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Foreword

This little book makes no claim to completeness. fersf little more than a
representation of a personal viewpoint that | hope lvalbf use in the further treatment
of the geometries described here and other applicatiofise same is true for the
bibliography at the end. No attempt has been made to ima&enplete. On the other
hand, it includes numerous treatises for which no spaniéintion is made in the text, but
which | hope can perhaps be of use for further investigatibtige topic.

First, 1 would like to thank three young German mathesizats very much. F.
JOHN assisted me in the preparation of my lecture atr@éti in the Summer of 1932.
His elaborationof this lecture defined a first draft of the present marpts | would like
to make note of Herrn NOBELING, for the supplementaayarial that he contributed on
the occasion of the lectures that | gave in Vienna. lligjreter my lectures in Hamburg
G. HOWE helped me with a sweeping revision of the emhiasuscript and thus also
stimulated many various improvements.

Fynshay in August 1932. O. VEBLEN.
Upon the conclusion of the corrections, | would likeetqpress my thanks to my
Princeton collaborators, and in particular J. L. VANRELICE, who has carefully

maintained the unity of the manuscript.

Princeton,in November 1932. O. VEBLEN.
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|. Unified theory of gravitation and electromagnetism.

One of the many achievements of EINSTEIN’s generalrthebrelativity is that the
theory of gravitation has been geometrized. This georatitnz arises from the
assumption that one must regard the world of physical phena as a four-dimensional
spacetime continuum. Such a continuum
is, by definition, representable by
coordinate systems. A coordinate system P
is merely a map of a class of world-points >
to a class of number-quadruples, or, as X
one can also sapumber-pointgx*, X2, X,
x"). Therefore, the first axiom, or the first
group of axioms, of relativity theory must Number-point
also represent a statement of the existence
and the properties of this map. Whether Fig. 1.
or not | consider it to be important that
these axioms be clearly formulated, neverthelesdl] hat go into the particulars of that
problem in this work, since J. H. C. WHITEHEAD and mys&fe thoroughly presented
those axioms in a recently-appearing work (Bibliography 1932, 10).

Furthermore, this geometrization implies the assumptibna definite spatial
structure to the universe. In fact, this structure residasthing more than the existence
of ten functions of position:

World-point

gi (', %, %, X G,j=1,....,4)

(g =g ) in each coordinate system. Since these functiensrgiguely defined in each
coordinate system we denote them as the componerdsgebmetrical(or physical)
object. If these components are given in one coordinatesysten they are determined
in any other coordinate system by a simple linear tramsfoon law. Due to the
particular linear form of this transformation law tilggometric object is called a tensor,
and indeed one refers to it as thadamental tensasf a RIEMANNIAN space.

It is not essential for one to use the geometricajdage. Everything proceeds in a
logically smooth fashion if we regard tlyg as ten gravitational potentials and treat the
entire theory in a purely analytical way. However,stlis not as interesting and
stimulating (at least for the scientists of our epoak)when we regard thg as the
coefficients of a quadratic differential form:

d52 = Gij dx dx
that RIEMANN defined along a curve:
X =X (t)
by the integral:
[ ds

and can thus geometrically express and motivate are esgites of theorems. However,
one must freely observe that in the case of EINST&IMieory the geometrical
measurements are connected with gravitational phenomena.
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Each particular choice of fundamental tensor distgslges a particular
RIEMANNIAN space. Classes of RIEMANNIAN spaces maydigained as solutions
of systems of partial differential equations in whidie ©; represent independent
variables. By a clever choice of such a systemgofigons, EINSTEIN succeeded in
singling out particular classes of RIEMANNIAN spaceattare capable of being given a
genuine physical interpretation.

In order to find this interpretation, one employs cowmatk systems (normal or
inertial coordinates) that have a definite geometricahmmg and allow for a particular
decomposition into spacelike and timelike components.thiymeans, the geometrical
theorems of EINSTEIN's classes of RIEMANNIAN spacemy be translated into
ordinary physical theorems. One thus finds that a lpae of classical physics is
contained in the ten componemys, and since gravitational phenomena play a leading
role in this part of the theory, the identificationtbég; as gravitational potentials seems
justified. The unified character of this theory finds aéspression the fact that the
gravitational potentials are the components of a sgpetanetrical object.

The essential difference between this theory angtéeious NEWTONIAN theory
of gravitation that we would like to emphasize is theofelhg: In the older theory, one
thought of a Euclidian space as being given to begin wvatid then introduced
gravitational potentials into this theory. However,stheotential functions have no
influence on space itself. The properties of space@mpletely independent of those of
the potentials. In EINSTEIN’s theory, by contrast, pneperties of space are identical
with the properties of the gravitational potentigjs

On the other hand, in the world of these gravitational piatis, electromagnetic
phenomena have nothing to with the geometrical structuspace. In EINSTEIN’s
theory the electromagenetic potentials areso to speak— foreign, just as the
NEWTONIAN potential functions were in Euclidian spac&/hether more less matter
exists in the universe leaves the Euclidian geometryangdd. Likewise, no direct
effect of electricity on spacetime structure was presethe general theory of relativity.

The problem of discovering a spacetime structure thatndispenot only upon the
gravitational potentials, but also on the electromagrmiientials was first attacked by
H. WEYL in the year 1918. Despite the fact that WEYhR®empt was physically
unsuccessful, he has produced a very beautiful geome#rjras of that labor. The next
attempt was made by T. KALUZA in 1921. KALUZA replaced foer-dimensional
continuum with a five-dimensional one, and then introduaeRIEMANNIAN metric
into this continuum, and he succeeded in establishing field iegsahat yielded the
EINSTEIN gravitational equations and the MAXWELL elechagnetic equations in the
first approximation.

The KALUZA theory was simplified by O. KLEIN (Bibliogiphy 1926, 5; 1927, 11)
in such a way that the EINSTEIN-MAXWELL theory emetlgaot approximately, but in
its precise form. Since then, various other matheaaphysicists have pursued the
theory and found its formal structure very tempting. Hmvea fundamental question
with no satisfactory answer still remains: Whathe meaning of the fifth dimension?
One has found no compelling basis for doubting our coovidhat the physical universe
is four-dimensional. Therefore, theoreticians, andvalall, EINSTEIN himself, have
carried out a series of investigations with the purposeredting a four-dimensional
theory. Some of these efforts are listed in thei8gvbhphy at the end of this book.
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After five or six years, the thought came to me thatoasible solution to the
unification problem for the spaces that many people hargsiigated in the last ten years
might be in finding a generalization of projective getrpn. Before we present the basic
geometrical ideas upon which our solution of the unificaposblem rests, we discuss
some notions of ordinary relativity theory.

We thus now work with the ordinary spacetime that eslao the coordinates, X2,

X3, X*. We consider the differentiats¢, dx¢, dx®, d¥* of the coordinates. How are they to
be geometrically interpreted? Their basic properthad they are transformed linearly
by a coordinate transformation:

X'=%'(x)

according to the formulds |
0%
(1) o =7 dX;

the dX may thus be interpreted as affine coordinates in adonensional space. Any
point (¢, x4, x°, X*) of the base spaceés therefore associated with an affine “tangent
space.” However, the point (0, 0, 0, 0) of the tangpaice, whose coordinates remain
unchanged under all transformations (1), can thus beifigdnivith the point ', x4, x°,
x*) of the base space and regarded as a contact poich cBardinate transformation of
the base space induces an affine transformation bfteagent space.
If our base space were — say — one-dimensional thexowld represent it as a curve,
and the tangent spaceRatvould be the usual tangent to the curv@.afThe variablec is
a parameter that establishes the position of
a point on the curvem and the parameter
dx determines the position of a point on
the tangent line. In the four-dimensional
case, such an intuitive picture is no longer
possible due to the limitations of our
visual imagination. Therefore, the
corresponding geometrical expressions
prove to be helpful and suggestive. We
Fig. 2. must therefore start with a four-
dimensional base space or universe and
then introduce a set of tangent spaces, each of whathaished to a definite point of the
base space.
Theg; (x) are constant on any given tangent space. Therefore:

dx

d52 = Gij d)g d)d.

is the square of the distance between the origin angdim dx relative to a Euclidian
metric on the tangent spacexatThe pointgix that satisfy the quadratic equation:

g d)% d)d = 0,

LIn this work on relativity theory, it is self-explanatotigat we use the EINSTEIN summation
convention.
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define a cone through the origin: the light cone. hen¢ase of relativity theory, this cone
is real since the quadratic forgp is indefinite. According a viewpoint that was stressed
by E. CARTAN in particular (Bibliography 1928, 1) the RIEMANNN geometry of the
base universe should be regarded as the theory of theseiadsd Euclidian tangent
spaces.

The generalization that we have in mind is the follgnome:

Instead of a cone, such as the light cone that wednendounter in relativity theory,
we would like to associate a completely
general non-degenerate surface of second )
order in each tangent space. By means of
this quadric surface, a quadratic cape
dX d¥ = 0 is likewise distinguished in
each tangent space, namely, the tangent 4
cone through the origin, and a
hyperplane: the polar plane of the origin.

The polar plane includes the contact point

of the tangent cone with the surface. The Fig. 3.

polar hyperplane shall represent the

electromagnetic potentials, whereas the cone refdseti®n gravitational potentials (Fig.
3).

Instead of a Euclidian geometry in each tangent spaz@ow have a non-Euclidian
geometry, in which our quadric surface is the absolute gifathe sense of CAYLEY.
Our new geometry is therefore the collective thedrihs set of CAYLEY spaces, just
as RIEMANNIAN geometry was the theory of Euclidian ggmthat were tangent to the
base space.

The computational apparatus that seems to be the nitadilsdor our purposes was
briefly presented by B. HOFFMANN and myself in the “Phg$iReview” (1930) at the
conclusion of a previous work in the “Quarterly Jourrfdflathematics” (Oxford Series,
1930). The correspondence with the formalism of the KARLKLEIN theory is so
complete that HOFFMANN and myself have regarded oeorhto be the geometrical
basis for the KALUZA-KLEIN theory. We therefore pimatically stress that our theory
arises from viewpoints that are completely differémdm the KALUZA one. In
particular, we claim no relationship between electritamrge and the fifth coordinate;
our theory is thoroughly four-dimensional.

Independently of our investigations, EINSTEIN and MAYERb(#®igraphy, 1931,
3) have published a “unified field theory” that leads tgeesially the same results as ours
(cf. chap. VIII). Furthermore, various papers of J. 2CHOUTEN and D. van
DANTZIG (Bibliography, 1931, 7; 1932, 3, 4, 8, 9; 1933, 1) have regcampbeared, in
which the projective theory of relativity was treatedhidifferent form.

It is noteworthy that — in a mathematical manner of lsipga— all of these theories
seem to converge to each other. Therefore, one rhae that one will actually arrive
at a definitive solution of the unification problem in thammer that is entered into here.
We will discuss the limitations of this solution in phd/Il.



