Excerpted from: E. Studgeometrie der DynameB. G. Teubner, Leipzig, 1903.

Appendix.

General outline of a new method in kinematics.

Now that we have reached the end of the path thagetveut upon, we may perhaps
allow ourselves a vision of a world of geometric fortinat, up to now, we have only
touched upon peripherally, and if not all of the evidem®sas to deceive us, promises to
be one of the most rewarding realms of geometricadared. A summary, whose
significance we can only claim to sketch out, sh&bwise serve to once more to focus
one’s attention to a greater degree on the main aspiettis matters that were treated up
to now, and, through further applications, to shed l@hthe import of the theory that
was developed.

A main concern of kinematics, which must be separatetptetely from the study of
machines today, is defined by the study of (analytical) folaisi of " (r = 1, ..., 6)
positions of a rigid body in space — i.e., of relativesipons of this body relative to
another one that one calls immobile, or, as onesdaresay, imaginary. On the whole,
this study is still only slightly developed, especialtythe cases in which thaegree of
mobility of the body is greater than the indicated dimensidsy two ). In many
respects, concerning the problems that come from exanipdésare borrowed from
technology and tentative investigations, one has yetnerge from the problem of
bringing some order to the details that feature in thémHowever, one can, in this way,
except for other theories that do not bear the clodinaimatics, enter into a particularly
important part of the differential geometry of spacevesrand curved surfaces, as
Darboux has accomplished in his great work on this situatio the following, once we
have examined the infinitesimal mobility of a rigid bpdg in the previous paragraphs,
we shall now provide a further contribution to this pdrtheoretical mechanics that is
also referred to as the “geometry of motion,” and idd@ethe study of the mobility of a
rigid body in the finite, as well.

The soma and its coordinates.

We think of our rigid body as always being represented Bctangular system of
axes, namely, by three mutually perpendicular linesags that are associated with the
three indices 1, 2, 3, and which can be coupled with @&mysff rectangular Cartesian
coordinates. As a result of its motion, this figuren d® brought intox® different
positions. We call each of these positiorsoena and an arbitrary, but unambiguously
chosen, one of them,@otosoma Every other soma emerges from the protosoma by a
certain motion, and it will be represented by the formulas thate developed in 8§ 21
and 8§ 25 when the coordinates with no accent relateetprittosoma and the ones with

) If r > 2 then it is known that one can, in addition to theated that a rigid body can assume a
prescribed manifold of positions, come to another one ithakpressed by a non-integrable system of
Pfaffian equations. The mobility in the infinitesintizat is called the “degree of freedom” will thencale
less thamr at a place that is in “general position.” In the tewa, will always address only the much simpler
case in which these two numbers that one must distinguiifeligrminology are equal to each other.

") One confers, perhaps, the recently appearing attic3eof the Mathematischen Encyclopéadie.
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accents to the other somas, and the same figures rinatigally coupled with the
protosoma (points, lines or rays, planes, and loci@hthmoreover) will be represented
by means of all of these coordinateBhus, the parametelsr, £) of this motion can be
regarded as coordinates of the som/e now reiterate the previously-used remark that
the aforementioned formulas do not change in formlababnly in an inessential way,
when one increases the paramgdry the same multiple as the corresponding parameter
a; — insofar as one employst Plickerian line coordinates, but aary coordinatesfor

the representation of the rays (pp. 174 et seq., pp. 220,.nd&)an thus recapitulate
the parameters of the dual couplings (pp. 220, no. 10). Timemder to be able to use

the symbola; = a; + £ € again for the representation of arbitrary motions, wik
ultimately introduce new symbols in their place:

As the coordinates of a soma, we can employ four (real) homogeneous, dual
guantities:

(2) Xo=Xo+ X123l Xi=X1+Xosll, Xo=Xo+X31lk Xs=X3+Xp2lk

or their scalar and vectorial coefficients, assuming that the forahius, the quantities
Xo, X1, Xp, X3 — do not all vanish.

Thus, the concept of a soma, which initially seemecdetpurely formal, now seems
to be arextension of the concept of a real, proper fay. 200) here.
We now determine the motion with the dual parameiethat makes the som@&

coincide with some other son¥a To that end, we lei (A, resp.) denote a quaternion
(bi-quaternion, resp.) of the form

(2) a =ap&+tar€ +a& +azes,

while o (Z, resp.) denotes the conjugate that comes about by chahgismh ofa, ay,
as , and then find, with no further assumptions, that:

(3) A=X:Y.

That is, the desired motion will have the dual parameters
A, =A@y + B =X Yo+ XY+ X, ¥+ XY
a, =a,+BE =X = XY= X%+ XY

a, =a,+ B£=X Y, X,¥0— XY+ XY
Ay =05+ B = XY= XY= XY+ XY

(4)

) &,e,&,e; are the so-called units of quaternion theory, whiehumually denoted by 4, j, k in
the books on this subject, although the use of theisigrhis way obviously can only create confusion,
which has already come to pass.
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or finite redundant parameters, (5), the first two of whicha, , 4 take on the values:

X1D) =XV * X 0Dt X 6D 0t X D s

®) (XX) =X Vst X o5t X oD ait X P o
%123@0 + % 2@014_ % 3@ 02+ % l@ 04

We can now deduce some important consequences fromWiassay that two somata —
or, as we would prefer to say, somas —parallel when one of them is produced by the
other one by means of a (Euclidian) translation. Wetes somashemi-symmetric
when one of them is produced from the other one by avséiraally, we call two somas
symmetriovhen they can be exchanged with each other by an invétsiowendung)).
One now obtains immediately:

Two somas X, Y are parallel when the scalar components of theirahrdirates X
Y; are proportional to each to each other, and conversely.

Two somas X, U are hemi-symmetric when the scalar componeritgiofdaal
coordinates X U; satisfy the equation:

(6) G X)=Ug Xo+ Ly X1+ X+ U3 X3=0;

they are, moreover, symmetric when their dual coordinated)Xsatisfy the synectic
equation (or pair of equations):

UX)=(U|X)+@X)E
- (U X) = (4]2)+ (%) 0. 5
=U, X, +U,X,+U,X,+U,X,=0.

The inversion axis will then have the dual coordinatesa; : az (no. 4).

If we saypencil congruencesheafof (parallel) somas to express the concept of all
somas that arise from any soma by means of a one,tlwae-dimensional group of
translations, resp., then we will immediately find amalytical representation for the
simplest of manifolds that are defined by somas, moreewgr, the pencil will expressed
in terms of any two elements, X" in the formX = X' + ¢'X" with the aid of two
scalar ratios ¢ : ¢’. The concepts of pencil, congruence, sheaf, resp. raltgdasomas
will then be analogues of the concepts of pencil, conggyesiteaf, resp., of parallel
proper rays. When we add the obvious remarks that the peordgruence, and sheaf,
resp., of somas exist in’, «°, > exemplars and that® somas can be divided int&® of
the «® sheaves, we can turn to the most important of therénes cited, which is
expressed by equation (7).

") Symmetric somas are thus always hemi-symmetri@ dé/not underestimate the awkwardness in
such a terminology, but we have nothing better to offer.
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The synectic bilinear equation(@) differ from each other only by the number of
variables in the equation between dual ray coordinates that represents théarofati
the rectangular intersection of two proper rays, and by the appearance of duwitigsa
in the equation that describes the combined position of a point and a plane imete th
dimensional continuum of projective geometry.

These facts obviously have a fundamental meaning:

It follows that they must define a special branch of geometry by mearfsirction-
theoretic problem that will encompass the projective geometry ofesdong with
radial-projective geometry, and whose objects will be the figuresailgatomposed of
somas, and is thus a topic in the theoretical kinematics of a rigid pody

The projective transformations of somas.
The problem to be posed will obviously be this one:

Find all analytical transformations of somas that always allow one torguo the
concept of the somas that are symmetric to some soma to other sahasoft.

Naturally, these transformations, which we will caibjective transformations of
somas- or, by a somewhat risky word constructi@omato-projective- must define a
group. Notions of equivalence will be defined by means ofgtasip and its subgroups
that must have a relationship with the elementary eoinaf the congruence of geometric
figures that is similar to the equivalence notion ofigotive geometry. Furthermore, one
would expect that the latter notion of equivalence, ljustseveral of the new ones, will
be easier to handle than the somewhat cumbersome enoealdf elementary geometry:
One will collect the objects of kinematics into largesses so that one can propose
properties of this structure that can subsume the etanyamay of looking at things by a
set of singularities.

The problem referred to can reduce to the problem thagsmonds to the definition
of radial-projective geometry, and the solution hasapietely analogous form. Since
we can still think of posing the bigger problewhich one can construct geometrically
from these transformationwe shall elaborate.

