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The object of this note is to establish a very genaethod for the problem of the
deformation of an elastic body in which one finds the tamdior subtraction of thin
layers of material along a datum surface, and theibgquih that is established without
the intervention of any external force.

Deformations of this type are being studied largely, artth Wiilliant success, by
Volterra, who called thendistortions We shall also employ this terminology, while
quickly pointing out, however, that in all of what fodls it will assume a much broader
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significance than it had in the work of Volterra. He&ehow we pose the problem of
distortions:

Let Sbe the space occupied by an elastic body, arsletthe surface that bounds it.
Now, let o be a surface that we first assume, for simpli¢cibybe completely internal to
the body; imagine that we have made a cut along itreMeer, let the two faces of the
cut be moved arbitrarily with respect to each otheruchsa way as to leave a small
spatial gap, which is then assumed to be filled in with material, or else in such a way
as to penetrate the contiguous part of the body, in wtask, we assume that we have
suppressed the part that overlaps in such a way as toyddutble material of the body.
In both of the cases, we assume that the edges ofitl@ve been soldered together or to
the additional material.

Intuition says that a special state of tension andibgum must be determined in the
body.

We proceed to study the question analytically while ttaknary theory of elasticity
remains valid.

The conditions that must be satisfied along theccate those of saying whether the
corresponding points on the two faces of the cut ardadisp in different ways to leave
an opening in which the additional material enters, or dat@rgithe thin layer that must
be suppressed. At an arbitrary pointaflet us, v, W, denote arbitrary functions with
the order of magnitude of elastic displacementg, w. Let v, V be the normals to the
two faces of, whileu,, v,, w, are the components of the elastic displacememdons
of the face with normal and, analogously,, vy, w, are the corresponding values on
the other face. We must have:

(1) uy— Uy =Ug, Vy—Vy = Vg, Wy — Wy =W .

Moreover, there must be no external forces, eitbérme or surface. For this reason, if
we denote the coefficients of tension by the usuatiot, wheren is the interior normal
to s, then we must have on this surface:

(2) Xn=0, Yn=0, Z,=0,
and on the surface:

(1) Xy + Xy =0, Y, +Yy, =0, Z,+Z,=0.

In order for equilibrium in the tensions aloogto exist it is necessary that the two
vectors that represent the elastic tension on esehdfo must be in equilibrium.

More precisely, this condition must be satisfied ba two displacedfaces ofo.
However, as one always does in the theory of elastiahe supposes that the
displacement is very small, so that the same ciomdi$ satisfied o

Now, it is easy to show that the stated conditionsudficient to specify the
deformation of the body from the analytical point awi

Let E be the function that represents the elastic enargy is, as one knows, a
positive quadratic function of six coefficients of def@tion:
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in addition, we denote:
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XX—_, = Ty saay - .
0X, Y ayy Y axy

In this condition, assuming that the indefinite equatibaquilibrium:

X,  0X, oX
X+ +—2=0, ...
ox o0y 0z

is satisfied, one immediately finds that:

[2EdS=-[ (Xu+Yy+Zw) &-[ (X p+Yy+ Z W o
—L(Xnu+an+ Z Wy d,

and thus if one assumes that, (1) and (2) are satisfied then one has:
A [[2Eds=-[ (X,u,+Y v+ Z W) &

This relation proves what we asserted, sincenitfact, results that the resultant
deformation of the difference of two deformationdich both satisfy (1), (2), annuls
the expression for the elastic energy. It theeef@presents a rigid displacement of the
body. The deformation that satisfies the indediretquations of equilibrium and the
surface conditions {1y), (2) is therefore uniquely determined, with theeption of a
rigid motion, from which one may always abstraet tjuestion of elastic equilibrium.

These considerations remain valid regardless @then the structure of the body is
isotropic or anistropic from the elastic viewpoint.

We thus propose to establish what sort of distogithat arbitrary deformations
produce in any elastic body whatsoever with a lagfediscontinuity, in the previously
indicated sense, when no external forces are ptasegstablish equilibrium.

This consideration is extended immediately todase in whicho meets the surface
S.
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The relations (1,) must be valid along all of the surfaceand comprise all of the
mechanical conditions that relate to the distortiihed must be added to the indefinite
equations of equilibrium. ()l can therefore be differentiated along the tangeettan
to sand one can thus deduce new necessary equality conditions.

