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Abstract

Part Il. The method for calculating the interactomtween two charges that was given in Part | will be
generalized to a four-potential. A positive-definite di&nergy can also be generated by an auxiliary
condition for a field whose particle does not possesssamass. The general form of the interaction
between two spinor particles that is mediated by tke#t fvill be given.

Part Ill. The equation of motion of the nuclear &field and the spinor field of matter will be derived
guantum-mechanically from a Hamiltonian operator. Itwshdhat operators satisfy the continuity
equation. If one demands the conservation of electidcge and the conservation of the density of heavy
particles then essentially four different fields wid possible. Their particles are: charged and uncharged
light particles, with a mass whose Compton wave leiegthesponds to the range of the forces between
massive particles, and charged and uncharged heavy partides miass is larger than that of the proton
(neutron, resp.).

The empirical form of the force between the neuttnd the proton will be implied only when one also
assumes the existence of two types of particles (antélesit for the uncharged light particles. By
contrast, the conjecture that a theory with no antinireo, in the Majorana sense, is possible is confirmed.

Part |l
7. Generalization of thetheory to a four-potential.

In Part | 2], it was shown that the mutual perturbations betwiem material
particles in the first approximation could be calculatemnfra Hamilton function in
which one part of the field-matter interaction couldrbplaced with a certain matter-
matter interaction term. That term has the follmyviform: Operator of the retarded
charge of the one particle at the position of the otimer times the charge of the other
particle.

In the derivation, we restricted ourselves to theasczadse.

However, such a scalar field will give an interactimtween the nuclear constituents
(viz., protons and neutrons) that has the wrong signtanavtong spin dependency: The
scalar part of (4.22) is positive, and thus gives a repulsi



Stueckelberg — Forces of interaction II. 2

The field of a four-potential shall then be treated generalization of that.

In the present Part I, we shall then first disctiesquestion of the sign of the field
energy, and then we shall calculate the retarded patenti

Formally, that generalization comes about simplymwiee appends an inde = 0,
1, 2, 3) to the quantitied (potential),J (charge), an& (polarization)A;, Ji, Sk, resp.

The formulas of Part | will once more be true, wasdrivord, when one replaces the
terms that are bilinear s, P, J, andS with corresponding sums ovefrom O to 3).

Thus, for example, one replaces:

AAwith D" 5AA= (A A)
(and analogously foP P)

PS with >_ RS,

& has the value + 1 for= 1, 2, 3 and the value — 1 for O.
The commutation relations (3.2) are replaced with:

[Pi(¥), Ar(x)] = &i-(h /i) o(x—X). (7.1)

Due to the appearance §f equations (2.3) [(2.7) and (2.8), resp.] are replaced with:

A = fy_: = & (871¢*P” - 4mrc Sy), (7.2)
50— _ oH = ¢ i -2 1 - ; h
R= oA & {BIT(A 1%)A +z[~]i 2 ox, H (7.3)

For that reason, formula (3.17) will likewise tade the factorg in the second term
[P(x)"-]. That will have the consequence that the comtimrtarelations for the
explicitly time-dependent operatéyr (X) take on the form:

(A K", Ac )] :—zhi—C & & D (X - Y. (7.4)

The ultimate forms for the interaction operat@r2?), (4.23), and (4.24) change only
insofar as they are replaced with a sum averth &).
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8. Generating a positive-definite energy density by an auxiliary condition.

We likewise convert the energy density operator of #uBation field (2.5) by the
unitary transformation (3.14). That means that in (2If® At (x) are replaced with the
explicitly time-dependent operatofs (x), and theP; (x), with the time derivatives of the
A (X). One can then write the energy density as the guthe energy densities of the
individual potential components:

W=D W (A), (8.1)
with:
QU(A)——[ a—AD% IZADAJ. (8.2)
8\ % 0x, OX,

The expression (8.2) is always positive, since thefagtdoes notappear (the sum
over k is not a scalar product then). By contrast, the energy ge(®il) contains a
negative summand far= 0. In electrodynamics, the positive-definite energy ba
generated by the homogeneous auxiliary condition (6.1)coBfrast, in the case bf 0,
that auxiliary condition will no longer commute with égsmplex conjugate. However, if
we introduce a scalar compondhthat likewise satisfies a wave equation (1.1) with the
samel, along with the four potential compone#ts then the auxiliary condition (6.2) at
the positiory will commute with its complex conjugate at the positorOne finds that:

_ 99 2D (x—
[(6.2), (6.2)] Z,f-a ayD(X Y +1°D (x-y)

=-(@-1)D(x-y=0,

The final equation results because tBefunction owes its provenance to the
homogeneous wave equation (viz., the difference of theredd and retarded potential).
The auxiliary condition can also be written in tbédwing form:

gpby divA —1B) ¢ (8.3)

If one applies the operatdA, / 0xo and considers that it commutes with the operator
on the right-hand side then the identity will folloverdn (8.3) and the complex conjugate
condition (6.2) that:

O
_OA A w=[-divA divA -1 (B  divA + divA" [B) —I°B'B] ¢, (8.4)
0%, 0%

which will eliminate one of the negative terms in (8.1).
We write —f + 2 for the term — grady gradA, —I° A/A, =f and convert the ternf 2
by partial integration into:
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jdx?’ 2f = j b [ AV(A —1%) Ao —AT(A —17) A

If one considers thak, satisfies the homogeneous wave equation then it eVidivi
from the auxiliary condition that:

L JOA L OB,
AB—1%) Ao = A) Y= A)[d 6X0+axoj¢/

We convert the term that contains div linearly by phiigegration. The integral of
the energy density with the integra®i@ can then be written:

jdx{Z SiQU(A)+QU(B)j¢/= [ocw ¢,

2 = 8iﬂ{(rotAD,rotA )+( ,grach, +—2j

[IA0 aBDJ[IAO——jHIAD+gradBD]A+ grad3 }

The auxiliary condition (6.2) [or (8.3)] will alwa yield a positive energy density
then.