We first remark that the groug, of similarity transformations defines a likewise
seven-parameter continuous group whose object is the aonanevhose transformations
have the desired properties in a trivial way. Namelysirilarity transformation
associates each of thé different rectangular axis intersections (1, 2, 3) thafracterize
the various somas with a definite axis intersection Z1 3) in such a way that the
original unit of length on each of the axes seemsetohanged by a certain rako The
new unit of length may then be again reduced to the otigmawhen one performs the

") Obviously, one can, in a similar way, as we have shfowonerigid body, also represent systems of
several bodies, each of which are found in a defingation. Our method thus includes all of kinematics.
However, in this book, we consider only the positions sihgle body.
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perspective similarity transformation that belongghe intersection point of the new
axes and the value*. What results is a new system of oriented axesddnatalso be
derived from the first one by a completely determinediono That is, each somawill

be uniquely associated with another soila However, all of these “similarity
transformations of somas” — @omatic similarity transformations- (which already
represent a new concept in geometry) already emerge avieecombines the® motions
(with somas as objects) with the one-parameter grouppespective similarity
transformations of somas that leave any soma — egyprttosoma — at rest. One finds
the following analytical representation for the transfations of the latter special group:

(8) X=X X=X
Xym K, X

%;):%O’ %’Ol %Ol’
%123:k%123’ %’23 k‘%23 12 1
(k# 0; cf., pp. 239, no. 10).

We thus define a certain infinite group of transforovai of somas by the
requirement that the homogeneous, dual coordinates dfath&formed somas should be
homogeneous, synectic functions of the coordinateshefdne being transformed.
Among these synectic transformations of the somat which the similarity
transformations that we just mentioned do not belgnare the linear ones that are
defined in the entire soma continuum:

X'=za X +a. X +a X +a . X
9) |_ Aig N TO A T ;AT O 3 A, (=0 1,2 3)
{ai)( —%( +a’i)( |]‘, I aOOailaZZaSBI 7 0}

which likewise have the previously-demanded properties irbgioas way. They define
a group with 30 essential parameters that is analogotisetgroup of collineations in
space; we thus call its transformatiahgl-projective

The solution to the problem we posed may now be briefiypulated in the following
way:

All projective transformations of somas arise from the composition ofputagdctive
ones with the similarity transformations of somas. They define anaons group with
31 essential parameters, all of whose transformations are everywhatalefined,
single-valued, and continuous in the continuum of all somas

We shall denote the formulas that are completedjogous to equations (5) on page
237 by no. (10) here, but we shall not write them down Bpalty; on the other hand,
we would like to briefly discuss the system of invarigaobgroups of our group, and
assemble them into the systems that are analogols tmes presented on page 393:

") Both types of transformations collectively generateew group in which the group of synectic
transformations is obviously invariant, and is includeduichsa way that the associated factor group will
be finite and, in fact, of one parameter.
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Similarity Radial Somatic
transformations collineations collineations
g7 G17 g3
7N PN VN
g6 94 Gis G, Gao G1e
N S N S N S
93 Gg G1s

The groupgjs; andGso have already been discussed. The gr@ups characterized
by the conditionsy; = ayy,ay, =0 ¢ x¥=0, 1, 2, 3), and for the transformationstef

one hak = 1, moreover. All of the transformations@f leave each individual sheaf of

parallel somas at rest and permute its somas by meanas pefspective similarity
transformation. Ibnesheaf undergoes a translation then one finds thawihialways

be true; the transformation will then belong to thegsabp Gis.The transformations of

this latter group are synectic and commutable, moreoMeey are calledlual-projective
translations of the somas(Cf., pp. 235, no. 3.) For each individual sheaf of lfgdra
somas they reduce, as one sees, to ordinary translafidres same thing is true exactly
for the similarly-defined infinite group of “synectic trdatsons,” which are, for that
reason, especially easy to treat.

Analytic manifolds of somas.

We now consider any (real) analytical family or malifof " somas, or thus an
irreducible system of analytical conditions, that gidribody in a certain position can
assume as a result of this system dégrees of mobility (in the finite). Of tmeessential
parameters, by which one can analytically express swsthueture as a manifold in the
neighborhood of a location (which is thus distinguisheditpyn general position, a
certain numbep of them will also be essential for the ratios of tuantitiesXo, Xo1,

Xo2, X03. We setr = p+ g and remark that the' somas can then be divided int&

manifolds ofwo” parallel somas. Obviously, in the casesl, 2, 3, 4, 5, 6 the numbgr
will have values that are at least 0, 0, 0, 1, 2, 3. céllethe overshoot gff above these
minimal values thelegree of planarityof the manifold before us, and we accordingly
also speak adplanar, uniplanarandtriplanar families of somas.

Among the manifolds that we just described, one now fauase families that seem
to be of especial interest.

First, letpo = 0, sor will be one of the numbers 2, 4, 6. Then, if (as e8sarily true
in the case of = 6) the dual coordinates of a variable soma of the manifold can be
expressed as synectic functionsaofkewise dual parameters then we would like to call
the manifold in questiosynectic
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It does not seem essential to go into the analytiaeria for the stated properties,
since they are very easy to derive; however, it moghhelpful to explain the usefulness
of the concepts that were introduced by some likewisg wénple, but important,
applications.

Any aplanar analytic manifold @' somas lies in a single two-dimensional synectic
manifold of somas.

Any aplanar analytic manifold @? somas lies in a single four-dimensional synectic
manifold of somas.

When two aplanar analytic manifolds ef somas are mapped onto each other
according to any analytic law, there is a single synectic transform@bioris opposite)
of the somas that brings about this map precigely

We will encounter a number of special cases of thesarems later on.

We further consider such manifoldsedfsomas whose coordinat®s, ..., X1, are of

an especially simple type, namely, they can be expfessdinear homogeneous
functions ofr + 1 (or more) parameters. We call these figsmsea chainsand we also
include thew® individual somas as the case= 0. One finds, e.g., the previously-
considered pencil, congruence, and sheaf of somas, incimdedgst the individual-
dimensional soma chains that are planar of degreds one might expect that these
naturally very special figures, which still encompass eagwealth of forms, will have
relatively accessible geometric properties, we them plos problemClassify the soma

chains relative to the grougs; (and the groupGso) and generate the chains of each

individual class by geometric constructions.

The solution to the first of these problems comesiabiocomplete conformity with
the reasoning that was presented in § 29; it results bysesgineg the various types of
soma chains through lzasis. As we saw at that time, one also observe herethiea
representation of a chain by linearly-appearing parametdraatialways be complete —
that, on the contrary, certain somas of the chaim lsa necessarily omitted — and
furthermore, that the number of the essential paraméde the ratios of the quantities
Xo, ..., X12 does not, in all cases, determine the dimensiorhefassociated chain

uniquely, and therefore that the transition from one patacrepresentation of the chain
to another (likewise linear) one can never come abootithh only linear substitutions.

We commence with the solution of the stated problemsnbking some special
observations that will then lead us to the construabibthe transformations (9)From
now on, an r-dimensional chain will be denoted more briefly as;“a C

") One easily proves the corresponding theorem that permithe group of all real and imaginary
analytic point transformations of amfold extended manifold. For that matter, similar theemxist for
other infinite groups.
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Simplest reciprocity relations.

It will become clear from the statements that fellthat it is preferable to double all
somas, so that the entire continuum of somas wittdwered with two layers, or, as we
would like to saysheets Any projective transformation will then act on th@masX,Y,

Z, ... of the first sheet, along with some other sotda¥, W, ... on the second sheet,
which will be referred to as contragredientdiscordantto the former ones. Even better,
one considers these transformations to be identicdl,applied to different objects.
Precisely as in ray geometry (pp. 282,seq), this yields conceptual differences between
(somatic) collineations and correlations, dual cormetestiand anti-collineations, etc. For
the concept that subsumes all of the notions, the ttom@jectivities will further yield
the characteristic theorem:

Somatic projectivities leave invariant the parallelism of somak@ftame sheet and
the hemi-symmetric, as well as symmetric, position of somdifferent sheets.

Thus, the properties that enter into the followind-seident statement will remain
unperturbed under somatic projectivities:

“When two families of somas from different sheedsteconsist of all somas that are
symmetric or hemi-symmetric to the somas of the didn@ily then both families will be
chains.”

We provisionally call chains that are associated Wise pairs, and which are very
easy to determineeciprocalto each other, before we make some later extensiadhgso
concept. In each sheet, there will be six (thresp.jeclasses of chains that are different
under collineations, which on the first (second, respé gre paired with chains of the
other sheet, and in total, there will be four (two, resla3ses of pairs of such reciprocal
chains, which are different under collineati@msl correlations.

We first consider the chains that are paired with soima means of symmetric
position.

For each pair of reciprocal chains, we present, & 28, a canonical form for the
basis, for which we would, however, like to now awairselves of a notation that
occupies less space. Namely, since only one of the anik will ever appear in a
horizontal row of such a basis, we need only to counhephits that appear in the four
vertical rows. The symbols that appear in [] refethi classification of all chains that
will be described later. The classes [2, C] and [4,t@jether with [6], include the
individual synectic chains.

[0], {EOOO}, {013—1}, [4, C].
£ EEE

In each sheet of the soma continuum thereosftesynectic four-dimensional soma
chains, or, as we would like to say briefly, planar chains. Each of ihesgiprocal to a
certain soma of the other sheet.
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Through any three sombk, U,, U3 (of the second sheet), which are symmetric to no
more than one soma, there goee planar chain. 1) is another soma of this chain then
one always has:

(11) U1 U, UszU) =0,

and thus the chain itself and the reciprocal sofma ®3 ). In order to also

construct it, one first seeks the moti@sS, Ss that cyclically permute the three somas,
such that:

Un{ S} Uo{ S Us{ S}UL 7).

After that, one decomposes these motions into twigtswendungenaround the three
axesYi, Yz, Y3 in such a way that:

S ={Y-, Ya}, S ={Ys, Yi}, S ={Y1, Ya}.
(Cf., pp. 8, 9) X will then be constructed from:
(12) Uo{ Yo X{ Yo} Uo{ Yo} X{ Y3} Us{ Y3} X{ Ys} U: ).

