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Foundations and goals of analytical kinematics. 
 

By E. Study. 
 

Translated by D. H. Delphenich 
 

 Kind Sirs!  As I was cordially invited by our chairman to speak to you on a freely-
chosen topic, after some brief vacillation, I finally decided on kinematics.  First, I have 
myself already been involved with this subject for quite some time, but then it also seems 
to me to be especially tempting to speak to a larger circle on a discipline that, as I believe, 
is still in the early stages of development, and might thus be of some natural interest to 
the younger academics.  I thought of them, my younger colleagues, first and foremost in 
the preparation of this talk.  Admittedly, I must also direct their attention to the 
difficulties that are rooted in such peculiarities of the subject, and even more so in the 
considerable multi-faceted nature that is nevertheless already present in it.  However, I 
think I can count upon their indulgence.  In the context of a single talk, they will certainly 
not expect more than a sketch whose single − and legitimate, moreover − purpose is not 
so much that of exhibiting a wealth of details, as much as allowing the broad lines to 
emerge through a blurring of this bewildering abundance, to the extent that it might be 
knowable at the present time and for the one who draws the map (1). 
 
 

I. 
 

The soma as a spatial element. 
 

 I think of kinematics as a branch of geometry that deals, above all, with the positions 
that a rigid body can assume in its space.  I will first assume that this space is Euclidian. 
 We can think of the mathematical concept of a rigid body as arising from the 
presentation of an empirically-given body by a process of abstraction, perhaps in the way 
that the concept of point might first come about.  In fact, we disturb its boundary and let 
it fill up all of space; naturally, the impenetrability of the empirical body is also 
abandoned in this way.  There is an essential distinction between what I would like to call 
theoretical kinematics and the study of machines, which has to do with bounded and 
mutually-impenetrable bodies.  Such an abstraction is necessary, since the infinite 
manifold of boundaries stands in the way of presenting general laws, and also the 
deduction of advanced problems that are obtained in this way within the circle of 
consideration. 

                                                
 (1) The talk that was actually given (in the span of an hour) was naturally even more abbreviated from 
what is communicated here. 
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 Nevertheless, the filling of space by the individual positions of the rigid body must 
naturally remain mathematically tangible.  This will be achieved by an axis cross that 
belongs to the body, and is therefore rigidly attached to all of its points; i.e., a moving 
coordinate trihedron.  The position of the trihedron characterizes the position of the body 
completely.  I consider this position to be the basic figure of kinematics, as its most 
important element, and compare it to the figure of the point in ordinary geometry.  I have 
allowed myself a special word for it – viz., 
soma – and I would like to also used it today 
(1).  The soma itself is then something simple 
and indivisible – i.e., an atom, like the point.  
However, points, curves, surfaces, etc., are 
rigidly attached to it.  If the soma moves then 
these figures will move along with it. – One 
would arrive at the consideration of only one 
type of soma, but it would make it more 
convenient to express some facts if two neighboring ones were presented that would 
correspond to the two kinds of coordinate axis cross.  They should be distinguished by 
the words left and right: 
 
 The objects in theoretical kinematics are then, above all, figures that consist of somas 
– left-handed, right-handed, or also somas of both kinds – and which can define either 
discrete sets or continua, namely, analytic continua of somas. 
 
 Although the program that this implies permits extensions, it can already encompass 
seemingly everything that the practitioners of kinematics were concerned with up to now.  
Frameworks and gears, rolling curves and ruled surfaces that grind against each other, the 
theory of the freedom of a rigid body in the infinitesimal and its realization by 
mechanisms, the moving trihedra of curves and surface theory, all of this falls within this 
viewpoint, and still other things can be subordinate to it.  A set of interesting details is 
required at present through a not-insubstantial number of different methods.  I remind 
you only of a main theorem that is in the center of numerous investigations, and in my 
language reads: One can come to any left-handed or right-handed soma from any other 
one of the same kind by rotating around some axis and displacing in the direction of just 
that axis. 
 In contrast to this abundance of viewpoints, one now poses the question of whether 
there is not a general method in kinematics by which one can bring all of these things 
into close connection, a method that is similar to analytic geometry, and thus, a method in 
which the soma enters in place of the point, and will be represented by coordinates that 
are comparable to the point coordinates x1, x2, x3, which would naturally be coordinates 
with the simplest possible character, with which one could comfortably calculate, and 
which must be just as well-adapted to the nature of things as x1, x2, x3 are to point 
geometry in Euclidian space.  These coordinates must also help to give a rightful place to 
the concept of a group, which is completely absent in the kinematics of the engineer.  
Among other things, it must also allow one to write the transformation formulas without 

                                                
 (1) Geometrie der Dynamen, (G. d. D), Leipzig, 1903, Appendix.  
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much calculation, by which one can go from one soma to a second one, from that one to a 
third one, and then also from the first one to the third one directly. 
 We can now obtain each soma from one of them that is determined once and for all – 
e.g., a right-handed soma – or protosoma, by a proper or improper transformation (E or 
U) of the rectangular coordinates x1, x2, x3, or in the language of geometry, by a motion 
or transfer.  A motion allows a figure to emerge from any figure that is congruent to it, 
while a transfer will produce a figure that is symmetric to it.  Thus, any right-sided soma 
will arise from a motion of the protosoma, while a left-handed soma will arise from a 
transfer of it.  The number of constants for a motion or transfer is the same as that of a 
soma, namely, six.  We say briefly: There are ∞6 left-handed somas and ∞6 right-handed 
ones, as well as ∞6 motions and ∞6 transfers. 
 The last-mentioned requirement comes from the following one, moreover: One shall 
exhaustively represent the possible systems of twelve coefficients in the transformation 
formulas for rectangular, Cartesian coordinates by parameters, and indeed, where 
possible, in such a way that firstly, the numerous relations between the twelve 
coefficients will be fulfilled identically, and that secondly, the parameters of the product 
of the of motions or transfers will be bilinear functions of the parameters of the given 
transformations. 
 We now come in medias res to the following theorem: 
 
 It is not possible to achieve the desired goals with six coordinates x1, …, x6, or seven 
homogeneous coordinates x0 : x1 : …: x6 (or also just to associate the totality of motions 
or right-handed somas with the system of values x1 : …: x6 : x0 in a one-to-one and 
invertible way). 
 By contrast, both can be achieved with the use of eight homogeneous coordinates, 
between which one quadratic equation and one inequality exists (1). 
 
 Naturally, there will be infinitely many such systems of eight coordinates.  However, 
they are all connected to each other by linear transformations.  They will next be 
specialized in a suitable way; it will be shown how they can be connected to the 
coefficients of a proper or improper orthogonal transformation (E or U). 
 We would like to denote the eight coordinates or parameters of a motion (E) by the 
symbols: 

α0 : α1 : α2 : α3 : β0 : β1 : β2 : β3 , 
 
and those of a transfer (U) by the symbols: 
 

γ0 : γ1 : γ2 : γ3 : δ0 : δ1 : δ2 : δ3 . 
 
These parameters will then be linked by the relations: 
 
(1)     (αβ) = α0 β0 + α1 β1 + α2 β2 + α3 β3 = 0, 
(2)     (αα) = 2 2 2 2

0 1 2 3α α α α+ + +  ≠ 0, 

(3)     (γδ) = γ0 δ0 + γ1 δ1 + γ2 δ2 + γ3 δ3 = 0, 

                                                
 (1) Math. Ann. 39 (1891), pp. 514, et seq.  
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(4)     (γγ) = 2 2 2 2
0 1 2 3γ γ γ γ+ + +  ≠ 0. 

 
 A motion (E) and a transfer (U), when composed with others of their kind will again 
give a motion or transfer by the following schema: 
 

EE′ = E″; EU′ = U″; UE′ = U″; UU′ = E″. 
 
In each of the four cases, the parameters of the product of two such transformations will 
then be bilinear functions of the parameters of the factors.  Naturally, the result is not 
indifferent to the sequence of these factors. 
 
 

II. 
 

The algebraic apparatus. 
 

