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Foundations and goals of analytical kinematics.

By E. Study.
Translated by D. H. Delphenich

Kind Sirs! As | was cordially invited by our chairmangdpeak to you on a freely-
chosen topic, after some brief vacillation, | finatlgcided on kinematics. First, | have
myself already been involved with this subject for quitens time, but then it also seems
to me to be especially tempting to speak to a larger circkediscipline that, as | believe,
is still in the early stages of development, and mighstbe of some natural interest to
the younger academics. | thought of them, my youngésamples, first and foremost in
the preparation of this talk. Admittedly, | must alswect their attention to the
difficulties that are rooted in such peculiarities of gubject, and even more so in the
considerable multi-faceted nature that is neverthelesady present in it. However, |
think |1 can count upon their indulgence. In the contéd single talk, they will certainly
not expect more than a sketch whose siagéand legitimate, moreover purpose is not
so much that of exhibiting a wealth of details, as muchllasving the broad lines to
emerge through a blurring of this bewildering abundance, textent that it might be
knowable at the present time and for the one who driaevetp {).

The soma as a spatial element.

| think of kinematics as branch of geometry that deals, above all, with the positions
that a rigid body can assume in its space. | wglfassume that this spacdisclidian

We can think of the mathematical concept of a rigidybad arising from the
presentation of an empirically-given body by a proadsabstraction, perhaps in the way
that the concept of point might first come about.falct, we disturb its boundary and let
it fill up all of space; naturally, the impenetrabilityf the empirical body is also
abandoned in this way. There is an essential distmbedween what | would like to call
theoretical kinematicand the study of machines, which has to do with bounded and
mutually-impenetrable bodies. Such an abstraction i®ssecy, since the infinite
manifold of boundaries stands in the way of presentingerge laws, and also the
deduction of advanced problems that are obtained in this wityn the circle of
consideration.

() The talk that was actually given (in the span ohanr) was naturally even more abbreviated from
what is communicated here.
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Nevertheless, the filling of space by the individual poss of the rigid body must
naturally remain mathematically tangible. This will &ehieved by an axis cross that
belongs to the body, and is therefore rigidly atéalcto all of its points; i.e., a moving
coordinate trihedron. The position of the trihedron abtigrizes the position of the body
completely. | consider this position to be thH#asic figure of kinematics, asits most
important element, and compare it to the figure of the point in ordinary geometityave
allowed myself a special word for it — viz.,

soma— and | would like to also used it today 2 3
(*). The soma itself is then something simple
and indivisible — i.e., an atom, like the point. \‘ ‘\
However, points, curves, surfaces, etc., are
rigidly attached to it. If the soma moves then 3 5
these figures will move along with it. — One 1

1

would arrive at the consideration of only one

type of soma, but it would make it more

convenient to express some facts if two neighboring ever® presented that would
correspond to the two kinds of coordinate axis cross. Fhewyld be distinguished by
the worddeft andright:

The objects in theoretical kinematics are then, above all, fighegsonsist of somas
— left-handed, right-handed, or also somas of both kinds — and which can d#iare ei
discrete sets or continua, namely, analytic continua of somas.

Although the program that this implies permits extensidrean already encompass
seemingly everything that the practitioners of kinensattere concerned with up to now.
Frameworks and gears, rolling curves and ruled surfacegrihd against each other, the
theory of the freedom of a rigid body in the infiniteal and its realization by
mechanisms, the moving trihedra of curves and surfaceythebof this falls within this
viewpoint, and still other things can be subordinatd.toA set of interesting details is
required at present through a not-insubstantial numbelifigfent methods. | remind
you only of a main theorem that is in the center of engus investigations, and in my
language read€dne can come to any left-handed or right-handed soma from any other
one of the same kind by rotating around some axis and displacing in theatiretjust
that axis.

In contrast to this abundance of viewpoints, one nogepdhe question of whether
there is not aeneralmethod in kinematics by which one can bring all of thibsegs
into close connection, a method that is similarrtalgic geometry, and thus, a method in
which thesomaenters in place of the point, and will be represebtedoordinates that
are comparable to the point coordinatgsxy, xs, which would naturally be coordinates
with the simplest possible character, with which onelc@omfortably calculate, and
which must be just as well-adapted to the nature of th&sgs, xp, X3 are to point
geometry in Euclidian space. These coordinates mushealpdo give a rightful place to
the concept of a groupwhich is completely absent in the kinematics of ¢ingineer.
Among other things, it must also allow one to write transformation formulas without

() Geometrie der Dyname(G. d. D), Leipzig, 1903, Appendix.



Study — The foundations and goals of analytical kinematics. 3

much calculation, by which one can go from one somasexcand one, from that one to a
third one, and then also from the first one to theltbime directly.

We can now obtain each soma from one of themishd¢termined once and for all —
e.g., a right-handed soma —m@tosoma, by aproper or impropertransformation i or
U) of the rectangular coordinatgs x», s, or in the language of geometry, bynation
or transfer. A motion allows a figure to emerge from any figure tisatongruentto it,
while a transfer will produce a figure thatsgmmetrido it. Thus, anyight-sidedsoma
will arise from a motion of the protosoma, whildedt-handedsoma will arise from a
transfer of it. The number of constants for a motortransfer is the same as that of a
soma, namelysix. We say brieflyThere arex® left-handed somas andf right-handed
ones, as well a®® motions ande® transfers.

The last-mentioned requirement comes from the fatigvone, moreover: One shall
exhaustivelyrepresent the possible systems of twelve coefficientee transformation
formulas for rectangular, Cartesian coordinates byamaters, and indeed, where
possible, in such a way thdirstly, the numerous relations between the twelve
coefficients will be fulfilled identically, and thaecondly the parameters of the product
of the of motions or transfers will be bilinear fuets of the parameters of the given
transformations.

We now comen medias reso the following theorem:

It is not possible to achieve the desired goals with six coordixates, xs, or seven
homogeneous coordinateg:xx; : ...: Xs (or also just to associate the totality of motions
or right-handed somas with the system of values X.: Xs : X in a one-to-one and
invertible way).

By contrast, both can be achieved with the use of eight homogeneous cosydinate
between which one quadratic equation and one inequality €Xists

Naturally, there will be infinitely many such systemseafht coordinates. However,
they are all connected to each other by linear tramsfbons. They will next be
specialized in a suitable way; it will be shown howytlean be connected to the
coefficients of a proper or improper orthogonal tramsfation € or U).

We would like to denote the eight coordinates or parasetiea motion ) by the
symbols:

Q... &G L. L 5.5,
and those of a transfad) by the symbols:
W KN PB B Q. 0:%:0s.

These parameters will then be linked by the relations:

(1) @)=+ +alp+asB=0,
(2) @a)=a.+al+ai+al#0,
(3) W=pdr+ypda+pd+pd=0,

() Math. Ann.39(1891), pp. 514et seq.
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(4) W=y +yi+tyi+y;#0.