Due to the invariance of the preceding relations witpeaeisto position, as well as
coordinates, in order to study the significance @fgjlat a generic point of, one can
likewise arrange that it be oriented in such a way tl@fpositive direction of the axis
coincides with the direction of the normalat each point. Two arbitrarily-chosen
orthogonal directions in a tangent planegtavhich is always assumed to exist, also give
the directions of th& andy axis.

One can thus differentiate jwith respect toc andy. For brevity, we leD[f] denote
the jump that a functiohexperiences when it crossgsn the direction ofv. If f, andf,
are the values dfon the two sides aof; respectively, then one can say that:

D[f] = f, -, .

When (1) is then differentiated with respectyoone finds:

ou ov ou. oV
3 D[x] =—<, D[y, =—2, D[x] =—Z2+—<.
(3) [Xd ™ (W] oy [Xy] oy o

These equations determine the discontinuity that isrexmed across the surface
by three of the six coefficients of deformation; ite@sy to see that {)ldetermines the
discontinuities in the remaining three. In fact, @am write, taking into account the
present orientation of the axes:

D[X]=0, D[Y]=0, D[Z]=0,

and sincex,, Y;, Z; are independent linear functions of the six coeffigertdeformation,
the preceding equation, taking into account (8), can benfmuthe form:

ou ov, ow, 9V, :
Dlas z,+ sV, + 85 2 ] = — | &, —Z + a, —2 + Z+—211,i=3,4,5,
[asi Z + &4 Y, + @i 2] {ai. x5y aﬁ[ay axﬂ

where theay, are constants that represent the coefficients efettpression for energy,
and since the same equations may also be written foitme

ou oV, ou, 9V,
4 i D[z] + & D[y] + @i D[z] = -| &, — =+ 3, -~ ——t=Z |
(4) asi D[z] + a4 D[y, + & D[z] {ai. x %5y +ae[ay + axﬂ

solving them with respect 1©[z], D[y,], D[z] gives the desired discontinuity.
In the isotropic case these equations become:
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D[X{] = uD[x] =0, D[Y]=uDly] =0,
D[Z] = D[A(x: +yy) + (A + 21) 2] = 0,
whereA, i are the isotropy constants.

We then have:
D[x7] =0, D[y, =0,

A (ou, oV,
D[z] = - 742 |,
[ )l+2,u( ox ayj

We may then concludihe stated condition with regard to the surfagethat (14 1)
completely determine the discontinuity that is experienced uponragabss surface by
all of the deformations:

Xx Yy Z Yz % Xy .

That this serves to establish the distortions, as Wemel) did, that the six
deformation coefficients remain continuous upon crossheg c¢ut, amounts to the
definition of new conditions for a problem that is already physically and acelly
determinedthat is, one must treat a special problem, which wedisttuss from another
point of view.

However, it is useful to observe that the continoi all the deformation coefficients,
and therefore those of the tension, leads one msider a distribution of tension that
contradicts all of the usual laws of equilibrium i theighborhood of an arbitrary point
that belongs to the cut, a distribution of tension thanalogous to the one around any
ordinary point of the body, that is, as Volterra sutgghsin such a way that it does not
exist on the edge of the cut, and by the addition or stulinaof matter in the
neighborhood of a point of the cut, even in the mosegd case that one has. In fact,
this is completely respected by the surface elemengemanoo, and for everything that
crosses that surface, which one must regard as sepentatédo elements, one of which
is situated on one side ofand the other of which is situated on the other sidéy bb
which are the same and subject to two equal and oppas#ierte (due to the continuity
along g), as one usually has for all of the surface eleménatisare internal to an elastic
body. These two portions of the element are tbeeeéach separately in equilibrium,
although they are generally subject to different tensions

From the preceding, one may deduce the conditionslifaf éhe six deformation
coefficients (and therefore tension) to be continuousnugrossing the cut, that is, to
verify the distribution that was supposed by Weingarten. sd leonditions, which are
founded upon (3), (4), are obviously the following ones:

(5) N _g, Lo
o0X

ou, . 0v,
+ 9V

01
oy dy Ox

() Sulle superficie di discontinuita nella teoria della elasticita deipi solidi. Rend. Accad. dei
Lincei, ¥ sem., 1901.
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Weingarten has given a geometrical interpretation of suwiditions, which he
himself found in a different form.