The construction is determined just like the twist a%e¥>, Y3, and indeed this happens
whenS§U; U, Uz V) does not vanish identically. If one is dealing with dipposite, easy
to interpret, assumption then one comes to the chaewé will discuss next:

[2, Cl, {5 1o o}, {o = —1}, [2, C.

& & & &

In any sheet, there are® two-dimensional synectic, or, as we will styear chains,
which are reciprocal.

Onelinear chain goes through any two non-parallelaamif a linear chain has two
non-parallel somas in common with a pla@arthen it will lie in theC, completely. The
linear chain lies omo® planar chains, and is already the complete intéicse of two of
them. In order construct the linear chain from tgwen somas and, in turn, the
reciprocal chain, one sees the moti#inat makes the first soma coincide with the second
one. The two-parameter group of commuting motionahich S is included will then
leave the two chains at rest, so its transformatwiti emerge from the first soma as all
somas of the connecting chain. The twist aroueddth(real) rays of the normal net of
the axis that is common to all of these motiondharges the two reciprocal chains. (Cf.,
pp. 60) — Only when the given somas are parallel & construction become
indeterminate: One then comes to the cases thatillv@iscuss from now on:

") With the abbreviations that were used on page 126 ancé2vell as 313t seq.

”) We avail ourselves of the Wiener notations thaevedready applied in § 1.

") As far as we know, the construction and the theotlea is proved by it originates with C.
Stephanos.
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[1, B], {% 0 0}, {O £ L E} [3, E].

& &

This case subsumés: «? pairs of reciprocal chains. A certain three-dimensional
chain, or then a certain {Js, in fact, reciprocal to each sheaf of parallel somas.

In order to construct thi€s, one seeks the planar ray complex whose rays are
perpendicular to the direction of the translatibattieaves the sheaf at rest. Thdwists
around the (real) rays of this complex then takeare soma of the sheaf to @ft somas
of theCs; .

If three somas are present that determine no plaran, but also belong to either a
bundle of parallel somas or a linear chain, tbea G of the type described here will go
through it. The construction of the reciprocal adheill then be obtained from the
aforementioned.

Any of theCs thus found will be the locus @' bundles of parallel somas and the
partial intersection ofo' planar chains, any two of which have a speciaiprecal
position (that is not difficult to describe moreepisely) and determing; . Likewise,o?
linear chainsg® planar chains, an@® of theC; that were just described will go through
the reciprocal sheaf:

[2, D], {5 £ 1 O}, {5 0 E}, [2, DJ.
£ £

> pairs of reciprocal chains: For each bundle of (parallel) somas there ishanot
special bundle that is reciprocal to it.

This easily yields the construction of the bunthiat is reciprocal to a given one.
Namely, both of them admit the same two-parameteuy of Euclidian translations.
This determineso® directions of translation, to which a certain diien is perpendicular,
which defines a parallel bundle. All twists arourays of this bundle, and only such
twists, permute the somas parallel to the recipriogadle.— Through each bundle go?
synecticC4 andw? of the aforementioned spec® .

We now come to the reciprocal chain with somakdmi-symmetric position. We
call these chains, which take on a special meanitige somatic-projective geometry due
to their very small constant numbdrstinguished chains.

[3, F], {% £ E 5}, {5 i1 —1}, [5, B].

E & €

2 - pairs of distinguished chains. One of them is an arbitrary sheaf ofl{ghr
somas, while the other one is thetat is reciprocal to it.

All somas of theCs arise from any soma of the sheaf by way ofotAscrew motions.
We cannot go further here into the remarkable gégnod these chains, which represents
an analogy to the concept of “planar complex,” amake only the comment regarding it
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that?, >, «° sheaves, bundles, and pencils of somas will lig, ireéipectively, as well
as o> C; that are reciprocal to the pencils amd, »°® linear and planar chains,
respectively. Any plandt, lies inonedistinguishedCs, and will thus arise from th€,
by way of the group of all translations.

[4, D], {5 el —1} {E 1 5}, [4, D.

& & & &

There arec* pairs of four-dimensional distinguished chains, which are pair-wise
reciprocal.

Such aC, arises from any soma when one subjects it to the-dimensional
continuous group of motions that leave a certaigatiobn at rest. The reciprocal —
which belongs to the same group — will then ansenfthe same soma when one applies
to it all screw motions around rays of the plar@anplex that are uniquely determined by
any direction, or thus all motions that invert @tated direction. Any screw motions
around any ray of the complex exchange &th The somas of suchG, are divided
into c? linearC; ; the reciprocaC:; fill up the reciprocaC, . Any linear chain lies ione
suchC,, and thus arises from any one of them by wayeftioup of all translations.

The principal meaning of the distinguished chasmeasy to recognize: They allow
one to arrange the points, lines, and planes ircespaniquely or “projectively”
throughout, into the following schema, which scéreeeds an explanation:

First sheet Image spage Second sheet

DistinguishedCs Point DistinguishedCs
DistinguishedC, Line DistinguishedC,4
DistinguishedCs Plane Distinguishe@s

This arrangement, which is also easy to presenstoastively, expresses the obvious
isomorphism of the grougjsi, when extended to a so-called mixed group by the

“absolute correlationX’= U, U’= X, with the group of collineations and correlatioms
space.

Significance of the foregoing argument.

An immediate consequence of the consideratiorisntbee presented igyter alia, the
theorem:

The somatic-projective geometry of a linear or planar chain is identctd the
radial-projective geometry of the normal net of a real ray or of theiouum of all real
rays.
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In fact, if one subjects any soma to all screw nmithen theC, that thus arises will
be mapped to the continuum of screw axes in a uniquely ibleeway, and the chains of
somas in the&, will correspond to chains of rays, and conversglylf one permutes the
somas oiC, with each other somatic-projectively then the rdya tare associated with
them will be simultaneously permuted in a radial-pripyecway.

This shows, moreover, e.g., how the dual projectivitigfer from the remaining
somatic ones: Any four somas of a linear chain thanhli& certain sequence will have a
certaindual double ratig as long as no two of them are parallel (pp. 242). Emsgams
unchanged only under the dual projectivities (pp. 243). Tkdteis a geometric content
to the following obvious theorem, which needs no tediousaespion:

The synectic analytic transformations of the somas are the ones thatuale
projective in the infinitesimal.

This further implies the theorem:

Any five somasX..., X4, no four of whom belong to a five-dimensional distinguished
chain, may be made to coincide (in sequence) with five other gnes, Y4 (Uo, ..., Us)
of the same nature by a single dual collineation (correlation).

Moreover, one can not only express this somatic peigcanalytically very easily
(cf., pp. 246), but also almost as easily when one as@uite so brieflyconstructs it
geometrically(cf., pp. 245).

It is, moreover, clear that one can place every-dafined theorem in the projective
geometry of space that is expressed by constructiontmextcorresponding theorem of
the much more inclusive somatic-projective geometry.wéi@r, it is clear that such
associated theorems do not, by any means, need to Haxma that reads the same way
), and that, in addition, as a rule, the somatic-ptdje theorem will be afflicted with a
series of restrictions that are not necessary irsith@ler cases (so they are always found
to be mechanical moreover, when the simpler theorem has been fatedilexactly).
This also illuminates the fact that known theorems weitensions of that type will not
exhaust the facts of somatic-projective geometry & ftinthest limits, and indeed the
most interesting phenomena must be sought outside this of ideas. However, in
spite of that, we have a very useful method in handwliafacilitate the discovery of
new physical laws quite profoundly.

Classification and construction of the chains
We now enumerate all chains according to their dsmennumbers, and give them

by the still-not-mentioned geometric construction, whigivers either all individual
members of a class, or, as would be sufficient from fbregoing representation,

*

) All r-dimensional chains composed of real rays are summameeg. 326, ..., 327. The additional
“chains” that are denoted by stars there are naturatiynecessary for the extension of the theory in the
present discussion.

") One observes that a product of dual quantities can vaitisbut the individual factors vanishing.
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representatives of each class. We choose the lbasige also have done before, to be as
inclusive as possible in each case. It shows that chathsbsolute invariants undgso

do not exist, and that all chains that are inequivalentruiigealso remain distinct from

each other under transformationsdaf . All chains can be regarded as limiting cases of
the aplanar ones, which, in the cases:

r=1,2,3,4,5,
will depend upon:
11, 14, 15, 14, 11
constants, respectively.
We further remark that one also always obtains amafasomas when one subjects a
single soma to all twists or all screw motions aroarathain of rays.

[0]. Null-dimensional chains.

{1 00 o} ©®  The individual soma.
£

[1]. One-dimensional chains.
A. {1100} oot

Any aplanarC; can be generated &f ways by twisting a soma around the lines of a
chain of rays. It will lie in a single linear chai If the generating chain of rays is a
planar pencil then th€; will admit all rotations around its principle axisThe various
chains of rays &% or o' for the statedrotational chainy that are suitable, by
construction, will all be coaxial and congruenetxh other.

B. {1 £0 o} oo,
£

Naturally, these plana®; or pencils can also be derived from a single s(@ihat lies
in the reciprocal € by twisting with the help of parallel pencils;ee parallel pencils
define a net. (pp. 404).