A motion E) and a transfer), when composed with others of their kind will again
give a motion or transfer by the following schema:

EE'=E% EU’=U% UE’=U”% UU’'=E”

In each of the four cases, the parameters of the proddeto such transformations will
then bebilinear functionsof the parameters of the factors. Naturally, theltas not
indifferent to the sequence of these factors.

The algebraic apparatus.

I would now like to actually write down the transfotioa equations that one gets by
using the parametersr( £) and (/: J. Here, a complication admittedly arises for the
completion of that task. These formulas will beacland easy to handle only when one
appeals to an abbreviated notation. The tool for thiseiscalculus ofjuaternions and
the bi-quaternions that Clifford founded. However, to assume that thisthod of
calculation should be familiar to any mathematiciasuld be an unreasonable demand.
Nevertheless, | cannot explain it rigorously, as | wahih not arrive at my actual topic
at all. However, perhaps | can still give a summargrely suggestive, explanation of
the things that matter here.

Just as one uses the sigim algebra and function theory in order to couple two
numbersx, y into a formal sum — viz., the complex numlzer x + y i — so will we
employ a similar coupling of four real or ordinary coeyphumbers with the symbads,

e, 3. We thus define thguaternions:

a=mtmetmet+mes,

B=Hh+he +the +fes,

etc. Theproductof two such formal sums will be defined by the rules daaternion
calculation, namely:

n

ad' =a

will be clarified by the formulas:

aa,—aq,—aq,-ag,=a,
(5) A, taa,tag-ag,=al
a0, taa,ta g, —aq,=a,

which contain, in particular, the rules for caldilg with the symbolg;, e, es:
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e =-1, ee=e, &6 =6, etc.

Secondly, should two such sums — again by analogyxwithy — be combined once
more:

at+ef=(mr+neatmeatmea)te(htfatlbet+ )

thena + £ S will called abi-quaternion
In calculations £, unlikei?, will not be set equal to — 1, but will be set equal toze

£2=0.

It follows from this that:
(a+ep (@'+ef)=aa’+e(af’ + pa’),

in which the quaternion producter’, af’, fa’ are calculated using the rule (5). One
generally says that one equation in quaternions involwesefguations in ordinary real or
complex numbers, and one equation in bi-quaternions invelgés such equations.

From what was said, an association is already givaeder which each (real) bi-
quaterniona + € S or y+ £ dthat satisfies the conditions (2) or (4) will coperd to a
well-defined motion (@: B) or transfer g : J), while, conversely,c® (mutually
“proportional”) bi-quaternions naturally belong to any motwrransfer.

The formulas for theomposition of two ofour transformations — whether motions or
transfers — are now these ones:

(a+ef)a' +ef)=a"+&b",
(a+eB)y +ed)) =y +&0",
(y+ed)(a' —-&B) =y +&d",
(y+&0)(y —ed)=a"+&B".

(6)

The parameters of a product will be, as desibdahear functions of the parameters
of the factors:

Furthermore, in order for us to not interrupt, w&oduce two further symbols that
have proved to be useful in the theory of quate)iand are no less useful in the case of
bi-quaternions. We set:

S(a+gf) =a, +&B,,
V(a+eh)=(a,+ef)e+(a,+&B,)e+(a+&8) 6

One will then have:

a+efB=Sa+ef+Va+eph. O

() Sa+ £p) is called thescalar part of the bi-quaternion, an®¥(a+ £p) is its the vectorial
component
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With the help of this notation, the parameters oftthasformation that belong to the
inversesE™ or U™ of a motionE or a transfet) can be represented in the language of
guaternions. This system of parameters is, in fact:

.-~ —i—a: KB5S
Wi—Wi—p Bl Al %l O

(7)

these are the bi-quaternions that arise:
(@+eB = (aa) {Sa+eP -V(a+ &P},
(V-9 =M H{Sy- €9 -Vy-£ 9}

(8)

One comes to these bi-quaternions when one sets:
all+ gﬁ”: 1

in the first and fourth of formulas (6).

Motions and transfers.

We now consider thebjectsof the motion or transfer that is being performed to be

1. Points, and indeed ones that are endowed witlsses or weights, and therefore

mass points. The mass of a pointis calledx, ; its coordinates shall be calle)é, ﬁ,

X X%
ﬁ. The four quantitiego, X1, X2, X3 Will be linked to a quaternioxy + x; €1 + Xo € + X3
%o

es , and thebi-quaternion:

SxteVx= y+e( xgt xgt xp

will be derived from this.

2. Rods, orstraight lines with weights, i.e., ordered pairs of poinns—y that will be
displaced with the preservation of their separatimtance along their connecting line;

these are well-known figures in mechanics. Oneealspto them in order to visualize
forcesthat act upon a rigid body, and represent themmolmydinates that are named:
X, Y,Z L, M, N

in the usual notation, and are linked by the equati
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(9) XL+YM+ZN=0.
The ratios:
X:Y:Z:L:M:N

are the Plickerian coordinates of the line on which ¢lgelies. One can see from the
relation (9) that one has the coordinates alyaame We use other symbols, in the
sequence:

P1, P2; Ps, Cu, G, G,
such that the relation (9) goes to:

PLOi+P2+Ps=0,
and define théi-quaternion:

pteq=(pq+ pg+ pY+e(qer ge- gk

3. Sheets, which areplaneswith weights. A plane has the equation:
(UX =UoX+Ur X+ U2 X+ U3 X = 0.

Up: Ui: Wp: Uzare then the coordinates of the plane. We astnédéur quantitiesi, us ,
Uz, Uz as the coordinates of a plane with a “weights vieight is then:

[[2, 2 2
u +u,+u.

If y is any mass point then:
UY)=UWYot+tU 1+ Y2+ U3Ys

will also mean- up to sign- the distance from the point to the plane, mukiglby its
weight and the mass of the point.
We define theuaternion
U=UtU € tU& +Uz €3

from the coordinatesy, Ui, U, Us, and from this -unlike before in the case of the point
— abi-quaternion:

Vu+eSu=(yet yet ugte

The figures:
mass-pointrod, sheet

thus each contain one more constant than the pomdag figures:
point, line, plane
The ratios of the coordinates of the first three figures @ahe homogeneous

coordinates of the last three, except thauraguelydetermined (i.e., special) bi-
guaternion will belong to the first three figures.
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With these preparations, we arrive at the representafiohe motions and transfers
in terms of the associated parameters ) and (/: ) (*):

SX+eVx=(a+&6)7"( Sx & Wa-¢&h),

(10) p' +ed =(a+&B) 7 (pt+e d(a+eB),
VU +& Su=(a+&B)(Vur& S)a-&B),

SX+eVXx=(y—0)( Sx& Wy+&d),
(11) p'+ed =—(y-£9)"(p-€ g(y-&9),
VU +&SU=(y-&0)"(Vu-& S)(y+&J).

