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Basic electromagnetic equationsin bivectorial form

By Ludwig Silberstein

Translated by D. H. Delphenich

Following the example of W. R. Hamiltoh, | understandbivector to mean the
complex combination of two ordinary vectd®g R, into:

(1) pP=Ri +iRy, wherei =+/-1.

However, other than that, | will concern myself, nathvwhe original quaternion calculus
that flows out of Hamilton’s treatment of the vectdrst the Heaviside schema for vector
algebra and analysi§, which is known particularly well-suited to theerdands of
physicists and which has, moreover, enjoyed a woally increasing acceptance on the
continent in recent times.

As far as ordinary vectors are concerned, | wlpbeal to the Heaviside notation, so
the scalar product of two vectofs B is denoted by simplA B, while their vector
product is denoted by A B and the symbols likeurl, div, O, andJ? are defined in the
usual way.

However, as far asivectorsare concerned, only a few remarks of a purelyreteal
nature will be necessary here.

In order to distinguish them from ordinary vectgos even scalars), | will denote
bivectors throughout b¢reeksymbols. On the basis of the form (1), | willldg] the
first componenof the bivectoip, while R, is thesecond component

Two bivectors are equal to each other when angwhen their components are pair-
wise equal to each other; i.e2,= p’means the same thing Bs = R, R, = R,, and

conversely.

Since any bivector in its basic form is nothing the sum of ordinary vectors with
ordinary scalar (if also partially imaginary) coefficients, then twi no further
assumptions, this illuminates the fact that alltted fundamental operations of vector
algebra and analysis can be carried over to biveatomediately. Therefore, e.g., the
sump + o=R + § + (R + &) or differencep — o of two bivectors needs no
explanation at all; furthermore, the properiies c=p+ g, p+ (c+ 1) =(0o+ 0) + 1,
etc., are clear with no further explanation. Tbaelar product of two bivectorg o can
be developed immediately, in the sense of the redaove, into:

1) Cf., his “Elements of Quaternions.”
%) 0. HeavisideElectromagnetic Theory thap. Ill.
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(2) Pi=Ri+IR)(S+IS=RIS-RS+iI(RRS+RS),

and one also hasp=pg, as wellaspo (o + 1) = po+ pr, as for ordinary vectors.
Similarly, one also has for the product of two bivectors

(3) Vpo=VRS-VRS+i(VRS+VRYS),

and since&/ S R =-V R S, etc., so one also h& p = — Vp g; this further enlightens
usthatv p(o+ 1) =V po+V pr, as for ordinary vectors. Finally, one remarks ghat
is an (indeed, complexscalar, like sayR; S, while V p g; just like por othemselves, is
abivector The definition and investigation @fVp g, Vr Vp g, and the like will be left
to the reader.

As far as differential operations are concerned, sscle.g.:

a_'o: a_R1+ia_R2, i(p+0’ :a_'o+a_0-,
ot ot ot ot ot ot
0 0o . _0p
— = p—+0—, etc.
g PO =P
div(p+ 0) =divp+div g curl (o+ g) =curlp+ curlg; ..., | believe they also require

no explanation.
Here, | will therefore define only two more conceptsd agive some of their
properties, which will be useful to us in the electronsigrapplications:

1. Ifp=R; +iR; andp’=R; —iRxthen | will call p andp’” two mutuallyconjugate
bivectors. | will always denote such objects with thens symbolswith and without
accents.

2. If the componentR;, R, of a bivector arg@erpendicularto each other — i.e., i
R, = 0 — then | will callo anorthogonalbivector, and if, in particular, its components are
unit vectors- i.e., R* = R? = 1 —then | will call it #undamentabivector.

From these definitions, one immediately finds, due2)d(3), resp.] that for any pair
of conjugate bivectorsone has:

() po'= R+R,
(5) Vpp'=2iVRR,

and furthermore, for an arbitragythogonalbivectorw= O; +i O, (0,0, = 0):
(6) ww (ordf) =02 -02,

while for any bivector, one has:
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Vpp=iVRR+iVRR =0 (as for ordinary vectors),

anc; finally, for alundamentabivectorg =a +i b (a b= 0, wherea, b areunit vectors a*
=b"=1):
(7) ¢’ =0.