Meanwhile, we note that in these relations xthg axes themselves are intended to
belong to a triad whose axes vary from point to poioh@o; in such a way that the
axis will always coincide with the normal to the suda

The significance of (5) is then the fact that upoassing the surfacer in an
infinitesimal neighborhood of it one is subjected at poynt to a displacement of the
componentsl, , Vy, with neither linear elongation nor variation of #egle between two
orthogonal directions; moreover, the surface elemantins rigid. This led Weingarten
to the condition that must apply to the two surfaces.

It is now convenient to add an observation of not&woimportance.

We may, in fact, satisfy (5), besides in the aforemaat way, by supposing that the
Us, Vg are null at all points of the surface and attributifgteary values to thev, . The
discontinuity is therefore conserved for only themakcomponent.

There thus exists a distortion that satisfies theingéten conditions (i.e., the
condition that all of the coefficients of deformatimust be continuous upon crossivg
and which experiences a displacement normal to the autbdth copies of the
corresponding points on each edge of it.

This distortion completely eluded Weingarten. | haveaaly had occasion to point it
out in a special case, the one in whizts planar 1).

Naturally, this distortion must subsist under the piexwe considerations, and the
situation that we assumed for the two points defineee rgeneral type of distortion,
which, in the cited Communicazione al Congresso di Rowm proposed to call
Weingarten

This result resolves, in a completely general whag,question of the conditions for a
distortion to be Weingarten. The result that we iobth in the case of a planar cut
extends in a direct and simple way to the case af m@n arbitrary surfacé)(

We now note the correspondence that exists betwegmdb&ms of elastostatics and
some problems in the theory of the potential, a corredgrace that defined the basis for
the brilliant research of Betti in the theory odisticity.

In the theory of distortions this correspondence wésrpreted by Volterra as an
analogy between hydrodynamics and elastostatics. Nakk see what its significance
would be in the preceding results from this point of view.

We pose the problem of finding a harmonic functbim a space, which has a null
interior normal derivative on the surfaseand is regular in all o§ along with its first
and second derivatives, except on a surfateat is internal t&§ and when crossing it,

(*) Sulle deformazioni elastiche non regolatti del IV Congresso dei Matermatici, Roma, 1908.

() We must note that in the same epoch in which Weieggstiblished his note, prof. Gebbia, in a
memoir to the Annali di Matematicde deformazioni tipiche dei corpi solidi elasti&er. 1ll, v. VI,
1902), considered the elastic deformation under the additisnbtraction of matter, with assumptions that
partially coincide with the ones that we started with.
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must have assigned discontinuities, while the norrealdtive is continually conserved.
That is, one must have:

(62) ANV=0 in all ofS
(6r) LA 0 ons,

on
(6c) V,—-Vy =g, 6_V+6_V’:O ong,

ov ov

whereg is an arbitrary given function that is assumed todggilar at all of the points of
o.

It is easy to show tha¥, under the preceding conditions, is uniquely determined,
except for an additive constant.

In fact, from (@) one has:

[.AVds=- jv dsj\g dyj\,/
and therefore, from (&):
[avds= —j(v V)—da——jggg—\ljda.

This relation is analogous t@\), and it immediately says that two functions thaiséat
(64, b, ¢) cannot differ, except by a constant. The problemishabsed in the theory of the
potential is analogous to the problem of distortions, @bawve posed it in elastostatics.

Observe that whereas the second qj (Etermines the behavior of the normal
derivative of V while crossingg, the first one, on the contrary, assigns definite
discontinuities in the tangential derivatives. Indeedurassy that thex, y axes are
tangent planes to a point of one finds that:

oV, oV, _ag, Vv, oV, _dg,
o0x o0x ox 9oy o9y oy

and upon differentiating once more with respect éamdy, one obtains:

GZVV _62\/,/. _azgg oV, _62\/,,. _9%g,
2 o2 X Ay Ay’ oy
0%V, _ 0%V, _9°g,
oxdy 0xdy oxdy

It results from this that the first equation;)(@etermines the discontinuity in three of the
second derivatives. The second qj,(@&hich may be written:
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N, oV,
0z 0z’

when differentiated with respect foandy, gives the discontinuities (which are null, in
this case) in the other two:

o, _oV, 0N, _oV,

__ v v

ox9z 0x9z’ ayaz dyoz’

and finally the discontinuity in its sixth derivativedstermined by the Laplace equation:

azvv _62\/|/ :_azga _azga
02*2 07 x> oy’

We may therefore conclude that the two relatios détermine the discontinuities in all
of the first and second derivatives of the funcbn

That the functior’’/ must actually exist results immediately from theestation that
from the conditions ©c) one has:

j d+J' da+j_ob 0.