These formulas are at the center of the theonywleaare concerned with here; they
are the main facts and the sources of all the advamessl dn them, we have — and this
is essential —an abbreviated form for the transformation formulas of rectangular
Cartesian coordinatesand indeed, for the coordinates of points, lines, anteplaas well
as mass-points, rods, and sheets. The formulas (10)thidd)have — and this is also
essential for the applications — the character @rtamcompletenessOn the right-hand
side, one has the given variableg;(p«, g« ; Us), While the transformed ones are on the
left and distinguished by primes. We interpret both efnrthin the same coordinate
system; the formulas (10) then meamation whose parameters are the quantities (
p); likewise, formulas (11) meanteansfer The coordinates of the transformed figures
depend upon those of the given ohesarly. If we calculate from the formulas, which
must remain too laborious here and is often also superfindue applications, then that

() Cf., Math. Ann.39 (1891), pp. 514-564. The equations that are published heimpreved in
form from the ones there, and extended in content. i&f blerivation of formulas (10), (11) is the
following: As is known, the rotations around the poiht: © : 0 : 0) can be represented with the help of
guaternions by the formulas:

X =X (orSx=5S% and Vx=a'-Vx-a
If one replaces these formulas with:
SX = Sx and VX =al - Vx-a+x ¢,

whereé means a vectorial quaternion (i.85= 0), then one will have the representation for aoyion. If
one now set§= - 2 a* Sthen the formulas:

S% = Sx and VWX=a'{Vx-a-2Sx-f
will follow from (ap) = 0, but they can be assembled into one:
SX+eVX = (a+ P (Sx+eVX) (a—-eP),
in which the parameterg, , 5, and the coordinates, are distributed into different factors of a bi-

guaternion product. A simple calculation will then yidlé temaining formulas (10), (11). One will again
come to equations (6) from (10) and (11).
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will show that the coefficients of the linear furmgis to be defined will all b&actions
with the same denominator

2 2 2 2 2 2 2
astaltazta;  or Yoyt yItys,

which is non-zero, by assumptionThe numerators are then likewise entire rational
functions of second degree in the parameteis, or ; o. Conversely, if the coefficients
of a transformatiorE or U are given then the ratiag: S or y: o will be determined
uniquely by them. If5 = 0 then the motion (10) will beratation. If ap = 0 then it will
be ascrew; i.e., it will consist of the composition of a ratat through an anglerwith a
displacement in the direction of the rotational axX@e will have to employ this concept
soon,which assumes a special place in kinematics, like that of the ratalfian = a, =
as = 0, and alsg® = 0 then one will have a rotation around an imaginaiy laefore one
—i.e., adisplacement

How convenient it is to calculate with these forasukhall be illustrated by some
simple examples.

The group of motions and transfers includes three kindssofutory transformations
that have primitive period two, namely, tteflections through points, lines, and planes.

We would like to assume that a pojptaline (p : q), and aplane vare given. We
would like to know how the coordinates of mass-points, ,r@el aheets will be
transformed under the associated reflections. Thes@rablems that pose no actual
difficulty using the ordinary methods of analytic geompetbut already require a
considerable outlay of calculation. We simply havsuibably specialize our parameters,
and indeed as follows:

(V:9 =Wo: 0: 0: O0:0w:Vy2:V¥a)
@:A=0:p i p P 010" GlG)
V:9 =(O0:vi: wa:wvz:iVvg: 0: 0: 0).

Another example: We imagine a motion that is not alagment and decomposes
into a rotation and a displacement in the directionthef rotation axis. The three

quotientsa : / af +a’+a’ are then its direction cosines. L& Be therotation angle

and let H be thestep length(“passo,” magnitude of displacement) of this motiomeO
finds:

aO H —_ ﬁO

[ 2 2 2’ _/ 2 2 2
a) ta, ta, a, +ta,ta,

One sees that — as we said — the equatjon0 characterizes trserews while 5 = 0
characterizes thetations

(12) cot@=-
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V.

Manifold of somas.

The application of the parameters:(f) and (/: J) to continuous manifolds of somas
now takes the form: Thprotosoma as we said, which is thought of as a fixeght-
handedtrihedron, will be associated with a secoight-handed somay any motion ¢ :

L) and deft-handed somay any transfery: J); (a: f) and (/: J) are thecoordinatesof
both somas. If, e.g., the coordinates {3 were represented as analytic functions of 0, 1,
2, 3, 4, 5 parameters that were essential to taims then a one-to-five-dimensional
manifold of right-handed somas would arise; as we @vbké to say, ai, My, M3, My,

or Ms of right-handed somas.

For the study of machines, which mostly deals with cdsgoy (zwangslaufijy
processes of motion, the most important case isahatone-dimensional manifold of
somas. One then deals with only one parameter, whiglmoght care to interpret as the
measure of time&. Except for limiting cases, there then exists amaimsineous screw
axis at each moment; the locus of these axes in d $i@ma is a ruled surface. A second
such surface exists in a moving soma, and through the lso-gahding of the second
surface on the first one, a process of motion witheabout — still ignoring the limiting
cases — in which the behavior can be described in a simpie «° manifolds of somas
will be generated simultaneously in this way, since amgascan be rigidly coupled to
the second surface. Everything can ensue in a convignearhputable way with the
help of the parameten(: ). The screw that takes place in the time elerdebelongs
to the bi-quaternion:

(13) a+ef =@+ePH(a+eP+(a'+ep)d
=l+@+ef (a'+ep)dt

The associatedotation angle2 d®© and the associatestep length2 dH, e.g., are
given by the formulas:

__J(@a)a'a)-(aa')?
do = dt
(aa) ’

(14)
dH=- @h) dt,

\/ (aa)(a'a") - (aa')?

and if one would like to assume that 4) = const. = 1 then one will obtain even simpler
expressions. However, the apparent motion of the Beeda for the observer that sits on
the moving soma will be found simply by replacing the bi-guabna+ ¢ for Sa +
eP) +V(a+ € p) with the bi-quaterniol®a + € ) — V(a + £ f), and thus, replacing the
motion parameters:

Q.- .. G L L LB

with the parameters of the opposite motion:
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[ Rl (s R R Bl b Rl O R L

Generally, one advances in any manifold of somasneighboring soma by @btation
when the Monge equation:

(15) da dB) =dao dB + daw dB: + dar dB + das dB = 0

is fulfilled; naturally, this rotation can also bed&placement. It can happen that a
manifold of somas has this propemyerywhere and that will define an interesting
problem that we shall speak about later. One can, &sp,conveniently express the
kinetic energyof a moving soma that is rigidly endowed with mass tgo@nd exhibit the
differential equations of its motion under the influenégiven forces®).