[2]. Two-dimensional chains.

A. {0111} ool

Any aplanatC; lies in a single planar chain and arises fronsthr@a that is reciprocal
to it in a single way, when one subjects it to thvsts around all rays of aaplanar
congruence of chains.

B. 01 1} oo'?
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The uniplanar non-synect&, . Any of these will be generated by twists, butoh
ways, and with the help of apyanar chain congruence.

C. {5 1 0 o} 08,
E &

The aforementioned synectic or linear chains, tviian arise from any one of
somas (viz., the reciproc@hb) with the help of any normal net by twisting.

D. {E 0¢ 5} 0®,
£

The bundles that were already mentioned, whiclpairewise reciprocal.
[3]. Three-dimensional chains.
A. {1111} oo'®,

The aplanaCs, which have the highest possible number of cotstan a chain of somas

- viz., 15 — enjoy especially beautiful propertie@ne such chain goes through five
somas, no four of which belong to a distinguisgdwhich is implied by the following
geometric construction: Any su€ hasonesoma in each sheaf of somas, and each of
them can be taken to any other oneohg dual-projective translation. The entire theory
of the geometric addition of aplanar chain congcesn(pp. 390et seq), with all of the
consequences that are connected with them, camtbaded to these chains of somas.
For example, each of these chains is a closedmtamt, and each of them is the carrier
of a quaternary domain. Any of them admits a 1&upeter simple group of dual
collineations, which (i.e., its discordant) likewiteaves a second chain of the same type
at rest: theeciprocal congruence to the other sheet. The division efctiains of lower
dimension, and likewise the type, like the two peacal chains alternately determine
from each other, will be represented most convelyidsy a simultaneous map of two
chains to the ordinary space of projective geometry

Csin the first sheet Image space Cs in the first sheet

Soma Point AplanarC,
AplanarC, Line AplanarC,
AplanarC, Plane Soma

Somas that face each other in the first and thaldmaon are symmetric. From this, one
immediately deduces the construction of the recigkehain. The two reciprocéls
coincide in the chosen canonical form; the assediaf C, are all rotation chains. In
order to find such a special aplar@; one only has to subject any soma to the motions
(rotations) of the three-parameter group that lsaveeal point at rest. There ar®such
specialCs, which defines an importance class of chains, @ajhg for mechanics.



Classification and construction of the chains. 15

B. fe11 1} ool

These are all uniplan&; that are included in a planar chain. Each of themidies
certain distinguishe@€; . Any soma of the sheaf that is reciprocal to this be carried
to all of the somas of th€s, either by certain twists whose axes fill a chaimptex or
by all twists whose axes fill an aplanar congruence ohshand is, in fact, independent
of the choice of soma in the sheaf. In particular aioeementione@; — namely, itso?

— may be presented in such a way that one subjects ats@thawists around rays of an
aplanar congruence of chains, and indeed each of @iesen be generated ' ways.
Among these particuldCs, we find special ones that can be constructed with ¢he df
ray bundles, and the€& can also be found in an intuitive way, e.g., in suchag that
one subjects any soma to all reflections in the planspaife. (Cf., pp. 183 and pp. 560.)
The chains of lower dimension that are include@4rwill become evident quite simply
under the map d®; to the real planes that thus given.

The aforementioned chaii® are pair-wiseeciprocalto each other. In fact, such a
chain containso? uniplanarC,, to whose somas, any pencil of parallel somas leill
symmetric. These? pencils fill up the reciprocals, from which the first one arises by
the process described. In the example given, the twproeal C; coincide, and two
somas that lie in them are then symmetric when thecéged planes are perpendicular to
each other.

C. {o 1y 1} oo™,
£

Each of these uni-plandZ; lies in a planar chain, and arises from the sohad is
reciprocal to it by twists around rays of an (aplgrchain complex. The singular ray of
this complex corresponds to a “singular” somaCypx The somas o€; that lie in a
bundle of somas that are non-singular, but paralghem, eliminate a linearly-appearing
parameter from the representatijn

The C; include linear chains that pierce them in singwamas. TheC, that are
reciprocal to thes€, describe a newZ; that lies in the planar chain that is reciprocal t
the singular ray; we call th{S; , which will be represented in the canonical fdryn

{E 01 1},

£

reciprocalto the former one.

D. 118 ool

The subdivision of the chains of lower dimensiamshese biplana€; can be made
intuitive in a manner that is similar to the wagthve mapped their somas to the planes
(or points) of arR; in B. The planes of a certain pencil thus corespto no somas.
The C; include, inter alia, ' bundles of parallel somas, and the bundles that ar
reciprocal to them fill up the presemciprocal G, which belongs to the stated basis in
the case that was discussed.

") Some of the chains that will be enumerated laterlsm have similar singularities.
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A special pair of reciprocal — in fact, coincidenCs-of the present class arises when
one subjects any soma to the three-dimensional groupstidns that leave the parallel
planes of a pencil individually at rest. More inclusibet still not exhaustive, is the
generation of &3 of the class in question with the help of the twidta soma around the
rays of a planar congruence of chains.

E. {O £ 1 —1} oo’
E &
The aforementioned biplan@&g that are reciprocal to pencils.
F. {E £ € 5} o0°,
£

The triplanarCs, the sheaves or three-dimensional distinguishathsh
[4]. Four-dimensional chains.

For the sake of brevity, we omit the given of aertways of generation from the
following chains, which can be found to fit the geah of the constructions that were
previously described, and communicate only thosestractions that are based upon a
demonstrable “reciprocity” between these chains &mel ones that were already
constructed in each case.

A. {1 11 1} 0o
£

The aplanaC, . They areeciprocal to the aplanaC, . Any of them includes, in
fact, o® aplanarC,, which lie in any synecti€; or linear chain, and whose reciprocals
fill up theC, .

B. {1 £l 1} 0o??,
£

The uniplanar non-synect{c, . They arereciprocal to the uniplanar non-synectic
C.. Any of them includes, in facty® planarC;; the C; that are reciprocal to them fill up

the C4 .
C. {o 11 —1} oo,
E E €
The synectic€C, or planar chains, which are reciprocal to thewistial somas.
D. {5 ¢l —1} oo,
E &

The biplanar or distinguishég that are pair-wise reciprocal to each other.
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[5] Five-dimensional chains.

A. {1 1 1 —1} 0ot
E &

The aplanafCs arereciprocalto any aplana€; . TheCs arises from them when one
subjects their somas to adf twists, and will then be described &Y planar chains.

B. {51_1_1} .
E€¢€

The planar or distinguishegk, which are reciprocal to the pencils of paral@hss.

[6]. The six-dimensional chain.

The totality of all somas, a synectic chain.

We have thus established the fact that geometric ways can be gigeméoating all
chains, and most of them, in turn, will have a very simple character.

The chains of somas that have been subdivided tmemty classes will now be
examined more closely in a manner that is simdahe way that we examined the chains
of rays.

The reciprocity theorem for chains and its extension.

In the foregoing discussion, there was a theofgah was pointed out axtremely
noteworthy especially in view of the fact that we explaindée& concept of reciprocity
that entered into it in different ways in the indival cases.

If one ignores the totality of all somas then one can bring any soma chain firstthe
sheet to one on the second one in such a way that any two associated ejpotad” —
chains will determine each other alternately by a geometric asctstn that is invariant
under somatic projectivities.

The dimension numbers of the chains that are paired in this way extend @b tbee
numbers4, 6, 8.

We have already thoroughly classified the paieg torrespond to dimension sums
four and eight (pp. 565-567). The remaining omessammarized here:
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[1A] {0011 2o {1 1 1} [5 Al
E &
[2 A] {0111 2 {% 11 1} [4 Al
[2 B] {011} 20" {% €1 1} [4 B],
[3 A] 1111 ool® {1111} [3 A]
[3 B] {e111)} ool {el11 1} [3 B],
[3C] {o 1 1} oo™? {1 01 1} [3 C],
& &
[3 D] {11c¢¢} oo'? {11 ¢ ¢} [3 DJ.

Is there now no deeper basis for these relatiofi$® answer sounds completely
similar to that of the corresponding question gf gaometry, which we have summarily
discussed (pp. 41@f seq):

All chains may be regarded as the geometric loci of bundles of pasalies of the
one type or the other. The reciprocal chains of corresponding locihet be described
by reciprocal bundles, and they will thus obtain the same dimension nunther way.

For the correct interpretation of this assertiome must observe that a chain can be
determined by several kinds of loci of soma bundlteg will not all be useful for the
description of the chain.

The reciprocity theorem that was thus proved alslipextends far into the geometry
of chains. One can then naturally introduce, imgyple, the soma bundle as a spatial
element in a manner that is similar to the way thiathave singled out the analogous
concept of the pencil of parallels (§ 34). Indemwk can represent this figure in exactly
the same way as the latter by means of a systéimoafogeneous” coordinatd3; =,
vy =3, Do, ..., P3, of which, the last eight are coupled by a bilmeguation. Loci of
somas of similar types will now be paired, as welekBfore with loci of rays, and one can
also examine analytic transformations of the palveddle, which can then change the
dimensions of the manifolds of somas, as a rulees& transformations define an infinite
group of contact transformations in the continudraamas.

The so-called duality principle that is associated with ordinary prijeageometry
takes the form of a special case of the reciprocity of geonfegues that is spoken of
here.