If we now introduce the new four-vector of the grutal:

—A+gt B (8.6)
x

and the anti-symmetric field strength tensor:

S aaan e 0P A OA

(8.7)

then when we employ the three-dimensional vector:

F with the components$=(;, Foz, Fo3)

and the three-dimensional pseudo-vector:

F with the componentd6s, Fai, F12),

the energy density can be brought into the form:
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2 = Si,T[(ED, F)+(F5F)+1%(®, @) +1 700, . (8.8)

The energy density is then positive-definite, and o0 (i.e.,B vanishes identically) and
real field strengths, it will go over to the energypmession of Maxwellian
electrodynamicsJ.

9. Theauxiliary condition in the absence of charges.

In the absence of charges, the functignmust satisfy not only the auxiliary
condition, but also the Schrddinger equation (3.13) (vedl slhways writeK for K" in
what follows):

ho)
(K +TEJ w=0. (9.1)

Thus,K is the Hamilton operator for matter here, in whibé time-dependent potential
appears explicitly.

If one writesK in the form of an integral ovetx® [the field-matter interaction term
has the form of, for example, the integral overeakpression (3.22)], and introduces the
Schrodinger timeg = ct, then one will compute from the commutation relatiohg)(
that:

hc __hce o oK 0K aD(x-Y)
{K+i—a0,A(y)}— 2 i jdx a_ADD(X y)+50AD o
0%,

[Naturally, 0 / dxo commutes withAi(y).] An analogous expression follows fBr
The charge and polarization quantitiesié the integrand oK and has the form (3.22),

for example] will be defined as follows:
0R 0R

25 T 2 S
0

0%
(9.2)

() 2 is also, in fact, the 0-0 component of the tensor:

%1 > & FaF +12®7d +conj.| — § & £,
m

in which £ means Proca’s Lagrange density function (11.8).



Stueckelberg — Forces of interaction II. 6

0R 0R
_2__J| |, _2—: tg|
oA JA
0%,

We obtain the following commutation relation:

RO

= I—CJ. dXS{[div (A-1S5)+1( I8 -1T)D(x-y) (- 1) oD(x-y)

T}. (9.3)

The argument of the charge and polarization operaars®ne makes the restricting
assumption:

Sk=a&T+S, §=-§ (9.4)
for the tensof .

In order for the functionay to simultaneously fulfill the auxiliary equation aret
Schradinger equation, the two operators “auxiliary camaliandK + h 0 /i dt ” must
commute. However, according to (9.3), that is notcHse.

We then add an inhomogeneous term to the auxiliary conglite., we write:

Ki,Aj+IB+J. dx® J (x) D(x- »}40:0, (9.9)
oy

where J; is the 0-component of a combined charge vector:

=J—1S°. (9.6)

One then has:

K+hTCijde D(x— } 1 ae {( divd'+ R) D(x- y) + %aog(( y)} 9.7)

0

The scalaR' is defined to be the four-divergence 3f.
i ' . ' 1 37 H ]
—[K, J]+div]) =R ==J; +div]'. (9.8)
hc c

A comparison of (9.3) and (9.7) shows that the inhomogermaxiary condition (9.5)
will be preserved in the course of time when the opeidéntity:

Jo+cdivy =1 (Q°%-IT) (9.9)
is fulfilled identically.
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Furthermore,J; must commute with the potential operator and wigh in order for

the inhomogeneous auxiliary condition to remain compatilte itself and its complex
conjugate.

B and| vanish in electrodynamics. Moreover, the four-divaoge of the electric
current also vanishes. (9.9.) is then fulfilled, andaineliary condition (9.5) is possible.
As is known, it leads to Maxwell's equations.

It will be shown thatJ; does not commute witl,” for the nuclear force. An
auxiliary condition in inhomogeneous form is not possibent The single solution that
fulfills (9.9) consists of the one that makes the feector J' vanish, and therefore, its
four-divergence, as well, ardf = | T.

It then follows from the identical vanishing of ttweo sides of equation (9.9) and the
definition of the charge and polarization quantities (Y2}4), (9.6), and (9.8) tha can

depend upon only the following combinations of the scalar pate® and the four-

potentialA :
(i,AjH B:[i,qaj.
0x 0x

2. The potential®; that were defined in (8.6).

1. The scalar:

3. The field strengthBi , due to the antisymmetry of the tensor (9.4).

The scalar dependency that was mentioned in 1skasibecause of the auxiliary
condition, which is now homogeneous and commutdhl Wi (Naturally, a further
dependency upon another scalar fi€lthat employsB, independently of the generation
of ®;, can be introduced with no contradictions.)

We then write the commutation relations for these quantities:

[P](X), P ()] :—2sk$’[5ik—gki o jD(x—g,

12 3, O,
(9.10)
[ER@,¢MW]=—2f£aaﬂ%fl—qiljou—g.
[ [0)¢ 0%,

As before, the starred quantities commute withuthetarred ones.

Due to the definition of thé;, the auxiliary condition will assume the form tlaate
recalls from vacuum electrodynamics:

(Qn¢j¢:o. (9.11)
[6)4
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Since thed;, like theA;, and theB satisfy the homogeneous wave equation:

(O -1’ & =0, (9.12)
Proca’s equatiorj10]:

[Zgixf—ﬁqaij W=0 (9.13)

k

will follow for the field strengths that were defined(B17), due to the auxiliary condition
(9.12).

It will go to Maxwell's equations for the vacuum when 0.

We can consider one of equations (9.13) to be an auxd@mgiition with precisely
the same right by which we treated (9.11) as an auxiliangition and derived the four
equations (9.13), and develop the other three equations [andbequ&t11)].

In electrodynamics, one can introduce the Coulombrant®n byeliminating the
auxiliary condition. The field will have only two transversal componeihisnt Such an
elimination will be impossible for a non-vanishing resass  # 0). By contrast, the
auxiliary condition can be satisfied identically bgefinition of the operators:

One chooses equation (9.13) for 0 to be the auxiliary condition and considéxs
@,, and®d; to beindependent operatothat satisfy the commutation relations (9.10), and
theFi (i, k= 1, 2, 3) to beperators that were deriveflom them. On the other hand,
one regards the operators:

1

M, :%EE (i=1,2,3) (9.14)

as furtheindependent quantities=rom (9.10), one will have fog =y, that:
h
[Mi (%), P (V)] = Tdk o(x-y) (X0 = Yo). (9.15)
The operator§, can then be expressed in terms of fhenow, by using (9.14) If
one now likewise define®, to be thederived operatoin the form:
®y = 87c P divil’ (9.16)
then the last equation € 0) of (9.13) will be, in fact, fulfilled identically wimeone
considers it to be the auxiliary condition.