If a bivector is orthogonal or even fundamental ttienbivector that is conjugate to it
obviously possesses that same property.

If one then chooses a third unit vectathat is normal to the plane ¢f and indeed,
such thatv a b=c, soa, b, c define a right-handed system, then one\hdg =-b +1i a,
or:

(8) Vgc=ig,

which one can easily cloak in words.

After these terse remarks of a general nature, legauson to the promised
electromagnetic applications. | will then denote ¢exctric field, which is an ordinary
vector, byE; and the magnetic force, which is also such a vectdg; bset:

(9) E1+i E2:/7,

and calln theelectromagnetic bivectasf the field. On grounds that | will soon clarity,
restrict myself here to the consideratioreaipty space (One can, moreover, also speak
of any isotropic dielectrics with equal dielectric cams and permeability; however, this
would only imply a purely formal generalization.)

If, for the sake of brevity in notation, one sete thritical velocity” = 1, and let$
denote the time then the Maxwell differential equatiosad, in their usual vectorial
form:

OE, _

curlg,, E——curlEl,

% -
(10) ot
divg =0, divg, = 0.

If one now multiples the second of these equatimnsand adds it to the first then
one obtains, from (9):
on .
— =curl E2—i Ey).
ot € -1E)

However, one hak, —i E; =—i (E; +i E), so one obtains the remarkable result:

on .
[ —~L =—icurln
) 3t n
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i.e., in place of the two main equatiofjsof the field, in which mixed electric and
magnetic vectors appear, one obtany/ one equation with a single unknown variable,
namely, the electromagnetic bivectgrand in fact this differential equation, just like any
of the original ones, is dirst order relative to time.

Likewise, we can proceed with the third and fourth of &gosa (10), and thus
summarize the two solenoidal supplementary conditione a single solenoidal
supplementary conditiofor the electromagnetic bivector:

(1) div = 0.

The equations (I), (II) completely replace the four ¢égua (10).
Furthermore, lety’ be theconjugate electromagnetic bivect@o 7); i.e.:

(11) /7':E1—iE2.

One then, in turn, obtains a single bivectorial dififitiad equation in place of the two
main Maxwell equations in a manner that is completatyilar to the one above, and
indeed:

on' _.
I’ — =icurln’
(1 3t n

as well as a single supplementary condition:
(IB) divp’=0.

Naturally, equations (), (Il") say exactly the same thing as (1), (Il). Howewenen

. . . 1
takentogether both pairs are not without interest. (One remarks, mcaredhatE (n+

') = Ey, %(/7 - 17) =E2.) However, in any case sanglebivector (which might bey or
|

n7) suffices for the complete treatment of the phen@menquestion, so in the entire
course of a calculation that relates to it, one dm¢eed to perhaps split the electric and
the magnetic vector. This situation seems to meso @bfine the most suitable formal
expression for the physical state of affairs: Onetcaat any time-varying field with the
electric and magnetic forces as unseparated fromatheh

The next thing to address is the question okthetromagnetic energyf the field. If
one denotes its spatidénsityby €; i.e., if one sets:

(12) e=3(E'+E) )

) Which is what | call theirst two equations (10), while | refer to the last two saenoidal
supplementary conditions.

3 By the choice of the so-called Heaviside “rationaits,” the usual, but bothersome, factor of7t/4
drops out; the same remark is also true for the expressithe energy flux that follows shortly.
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then one can expressn the simplest way by the conjugate electromagneiic/pay’ .
From the model of formula (4) for such bivectors, ondaat, obtains immediately:

(1 e=3n7,

or, in words:The density of the field energy is equal to one-half the scalar prodtiat of
mutually conjugate electromagnetic bivectors.

In order to obtain the electromagnetitergy flux Fwhich is defined (as an ordinary
vector) by the requirement that:

de )
13 —=—-divF,
(13) P

we scalar multiply equation (1) by’, and likewise equation’jlby 77, and add the results;
in this way, it follows that:

0’?9_17+’7%_Z - %’7’7' =i (ncurl n’—n’curl n).

