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 Following the example of W. R. Hamilton 1), I understand bivector to mean the 
complex combination of two ordinary vectors R1, R2 into: 
 

(1)     ρ = R1 + i R2 ,  where i = 1− . 
 
However, other than that, I will concern myself, not with the original quaternion calculus 
that flows out of Hamilton’s treatment of the vectors, but the Heaviside schema for vector 
algebra and analysis 2), which is known particularly well-suited to the demands of 
physicists and which has, moreover, enjoyed a continually increasing acceptance on the 
continent in recent times. 
 As far as ordinary vectors are concerned, I will appeal to the Heaviside notation, so 
the scalar product of two vectors A, B is denoted by simply A B, while their vector 
product is denoted by V A B, and the symbols like curl, div, ∇, and ∇2 are defined in the 
usual way. 
 However, as far as bivectors are concerned, only a few remarks of a purely theoretical 
nature will be necessary here. 
 In order to distinguish them from ordinary vectors (or even scalars), I will denote 
bivectors throughout by Greek symbols.  On the basis of the form (1), I will call R1 the 
first component of the bivector ρ, while R2 is the second component. 
 Two bivectors are equal to each other when and only when their components are pair-
wise equal to each other; i.e., ρ = ρ′ means the same thing as R1 = 1R′ , R2 = 2R′ , and 

conversely. 
 Since any bivector in its basic form is nothing but the sum of ordinary vectors with 
ordinary scalar (if also partially imaginary) coefficients, then with no further 
assumptions, this illuminates the fact that all of the fundamental operations of vector 
algebra and analysis can be carried over to bivectors immediately.  Therefore, e.g., the 
sum ρ + σ = R1 + S1 + i(R2 + S2) or difference ρ – σ of two bivectors needs no 
explanation at all; furthermore, the properties ρ + σ = ρ + σ, ρ + (σ + τ) = (ρ + σ) + τ, 
etc., are clear with no further explanation.  The scalar product of two bivectors ρ, σ can 
be developed immediately, in the sense of the remark above, into: 
 

                                                
 1) Cf., his “Elements of Quaternions.”  
 2) O. Heaviside, Electromagnetic Theory 1, chap. III. 
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(2)   ρ σ = (R1 + iR2)(S1 + iS2) = R1 S1 − R2 S2 + i(R1 S2 + R2 S1) , 
 
and one also has σ ρ = ρ σ, as well as ρ (σ + τ) = ρ σ + ρ τ, as for ordinary vectors.  
Similarly, one also has for the product of two bivectors: 
 
(3)    V ρ σ = V R1 S1 − V R2 S2 + i (V R1 S2 + V R2 S1), 
 
and since V S1 R1 = − V R1 S1, etc., so one also has Vσ ρ = − Vρ σ; this further enlightens 
us that V ρ (σ + τ) = V ρ σ + V ρ τ, as for ordinary vectors.  Finally, one remarks that ρ σ 
is an (indeed, complex) scalar, like say R1 S1, while V ρ σ, just like ρ or σ themselves, is 
a bivector.  The definition and investigation of τ Vρ σ, Vτ Vρ σ, and the like will be left 
to the reader. 
 As far as differential operations are concerned, such as, e.g.: 
 

t

ρ∂
∂

= 1 2R R
i

t t

∂ ∂+
∂ ∂

, ( )
t

ρ σ∂ +
∂

 = 
t t

ρ σ∂ ∂+
∂ ∂

, 

 

( )
t

ρ σ∂
∂

 = 
t t

σ ρρ σ∂ ∂+
∂ ∂

, etc. 

 
div (ρ + σ) = div ρ + div σ, curl (ρ + σ) = curl ρ + curl σ, …, I believe they also require 
no explanation. 
 Here, I will therefore define only two more concepts and give some of their 
properties, which will be useful to us in the electromagnetic applications: 
 
 1. If ρ = R1 + iR2 and ρ′ = R1 − iR2 then I will call ρ and ρ′  two mutually conjugate 
bivectors.  I will always denote such objects with the same symbols, with and without 
accents. 
 
 2. If the components R1, R2 of a bivector are perpendicular to each other – i.e., if R1 
R2 = 0 – then I will call ρ an orthogonal bivector, and if, in particular, its components are 
unit vectors – i.e., 2

1R  = 2
2R  = 1 – then I will call it a fundamental bivector. 

 
 From these definitions, one immediately finds, due to (2) [(3), resp.] that for any pair 
of conjugate bivectors, one has: 
 
(4)     ρ ρ′ = 2

1R + 2
2R , 

(5)     V ρ ρ′ = 2 i V R2 R1, 
 
and furthermore, for an arbitrary orthogonal bivector ω = O1 + i O2 (O1O2 = 0): 
 
(6)     ω ω  (or ω2)  = 2 2

1 2O O− , 

 
while for any bivector, one has: 
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V ρ ρ = i V R1 R2 + i V R2 R1 = 0 (as for ordinary vectors), 
 

and finally, for a fundamental bivector ϕ = a + i b (a b = 0, where a, b are unit vectors: a2 
= b2 = 1): 
(7)      ϕ2 = 0. 
 