With the use of the independent operat®rsand I, the energy density (8.8) is
written:

' = si [12(N°, ®) + (rotN’, rotN) + 87¢® [(N°, M) + 172 div " Oiv N]. (9.17)
7T

We can go down two paths in order to derive the field enjusmt
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1. Go over to a “one-sided” theory; i.e., reverse fidlrmalism that led to equation
(3.5). The Hamilton function in (3.5) will then once maontain a field component.
That is nothing but (9.17), except that now all of the aesF(X) [= F"(X, Xo)] that
depend upon time explicitly and are coupled by means afransformation (3.14) will
be replaced with operatoFgx) that are not explicitly time-dependent. That can €om
about formally quite simply when one sets= 0 everywhere. The threk and their
derivatives all commute with each other. The samegths true for thel and their

derivatives. By contrasf]; and ®; obey the relation (9.15); i.e., they are canonically
conjugate. The matter paftremains the same, except that here the field quarfigie

are replaced witlr(x). All of this corresponds to KEMMER'’s formalisr]] precisely.
More details on this will be given in paragraph 11.

2. The present multi-time theory, on the basis efréiation:

oF(y)
9Y,

+—i[K, F(y)]j : (9.18)
hc

Yo=%o

ZE(y) :(
c

We can consider the auxiliary condition in itsgaral form; i.e., consideall four ®;
to be independent operatorén place of®,, one must then define@®,:

CTJO:AO—%B. (9.18a)
The auxiliary condition in terms b, then reads:
. 1= 2f 1.
d|v¢+ECDO—4nI divi+=J,||¢=0. (9.19)
c

After applying the rule (9.18) twice, the fieldwedions for the component;, ®,,
and®3 will read:

(0% —1%) B, —C—lzdbi :—47{Ji _i%_%%_& I’Z(divJ +§1 JOH (9.20)

One obtains an entirely analogous equation ford@jethat was defined in (9.18a),

except thatd / dxp must be replaced with — 1c/times the time derivative (.) of the
following quantities.
If one then introduces the corresponding fieléragths:

_ 00, 90,

K = —t i,k=1,2,3),
“=ox ox (i )

(9.21)



Stueckelberg — Forces of interaction II. 10

0%, 1,
a ¢

Fo
then if one consider the auxiliary condition (9.,1®)e can write (9.20) as:

N . ( .05, 1-,J
— M4 ZF -1}, +4m ) =Y =M - = @=0. (9.22)
~ox, C° ;5& c”

Forl = 0, this will correspond to Maxwell’s equatiomsthe absence of charge.

10. Theinteraction term of the four-potential.

In order to derive the interaction terms, one egther employ the method of
paragraph 4 (Part I) explicitly, or recall that thecan be expressed in terms of faend
B (8.6). Since the repeatedly-mentioned expressietarded potential of the first
particle at the location of the second one timesdimarge of the second one” is true for
the latter, it will also be true for th@; . The expressions on the right-hand side of the
field equations (9.20) are then generally chosdretthe charges.

We would like to restrict ourselves to the staise. Let it be defined by the fact

that:
1. One neglects all quantiti@d dxo [or the (.) in (9.20)] (neglect the retardation).

2. One likewise neglects tke(i # 0) and theS,, (neglect the motion).

According to (0.2) and (9.20):

1]

o = [ HHUX-Y), V() :%,
(10.1)

0 = [y § = (x-y)

is then the four-vector of the potential that theparticle generates at the positioat the
Schrodingert = xo / ¢. We shall writeSi for S, in what follows. (Note that in this
approximation the potentiafs will be identical with theb; .)

According to (4.22) (one also considers the repahle expression for the interaction
will be:

Us+yUs = %I dx® dyg{[Joﬂ(X) JB(Y)J’;;; $‘D(X) $a):axk

j éx—y)+conj}.
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With the introduction of the three-dimensional pseuddtereS (S3 S1, Si2) and the
vector operatof], the last term can be converted into the form:

(S5x0, S x0) = (S5, S)A-(S,0)(3,0). (10.2)
If one describes the charges (i.e., matter) by Dird&ery then:
J(x) =fer'a d(x-q", (10.3)

in which f is a constant with the dimensions of a numleeis the elementary electric
charge,a/ are Dirac’s velocity operators (i.e., matrices) left" particle, 7" are certain
(generally non-Hermitian) matrix operators (viz., @t spin) that commute with the
a’, andq' is the position vector of thdf' particle.

Correspondingly, the antisymmetric tensor will be:

Fori,k#0: S (X)=+i gei—er,[z”a{ a; d(x—q"),
(10.4)
Fori, = 0: Sgk(x):—ige%rr,[z”a,ié(x—q).

g is likewise a constant with the dimensions of a bemin this. 8" is the Diracs
matrix of ther™ particle. If one chooses the spinors such that 1 and:

10 0 0
01 0 O
'8_00—10
00 0 -1

then one will see that onlgy andf a; ax are “diagonal” matrices. Under the reduction
to the “large components” of the Dirac function, thentgdiagonal matrices will first
contribute in the approximation where “kinetic energy esjuast mass times.” Thus,
the things that were neglected in 2 will be justified.e@an then replac8 with 1 (for

pos(itive energies) and introduce the matriogdor i S a; ax . The interaction will then
be ():

2
Urs_l_Usr:%(TrTs* + T“T% (|f|2+ |g|2 (5r’55)
-1gF (@",6°) (¢".0)(@°,.0)v(d -q°)). (10.5)

Use was made of the relation:

() Inbothfactors[] means the taking the gradient with respegf t@r with respect tof both times).
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(A=13 v (X) =—415(X) (10.6)

in this in order to eliminate the operafar
Strictly speaking, a “local action term”:

-4m|gFI?o(q" -q) (10.7)

will then appear in the last bracket, along with theng2(10.5).
This term will always appear (as in electrodynamics) rwlo@e completes the
conversion (10.2). However, it will be easy to oveklawhen one first performs the

operation] onv (x —Y); i.e., when one writes:

(5°x0, SxO)v (|z]) =(5°x2, § xz)il(—l |z |)j+ 2(8.78)2 "z |.
1Z10z |k | C|

In this,V' (| z |) means the derivative efwith respecttoz|. If one now converts the
vector product term by means of the formula:

(S°xz,Sxz) =(S°,9)|zF-(S.2)(82) (10.8)

then one will obtain (10.5) preciselithoutthe perturbing expression (10.7). However,
that is based upon the fact that we are counting a téorder |z [ / | z [ that will be
singular forz = 0 in the conversion of the vector product.