1. Projectivetensors.

The generalized non-Euclidian geometry that was sketcbednachapter | is the
theory of a set of tangent spaces, each of which itendaquadric surface. The theory of
a quadric surface finds its most satisfactory form m $paces of ordinary projective
geometry. For this reason, it is natural to look dorepresentation of the generalized
non-Euclidian geometry in the spaces of a generalizeégireg geometry. In fact, such
a generalized projective geometry is not hard to find .nolw is a branch of the
differential geometrical investigations of the last decadehe various ideas of this
geometry are gradually increasing from the efforts of atgnamber of mathematicians.
In particular, the investigations of H. WEYL, E. CARTAN. A. SCHOUTEN, L. P.
EISENHART, and T. Y. THOMAS must be mentioned. Thielsas have been presented
in very many different forms. | would like to sketdfe out in the form that | myself
have adopted.

Affinetensors.

Now, for the sake of orientation, we make a few résmabout ordinary or affine—
tensors. There is a large set of admissible codalisygstems on the base space, which
all go over to each other by means of analytic transtions:

(1) X'=X' (x4 %, ¢, X).

On the other hand, in the tangent spaces there is onlyethtvely small set of
coordinate systems that are connected with each otHerelay transformations:

(2) o =—-5 dX..

Therefore, we call the tangent spaces “centralyaffspaces. Their geometry depends
on the affine group, and there is a distinguished point -€dhéact point (0, 0, 0, 0) —
whose coordinates are unchanged by the transformatians (2)

In this way, the theory of the base space may be rdducthe simultaneous affine
geometry of this set of affine spaces. Tensors defsgtable device for the treatment
of this simultaneous affine geometry. As a first exiemwe take a contravariant vector,
i.e., a contravariant tensor of rank one. That geametrical object that possesses four
components:

VA(X), ..., VH(X),

that are functions of in any coordinate system. A particular poimt’( ..., dx*) in each
tangent space is determined by the equations:

d¥ =V ().
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This relationship is independent of the choice of coordinatese differentials transform
precisely like contravariant vectors according to wetikn tensor transformation laws.
Therefore, one can associate each point of any tasgaoé with a contravariant vector.

Likewise, one can associate each hyperplane througbridia in any tangent space
with a covariant vector. The points that satisfy gnationA; dX = 0 define a flat space
of dimension three. In general, the components ai'arank covariant tensor are the
coefficients of the equation: o

Aj xdXdX ... dX=0,

and the points of any tangent space that satisfy this iequéefine am™ order cone.
Above all, the theory of tensors is an affine-algebgaometry of the tangent spaces with
respect to their simultaneous behavior.

Introduction of homogeneous coor dinates.

The question now lies close at hand of whether thexespaces of other kinds that
can play the role of tangent spaces and whose totalitytleen be the subject of a new
theory. This question can be answered in the affiumati various ways. In our case,
we extend the ordinary tangent spaces to projectiveespamother viewpoint will be
discussed in chap. VIILI.

We know how we can geometrically proceed with thisresitn of the affine tangent
spaces to the projective spaces. Each bundle of paliabs is associated with a
figurative, or imaginary, point. This imaginary point regents an “infinitely distant”
point for each line of the bundle. Three infinitelgtent points are called collinear when
and only when they are the infinitely distant pointtshoee lines in the same plane. Four
infinitely distant points are called coplanar whéey are the infinitely distant points of
four lines in the same three-dimensional space. Howdverust be stressed that this
introduction of infinitely distant points must take @an each tangent space.

It is more convenient to use homogeneous coordinatebdaralytical treatment of
projective tangent spaces. Instead of the four affiwdinatesdx’, ..., dx’, we would
like to introduce five coordinateg’, X%, ..., X* such thatX’, X%, ..., X*) and pX°, hxt,

..., hX%) define one and the same point, which implies that th@yratios of theX have
any meaning. A relation of the form:

. X'

(3) d)e - ¢a X

shall exist between the affine and the projective coordinatesuch a way that the
infinitely distant points of our space satisfy the e

(4) $a X" =0.

! Greek symbols shall always take the values 0, 1, ...a#n bnes only take the values 1, ..., 4.
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We will return to the connection between this definitadrihe homogeneous coordinates

. . X
and the one that is used in elementary textbodks= Fj :

The proportionality factor.

The homogeneous coordinates are therefore still notlet@hpdetermined by these
formulas. They lack a rule that would specify how ¥feand theg, behave under
coordinate transformations. In order to obtain a theditransformations that is able to
respond to this question, we start with the fact that hmmogeneous coordinates are
determined only up to a proportionality factor It puts forth the fact that we can relate
the choice of proportionality factor to the choiderdinitely distant plane.

The proportionality factor is arbitrary for any poiriteogiven tangent space, and also
for any point of the base space; in particular, it emrrom tangent space to tangent
space. Here, however, we are not seeking the mostageheory that is possible, but
only a generalization of the usual theory that is swtédal our purposes.

In particular, nothing changes when we multiply all hgemeous coordinates by a
function of positiona(x', ..., X¥). In order to treat the process of extension to an
analytical function of position, we find it convenidatexpress the proportionality factor
in the form:

0

k=€".

The homogeneous coordinates are then extended by a fua€position 15(x) through
the substitutiort:

(5) %X°=x" + log p(X).

It is clear that geometrical or physical quantities @na& described by a projective
geometry must be invariant under (5). As in the usual temsaysis, we further demand
that they also must be invariant under coordinate transtwns:

(6) X'=X'(x).

This raises the question of finding the simplest invariammsler both classes of
transformations.

Projective scalars.
In order to study these invariants, we begin with scalédns.affine scalar has only
one component in any coordinate system. The componetw®s inoordinate systent3

- xandP - X are connected by the transformation law:

(6) A(X) = A(X).

Y nstead of this, one can use, efg;, dX in place of logp, in whichv; dX refers to a not-necessarily-
integrable differentiable form.
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For the definition of a projective scalar, we retia transformation law:
A=A

Furthermore, we assume theft enters intoA as a parameter in the simplest way.
Namely,A shall have the form:

A =" f(),
in whichN is a fixed number that obviously does not transfarrgrom (5), we have:

= _awe F(X)
A=A )T

The numbem shall be called thendexof the scalarA. It roughly plays the role of a
weight. However, we must reserve the word “weight” for anotherpose since further
invariants with a weight in the usual sense can arise.

The part ofA that is independent of obeys the law:

T
A"

whereasA itself is subject to the simple law'6 By comparison to an affine scalar,
which has only one component, a projective scalar is staad to have infinitely many
components. Any transformation of the paramegt@roduces a new component from a
given one.

However, if one does not transform the paramefethen the components of a
projective scalar behave exactly like the componeh&@ffine scalar. To say that the
parameter’ is not transformed is to say that we keep our spaegoarticular state, so to
speak. If any scalar is given then each such statespannds to a definite component of
the scalar. As we will soon see, that is also fareall of our projective tensors. In
particular, each state is associated with a definitedaoate system in each tangent
space.

Gauges.

Due to the close connection between this notion andribahat was given the same
name in WEYL'’s theory, | would like to call it gauge. The parametex’, which |
previously regarded as simply a factor, following a suggestidnH.C. WHITEHEAD, |
would now like to call auge variable We refer to a transformation of the form (5) as a
gauge transformatian

Any projective scala™ f(x) may be put into the fore¥’ . One need use only the

gauge transformation:

X°=x° + log(x))*™.

1 A possible generalization might be to set, &\gs, #(x’, ..., X9).
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This gauge transformation is uniquely determined by the =meint that it take a given
component of a projective scalar with an index that fierdint from zero to another
given one. This assignment is independent of the clodiceordinate system.
By differentiating a component of a given projecticalarA with an index oN, we
obtain five functions:
0A 0A 0A

o T axt

of which the first one corresponds to the scalarfjteplto a factoN. Under an arbitrary
gauge transformation:

(5) %x°=x" + log p(x)
and an arbitrary coordinate transformation:
(6) X'=%'(x)

these functions go to five functions: _
0A 0A 0A
which are given by the formulas:
0A _ 0A ox” _
(7) W_axﬁ X7 (0’,,3— 0, ...,4).
We agree to call the pair consisting of a given gaugeaajiden coordinate system a
representation In what follows, one can regard the pair of trans&iroms (5) and (6)
collectively as a transformation of the represeatati

Projective vectors.

Equation (7) is a special case of the following one:

B
® 7 =pos

A geometrical object that has, in any representativa,components of the form:
Go =" T4 (X, ..., X)

that obey the transformation law (8) is callegrajective covariant vector of index N
Each system of five components is thus associatedavdtfinite representation.
Its null componenty, is a projective scalar, since one has:

B
% :¢ﬂ% = ¢0-
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In particular, the matrix of the transformation lewv

(1| _0logp = _dlogp)
ox ox*
ox’|| |0
oxe |~ ox
67(j
0
A coordinate transformation:
X - X
induces the transformation: _
ox’
7=055

of any non-null component. That is to say: The-nalh components of a covariant
projective vector behave like the components ofadime covariant vector under
coordinate transformations. A gauge transformai@m induces the transformation:

0

%:¢0%+ ¢i .

In particular, whem, has index zero and obeys the invariant condition:

$o=1,
then the gauge transformation looks like:

_ . _Ologp
ai_ ¢| a)—(l .

We can then say: The four non-null components @etermined only up to a
. 0dlo . . . . .
gradlentaT?’O . This property is already recognized for the tet@nagnetic potentials.
In other words: The four electromagnetic potestiaile the non-null components of a

projective vector whose null component is one.
A contravariant vector is defined analogously tcomariant vector. Now, we must

assume the representation transformation law leafotim:

ox“
ox”

(9) X7 =x*

instead of (8). When we separate the null compoinem the other components this law
looks like:
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XO:x°+xiai(_)

(10) S
xi=x1 X
ox'’

In other words: The non-null components behave gxdike the components of an
affine vector. By contrast, the null component behdiesa scalar under a coordinate
transformation, but under a gauge transformation it takea linear combination of the
other components.

This difference in behavior between the null comporsemt the other ones in the
case of a covariant and contravariant vector impliasttie projective tensor calculus is
non-trivial. Otherwise, one could think of these temssas only arising from a mere
concatentation of affine tensors. In fact, one d@s$ a decomposition into affine
tensors, but it behaves differently for covariant aadtravariant tensors.

The co- and contravariant tensors of higher rank avefarmally defined in exactly
the same way as the corresponding affine tensorswilVeéiscuss some particular cases
when the occasion to use them arises.

Homogeneous coordinatesin tangent spaces.

We are now in a position to define the homogeneous caiedinn the tangent
spaces precisely. Suppose we are given a covariant vigctd index O that is arbitrary,
but determined once and for all, and has:

é=1.

In order to characterize the homogeneous coordinatagyven pointdx of the tangent
space, we choose an arbitrary nuniband set:

(1) X°=k(1- gdx").