We must content ourselves with this interpretatiba situation, that is delightful, but
not by any means simple, and in any event, notadeariefly.
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The parasoma.

Up to now, we have limited the concept of soma in suahay that it completely
covered the basic notion of kinematics, namely, tht@n of the position of a rigid body
in Euclidian space. Although we have first made smafisinto the projective of somas,
it has already become necessary for us to add a tiestrio the theorems that were
presented that is not in the analytical nature of thingsjrbthe limits of the viewpoint
that is distinguished, and has its origin in a certainrmpeteness of the tool that was
applied. Itis clear that one can advance to many ddégpg and more general theorems
only when one extends the manifold of somas to a clasddnvariant algebraic one, or,
as we will say for that purpos@atural continuum and simultaneously introduces
“imaginary” somas. We would now like to speak on thd fa@int, and also do so only
partially. We will explain a new concept that we aafparasoma From now on, the
figures that we simply called somas up to this point will be caétdalsomas, and we
will use the word “soma” itself for both the actual somas and parasomas.

We next go from the coordinates “of the first kind” tihat employed up to now for
an actual soma to ones “of the second kind,” which lesefg as follows:

Xo = Xo, X1 =Xo1, Xo =Xo2, X3z = Xo3,
X, X X, X X, X
(13) Xor=|"° OlJ , =0 %, Xoz=|" ° %,
%123 % 2 %123 % 31 %123 % 12|
X, X X.. X X, X
X23 — 02 03 , X3l — 03 01 , Xlz — 01 02 .
%31 %12 %12 % 23| %23 %12

This now implies the new notion of parasoma thdirsd defined analytically in a
manner that is similar to the way that one defineswtt®n of point ray (pp. 25&t seq)
in ray geometry: Thearasomawill be described by the remaining coordinates of the

second type that have been excluded up to now, whiclysgsequationst; = 0 and:
(14) Xo1Xo3 + Ap2 Az1 + Ap3 X12 = 0.

It likewise follows that the manifold of ak® actual somas and* parasomas defines
aclosed continuunthat can be mapped in a uniquely invertible way without argusar
points to, e.g., an algebraic point manifdits that lives in a planar space of 15

dimensions and admits a projective group that is holomoafiriisomorphic tags; (cf.,

pp. 278,et seq. as well as § 32), and can be exhaustively representéuk gsartial
intersection of quadratic manifolds. Finally, it mustremarked that under the somatic
collineations the parasomas of the first and secondsshebave precisely like the lines
in the Plucker line continuum, and coordinates of the parasmf both sheets will be
transformed contragrediently.
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What geometric concept that is analogous to that of the bundle of parallels that
associated with the “point ray” in radial-projective geometry can nowitieed with the
analytical concept of parasoma that we just described?

The answer to this question emerges precisely as indite simpler cases that we
mentioned for greater ease of understanding. We congideplanar chain, which is

reciprocal to an actual som#, and thus includes all of the actual sorashat are
symmetric toX. We now letX’ go to infinity in such a way that a certain parasoma
emerges from this, and in the limiting case, we obtareguations:

AU, — X U, XU 5 =0,
Xolhy ¥ —X U, + XU, =0,
Xolhy +X 2, * X, =0,
Koy —X U, —X U, 7 =0.

(15)

However, these equations obviously determine a distinguiSh¢dhich lies in the
distinguishedCs that is represented by only the first equationje can then say that the
somas of each four-dimensional distinguished chain are “symmetric” tolladef@ed
soma (on the other sheetDne also comes to the response to the questiomvdsajust
posed with no difficulty by extending the concept of “syastric” using a geometric
argument. Moreover, a further consequence is that \@ayparasomas (of different
sheets) are said to Bgmmetricto each other. We will refer to them as at leksibly-
symmetricwhen each of them is associated with the pertineieinded distinguishe@,
that is determined by the other one. This comes aboen whch of the tw&€, has a
sheaf in common with the reciprocal of the other oneleen the corresponding lines of
the line continuum intersect each other:

(16) Xo1Uor + XooUoz + X oz Uoz + X ozloz + X31 Uz + X 12U12= 0.

Finally, we will then call two parasomégply-symmetricwhen the associated, are
reciprocal to each other or when the corresponding tiogxide:

(17) Xoli oni Xogi ngi X31: X]_zz Z/[23: Z/[31: Z/[]_z: Uo]_: Zx[()z: Z/[o3.

(Cf., pp. 263) All of these relations are invariant under. We shall pursue such

considerations no further, but highlight its most esakraspects in the following
theorems:

The manifold of® actual somas will be extended by the addition of d¢fe
parasomas to continuum that is natural relative to the gr@sip The individual points

of this continuum will be associated, in a uniquely invertible wayh thie «® four-
dimensional synectic (planar) chains and #itfour-dimensional distinguished chains.
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Somatic-projective geometry reduces to Plucker line geometny arilg parasomas
are consideredcf., pp. 568).

It is perhaps worth mentioning that, first of all, #aromas that are symmetric to a
parasoma must have a special relation in regard toiggswhile the corresponding
statement for two rays already appears in ray geometry.

Some important further consequences can be found ioltbeiihg theorems:

The connection between somatic-projective geometry in a planar chain and radial
projective geometry in a ray continuum that was previously proved foald@ures also
applies to the extension of these continua to parasomas and point-rays.

Under the transition from a variable actual soma to a well-defined parastivea,
planar chain that is reciprocal to the soma will decompose into the disthmgglichain
that is associated with the parasoma and the continuum of all parasomas.

We will make no further use of the parasoma in thegntesketch; for that reason, we
would like to completely pass over this basic notion.

Group-theoretic notions.

If one introduces any sort of non-distinguished chaia apatial element then one
will always obtain a group that lomorphicallyisomorphic to the grougs: that can

be represented as a projective group in many ways. dileaving theorem relates to
some particularly interesting examples of these groups:

If one introduces the three-dimensional aplanar chain of somas as a spatigntle
then a primitive space groupiRwill arise from Gs; that takes the form of a projective

group for a suitable choice of coordinates and then becomes identical wittup tirat
can be derived from the adjoint of the general projective group of ordsage by a
certain process of extensiofCf., pp. 393t seq)

Another group is correlative to this group, which one arrives at whemmaaps the
bundle of somas to a suitably chosen point-maniftild (Cf., pp. 420¢t seq).

It is further noteworthy that not only two essentialliffeddent groups can be
confirmed by their connection to the grodg in the spacés, but also in the spade; .
One obtains one of the latter groups by the introducfapencil of somas or the chains
that are reciprocal to them; the other one is includeml group of 32 parameters that is

completely analogous to the grolig that was discussed on page 240. The leads us to a
closely related question:

Can one obtain a geometric figure that behaves in relation to the soma thbavay
the winding does to the ray?
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One finds that the answer to this is in the affirn&tiThere are, in fact, (at least) two
such figures, which depend upon seven constants and can leserdgpd by eight
homogeneous coordinates. One comes to one of therh wdn perhaps be referred to
as a “hypersoma,” when one remarks that the group ofonwttan be extended to a
seven-parameter group of contact transformations bydilagations, which commute
with them, and that this can still be represented bypavameter 4, ) while using the
same formulas to express the connectjorSpheres of equal radius (as well as sign) will
then enter into hypersomas in place of the pointsefritiividual soma. This somewhat
complicated figure, which for purely geometric consideratialso seems to have as little
as possible in common with the simple thread, still soto have properties that are
analogous to it in many details. To these properties laddongs the fact that the
hypersoma can be related to not only to a geometry cdsdmat is comparable to radial-
projective geometry, but also to another type of geomiy can be placed alongside
Pluckerian line geometry, and defines its immediate gempatiaih. We would like to
consider this new situation now, but from another viewpoi

The pseudo-conformal transformations of somas.

In the following suggestion regarding a further type of fgetry of somas,” we will,
in order to avoid monotony, proceed along a differeni tod thought than the one that
we have followed up to now.

We now make the assumption that the parametef)(of the motion that produces
an actual som& from the protosoma as described by equation (9), pp. 176thpisys
eight homogeneous quantities — in trdinary sense of the words — as coordinates that
are coupled by the quadratic equatib{X X) = 0, or:

(18) Xo X123+ Xo1 X2z + Xo2 X31 + X03 X12= 0.

*

) With the help of systems of complex quantities that irecliite quaternions, one caanveniently
represent a series of enveloping groups and combine théuos, the similarity transformations in spaces
of four or three dimensions (Papers from the Chicago &segNew York 1896, pp. 379), and naturally all
groups that are composed in the same way, can be repdeseder an eleven-parameter mixed group of
contact transformations that subsumes the group deddritthe text. The similarity transformations of
ordinary space have been recently treated by Combebitinisi way Calcul des TriquaternionsThése,
Paris, 1902).

It might be permissible for us to set down an espgdi@hdy way of writing the latter general formulas:
In non-homogeneous form, they will be given by the quataraguations:

X=akxb+c and X =a(xb+0,
or by the similarly-defined equations:

X =(+pXa and X = (y+ Xa.
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We extend the manifold thus described from now on t@sed continuum in which
we likewise allow systems of values that satisfydbaationsXy = Xo1 = Xo2 = X03 = 0,

and refer to them as the coordinates gbsgudo-soma. We shall not enter into a
discussion of the geometric meaning of this analytic eptidout simply formulate the
following theorem, whose proof and closely-related gdizataon can likewise find no
place here:

Any analytic transformation that is everywhere defined, single-valz
continuous in the continuum of th8 actual and»® pseudo-somas belongs to a so-called

mixed groupG.s, H2s With twenty-eight parameters whose continuous subg@yps
simple.