The same term also appears in the calculation ofspi@-spin interaction of two
electrons:

Namely, we proceed in the usual way: Calculate that Bméeraction terms by
developing Mgller’s interaction in 1¢? and reduce the Dirac equation to the “large
components,” so the spin interaction will, in fact, appaa the form of
(o°x0,0"x0)|z[*. Now, for the sake of simplicity, in the literatutbe conversion
(10.8) will be employed at that point at the latest, sihel the supplementary term can
be forgotten.

If one recalls the fact that the entirety of theeiattion terms thus-obtained (with the
exception of the Coulomb term)) can be employed only dsst-order perturbations
then the supplementary term will appear only as a donaller splitting between singlet
and triplet that is proportional & in the phenomena. However, if one would like to
direct one’s attention to the rigorous solution thewould lead to infinitely-deep terms
in the attractive case.

We must therefore always remain aware of the faat il the application of the
interaction terms that are calculated in that wag, @an consider them to be only
perturbations as opposed to the Coulomb term that appears in elgoamics.

In fact, we need thegorous interactionfor the solution of the nuclear problem; i.e.,
finding its stationary states. If we would then likee compare the empirical laws of

() See page 8.
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interaction with the results that are obtained hbes tve must preserve these additional
local action terms in all cases.

Formula (10.5) then has, in fact, the correct signthadtorrect spin dependency for
the force between the neutron and proton, up to the gnad fEhe fact that the “isotopic
spin” factor also can be given the desired form sleaftmown in § 12 (Part IlI).



PART llI

11. Equation of motion and Hamilton operator.

The nuclear force field will be described by severalrfeectors 7. Here, in
contrast to the foregoing paragraphs, the upper irde® longer distinguishes the
individual particles, but a number of different Proedds whose operators commute
with each other. Naturally, the six-vectofg that are derived from them and tide
themselves correspond to the overbarred quantitiesall@w ffrom equation (9.18).

We describe the spinor field of matter in the formattls preferred by the author as a
16-component spinor field, [2], [13], where each of the two indices goes from 1 to 4.

The matricesa; , £ of Dirac’s theory and the matrices that originate in the “Pauli
terms” shall act upon the lower indgxwhile the matriceg (andx) that were introduced
in paragraph 10 shall represent linear operators that acttbhpampper index. They
then commute with the Dirac operator. (In the previcu#bd papers, they were
denoted by andA.)

The equations of motion of the field will then read:

Zﬂ—lgcbf +4n[Jf—Zﬁj =0. (11.1)
0% © 0%,
If one performs the operatiah/ dx; on the equations and adds them then it will
follow that:
0 s 2( 0 s
—,®° |-4m7?| =,J°| =0. (11.2)
0x 0x

The equations of motion for matter read:
. 0 1, o0 . _
—ihc a— +m(f",[>’y—zz[(1 ,®)+ (8, F)+conj]: ¢ =0. (11.3)

In this,J " andS " are abbreviations for the following vectors andstas that one
constructs frony:
r — Osr
Y=g (11.4)
S =9 9.

The quantitieg " ands " are constructed from the numerical factbfsandg ', the
elementary quantum of electriciey and the matrices that act upon the spinor indices
the following way:

ji=f'ear’, a =1,

Sk = greliaik 7', (11.5)

r
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ok=10a o, ok =—1 B ak.

(s", F") is the scalar product of the two six-vectors (i.eL X > &¢&, ...), anduis a
i k

matrix whose eigenvalues are the masses of the electeatrino, proton, and neutron
(measured as multiples of the electron nmaks|; are reciprocal lengths (= mass of the
particle that is assigned to the figltimesc / h), which the characteristic of each field.

In a classical field theory, one obtains the fietphaions for the nuclear field and
matter from requiring that the space-time integral bhgrange density functio must

be an extremum. Its matter part has the form:

£ (@) =— ¢ times the expression (11.3). (11.6)
For the field part, one can write either:

£(®) =Y & L(A), +£(BY), (11.7)

(with ®>= A°+I ', 0B/0x), where the summands represent expressions obthe

(2.1) [with indices ands appended and with no matter part, which is already1.6)],
or else the Proca expression:

,Q(qJS)S:—Sin[(FS*, FS+12(®%, d9). (11.8)

One must consider equation (11.2) to be an auxitandition in the use of (11.7).

The transition to the Hamilton function comes abouthe usual way (cf., e.g.,
paragraph 2). Generally, only the form (11.7) da employed, since the time
derivatives ofP, do not appear in (11.8). If one employs (11.@ntthe A", B', and their
conjugate momenta will appear in the Hamilton fuoret

The formalism that was developed in paragraphadB%(naturally, the “two-sided
formulation” is not essential) allows one to wrdeHamiltonian operator [according to
formula (9.17) and the following remark 1] that dads upon only the three field
quantities®;, @,, ®;, and their conjugate impulses, as well as upoir t@mplex
conjugate operators.