 I would now like to actually write down the transformation equations that one gets by 
using the parameters (α : β) and (γ : δ).  Here, a complication admittedly arises for the 
completion of that task.  These formulas will be clear and easy to handle only when one 
appeals to an abbreviated notation.  The tool for this is the calculus of quaternions and 
the bi-quaternions that Clifford founded.  However, to assume that this method of 
calculation should be familiar to any mathematician would be an unreasonable demand.  
Nevertheless, I cannot explain it rigorously, as I would then not arrive at my actual topic 
at all.  However, perhaps I can still give a summary, merely suggestive, explanation of 
the things that matter here. 
 Just as one uses the sign i in algebra and function theory in order to couple two 
numbers x, y into a formal sum – viz., the complex number z = x + y i – so will we 
employ a similar coupling of four real or ordinary complex numbers with the symbols e1, 
e2, e3 .  We thus define the quaternions: 
 
 α = α0 + α1 e1 + α2 e2 + α3 e3 , 
 β = β0 + β1 e1  + β2 e2  + β3 e3 , 
 
etc.  The product of two such formal sums will be defined by the rules for quaternion 
calculation, namely: 

α α α′ ′′=  

will be clarified by the formulas: 
 

(5)     
0 0 1 1 2 2 3 3 0

0 0 1 0 2 3 3 2 1

0 2 2 0 3 1 1 3 2

,

,

,

α α α α α α α α α
α α α α α α α α α
α α α α α α α α α

′ ′ ′ ′ ′′− − − =
′ ′ ′ ′ ′′+ + − =
′ ′ ′ ′ ′′+ + − =

 

 
which contain, in particular, the rules for calculating with the symbols e1, e2, e3 : 
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2
1e  = − 1, e2 e3 = e1, e3 e1 = e2, etc. 

 
 Secondly, should two such sums – again by analogy with x + i y – be combined once 
more: 

α + ε β = (α0 + α1 e1 + α2 e2 + α3 e3) + ε (β0 + β1 e1 + β2 e2 + β3 e3) 
 
then α + ε β will called a bi-quaternion. 
 In calculations, ε2, unlike i2, will not be set equal to – 1, but will be set equal to zero: 
 

2 0.ε =  

It follows from this that: 
 

(α + ε β) (α′ + ε β′ ) = αα′ + ε (αβ′ + βα′ ), 
 
in which the quaternion products αα′, αβ′, βα′ are calculated using the rule (5).  One 
generally says that one equation in quaternions involves four equations in ordinary real or 
complex numbers, and one equation in bi-quaternions involves eight such equations. 
 From what was said, an association is already given, under which each (real) bi-
quaternion α + ε β or γ + ε δ that satisfies the conditions (2) or (4) will correspond to a 
well-defined motion (α : β) or transfer (γ : δ), while, conversely, ∞1 (mutually 
“proportional”) bi-quaternions naturally belong to any motion or transfer. 
 The formulas for the composition of two of our transformations – whether motions or 
transfers – are now these ones: 
 

(6)     

( )( ) ,

( )( ) ,

( )( ) ,

( )( ) .

α εβ α εβ α εβ
α εβ γ εδ γ εδ
γ εδ α εβ γ εδ
γ εδ γ εδ α εβ

′ ′ ′′ ′′+ + = +
′ ′ ′′ ′′+ + = +
′ ′ ′′ ′′+ − = +
′ ′ ′′ ′′+ − = +

 

 
 The parameters of a product will be, as desired, bilinear functions of the parameters 
of the factors: 
 Furthermore, in order for us to not interrupt, we introduce two further symbols that 
have proved to be useful in the theory of quaternions, and are no less useful in the case of 
bi-quaternions.  We set: 
 

0 0

1 1 1 2 2 2 3 3 3

( ) ,

( ) ( ) ( ) ( ) .

S

V e e e

α εβ α εβ
α εβ α εβ α εβ α εβ

+ = +
+ = + + + + +

 

 
One will then have: 

α + ε β = S(α + ε β) + V(α + ε β). (1) 
                                                
 (1) S(α + ε β) is called the scalar part of the bi-quaternion, and V(α + ε β) is its the vectorial 
component.  
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 With the help of this notation, the parameters of the transformation that belong to the 
inverses E−1 or U−1 of a motion E or a transfer U can be represented in the language of 
quaternions.  This system of parameters is, in fact: 
 
 α0 : − α1 : − α2 : − α3 :   β0 : −β1 : −β2 : −β3 : 
(7) 
 γ0 :  − γ1 : − γ2 :   − γ3 : − δ0 :   δ1 :   δ2 :   δ3 ; 
 
these are the bi-quaternions that arise: 
 
  (α + ε β)−1 = (αα)−1 {S(α + ε β) − V(α + ε β)}, 
(8) 
  (γ − ε δ)−1 = (γγ)−1 {S(γ − ε δ) − V(γ − ε δ)}. 
 
One comes to these bi-quaternions when one sets: 
 

α″ + ε β″ = 1 
in the first and fourth of formulas (6). 
 
 

III. 
 

Motions and transfers. 
 

 We now consider the objects of the motion or transfer that is being performed to be: 
 
 1. Points, and indeed ones that are endowed with masses or weights, and therefore 

mass points.  The mass of a point x is called x0 ; its coordinates shall be called 1

0

x

x
, 2

0

x

x
, 

3

0

x

x
.  The four quantities x0, x1, x2, x3 will be linked to a quaternion x0 + x1 e1 + x2 e2 + x3 

e3 , and the bi-quaternion: 
 

0 1 1 2 2 3 3( )Sx Vx x x e x e x eε ε+ = + + +  

will be derived from this. 
 
 2. Rods, or straight lines with weights, i.e., ordered pairs of points ,x y

����

 that will be 
displaced with the preservation of their separation distance along their connecting line; 
these are well-known figures in mechanics.  One appeals to them in order to visualize 
forces that act upon a rigid body, and represent them by coordinates that are named: 
 

X, Y, Z, L, M, N 
 
in the usual notation, and are linked by the equation: 
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(9)             X L + Y M + Z N = 0. 
The ratios: 

X : Y : Z : L : M : N 
 
are the Plückerian coordinates of the line on which the rod lies.  One can see from the 
relation (9) that one has the coordinates of a dyname.  We use other symbols, in the 
sequence: 

p1, p2, p3, q1, q2, q3, 
such that the relation (9) goes to: 
 

p1 q1 + p2 q2 + p3 q3 = 0, 
and define the bi-quaternion: 
 

1 1 2 2 3 3 1 1 2 2 3 3( ) ( ).p q p q p q p q q e q e q eε ε+ = + + + + +  

 
 3. Sheets, which are planes with weights.  A plane has the equation: 
 

(u x) = u0 x0 + u1 x1 + u2 x2 + u3 x3 = 0. 
 
u0 : u1 : u2 : u3 are then the coordinates of the plane.  We ascribe the four quantities u0 , u1 , 
u2 , u3 as the coordinates of a plane with a “weight.”  Its weight is then: 
 

2 2 2
1 2 3u u u+ + . 

 If y is any mass point then: 
 

(u y) = u0 y0 + u1 y1 + u2 y2 + u3 y3 
 
will also mean − up to sign − the distance from the point to the plane, multiplied by its 
weight and the mass of the point. 
 We define the quaternion: 

u = u0 + u1 e1 + u2 e2 + u3 e3 
 
from the coordinates u0 , u1 , u2 , u3, and from this – unlike before in the case of the point 
– a bi-quaternion: 

1 1 2 2 3 3 0( ) .Vu Su u e u e u e uε ε+ = + + +  

 The figures: 
mass-point, rod, sheet 

 
thus each contain one more constant than the corresponding figures: 
 

point, line, plane. 
 

 The ratios of the coordinates of the first three figures are the homogeneous 
coordinates of the last three, except that a uniquely-determined (i.e., special) bi-
quaternion will belong to the first three figures. 