How one may determine it results from the followigsiderations: Set:

1 a:
=— —do
477Lgav

wherer denotes the distance from a generic poinbpfnd, lettingU denote a new
function to be determined instead\gfset:

V=U+W.

Let us look for the conditions thit must satisfy. From the well-known property of
double layer potentials, if one has:

Wv - Wl/ = 9
on othen one must have:
(7a) UV - U./ =0.

U will therefore be continuous upon crossiggand must likewise be continuous in
its first and second derivatives. Indeed, fromgsbeond of (§ and the property of the
normal derivative o¥V, one must have:
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ou, du

vV 4+ V' o=

ov oV

(70)

Moreover, as the preceding procedure indicates, thisomglalong with (%), results
precisely in the continuity of all of the first andcead derivatives. In other words, since
the functionW and its first and second derivatives have the samendisadies asv on
o, the functionJ and its first and second derivatives must be continuous.

Therefore,U must be harmonic i, as well as finite and continuous, along with its
first and second derivatives; in addition, on the serfat must satisfy the condition:

oJ __ow
on on’
while, on the other hand, one has:

J'a_UdS:_ a_WdS_J' (6_W+6_Vdeg :J'Al\/v dS= 0.
s on s on o\ v av s

The problem thus reduces to the determination of a harrhamstion that is regular
in a spaces when one has assigned the values of the normal dedsain the surface
that defines its contour. Moreover, we note that sucdnetion always exists.

However, we observe that some points of the lirse tbrms the contour of may
present an infinity in the derivatives of the functidéhand therefore those ™ as well,
but such infinities tend to disappear if one supposes hieafuinctiong is null on the
contour ofg; along with all of its tangential derivatives.

An observation of this sort regarding the elastic pmble found in my cited
Communicazione al Congresso dei Matematici.

The problem of hydrodynamics that corresponds to the anaybblem that we
considered is the following one:

In a space S with rigid walls there exists a fiesarfrom any surface element of this
it an equal quantity of an incompressible fluigemitted from one side of it and absorbed
by the other in an unit of time. Determine theistary, irrotational motion of the fluid
that is produced.

It is clear that a stationary motion of this typastexist for any spac®that is simply
linearly connected. On the contrary, as is well knowengmission or absorption of fluid
can occur in that case.

Strictly speaking, the stated problem for the velopityentialV is not determined
directly from the functiom, but the flowoV / dv through the elements af although one
must then look for the relations that allow one tesplaomg to oV /ov.

Some have then said that the case of congtanust then be excluded, since one
must then effectively compare the infinite values & finst derivative ofW along the
contour line ofa. In this case, the problem of hydrodynamics becomes dha
determining the motion of the fluid when a vortex lewncides with the contour of the
surfacea. (Cf., Lamb,Hydrodynamicsart. 148).

The preceding process that reduced the determinationeofutctionV to the so-
called second Dirichlet problem suggests a procedure for solwngn analogous path,
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the problem of the distortion of an elastic body. tSacconcept was already applied
substantially by Volterra in the course of his work.

In order to extend it to our case, we must find themhedtion that corresponds in
elastostatics to the double layer potenfial This question will occupy us in a later note.
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The conditions that were established in the precedirig @ for the surface of
discontinuityowere the following ones:

(1) D[u] = us D[V] =V, D[w] = w,
(2) D[X,] =0 D[Y,]=0 D[z, = 0.

They are sufficient, as we have seen, to deternmhi@aiscontinuities when crossing
the aforementioned surface in the six coefficientdefbrmationsx, , yy , z, Y-, z, Xy .
Now, one may see, moreover, that they likewise deter the discontinuities in all of the
nine first derivatives of the three functiomss, w. Furthermore, if one takes into account
the equations of equilibrium — i.e., if one supposesuhatw satisfy these equations in
all of the body — then it likewise results that oras lthe discontinuities in all of the
second derivatives of this functions.

This result is of noteworthy interest. Indeed, one desltleeconsequence that if two
deformations are regular in all of the body, except wdressingo, and both satisfy the
conditions (1), (2) on that surface then the deformati@at represents their geometric
difference will be completely regular in all of thedy. Indeed, for this deformation, the

() These Rendiconti*sem., 1914, pp. 463.
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discontinuities in the three functions that represkatcomponents of the displacement,
as well as those of their first and second derivatineust be null. No other singularities
may exist.