 If a bivector is orthogonal or even fundamental then the bivector that is conjugate to it 
obviously possesses that same property. 
 If one then chooses a third unit vector c that is normal to the plane of ϕ, and indeed, 
such that V a b = c, so a, b, c define a right-handed system, then one has Vϕ c = − b + i a, 
or: 
(8)      Vϕ c = i ϕ, 
 
which one can easily cloak in words. 
 After these terse remarks of a general nature, let us go on to the promised 
electromagnetic applications.  I will then denote the electric field, which is an ordinary 
vector, by E1 and the magnetic force, which is also such a vector, by E2, set: 
 
(9)      E1 + i E2 = η, 
 
and call η the electromagnetic bivector of the field.  On grounds that I will soon clarify, I 
restrict myself here to the consideration of empty space.  (One can, moreover, also speak 
of any isotropic dielectrics with equal dielectric constant and permeability; however, this 
would only imply a purely formal generalization.) 
 If, for the sake of brevity in notation, one sets the “critical velocity” = 1, and lets t 
denote the time then the Maxwell differential equations read, in their usual vectorial 
form: 

(10)    
1 2

2 1

1 2

curl , curl ,

div 0, div 0.

E E
E E
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 If one now multiples the second of these equations by i and adds it to the first then 
one obtains, from (9): 

     
t

η∂
∂

 = curl (E2 – i E1). 

 
However, one has E2 – i E1 = − i (E1 + i E2), so one obtains the remarkable result: 
 

(I)     
t

η∂
∂

 = − i curl η; 
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i.e., in place of the two main equations 1) of the field, in which mixed electric and 
magnetic vectors appear, one obtains only one equation with a single unknown variable, 
namely, the electromagnetic bivector η, and in fact this differential equation, just like any 
of the original ones, is of first order relative to time. 
  Likewise, we can proceed with the third and fourth of equations (10), and thus 
summarize the two solenoidal supplementary conditions into a single solenoidal 
supplementary condition for the electromagnetic bivector: 
 
(II)      div η = 0. 
 
 The equations (I), (II) completely replace the four equations (10). 
 Furthermore, let η′  be the conjugate electromagnetic bivector (to η); i.e.: 
 
(11)     η′ = E1 – i E2 . 
 
One then, in turn, obtains a single bivectorial differential equation in place of the two 
main Maxwell equations in a manner that is completely similar to the one above, and 
indeed: 

(I′)      
t

η ′∂
∂

 = i curl η′, 

 
as well as a single supplementary condition: 
 
(II ′)     div η′ = 0. 
 
 Naturally, equations (I′), (II′) say exactly the same thing as (I), (II).  However, when 

taken together, both pairs are not without interest.  (One remarks, moreover, that 
1

2
(η + 

η′) = E1, 
1

2i
(η − η′) = E2 .)  However, in any case, a single bivector (which might be η or 

η′) suffices for the complete treatment of the phenomena in question, so in the entire 
course of a calculation that relates to it, one does not need to perhaps split the electric and 
the magnetic vector.  This situation seems to me to also define the most suitable formal 
expression for the physical state of affairs: One can treat any time-varying field with the 
electric and magnetic forces as unseparated from each other. 
 The next thing to address is the question of the electromagnetic energy of the field.  If 
one denotes its spatial density by e; i.e., if one sets: 
 
(12)    e = 2 21

1 22 ( )E E+  2) 

 

                                                
 1) Which is what I call the first two equations (10), while I refer to the last two as solenoidal 
supplementary conditions. 
 2) By the choice of the so-called Heaviside “rational units,”  the usual, but bothersome, factor of 1/4π 
drops out; the same remark is also true for the expression of the energy flux that follows shortly. 
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then one can express e in the simplest way by the conjugate electromagnetic pair η, η′ . 
From the model of formula (4) for such bivectors, one, in fact, obtains immediately: 
 
(III)     e = 1

2 ηη′, 
 
or, in words: The density of the field energy is equal to one-half the scalar product of the 
mutually conjugate electromagnetic bivectors. 
 In order to obtain the electromagnetic energy flux F, which is defined (as an ordinary 
vector) by the requirement that: 

(13)     
e

t

∂
∂

= − div F, 

 
we scalar multiply equation (I) by η′, and likewise equation (I′) by η, and add the results; 
in this way, it follows that: 
 

t t

η ηη η ′∂ ∂′ +
∂ ∂

 = 
t
ηη∂ ′

∂
 = i (η curl η′ – η′ curl η). 