The Hamiltonian density reads:

1 r r r
§= 8—ﬂ2[|3(¢ %, @)+ (rot®'”, rotd )]

r

+ 871 Z[(I'Im,l'lr)ﬂr‘zdiv N “divn’ }

+ @ {—ihc(a,ij + m&ﬁ} ¢
0X
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+13°[-(3", @)+ 3y 8mel? div T’ + conj.

iis ¢rm+z S, 8 dl’, +COI‘IJ}

i=1 k=1

; nz{l;Z(JsﬂJg+Jz,Jf)+z(%E 5+ S fs)] (11.9)

Naturally, according to (11.6), the impulses tha¢ conjugate to thg), are the

complex conjugatesgzﬁzD timesih. The Hamilton function is bilinear in the nuclesard

matter field quantities up to the last line, whmintains the (symmetrized) terms in the
remark (2.6a). Those terms are bi-quadratic ingthe

One obtains the equations of motion classically gmantum-theoretically from the
canonical equation:

o!
0%

br _10H
con;

oOlkr

=L [H,n7, i=1,23, (11.10)
hc

and an analogous equation in whi®h is switched withl1;, and in which a — appears in
the third term of the equation.dH /dM; means functional differentiation of the
functionalH (= volume integral ofy) with respect to the functiofl;. The analogous
relationship is true fog :

“inc - ing =g (11.11)

0% op"

One must pay attention to the sequence of thestenndifferentiation in the last
equality in (11.11) sincd;” does not commute wit .

The last identities (11.10) and (11.11), whichresp the correspondence principle,
are true when the nuclear field is quantized symioadly:

[15(X), Pg(Y)] =ih ds A&k O (X —Y), (11.12)

and when the symmetric-X or anti-symmetric (+) quantization is true foretmatter
field:

9.0 87 ()£ ¢7(y)#,(x) =0,

vO v (1113)
¢, ()87 ()£ ¢7(y) 8, (X) =9,,9,,0(x-Y).

All other operators commute with each other. &ik; does not appear, the
guantum-theoretic derivation of the field equatiomsst be briefly sketched out:
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1. Differentiating (11.10) with respect to time and elitimg M’ from the
canonically-conjugate equation leads to equations (9.20)fdy, 2, 3.

2. If onedefinesthe operator:
@ = 8mrc | ?div N™ + 477172 J (11.14)

then the fourth equation in (9.20) will follow from timéfdrentiating the canonically-
conjugate equation (11.10) fét""[and eliminating®! by using (11.10)].

3. One obtains the relation (11.2) from the equationishe&nonically-conjugate to
(11.10) by taking the divergence and employing the definitiori 1.

4. One eliminates the four-divergence of the currentthen right-hand side of
equations (9.20) with the help of (11.2) that is obtainedahway and obtains the field
equations in the form (11.1).

We make the following remarks about that:
The operators:

o), R = -0
ox 0%

(i,k=1,2 3)

arepure field operatorsand therefore commute with the matter operagors
The operatorsp; [defined by (11.14)] and the operatdé§ = ad;/ox +d /c are

mixed operators. Thejo not commutwith the matter operatogs The relation:
Fi=8mc N+ 4rS, (11.15)

follows directly from equations (11.10) tee definition ofF, in analogy with (11.14).

The equations of motion for the matter that follownfi (11.11) have the following
form:

{—ihc(a,%)+ méBu+1Y [~ )+ |8 [Pdivir”

r

5.3 0D & .
=Y si=—+> g 8md1\ +conj | ¢
i1 k=1 0%, =1

£ 3| 2 2@+ 93,)+ Y S0 2m(Sp+ 6 S+ conﬂ: 0. (11.16)

v

Thus, if theJ;, and S, were to commute witlp then (11.16) would, in fact, be

identical with the classical equation of motion .@)lafter substituting the definitions
(11.14) and (11.15). (11.16) is a Dirac equatlmat is nonlinear ip. The nonlinearity
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originates in the appearance of the derivative of thenpaten the Lagrange function
when one regards th&" andB' as the primary quantities [see the rem., Part I, fitam
(2.6a)].

12. Theequation of continuity for electric and heavy charges and the explicit form
for the forces of interaction in the nucleus.

Electrodynamicss contained in the general formalism of Part Il whee set$, = O
for one of the fields (e.gr,= 0). NoB, will then exist, and one will have>’ = A’ and

J' =Jin (9.9). Other than the trivial casg = 0, the only possibility that is still open is
that J; commutes withJ]”. If one now decomposes things into real and imaginatg pa

then the description will split into two independent réalds that interact with an
independent real current. Both current components musvidodlly satisfy the
continuity equation. The continuity equation and theliye of the field are thus
consequences &f= 0.

By contrast, the formalism of the foregoing paragrapstill generally sufficient for
one to describe electrodynamics: Namely, the curdehd} and (11.5) that is constructed
from the g with the help of rear® does not satisfy the continuity equation in the absence
of other fields®" for which 7" does not commute with®. One must then add a four-
vector that is constructed from the to the expression for the current; the fiedelsmust
be charge carriers.

In addition to thislaw of conservation of electric chargevhich is required by
Maxwell's theory, there is, however, obviously yet aerotbonservation law: For all of
the observed transformations of matter, no transfoomatof heavy particles (e.qg.,
neutrons and protons) into light particles (e.g., elastrand neutrinos) have been
observed. We would therefore like to demand that thleoelld be d&aw of conservation
of heavy charge.

The matrices° = J):

and A'= : (12.1)

o O O B
o O O O
o B O O
o O O O
o O O O
o O O O
o » O O
O O O

which act upon the upper index @f allow the electric (heavy, resp.) charge density that
is carried by the spinor field to be written in thenfog” a A ¢. If A" are the diagonal
elements of the matriX then the 0-component will have the forE/l”¢”D¢” . When

one employs hole theory and the anti-symmetric quatitiz (cf., also Majorandoc. cit.
[12]), the eigenvalues of the volume integral @f¢’ are whole positive or negative
numbers. 1” = 0 or 1 is then the charge of the particle of Wespinor field. Anti-
particles have chargeA-.
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We now calculate the four-divergence of the curreat tb constructed from the
matrices/:

In order to do that, we multiply (11.16) kA on the left and the complex-conjugate
equation byd¢ on the right, and subtract the two equations from edloér. Now, the
four-divergence does not generally vanish, but will be Rtively complicated
expression. It simplifies considerably when the mattixsatisfies the following
commutation relations:

[A 4 =0,

A 1] =A" 7", (12.2)
A7 =-A"1"

A = multiples of the identity matrix.