{xi =k dX
To choose another numblemeans only that one multiplies td&€ by a proportionality

factor.
In order to invert these equations, we remark that one has

Pa X7 =Kk,
and therefore: _
XI

=T

which constitute the previously introduced equations (3).
A coordinate transformation:
X - X
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of the base space induces the transformation:

. ox'
dX =— dx/,
ox!
and that, in turn, induces the transformation:

X > X,
in which:
67('
k ax’
X°=K(1-@dx') =K1 —g dX) :% X°

X'=K dX =

because thep behave like the components of an affine vector. dthee, theX
transform like the components of a contravariant wectinder coordinate
transformations. Therefore, the origin and the oppasde of the reference simplex
remain invariant. _

A gauge transformation induces no transformation of dite other than the
transformation:

_ . Ologp
ai - ¢' axi
of ¢,. Thus, we have the transformations:
_i_ﬁ i
X' = ” X,
X°=K(1- k') =K(1 - o +a'°9pd>e)_ NG ag)gp X'

Under a gauge transformation, t¢ behave like the components of a projective
contravariant vector.

As we previously suggested and have just now praaemuge represents not only a
particular choice of components for each projectaresor, but also a particular choice of
the side of the coordinate simplex that is oppasitéhe origin. Each gauge therefore
corresponds to a particular equation for the iteiyi distant hyperplane. Only in one
particular case can we introduce the projectiverdioates by the simple formuldx

or, what amounts to the same thing, by wayf= When a projective

=X NXC'
scalarA exists for which we have:
dlogp

ox* ’

Pa =
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then we can always have that =e"and ¢, =N& by a gauge transformation.
Therefore, we have arrived at the announced conclusiam @lementary definition of
projective coordinates.

Since our homogeneous coordinates behave like compooérdscontravariant
vector under coordinate transformations we can regarelfihation:

X7 = AT

as the characterization of one and only one poietach tangent space. Here, the index
can be arbitrary, but different from zero; i.e., thadtionsA? are of the form:

AT =e" (%) N # 0.

Exactly as in the affine case, we can now intergnet\various projective tensors
geometrically. For example, I8, be a projective covariant vector. Then:

A X=0
is the equation of a hyperplane. It is possible to chtesgauge such that the equations

of all of these hyperplanes reduce to the fothh= 0 when and only wheA, is a
projective gradient:

_0A
Aa=ar.

We do indeed know th# can be brought into the form=e" by gauging.

Projective tensors of rank two.

As our next example, we take a projective covariantrsgtric tensor of rank two
and index Rl. On this occasion, we can make the previously sketatpekfupon which
the projective theory of relativity rests somewhatendistinct.

The tensoG,z obeys the transformation law:

ox? ox”

CasX) = Cor 527 o7

Due to the particular form of a transformation of repreation:

%x°=x° + log p(X)
X =X (x),
we have that:
ox” ox”
==& and =4 .

It follows that:
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6002 Goo
and:
= _ ox’
GQI - GOT a)_(a .

Therefore Goo is a projective scalar argh, is a projective covariant vector.

We write:
(12) Goo = D2 =€ f(x)
and:
13 Cos _
(13) Gy, = Vag,
as well as:
Gy _
G00 - ¢a .

The quantitiesy,s and ¢, represent a projective tensor and a projective vector,
respectively, and both have index @ is a scalar of inded. We have the invariant
conditions:

p=1 andyo = 1.
The equations:

Vap = GaPp = Yap
determine a projective tensor that satisfies the iamaigondition:
Joa = 0.
As a result, we have the transformation law:

I.e., theg; are the components of an affine tensor of rank two.

The projective tensdB,s includes — so to speak — a scalara projective vectog,,
and an affine tensaj; . In fact, we have:

(13) Gap = P(Gap + Pafs) = P Vap.

The tangent space that is associated with a point dfabe space is indicated by the
coordinates’, X', ..., X*. Our tensoiG,s determines a quadric surface in our tangent
plane by the equation:

Gap X?XP = 0.

The polar hyperplane of a poiaf of the tangent space relative to this quadric surface is:
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AX?=0,
in which:
Yap A% = Aﬁ .

Exactly as in ordinary relativity theory, we will raisor lower covariant or
contravariant indices by means of the tenggrand the associated tenspf’. The
tensor
y? is completely defined by the equation:

yaﬂyaa :5;.

Raising or lowering an index corresponds to passing to tle farm relative to the
guadric surface.
The homogeneous coordinates of the origin are:

X=¢7=.
In this, we have made use of the relation:
bpy”™ = ¢7=4.
Thus, the polar hyperplane of the origin has the equation

GOa Xa = 0
or.
Pa X7 =0.

The equation of the tangent cone with its vertexaitfigin is:

Yap XTXE = (o X)?= 0
or. o
g X' X =0.

As is well known, the contact point of the tangent caiith the quadric surface lies on
the polar hyperplane.

The decomposition of our projective tensor into the affieesor g; and the
projective vectorg, has the simple geometrical interpretation that ahgin and the
guadric surface in any tangent space determine the tangenthvongh the origin and
the polar hyperplane relative to the surface, respectively

As we have already remarked, it is a basic assumpftipnogective relative theory
that the coefficientsy; in the equation of the cone are gravitational potenaad the
coefficients ¢, in the equation of the hyperplane are the electromagpetentials. In
fact, as we will see, the most natural field equatimnthe ),z is a unification of the
EINSTEIN gravitational equations and the MAXWELL field etjoas.



[11. Applicationsto classical projective geometry.

Proj ective coordinates.

In order to present our viewpoint more clearly, we wlolike to apply it to a
particular case, which is, in fact, the case of adasgrojective geometry. A basic
projective space is characterized by being given a seisthglished homogeneous
coordinate systems that are related to each other byi@giaf the form:

(1) Z°=1;2".
We will refer to these homogeneous coordinate systesr@agective An arbitrary

allowable coordinate systemis related to an arbitrary projective coordinate sysbgm
equations of the form:

) 27=e“F U, . X0,

Here,x}, ..., x* are the coordinates of an arbitrary point ahé an arbitrary parameter.
The functions on the right-hand side of these equaaom®bviously projective scalars,
since the choice of another coordinate system simpgnsithat we substitute:

X =x'(X)

in (2), and also that a substitution:
X% =X°- log p(X)

changes nothing in the meaning of (2).
From these considerations, we conclude that cksgcojective geometry is
characterized by a family of projective scalars:

3) Z=pa A,

in which the constantg, are arbitrary. None of these scalars is distsiged from the
other ones. An arbitrary homogeneous projectiv@dioate system is determined by the
choice of five arbitrary independent scalars offtaily.

Differential equations of projective geometry.

For the purposes of differential geometry, it iefusto eliminate the constanpg ,
and thus to remove the apparent exceptional ctaratthe five scalar8’, A%, ..., A*in
the representation of an arbitrary scalar:

Z=ps A%,
in the family (3).
Due to the role of the proportionality factor, weannhave:



Application to classical projective geometry 21

0z _

W_Z'

(4)

This equation includes the statement that the proportigrfaktor i, It can just as
well have the value:

Nx°

€,

but for our problem a value df that is non-zero means the same thinly asl.
We differentiate (3) twice and obtain:

0Z _ oA”
) axF  P7oxP
9°Z 9°A”
(6)

XX’ P oxPaxr
We then defingj by the equations:

and find from (5) that:

We then substitute these expressiongfan (6) and obtain:

o’z _ _, 0Z
AXIIxP P gy’
in which:
o _ o O°A
") e =9 oxrax?

One easily sees that these functlﬂﬁp are independent of the choice the five functions
A Another choice of these functions must be given liyear equation:

A%= A7,

2 a0

axPox”’
whereas the;’ are contragredient. Therefore, ﬂﬁ% remain unchanged.
| would like to call the differential equations:

under such a substitution of the variab#ésthe however, behave cogrediently,

0Z 4092 _g
xoxP T Foxe

oz _
ax°

(8) Z,
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the differential equations of projective geometsynce all of projective geometry can be
considered to be a theory of these equations.

Proj ective connections.
Each coordinate system and each gauge is associated ittieular set of 5

functions:

My .

Under a gauge and coordinate transformation:

(9)

these functions transform like the components adffine connection:

P T 2.,0 Sa
T = e e o
in a five-dimensional space.

One can easily verify this by direct computation. In¢hesmputations we employ
only formula (7), but not the particular form of thartsformation (9). Obviously, we can
always interpret our transformations of representa®oordinate transformations in a
five-dimensional space. The computation is preciselyséime as for the corresponding
introduction of an affine connection into any flat affisqgace. (Bibliography 1932, 10,
pp. 41-43.)

We will call any invariant, or any geometric object, whosenponents are functions
of the coordinateg’, ..., x*, and behave like the components of a five-dimensiofiakaf
connection under a transformation of representatiopragective connection. The
functionsl'lf,/, which we defined by (7) above, are then the compondnasparticular
projective connection. The theory of a general projeatonnection is a generalization

of the classical projective geometry.
If we now transform only the coordinates then ourgfammation law (10) reduces

to:
— s ox ox' X ) ox
(102) i = (n 3% oxX" axiaxkj%’
— ox" ox'
(10b) nﬁ( = g%ﬁ

Under coordinate transformations, tlﬁéjk behave like the components of an affine
connection and thél ?k behave like the components of an affine tensor.

Other hand, if we change only the gauge then we obtaintrémsformation
formulae:
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=i _ i dlogp _, dlogp _, dlogpodlogp
I'Ijk—l'ljk—l'l?k o - ax +Mg, ) ox
ﬁ},)(=l'l‘}k+l'lijkalog’0+l'li dlogpdlogp

ox' % ox'  ox!
. dlogpodlogp _. dlogpodlogpdlogp _, dlogp
-, i -t i i Moy i
Poox' ax ox  ox' ox ox’
_ne 6Iog,0+|_|0 dlogpdlogp 9*logp
io k 00 i k javk "
0x ox'  ox ox’ox

(10c)

Under transformations of representation,fjgandr,behave like the components
of a projective tensor. Thus:

M= N5=;

IS an invariant equation. This equation is obviously satsfor the particular projective
connection (7). In this particular case, the tramsédon formulae (10c) reduce to:

_ - g dlogp _ 5 dlogp

ﬁ;k_ jk i 9xX ko gx!

(10d) 2
—o _ o Ologpadlogp d°logp _; dlogp
=M™ o0 ox oxaxt Tk ox

Five-dimensional representation.

At this point, we have made advantageous use aitarpretation that is essentially
due to T.Y. THOMAS (Bibliography 1925, 8; 1926, 130ur entire theory finds a
representation in a five-dimensional space withrdimatesX’, ..., x*, which are not the
most general coordinates, but are subject to #msformations:

X=x'(%),
X% =X°- log p(X).

We can therefore interpret our transformationsepfesentation as the transformations of
this five-dimensional space. The lings ..., X* = const.,X’ = arbitrary, play a
distinguished role, due to the particular formhe transformations of representation.