From this, it follows that if one finds an arbitraripte of the regular functiond, V,
W that satisfies the equations of equilibrium in allled body, except when crossing the
surfaceg, on which it satisfies (1), (2), then the problem of deiteing the distortions
may be reduced to that of determining the deformationebtdy under the action of
given surface forces. Indeed, let:

u=u+U v=VvV +V w=w +W,

in which the new functions’, v, W thus determined must have no singularities when
crossing the surface. On the remaining surface of the body the total tenaiust be
null and must satisfy the condition of producing tensikias are equal and opposite to
the ones produced by the deformatithd/, W.

Now, we shall show how it is always possible to abgich a triple of functiond,

V, W. The problem of the distortions will then be thdtdiscovering what sort of
deformations result from given surface forces. Thissttutes a method for the
analytical resolution of the problem, but its majoenast might perhaps be seen from the
viewpoint of the existence of a solution to the probldémistortions.

Indeed, from the research of Lauricella, Cosserat,korn (), the existence of the
solution to the problem of deformations under given surfaceses may be regarded as
having been proved, if only in a general way. The problemsbdrtions can reduce to
this other problem, and therefore it might admit a sotuti The question can be
considered solved in this way.

We now carry out the proof of the property that weinatly stated.

The formulas that give the discontinuities in tleféicients of deformation, with the
canonical orientation of the axes, are:

_ ou, _ % _ du, %
(3) D[x = 3 Dlyy] = dy D[xy] = 3 + Ix
(4) Dlx] = a Dly] =p Dlz] = K

wherea, S, yare linear functions that one finds in the rightdhaides of the first three
equations. In the isotropic case:

A ou, 0V
a=0 =0 =- T +—< |,
o 4 )l+2,u( ()4 6yj

Now, to this condition, which is satisfied an one may add that following one,
which is obtained by differentiating (1) tangentially:

() See, in particular, A. KorrSolution générale du probléme d'équilibre dans la théorie de I'élasticit
dans the cas ou les efforts sont donnés a la surfAomales de la Facultfes Sciences de I'Université de
Toulouse, ¥ ser., t. X, 1908.
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D[a_vv}:awg D a_\N :aW”
0x 0x oy oy

D|:@:| = % D[a_v} = %

oy oy 0x| 0Xx

The first two of equations (3), the third of (4), and dteer four ultimately determine the
discontinuities in seven of the derivatives of thectionsu, v, w; i.e., all of them, except
for ou/ 0z, dv/ 0z However, from the first of equations (4), takingiaiccount (5), one
finds that:

(6) D[a—u}: - D[@}zﬁ— o,
0z 0x 0z oy

(5)

The question of how one obtains the discontinuitfabefirst derivatives is therefore
resolved.

For the second derivatives, one may immediatelyrgbgat if one supposes that the
discontinuities in the first derivatives of one oétfunctions— e.g.,u — are known, as
they are, in fact, then the discontinuities in filke second derivatives that contain one or
no differentiations with respect ta may be obtained immediately by tangential
differentiation. What remains faris only the desired discontinuity #u / 7.

One may do likewise with the derivatives of the otkey tunctionsv, w. Everything
then comes down to the search for the discontimitié?u / 07, 3% / 07, 9°w / 0Z.

Now, the three equations of equilibrium are linear veitimstant coefficients in the
second derivatives af, v, w. This is why the knowledge of the discontinuities lino&
the remaining second derivatives may lead to the disuaties in the three second
derivatives with respect o

In the isotropic case, the formulas that determine discontinuity are the following

ones:
2 2 2 2 2 2
,uDa—sz =-D| A 6L21+6v+6w +,uﬂj+a u
0z x> 0xdy 0x0z 0X 0V

2Au i[aug+6vg 62u0+62q,j

A+2uox\ ox oy “Haw T

-
up| V| = 2 i[6u0+6v

o |_ Z 427
oz |~ A+zupoy\ox oy “lax o

[o%v] u v 9w ?w 92w
UD|—| =-D| 1 + + + U + ,
0X0y 0ydz 03Xz

in which:
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o°w d°u  0°u 0°w 9°w
A+u)D D| ——+——|-uD + ,
A+4) { } {axaz ayaz} H {ai aﬁ}
and from (6), taking isotropy into account= 0 andg = 0:

9°w 0w, = d°w,
e[S aenf2-25)

The deformationdJ, V, W that we have discussed at the beginning of the preceding
section, which are subject only to the conditions (),0f the surface;, and which are
regular in the remaining part of the body, are not unigdetgrmined. However, for our
purposes, it is enough to find any one of the infinitude édrdeations that satisfy these
conditions.