 
One now gets the known formulas for the ordinary vectors: 
 

div V A B = B curl A – A curl B, 
 

and this may be extended to bivectors with no further assumptions; i.e., one also has: 
 

div V ρ σ = σ curl ρ – ρ curl σ, 
 
which one can, moreover, immediately verify from (3).  When applied to our case, this 
gives the relation: 

     ( )
t

ηη∂ ′
∂

 = − i div V η η′, 

 
so, from (III) and (13), except for a purely additive solenoidal vector: 
 

(IV)     F = 
2

i
V η η′, 

 
or, in words: The energy flux − or “Poynting vector” – is equal to 12  times the vector 

product of the mutually conjugate electromagnetic bivectors. 
 One can also immediately convince oneself from equation (5) that (IV) is identical 
with the usual expression for the energy flux, namely F = − V E2 E1 = + V E1 E2 . 
 I will leave the comparison of (IV) with (III) and the phrasing of the their closely-
related combination in words to the reader. 
 If the electromagnetic bivector is given in all of space for t = 0 – say, η = η0 – then 
the entire spectrum of electromagnetic phenomena is given on the basis of the differential 
equation (I), at least, inside of a domain of continuity.  The details of carrying out the 



Silberstein – Basic electromagnetic equations in bivectorial form                  6 

integration process in given special cases are not consistent with the basic theme of this 
treatise.  I would thus only like to remark here that one can write down the symbolic 
solution of (I) with no further assumptions.  Namely, when one denotes a combined 
operator by {} and lets e denote the base of natural logarithms, one understands that: 
 
(V)    ηt = {e− i t ⋅⋅⋅⋅ curl} η0 = {cos(t ⋅⋅⋅⋅ curl) – i sin (t ⋅⋅⋅⋅ curl)}η0 , 
 
which coincides precisely with the “symbolic integrals” that were obtained from the two 
ordinary vectorial equations in a previous treatise 1) by a completely circumstantial 
method.  (The condition (II) does not especially need to be considered, since due to the 
fact that div curln = 0 (n = 1, 2, 3, …), it follows from (V) that div ηt = div η0 .  Thus, if 
only the initial field is prescribed according to (II) then div ηt = 0 remains true for all 
time; moreover, this likewise follows simply from equation (I) itself.)  Furthermore, I 
would not like to place the emphasis on equation (V), from now on, but on equations (I) 
to (IV). 
 
 Pure electromagnetic waves. – Waves that would deserve this term can be 
characterized by the fact that the electric force is everywhere perpendicular to the 
magnetic one and that one-half of the energy in any region of space is electric, while the 
other half is magnetic; i.e., the relations 2

1E  = 2
2E  and E1 E2 = 0 exist (for the vacuum).  

From the definition that was given in the introduction, and from equation (7), one can 
comprehend this concisely when one says: 
 For pure waves, one distinguishes η from a fundamental bivector only by a real scalar 
factor s: 
(14)     η = s ϕ, 
such that η2 = 0. 
 From this, it also follows that η(∂η / ∂t) = 0, or from (I), η curl η = 0. 
 For the conjugate electromagnetic bivector, one likewise has in this case that η′ = sϕ′, 
where ϕ′  is conjugate to ϕ.  From (8) and (14), one has: 
 
(15)    V η c = i η = i s ⋅ ϕ, 
while for η′: 
(15′)    V η′ c = − i η′ = i s ⋅ ϕ′, 
 
since the two components of ϕ′ (a, − b) define a left-handed system with c. 
 In conclusion, I would only like to treat the special case of plane waves.  In this case, 
the fundamental bivector ϕ, which likewise yields the plane wave, is constant in time and 
space, and only the scalar factor s varies.  One thus has ∂η / ∂t = ϕ ⋅⋅⋅⋅ ∂s / ∂t, so from (I), 
one has: 

t

η∂
∂

 = ϕ  
s

t

∂
∂

 = − i curl (s ϕ). 

 

                                                
 1) L. Silberstein, Ann. d. Phys. 6, pp. 373 et seq., 1901.  
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If one lets z denote the scalar length measured in the direction of the wave normal c then, 
since ∂ / ∂x = 0, ∂ / ∂x = 0, the Hamiltonian operator ∇ equals c(∂ / ∂z); now, since it is 
completely general that curl = V ∇, one has: 
 

− curl (s ϕ) = − Vc 
( )s

t

ϕ∂
∂

= 
s

z

∂
∂

Vϕ c = 
z

∂
∂

Vη c = i 
z

η∂
∂

, 

[from (15)], so: 

(16)     
t

η∂
∂

 = − 
z

η∂
∂

, 

 
from which it follows that the most general integral is: 
 
(17)     η = f(z − t), 
 
where f means an arbitrary function of the argument z − t; the wave, or as one can also 
say, the electromagnetic bivector η thus propagates in the c direction with velocity 1; i.e., 
with the critical velocity.  As one can easily convince oneself by a cursory comparison of 
(15′) with (15) and (I′) with (I), the conjugate bivector η would propagate in the exact 
opposite direction, as is known to be the case. 
 
 Warsaw, in December 1906. 
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