One now obtains a precise picture of our four-disiemal projective geometry when
one regards thesé-lines in the five-dimensional space as points fow-dimensional
space. Just as a five-dimensional affine spacametefa four-dimensional projective
space in the elementary geometry of lines throudixeal point, so also does a four-
dimensional “projective” space arise from a fiveadnsional “affine” space in the theory
of a general projective connection. The role wé4 through the fixed point is played by
the x-lines here. The common point of th&lines is transformed to infinity here
(Bibliography 1931, 16; 1929, 2).
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Projective derivative.

With the help of a projective connection we can constmeav projective tensors of
higher rank from the components of an arbitrary projectensor by means of the
formulae of covariant differentiation. For exampfeA? is an arbitrary projective vector
then:

0A”
ox”?

+ I'IZﬁA”

will be the components of a projective tensgar which we refer to as thprojective
derivativeof A%, That theAzare actually the components of a tensor follows diyec

from the five-dimensional affine interpretation of thensformations of representation.

The same theorems and formulas that were validhercbvariant derivative of a
general tensor in the affine theory are likewise vabd grojective differentiation. In
general, there are further theorems that are not foutite affine theory that depend on
the special form of the gauge transformation. We Willyvever, develop those theorems
only when they are necessary.

I ntegrability conditions.

Ordinary projective geometry can be characterized astlibory of systems of
differential equations (8). These differential equatiare therefore not the most general
differential equations of the form (8). Rather, tmeyst satisfy a series of integrability
conditions. We write the differential equations in fiien:

z,

(11a) pNG =Za,
0z, _,
(11b) F - M52,

in which Z, now means Z. As is well known, the integrability ditions for these
equations are:

(12) ng =ny,
or;, ory
- ap ay o A Ao —
(13) Ry = a7~ axp T Naslloy = Mo, = 0.

The computation is exactly the same as for the cornepg problem in affine geometry
(Bibliography 1927, 22; 1932, 10).

R;ﬂy iIs a projective tensor of rank four, namely, the cwmeaattensor of the
connectionl‘l‘;/. If it vanishes then we call the connectftat.

From (11a) and (11b), one also obtains the invarianioeiat

(14) ne, = 4.
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We now must prove that the integrability conditions the case of projective
geometry are in fact satisfied. The functidishave the form (7). From this, one
immediately infers the validity of (12). One can likees verify condition (13) by
elementary computation on the basis of (7). Howewer cbnsequences are exactly the
same as in the affine theory, such that we immediasely that the integrability
conditions are necessary.

Conversely, we will now prove that our integrabilitigndlitions are also sufficient.
With that, we will also prove that equations (8), togetwith conditions (12), (13), and
(14), are characteristic of projective geometry.

We must therefore show that the validity of the gnédility conditions implies the
existence of five independent functioAS ..., A*, from which the usual solutions are
obtained by forming linear combinations with constant foamehts.

Next, it is clear from the five-dimensional theohat because of (12) and (13),
(11b) has precisely one solution veckayr ..., A4, that takes given values at a particular
point. We obtain five independent solution vect@'swhen we start at a definite point
with five independent vectors as initial values.

From the five-dimensional representation it furtherofets that because of the
symmetry of thell, the solution vectors are gradients of five affinalasA” in five
dimensions. However, we must now prove that theskus take the form:

(15) A= F O LX),

From (14), it follows that:
0 a
a—ﬁg:n ? A=A,
or:
Ag=€"Ta (&, ..., XY).

If we write f instead of, then we have that:
Z=e1 (<, ..., x)
is a solution of (8), whereas, due to (11a), the solwamtors of (11b) are the gradients
of the functionZ.
We have thus proved that classical projective geometrgngpletely equivalent to
the theory of differential equations (8) with the caiadhs (12), (13), and (14), at least for
a given domain in the base space.

Homogeneous proj ective coordinates as functions of the boundary conditions.

We denote five independent solutions of the equations (8)Zpyand the

a

. . 0Z
corresponding solution vectors DS/: PVl

as initial value. With that, we determine five independemitionsz? =ef @ <t LX)
that we regard as functions of the coordinates, asasdiinctions of the initial values:

At the pointx = g we now choos&(;) ,=J;
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Z7=7°(x,q) .
It now follows thatz“ takes the form:
(16) 9= F 0 L x o )
In fact, (11) includes the equation:

0% f7 i of7 o .,
axjax"_n”‘ ax' SLVARE

fe .

%Xij =Jd. When regarded as functions of the
q

coordinates, as well as the initial values, ftAghen have the forrh® =f 7 (x', ..., X%, d\,

...,q") . Since any linear combination of solutions is agasnlation, we can, in fact, put

Z“ into the form (16), and one confirms that #jg¢ake on the valuegf),=d; at the

point x = g. Due to the uniqueness of the solutions of (11), ib¥edl thatZ“ must

necessarily have the form (16).
If we subject the to the transformation:

As initial values, we can take' (q) =& (

X =x'(X),
then they behave like: o
q =x'(3).
In the transformed coordinate system we now segkstem of solutions with the initial
valuesZ;(q) =4;.
Since there can be only five independent solutiings clear that there must be

relations of the form: B
Z° = zF

between the new and the old solutions, in whicrpgrme constants ahngl #0. Ifwe

differentiate these equations then we obtain:

o0z° ox" _ ,0z"
axF ax B oxr

identically atx. Forx =q, when we employ the initial values we obtain:

ox” o
ox’ - py

X=q

or.
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= e — a_”
Z(%,9) = a‘;y

2%, 9 .

Z° when regarded as a functiongfis therefore a contravariant projective vector that
has the index —1, on account of (16).

I nhomogeneous proj ective coordinates.

For the sake of our further development, we employ ai@peoordinate system to
our advantage. A coordinate transformationy (x) is determined by the equation:

We call the resulting coordinate systgfnan inhomogeneous projective coordinate
system.

From this coordinate system, we can go to yet anotherdomte system; for
example, by the formulas:

(17) Z=@-q)e ", 2=,

From thez? we further obtain the most general form for our homeges coordinates
when we simultaneously subject tlye and theq to the same transformation of
representation.

We can compute th@ in this special coordinate system, and the same consezgien
that we demonstrated for th¢" at the start of this chapter are likewise valid far ZA.
One thus obtains:

18) =88+ 5 85-855 .

This means thall} = 0 andM%,=d;. By comparison, if one makes use of the fact that

the Z% must satisfy equations of the form (8) in any case fitan:

a

0°z° 0°z°
S0k = 0
ay'oy

0Z
ayPoy° % ay”

we again obtaifi, = 0 and1%,=4;.

We further remark that under a gauge transformation:
X°=xX" + log p(x, ..., X)
the components (18) of the projective connection také@form:

6¢ﬂ
oxy °’

9 =008, + 810, = 0,0, +
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inwhbh¢p:—a£?p,¢o:1.
We can characterize inhomogeneous coordinategamtir coordinates in which the
M have the form (19).
Two inhomogeneous coordinate systems are relateddh other by a piecewise-
linear transformation:
i 2l 4 pi
(20) 7=

Rz +p,

This follows immediately from the fact that two hogeneous systems as connected with
each other by a linear substitution.

From our present viewpoint, we can say that any ¢aordinate systems in which
thell take on the form (19) are linked with each othealsubstitution of the form (20).
When we make the further demand that the form g1&8)ell shall remain invariant then
we must couple each coordinate system with a cegiige transformation, namely:

p:kuﬂ%,

in which u is the functional determinant of our coordinatensformation andk is a
constant. With these remarks, the relationshigvéen our present theory and the formal
apparatuses that were presented in the earlier wbrk. Y. THOMAS and others
(Bibliography 1926, 13; 1928, 10); 1930, 5) becowlearer.

Homogeneous proj ective coordinates as functions of the
boundary conditions (continued).

We previously saw that the functions:
2= CF 0, L g )

with Z7=4d; for x = g, mediate the transition between the arbitrary dimate systenx

and the homogeneous coordinate sysfaimat is coupled ta by means of the boundary
conditions. Each poirg and each parameter valg®of the base space is associated with
a definite coordinate system. How do Fhbehave as functions qP

The answer is as follows: Thé are functions ofg that satisfy the following
differential equations:
21) 0Z

o’

We know that th&Z are the components of a contravariant vector @éxn-1. We
now consider the projective derivative:
o9’

+N%,z°=0.

ng,Z°
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of this vector. In our special coordinate system we waw easily calculate that the
projective derivative oZ“ vanishes.l has the values (18) in the homogeneous system,
whereas theZ assume the form (17). Theé indeed satisfy our boundary conditions
precisely. If we give P the value (18) then the compisneia tensor of rank two:

0Z° v oo
o * M7
reduce to the form:
0z° _, az' 0z°
aqo+Z, a—qj+5'jZ°, W

Due to (17), however, all of these components must vanig¥ith that, we have
established the proposed equation (21).

Since the left-hand side of the equation is independentatfiresentation we know
in full generality that the homogeneous coordinatesfgdtie equation (21). Equation
(21) then characterizes projective geometry just as emsat8) did.

Its integrability conditions are:

RGs= 0.

If these integrability conditions are not satisfiedritwe are dealing with generalization
of classical projective geometry that we will considen later chapters.



V. Projectivetranslations.

In the last chapter, we regarded the soluti@fisof the differential equations of
projective geometry as functions of the boundary camtit We saw that th&” are a
projective vector of index —1 as functionsgpivhen we demand that:

@)=
Furthermore, we found that tiZ€ satisfied the differential equations:

(1) o

+N%,Z°=0.

In all of this we have always assumed the validitthefintegrability conditions.
Translation along a curve.
We now put forth a generalization that is somewhat goale to the transition from

Euclidian geometry to RIEMANNIAN geometry. Namelyewo longer assume that the
equations (1) are integrable; the tensors:

nw_nw
and:
Rys

are thus not necessarily equal to zero.
By contrast, we now retain the condition:

N%,=Md,.

Here, we have made a slight generalization by wrMd§instead ofj.
Correspondinglyx’ andg® enter intoZ by way of:
gM’-a”)

From a general technique for treating partial differémguations, we now choose
an arbitrary curve:

2 q=x ()

and set, with no loss of generality:

) q° =X(b).

If we multiply (1) bydcf/dt then we obtain the equations:
0Z° 4y dd _

(4) S T MeZ 4 =0

Due to the condition:
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”Z(F Méz
we then have:
aza a —o0
(5) o +MN2.2°= 0,

as long aZ” has the forme’“"qof(t), and for that reason equations (4) mean the same
thing as the equations:

a j
(6) 02, pedd

— /‘:
ot Al dtZ 0.

The five-dimensional affine theory then implies th@t) is invariant under
transformations of representation, and from this, tivariance of the four-dimensional
equations (6) follows as well. These equations depend onlythpdunctiong1 and the
curve in the parameter representation (2), and not on (3).

We now write equations (6) in the form:

0Z° o A
(7) P +M5(@t)Z2°=0
in which: _
PN o (o
I'IA(t)—I'IAJ.E.