It follows from this thatd must be Hermitian, and" must be a real number. The
divergence equation will then assume the form:

> _aa (§ aidg)= —i ZN [(@",3) -8l 2divT T,
i 0%
o™ 3
+ ZZ Sk > 8mef;, $, - conj.|. (12.3)
i=1 k=1 k=1

The fact that the fourth-order termsgndrop out follows from relations (11.13) and
the relation:
AT, "1+ [r" A, r]=0
which follows from (12.2).
In order to show that the right-hand side is tivemjence of another four-current, we

multiply the field equation (11.1) witke, @ on the left and the complex-conjugate

equation, likewise on the left, by ®°, and add the sums of the two equations foom

Oto 3.
If one considers the non-commutation of some thitigen one will obtain the
following four-divergence:

a I r r r r —_
Z&{%z & (chDFik - chFikD):| =

" ohe {(CDrDJ) @) - T + P I - [cﬁoﬂ,cﬁo]

-0y Bory oLy F;O@ (122

Due to the definition ofp}”, (11.14) will yield the third, fourth, and fiftretm in the
bracket on the right-hand side directly:
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(... - 8mc I div A" OO + conj...) (12.5)
0

Due to the definition of the~,, (11.15), the last term in the right-hand side will
assume the form:

[w—imséf g+ 47 §, g} (12.6)

If one then multiplies (12.4) by the numbar and sums over then when one
considers the definition (11.15), the sum of (12.3) and (12a4) be written as the

continuity equation:
0
—, = 0
(ax P j

A= NP )+ N {ﬁz O, —4@»—%(5&—4773?)] (12.7)

with the components:

The charged part of thé field is then the™ summand in the second sum, just as the
V" summand of the first sum represents the chargedptnev" matter field.

In particular, the charged part of th& field vanishes when the field is real.
MAJORANA [9] has shown that an analogous theorem exists foosspelds.

The O-component is the actual charge density. nAAdme employs the definition
(11.15), it will read:

= THWIINT L ). 26

As we have already remarked, the eigenvaluesyfralividual summand in the first
sum will be positive and negative multiples 4f when one considers Dirac’s hole
theory. From the Pauli-Weisskopf theo],[the same thing will be true for every
individual summand in the second double sum. Timaberst’ andA" thus represent the
charge of the particle of thé” matter (spinor) field and thé" nuclear force (tensor)
field. Each of the fieldsp; (with the exception of the real fields) has a p#tand an
anti-particle. The latter have the opposite sigrtlie charge'}.

Equations (12.2), which represent the necessangittons for the existence of a
continuity equatiorf12.7), permit one to determine the possible mesic.

It initially follows from the first equation that must be a diagonal matrix, since the
eigenvalues ofy are all different. The second and third equatiaiesnand the
Hermiticity of A, and thus determind” and A" as real numbers. The matrices in
equation (12.1) — viz., the electric and heavy gear obviously obey that requirement.

In order to determine the form of the four-roweatrices7', we decompose the most
general four-rowed matrix into a sum of direct proid of two-rowed matrices. Let the

() The sum ovek from 1 to 3 means that the particles have three flesspin orientations.
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four states- namely, electron, neutrino, proton, and neutron (cpoeding to the four
possible values of the upper indexf ¢) — be enumerated by 11, 21, 12, and 22, resp.
Let o = 1, nn, 1, 13 be the unit matrix and the Pauli matrices, resp., waahupon the
first index of 11, 21, etc. Likewise, lef (i = 0, 1, 2, 3) be the corresponding matrices

that act upon the second index.
Naturally, the primed and unprimed matrices commute eatth other. Moreover,
one has the known rule for both matrices:

Lk=-Lh=3[6,0]=1n0, ikl = cycl. perm. (12.9)
The most general four-rowed matrix then reads:

' = zz a rr,, (12.10)
X

and the special matrices (12.1) have the form:
A= (o + 1) 1y; A =11 (1,-13). (12.11)

Substituting these developments into the second equdt®®) and comparing the
coefficients on both sides of the equation will gitie following relations between the

a:
/\I‘ r = /\r :+
=0 N, =+idy, (12.12)
/\ask:O' /\dlk:_ldzk'
An analogous equation for the second index follows forctheservation of heavy

charge, except that the quantit\'” occurs everywhere in place Af.
The solutions of (12.12) are:

AN"'=0 with a, =4, =0,
or (12.13)
AN =x1 with g, =4,=0, and d&,=%i4d,

and analogous equations/Afi for the second index.
The following cases are then possible according to that:

1. Field with no electric or heavy charge:

A =N"=0,
and (12.14)

1_ 41 1 1 1 1
r _aOO+a10Tl+ a01Tl+ allrl
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The electromagnetic field is obviously such a field.pérticular, these fields can be
real, since the matricasare Hermitian, and the constants can be chosea rteah
The interaction between two material particles in igoumétion space that is produced
by that field follows by substituting (12.14) in (10.5). léwestrict ourselves to heavy
particles then we can sefy = 1¢, and the factor in (10.5) that containwill read
simply ():
laf+|bFrirs+ i(ab +a'b) (z}+ 13), (12.15)

in which a andb are arbitrary complex numbers. In particular, ifytlaee real then the
field will be real.

2. Fields with electric charge, but no heavy charge.

N =-1, AN?*=0,
and (12.16)
r?=(r,-ir,)(@’,+a’r'").

The interaction between two heavy particles is onceerfarmula (10.5), where the
factor that containsreads:

la’P(rirs +15r5). (12.17)

In particular, if one would like to have forces betweeutrons and protons that are
independent of the charge and depend upon only the symmetactenaof the wave
function in configuration space of the heavy particlesttine interaction must be capable
of being written in the form (10.5) with afactor (“isotopic spin factor’14]):

3
(Ial2 +bf Zr{rfj- (12.18)

i=1
If one takes the sum of (12.15) and (12.17) when one takesuthe constanfsandg in
(10.5) for both fields 1 and 2, then one will, in facttan (12.18) when one seas= a
andb =ia. That generally leads to the unattractive featurefigld 1 (viz., the field with
no electric or heavy charge) is complex, so it wih@in two types of particles (viz.,
anti-particles). Since thematrices of the following fields contain only and 7,, they

will no longer carry the interaction between heavgtipes. The case df? = + 1,A’ =0
is identical with the one that was treated (whenswaéches particles and anti-particles).