Imagine an indefinitely extended elastic body, and in siurdace of discontinuity:.
We may look for the deformation that is produced in suttody by the discontinuity
that we have ow, adding the condition that the deformation must vanishfatity; i.e.,
from the physical point of view, the deformation produced tbg infiltration or
suppression of a thin layer of matter along the suréace

It is easy to see that such a deformation is uniquelgra@ied, and is given
immediately, in the isotropic case to which we areitéth at the moment, from the
general formulas for the integral representation af@ tomponents of the elastic
displacement. Indeed, if we suppose that the volumeanface forces in these formulas
are null then the integrals relating to those fordisappear, and the remaining integrals
(in case they are extended over the surtgand for the components of the displacement
that accompany it, one takes, vy, W,, the components of the discontinuity) gives
precisely the deformation that satisfies the requestewlittons. These integrals
correspond, in the formulas of elastostatics, to dbable layer potential function of
Green’s formula, and one may effectively prove thaatisfies, other than the general
conditions, the conditions (1), (2), as well, by a pssdahat that we indicated on another
occasion {). Such a process is very simple, but it is based upmassage to the limit
that may give rise to objections, and not exhibit the pt@seof the singular parts that
accompany such total integrals.

Recall the proof of these results by a direct procechae is independent of any
passage to the limit.

Consider the integrals:

A= J.u—da B= J.v—da C= Iw—da

(*) Sul problema statico di MaxweMemoirs of the R. Accademia dei Lincei, vol. VII, 1908.
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wherer is the distance from a generic poirt Y, 2) of space to the center of the surface
elementdo. This integral may be considered as a biharmonic doubér |agtential,
which differs from the corresponding Newtonian potenhbiglthe substitution of the
functionr with 1. Now, let:

0A 0B aC
Q=—+—+—
ox o0y 0z
and set:
0Q
(7) 4ruy, Vi, W) = 0 ————+ Ay(A, B, C).
(%Y, 2
It is easy to verify that for:
A+u
A+2u

the preceding expressions satisfy the equatioesjafibrium:

96 )
(A "',U)m‘*‘ AxXx, Y, 2) =0,

where:
du ov oOw
= 4+ 24 2

S ox dy az

It is regular in all of space, except on the swefacand at infinity it goes to zero like the
Newtonian double layer potential.

In order to study the discontinuities in the esgsien (7) and those of the
corresponding components of the deformation ansidaron the surface, | will refer to
some results that will be published soon in the d¢tla R. Accademia delle Scienze di
Torino. From them, it results that the secondv@¢nes of the biharmonic double layer
potential that are continuous contain one or navdgves in the direction of the normal
to the active layer. Supposing that the axes Haeanonical orientations, one then has
for the second derivatives with respect to the radrm

2 2 2
Daf‘:Srug, Da?:Snvg, DaS:SMNa.
0z 0z 0z

From this, it follows immediately that we have faras for the discontinuities i, vi,
Wi
(8) Dlw] = 2u, D[vi] = 2v, Dwi] = 2(a + 1w,

In order to obtain the discontinuities in the caments of the deformations, it is
convenient to recall the formulas that give thecaiinuities in the third derivatives of
the biharmonic double layer potential. By meansheke formulas, and supposing that
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the x and z are tangent to the two lines of curvature on the sarta@at the point
considered, and denoting the respective radii of curvéiylRz andR;, one finds that:

D[x] = —2a e + 29Y%
R 0Xx

Dly,] = - 202 + 20%
R, 0y

D[Zz] =2a %-}-% +2a i+_1 W,
ox  dy R R

V
D :—4 e
[yl =4a R

(8)

Dlz] =

_, (9, dv,
DIx,] —Za( oy + 3 j

X

From these formulas, it results that:
Dlx. +yy+2] = D[4 = 2(@+1) Lo+ e |,
ox oy

The discontinuities relative to the coefficienfsension are obtained quite easily by
means of the preceding formulas, if one recalls tha

=A0 + 2uxy, Zy = LYy, , etc.
One then finds:

Y _ o 0W
D[X«] = 2(a+1))l( j ( Ix 63}
U, , 0V, 29V _ 5 OV
D[Yy] = 2(a+1))l( + j [ oy 6 j
D[Z] =[2(a +1)A +4,ua][ ; +%—yj+4,ua(%+%ng.

