goes. As in the first method, one rotates the coamelisygstem around théaxis so that
one gets=0. The equation can then be brought into the form:

(Tr-R)Z—[tr—) R—r r—1) T] S=0,

which will give the conditions:
S=0,Tr=Rt
for yto have a minimum.
If R, S T were taken to be constant and differentiated with mdpe, s, t, and one
were to makeé&s = 0 by a change of coordinates then one would get:

s=0,Tr=Rt

Once more, let the principal radii of curvaturedge= 1 /r, ;0= 1/t,P1=1/R P, =1/
T, soTr = Rtwill take on the form:

A
P

<0 |0

Of all the light bundles that are possible at a pofrthe principal wave, the one that
possesses the smallest angle between its focal pllhémve a corresponding point on
the elementary wave that possesses principal radiunfature that are proportional to
the corresponding values on the principal wave. Irerothiords, the principal and
elementary waves must be similar at corresponding poilisthe ray systems of light
that are possible for a concave-convex principalvavawill have focal surfaces that
intersect each other under the smallest angle ithagenerated by an elementary wave
that is similar to the principal wave. In other mg: If initial waves and curvature
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models are similar, concave-convex surfaces then a ray systeoonve about whose
focal surfaces intersect with the smallest possible angle.

Before we leave this section, we shall eliminate@&om:

R+ Stang
tang=- ———
S+ Ttang
and
+
tang=- r stana.
s+ ttana

That will produce:

_ R(st+tana)- §(r+ stam )
S(st+tana)—- T(r+ stana )

tana =

or

Tr-Rt+./(Rt- T)?-4(St- T Rs 9
2(St-T9

tana =-

or, when rearranged:

Tr-Rt+./(Rt+ Tr-2S¥ -4( - RY % )i

(28) tana=-
2(St-Ts

The two values of this equation will give the piosis of the two focal planes. The
qguantity under the square root sign is the denoimiria the expression for tgnin (27).
If tan y= 0 then the square root will vanish, and the liptéanes will coincide. The sign
of the quantity inside the square root sign wilpeled upon & — RT)(S — rt). Ray
systems with imaginary focal surfaces can appeanvthe curvature of the principal and
elementary waves of the same type is concave-convex




Chapter V. The focal surface for the two conical refractios.

8 10. 19) Internal conical refraction.

It still remains for us to research the propertiesfadfal planes under conical
refraction. It is known®j that when a light ray falls on six-parameter or fparameter
crystals, it will generally split into two, one of veh will follow Snell’'s law of sines,
while the other one — viz., the extraordinary ray — balldetermined by the law that was
first proposed by Huyghens. One also holds this law teabd for two-parameter, one-
parameter, as well as for two and one-parameter 3ysta Fresnel started from the
hypothesis that the elasticity of the osculating médiag unequal along the three crystal
axes would explain the fact that the elementary ved\ge crystallized medium is either a
sphere or an ellipsoid of rotation, as Huyghens would prefea fourth-order surface
that consists of two sheets, and whose contact pait the tangential planes will
determine the directions of the two sheets. If atahpossesses a direction around which
its surfaces are grouped equivalently — i.e., if it hasyatallographic principal axis —
then Fresnel also assumed that the elasticity isah® in all of the directions that are
perpendicular to the principal axis. The equation of ¢l@mentary wave is then
decomposable into two quadratic factors, one of whichastjuation of a sphere, while
the other one is that of an ellipsoid of rotatiorhu3, Huyghens’s law is derived from the
general solution. However, in that way, there willtb® cases that Fresnel foresaw.
Namely, its elementary wave possesses four funnel-shagedtations, with a singular
point at the innermost one. The tangent plane at sseigalar point degenerates into a
second-degree contact cone. Furthermore, these fourl-thmaq@ed indentations will be
bounded by a circle in which a singular tangential plane eafitact the elementary
waves.

As we did already, the above formulas can be apphiednical refraction, assuming
that the necessary foresight has been applied to argfbf@sliscontinuities. Internal
conical refraction comes about on those four circl€se indicatrix is a parabola on the
circles, a hyperbola inside of them, and an ellipse @itsi them. One will find no jump
in the surface on the circles, since the surface itsel€ontinuous, so its partial
differential quotients will also be continuous functpand the theorems that were found
up to now can be applied provisionally with no misgivings.