Study – The foundations and goals of analytical kinematics. 8 

 With these preparations, we arrive at the representation of the motions and transfers 
in terms of the associated parameters (α : β) and (γ : δ) (1): 
 

(10)   

1

1

1

( ) ( )( ),

( ) ( )( ),

( ) ( )( ),

Sx Vx Sx Vx

p q p q

Vu Su Vu Su

ε α εβ ε α εβ
ε α εβ ε α εβ

ε α εβ ε α εβ

−

−

−

′ ′+ = + + −
′ ′+ = + + +

′ ′+ = + + −
 

 

(11)   

1

1

1

( ) ( )( ),

( ) ( )( ),

( ) ( )( ).

Sx Vx Sx Vx

p q p q

Vu Su Vu Su

ε γ εδ ε γ εδ
ε γ εδ ε γ εδ

ε γ εδ ε γ εδ

−

−

−

′ ′+ = − − +
′ ′+ = − − − −

′ ′+ = − − +
 

 
 These formulas are at the center of the theory that we are concerned with here; they 
are the main facts and the sources of all the advanced ones.  In them, we have – and this 
is essential – an abbreviated form for the transformation formulas of rectangular 
Cartesian coordinates, and indeed, for the coordinates of points, lines, and planes, as well 
as mass-points, rods, and sheets.  The formulas (10), (11) thus have – and this is also 
essential for the applications – the character of a certain completeness.  On the right-hand 
side, one has the given variables (xκ ; pκ , qκ ; uκ), while the transformed ones are on the 
left and distinguished by primes.  We interpret both of them in the same coordinate 
system; the formulas (10) then mean a motion whose parameters are the quantities (α : 
β); likewise, formulas (11) mean a transfer.  The coordinates of the transformed figures 
depend upon those of the given ones linearly.  If we calculate from the formulas, which 
must remain too laborious here and is often also superfluous in the applications, then that 

                                                
 (1) Cf., Math. Ann. 39 (1891), pp. 514-564.   The equations that are published here are improved in 
form from the ones there, and extended in content.  A brief derivation of formulas (10), (11) is the 
following: As is known, the rotations around the point (1 : 0 : 0 : 0) can be represented with the help of 
quaternions by the formulas: 

0
x′  = x0 (or Sx′ = Sx) and Vx′ = α−1 · Vx · α. 

 
If one replaces these formulas with: 
 

Sx′ = Sx  and Vx′ = α−1 · Vx · α + x0 ξ , 
 
where ξ means a vectorial quaternion (i.e., Sξ = 0), then one will have the representation for any motion.  If 
one now sets ξ = − 2 α−1 β then the formulas: 
 

Sx′ = Sx  and Vx′ = α−1 {Vx · α − 2 Sx · β} 
 
will follow from (αβ) = 0, but they can be assembled into one: 
 

Sx′ + ε Vx′ = (α + ε β)−1 (Sx + ε Vx) (α – ε β), 
 
in which the parameters ακ , βκ , and the coordinates xκ are distributed into different factors of a bi-
quaternion product.  A simple calculation will then yield the remaining formulas (10), (11).  One will again 
come to equations (6) from (10) and (11). 
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will show that the coefficients of the linear functions to be defined will all be fractions 
with the same denominator: 
 

2 2 2 2
0 1 2 3α α α α+ + +  or 2 2 2 2

0 1 2 3γ γ γ γ+ + + , 

 
which is non-zero, by assumption.  The numerators are then likewise entire rational 
functions of second degree in the parameters α, β, or γ, δ.  Conversely, if the coefficients 
of a transformation E or U are given then the ratios α : β or γ : δ will be determined 
uniquely by them.  If β0 = 0 then the motion (10) will be a rotation.  If α0 = 0 then it will 
be a screw; i.e., it will consist of the composition of a rotation through an angle π with a 
displacement in the direction of the rotational axis.  We will have to employ this concept 
soon, which assumes a special place in kinematics, like that of the rotation.  If α1 = α2 = 
α3 = 0, and also β0 = 0 then one will have a rotation around an imaginary axis before one 
– i.e., a displacement. 
 How convenient it is to calculate with these formulas shall be illustrated by some 
simple examples. 
 The group of motions and transfers includes three kinds of involutory transformations 
that have primitive period two, namely, the reflections through points, lines, and planes. 
 We would like to assume that a point y, a line (p* : q*), and a plane v are given.  We 
would like to know how the coordinates of mass-points, rods, and aheets will be 
transformed under the associated reflections.  These are problems that pose no actual 
difficulty using the ordinary methods of analytic geometry, but already require a 
considerable outlay of calculation.  We simply have to suitably specialize our parameters, 
and indeed as follows: 
 
 (γ : δ)  = (y0 :   0 :    0 :    0 :  0 : y1 :  y2 : y3) 
 (α : β) = (0 : 1p∗  : 2p∗  : 3p∗  :  0 : 1q∗ : 2q∗ : 3q∗ ) 

 (γ : δ)  = (0 :  v1 :    v2 :  v3 :  v0 :  0 :   0 :   0). 
 
 Another example: We imagine a motion that is not a displacement and decomposes 
into a rotation and a displacement in the direction of the rotation axis.  The three 

quotients αk : 
2 2 2
1 2 3α α α+ +  are then its direction cosines.  Let 2Θ be the rotation angle 

and let 2H be the step length (“passo,” magnitude of displacement) of this motion.  One 
finds: 

(12)   0 0

2 2 2 2 2 2
1 2 3 1 2 3

cot , .H
α β

α α α α α α
Θ = − =

+ + + +
 

 
 One sees that – as we said – the equation α0 = 0 characterizes the screws, while β0 = 0 
characterizes the rotations. 
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IV. 
 

Manifold of somas. 
 

 The application of the parameters (α : β) and (γ : δ) to continuous manifolds of somas 
now takes the form: The protosoma, as we said, which is thought of as a fixed right-
handed trihedron, will be associated with a second right-handed soma by any motion (α : 
β) and a left-handed soma by any transfer (γ : δ); (α : β) and (γ : δ) are the coordinates of 
both somas.  If, e.g., the coordinates (α : β) were represented as analytic functions of 0, 1, 
2, 3, 4, 5 parameters that were essential to their ratios then a one-to-five-dimensional 
manifold of right-handed somas would arise; as we would like to say, an M1, M2, M3, M4, 
or M5 of right-handed somas. 
 For the study of machines, which mostly deals with compulsory (zwangsläufig) 
processes of motion, the most important case is that of a one-dimensional manifold of 
somas.  One then deals with only one parameter, which one might care to interpret as the 
measure of time t.  Except for limiting cases, there then exists an instantaneous screw 
axis at each moment; the locus of these axes in a fixed soma is a ruled surface.  A second 
such surface exists in a moving soma, and through the so-called grinding of the second 
surface on the first one, a process of motion will come about – still ignoring the limiting 
cases – in which the behavior can be described in a simpler way.  ∞5 manifolds of somas 
will be generated simultaneously in this way, since any soma can be rigidly coupled to 
the second surface.  Everything can ensue in a conveniently computable way with the 
help of the parameter (α : β).  The screw that takes place in the time element dt belongs 
to the bi-quaternion: 
 
(13) α* + ε β*  = (α + ε β)−1{( α + ε β) + (α′ + ε β′ ) dt} 
 = 1 + (α + ε β)−1 (α′ + ε β′ ) dt. 
 
 The associated rotation angle 2 dΘ and the associated step length 2 dH, e.g., are 
given by the formulas: 

  dΘ = − 
2( )( ) ( )

( )
dt

αα α α αα
αα
′ ′ ′−

, 

(14) 

  dH = − 
2

( )

( )( ) ( )
dt

α β
αα α α αα

′ ′
′ ′ ′−

, 

 
and if one would like to assume that (α α) = const. = 1 then one will obtain even simpler 
expressions.  However, the apparent motion of the fixed soma for the observer that sits on 
the moving soma will be found simply by replacing the bi-quaternion α + ε β or S(α + 
ε β) + V(α + ε β) with the bi-quaternion S(α + ε β) − V(α + ε β), and thus, replacing the 
motion parameters: 

α0 : α1 : α2 : α3 : β0 : β1 : β2 : β3 
 
with the parameters of the opposite motion: 
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α0 : − α1 : − α2 : − α3 : β0 : − β1 : − β2 : − β3 . 
 