From the well-known existence theorem for systefmgear differential equations,
the solutions to our system have the form:

(8) XT=A"g (1),

in which theA are the given initial values at the paint to. Thepg must therefore reduce

to the valuegj at the point = to.
In this sense, we can say that the equations:

dx?+M§ X" dX =0

represent an infinitesimal projective transformatid hus, when we connect two poiats
and b with a curve, equation (8) determines a projectramsformation of the tangent
space at to the tangent spacelat This map is completely determined by the givehs
a, b, and the connecting curve. In the flat case, when equations (12) and (13) of
chap. Il are satisfied, equations (1) are comptetgegrable, and map that is determined
by two points and a connecting curve does not ahamben we deform the curve
arbitrarily.

In the integrable case, we can interpretAf@andX” as homogeneous coordinates of
the base space, and indeed interprefthas coordinates in the coordinate system about
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the pointg = X' (to) and theX? as coordinates in the coordinate system about the goint
= x'(t). Equation (8) then represents a transformationeobtise space to itself.

Generalized projective geometry.

We formulate the facts once more in another forrmag@ of the tangent spacegas
given by the equation:
Z%q) = X7,

and one can regard it as a covering of the base spattee hlgngent space. Since the
differential equations of projective geometry are caatgdy integrable, all of the tangent
spaces coincide with the base space, so to speak.

Therefore, if the differential equations are not inddxdg then we have no projective
coordinate systerd(q), and it then follows that we also have no such cageof the
tangent space over the base space. In this case, werlgveanslations along arbitrary
curves. The tangent spaces are related to each otlmeednys of these translations, but
this relationship is not as close as in the integralde,ca which we can regard it as a
coincidence. To borrow a notion from surface theoryces say: The tangent spaces
fall apart when the differential equations (1) are ntigrable.

We now see how one can geometrically regard the thebrg non-integrable
projective connection as a generalization of ordinapjegtive geometry. Our general
viewpoint is the following one:

A geometry is a theory of geometric objects. If of¢hese objects is a projective
connection then we have generalized projective geomeétrthe projective connection
satisfies the previously considered integrability cond#itiren one obtains a classical
projective geometry, at least locally.

If the relatiol1,=MJdjis satisfied then a general projective geometry includes a

theory of projective translations of the tangent spamleng an arbitrary curve, as we
suggested above. We would now like to pursue this a littleeurt

One next sees that, just as one usually does in &lfffewey, the projective translation
of a hyperplan®,X“ = 0 is defined through the differential equations:

dB, dx’
It ntJF =0.

(9)

Likewise, we can describe the projective translatibalgebraic structures of higher
order, i.e., projective tensors of higher rank. In paldic we obtain the following
equations for the projective translation of a quadric sarfa

dG j
% _neg, X oo ™y,

(10 dt boTdt AT
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Translations in inhomogeneous coordinates.

In order to describe translations precisely, we muspl@nthe introduction of
inhomogeneous coordinates that was given in chap. II,we.must make use of the
relation: _

X' ;
11 =dxX.
(11) X

The precise form of transformations of tangent spaced wheggsend upon the
projective derivative o$; we will now calculate this. From (14), we obtain:

(12) - X = @o X7V,
in which we have sef' = dx.
We differentiate (12):

X' . oV oX? . 0¢,
X o Pl VY

ox] ¢”6x’ *a XV

We now multiply this bydx/dt. By the use of (1), this yields:

_ Ad_x dV Q OX7 0 d,
WX G =X T+ dt

XV,

or, if we divide this by, X°:
i a _ i ) A i
(13) av X dx X7 dx

Vi—/ +I, =0.
With the help of (12) and:

at P xeY o T

=XPa(1-¢ V')
we ultimately obtain:

i i J j
N in vkd_x+(1 DI d—x+¢mvw'dx
(14) dt dt dt

+@,, (1~ ¢iVJ)EVI =0

In this expressiong,s means the projective derivative g¢§. With this, we have
derived the inhomogeneous form of a projective translation
Paths.

Let a curve be given by the parameter representation:

X =X (t).
Its “velocity vector:”
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(15) V=

determines a point in each tangent space to the pdittie ourve.

We now ask whether curves exist for which these pointsagk to themselves under
translation along a curve. For this, we must repldogith dX /dx in (14). In the case
where:

n;oné;
we find that:
A% | X aX dd ) d_xkd_x"+M(1_¢d_xkj2 0
dt? ko dt dt dt|"< dt dt Kk dt e

Since the expression in the square brackets igpémtent ofi, we can put this
equation into the following form:

! o dx! dx¢  d*' o dx! dx*
(16) dt? * dt dt _dt® * dt dt
dt dt

It is noteworthy that these equations are completedlependent op. (16) is a well-
known expression for a system of paths. By theagdr‘a system of paths,” we
understand that we are dealing with a system ofesuthat has the property that inside of
a sufficiently small neighborhood one and only cneve of the system goes through any
two given points. Paths are a generalization ef dbodetic lines of RIEMANNIAN
geometry.

As one easily verifies, the form of equations (I&)es not depend upon the
parameterization of the paths. Likewise, one shamsthe basis of equations (10a) of
chap. Ill, that equation (16) is also invariant e@ndoordinate transformations. Finally, it
follows from (10c) that they are also invariant andauge transformations.

Namely, under a gauge transformation the expression

dlogpdx‘ dlogp dx’
ox* dt  ox’ dt

gets added to the left-hand side of (16). Sintedkpression is, however, independent of
I, it cancels out the corresponding expression emnight-hand side of (16), by which the
invariance under gauge transformations is proved.

With this, we have obtained the theorem that incidege where:

MG, = M5y=Mg,

our connection gives rise to a uniquely determisgdgtem of paths. In the case of
classical projective geometry these paths aregsiréines.
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General projective connections.

Up till now, we have considered only the particular aafsa projective connection,
for which we have:

M%,=MdJ.

We would now like to look for a translation that does satisfy this condition.

We cannot use the equation:
— X7
@ :

ox”

+r|;’ﬁx”:0

since in the case ¢f = 0 it will contradict the assumption thet enters intoX in the

—Mx© . . . . .
forme™ . However, we must retain this assumption singasiation must depend only
on the curve and its parametric representation:

X =X (1),
not on the particular choice of the parameter:
XX =X° (1).

In order to arrive at a suitable definition forrartslation, we remark that the choice
of the tensor 0 that appears in the right-hand sfd@7) is likewise basically as arbitrary
as the choice of any other tensor that is invasiaagsociated witl.

We now define a translation by the equations:

(17) X 5= X% oCp,

in which Cz is a covariant vector that must satisfy the cooniC, = 1. Equation (17) is
satisfied identically fo3= 0.

Instead of equation(17we now have a set of equations (17), which on@io®
when one set€s equal to all possible systems of four functiorihe totality of these
equations is invariantly linked with the connection

We can now write equation (17) in the form:

ox“ a p
PV + N, X0=0,
in which we have:
(18) /\‘;G:I'IZU—I'IZOCJ+ Mégcg,

whereM is an arbitrary index.
TheN’, are the components of a projective connectiondéigfies the conditions:

Ny =M.
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We thus obtain a set of projective translations for@eyective connection.
The associated projective connection for the tensor Ggp.
Two symmetric projective connections are associatett iz, which are both

characterized by the vanishing of the projective derivatofés,z and),z. These two
connections, which we shall c&llandl™, are therefore defined by the equations:

0G

~aB
(19) Gaﬂ|y ox” Gaarlﬂy Gaﬂrlay 0
and:
_ Wy
(20) yaﬂ 2 axy - yzm ﬂy yaﬂray_ 0.

We denote projective differentiation with respecfitorl” by a “|” or a ", respectively.
If one solves equation (20) in the usual way then one rabtdie CHRISTOFFEL
formulae:

0V 0y, Oy j
a _1 pB b ay _ 7By
(21) =3/ ( ox” * oxF  ox°

One obtains equations fbF in which one replaces with I and ywith G in (21).
Obviously, thell must be calculated from thiewith the help of the scalab. By a
simple application of the product rule for differentiatione obtains:

( 6Iogd> dlog®d galogdb\
M=y kéa +J, oxP 774 o )
If we set:
_Olog®
Pa= ax“
then we obtain:
(22) n%=rs, +(Fo, + 0, -y, /o).

The associated translation for Ggg .

The projective connection satisfies the conditions:

a

rﬂoz yaa ¢a,8,

as one can immediately read off from (21). In,thie have set:

9, ¢ﬂj
bas = (axﬂ ax )
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The following important formula is valid fafz:

_09¢, o _
¢mﬂ—w _¢araﬁ - ¢aﬂ-

Namely, if we multiply (21) by:

Po = Voo
then we obtain:
Vs 0y, O, j (a¢ 0¢ j
g _1 Br ar _ ap -1 a B
¢araﬁ_zd;( axa + axﬁ ox’ 2 axﬁ + axa :

From this, one immediately obtains the stated formula:

(23) Pa p= Pap -

In general, we now have:
a _ ga
o=@ # 5;-

We require formula (17) for this purpose, in order to arav a translation. In this case,
this suggests that we use, not the arbitrary ve€idout the vectow that is invariantly
related to theG,5. Thus, the resulting translation is also invariangiated tol itself,
whereas in the general case this is only true for thefsdl translations collectively.

We define translations in our case by way of:

(24) X% = X%0 .
For A, we then obtain:
(25) Ny =Ts + M4, -T,8,,

under the assumption théf is of index -M.
Furthermore/\ depends upoN. Foro= 0, one has:

Ny, =MJy,
such that one again has that & 0 the equation:

ox“
ox”

(26)

is satisfied identically.
We will pursue the theory of the translationsin greater detail in chap. VI.

+ /\‘;ﬁx”: 0,



V. Non-Euclidian geometry.

In chapter Il we applied our general theory to the spease of classical projective
geometry. We would now like to take the specializatioa step further and consider a
guadric surface in ordinary projective geometry.

Equation of a quadric surface.

We assume that that a system of functibng given in our base space, which has
the coordinates’, ..., x* such that the differential equations:

0’z __, 0z
(1) axPax’  H ax°
or:
0Z° a
(2) WH'IMZ”:O,

are soluble. Herey denotes the point at which tA8 possess the initial values:

0Z2°
ox”?

=&

If we choose a coordinate syst&nthat is arbitrary, but fixed bg, then we obtain a
guadric surface by way of the equation:

(3) GpZ°7° =0,

in which G is only determined up to a common factor. Two arbitf@ynogeneous
coordinate systems go over to each other by a lineapgeneous substitution. Due to
(3), the G then transform like the coefficients of a quadraticmfounder a linear
substitution.

The Ggpasfunctionsof g.

We now consider th& to be functions off. Therefore, the ratios of tli@ must also
depend uport®, ..., g*, whereas they are naturally constant in a particulajegiive
coordinate system.