One now gets the known formulas for the ordinary vector
divV AB=Bcurl A-Acurl B,

and this may be extended to bivectors with no furtharmagtons; i.e., one also has:
divVpo=ocurlp—pcurlg,

which one can, moreover, immediately verify from (3)hen applied to our case, this
gives the relation:

0 .

—(nn) =-idivV ,

P up) nr
so, from (1) and (13), except for a purely additive soleal vector:
(V) F=oVi.

or, in words:The energy flux- or “Poynting vector” — is equal to} times the vector

product of the mutually conjugate electromagnetic bivectors.

One can also immediately convince oneself from equdBprihat (1V) is identical
with the usual expression for the energy flux, namkely-VE E; =+V EE;.

I will leave the comparison of (IV) with (lll) and ¢hphrasing of the their closely-
related combination in words to the reader.

If the electromagnetic bivector is given in all of epdort = 0 — say,7 = o — then
the entire spectrum of electromagnetic phenomenaaen @n the basis of the differential
equation (I), at least, inside of a domain of continuilThe details of carrying out the



Silberstein — Basic electromagnetic equations in bovedtform 6

integration process in given special cases are notstenswith the basic theme of this
treatise. | would thus only like to remark here that oae write down the symbolic

solution of (I) with no further assumptions. Namelyhem one denotes a combined
operator by {} and lete denote the base of natural logarithms, one understaaids th

(V) = {& 1PN o = fcosg Courl) —i sin ¢ Curl)} 7o

which coincides precisely with the “symbolic integraisat were obtained from the two
ordinary vectorial equations in a previous treafisdoy a completely circumstantial
method. (The condition (II) does not especially neebde@onsidered, since due to the
fact that divcul =0 (=1, 2, 3, ...), it follows from (V) that diy; = div 70 . Thus, if
only the initial field is prescribed according to (Ilethdiv 7 = O remains true for all
time; moreover, this likewise follows simply from eqoat (1) itself.) Furthermore, I
would not like to place the emphasis on equation (V)nfrmw on, but on equations (1)
to (V).

Pure electromagnetic waves- Waves that would deserve this term can be
characterized by the fact that the electric forceeverywhereperpendicularto the
magnetic one and that one-half of the energy in agion of space is electric, while the
other half is magnetic; i.e., the relatioB$ = EZ andE; E; = 0 exist (for the vacuum).
From the definition that was given in the introdusti@and from equation (7), one can
comprehend this concisely when one says:

For purewaves, one distinguishesfrom afundamentabivector only by a real scalar
factors:

(14) n=so,
such that7” = 0.

From this, it also follows thap(dn / ot) = O, or from (1),77 curl 7= 0.

For the conjugate electromagnetic bivector, one likewas in this case that = s¢’,
whereg’ is conjugate t@. From (8) and (14), one has:

(15) Vnc=in=islp,
while for 77':
(15) Vric=-ing=islyp,

since the two components ¢f (a, — b) define deft-handed system witt

In conclusion, | would only like to treat the speciase ofplanewaves. In this case,
the fundamental bivecta#, which likewise yields the plane wave, is constaninmetand
space, and only the scalar factoraries. One thus hagy / dt = ¢ [Ds/ ot, so from (1),
one has:

%—’Z =¢ % =—1curl (s ¢).

) L. Silberstein, Ann. d. Phy8, pp. 373t seq. 1901.
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If one letsz denote the scalar length measured in the directioneafvve normat then,
sinced / dx = 0,0 / 0x = 0, the Hamiltonian operatar equalsc(d / d2); now, since it is
completely general that curl¥[, one has:

—curls¢g)=-Vc oSP) _ = — ¢c —V/]C—I 9
ot 0z’
[from (15)], so:
(16) 9 --91
ot 0z

from which it follows that the most general integgal i
(17) n=1z-v,
wheref means an arbitrary function of the argumentt; the wave, or as one can also
say, the electromagnetic bivectpthus propagates in tleedirection with velocity 1; i.e.,
with the critical velocity. As one can easily corsgroneself by a cursory comparison of
(15) with (15) and () with (1), the conjugatebivector 7 would propagate in thexact
oppositedirection, as is known to be the case.

Warsaw, in December 1906.

(Received on 3 January 1907)