Generally, one advances in any manifold of somas to a neighboring soma by a rotation 
when the Monge equation: 
 
(15) (dα dβ) = dα0 dβ0 + dα1 dβ1 + dα2 dβ2 + dα3 dβ3 = 0 
 
is fulfilled; naturally, this rotation can also be a displacement.  It can happen that a 
manifold of somas has this property everywhere, and that will define an interesting 
problem that we shall speak about later.  One can, e.g., also conveniently express the 
kinetic energy of a moving soma that is rigidly endowed with mass points, and exhibit the 
differential equations of its motion under the influence of given forces (1). 
 For more-than-one-dimensional manifolds of somas, (13) yields differential equations 
that are similar to the Codazzi equations of surface theory; we would also like to cite 
these equations, since they are meaningful for applications.  Let s and t be any two 
parameters upon which the soma coordinates a, b depend.  If one then sets: 
 

 (α + ε β)−1 
s

∂
∂

(α + ε β) = as + ε bs , 

 (α + ε β)−1 
t

∂
∂

(α + ε β) = at + ε bt 

then one will get: 
 

(16) 
t

∂
∂

(as + ε bs) − 
s

∂
∂

( at + ε bt) = (as + ε bs) (at + ε bt) − (at + ε bt) (as + ε bs). 

 
 However, such circumstances are already of a relatively well-developed kind.  In 
kinematics, the geometry of somas, like the geometry of points, defines foundations of an 
algebraic nature.  Here, as there, one will do well to begin with the study of the simplest 
manifolds of somas, just as one begins with the study of straight lines and planes in the 
geometry of points.  In fact, there are figures in kinematics that can be very comparable 
to the lines and planes of point geometry.  The lecturer called them chains and examined 
them systematically (2).  Here, we shall satisfy ourselves with the consideration of some 
examples.  Such chains of various dimensions will arise when one reflects a soma in all 
lines of a cylindroid, all normals to a certain line, and all lines in space, and when one 
rotates it around a fixed point, or subjects it the reflections in all planes or points of 
space. 
 This and related figures will be linked to each other by remarkable laws, one of 
which, we would now like to get to know. 
 
 

                                                
 (1) Journal des Mathématiques, 7 (1911), 97-112.  The use of bi-quaternions is avoided in this. 
 The possibility of much more far-reaching applications is opened up in a book by E. and F. Cosserat: 
Théorie des Corps deformables, Paris, 1909. 
 (2) See the definition, G. d. D, pp. 563.  
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V. 
 

Kinematics and projective geometry. 
 

 Certainly one of the simplest figures of kinematics is the chain of rotations, which is 
a soma-M1 that is generated from a soma by rotation around a line.  We would therefore 
also like to calculate the chains of displacements, which arise from displacing a soma in 
a given direction.  The consideration of these figures likewise provides us with the insight 
that kinematics encompasses all of the projective geometry of our space.  In fact, if we 
now rotate a right-handed soma in all possible ways around a fixed point then a soma-M3 
will arise in which two somas can obviously be linked to each other by a rotation.  We 
will obtain such an M3 when we set β0 = β1 = β2 = β3 = 0.  However, we can interpret the 
parameters α0 : α1 : α2 : α3 as point coordinates in space and the chains of rotations will 
be mapped onto straight lines (1).  Any theorem in the projective geometry of space will 
furnish a property of the M3 .  A simple enumeration shows that ∞6 such M3 are present; 
we would also like to calculate certain limiting figures for them that arise when the center 
of rotation goes to infinity.  However, we can provide yet a second kind of figure that has 
completely similar properties.  If we now subject a left-handed soma to all reflections in 
planes of space then an M3 of right-handed somas will again arise, and any two somas in 
it can be coupled by a chain of rotations in it (2).  A limiting case of such an M3 will arise 
when we subject a left-handed soma to all reflections in points (or a right-handed one to 
all displacements).  These M3 also exist in ∞6 exemplars. 
 Kinematics thus encompasses projective geometry in three-dimensional spaces, and 
in fact, in several different ways: These spaces appear in kinematics as an extract of 
geometry inside certain three-dimensional chains of somas.  However, another situation 
is of much greater significance, as a result of which the geometry in the continuum of all 
∞6 − e.g., right-handed – somas will have the closest relationship to projective geometry 
in the complex domain in our space (3). 
 We would now like allow a right-handed soma to admit all rotations around a line and 
all displacements along that line.  A two-dimensional chain of somas M2 will arise in that 
way, whose axis will be the line.  One can generate the same M2 in another way, namely, 
when one subjects a suitable soma to all reflections in lines that cut the axis 
perpendicularly.  However, if one reflects a (right-handed) soma in all lines in space then 
an M4 will arise.  I would like to call an isolated soma an M0 .  One then sees almost 
immediately that there are: 
 

∞6 M0 ,   ∞6 M2 ,  ∞6 M4  
 
of the kind that was just described. 
 If we next consider the extension of projective geometry in space into the complex 
domain then we will likewise find three kinds of manifolds of complexes – i.e., real or 
imaginary figures that appear in just the same dimensions and numbers of individuals: 

                                                
 (1) Cf., C. Stéphanos, Math. Ann. 22 (1883), 299-367. 
 (2) G. Königs, Leçons de Cinématique, Paris, 1897, pp. 239-241.  
 (3) G. d. D., Foreword and pp. 555, et seq.  
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We will have ∞2 · 3 complex points 0M ′ , ∞2 · 4 complex lines 2M ′ , each of which is the 

locus of ∞2 complex points, and finally, once more, ∞2 · 3 complex 4M ′ , each of which 

carries ∞4 complex points.  One will then have the well-known law: Two 0M ′  determine 

an 2M ′ , three 0M ′  that belong to no 2M ′  determine an 4M ′ , etc. 

 
 Laws that are entirely similar −−−− but not without exceptions −−−− exist between the 
figures M0, M2, M4 of kinematics. 
 
 On these grounds, the lecturer has called the M2 and M4 chains of lines and planes, 
resp. 
 As an example of an exceptional case let us cite: Two M0 will determine no M2 when 
one of the M0 can be taken to the other one by a displacement.  As such, for each theorem 
in projective geometry, when extended to the complex domain, there is, despite this 
exceptional case, a kinematic counterpart.  The group of all ∞30 complex collineations is 
analogous to a group of ∞30 transformations that permute somas amongst themselves (1). 
 Yet another example might be given: 
 One allows a soma to be rotated around a certain line and displaced in the direction of 
that line, so it moves in a describing M2, and adds any of the following three demands: 
 1. A point of the soma shall remain in a fixed plane. 
 2. A plane of the soma shall go through a fixed point. 
 3. The soma shall emerge from a certain soma by reflecting in any generator of a 
cylindroid or pencil of planes whose axis is the line.  (There are some obvious 
qualifications that emerge, which state that the point and plane that are employed may not 
have certain special positions.) 
 The point of a soma that moves in that way will describe an ellipse, and its plane will 
envelop a cone of rotation or limiting cases of such figures.  There are ∞11 of these soma-
M1, which I call one-dimensional chains.  If one subjects any of them to the 
aforementioned group of transformations then one will always again obtain an M1 that is 
described in the same way. (2) 
 Such an M1 has its counterpart in projective geometry in the form of a locus 1M ′  of 

complex points that is well-known and considered more closely in projective geometry, 
namely, the figure of the Staudt chain. 
 
 Although the Staudt chains seem to be quite dissimilar to the figures that are depicted 
in kinematics, both of them have closely-related properties.  There exists a passage to the 
limit by which one can derive the properties of soma chains M1 from those of Staudt 
chains. 
 

                                                
 (1) Here, we count complex constants.  The real transformations in the stated group of kinematics define 
two separate families, so there are then “2 · ∞30” of them.  Similarly, later on, when one would like to 
consider real constants, one will set 4 · ∞28, instead of 2 · ∞30. 
 (2) The rotational chains belong to these M1, except for the displacement chains.  
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 This is also especially true for the characteristic property of Staudt chains that 
consists in the fact that any four of their points define real double ratios (1). 
 The multi-dimensional chains of projective geometry also have their kinematic 
counterparts in just those figures that were called chains here (2). 
 The close relationship between projective geometry and kinematics, of which only 
suggestions can be made here, also extends to the metric geometric of the soma 
continuum.  This will also be explained by an example. 
 Let X, Y be bi-quaternions that belong to two right-handed somas, e.g.: 
 

X = X0 + X1 e1 + X2 e2 + X3 e3 ,   Xk = ak + ε bk . 
 