The Z° are contravariant vectors of inded when regarded as functions qf
Therefore, it follows from the considerations aboet theG transform according to the
formula:

@ G,y (@) =1 Gor(@) oL 28

0g° og”’

in which A can be an arbitrary function of the
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In order to establish the independence of Ghdrom q we differentiate (3) and
replace thedz%oqf with the values in (2). Equation (2) certainly shows Hbez”
behave as functions of the origin

Thus, we find that the system of equations:

(aeaﬁ
09’

a g a—-06_
—Gmnﬂy—Ggﬁnsz Z°=0,

must be satisfied for all values Bf that satisfy equation (3). Therefore, the expression

0G,,
0q”

-G, N%, -GN,

aB’ ‘ay
must be proportional to th&,s , in which the proportionality factor will naturally be

different for the varioug; in general. We thus obtain the system of equations:

0G,,
0q”

(5) - Gmfrl 2y - Gaﬁngy = Gaﬂ AV '

Equations (5) describe the changé&innder a change in the origin
Normalization of the Gz .
It is easy to show now that there is no loss in gaditg geometrically if we set:
A,=0.
Namely, if we multiply (5) byG? then since:

a5 9Cas _ 0logG

¢ % T o
we obtain the equations:
dlogG -
(6) %—mw = 5A,,
in which:
G =[Gl .

Now, it follows immediately from chap. 11l (13) thﬁtZysatisfies the equation:

oM, _ong, _

o°  oq’
We can therefore plﬂiZy into the form:
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o _Ologf
nay_a_qy’

in which we do not need to make any more specific statsmayout howf behaves
under changes of representatidris a function of onlyg’, ..., q* sinceq® does not enter
into I anywhere.

On the basis of (6) we therefore obtain:

_10logA
(7) AV_S aqy !
in which:

A=S

If we now make the replacement:
Gap =G, A’
in (5) then it follows that:

0Gy & ON s s
a—qy A +G”ﬁ6_qy_ AG, M, — A*Gy, N, =AG, ;A ,
or:
oG, e e g
(8) o -G,,MN%,-G,N;,=0.
Obviously, we can replad@qs WithG,, in (3):
(3%) G,2°2°=0.

It is self-evident thzﬁ;;ﬁalso obeys the transformation law (4).
Since th@;ﬂ are chosen in such a way that (8) is valid in eveprdinate system it

then follows that the quantity in (4) must be constant. If we st=q in (4) then we

find thatA has the value 1. From now on, we omit the asterisks.
We thus obtain the transformation law:

oo oq
097 ag”

) G,(@) =G
for theGyp .

Computation of the Ggzfrom @.
Equation (8) then yields the conditions:

Meo=&
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As a result, we have, in particular, the invariant equat

0G,,
(9) 0 =2Gy
and:
(10) aaif,o = 2Goy
and:
(11) % ~G,M7,=Gqy .

From the first equation, it follows th&, is of the form:

Gap= € f45(0) .

41

If we then take (4) into account then it follows tl&ajz is a second-rank projective tensor

of index 2.

The theory of a quadric surface is therefore includethentheory of a second-rank
tensor that satisfies equations (8)1 is therefore an integrable projective connection.
The quantitie$] are given by the existence of a projective space, inghal sense, from

the outset. One can then ascertainGhgby integrating equations (8).

From equations (10) and (11), one sees that the entoeytbéour tensor depends

upon the scalar:

Goo = CDZ.
From equation (10), we have, in fact:
Gy _ , _Ologd
(12) T Ty

Equation (11) means the same thing as:

o(P°g,) o
a_q/? B q)2¢anaﬁ: CDZyaﬁ
or:
09, -
aﬁﬂ ~PMNap = Vap = o P -
Therefore, we have:
09, -
gj = a_gj_¢anij+ SN/
or, from (12):
0D 0P L,
agoq’ o !

(13) i = S
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One thus obtaing, andg; from ® with the help of equations (12) and (13), and
thus, since:

Vap=OQap + Pa Pp
and:

Gop= »? Yag,
one also obtaing,z andGgpg .

A homogeneous projective coordinate sysieim completely determined for a given
choice of point of origin, coordinate system, and gaulyethis coordinate system, the
surface has the equation:

GuZ7 28 =0,

in which the coefficient§s,5 are the values of the solutions of (9), (10), and (11)eat th
pointq.
The equation of the surface in inhomogeneous proj ective coordinates.

We now take an inhomogeneous projective coordinate syatena gauge such that
N7 takes on the values:

=58+ 58 - 483,

It then follows from (8), (10), (11) that we have:

0G;
agk
G, _
a—qj =Gj,
aacé(?o = ZGOi .
By integration, we then find that:
(14a) Gij =e* a;j .
(14b) Go =€ (8l +80),
(14c) Goo =€ (8 d ¢ + 2304 +a0o) ,

in which thea,s are constants.
The equation of the quadric surface is:

0=Gp2" 2
or, by making use of (14) and chap. Il (17):

0= (G (X - )X ~df ) + W0 (X ~df ) +Goo)
or, finally:
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0 = (a;X ¥ + 280X +aoo) .

With this, we have established that the surface iscaégd with a quadric surface with
constant coefficients in any inhomogeneous coordinatersys

The distinguished gauge.

As we saw in chap. Il, a particular gauge is always daetexdnby a choice of
projective scalar. In our case, we can assumehbatcala® has the form:

(15) d=¢€".
Namely, if® has the form:
® =" p(x) ,

then we need to apply only the gauge transformation:
x°=x" +logp=log® .

Due to (12) the vectap then satisfies:
¢i =0.

Since no further gauge transformations exist that leaéotim (15) of® invariant,
we no longer have a projective geometry, only an atiime Due to the existence of the
tensorg;, this affine geometry is a metric one.

Relative to our distinguished gauge, we have:

(16a) Gij :ezqo g
and:
(16b) Goa =€,

and the equation of our quadric surface is then:
(17) e (@Z2+2°2)=0.
Furthermore, from (8) and (16), we have the following equat

ag; s s _
Ik Od i — 9y = 0.

If we solve these equations in the usual way thenbt@ima

C 1 995 ag,. agjkj
(18) nj"_{jk} - 29 (axk T oxe)
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From (13), if we make use of (15), it follows that:
(19) I'I?kz — Ok -

Due to (18) and (19), it is clear thﬁtijk is an affine connection and ?k is an affine
tensor; this is a simple application of formulas (1&2] (10b) in chap. IlI.

CAYLEYIAN geometry.

We are given a RIEMANNIAN metric in our base space by whthe tensog; .
Since this metric is invariantly related to our quadric axef we surmise that the
RIEMANNIAN metric is precisely the only non-Euclidianetric that our quadric surface
possesses as an intrinsic structure.

A non-Euclidian — or CAYLEYIAN — metric may be easilyfubed with the help of
a “tangential” Euclidian one. The general notioradingential metric that is due to E.
CARTAN (Bibliography 1928, 1, chap. IV) is the following onefwo metrics that
possess the sargg at some point are calledngentialat the point in question.

A Euclidian metric exists at every pombf our space that makes the quadric surface
precisely a ball of radius 1 and midpompt The infinitely distant hyperplane of this
Euclidian space is the polar hyperplane (pfelative to the quadric surface. The
infinitesimal non-Euclidian distance at shall now correspond with the infinitesimal
distance of the Euclidian metric et

We now seek the analytical expression for our Euclidietric.

In the non-homogenous coordinate system that is defined by:

z'
7072

the equation of our quadric surface is:

(20) gi(0z2Z2+1=0.

Equation (20) is the equation of a ball of radius 1 and nmdpsp relative to a
Euclidian metric with the line element:

(21) ds =-g; (x) dZ dzZ.

Therefore, (21) is also the CAYLEYIAN metric at themiay that is given by the quadric
surface.

In order to reconcile this definition with the onatlfCAYLEY himself gave, we
calculate the CAYLEYIAN distance of the poidtfrom O. The line througlO andZ
intersects the ball & andB. The double ratio of the four poin®s Z, A,andB is:

g=0R.2ZA _1+y-g2?
OB ZB 1- /—gijzizj '
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The CAYLEYIAN distance fronO to Z is thenm log a, in whichm is constant. From
this, it follows by taking the limit that:

ds=2m -g dzdz' .
Up to a constant, the CAYLEYIAN distance then corresfsowith:
dszz—gi,- di di.

Naturally, all of the formulas for the points on thesalute surface break down
when:
®=0.

On this basis, WHITEHEAD (Bibliography 1931, 15), who has dhbghly investigated
these matters, has proposed the name “missiAt){space” for this surface. Obviously,
the transition from a projective geometry to an affome arises from a choice of gauge
when the missingn¢l)-space is not a quadric. This idea is developed furtheeidink

of WHITEHEAD. It is quite possible that one might finther interesting geometries in
this direction.



VI. Generalized theory of conic sections.
The metric part of geometry.

The theory of a general second-rank projective tensmdek 2\ may be considered
to be a generalization of the non-Euclidian geomdtay tvas discussed in the previous
chapter. A second-rank tensor gives rise to a metric gggmmamely, by way of the
RIEMANNIAN geometry that is given by the affine tensgy . g; is defined by the
equation:

(1) Gap = P(Qap + Patbp) -

Our geometry is, however, not only a metric geometryzeratit contains other elements
that are not metric.
We have a CAYLEY metric in this tangent space thatelated to the quadratic
form:
Gap X7 X,

The well-known theorems and formulas of CAYLEY geamatre thus valid in a tangent
space. For instance, we have the following formulaterdistance between two points
of the tangent space:

_ G, X X"
(2) codd =
VG X XG, YY"

The affine tensog; is uniquely determined by the projective ten&gg, and theg;;
then define a RIEMANNIAN metric with the line element:

() ds :1/—91 dx'dx’ .

As is well known, a RIEMANNIAN metric defines a Ewlilkn metric in every tangent
space. Relative to the measure (3), the surface:

G XTXP=0

seems to be precisely a sphere of radius 1 in tlgetdrspace, with its midpoint at the
contact point. As we saw in the last chapter, mifiaitesimal CAYLEY distance agrees
with the one given by (3) at the contact point.

Obviously, the CAYLEY metric can be applied to the bapace only in an
infinitesimal neighborhood of the origin. Therefptee CAYLEY metric in the tangent
space has precisely the same influence on, say, tineilfmr

[ ds

for the arc-length as the as the tangent metriceavahious points of the curve. From an
expression that was established by HOWE, because ové3yan regard the Euclidian
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metric as the metric on the tangent space to the EA¥tangent space at a given point
when both tangent spaces have the same contactthirthe base space.

If we restrict ourselves then to the metric viewpothen we find only a
RIEMANNIAN space with the line element:

3) ds’ = - gj dX dX.

However, this line element does not account for theeeetifect of the CAYLEY
space on the base space sig@nd® do not appear in (3). The non-metric properties of
Gy first appear when one considers the associated pr@dciinslationg andll, as we
began to do in chap. IV.