The principal rays are have already been dealt abthve. In order to examine the
remaining light bundles that are possible under intemaical refraction, one applies the
following formula:

_ ttafa+ Stam+r
starfa + 2(r—t)tarr — s’

(19 tany=

in which, O y= m/ 2 for:

t—r£4(r —t)*+4
(21) tana = rEyr-t) S,

2s

() Lloyd, Phil. Mag. 1833, pp. 112.
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andJ y= 0 for:

st 1t

(23) tana = "

By substitutings® —rt into (21), one will get:

(29) tana = — =

t s
s t

However, by substituting formula (23), one will get:

S

(30) tana = - TS '

According to Dupin, on any developable surface, and thexedlso on the four
circles of Fresnel's elementary wave, tar — s/t will determine the direction in which
the curvature possesses an infinitely large radiusunfature, and to whichll of the
remaining tangents to the points that are possible will be conjuateAt the points of
the four circles, the directions in which the radii cufrvature become infinite will be
tangent to the circles. Every tangent to one ottiees will then have the property that
it is conjugate to all of the remaining possible tangextt#s contact point with the
Fresnel elementary wave, at the points of the circles, one of two arbitrary conjugate
tangents will also be certainly tangent to the circkeormula (30) will give the position
at which the focal planes coincide, and all of the ioplossible planes that go through the
bundle axis will be the second planes to it.

In order to be certain of this, we would not like torgaut the calculations blindly,
but return to the original physical considerations ancttmstruction of a light ray.

The tangential plane that corresponds to the sindalagential planéABtt to the
Fresnel elementary wave will contact the principavevatC, so the one poin€ will
correspond to all of the points of the contact cile” a”, and one must draw parallels
throughC to all of the radius vectors of the contact circle.g-.,CD # Oa, CD’ # Oq’,
CD”# Oa” - in order to obtain the ray cone of internal conreditaction. Any side of
the ray cone will be the axis of an infinitely-thin rayndle. One ray will not distribute
infinitely many rays into a ray cone, since its ladgght intensity would then be

() Dupin, Mémoire Il, art. VIl and IX:

“When one of the radii of curvature of the surfacenfgiite, that radius will be that of a unique cross-
section that is conjugate to all of the other normetises. Therefore, all of the lines that one daent
draw by starting at the point of contact of the tangeamnelwill be conjugate to the unique line, which
presents a second-order contact with the surface taribent point:

(tana=)z//=—18:—§; f-1t=0

is the condition equation that the second-order coeffisir, s, t must satisfy in order for the surface to
have one of its curvatures equal to zero. In this ¢hsdine of curvature is osculated by a line and the
general surface will be osculated by a developable sunfattethat line for one edge.”
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unexplainable, but infinitely many ray bundles can cominb@ a light cone. For the
bundle axisCD, the first focal plan€D t’t” will be parallel to the corresponding plane
Oatt, as the second focal plane might be.

Figure 3.

All of the planes that correspond to the first fopne will always go through the
tangent to the contact circles, and will envelop theeaof singular radius vecto® a a’
a”. The first focal planes themselves will envelop the ray cone ahahteonical
refraction CDD’'D” and thus the principal wave can take on any shape thahis. The
first sheet of the focal surface and the ray conatefnal conical refraction will have the
first focal planes as common tangential planes,car@dcan say than biaxial crystals the
first sheet of any arbitrary ray system will run in the ray carfeinternal conical
refraction independently of the principal wave, upon whose foloneg the position of
the second focal plane will be determined.

20) External conical refraction.

r, s, t will, in fact, become discontinuous at a singulampoif the Fresnel elementary
wave. Indeed, equation (18) and the theorems that ons inden it will preserve their
validity, because they are independent of the elementame. However, it should
likewise go back to the physical construction of thetliglys.

At a singular pointS of the Fresnel elementary wave, there are infinitagny
tangential planes; that is, there is a contact &@&B Now, in order to get the rays that
correspond to the singular radius vectdf§ one must also draw infinitely many
tangential planes to the principal wa&éB’ C’ that are parallel to the previous ones, or
instead of them, a cor® A’B’that is similar and similarly-oriented to the cd@@&Bthat
can contact the principal wave. It contacts the gralavave on the curvA’F’'B'D”.
Inverse to what happens with internal conical refractibe one singular poir@ of the
elementary wave will correspond to a cuAveF’ B’ D’ of points on the principal wave.



Meibauer — Theory of rectilinear systems of light rays. 34

Any parallel toOSthat goes through one of the pointsAdf-"B’ D’ will be a light ray,
and therefore, under external conical refraction ystals, the singular radiuSS will
correspond to a ray cylinder whose a8 ’# SQ Any line of the cylinder will be the
axis of an infinitely-thin ray bundle. The rays tha¢ infinitely-close to one such line on
the cylinder will be parallel to the axis and will thusané at infinity, so the cylinder
will contact a focal plane along any line,tbe one family of focal planes will envelop the
ray cylinder. The one sheet of the focal surface will run odteofay cylinder.

Figure 4.