The product X−1 Y then gives the parameters of the motion that takes X to Y.  Let 2Θ and 
2H be the rotation angle and step length of this motion.  By analogy with cos(ϑ + i η), 
one can now define a function: 
 

cos(Θ + ε H) = cos Θ – ε · sin Θ · H. 
 
One then finds that (3): 
 

(17)  0 0 1 1 2 2 3 3

2 2 2 2 2 2 2 2
0 1 2 3 0 1 2 3

cos( ) .
X Y X Y X Y X Y

H
X X X X Y Y Y Y

ε + + +Θ + =
+ + + + + +

 

 
 This formula, which is very familiar to every mathematician with a different meaning, 
thus appears in kinematics in a certainly quite unexpected way, and with a new content.  
The fact that one can infer a whole set of consequences from this fact alone scarcely 
needs to be stated.  Theorems of non-Euclidian geometry furnish theorems of kinematics 
by a mechanically-defined passage to the limit. 
 
 Kinematics itself seems to be an extension of non-Euclidian geometry that 
therefore also takes on an immediate meaning for Euclidian space. 
 
 

VI. 
 

Continuation: A kinematic analogue to projective line geometry. 
 

 However, kinematics has room for a second analogue to projective geometry, among 
many other ones (4).  While the first one led us to a group of ∞30 transformations that 
                                                
 (1) G. d. D., pp. 244, 331, 568.  
 (2) G. d. D., pp. 563, et seq.  
 (3) G. d. D., pp. 585. 
 (4) G. d. D., pp. 580, et seq.  The material there can be treated only very briefly, corresponding to the 
plan of the book.  The following brings many new things. – The existence of analogies between kinematics 
and Plücker’s line geometry was also known to the Swiss mathematician R. de Saussure.  He attempted to 
exploit such ideas, but with inadequate tools and without investing sufficient care. 
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permute somas and certain manifolds of somas amongst themselves, the second one 
belongs to a group of 2 · ∞30 transformations (1). 
 We recall that one can also regard the Plückerian line coordinates as coordinates of 
the points of a quadratic manifold 24M : 

 
(18)    p1 q1 + p2 q2 + p3 q3 = 0, 
 
which lies in a space of five dimensions, and that precisely this interpretation of line 
coordinates immediately opens up a royal road to numerous results in projective 
geometry.  One needs only to translate the results from the theory of quadratic manifolds 
into another language.  We then interpret the soma coordinates as point coordinates in a 
quadratic manifold 2

6M  in a space of seven dimensions whose equation is just the 

relation: 
(19)    α0 β0 + α1 β1 + α2 β2 + α3 β3 = 0. 
 
The images of somas, whose distribution is space is difficult to imagine, then lie next to 
each other like points on a second-order ruled surface and are presented almost 
intuitively.  The aforementioned group of kinematics has the group of 2 · ∞28 
collineations that leave 2

6M  at rest for its image. 

 Admittedly, an essential difference exists between the line and soma coordinates.  
Namely, whereas the line continuum, as we regard it today, is closed and leads to a 
gapless map of the lines in space to the points of a 2

4M , a soma can disappear when one 

extends it to infinity.  Coordinate systems for which: 
 

2 2 2 2
0 1 2 3α α α α+ + +  = 0, 

and thus, for which: 
α0 = α1 = α2 = α3 = 0, 

 
since only real figures will be considered here, do not correspond to any soma.  However, 
things would happen the same way in line geometry if the imaginary lines were still not 
fictitious; we must then exclude the coordinate systems for which: 
 

p1 = p2 = p1 = 0. 
 
 In mechanics, we then know only coordinates X, Y, Z, L, M, N of forces, but still not 
those 0, 0, 0, L, M, N of force-pairs.  Here, as there, the filling in of this hole is possible, 
and it is also necessary if one would like to come to know simple algebraic laws.  I shall 
be brief, and thus give only the theorem that will provide the definition of the analogue to 
an imaginary line (i.e., a pseudo-soma): 
 
 If one subjects any (right-handed) soma to all screwing motions (1) then a soma-M5 
will arise. Its image on 2

6M  will be a cone 2
5M , namely, the intersection of 26M  with one of 

                                                
 (1) 4 · ∞28 transformations in the real domain. See the remark on page 13. 
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its linear tangential spaces R6 .  The contact point of this space R6 – viz., the vertex of the 
cone 2

5M  − will be any point with coordinates of the form: 

 
0 : 0 : 0 : 0 : 0β ∗  : 1β ∗ : 2β ∗  : 3β ∗ . 

 
If the soma that is employed for the construction has the coordinates: 
 

α0 : α1 : α2 : α3 : β0 : β1 : β2 : β3 
 
then the proportion will exist: 
(20)    0β ∗  : 1β ∗ : 2β ∗  : 3β ∗  = α0 : α1 : α2 : α3 . 

 
 Obviously, the soma-M5 thus-constructed is the complete analogue to the figure of all 
real lines that are parallel to a plane, and the starting soma is analogous to any line that 
is perpendicular to this plane.  One obtains a simple figure that can represent the (right-
handed) pseudo-soma in the form of three ordered, mutually-perpendicular directions that 
correspond to the positive directions of the three axes of any of the ∞3 somas: 
 

0β ∗  : 1β ∗ : 2β ∗  : 3β ∗  : * : * : * : *. 

 
Naturally, I cannot go further into this very important point.  Therefore, as we will now 
do, it shall be subjected to restrictions.  Now, only those (analytic) loci of points on 26M  

will be considered that do not traverse the entire linear manifold α0 = α1 = α2 = α3 = 0, 
and also only when their points do not belong to just that manifold. 
 We will now pick some of the simplest relations that the map described yields by 
contrasting them with figures in 26M , and indeed, with linear point-manifolds in 2

6M , that 

correspond constructively to the figures that are described in kinematics.  The somas to 
be mapped shall be right-handed throughout. 
 1. There are ∞9 straight lines R1 in 2

6M .  They will correspond to the chains of 

rotations that were described already. 
 2. There are also ∞9 planes R2 in 2

6M .  Kinematic counterpart: One subjects a left-

handed soma to all reflections in the planes of a bundle, or in a limiting case, all 
reflections in the points of a plane. 
 3 and 4.  There are ∞12 “left-handed” three-dimensional linear spaces R3 in 2

6M  and 

∞6 right-handed linear spaces R3. 
 We have already given the construction for the corresponding families of somas, as 
well.  However, we must now establish what sort of three-dimensional spaces should be 
called “left-handed” and which should be called “right-handed.”  We will determine that 
the left-handed R3 correspond to the soma-M3’s that are generated by rotation.  The image 
of the M3 of all pseudo-somas (α0 = α1 = α2 = α3 = 0) will then likewise be a left-handed 

                                                                                                                                            
 (1) See the definition on page 9.  
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R3 .  However, all R3 that can be derived from a left-handed soma by the process of 
reflection that was described above will be right-handed. 
 All linear manifolds in 2

6M  are now already exhausted with the enumerated figures.  

However, manifolds 2
kM  (k = 1, …, 5) − e.g., the planar sections of 26M − can likewise be 

generated. 
 

VII. 
 

The Ribacour problem. 
 

 As an application of the theory that was sketched out, we might demonstrate the 
response to a question that was posed already in the context of the Monge equation: 
 

dα0 dβ0 + dα1 dβ1 + dα2 dβ2 + dα3 dβ3 = 0, 
 
which we will refer to as the Ribacour problem: 
 
 How are the (analytic) soma manifolds Mk , in which any two consecutive somas can 
be linked by a chain of rotations, to be generated kinematically? 
 