For more-than-one-dimensional manifolds of somasg, YiE3ds differential equations
that are similar to the Codazzi equations of surfaeerth we would also like to cite
these equations, since they are meaningful for applatioLets andt be any two
parameters upon which the soma coordinatésdepend. If one then sets:

(a+ 8@‘1%(% B =as+ehs,

(a+s@‘1%(a+e@ —a+eh

then one will get:
(16) %(aswbs)— %(aﬁfbt) = @+ £hy (@ + £b) — (a + £h) (@ + £ by).

However, such circumstances are already of a velgtiwell-developed kind. In
kinematics, the geometry of somas, like the geomdtppmts, defines foundations of an
algebraicnature. Here, as there, one will do well to begithwthe study of theimplest
manifolds of somas, just as one begins with the studyraight lines and planes in the
geometry of points. In fact, there are figures in kingeeahat can be very comparable
to the lines and planes of point geometry. The lecizakled thenthains and examined
them systematically’). Here, we shall satisfy ourselves with the consitien of some
examples. Such chains of various dimensions will avisen one reflects a soma in all
lines of a cylindroid, all normals to a certain line, adlines in space, and when one
rotates it around a fixed point, or subjects it the refhstiin all planes or points of
space.

This and related figures will be linked to each other byar&able laws,one of
which, we would now like to get to know.

() Journal des Mathématiqu&s(1911), 97-112. The use of bi-quaternions is avoided in this.

The possibility of much more far-reaching applicationsgened up in a book by E. and F. Cosserat:
Théorie des Corps deformab)ézaris, 1909.

(®) See the definition, G. d. D, pp. 563.
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V.

Kinematics and projective geometry.

Certainly one of the simplest figures of kinematictheschain of rotations, which is
a somaM; that is generated from a soma by rotation around a We.would therefore
also like to calculate thehains of displacements, which arise from displacing a soma in
a given direction. The consideration of these figlikesvise provides us with the insight
that kinematics encompasses all of the projective geometry of our spadact, if we
now rotate a right-handed soma in all possible veagsnd a fixed pointhen a somaAs
will arise in which two somas can obviously be linked toheather by a rotation. We
will obtain such amM3; when we sefs = 4 = 5 = = 0. However, we can interpret the
parametersrn : a1 . a» . a3 as point coordinates in space and the chains of rosatal
be mapped onto straight line$.( Any theorem in the projective geometry of spacé wil
furnish a property of thil; . A simple enumeration shows tha suchMs are present;
we would also like to calculate certain limiting figurfes them that arise when the center
of rotation goes to infinity. However, we can providé gesecond kind of figure that has
completely similar properties. If we now subjedefi-handedsoma to all reflections in
planesof space then a3 of right-handed somas will again arise, and any two sama
it can be coupled by a chain of rotations irf)it (A limiting case of such al; will arise
when we subject a left-handed soma to all reflection®oints (or a right-handed one to
all displacements). The#4; also exist ino® exemplars.

Kinematics thus encompasses projective geometry in-thneensional spaces, and
in fact, in several different ways: These spaces appe&imematics as an extract of
geometry inside certain three-dimensional chains ofasonHowever, another situation
is of much greater significance, as a result of whiehg#ometry in the continuum of all
«® — e.g., right-handed — somas will have the closestioaktiip toprojective geometry
in the complex domain in our space?.

We would now like allow a right-handed soma to adthitadations around a line and
all displacements along that line. A two-dimensiastain of somai, will arise in that
way, whoseaxiswill be the line. One can generate the séaen another way, namely,
when one subjects a suitable soma to reflections in lines that cut the axis
perpendicularly. However, if one reflects a (rightatied) soma iall lines in space then
an My will arise. | would like to call an isolated soma a . One then sees almost
immediately that there are:

w®Mp , w®My , 00 My

of the kind that was just described.

If we next consider the extension of projective geoym space into the complex
domain then we will likewise find three kinds of mani®Ildf complexes — i.e., real
imaginary figures that appear in just the same dimensiadsnumbers of individuals:

t f., C. Stéphanos, Math. Anp2 (1883), 299-367.

() Ct.
() G. Kénigs,Lecons de CinématiquParis, 1897, pp. 239-241.
() G. d. D., Foreword and pp. 558,seq.
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We will haveo?® 2 complex pointsM;, «® * complex linesM,, each of which is the

locus ofe® complex points, and finally, once more? ° complex M}, each of which
carriesw* complex points. One will then have the well-knoaw1 Two M, determine
an M,, threeM, that belong to ndM, determine arM,, etc.

Laws that are entirely similar — but not without exceptions — exist between the
figures Mo, M2, M, of kinematics.

On these grounds, the lecturer has calledvh@ndM, chains of lines and plangs
resp.

As an example of an exceptional case let us citex Mywill determine nadvl, when
one of thaVlp can be taken to the other one by a displacem&snssuchfor each theorem
in projective geometry, when extended to the complex domain, thetessfe this
exceptional case, a kinematic counterpart. The group ef3ltomplex collineations is
analogous to a group o8>° transformations that permute somas amongst themsgé)ves

Yet another example might be given:

One allows a soma to be rotated around a certaimtfidedisplaced in the direction of
that line, so it moves in a describiNg, and addany of the following three demands:

1. A point of the soma shall remain in a fixed plane.

2. A plane of the soma shall go through a fixed point.

3. The soma shall emerge from a certain soma by tiefiet any generator of a
cylindroid or pencil of planeswhose axis is the line. (There are some obvious
qualifications that emerge, which state that the poidt@ane that are employed magt
have certain special positions.)

The point of a soma that moves in that way will diegcan ellipse, and its plane will
envelop a cone of rotation or limiting cases of sughris. There are'* of these soma-
Mi, which | call one-dimensional chains. If one subjects any of them to the
aforementioned group of transformations then one will always again obtain &maMs
described in the same wa$)

Such arM; has its counterpart in projective geometry in the fofra tocus M, of

complex points that is well-known and considered mdosety in projective geometry,
namely, theigure of the Staudt chain.

Although the Staudt chains seem to be quite dissimilar to the figures ¢hdepicted
in kinematics, both of them have closely-related properties. Exists a passage to the
limit by which one can derive the propertiessoma chains M; from those of Staudt
chains.

() Here, we count complex constants. The real tramsfions in the stated group of kinematics define
two separate families, so there are then 8* of them. Similarly, later on, when one would like to
consider real constants, one will seto® instead of 2 .

() The rotational chains belong to théde except for the displacement chains.
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This is also especially true for the characteristiopprty of Staudt chains that
consists in the fact that any four of their points miefieal double ratios)(

The multi-dimensional chains of projective geometryo als&ve their kinematic
counterparts in just those figures that were calleainshere ).

The close relationship between projective geometry ameinlatics, of which only
suggestions can be made here, also extends tan#dtec geometric of the soma
continuum. This will also be explained by an example.

Let X, Y be bi-quaternions that belong to two right-handed songs, e

X=X+ Xier+ X &+ X683, Xe=a+eb.
The productX™ Y then gives the parameters of the motion that tXkiesY. Let 29 and
2H be the rotation angle and step length of this motiBg.analogy with cosf + i 7),
one can now define a function:

cos@ + eH) =cos®@ —¢-sin@ - H.