The three remaining formulas then result by mlylimg the last three of (8) by.
The deformation that one may construct by sohtimg question posed results from
the composition of the deformation that was considen (7) with another one that we

shall study. Set:
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2w 2% @

6a
/= J( v av ov

Y= j( ga—u @jda

v v

in which a, b, c are the coordinates of the surface elentkent These four functions are
Newtonian potentials. From this, it follows that tresult satisfies the equations of
equilibrium if one takes:

(7a) 476wy, Uy, Ug) = (2a + 1) gradg + rot(ys, b, (k).

Supposing, as usual, that the axes have the canonicatabioes, the discontinuities in
these expressions are determined immediately from thaufas for the discontinuities in

the first derivatives of the potential function on sheface.
In these formulas, one has:

D%}: D%:O D%}——vaa
L OX | dy | 0z
o0 30|y plow dw]_ . o _dw
| o0y 0z | 0z 0OX | OX 0y
By means of these formulas, one finds that:
Dluz] = - Uo, D[vo] = = Vg, Dlw] = - (2a + 1)w, .

If one compares these formulas with (8) then one idmtely finds that the
deformation, which is obtained from the component$eftivo deformations considered,
satisfies the following conditions on the surface:

(1) Dlvi + V2] =V, Diwa + wy]
i.e., precisely the conditions (1) that must be satisfor the desired deformation.

The calculation of the discontinuities in the compuaef the deformation requires a
knowledge of the discontinuities in the second derivativethe potential functions on
the surface. These discontinuities are known (§sencaré, Théorie du potential
newtonien chap. VI), and the formulas that one obtains in oue,cabvays with the
canonical orientation of the axes, are the followinge for the components of the
deformation relative top, v, Wo:

Dlui + W] = Uy =Wg,
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Dx] = 20 9%
R1

0Xx

0
DIy = 20’ E WU

D[z] = —2a[—+—jw + o, +—j

0 X
DIyl = da- -2 +1)V%
R, ay
Dzl = 4o -20m+1M
R 0x
ou, av
D[x,] = -
Dol ( 0Xx ayj
from which it follows that:
D[4 = 0.

From these formulas, as well as (8), one may dedhe discontinuities in the
components of the deformation relative to the defdion that results from the
compositionu; + Uz, 1 + Vo, W + W, . In this case, one finds that:

D[x] = Dly,] =
Dly] =3 D[z] =
Dlz] = (2‘”1)(611 %} DIy = aa‘;” o2,
and thus:
D[4 = (2a+1)(6“X aa\;j

From this formula it results immediately that tremponents of the tension relative to a
surface element that belongs to the surfaieee:

D[X]=0 D[Y]=0
(1

D[Z] = [2A(a+1)+2¢z(2a+1)][6“x %j:o,

when one recalls the value of the constant
It thus remains to prove that the components ef tdnsion relative to a surface
element ofo are continuous upon crossing that surface, ogther words, that these
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elements are not subject to any tension as a resuheofleformation of the body.
However, this is precisely the significance of condsid2), which are then satisfied by
the deformatiom; + up, vi + Vo, Wi +Ws .

One may observe that the deformations (7)) ¢0 to zero at infinity as ordinary
potential functions do, and have no other singularitiesejgt for the ones that were
defined on the surface

We may then conclude that the deformation that rept®$k@ composition of these
two deformations and satisfies the conditions (I),¢h o represents the deformation of
an indefinite elastic medium that is produced by the iafithn or suppression of a thin
layer of material that defines the discontinuitigsv,, W,

By means of this deformation, as we have seen sireeukset, any problem of
distortions relative to a surface of discontinuitynay be converted into a problem of
deformation under given surface forces, save for thedimn relative to the border of
the cut that it be internal to the body, as we disedsn Note I.

As far as the other three components of tensiorh@fdeformation considered are
concerned, from the preceding formulas, one immegiaisduces that:

D[XX] = 2/](a+]_) %-{-% +2'Ua_ul7
ox oy 0X

ou ov ov
D[Z)] = a+l T+ —= |+ 2u—
[Z,] = 2A( )( ™ ayj 2.uay

ou, . ov,
+_9

dy ox

DIXy] =

Thus, there are discontinuities in general, but comyimasults when the components
of the discontinuities satisfy the conditions:

aug—o %: aug +%:O

ox ay dy  Ox

This conclusion is perfectly consistent with the gelneraperties that we proved in
the preceding Note, when one has established condfoore distortion to satisfy the
Weingarten definition; viz., to have continuity on the aoef of discontinuity in all six
components of the tension.