In particular, we will find systems of curves that aneariantly related to these
translations. However, in order to describe theseesuconcisely, we must first develop
our formal apparatus somewhat further.

Invariants of g; .

Any enumeration of the invariants &z must include the invariants of the affine
tensorg; and the projective vecta#,, in particular. The tensaj possesses a series of
well-known invariants or associated geometric objects.

Now, the determinant:

9=l
is a relative scalaof weight 2. Its transformation law is:

2

- _ Jox
9= Y95%

in whichldx/0x | is the functional determinant of the coordinate tramsédionx — X.
Furthermore, we have to name the contravarianotegs, which is determined by

the relation: _

(4) g; g =4

Furthermore, we obtain the components of an affoenection from the
CHRISTOFFEL formula:

] 1 (09 ag, agjkj
®) {jk} —29 (axk T T

We can covariantly differentiate affine tensorstige to this affine connection. For
example, the covariant derivative of a mixed te¢$tﬂ‘.

! Often, invariants that | am calling ‘“relative scalasse referred to as “scalar densities.” | would
therefore like to reserve this name for relative awabf weight 1, such a$§ since physical densities are

always of weight 1.



48

i _a¢ij o) i) S
¢j,k_W+¢j sk _¢s ]k .

We denote the affine covariant derivative by a commaRtom (5), it is well known that
that the tensog; satisfies:
Oijk = 0.

One obtains the fundamental RIEMANNIAN curvature tensor

o % =52 a3 oL

from the CHRISTOFFEL symbols in the theory of thesterg; in the usual way.
One derives the RICCI tensor from the curvature tensor:

(7) R =Ry
by contraction, and, upon multiplying this by the RIEMANM4gerg; and contracting,
one obtains the scalar curvature: )

R= g” Rij .

One derive an infinite sequence of new invariants froeseghensors by the process
of covariant differentiation (cf., e.g., Bibliograpt927, 22).

Affineinvariantsof ¢, .

A further affine invariant is determined by the projectieetorg, :

1(dg, M—j _
(8) 2&w x ) O
must be an affine tensor, since:

94, 99

ox?  ox*’

vanishes, as long asor S assumes the value 0. The important teggqulays a central
role in electromagnetic theory. )

We agree that Latin indices shall be raised or ledeby means off’ and gj ,
whereas the same processes are carried out on Bdiets by means gf* and Yap, as
we already mentioned. Therefore, one has, e.g.:

(9) ¢.=d ¢q.
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In order to define this situation uniquely we assume Wizn more than one lower
indices are present it is always the first index thatlisbe raised. This assumption

determines the sign gf.

Since ¢ and ¢ ¢’ are not affine tensors, we cannot raise the Latin irdeg by
means ofy’. Rather, as we agreed, one has:

(10) | 7= yPp=4 .
Thus, for just thef', one has:

¢ =0.

Invariants of y,z.

We can derive a sequence of invariants frggin a way that formally agrees with
the route that we took with thgg. We obtain its determinant as:

1 ¢ ¢, ¢ ¢
¢
(11) 9= lyag| 99, (9, + ¢9)) =g.
(B
9,

We have already given the defining equationyf6t:
(12) Y*Vos =35

The tensoty® has a very simple relationshipgbandg; . Namely, from (12), one
has:

0=y " =y Quk + Pa Px)
or, due to (10) ando = O: -
5',- =y Oki »
or finally, due to (4):
(13) y'=d.

Likewise, we can calculatg” fromg’ andg;:
(14) y'=-d¢.
Equation (14) follows immediately from:

Ad=0=y"yo=d'g+ y%
or. )
(15) yP=1+d'¢ ¢ .



The connection I".

We have already introduced the projective connedtiby the formulae:

(16) Yop;y =0
and:

o5  OVs, %)
(17) M 2‘/' (axy T ax

Let us write (17) a bit more explicitly:

([ 0g 0 0 0 09
(18) r;;y:%ym[ 9 , %9y _ gﬂ.y}_laa[ /2 j V' (8,8, +8,:8,)

ax’  ax® X 2 ° o¥

This means that:

(19) e =0,

(20) M2 = V' 05,

(21) M =r{i}+ 20+ 09;.
(22) M =@+ 1(6? Zfr j

Due to (14), equation (20) may be decomposed into:
Mo=8), Th=-¢4)
Finally, we mention once more the formula that wevpd in chap. I1V:

(23) Pa p= Pap -
For = 0, this means that:

(23a) ¢ara00 =
The curvaturetensor for I .
Just as in the affine theory, one can also definereature tensor:

a
Bys

for the connectiofi. By contraction, one obtains an analogue of ticeifensor from it:

50
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_org, o
g é £ ro Ero
aaﬁ ax ﬁ a g raarsa rgﬂrﬂf

(24) = R0, =008 + Op8) + B30 + D 0B b
=B,,.

We can then derive a scalar frddxg that corresponds to the scalar curvature:

(25) B=y%Bay=R-§9..

The projectivetranslation A.

A projective translation is associated with therwationl” for any index by way of
the differential equation:

xa;ﬁzxa;o P5,
as we showed in chap. IV, pp. 35, 36. Along aeurv
X =X (t)

the tangent spaces are displaced according tajtregien:

ax® . dx
+ AN . X—=0.
dt NgX dt 0
Thus, one has:
(26) N =T =Top, +MJ @,

Invariance of the non-Euclidian distance.

The translation\ satisfies the equations:

Vg _
(27) axy - yag/\ﬁy yﬁg/\ay 2M yaﬁ ¢y
and:

a¢a g _
(28) o~ PoNo= o= 2M Yo By,

as one easily confirms.

An application of (27) is the theorem that the arelidian distance between two
pointsX? andY” in a tangent space is preserved under the traorslat

The non-Euclidian distance between the pointstisrdened by way of:
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_ (Gaﬂanﬂ)z _ (yaﬂanﬂ)z
(G XTXA)GY YA (o X XA YY)

Differentiating yzz X? Y# with respect to¢” yields:

a_iy Vo XYF :(aaff ~VaolNp - yﬁg/\‘;yj X7YE.
From (27), we then obtain:
0 VP XIYP == 2M yap X°YP @,
or:
dlogy,, X Y?

Since the right-hand side of this equation is independédt and Y, we actually
obtain:
dlogD

ox’

=0.

Therefore, under translation Byany figure in a tangent space goes to the saroesfig
another tangent space.
Translation in inhomogeneous coordinates.
In chap. IV, pp. 32, we derived the equation:

i i i

av' sa v dx Ry dx

(29) dt dt dt
+@, L= PV )—V 0.

(1 ¢VJ)+¢KJVkV| dXJ

In this equation, thél of chap. IV (14) has been replaced wih and the projective
derivative ofg, relative toA is denoted by, . An application of (26) then yields:

dx’

dv' rvkd &

(30) dt dt
+P, VV +¢o,(1 ¢V)

—rkoVk¢ +MVg, -+(1 ADLE

If we replacegy; and ¢ in (30) with their values in (28) then we arrivethe
equation for translation along a curve in inhomagers notation in the form:
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davi [i],,, dx D
31 L L OV Y SV .
1) dt {ﬁ} at PV *o dt

The world-lines of an electric particle.

On the basis of (31), we can now define a system of suha may be regarded as a
generalization of the geodetic lines of a RIEMANNIAN spa
A given curve in a definite parameter representation:

X =X (t)

distinguishes a point in the associated tangent spaeado of its points through the
equation:
dx'
(32) k a V.
Here,k is an arbitrary constant.
We now look at curves along which the poihis translated to itself according to
(32). For this to happen, we must substitute (32) into (Blie to the skew-symmetry of

@i , (31) then becomes:
d®x dX dd 1
(33) +{kj}__ 1y ok

dt? dt dt

Equations (33) yield conditions for the parameter reptatien of the curve as well
as for the curve itself.
When:

(34) %:o,

the curves (33) are precisely the geodetic lines thathemacteristic of the metrg; .

When (34) is not satisfied then the differential@ipns are not homogeneoust.in
If we fix k then through any point, a curve with a given viéyogector is completely
determined. Curves through the initial point vitie initial direction are determined only
for geodetic lines.

If we replace I with e/min (33) then we obtain:

y
(33a) d >2(I + %d_x _e¢ =
dt kij dt dt m

In the context of general relativity theory, we mugerpret these equations as the
equations of motion of an electric particle and m are the charge and mass of the
particle, whereas thg; and theg; are the gravitational and electromagnetic potEnté
the field in which the particle moves.
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The connection IM.

We would now like to consider the connectidnthat we also defined in chap. IV.
We have seen th&dl may be computed froh and®. Just as we expressed Iﬂﬁg’n

terms o{'k} &, ¢; , etc., by means of equations (19), (20), (21), and (22\vige we
i

would like to now expresz,\”ﬂ/ in terms ofrgy, @, and an undetermined quant@y
We set:

_0Olog®
Pa =0k
and:
(35) a=Ng—D,.

Since®, = N, we haved, = 0. O, is therefore an affine tensor. We now repkavith
the quantitie®' =g’ ©; .
Next, we have:
CDU: yOacDa: N y0a+ ij CDJ' )

From this, it follows, with the help of (13), (14nd (15) that:

(36) =Ny ?+yl o =—g¢' (Ng—P) =-0

and: | " "
=Ny +yod =N-¢g"4® +Ng' 4 ¢,

or:

(37) P°=N+¢ 0.

®“®d, can be calculated fro@ in a particularly simple way:
PD,= N+ O)IN+O (G, —Ng ) =N+, O,

For I'If,/we now obtain the following formulas by using (366), (37), and (22) in
chap. IV (pp. 35):

(38a) Moe=Too+ N =40’

(38h) Mo=Too +©' |

(38¢) M55=Tjo +©, - 44,0

(38d) Mo=Tjo +NJ, +O'g,

(38€) M=M= (9, + 6N +90")

(38f) M=+, +d®, +O'(g, + ¢,4,) .
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The covariant derivative of & relativetoI .

With the help of the quantitie® that we just defined, we can also arrive at a
sequence of simple formulas for the covariant dexeatof® relative tol’. We will not,
however, carry out all of the elementary intermezl@alculations in detail.

For the covariant derivative df, we obtain:

v, _,
CDa«”g = W - FaﬁCDJ.
In particular, due to (19), we have:
CDQ;Q =0.

From (20), (21), (36), and (37), we obtain:

a _acba a a __a_G)i_ J i
(39) %, = G +I,, 0" = P i o,

CDa;a :CDi;i - _ 1 a(eljg)

75 ox’

or:

In this, we have denoted the (affine) covariantvd¢ive relative tx{'k} by a comma (,).
i

Ultimately, we find:

(40) d.5 =-¢'0
(41) yr®. o=g (N ¢;- @.2) =-39" ¢" (Oap+ Oaa) -

With this, we have reduced the covariant derivat¥& relative tol" to the covariant

derivative ofO relative to{ 'k} to a certain degree.
j

The curvaturetensor of IM.