One then finds thaf)

3 XYoot X Y+ X ¥+ XY
17 - |
17) cos@+eH ) X+ X2+ X+ W Y+ Y Y

This formula, which is very familiar to every mathematician withfferent meaning,
thus appears in kinematics in a certainly quite unexpected way, amé wigw content.
The fact that one can infer a whole set of consegsffom this fact alone scarcely
needs to be stated. Theorems of non-Euclidian gegretrish theorems of kinematics
by amechanicallydefined passage to the limit.

Kinematics itself seems to be an extension of non-Euclidian geometry that
therefore also takes on an immediate meaning for Euclidian space.

VI.

Continuation: A kinematic analogue to projective line geometry.

However, kinematics has room fasecond analogue to projective geometry, among
many other ones’y, While the first one led us to a groupeot’ transformations that

() G.d.D., pp. 244, 331, 568.
() G.d.D., pp. 56%t seq.
() G.d.D., pp. 585.

() G. d. D., pp. 580et seq. The material there can be treated only very lyiielbrresponding to the
plan of the book. The following brings many new things. e &kistence of analogies between kinematics
and Plucker’s line geometry was also known to the Swethematician R. de Saussure. He attempted to
exploit such ideas, but with inadequate tools and withousiimgg sufficient care.

OO
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permute somas and certain manifolds of somas amongsstehes, the second one
belongs to a group of 2¢°° transformationsy.
We recall that one can also regard the Plickerian lioedemates as coordinates of

the points of a quadratic manifold :

(18) PLOL+ P20 +psgz =0,

which lies in a space dfve dimensions, and that precisely this interpretation roé li
coordinates immediately opens up a royal road to numeresisits in projective
geometry. One needs only to translate the resuits the theory of quadratic manifolds
into another language. We then interpret the somadgw@ies as point coordinates in a

quadratic manifoldM? in a space of seven dimensions whose equation is jast th
relation:

(19 Gt +r+af+as5=0.

The images of somas, whose distribution is spacdfisull to imagine, then lie next to
each other like points on a second-order ruled surface emdprasented almost
intuitively. The aforementioned group of kinematics Hae group of 2.
collineationsthat leaveM; at rest for its image.

Admittedly, an essential difference exists betwdan ltne and soma coordinates.
Namely, whereas the line continuum, as we regard itytodaclosedand leads to a

gaplessmap of the lines in space to the points da, a soma can disappear when one
extends it to infinity. Coordinate systems for which:

a+al+al+aZ=0,
and thus, for which:
G==m=a03=0,

since only real figures will be considered here, do notespond to any soma. However,
things would happen the same way in line geometry if thgimaay lines were still not
fictitious; we must then exclude the coordinate systems/ifich:

pr=p2=p=0.

In mechanics, we then know only coordinaxe¥, Z, L, M, N of forces, but still not
those 0O, 0, O, M, N of force-pairs. Here, as there, the filling in of th@e ispossible
and it is alsmecessaryf one would like to come to know simple algebraic daw shall
be brief, and thus give only the theorem that will pdewvihe definition of the analogue to
an imaginary line (i.e., pseudo-soma):

If one subjects any (right-handed) soma to all screwing mofi9rtsen a soma-M
will arise. Its image orM; will be a coneM?, namely, the intersection 2 with one of

() 4-«*®transformations in the real domain. See the remarage 13.
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its linear tangential spacessR The contact point of this space Rviz., the vertex of the
coneM? - will be any point with coordinates of the form:

0:0:0:08: 8" 8 : 5.
If the soma that is employed for the construction has the coordinates:
Q.o .. a. L. L 5.5

then the proportion will exist:
(20) BB BB =am o as.

Obviously, the somd4s thus-constructed e complete analogue to the figure of all
real lines that are parallel to a planand the starting soma is analogous to any line that
is perpendicular to this plane. One obtains a simgled that can represent the (right-
handed) pseudo-soma in the form of three ordered, mutuafhepaicular directions that
correspond to the positive directions of the three afany of theo® somas:

By Bl B By r e

Naturally, I cannot go further into this very importgatint. Therefore, as we will now
do, it shall be subjected to restrictionSow, only those (analytic) loci of points &#ff
will be considered that do not traverse the entire linear manifgld an = a» = a3 = 0,

and also only when their points do not belong to just that manifold.

We will now pick some of the simplest relations tkia¢ map described yields by
contrasting them with figures iNZ, and indeed, wittinear point-manifolds inMZ, that
corresponcconstructivelyto the figures that are described in kinematics. Timeasao
be mapped shall beght-handedthroughout.

1. There are»® straight lines R in MZ. They will correspond to thehains of
rotationsthat were described already.

2. There are als®® planes R in MZ. Kinematic counterpart: One subjecttet-
handed soma to all reflections in the planes of a leunoll in a limiting case, all
reflections in the points of a plane.

3 and 4. There are™ “left-handed” three-dimensiondihear spaces Rin M2 and
o® right-handed linear spacBs.

We have already given the construction for the spoading families of somas, as
well. However, we must now establish what sort oé¢hdimensional spaces should be
called “left-handed” and which should be called “rightdtech” We will determine that
theleft-handed Rcorrespond to the sonMs’s that are generated by rotation. The image
of theM; of all pseudo-somas§ = a1 = a» = a3 = 0) will then likewise be &ft-handed

() See the definition on page 9.
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Rs; . However, allR; that can be derived from a left-handed soma by the maues
reflection that was described above willrigght-handed

All linear manifolds inMZ are now already exhausted with the enumerated figures.

However, manifoldsv? (k= 1, ..., 5)- e.g., the planar sections BE — can likewise be
generated.

VII.

The Ribacour problem.

As an application of the theory that was sketched wat,might demonstrate the
response to a question that was posed already in tbextohthe Monge equation:

dao df +dai dfr + da A + das d3; = 0,
which we will refer to as thRibacour problem:

How are the (analytic) soma manifolds Mn which any two consecutive somas can
be linked by a chain of rotations, to be generated kinematically?

The images oMy that correspond to valués= 1, 2, ... must be curves, surfaces, etc.
in M2 whose tangents all traver8& itself. One now finds that one must have 3 (9,

and the assumption thiat= 3 is satisfied by only thinear R; in M that were described

already.

Trivially, all M1, M2 whose images lie in sud® will then have the desired property.
Their exhaustive enumeration, classification, and cooBbn, which encounters no
difficulty, might be omitted, for sake of breuvity.

What will then remain are certain othds andM, . TheM; arise when one lets any
ruled surface that is not a cone roll upon a secorl rsuirface, and indeed, a rectilinear
bending surface. A soma that is rigidly coupled tortimeing surface will describe any
of the desiredM;; the isometric relationship of one surface to the othiébe evoked by
either a motion or a transfer, but it cannot be atiaiship of congruence or symmetry.