It therefore seems that by means of the precedingdswations the principles of the
theory of elastic distortions take on a general anditie® aspect, and that the research
of Volterra, who has fortunately created that theewi result in a closer relationship
with the general theory of elasticity.

1.
It still remains for us to respond to an objection thast be resolved before any use

of it can be made.
Given a relation of the form:
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fv_fl/:g

that defines the discontinuity in a functiéralong a surfaces;, we made use of the
relations that are deduced by tangential derivationhah $urface. Now, due to the
regularity of the functiond,, f,, g one sees that without a doubt, along with the
preceding relation, everything that is deduced by tangedéabation must subsist,
assuming that this is possible. However, one maykewise be sure that these relations
represent the discontinuity of the corresponding deves in the functiorf, since one
might then have that the derivatives that are caledlan the surfacerdo not coincide
with the limits of the derivatives calculated outsiec when they come indefinitely
close that surface. Nevertheless, in most casesdhmisidence is actually verified)(

It will not be easy to directly discuss the validdf/the following procedure outside
of our case, but one may see that the results at wlacérrived may also be established
without that process of derivation. One does not consi@eelastic problem, but limits
oneself to the corresponding problem of potential théway we considered at the end of
Note I. The difficulty and the method of overcoming & gubstantially identical in the
two cases; formally, the question is presented mucke monply in the case of the
potential.

The problem to consider will be that of determiningg@ufar harmonic functioV in
a spacesthat is bounded by a surfasand has an internal cat with the conditions that
one must have:

1. On the surfacg a_v: 0;

on
2. On the surfacer: V,-Vy =g, g_v+6_V: 0,

v ov

whereg will be a given function of the points of
For the validity of the relations:

Y oV
[[avds=-| v, -V,) o ds= - jsga—v do

from which one derives the uniqueness of the solutidthég@roblem that was posed, it is
enough that the second derivative/adn S exists and is integrable.

(*) For example, the equations that one deduces froml#iins that determine the discontinuities of a
double layer potential:
W, — W, = 47z, w= [ g2 g5,
1Y
when tangentially differentiated:
aV\/v_aV\c:4/Ja_g, aVVV_aV\C:4ﬂa_g,
ox  OXx 0X oy dy oy

actually given the discontinuities in the tangential denes®\W / 0x, 0W / dy of the double layer potential
(Cf., PoincaréThéorie du potential newtonign
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In order to determine thé we agree to set:

1 o@/r
g( )

V=U+W where W= —
4770 v

do

assuming thag satisfies the conditions that were defined in Notenlprder that the
derivative ofW present no infinity on the contour of
The conditions thé& must satisfy as a consequence of the relations/thadrify on

o.
Wy — W, = 478, 6W aw =0,
av av
are then:
U,—U, =0 auV+au =0,
v dv
while the condition ors:
Vo,
on
gives:
v __ow
on on

In addition,U must be harmonic. From this condition it is easgid¢duce thaty must
be regular, along with its derivatives, when one cro#se surface.

Indeed, consider the spas¢o be bounded, along with the surfacéy the two edges
of the cutg, and if one represents by Green’s formula then one finds:

U—— (Ua(llr) 16Uj —J(U U)a(llr)da _J(&J &de_a;
477 on r on ov av') r

to be precise, the condition tHatmust satisfy o is:

U= J(U 6(1/r) 16U jds
4777 on r on

Now, this integral has no relationship with therfsce o so U must have no
singularity on that surface.

We may then conclude thdthas no singularity in the spaSand for that reason the
determination of it is reduced to that of a regutaarmonic function when one is given
the values of the normal derivative on the surfhe¢ bounds the field.

As is well known, this function exists in geneiahd therefore one may conclude that
V exists, as well. In addition, since the functigns uniquely determined from the
conditions posed, this leads to the consequent®tihidne surfacerthe discontinuities in
all of its derivatives of arbitrary order are coetgly determined, as well.
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The existence of a formula in elastostatics thanslogous to that of Green permits
us to immediately transport the preceding consideratmtiset problems of the theory of
distortions that was studied previously.