These transformations will be, in fact, exhausted by the linear tranafmms of
coordinatesXy, ..., X12 that do not affect the validity of the quadratic equa(ibd).

It now follows from known facts that the grogps, Hos is imaginary-similar to the

group of conformal transformations of a space of sixedisions, and that it will be
characterized completely by the invariance of the (amditito (18)) Monge equation:

(19) dXodX 123+ dXo1 dXo3 + dXgr dX31 + dXo3dX 12 = 0.

For this reason, we call our transformations of sopsesido-conformal) and remark
that equation (19), and likewise the corresponding finite texqua

(20) (}:@):%0@123+...+l—‘123@0+...:0,

are easy to interpret geometrically:

The pseudo-conformal transformations of somas likewise have the chatacteri
property that consecutive actual somas that can be taken to each othemibyigesimal
rotation (or translation) are associated with somas with the same property.

As a result of this, they also have the further property of alipwne to go from any
rotation chain in general to another one, or also to a translation chain, viz.neil ps
parallel somas.

The additional “in general” that was inserted here thasfollowing precisesense:
One will consider only such a neighborhood of an actuadas;m which there are no
somas that go to a pseudo-soma by the transformation.

We cannot treat the rich geometry of the grguy Has thoroughly here either, as we
did with the grouysi. We consider the grougps, Hos only on systematic grounds here.
However, we would like to shed light on its meaning by gm&ag its connection with a

") Incidentally, the expression “pseudo-projective” wouldus as good — or just as bad — in its place.
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beautiful theorem of G. Kénig$. This theorem can be, in fact, formulated and ext@nde
in the following way:

If an analytic family ofx" actual somas has the property that any two neighboring
somas of the family can be coupled by a rotation chain or a translation dimnits
dimension number r can have at most the value r.

If it has the value three then any two finitely different somaseofamily can also be
linked by one of the chains described that lies completely in thiy fami

The figure then depends upon six constants and can be generated geomatrically i
one of the following ways:

1) A soma will be reflected in all possible ways either in plangsomts of space
(or, in the second case, a soma will be subjected to all translatigns)

2) A soma will be subjected to the three-parameter group of all rotations amund
actual or ideal point)).

Theow® families of the first of these two families will be perrdutansitively amongst

themselves by the transformations of the gr@wp They will then define a single class

of equivalent figures. Likewise, th& families of the second family will define a class
after one adds the continuum of ta&pseudo-somas. The transformations of the family

Gog permute both classes.

One may enumerate the manifolds that corresporitetagsumption = 2 in a similar
way (except for the sufficiently well-known casercf 1). However, there are naturally
an infinite number of classes that one can divide fine families. The families of each

family will be permuted by the grougs only amongst themselves or (in two cases) with

manifolds of pseudo-somas. Three of these familiesnateded in one or two of the
aforementioned families @b somas; the remaining two families, however, argreft
interest. In fact, of the most beautiful (in termsbasic ideas) theorems of kinematics
belongs to the theory of such families, for which dias Ribaucour to thank ). One
further comes to an interesting theorem of P. Stdakehese considerations, which has
already derived a group of 28 parameters from the thefottye deformation of surfaces
"). This group, in fact, arises from ours (to which jtitsaddition, real-similar) by a
change of spatial element.

We must postpone a thorough examination of the aspetissahat we believe are
most important to differential geometry to another smoa Here, we remark only that
one must proceed carefully as long as one also hamgider imaginary figures. We do
not need to use the word “soma” at all in this casas dinly in the real domain that, at
the very least, the actual somas are identical toalaged figures that belong to the group

Gos , Hos, as we have explained before. (One confers the discusn 8 28 on the

") Cf., Kbnigs,Lecons de Cinématiquart. 84, 85.

“) It thus arises especially for the figures that appeaur geometry of chains. Cf., pp. 571-573.

") RibaucourSur la déformation des surfage@omptes rendus, t. LXX, 1870, pp. 330. Cf., Darboux,
Théorie des Surfaces, Paris, 1887, art. 58-61. Koénigsinématiqueart. 84. The theorem of Ribaucour
that is reproduced by the cited authors is, moreover, riecorand the present version seems to stray
somewhat far from reality. We shall communicat®aected formulation in another place.

Hokdok

) Comptes rendus, t. CXXI, 1895, pp. 396.
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difference between the concepts of ray and line.) a®dyt any further advances into
this domain will necessitate a careful constructiothefterminology.

The group Gog includes a continuous subgroup with 22 parameters whose
transformations have the characteristic property okisbently associating actual (real)
somas with other ones, and which then subsumes alitenatansformation that
associate rotation chains with other ones (and pasai®ias with other parallel somas)
without exception.

In this group, which one can consider to be a piece ef gloup of affine
transformations in the line continuum, one finds the grdgll eransformations of actual
somas that are simultaneously pseudo-conformal and pvejecdnd can thus be
compared to the similarity transformations of the raefual lines or rays that are
simultaneously projective and radial-projective.  Howewghile the oo’ similarity
transformations define a continuous group (in the usual sdnde avord), here, this
produces a deviation from the analogy up to now (that issegated merely by the
differing characters of the dimension numbers):

The totality of all transformations of actual somas that are both pseudo-caiform
and projective defines a mixed grody , Hi3 with thirteen parameters.

This group is therefore described by the fact that linear chains andawotetiains go
to other such chains in the infinitesimalnd consequently, also in the finite.

It consists of all transformations of the grogg that coincide with the discordants to
them, or therefore, that do not affect the coincidence of two somdsferent sheets.

The similarity transformations of the somas (pp. 5869 &elong to this group in a
trivial way. We consider only the synectic transforiora that are contained fs , His

more closely, which have extremely remarkable propertd& call themorthogonal
because, when they are represented in dual coordinageshaimge the dual-quadratic
form:

(21) KX) = X+ X7+ X3+ X3
only by a (dual) factor.

The geometry of orthogonal transformations of somas.

As is clear with no further assumptions, the ortlmaddransformation define a mixed
group Gi2, ‘Hi2 with twelve parameters whose transformations cadistenguished as

actual (Gi2) andideal (H12).

A glimpse at the expressi¢al) now shows that the entire conceptual content of non-
Euclidian geometry in spaces of positive curvature must find a new sedtiafly
geometric interpretation in the geometry of these groups the orthogonal somati
transformations).

") For to the applicable precautions, one confers pé®e
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We will prove that the basic notions of non-Euclidian geometry, in paatictie so-
called elliptical spaces, are almost as simple as they were hefodethus the concepts
of kinematics that we will explain can be placed beside the toolerogptary geometry,
which have the same connection to each other — for the most part — aseherws, and
we will then illustrate these thoughts with some applications.

We have already seen that the conceptsoait, line, and planerun parallel to the
concepts ofactual somalinear chain and planar chainresp. However, the question
that we must now ask refers to the concept of “the distance betweepoints,”since
the further concepts of angle, surface area, and volanteultimately the most esoteric
theorems of differential geometry, rest upon it, and eddany possibility of a transition
to kinematics. The answer leaves nothing to be desirdieiname of simplicity. 1f2
(determined mod 2 means the rotation angle ang the magnitude of translation of the
screw that makes the actual soxheover another ong and we then cal + r7¢ the dual
distancebetween the two somas (in which the sign will alsvegmain arbitrary) then we
find immediately:

(22) arc cos& =g+ ne

IXXVYY

The orthogonal transformations of somas theref@eehthe (characteristic) property
that the dual distance between two actual somatherefore that the rotation angle and
the magnitude of translation of the motion thate&ermined by both of them remains
unaffected.

Of the numerous consequences, which come abohtlitie effort, moreover, we
now explicitly cite only a few entirely special an¢hat are nonetheless especially
important. We cover — say — the first sheet of shena continuum, in turn, with two
sheets by the adjunction afXX . We thus obtain a new continuumarfentedsomas
that is analogous to the point continuunspfierical(Riemannian) geometry.

All synectic transformations that are everywherefirgl, single-valued, and
continuous in the continuum of (real) oriented attsomas define a continuous group
Goo With 20 parameters.

It consists of all dual-conformal transformation$ the somas, i.e., the synectic
transformations that change the dual distance betwaonsecutive actual somas X, X +
dX by a (dual) proportionality factor that merelgmends upon the location X.

This group of somatic transformations can alsocharacterized by the fact that its
transformations are synectic and always take soph@r®s to other ones.

By the term “soma sphere,” we naturally understnigl to mean a manifold that is
described by the equatioft + ne = const., i.e., the totality of all actual soméghat
emerge from a given som#d by screws whose rotation angle? &and translation
magnitude 2 are given.
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The complete intersection of the grogpy, with the group of projective-somatic

transformations, or also the group of pseudo-conformal transformations, gdhe of
orthogonal transformations of the somas.

Now that we have thus characterized our gréup7Hi2 in no less than three different

ways as the intersection of groups that are integestintheir own right, it will seem
worthwhile to consider it somewhat more closely. &@ve to the reader the task of
making it clear juswhich concepts and theorems of non-Euclidian geometry \aiilyc
over to kinematics, moreover.