We now come to the non-trivial sorvy's (e.g.,M; of right-handed somas) of the
desired kind whose exhaustive enumeration defines thestiteg, and likewise difficult,
part of our problem.

[1]. One lets two surfaces that are related to edbbrdyisometry but neither
congruent nor symmetric, roll upon each other in such a hatycorresponding points
and line elements coincide at each position of the mosumtace, and also all possible
positions of that kind will be assumed. If the two acels are rectilinear then their
generators might not correspond. The image of a ddsthaat is generated by a moving

soma in this way is aon-rectilinearsurface inM? whose tangential planes all lie .

() See G. Koenigg,econs de CinématiquParis, 1897, pp. 239-241.
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[2[]. One lets two curves that are isometrically resdiato each other, but do not have
equal curvature at every corresponding point, roll one up@other in any way, and lets
the moving curve rotate around the common tangent to bote< in each position. The
image of a somd, that is generated by a moving soma is a rectilidaon M: that
has the property that any two consecutive generatorbecéinked by deft-sided R, but
not by a right-hande; .

[2¢]. One lets a rectilinear bending surface roll upoedilmear surface that is not

developable. One thinks oleft-handedsoma as fixed in the moving surface. In each of
the o' positions thus obtained, one now reflects (the movinfaseirand) the soma in all
tangential planes to the fixed surface, and thus, irpldwees through the generators of
this surface. ArM, of right-handedsomas arises that has the desired property. The
image of this som#, is a rectilinearM, in M? that has the property that any two
consecutive generators can be linked Ioglat-handed R but nota left-handedr; .

[3]. One considers two curved lines that are isomdfyicalated to each other, but
not by congruence or symmetry, such that they have eguatares at corresponding
points; thus, the tangential surface to one of them ap@sathe bending surface to the
tangential surface of the other (while the rectilingamerators correspond to each other).
One then lets the one curve roll upon the other onthéotangential surface to the one on
the tangent surface to the other). At each ofsth@ositions thus obtained one lets the
moving curve and a (right-handed) soma that is fixed iothte around the common
tangent to both curves. A sorWg-of the desired kind will then arise. Its image is a

rectilinearM, in MZ in which any two consecutive generators can be coupleal Ibft-
handedR;, as well asa right-handedR; . {Cf., the cases [Rand [2]}. This image is, in
fact, the tangent surface to a curve that runstjnwhose osculating planes all likewise
lie in MZ.

[4]. One lets any (right-handed) soma rotate arourtdradlents to a skew curve. The
image of the somM, thus-obtained is a rectiline®, in M2, namely, a cone whose
tangential planes all lie iN3 .

One recognizes, with no further assumptions, how theds that were enumerated
last can be regarded as limiting cases of the firstudised ones:

20
[1] [3] — [4]

g

However, the solutions to the Ribacour problem for dtaed figures are still not
exhausted with them, if one, as we did here, omitptaeiously-definedrivial limiting
cases. Namely, it can happen taay soma in a somd, can be coupled to a suitably-
chosen neighboring soma by a chain of displacementsthae among the tangents to the
imageM, at any point there is always one of them that méet&; for which ap = o
= = a3 = 0. One then adds some further figures. As one fthdg,are (except for the
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“trivial” cases; cf.,suprg all limiting cases of the families [Rand [4]. They can be

described as follows:

[5]. One lets the second of two non-cylindrical andh-sgmmetric rectilinear
surfaces roll upon the first one, where one of them aase from the other one by
bending, with preservation of straight linés (In each of theo® positions thus-obtained,
one subjects the moving surface and a (right-handed) sacahasttiixed in it to all
displacements in the direction of the common nortoahe two consecutive associated
generators of the fixed surface (in the direction oflitne of striction in the contact line
of the two surfaces).

Each soma, that can be described in this way at all can be gendratbd manner
in infinitely many ways; in particular, with the helpdevelopable surfaces. Their image

will be either [2*] the tangent surface to a certain curve that liesijnor [4*] a certain

cone. If the second case appears then the 8bnean be constructed in an even simpler
way:. One subjects a (right-handed) soma tosalews(cf., pp. 9) whose axes are the
tangents to a non-planar curve or the lines of a nandrytal cone.

The non-trivial solutions to the Ribacour problem are exhausted with the extathe
figures.

What Ribacour himself presented as the solution to his gmolidr somaM,, and
what others then sought to prodg €an only amount to an entirely coarse approximation
to reality.

All of the desired somil,, or, in the terminology of the French geometef, al
“déplacements a deux paramétres pour lesquelles les montgeglémentaires sont
toujours des rotations)(” shall, in fact, arise from isometrically-relatsurfaces that roll
upon each other, and also the converse shall alwaysube The fact that one thus
formulates assertions that already contradict eleangraind well-known facts is, in any
event, also explained by the otherwise widespread, batyhiguestionable, practice of
paying no heed whatsoever to the “trivial” exceptionaksasErrors in logic that the
consideration of just these cases has uncovered immyddn very easily remain
unnoticed in that way.

VIII.

A kinematic reciprocity theorem.

Kind sirs, let us once more consider the formulas (&), @nd (11). These formulas,
in fact, lead to still more beyond the ones that weslaarived at up to now.

() Itis not excluded that the generators of the one saidafine a pencil of planes (and the other ones
then define a cone).

() Darboux,Théorie des Surfacel pp. 66-73. G. Koenig&c. cit., pp. 236-239.

() Translator’s note: “two-parameter displacementsnoich the elementary motions are all rotations.”
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We have se#” = 0 in all calculations. However, similar argumer#s also be made
under more general assumptions. It suffices to assuah€’th 1 ands® = - 1. In place
of the inequality &a) # 0, one will have to employ one or the other inequality:

(aa) + (BP) %0, (aa) + (B # 0.

[In all three cases, one will thus have the inequédit?) + £ (56 Z 0].

In both casesg = 1 and & = -1, the formulas can likewise be interpreted
geometrically quite simply. 18 = 1 then we will have the group of-2¢° proper and
improper (real) orthogonal transformations of fouriaflles before us, and thus, the
group ofmotions and transfers a Euclidian space of dimension four that leavesal)r
point (0, 0, 0, 0) at rest. The other assump#or — 1 has recently taken on a special
interest, as a result of arguments that have tloatsrin physics in the bold ideas of
Lorentz. This assumption leads to geometry of Minkowski space.

| would like to treat only the assumption tlEat= 1 and further consider onpoints
and also only ones whose four Cartesian coordingtes X, Xz satisfy the equation:

(21) XX EG X =1,

which then lie on @hree-dimensional coneThe geometry of this manifold is a type of
non-Euclidian one, namely, three-dimensimyierical geometry

Kinematics in these spherical spaces must already inteoést to us because we do
not know whether we do not perhaps live in such a spaavever, in addition, they,
like all of spherical geometry, take on a highly theoattmoeaning through an intrinsic
symmetry that is foreign to kinematics in Euclidiancga Euclidian space is, however,
a limiting case — i.e., a degeneracy — of spherical sjpateas the plane is a limiting case
of a sphere. Therefore, spherical geometry canleégbto many insights into Euclidian
space that would not be quite as easily accessible toTie same thing is true in
kinematics.