 The images of Mk that correspond to values k = 1, 2, … must be curves, surfaces, etc. 
in 2

6M  whose tangents all traverse 26M  itself.  One now finds that one must have k ≤ 3 (1), 

and the assumption that k = 3 is satisfied by only the linear R3 in 2
6M  that were described 

already. 
 Trivially, all M1, M2 whose images lie in such R3 will then have the desired property.  
Their exhaustive enumeration, classification, and construction, which encounters no 
difficulty, might be omitted, for sake of brevity. 
 What will then remain are certain other M1 and M2 .  The M1 arise when one lets any 
ruled surface that is not a cone roll upon a second ruled surface, and indeed, a rectilinear 
bending surface.  A soma that is rigidly coupled to the moving surface will describe any 
of the desired M1; the isometric relationship of one surface to the other will be evoked by 
either a motion or a transfer, but it cannot be a relationship of congruence or symmetry. 
 We now come to the non-trivial soma-M2’s (e.g., M2 of right-handed somas) of the 
desired kind whose exhaustive enumeration defines the interesting, and likewise difficult, 
part of our problem. 
 
 [1].  One lets two surfaces that are related to each other by isometry, but neither 
congruent nor symmetric, roll upon each other in such a way that corresponding points 
and line elements coincide at each position of the moving surface, and also all possible 
positions of that kind will be assumed.  If the two surfaces are rectilinear then their 
generators might not correspond.  The image of a soma-M2 that is generated by a moving 
soma in this way is a non-rectilinear surface in 2

6M  whose tangential planes all lie on 26M . 

                                                
 (1) See G. Koenigs, Leçons de Cinématique, Paris, 1897, pp. 239-241.  
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 [2l].  One lets two curves that are isometrically related to each other, but do not have 

equal curvature at every corresponding point, roll one upon the other in any way, and lets 
the moving curve rotate around the common tangent to both curves in each position.  The 
image of a soma-M2 that is generated by a moving soma is a rectilinear M2 on 2

6M  that 

has the property that any two consecutive generators can be linked by a left-sided R3, but 
not by a right-handed R3 . 
 [2r].  One lets a rectilinear bending surface roll upon a rectilinear surface that is not 

developable.  One thinks of a left-handed soma as fixed in the moving surface.  In each of 
the ∞1 positions thus obtained, one now reflects (the moving surface and) the soma in all 
tangential planes to the fixed surface, and thus, in the planes through the generators of 
this surface.  An M2 of right-handed somas arises that has the desired property.  The 
image of this soma-M2 is a rectilinear M2 in 2

6M  that has the property that any two 

consecutive generators can be linked by a right-handed R3, but not a left-handed R3 . 
 [3].  One considers two curved lines that are isometrically related to each other, but 
not by congruence or symmetry, such that they have equal curvatures at corresponding 
points; thus, the tangential surface to one of them appears as the bending surface to the 
tangential surface of the other (while the rectilinear generators correspond to each other).  
One then lets the one curve roll upon the other one (or the tangential surface to the one on 
the tangent surface to the other).  At each of the ∞1 positions thus obtained one lets the 
moving curve and a (right-handed) soma that is fixed in it rotate around the common 
tangent to both curves.  A soma-M2 of the desired kind will then arise.  Its image is a 
rectilinear M2 in 2

6M  in which any two consecutive generators can be coupled by a left-

handed R3, as well as a right-handed R3 .  {Cf., the cases [2l] and [2r]}.  This image is, in 

fact, the tangent surface to a curve that runs in 2
6M  whose osculating planes all likewise 

lie in 2
6M . 

 [4].  One lets any (right-handed) soma rotate around all tangents to a skew curve.  The 
image of the soma-M2 thus-obtained is a rectilinear M2 in 2

6M , namely, a cone whose 

tangential planes all lie in 2
6M . 

 One recognizes, with no further assumptions, how the figures that were enumerated 
last can be regarded as limiting cases of the first-discussed ones: 

 

[1] 

[2l] 

[2r] 

[3] [4] 

 
 However, the solutions to the Ribacour problem for the stated figures are still not 
exhausted with them, if one, as we did here, omits the previously-defined trivial  limiting 
cases.  Namely, it can happen that any soma in a soma-M2 can be coupled to a suitably-
chosen neighboring soma by a chain of displacements; i.e., that among the tangents to the 
image M2 at any point there is always one of them that meets the R3 for which α0 = α1 
= α2 = α3 = 0.  One then adds some further figures.  As one finds, they are (except for the 
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“trivial” cases; cf., supra) all limiting cases of the families [2l] and [4].  They can be 

described as follows: 
 [5].  One lets the second of two non-cylindrical and non-symmetric rectilinear 
surfaces roll upon the first one, where one of them can arise from the other one by 
bending, with preservation of straight lines (1).  In each of the ∞1 positions thus-obtained, 
one subjects the moving surface and a (right-handed) soma that is fixed in it to all 
displacements in the direction of the common normal to the two consecutive associated 
generators of the fixed surface (in the direction of the line of striction in the contact line 
of the two surfaces). 
 Each soma-M2 that can be described in this way at all can be generated in this manner 
in infinitely many ways; in particular, with the help of developable surfaces.  Their image 
will be either [2l*] the tangent surface to a certain curve that lies in 2

6M  or [4*] a certain 

cone.  If the second case appears then the soma-M2 can be constructed in an even simpler 
way: One subjects a (right-handed) soma to all screws (cf., pp. 9) whose axes are the 
tangents to a non-planar curve or the lines of a non-cylindrical cone. 
 
 The non-trivial solutions to the Ribacour problem are exhausted with the enumerated 
figures. 
 
 What Ribacour himself presented as the solution to his problem for soma-M2, and 
what others then sought to prove (2), can only amount to an entirely coarse approximation 
to reality. 
 All of the desired soma-M2, or, in the terminology of the French geometer, all 
“déplacements à deux paramétres pour lesquelles les mouvements élémentaires sont 
toujours des rotations (*),” shall, in fact, arise from isometrically-related surfaces that roll 
upon each other, and also the converse shall always be true.  The fact that one thus 
formulates assertions that already contradict elementary and well-known facts is, in any 
event, also explained by the otherwise widespread, but highly questionable, practice of 
paying no heed whatsoever to the “trivial” exceptional cases.  Errors in logic that the 
consideration of just these cases has uncovered immediately can very easily remain 
unnoticed in that way. 
 
 

VIII. 
 

A kinematic reciprocity theorem. 
 

 Kind sirs, let us once more consider the formulas (6), (10), and (11).  These formulas, 
in fact, lead to still more beyond the ones that we have arrived at up to now. 

                                                
 (1) It is not excluded that the generators of the one surface define a pencil of planes (and the other ones 
then define a cone). 
 (2) Darboux, Théorie des Surfaces. I, pp. 66-73.  G. Koenigs, loc. cit., pp. 236-239.  
 (*) Translator’s note: “two-parameter displacements for which the elementary motions are all rotations.” 
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 We have set ε2 = 0 in all calculations.  However, similar arguments can also be made 
under more general assumptions.  It suffices to assume that ε2 = 1 and ε2 = − 1.  In place 
of the inequality (αα) ≠ 0, one will have to employ one or the other inequality: 
 

(αα) + (ββ) ≠ 0, (αα) + (ββ) ≠ 0. 
 
[In all three cases, one will thus have the inequality (αα) + ε2 (ββ) ≠ 0]. 
 In both cases, ε2 = 1 and ε2 = −1, the formulas can likewise be interpreted 
geometrically quite simply.  If ε2 = 1 then we will have the group of 2 · ∞6 proper and 
improper (real) orthogonal transformations of four variables before us, and thus, the 
group of motions and transfers in a Euclidian space of dimension four that leave a (real) 
point (0, 0, 0, 0) at rest.  The other assumption ε2 = − 1 has recently taken on a special 
interest, as a result of arguments that have their roots in physics in the bold ideas of 
Lorentz.  This assumption leads to the geometry of Minkowski space. 