Since the ray cylinder cuts the principal wave along thigecA’ F’ B’ D’, the first
focal plane will also cut the principal wave along edhion that is tangent #&8'F'B’D".
The second focal plane must go through the directiahighconjugate to that tangent.
The following theorem was stated in the mathematmabduction in 8 2, no. 3: If any
surface (the principal wavA’ B’ C’, resp.) is contacted by a developable surface (the
coneS’A’B’, resp.) then the tangents to the contact cAr\le’ B’ D’ will be conjugate to
the lines of the cone. Thus, the first focal plank go through the tangents &' F’B’
D’ and the second one will go through the lines of theéacbrconeS’A’F'B’D". For
example, two focal planes will go througfi S, and let their bundle axis B¢ E. A’E #

S’ O, which is the axis of the ray cylinder, aBdO’ will then lie in the second focal
planeE A’S’ O’ of the axisA’E. Thus, any other second focal plane will also gouino
the cylinder axis’ O’, andthe second focal planes of the ray cylinder of external conical
refraction will go through its axis.

If one imagines all of the tangent planes to a cdm is always pointed, and
ultimately degenerates into a line, then the plandsaWigo through that line. One can
regard the axis of the ray cylinder as such a line througbhathe two focal planes will
go, andthe second sheet of the focal surface will then run through a vertegrtstin
the axis of the ray cylinder.

The internal conical refraction then advances datsif the crystal as a ray cylinder,
while external conical refraction inside of a crysimlconnected with a cylinder of
infinitely-thin ray bundles, which does not seem toehagticed up to now.
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8§ 11. Results.
21) For optics.

1. One obtains the light ray at any poatof the principal wave when one draws a
tangential plane through” and a tangential plane to the elementary wave thaiact it
at A and is parallel to the latter plane. The rayavill then be parallel to the radius at
A.

2. If one has any pair of corresponding directionshengrincipal and elementary
wave then the directions that are conjugate to therh lveil mutually parallel, and
conversely. Since the corresponding directions vélllikewise parallel for the focal
planes, the focal planes will intersect on the ppiaktwave; the planes that correspond to
them on the elementary wave will intersect in conjugaestions.

3. In homogeneous media, as well as everywhere onisphgrincipal waves, the
focal surfaces will intersect perpendicularly. Thisdiem can also be expressed as: For
any arbitrary principal wave, there is only one ray esystwith focal surfaces that
intersect rectangularly, namely, when the principal wasvéound in a homogeneous
medium. For any medium, there is only one such yayes, namely, for a spherical
principal wave.

4. Otherwise, the sheets of the focal surfacesintérsect in skew angles, as a rule;
the two sheets can coincide only inside the four cowmiedes on the Fresnel elementary
wave. Even then, light rays with no focal surfaae appear.

5. All plane waves possess principal rays, and furthexnadl spherical light waves
in homogeneous media, and finally, one has those prinaips for the light bundles that
are possible for internal conical refraction whoseesponding point on the light wave
has a parabola for an indicatrix.

6. For internal conical refraction, one sheet of bl surface runs in the light
bundle cone of internal conical refraction; the otslezet is independent of the form of
the light wave. For external conical refractiorerthis a ray cylinder inside the crystal
that runs out of the one sheet of the focal surfabdevihe other sheet will have a vertex
that lies on the axis of the cylinder. The light wawlk therefore have no influence.

22) For the theory of surfaces.

1. The theorems above can be stripped of their physheaicter when one switches
the principal wave with the initial surface of the stem and endows the elementary
wave with the name of the generalized Gaussian curvatode!.

2. Among all of the possible conjugate directions at atpof the initial surface,
there will be, in general, only one pair that is paladeits corresponding directions on
the curvature model.

3. The rays will be perpendicular to the initial surfadeen it is either a sphere or a
cone, or the curvature model is a sphere. The foccams will then coincide with the
limit surfaces of the shortest distance, and will sget rectangularly.

4. In general, focal surfaces consist of two sheédtds only for concave-convex
initial surfaces that one can find two curvature moties$ generate a ray system with a
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one-sheeted focal surface. The tangential plandtsete two one-sheeted focal surfaces
will cut out two systems of directions on the initglrface that will have vanishing
curvature.

5. For concave-concave initial surfaces, therensramum of the angle’by which
the sheets intersect, namely, when gdr? is equal to the square root of the quotient of
the principal curvature radii on the curvature model.

6. There also exist ray systems with no focal susfaetich are possible only when
the initial surface and curvature model are simultaneausigave-convex.

7. If the initial surface and the curvature model amgcaent, or if they at least have
congruent curvatures at isolated points then principalwalysrise. If both of them are
similar then the] yby which the sheets of the focal surface intersedtogib minimum,
such that tary/ 2 will now also be equal to the square root of the gotsief the
principal radii of curvature on the initial surface.