If we go down a path that runs parallel to the one tharodden in Euclidian
kinematics then we will find that our first method — yiro present a kinematical
analogue to projective geometry — does not, however, gieydhing new beyond the
second one’]. We then arrive, in turn, at the geometry on the catadmanifold M2
and the group of 20?® collinear transformations of it. That cannot be suimgissince
precisely the same thing is true for projective geometrglfitavhich is likewise
independent of the hypotheses that one cares to make matilre of space. However,
spherical kinematics does teach us something that caasily be overlooked.

We consider an ordered pair of points{ in spherical space, and the poift, —X
that isdiametrically opposite to it, and combine these figures intdoable pair. We
remark that a motion or transfer that associategpthet x with the pointx' must also
associate the point ¥ with the point—-x'. We would like to say that the motion or

() The casee? = - 1 {€ =i} leads to a kinetic interpretation of projective geométrghe complex
domain.
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transfer is therunited with the double pair. However, we can introduce réit@s of
eight quantities, 7« as coordinates of a double pair, which are coupled by the equati

(22) EmM=ébonnt+tém+&m+é&n=0.

We need only to set:
(23) Xe =&+ M, % = &= Ik.

Here, we then have our quadratic equation once monewathl a different meaning,
and also from this point onward we likewise once marterethe realm of kinematics.
Namely, when we likewise use the symbdls 7’ vy, like the symbolsé, n, x, it will
become:

(24) &y - xy)=2{<n)+ @k

On the left here, one finds the difference betweerctsines of two spherical distances:

cosk, y) — cosK, Y ).

If this expression vanishes then the point-paiy will be congruent— or what
amounts to the same thirgsymmetric to the point-pax, y', and likewise the point-pair
—X, —y will be naturally related in the same way to the pp@r - X, —y. We would
like to say that the two double pairs of points are tkemetric to each other. However,
the right-hand side of our equation (24) provides a meaninghéifact that the two

points ¢ 77) and €, n”) on MZ can be coupled by a line that runs completeivgn It

is now obvious that all double pairs that are united by siomar transfer in spherical
space are isometric to two of them. The image ofohlthese double pairs is then

necessarily éinear R; in MZ.

The details of this argument, which | would not like touble you with, lead to a
sequence of theorems, among which, the following onétrig emphasized:

|. The manifold of® —e.g., left-handed —4n MZ can be mapped birationally and

without singularities onto the manifold of all points in just tMft (and indeed also in
the complex domain).

Il. Each theorem in projective geometry M is associated with five other ones

(that are not necessarily different from the first one). Unlderttansition from one such
theorem to the remaining ones of the same group, the concepts of:

left R, point, right Rs
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will be permuted in all possible ways, and indeed, such that the figutested position
will again go to other such figures, and above all, projective propewtiksgain go to

other oneg?). In particular, pencils of lines iZ will again correspond to other ones.

Naturally, a point and aRs; are said to be united when the point lies in e
However, it must still be clarified what one me#éyshe “united position” of a left and a
right R . Now, a left and a righRs will always haveat least ongpoint in common. If
they have more than one point in common then they wilé fadl points of glane(i.e.,
anRy) in common §), and we will then say that they are united.

The content of theorems I, Il is thoroughly comparablehe group of facts in
projective geometry that are summarized under the ndntbeqrinciple of duality.
However, while that principle always presents two thewsras equivalent, here, we have
six that belong together. They will be permuted amotigstnselves by group of6 -
«?® single-valued transformation§) whose theory is easiest to understand when one
introduces theo® lines inM2 as spatial elements.

In order to be able to briefly represent what thiplies for kinematics, we will still
need to define some further concepts. It can happen thaitian and a transfer in
spherical space permute all points whose coordinatesysatisihear, homogeneous
equation:

Uo Xo +Up X1 + Uz X + Ug X3 = O,

i.e., all points of a certain spherical surface (\tize, principal sphere), in the same way.
We would then like to say that the motion and thestiemareunited.
One now has the remarkable theorem (viz., the rectgrineorem):

lll. The real figures:
left Rs, point, right Rs

in MZ can be simultaneously associated with the (real) figures:

motion, double pair of points, transfer,

resp., of spherical geometrwithout exception in an invertibly single-valued and
continuous way such that figures in united position will again correspond to atlesr

Here, a motion or transfer, when regarded as a “fjjig¢he totality of all associated
point-pairs x, X. The fact that the sequence of the last three stests arbitrary was
already asserted in Il. We now perform a passage tionthieand find:

() Asimpliedin G. d. D., pp. 583.
(®) Géttinger Nachrichten, 1912, pp. 20, remarkCheleft andoneright R, will go through any plane

in MZ.
() In the real domain, there are 18”%. See the remark on pp. 13.
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IV. A theorem that otherwise reads the same as Theblresso exists in Euclidian
kinematics, except that the concept of (ordered) point-pair appears ie phdhe
concept of double pair of points, and singular places for the map already appte in
real domain.

These singular places can be eliminated by defining speamakepts that are similar
to the concept of the “imaginary point.”

We would like establish the sequence that was given inréhedl. For Euclidian
space, we then obtain the following association ofspafireal pointsx, X' (of mass one)

with certain points ifVi; in place of the association (23):

50 =1, ’70:%{)('12'*')(22'*' )(32_ )612_ Xzz_ '11
_XtX o %tX o XtX
(25) 51_ 2 ' 52_ 2 153_ 2 ’
XX %% L %%
,71_ 2 ’,72 2 1,73 2 .

Isometric point-pairs now also again correspond to points Mj that can be
connected by a line that lies MZ. Isometric pairs of curves or surfaces will, howe

correspond to the same kinds of curves and suidac®l?, as we considered in the
context of the Ribacour problem, and indeethath cases (23) and (25). We would like
to consider only surface pairs, and among theny onés in the first-given family [1].
One finds that their images M: will be permuted amongst each other by not ordyzh

- 02 collineations ofMZ, but also by the remaining-40°® single-valued transformations
that we spoke of. We then have the theorem:

V. The 6 - »?® single-valued transformations that belong to thedatic manifold
MZ evoke transformations in spherical, as well as Eiimh, spaces that generally take

pairs of surfaces that are related by isometrias; ot by congruence or symmetry, to
other such surfaces. For surface pairs with noctii@ear images that is indeed without
exception. Surface pairs that contact in correspog pairs of surface elements (viz.,
facets), and also have corresponding line elementscommon there, will again
correspond to other such surfaces.