 I would like to treat only the assumption that ε2 = 1 and further consider only points, 
and also only ones whose four Cartesian coordinates x0, x1, x2, x3 satisfy the equation: 
 
(21)    2 2 2 2

0 1 2 3x x x x+ + +  = 1, 

 
which then lie on a three-dimensional cone.  The geometry of this manifold is a type of 
non-Euclidian one, namely, three-dimensional spherical geometry. 
 Kinematics in these spherical spaces must already be of interest to us because we do 
not know whether we do not perhaps live in such a space.  However, in addition, they, 
like all of spherical geometry, take on a highly theoretical meaning through an intrinsic 
symmetry that is foreign to kinematics in Euclidian space.   Euclidian space is, however, 
a limiting case – i.e., a degeneracy – of spherical space, just as the plane is a limiting case 
of a sphere.  Therefore, spherical geometry can also lead to many insights into Euclidian 
space that would not be quite as easily accessible to us.  The same thing is true in 
kinematics. 
 If we go down a path that runs parallel to the one that is trodden in Euclidian 
kinematics then we will find that our first method – viz., to present a kinematical 
analogue to projective geometry – does not, however, yield anything new beyond the 
second one (1).  We then arrive, in turn, at the geometry on the quadratic manifold 2

6M  

and the group of 2 · ∞28 collinear transformations of it.  That cannot be surprising, since 
precisely the same thing is true for projective geometry itself, which is likewise 
independent of the hypotheses that one cares to make on the nature of space.  However, 
spherical kinematics does teach us something that can very easily be overlooked. 

 We consider an ordered pair of points ,x x′
�����

 in spherical space, and the point ,x x′− −
��������

 
that is diametrically opposite to it, and combine these figures into a double pair.  We 
remark that a motion or transfer that associates the point x with the point x′ must also 
associate the point – x with the point − x′.  We would like to say that the motion or 

                                                
 (1) The case ε 2 = − 1 {ε = i} leads to a kinetic interpretation of projective geometry in the complex 
domain. 
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transfer is then united with the double pair.  However, we can introduce the ratios of 
eight quantities ξk, ηk as coordinates of a double pair, which are coupled by the equation: 
 
(22)   (ξ η) = ξ0 η0 + ξ1 η1 + ξ2 η2 + ξ3 η3 = 0. 
 
We need only to set: 
(23)    xk = ξk + ηk , kx′  = ξk − ηk . 

 
 Here, we then have our quadratic equation once more, only with a different meaning, 
and also from this point onward we likewise once more enter the realm of kinematics.  
Namely, when we likewise use the symbols ξ′, η′, y, like the symbols ξ, η, x, it will 
become: 
(24)    (x y) − (x′ y′ ) = 2 {(ξ η′ ) + (η ξ′ )}. 
 
On the left here, one finds the difference between the cosines of two spherical distances: 
 

cos(x, y) – cos(x′, y′ ). 
 
 If this expression vanishes then the point-pair x, y will be congruent − or what 
amounts to the same thing − symmetric to the point-pair x′, y′, and likewise the point-pair 
– x, − y will be naturally related in the same way to the point-pair − x′, − y′.  We would 
like to say that the two double pairs of points are then isometric to each other.  However, 
the right-hand side of our equation (24) provides a meaning for the fact that the two 
points (ξ, η) and (ξ′, η′ ) on 2

6M  can be coupled by a line that runs completely on 2
6M .  It 

is now obvious that all double pairs that are united by a motion or transfer in spherical 
space are isometric to two of them.  The image of all of these double pairs is then 
necessarily a linear R3 in 2

6M . 

 The details of this argument, which I would not like to trouble you with, lead to a 
sequence of theorems, among which, the following one might be emphasized: 
 
 I.  The manifold of ∞6 – e.g., left-handed – R3 in 2

6M  can be mapped birationally and 

without singularities onto the manifold of all points in just that 2
6M  (and indeed also in 

the complex domain). 
 
 II.  Each theorem in projective geometry on 2

6M  is associated with five other ones 

(that are not necessarily different from the first one).  Under the transition from one such 
theorem to the remaining ones of the same group, the concepts of: 
 

left R3 ,  point,  right R3 
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will be permuted in all possible ways, and indeed, such that the figures in united position 
will again go to other such figures, and above all, projective properties will again go to 
other ones (1).  In particular, pencils of lines in 2

6M  will again correspond to other ones. 

 
 Naturally, a point and an R3 are said to be united when the point lies in the R3 .  
However, it must still be clarified what one means by the “united position” of a left and a 
right R3 .  Now, a left and a right R3 will always have at least one point in common.  If 
they have more than one point in common then they will have all points of a plane (i.e., 
an R2) in common (2), and we will then say that they are united. 
 The content of theorems I, II is thoroughly comparable to the group of facts in 
projective geometry that are summarized under the name of the principle of duality.  
However, while that principle always presents two theorems as equivalent, here, we have 
six that belong together.  They will be permuted amongst themselves by a group of 6 · 
∞28 single-valued transformations (3) whose theory is easiest to understand when one 
introduces the ∞9 lines in 2

6M  as spatial elements. 

 In order to be able to briefly represent what this implies for kinematics, we will still 
need to define some further concepts.  It can happen that a motion and a transfer in 
spherical space permute all points whose coordinates satisfy a linear, homogeneous 
equation: 

u0 x0 + u1 x1 + u2 x2 + u3 x3 = 0, 
 
i.e., all points of a certain spherical surface (viz., the principal sphere), in the same way.  
We would then like to say that the motion and the transfer are united. 
 One now has the remarkable theorem (viz., the reciprocity theorem): 
 
 III.  The real figures: 

left R3,  point,  right R3 
 
in 2

6M  can be simultaneously associated with the (real) figures: 

 
motion, double pair of points,  transfer, 

 
resp., of spherical geometry without exception in an invertibly single-valued and 
continuous way such that figures in united position will again correspond to other ones. 
 
 Here, a motion or transfer, when regarded as a “figure,” is the totality of all associated 

point-pairs ,x x′
�����

.  The fact that the sequence of the last three structures is arbitrary was 
already asserted in II.  We now perform a passage to the limit and find: 
 

                                                
 (1) As implied in G. d. D., pp. 583.  
 (2) Göttinger Nachrichten, 1912, pp. 20, remark 2.  One left and one right R2 will go through any plane 

in 2

6
M .  

 (3) In the real domain, there are 12 · ∞28.  See the remark on pp. 13. 
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 IV.  A theorem that otherwise reads the same as Theorem III also exists in Euclidian 
kinematics, except that the concept of (ordered) point-pair appears in place of the 
concept of double pair of points, and singular places for the map already appear in the 
real domain. 
 
 These singular places can be eliminated by defining special concepts that are similar 
to the concept of the “imaginary point.” 
 We would like establish the sequence that was given in Theorem III.  For Euclidian 
space, we then obtain the following association of pairs of real points x, x′ (of mass one) 
with certain points in 2

6M  in place of the association (23): 

 

(25)   

2 2 2 2 2 21
0 0 1 2 3 1 2 34

3 31 1 2 2
1 2 3

3 31 1 2 2
1 2 3

1, { },

, , ,
2 2 2

, , .
2 2 2

x x x x x x

x xx x x x

x xx x x x

ξ η

ξ ξ ξ

η η η

′ ′ ′ ′ ′ ′= = + + − − −
′′ ′ ++ += = =

′′ ′ −− −= = =

 

 
 Isometric point-pairs now also again correspond to points on 2

6M  that can be 

connected by a line that lies in 26M .  Isometric pairs of curves or surfaces will, however, 

correspond to the same kinds of curves and surface on 2
6M , as we considered in the 

context of the Ribacour problem, and indeed in both cases (23) and (25).  We would like 
to consider only surface pairs, and among them, only ones in the first-given family [1].  
One finds that their images in 26M  will be permuted amongst each other by not only the 2 

· ∞28 collineations of 2
6M , but also by the remaining 4 · ∞28  single-valued transformations 

that we spoke of.  We then have the theorem: 
 
 V. The 6 · ∞28 single-valued transformations that belong to the quadratic manifold 

2
6M  evoke transformations in spherical, as well as Euclidian, spaces that generally take 

pairs of surfaces that are related by isometries, but not by congruence or symmetry, to 
other such surfaces.  For surface pairs with non-rectilinear images that is indeed without 
exception.  Surface pairs that contact in corresponding pairs of surface elements (viz., 
facets), and also have corresponding line elements in common there, will again 
correspond to other such surfaces. 
 