() Naturally, the indices ands in equations (12.15), (12.17), and (12.18) do not refer terdiit
fields, but to two different heavy particles, accordinghte configuration space description in paragraph
10.
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13. Continuation of the discussion of the possible fields.

Whereas the representation by four-vect®fswas necessary for the field types that

were discussed at the end of the foregoing paragraphsiéen tr find agreement with
experiments (e.g., attraction of deuterons in the grotatd,<etc.), that will no longer be
necessary for the other fields. For example, thiedgsfcan also have a scalar character.
However, one easily convinces oneself that analogousgwi@ats are also valid for them,
and that, in particular, the relations (12.2) are taseyell as the relations (12.12) and
(12.13) that are derived from them.

If we denote the spinor particles — electron, neutfimoton, and neutron — by) @
(1, 0),n (0, 0),P (1, 1), andN (O, 1), resp., the neutral particle of field 1 [at least bf
which must exist, due to the complex constants in (12.15)] (& 0), and the charged

particle of field 2 bye (1, 0) then the matrices (12.14) and (12.16) will give risthéo

following transition:
Field 1.

spinor particle- the same spinor particlent(0, 0). (13.1)

Naturally, up to now, only reactions with heavy spinontiples have been
“observed”; i.e., their existence must be required in otdexxplain the nuclear forces
between the same patrticles.

Field 2.
P(1,1)= N(0, 1) +¢ (1, 0) (13.2)
e(L,0)= n (0, 0) +¢ (L, 0). (13.3)

All of the symbols are considered to be algebraic quesmt(Negative symbols mean
the corresponding anti-particle.) For example, iofe$ from (13.2) and (13.3) that:

[-e(1,0)]= [-e(1, 0)+n (0, 0)]. (13.3

In other words, a (negatively-charged) anpiarticle ¢ ¢) can be decomposed into a

negative electron{e) and a neutrinon).

Furthermore, for the time being, only the reactions)l3ave been “observed,” since
the exchange forces between protons and neutrons wouldfresuthem.

However, since the-particles must obviously occur quite rarely, (1B\8ill explain
their finite lifetimes.

Moreover, (13.3) will give a theory gkdecay:

() The two indices in the bracket that follows the synteéér to the electric and heavy charge of the
particles, resp.
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A neutron converts into a proton + an anparticle according to the algebraic

description of (13.2):
N(,1)- P(1,1)+ Ee(1,0). (23.2

Only the reaction (13'Benters into this.

According to the formalism of Part Il, that can béerpreted as follows: Under the
influence of the retarded potential of a heavy partiblt converts a neutron into a
proton, a positive electron in a state of negativegnetll jump into a neutrino state of
positive energy. Since the motion of the heavy pasticésults slowly, according to
paragraph 10, the retardation can be neglected, and an tiater@icthe form (10.5) can
be substituted in the Hamilton function.

Since the range of thefield seems to be small in comparison to the waveleoft
the de Broglie waves of electrons and neutrinos, frearistic arguments, the “action at
a distance” in equation (10.5) can be replaced with @ l|ction, and what follows will
be one of Fierz’s generalizatiory pf Fermi's theory 16] of f-decay.

However, this generalization will still have thesailvantage that it yields a weak
asymmetry to the energy distribution of the continyBspectrum.

We will see that the other possible field types providaleernative description g
decay, and according to the calculations of WENTZE],[a better one.

The non-occurrence of the reaction (13.3) (the redptiimprobable occurrence of it,
resp.) implies an infinite length (a length of the kihdttwas proposed by BHABHA],
resp.) for the lifetime of the-particle. The finite lifetime would then be requirealy by

the collisions between neutrons that occur in atoraen (by antie-particles colliding

with protons, resp.)A1].
We continue our discussion of the field types:

3. Field with no electric charge, but with a heavy charge.

which implies, analogous to (12.16) (13.4)
r°= (8, + & T YT+ Ty,
We denote the particles BY (0, 1). They give rise to the following reaction:
N (1, 0)= n(1,0) +91 (0, 1), (13.5)
P(,1)= e(1,0) +1 (0, 1). (13.6)
Since the proton is certainly a stable particle, it feilow from (13.6) that the mass

of the 91-particle is large than the difference between the pretad electron masses.
However, since it also emerges from measurements ¢faruspin and nuclear statistics
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that only neutrons and protons, but no particles with g/aimber spins, exist in the
nuclear, it is likely that th&t-particle also possesses a larger mass than the neudrah

is therefore unstable.

According to the arguments about the retarded potertadstield 3 will give rise to
exchange forces between light and heavy particles ofsresst range (e.g., the Compton
wavelength of the proton). These exchange forces pamtlternative explanation for
[-decay:

From (13.5), amMi-particle and a neutrino are generated. Thgarticle splits
according to the algebraically-depicted equation (13.6):

N0, 1) - P(L, 1)+ Ee(l,0). (13.6

Otherwise expressed, that reads: A spinor particle fgoesthe state “neutron bound
to the nucleus” to the state “free neutrino.” Thiarged or advanced potential of field 3
that is generated by that transition will induce the quarnump of another particle from
the state “negative-energy electron” to the state &prdound to the nucleus.”

Naturally, it will no longer be possible to negléwt retardation. As WENTZELLY]
has shown, one will get a stronger asymmetry tharermFs theory when thét-field is

affected by the nucleus (i.e., when “intermediateestagxist with boundi-particles).

4. Field with electric and heavy charges of equal sign.
/\4 e /\14 - — l,
which implies: (13.7)
rt= a141(rl_ i7,)(7,+i7).
The particles that are denotedBy1, 1) give rise to only the reaction:

P(1,1)= n(0,0) +% (1, 1). (13.8)

In order for the proton to be stable, tfieparticle must have a larger mass than the
proton.

5. Field with electric and heavy charges of different signs.
N =+1N°=-1,
which implies: (13.19)
r° = &) (1, +ir,) (T HITY),

and likewise only the single reaction:

N (0, 1) =e (1, 0) +% (- 1, 1). (13.10)
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14. Extension of the concept of current J;'.