The parameter groups of motions).

The groupGio, Hiz , and likewise also a more comprehensive group that caboes
by the addition of any transfethé somas;cf., pp. 560), can be represented very
conveniently with the help of quaternion algebra. Thadformations of — e.g. Gi, are
all described in the form:

(23) X' = Z\D( EB (aoo, boo # 0)
(cf., pp. 557), and one can combine several of them acga@ime rule:
(24) ald =a", bl =b".

These formulas also yield a complete insight intodinacture of our group, which
cannot, however, be explained more precisely here.
We next emphasize:

The groupg,, of actual-orthogonal transformations of the somas be decomposed
into two mutually-commuting grougs, G;. They are identical with (or similar to) the

two parameter groups of the group of Euclidian mo$, and the one of thegs

coincides with this group itself, moreover, whee ehooses the actual (real) soma to be
the spatial element.

The motions of somas will be obtained, in fact, whaa ohooses the combinations
that are represented by the upper sign in the equations:

) One may treat all of the parameter groups withiadal combination of the parameters in a manner
that is similar to these parameter groups, and totaicategree, also any arbitrary parameter groups. Cf,,
Leipz. Ber. 1889, pp. 17@t seq.
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G Xo= agXoFa, X;Fa,X,57a X,
(25) X'= XA X{=%a, X, +a,X,+a X,—a,X,
X'= AIX X, =%a,X,—a X, +a X, +a,X,

G Ky=tazXo+a,X;—a; X +a X,
This now immediately raises the further question: Hbwes one characterize the
transformations of the groug, that is (in Lie’s terminology) reciprocal to the gmgs ?

Furthermore, what do the transformations of the fafil, mean? An answer to this —

among others — is contained in the following theorehes,second of which completely
represents one of the surprising special results of oustige¢ion:

The group Gi» of actual-orthogonal transformations consists of all synectic

transformations of somas that take congruent linear chains — or also coaxiat line
chains — to others of that kinjl
The ideal-orthogonal transformations (viz., those of the fatndily likewise have the

characteristic property that amongst all synectic transformations thkg congruent
(coaxial, resp.) linear chains to coaxial (congruent, resp.) ones.

There really are such transformations!

The group G, that is reciprocal to the group of motions of somas consists of all

analytic transformations that permute the individual members of any anpitaanily of
coaxial linear chains (at most) amongst themselves.

The groupGi» thus permutes the* axes of the various families of coaxial chains
only in a six-parameter way, and indeed the same isdrutsfsubgroup:

(26) X' = ADX A (a0 0),

which is similar to the so-calleaidjoint group of motionsand since its place is entirely
representative, we may refer to them in precisely #mmesway here. This “adjoint

group” then consists of all transformationstaf that leave the protosoma, and thus, also

the reciprocal plan€,, at rest. The rays will be permuted amongst themsdlydbe
motions in precisely the same way as the axes irihd@rem on page 568 under the
twists that take the protosoma to the somas of theramal planar chaiX; = 0.

Naturally, one can, with no further assumptions, goosthe completely-determined

transformation ofG; that takes a given actual sodao another arbitrary on¥': One
needs only to subject the soma-p&irX' to all motions. However, it is likewise easy to
find the transformations df{1, . We say that two actual som&sX' correspond to each

") All analytical transformations with the same propetefine the aforementioned groGp, .
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other under aeflection through an actual soma (@r through the reciprocal planar
chain) if they emerge from this soma by the opposite mstid hese transformations, to
which, we add the reflection through the protosoma:

(27) X5 =Xo, X! ==X, X,=—Xa  Xi=—Xs,

exhaust all of the involutory transformations B>, . One can compose all ideal

orthogonal transformations of somas from threehefrt and all actual ones from four of
them. Two distinct actual somas are symmetric when the associatedimfeecommute
with each other, and conversely.

We defer the further investigations that go into thisitgreater degree to the reader,
but we add a (very specialized) theorem to illuminate them

There might be given two sequential, mutually-perpendicularly intemgeatiotion
pointers (Laufstangen) (pp. 537, 552). An actual soma can be first sceeowatt the
second motion pointer arbitrarily, and then the entire linear chain that te$tdm this
around the first motion pointer. This mechanism then allows the sonakeoohoo®
positions, and these define a synectic manifold that can obviously be deduyibé
congruent linear chains and? coaxial linear chains.

There are now2 - «® somatic reflections that leave the manifold considered
completely at rest, but permute th&chains that are congruent to thé coaxial chains.

The soma that belongs to such a reflection is an arbitrary one of thevel+defined
linear chains that are congruent to the chains of the first family andiamaltaneously
coaxial to those of the second family.

The reflection through a soma is illuminated in a spexaae in Figure 46. In it,
somas that can be permuted by motions of the indicatoreplvill be represented by
arrows of equal length. Two coaxial rotation chaind &l reflected through a certain
somaO and will thus be taken to be congruent (and therefals® parallel) rotation
chains. The rotation, e.g., that makes the arrow Bcwe with the arrow 0 of the first
chain (the one with no number) will be the same o thakes it coincide with the
arrow 3 of the last two chains.

The natural notion of equivalence between kinematics
and the so-called inverse of a “motion.”

If we consider all of the motions that perhaps maie protosomaD, which is
thought of as being at rest, cover the soka$ anr-dimensional manifold of somas then
we will have a family o' motions before us whose totality we, in turn, preferaib-¢
by a less-fortunate choice of word, it seems —ratirhensional] “motion.” LefX(ty, ...,

t)) be the family of somas and I&ft,, ..., t)) be the associated so-called motion, so one
obtains a new family of somas and a new “motion,”chlgan likewise be known, firstly,
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when one performs an arbitrarily-chosen motBnon the entire figure (with the
exception of the protosoma), secondly, when one Istava that is rigidly linked to the
protosoma enter in place of it that arises fil@rhy any well-defined motioA. These'-
dimensional motions, which are all representableenfoinm:

(27) S(ty, ....t) =AY -Hty, ..., 1) - B,

will generally be deemed to leguivalentin kinematics, although generally — as it seems
— it has not been deemed necessary to expressly desneation of equivalence. We
would like to say perhaps:

The notion of equivalence that belongs to the grélap of actual-orthogonal
transformations of somas is the natural notion of equivalence in kinematied.is, any
class of r-dimensional manifolds of somas that are equivalent relati#e torresponds,
according to the usual terminology, to a certain “type of motion,” and caaher

The following remark represents an especially impoategnsion of this:

If one subjects any of the stated classes to an arbitrary ideal-orthogonal
transformation of its somas — thus, e.g., to a reflection through a somen-tilta so-
called inverse type of motion emerges from the associated typatioh.

In fact, from the definition of reflection throughethhest protosoma, the moving soma
X' relates to it in precisely the same way tBatself relates to the moving soa

In our scheme of things, the notion of equivalence inrkates seems to be an
individual term, at a definite place, in a whole sefiegot, several series) of notions of
equivalence. However, the last term — at least, deeterm of any general interest —
defines another notion of equivalence in this serieswkatvould, in fact, like to refer to
as theequivalence notion of mechanicBlamely, in mechanics it is well-known that the
position of the rigid body under scrutiny is not indiffet to its mobility-restricted
mechanism, and one can then — for a certain, not-tadasphoice of the body — deem to
be equivalent only such families of somas that can fr@sented in terms of one of them

by means of some transformation of the group of motns the form:
(28) S'(ty, ...,t) =1y, ..., t) - B.
Therefore, only congruent manifolds of somas are mechanically equivilent.

The aforementioned facts show that the relativelycigheed theorems on the
kinematic extension of non-Euclidian geometry and teoty of groups of motion§s

") The concept of symmetry breaks down here since, fteendefinition of soma, symmetric rigid
bodies must all be regarded as completely different figuidse fact that they obey the same laws for a
simultaneous symmetry in the applied forces is so gplbeatory that no deficiency can be found when
this situation does not find its expression in thenfdation of the notion of equivalence above.
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that is included in it give them a special place in ouresygst We are then immediately
curious to know about the mathematical concepts thatendtiself seems to present us
with as occupants of Euclidian space, or at least onec#inaes us. However, these are
the two types of equivalence that we just spoke of. eEiithem points to a certain way
of dealing with kinematics, and almost all of the in\gegtions that have been carried out
in this realm fall into one of these two broad categgorif such a connection actually
exists between this undoubtedly important field of reseandl non-Euclidian geometry,
which we believe we have shown, such that in the latiacatenation of concepts only
other things need to be interpreted in order to yield kinentheorems, then it may
certainly be considered to be one of the most notwand important of the wonderful
phenomena that the presence of logically-equivalergrentes affords in different
mathematical disciplines. The meaning of non-Euclidjaametry is thus cast in a new
light.

For our way of dealing with kinematical problems, ibs/iously characteristic that
the moving rigid body is (at first) introduced in the cddtions and constructions as an
atom so to speak, and not as a whole composed of simplepaents. However, in
reality, the rigid body of theoretical kinematicstie totality of all the points, curves,
surfaces, etc., that are rigidly bound with it, and tihus already an entire world unto
itself, which, when placed in motion, affords a wealtmew and interesting phenomena
in comparison to the geometry of figures at rest. Qheeheory that was sketched out
here is developed further, one will have the right tmaled an extension of it in the same
preferred direction in which the development of kinensahias been moving up to now.
Something that is thus perhaps left for us to do asabeit modest contribution is to
demonstrate that there is also at least the possibfliagn organic further development in
this direction. For this purpose, we choose entirghpka figures — viz., the aplanar one
and two-dimensional chains of somas — whose geometmnnenaf generation we once
more recall: They come about by twisting a soma arolimdys of a chain of rays or an
aplanar congruence of chains with the help of figuresMoich we have already given
numerous constructions before, which are also basgldnmentary geometry.