The subgroup of 2 ©»? transformations of the group that is thus distisged was
given by P. Stackel'Y for the case of Euclidian spacé. follows further that one can
derive points, curves, and surfaces in a non-Etattidspace from such things in a
Euclidian space, and conversehA special transformation of that kind, from whiane
then obtains the remaining ones, is given for e of spherical space:

() Comptes Rendus, t. CXXI, 1895 pp. 396, and Jahresbericht deutsdben
Mathematikervereinigung, Bd. 14, 1905, pp. 507-516.
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{6 +X+x+x=1= %"+ X+ %+ &}
by the formula:

- X g X _
26 Kk — ,Q(k— y k_112131
(26) e Ty ( )

in which &, €, means ordinary rectangular point coordinates, mare If we use the
symbolsx and¢, along with the symbolg ands then that will yield, in fact:

(27) Z(fé—n’k)z—Z(fk—nk)z L Zxkyk ZxKyk}

X+ % ><o+>fo

Naturally, this transformation is endowed withggitar places. When one omits
them, it will take congruent or symmetric surfa@rg to other such surface pairs. Just
as the difference between Euclidian and non-Ewlidieometry becomes meaningless
under the group of collineations, so does the difiee between Euclidian and non-
Euclidian kinematics vanish under the analogousupgoof 2 - «?® and 6 - ©?°
transformations.

IX.

Further outlook.

What | have spoken to you of, kind sirs, is cefiaonly a fragment of a fragment. |
have been able to treat only some of the simplkesinples, and also only summarily, and
have, in fact, been forced to strongly curtail toemal apparatus, whose proper
development is not free of complications. At leaghat was presented might help one
realize that there are methods in kinematics thae lgreat import that are on a par with
the classical methods of analytic geometry, anciwbubsume them, in addition.

Kinematics contains a tremendous wealth of gersdgalbraic and analytic problems,
as well as also special forms that seem to be wafitonsideration, and await only the
mathematician who would like to possess this wedlth were to ask that you follow me
down a longer path then | would be able to show, yog., the surprising way by which
the theory of a much-investigated figure — vizeg #ight intersection points of three

second-order surfaces — is connected with geonoetihe manifoldM?, and thus, with

kinematics, and how deeper-lying results can bevelgifrom it. | must deny myself that,
although you might invite me to find a place fomsremarks that open up a broader
perspective.

The latter association of motions, point-pairs, and transfers in a non-Euclatian

Euclidian space with left-handed linear spaces, points, and right-handed lineagsspac
(of highest dimension), resp., in a quadratic manifold:

2 & =0
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can be extended to an indeterminate dimension.

The law by which this extension of our program proceedshe expressed, if only
incompletely, in certain dimensions, of which, thetfof these are:

n= 1 2 3 4 5
(1,2,1) (3,4,3) (6,6,6) (10,8,10) (15,10,1

The third case is the one that | had the honantdrtaining you with. We now see
that this case precisely, and thus kinematics ihrae-dimensional space, assumes a
special placan the entire sequence.

The space of three dimensions is characterized by the kinematical reciprocity
theorem that was proved (Theoremsl |1, V).

We remark in passing that our space has suchipgties, along with others. Thus,
the known reciprocity between dynames and infimta@s motions is also restricted to
three-dimensional (Euclidian or non-Euclidian) spé.

The casen = 2, whose theory is naturally contained in theece= 3, leads to aiM?

in a five-dimensional space and thus, to projeajigemetry in ordinary space. | have had
the pleasure of knowing that some of the youngethematicians have followed me
down this path. The late Jos. Grinwald and W. &lks have studied kinematics in the
Euclidian plane from this viewpoinf)( Motions, point-pairs, and transfers corresptand
points, straight lines, and planes, resp., andgXoe singular points, the converse is also
true. In the case of spherical geomety it is even true in general. Naturally, one can,
however, also put somas in place of motions, hefée lines in space will then be
associated witlchains of rotations. Recently, an American mathematicianviz., E.
Kasner {) — come upon these ideas with no knowledge of wwk of the
aforementioned. He called a chain of rotationsirbing and his theorem that these
turbines (after a suitable extension of the maditbht they define!) can be permuted by
a group that is isomorphic to the group of colliieas in space is included as a special
case of the one that you heard of today.

The next assumptions (= 4, 5) also have a certain, if also somewhat aded
relationship to the geometry of our space, andeddeprojectivegeometry and to Lie’s
sphere geometry.

The structures that are analogous to the poimtgyai in the first case, straight lines
(number of constants = 8), and in the second dias@r complexes (number of constants
=10). A suitable analytic tool for arbitrary vakiof the number also exists already. It

*) G.d.D, pp. 119.

() J. Griinwald, Sitzungsber. der Wiener Akaderh®) lla (1911), 677-741. W. Blaschke, Zeitschr.
f. Mathematik u. Physik60 (1911), 61-91. Cf., also, Studyprlesungen Uber Geometrig Leipzig, 1911,
pp. 120, 121.

() Jahresber. d. D. Mathematiker-Vereinigurd, (1902), pp. 320, 321, and American Journal of
Mathematics]19 (1906), 116-159.

() Am.J. Math33(19107?), 193-202. Cf., the figure in G. d. D. on pp. 588.
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is included in the profound investigations of R. Lipschitz @stims of square€). The
Lipschitz process consists in calculating with certampglex quantities. They reduce to
the quaternions and bi-quaternions in the cases3, 4. An éxhaustive parameter
representation of our group of 6 transformations can also be achieved in this way.

Let me conclude, kind sirs, with a methodological rkmal have spoken to you
almost exclusively ofreal figures, corresponding to the current limits of science
However, that is true of kinematics, although it carlm®tsaid of geometry, at all. The
introduction of imaginary figures is vital when one would like to arrive at an
understanding of certain much more encompassing laws aral smple form of
expression for other ones. In my opinion,agalytical method must already stand at the
center of theoretical kinematics upon the basis of thiswever, the methods of analytic
geometry also have far greater significance, so it dppedriefer chains of logic and the
possibility of verification, whose absence from syrithgleometry was the source of
many errors.

Analysis currently commands powerful tools, and onécesta gratifying solemnity
in the work of its exponents, thanks to the influenc&Meierstrass. Not long ago, the
same thing was true of geometand often not evewhere an analytical method was
preferred. For kinematics, a not-insubstantial dangemlahis, and such apprehensions
will be reinforced when one sees how far the criticgsmetimes falls short of its task in
this domain.

To err must always be allowed, especially considerindptitibeness of a subject that
places high demands upon the imagination of geometers atswd requires the
construction of special methods, so occasional ovdssigan certainly be excused.
However, let us be careful that the humanly-inescapaateption will not become the
rule, and that kinematics will remain altogether exefngot dilettantism, which so often,
on the contrary, makes the study of geometric papersaspldasure.

Res severa verum gaudium.

() Bonn, 1886. See also Cart&imcyclopédie des Sciences Mathématiqi880), v. |, pp. 463-465.