The definitions (11.4) of the current quantities that appeRroca’s equations (11.1)
are capable of yet another extension that is likewigeehr ing. If one adds the terms:

Ki =gk ¢, Re=¢nd, (14.1)

with the matrix operators:

k=f"edaik"; 1, :g”elléa.k k', (14.2)

r

to it, in which 0 means the matrix that FERMI introducelf][ (cf., also PAULI [L8)]),
and k" once more represents the operators that act ongher indexv of ¢!, then

nothing will change in the equations of motion bé tfield (11.1) and the divergence
equation of the field (12.4), except th3t is replaced withJ| + K" . In order to obtain

the equations of motion fa# from the Hamilton function, we must add the terms:

2y [177(35°K g + K0 + KIPK) + corr. terms inS, - andR, (14.3)

(in addition to the aforementioned replacement$jote that these terms are indeed
Hermitian, but, in contrast to the terms in the lawe of (11.9), they araot symmetric.
A continuity equation is possible only with thesents.

For symmetric quantization @, one will get the classical wave equations (11b8},
which are extended by terms ¢n. For anti-symmetric quantization),(a characteristic
sign difference between that term and the onearctassical equations will appear. The
divergence equation (12.3) will keep its form whie matricesx satisfy the anti-
commutation relations:

A" +k'A=-N«k". (14.4)

If one develops the matricasonce more according to (12.10) with constdmtshen the
relations will follow:

blrk ==N\' QK’ sz ==N bzw (14.5)
b(;k+b;k:_/\r t:%k’ bsk+ b)k:_/\r bjk’ .

in analogy with (12.12) and (12.13).
The solutions fo\" now read 0 1, - 2, instead of O; 1, + 1, resp., as in paragraph
12. We would like to exclude the solution — 2 (vaoubly-charged elementary particle).
The field types that were discussed in the foreg@aragraphs will then give rise to
the following additional possible reactions:

() (11.11) is then true only in the forH [#], and no longeeH / o¢.
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1. Field with no electric or heavy charge.

K1 =0 (T, —T)(Ty+TY); (14.6)
I.e., the reaction:

n (00)= 2n (0, 0). (14.7)

2. Field with electric, but no heavy charge.

K?= (03T, + 27 )T\ ,+T), (14.8)

or, when written in the reaction notation:
e(1,0)= (-n (0, 0) +e (1, O). (14.8)ic]
3. Field with no electric charge, but with heavy charge.

k= (1, —1,) (05,7, + 03,7y (14.9)

or:

N (0, 0) = (-n (0, 0)) +9 (0, 1). (14.10)

4. Field with electric and heavy charges with the same sign.

k= (07, + BT ) T+ (bl o+ 0 )T (14.11)
with the reactions:

P(1,1)= (-n(0,0) +B (1, 1), (14.12)

N(@©,1)= (-e(1,0) +B (1, 1). (14.13)

The field 5 with heavy and electric charges of diffesdgns gives only the matrix®
=0.

In addition to the last reaction (14.13), all new readiwill be the same as the ones
with 7 matrices, except that the anti-neutrino plays the ebthe neutrino everywhere.

The field 4 gives another possibility f@g¥decay: A neutron will become‘g (1, 1)
particle (14.13) and emit a negative electron. Accordinthéoalgebraic representation
of (14.12), thep (1, 1) particle will split into a proton and a neutrino:

P (1, 1) - P (1, 1) +n (0, 0). (14.13

What was said about (13\6will be true for (12.13 [17]. The appearance of a
neutrino and an anti-neutrino will have the following pksemeaning:
a) Neutrinos and anti-neutrinos are different particles.
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One then distinguishes between them by way of thealled neutrino charge. If one
demands theonservation of neutrino chargben one must also endow the neutron with
a neutrino charge, as well. The matrix:

A7=1-) (14.12)

will then allow the neutrino charge density that isriear by the spinor particles to form.
It will then follow from (12.2) that:

[A% =N T =-A"T1"; (14.13)

I.e., the particles of the nuclear field have bothteteand neutrino charges of opposite
signs. However, it follows from (14.14) that:

A"k + K" A"== A" k"= (2 +A)) K. (14.14)

(14.14) and (14.13) are compatible with each other only whéwreit’ or 7'
vanishes; i.e., for a well-defined field", only the reaction of paragraph 13 or the
reactions of this paragraph will appear.

b) There exists no difference between neutrinos arnehantrinos.

The matricesc can then be chosen in such a way that the spintreafieutrino fields 2
will appear in the field-matter interaction terms Ire tHamilton function only in the
combination:

P =g +0 ¢ (14.15)

If one chooses the matricesand in such a form that the; are pure real andis pure
imaginary then the matri® will be equal to the identity matrix, and one will lea@* =

#”. MAJORANA [9] has shown that one can also write the componeitheffree

spinor particle in the Hamilton function by employing otihe real functiong®. The

real spinor field, just like the real tensor field,rihenows no anti-particle; i.e., it consists
of only one kind of particle (cf., also RACAHY] on this).

15. Concluding remarks.

Once the existence of a continuity equation in theradesef electric fields has been
shown, the introduction of the interaction “electi@d with electrically-charge@®" and
¢" fields” will create no serious difficulties. The PR@ case 10] has already been
classically.

One must then treainter alia, the following interesting properties of the new
properties (cf., also BHABHAZ on this):
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1. Brehmsstrahlung, Compton effect, and pair-creatiosparticles. (For spinless

particles, the formula that is analogous to that adh8dHeitler was already computed by
PAULI and WEISSKOPF{].)

2. Absorption (and emission) of aiparticle (or an unchargedparticle) by a heavy
particle in the atomic nucleus (= atomic disintegratiy ¢ or n particles, since the rest

energy of those particles is already sufficientdaruclear component to lose its binding
energy)R1].

3. Creation of pairs of or n particles by recombination of a proton and a neutron
with an anti-proton and an anti-neutron. Radiationna&f or more: andn particles by the
braking of fast neutrons and protons.

In addition to pair creation by a primary photon rdg generation of the obviously
unstablee-particle (on its instability, cf., also the recenplyblished observations of

BLACKETT [20Q]) can then be possibly interpreted by this recombinatioa primary
cosmic ray that consists of heavy anti-particles Withnuclear constituents.

Institut de Physique, Université de Geneve.
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