Further properties of some chains.

We next recall a theorem of Darboux, who has detexdhall non-trivial motions (see
pp. 589) under which any arbitrary point describes a plane curvehe theorem on the
base point curves of chains of rays (pp. 345) now bringgltbthe fact that the type of
motion that is determined by an apla@arbelongs to this family of motions. However,
the same thing is true for the inverse motion, and thiggsty is obviously characteristic.
We express this as follows:

The aplanar one-dimensional chains of somas are the Darboux families of thamas
are taken to other such families under the reflection through any, andqummly each
(actual), soma.

") Darboux, “Sur les mouvements algébriques.” (Note Ilh@kinematics of Konigs).
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Any arbitrary one of these somas (inter alia) will be found wheneaisalsoma slide
along a direction of motion, and thus any point of the soma that does not lie on the
direction of motion is confined to a plane that is not parallel to the dmeaf motion.

All of the points that do not lie on the direction of motion then desanlblipse, and all
of the planes that are not perpendicular to the direction of motion envelame af
rotation whose axes are parallel to the direction of motipn

We now consider two-dimensional manifolds.

Darboux has likewise made us aware of a family of mationder which any point
describes &teiner surfaceor a degeneration of this figure. One comes to thed@®ns
(which are not, in fact, the only ones of this kind) wio@e represents the parametars
in the formulas on page 176 as homogeneous linear functbritiree essential
parametersn . & . 03 , and simultaneously expresses the quant#igs ax , aso as
guadratic functions (forms) of just these parameters. weld like to say that the
corresponding manifolds of somas belondarboux families. One now finds (with the
help of a minor computation) similarly to above:

Any family of somas of the Darboux family whose mirror imageiveldd a soma
likewise belongs to a Darboux family is a two-dimensional aplanar chain of samés
conversely.

From what we just stated, there are precisely as rkiaeynatically-different classes
of these special Darboux “motions” as there are idiffeclasses of aplanar congruences
of chains under motions. For the sake of brevity,caesider only the interesting case,
which corresponds to thirst type of our chain congruences, and then immediately
obtain from the properties of the basepoint surfacevibat discussed on pages 346, 347
the following further kinematic way of generating our niaidis:

The figure of two pointg, 0' and two planesJ, «J' that was described on page 464
can be doubled, and one then lets the two congruent figures that thus arise be
distinguished by the indic&s 1. Points of both figures shall next be identified in such a
way that:

0,0 ,;,d,d coincides with 0,,0y; W, &,
resp.

An arbitrary soma O shall now be rigidly linked with the fig(0§ and likewise the
soma X that emerges from O by a twist around the @x@sor o,  is rigidly linked
with the figure(1).

One now lets the second figure, and the soma X along with it, mswehra way that
the points and planes:

0,04, d,

resp., are united with the planes and points:

*k

) Cf., further, Schoenflies, Math. Ann., B&D (1891), pp. 317¢t seq. By the way, one can also derive
a further broadly-encompassing classification prindipten the ideas of Darboux.
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o, ;0,0

resp. The soma X then runs through a two-dimensional aplanar chain of soaraslyN

it remains symmetric to the soma O at rest in each of its pesgdsitions, and the

associated twist axes fill up the aplanar congruence of chains that belong tawahe
planar pencils(g,,«)) and (o;, ) .

Any two-dimensional chain of somas that comes about by reflection of a soma
through the rays of an aplanar congruence of chains of the first type wijeberated
this way, and indeed in a single — real — way.

However, the two-dimensional aplanar chains of somas bmeagharacterized in yet
another way. Namely, one comes to the followingotbm (cf., page 385, 413) very
easily:

If a two-dimensional family of somas X arises when one subjects a samalO
twists around the (real) rays of an analytic congruence whose rays caambs$tributed
on the cylinder then in the neighborhood of a point X in general position tiseofed!
screws that link consecutive somas of the family will genedafipe a ray complex that
can be described by? chains of rays. If one reflects the entire figure through the soma
O then it will either remain at rest or one will obtain the saigeré twice.

If one now takes the second of these two congruent figures awayh&wrariginal
position in such a way that one makes O coincide with X by a hasisthis will produce
a new coincidence of two mutually corresponding chains of rays of both compléxes
common principal axis of these two chains or this double chain will béwile axis.
Any infinitesimal screw that takes X to a neighboring position wi# tak form of a ray
in the associated double chain.

The only exception to this rule is defined by the aplanar two-dimensibaads of
somas.

In fact, in this case, and only in this case, does one obtain only a cangrinstead
of the complex. The present congruence is then an aplanar congruence of @hdins,
the one that is derived from it is its reciprocal.

Naturally, no ray of the reciprocal congruence beloags $ingle soma then, but to a
singly-infinite number of them, and these somas wWdbagain define an (aplanar one-
dimensional) chain.

Without a doubt, the three-dimensional chains of somésyigld a much richer
bounty of geometric properties. However, this situatiwhich far exceeds in scope
and, for that matter, in difficulty- the bounds of the investigation of congruences of
chains that was carried out in 88 37-39 allows us to useatlasis entirely, just as it
immediately affords us completely different extensionhthe problems treated.



The pseudo-conformal transformations of somas. 34

Concluding remarks.

If we now apply the extension principle that was jgst down to the special
constructions of non-Euclidian geometry that were spaikkeimn 8 14 then we will
recognize that all of the theorems that we were colecewith in Part | are capable of a
meaningful generalization (under which the connectioh thie composition of forces is
lost). However, a similar statement will be trudlad constructions of quaternion theory,
in which the geometric addition of vectors is intertéd with the composition of finite
rotations around a fixed point into a greater whole. VAfesay no more here about the
many new questions that this raises; however, in thewalh statement we would like
to point out — at least, superficially — a further di@tf possible development:

The geometry of dynames, or at least a large part of the construdt@nisave been
summarized under this terminology, and the study of the constructive siborpof
finite motions define different pieces of a more comprehensiaythed certain
geometrical constructions that is analogous to Hamilton’s geometric thebry
quaternions and subsumes )t and in which the geometry of dynames itself occupies a
position that is similar to that of the geometric addition of vectarshe theory of
guaternions.

The elementary theory that we have in mind here wileed the possibility of
construction in terms of quaternions to the same extantle theory of the geometry of
dynames exceeds the addition of vectors. The adsdcanalytical apparatus will consist
of a system of complex numbers with eight — or, logké —sixteenunits.

We thus ultimately return to the ideas that definedstaeting point for the author’s
kinematic investigations, and thus for all of the resthiat were contained in the present
volume. These are the same ideas that were found aguwe\vand incomplete form in
many of the papers of Clifford, and which were furtheredtgyed in another direction by
Lipschitz (in his investigations of sums of squares) viere scarcely noticed, however.

We believe that even with the examples that arsemtéy known this does not
exhaust the cases in which systems of complex quartdiede employed in geometric
investigation for the purpose of discovering new truthsg.Bhe theory of certain (finite
and infinite) groups of contact transformations affordsbraad field for further
investigations of this type.

Some English mathematicians have sought to clanflyapply the aforementioned ideas of Clifford.
However, it seems to this autherto the extent that the author knows of his werthat it lacks clearly-
posed problems and, above all, the necessary skillandlbthers might be the lamentable casualty of an
earlier and, in part, ostensibly also still preseastomary system of education in England.

") On this subject, we do not desire to say that ttiesgs should also be represented in the form that is
the most circuitous and most distant from the classicadpgm that Hamilton himself and his followers
chose for the representation of quaternion algebra, &oderconservation — we remark in passing — seems
to be the actual goal of the recently-formed “Socfetythe advancement of quaternion theory.” The fact
that these deviations from the forms of expression #rat customary for mathematical ideas are
unnecessary can, as is clear with no further assumpberseen from the author’s elementary treatment of
the theory of quaternions. (Communications of the SpémetNatural Science in Greifswald, v. 31, 1899
[Berlin, 1900, pp. 1-49].)
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In other countries, the development of such ideas seestand in the path of the opinion (which has
also been expressly formulated by some) that investigatito the wide variety of complex quantities
must be “unfruitful.” One must therefore give an intetgtien of a well-known observation of Gauss that,
in our opinion, must be regarded as incorrect. Thetlfi@attother systems of complex quantities cannot be
employed “in general arithmetic” in the usual manner hasiodytbeen established by the investigations
of Weierstrass and others connected with him. Howevetheatvery least, nothing can be ruled out
concerning its usefulness in limited realms and for siegifrposes, insofar as one knows nothing at all
about these purposes. No type of judgment requires moréearéhe assessment of the future benefits of
any direction of research. Useful ideas do not aha@y®ar in an equally suitable form, and indeed at any
time facts can come to light that open up a new domaapplfications for a line of reasoning that was
previously in the background. Gauss himself also seelmsvi®taken one such possibility into account, so
we may therefore hardly assume that the restrictionittgtin his own words, “in general arithmetic” was
added by him without some deliberation.