 The subgroup of 2 · ∞28 transformations of the group that is thus distinguished was 
given by P. Stäckel (1) for the case of Euclidian space.  If follows further that one can 
derive points, curves, and surfaces in a non-Euclidian space from such things in a 
Euclidian space, and conversely.  A special transformation of that kind, from which, one 
then obtains the remaining ones, is given for the case of spherical space: 
 
                                                
 (1) Comptes Rendus, t. CXXI, 1895, pp. 396, and Jahresbericht der Deutschen 
Mathematikervereinigung, Bd. 14, 1905, pp. 507-516. 
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2 2 2 2 2 2 2 2
0 1 2 3 0 1 2 3{ 1 }x x x x x x x x′ ′ ′ ′+ + + = = + + +  

by the formula: 

(26)   
0 0 0 0

, ,k k
k k

x x

x x x x
ξ ξ

′′= =
′ ′+ +

  (k = 1, 2, 3), 

 
in which ξk, kξ ′  means ordinary rectangular point coordinates, moreover.  If we use the 

symbols x and ξ, along with the symbols y and η then that will yield, in fact: 
 

(27)  
3 3

2 2

1 1

( ) ( )k k k k
k k

ξ η ξ η
= =

′ ′− − −∑ ∑ = 
3 3

0 00 0 0 0

1 1
k k k k

k k

x y x y
x x x x = =

 ′ ′⋅ ⋅ − ′ ′+ +  
∑ ∑ . 

 
 Naturally, this transformation is endowed with singular places.  When one omits 
them, it will take congruent or symmetric surface pairs to other such surface pairs.  Just 
as the difference between Euclidian and non-Euclidian geometry becomes meaningless 
under the group of collineations, so does the difference between Euclidian and non-
Euclidian kinematics vanish under the analogous groups of 2 · ∞28 and 6 · ∞28 
transformations. 
 

IX. 
 

Further outlook. 
 
 What I have spoken to you of, kind sirs, is certainly only a fragment of a fragment.  I 
have been able to treat only some of the simplest examples, and also only summarily, and 
have, in fact, been forced to strongly curtail the formal apparatus, whose proper 
development is not free of complications.  At least, what was presented might help one 
realize that there are methods in kinematics that have great import that are on a par with 
the classical methods of analytic geometry, and which subsume them, in addition. 
 Kinematics contains a tremendous wealth of general algebraic and analytic problems, 
as well as also special forms that seem to be worthy of consideration, and await only the 
mathematician who would like to possess this wealth.  If I were to ask that you follow me 
down a longer path then I would be able to show you, e.g., the surprising way by which 
the theory of a much-investigated figure – viz., the eight intersection points of three 
second-order surfaces – is connected with geometry on the manifold 2

6M , and thus, with 

kinematics, and how deeper-lying results can be derived from it.  I must deny myself that, 
although you might invite me to find a place for some remarks that open up a broader 
perspective. 
 
 The latter association of motions, point-pairs, and transfers in a non-Euclidian or 
Euclidian space with left-handed linear spaces, points, and right-handed linear spaces 
(of highest dimension), resp., in a quadratic manifold: 
 

∑ ξk ηk = 0 
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can be extended to an indeterminate dimension. 
 
 The law by which this extension of our program proceeds can be expressed, if only 
incompletely, in certain dimensions, of which, the first of these are: 
 

1 2 3 4 5

(1,2,1) (3,4,3) (6,6,6) (10,8,10) (15,10,15).

n =
 

 
 The third case is the one that I had the honor of entertaining you with.  We now see 
that this case precisely, and thus kinematics in a three-dimensional space, assumes a 
special place in the entire sequence. 
 
 The space of three dimensions is characterized by the kinematical reciprocity 
theorem that was proved (Theorems III, IV). 
 
 We remark in passing that our space has such peculiarities, along with others.  Thus, 
the known reciprocity between dynames and infinitesimal motions is also restricted to 
three-dimensional (Euclidian or non-Euclidian) space (1). 
 The case n = 2, whose theory is naturally contained in the case n = 3, leads to an 2

4M  

in a five-dimensional space and thus, to projective geometry in ordinary space. I have had 
the pleasure of knowing that some of the younger mathematicians have followed me 
down this path.  The late Jos. Grünwald and W. Blaschke have studied kinematics in the 
Euclidian plane from this viewpoint (2).  Motions, point-pairs, and transfers correspond to 
points, straight lines, and planes, resp., and except for singular points, the converse is also 
true.  In the case of spherical geometry (3), it is even true in general.  Naturally, one can, 
however, also put somas in place of motions, here.  The lines in space will then be 
associated with chains of rotations.  Recently, an American mathematician − viz., E. 
Kasner (4) – come upon these ideas with no knowledge of the work of the 
aforementioned.  He called a chain of rotations a turbine, and his theorem that these 
turbines (after a suitable extension of the manifold that they define!) can be permuted by 
a group that is isomorphic to the group of collineations in space is included as a special 
case of the one that you heard of today. 
 The next assumptions (n = 4, 5) also have a certain, if also somewhat deviated, 
relationship to the geometry of our space, and indeed to projective geometry and to Lie’s 
sphere geometry. 
 The structures that are analogous to the point-pair are, in the first case, straight lines 
(number of constants = 8), and in the second case, linear complexes (number of constants 
= 10).  A suitable analytic tool for arbitrary values of the number n also exists already.  It 

                                                
 (1) G. d. D, pp. 119.  
 (2) J. Grünwald, Sitzungsber. der Wiener Akademie, 120, IIa (1911), 677-741.  W. Blaschke, Zeitschr. 
f. Mathematik u. Physik, 60 (1911), 61-91.  Cf., also, Study, Vorlesungen über Geometrie, I, Leipzig, 1911, 
pp. 120, 121. 
 (3) Jahresber. d. D. Mathematiker-Vereinigung, 11 (1902), pp. 320, 321, and American Journal of 
Mathematics, 19 (1906), 116-159.  
 (4) Am. J. Math. 33 (1910?), 193-202.  Cf., the figure in G. d. D. on pp. 588.  
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is included in the profound investigations of R. Lipschitz on the sums of squares (1).  The 
Lipschitz process consists in calculating with certain complex quantities.  They reduce to 
the quaternions and bi-quaternions in the cases n = 3, 4.  An (exhaustive) parameter 
representation of our group of 6 · ∞28 transformations can also be achieved in this way. 
 Let me conclude, kind sirs, with a methodological remark.  I have spoken to you 
almost exclusively of real figures, corresponding to the current limits of science.  
However, that is true of kinematics, although it cannot be said of geometry, at all.  The 
introduction of imaginary figures is vital when one would like to arrive at an 
understanding of certain much more encompassing laws and to a simple form of 
expression for other ones.  In my opinion, an analytical method must already stand at the 
center of theoretical kinematics upon the basis of this.  However, the methods of analytic 
geometry also have far greater significance, so it appeals to briefer chains of logic and the 
possibility of verification, whose absence from synthetic geometry was the source of 
many errors. 
 Analysis currently commands powerful tools, and one notices a gratifying solemnity 
in the work of its exponents, thanks to the influence of Weierstrass.  Not long ago, the 
same thing was true of geometry, and often not even where an analytical method was 
preferred.  For kinematics, a not-insubstantial danger lay in this, and such apprehensions 
will be reinforced when one sees how far the criticism sometimes falls short of its task in 
this domain. 
 To err must always be allowed, especially considering the brittleness of a subject that 
places high demands upon the imagination of geometers and also requires the 
construction of special methods, so occasional oversights can certainly be excused.  
However, let us be careful that the humanly-inescapable exception will not become the 
rule, and that kinematics will remain altogether exempt from dilettantism, which so often, 
on the contrary, makes the study of geometric papers such a pleasure. 
 

Res severa verum gaudium. 
 
 

___________ 

                                                
 (1) Bonn, 1886.  See also Cartan, Encyclopédie des Sciences Mathématiques (1890), v. I, pp. 463-465.  