We now return to the connectidi and calculate the curvature tenBjythat is
constructed from it. In order to expr@é’;in terms off and® in a convenient way, we
define a new quantiﬂ;;;"y by the formula:

(42) n% — 5 =T

From chap. IVT has the value:

(43) Toy= (0@, + G, =y @)

14
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By the use of (42), we now obtain the following equatmang/(,:

(44) P, =B, +T¢

a ag a ag a
56 = Ba0 T s = Vs ¥ T 1oy ~ Ts 1oy
or:

By By “oy
Pas = Bhs + 0 (P — P05 + DDy 55)
- CY} (cDﬁ;y - cDﬂch + cbgcbayﬁy)
_Vﬂ/(cba;d - CDHCDJ)
+ Y (P7) —0D)).

(45)

By contraction, we further obtain a ten$®ys and a scalaP that correspond to the
quantitiesB,z andB in formulas (24) and (25):

(46) Pgs=Bgs+ (N—1)@p o —PsPs+ O D, Vps) t Vs >,
and:
(47) P=B-20, +n(h-1)\*+0' @).

From (46), we finally obtain the affine invariants:
PI= ' PPy =B + (n- 1)’ (V" + 67 0;) -0 9],
P, =V P =By + (n-1)NO' -¢,0 ]
Poo=Boo+ (N-1)0 0 -0 ;.

Thetranslations associated with I1.

A translation is associated with in a manner that is completely analogous to the
invariant translatiom\ that is associated wifh, by means of the equation:

(48) X0 =Xa 4,
or.

axa a ag a a ag
(49) 7 I XT= (- MXT+M15X7) 4.

Equations (48) correspond to equations (24) in chap
If we now write:

ZZ/ = HZ/ - n20¢y + M52¢y

= /\aﬂ/ + 5;cby +5:q)ﬂ _gﬁyq)a - N52¢y _5g¢ﬂ¢y !

then we obtain the analogues of (27) and (28):

aGﬂﬂ o o
(50) -G,, 25, -G, = 2(N=M) Ggz &),

ox’ aoc = py ap=ay
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6¢

¢a ap = ¢aﬂ - M¢a¢ﬁ +¢a@ﬁ + Nggﬁ
- ¢a;ﬁ + ¢a@ﬂ + Ngaﬂ

(51)

and the analogue of (31):

dV' X dd
e

J

kdx ~Ng,V'V' do)l( Najw

(52)
= (00, - g,0)V —

We will make no use of the formulas fdrin the following chapters. However, it is
not unlikely that they might be of use in some latesioa of the theory (cf. chap. VII).



VII. Field equations.

In the previous chapters, we have seen that a prae@nsor of rank two includes
the formal apparatus for a theory of gravitation andtedesagnetism. We regard the
quantities g; as gravitational potentials, and th#, as electromagnetic potentials.
Furthermore, we know that the motion of an electridiglar can be described by the

projective translations that depend uporitpe
The projective scala® played no role in any of these considerations. Wesfbey

set® = 1 in this chapter, so that we only need to deal withthikery of tensors with
index 0.

Thefield equationsin projective form.

We now seek a class @fs that is a limiting class, in a certain sense, andeiddme
that will hopefully occur. Just as in ordinary relatgivineory, we look for differential
equations here that are not as reduced as:

By = 0.

The next level of complexity might be to use field equatiof the form:
I Baﬂ_iz Yap B = 0.

However, this would not work, since we would obtaineh, instead of fourteen,
equations. The Ansatz:

(1) raﬂ - ¢a¢ﬂr = 0 ’
seems more promising, in whi€his defined by the equation:

F=y%r,; =-3B.
The affine expression fd is:
B=R- ¢¢..

Incidentally, the tensof .4 satisfies a series of equations that correspond to the
conservation law in EINSTEIN’s theory:

re,=0.

These theorems are obtained from the five-dimensmiffiak interpretation of our theory
with no further assumptions.

Equations (1) are the differential equations of a foureshisional variational
principle. Namely, we demand that the integral:

(2) [B gdx dx d¢ d¥',
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should be stationary under variations of jhewith the extra condition thgko = 1, then
one obtains the EULER-LAGRANGE equations (1) precisele will explore this
further at the end of this chapter.

It is not out of the question that this property mightegphysical meaning to our
equations. They are also of interest due to the fagt rteke the consistency of our
eguations apparent.

In the sequel, we will therefore assume that equatidpsafe the differential
equations of empty space; here, “empty’” means that neiles nor charge density is
present. Only in this case will the field equations Helyalong with the path equations
of electric particles.

Decomposition of the field equations.

We would now like to decompose equations (1) into théimeparts. The left-hand
side of (1) represents a projective teriBgy, such that we can write the field equations in
the abbreviated form:

(4) Taﬁ: 0.

By raising the indices with the help pf?, we obtain two more systems of equations
that are equivalent to (4):

(5) T/=0
and:
(6) T%#=0.

Next, one can conclude from the form of the trans&diom of representation that
is an affine tensor. Likewise, we know thBf and T, are affine invariants. The
following equations then follow from (4):

T =0, T,=0, Too=0.
Or, more specifically: i )
(7) RI—3¢g'R+25'=0,
(8) IS, S = ’
(9) R=0.
Thus: ) o .
(10) S =g"'g.p +59'9.

is the MAXWELL stress tensor, whereas:
¢iS — Ji
, ST

represents the electric current vector. Equationg8Y,)(9) agree with the ones that are
derived in relativity theory.
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The limitations of the solution.

We now have a purely formal solution to the unificatioobfem. Many physicists
have hoped that some suitable solution to the unificapoyblem might lead to
knowledge of new physical phenomena; unfortunately, ithaiot the case here. The
solution that we just described leads to only the field eémpgmbf classical relativity and
precisely the same equation of motion for an elegadicle that one obtains from
relativity theory and MAXWELL’s theory. On the coaty, the theory contains no
foreign elements.

Geometrical restrictions of the theory.

We now ask about the extent to which we have actuallg tlse geometrical
apparatus of our theory.

By the decomposition into the theory of gravitation atettromagnetism, we have
made use of the position of the contact point of #regént space with the base space
relative to the quadric surface.

On the contrary, we have subjectg¢do restricted assumptions. First, through the
introduction of inhomogeneous coordinates with the hetheformula:

we demanded that the polar hyperplane to the origin agreeisgly with the hyperplane
at infinity relative to the quadric surface. This implgegestriction on the position of the
guadric surface in the tangent space; this assumption hasflmence on the field

equations. Physically, it first comes to light in théfedential equations of electric
particles.

Furthermore, we used the vectbmstead of an arbitrary vector of index zero in the
definition of the translation thdt defines; this is likewise meaningful for the motion of
electric particles. Perhaps it might be possibleejgace this assumption with other
convenient assumptions. The field equations there@amain unchanged.

Generalizations of the theory.

Furthermore, we must emphasize that we have madeenofu. ® determines
another projective vector of index 0, namely:

dlog®
ox”

:ch,

which is amenable to a geometrical discussion.

In order to have an apparatus that is capable rofiflating far-reaching physical
theories, it is necessary to introduce new geonatideas. One can expect that one
might be able to find physical applications thatbgyond projective relativity theory for
the extension of our geometrical apparatus th&iviel from the introduction ob.
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Thergy no longer represent the generalization of the coroweltithat is introduced

in ordinary projective geometry. Rather, instead lo¢ £, we must consider the
connectio that is defined by th€,s in the same way thét is defined by thg,z. In
this way, one might succeed in constructing the field egsitiwhich are perhaps of the
type:

(11) r.=0.

The F;y are thus constructed from t} in the same way that tHe,s are constructed
from the ng (Bibliography 1930, 9). One equation that is so obtainedeistical with

the SCHRODINGER equation in quantum theory. For tbason, it seems possible that
a unification of quantum theory with projective field thegonight exist in this direction.
Admittedly, it is disappointing that the consistencyegfuations (11) can no longer be
proved in this case. Furthermore, up till now no one swaseeded in deriving the
equations from a four-dimensional variational principle. inally, the physical
interpretation of the equations raises difficulties.

It is not entirely miraculous that an equation of t@HRODINGER form appears at
this point. It is merely due to the fact that one wansform a second-order differential
equation of the general type in such a way that theryhef its invariants is precisely a
projective theory (COTTON, WIENER, and STRUIK, Bibliegshy 1900, 1; 1927, 19,
20).

The generalized non-Euclidian geometry is only one ofeatire sequence of
geometries that are mathematically very interestingr. ekample, it is possible to shape
a generalized conformal geometry with tools that arepbet@ly similar to our projective
tensors. It is not impossible that these geomemm&it be amenable to physical
applications in extensions of relativity theory. Makaghoice of one or the other such
geometry will, however, require a new physical insigimnd not merely the concatenation
of two theories. New physical facts can be obtaimethfthe theory only by introducing
new quantities.

Derivation of the field equationsfrom a variational principle.

We will now show, as we previously suggested, that tHd &quations (1) are the
EULER-LAGRANGE equations of the variational principle:

[Bgt dx d@ddd¥ s stationary.
Thus, we must vary thg,s under the subsidiary condition:
o= 1.
For the calculation of the variation, we employ aegaht method that goes back to
PALATINI (Bibliography 1919, 2).
We have:

(12) B=Buy”.
We next show that one has:
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(13) [y?® g Bdkdldedd=0.
The functions:

a
Jﬁy

are the components of a projective tensor, since #mey the differences of the
components of two projective connections. We now takeakariant derivative of this
tensor:

(dz,)

(O g™~ () = (T + (@ ) s -

From this, it follows that:
(d_gy);d - (d_gd );y:d?’gyd '
or, by contractingr and y.
(O )5~ (@ 55)0 = Bs.
If we multiply this by’ then we obtain:
y? Bas={y" (@ 5) ~ V™ (T 5.)} s
By using the fact thag= g we then have:
[y? ¢ @B dx dx dx dx’
0 o\ 4 » 1
=137 [1/*" Cyalag% (arga)gz] dx' dx dxX’ dx' .

We can omit the term witld = 0, since the expression in the square brackets dot
depend upor®. From the generalized GREEN theorem, it now fedidhat:

0 a3 a i 1
e~ [y‘“ (O )9 —y” (d'ﬁa)gz] dx dx¥ dxX’ dx' = 0.
The expressionsI gyindeed vanish on the boundary of the integratiomain. The
validity of (13) is thus proved.
The extremum condition then yields the equation:
OB g dldX d d¥ =B dy¥g?) ddddéd=0.

Due to the fact thady=- y yus oy, it then follows that:

J(Bap@*dy™ —Bory™ (3G vy oy ) dd d¥ dX dx' =0,
or:
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14 I(Baﬁ -3 BJ/L,ﬁ)9'351/’ﬁdx1dx2dx3dx4
- = [ g3y déddxidx’ = - [ TP gtdy, dxdx’dxdx* = 0.

Due to the fact thajeo = 1, we havedyo = 0. The remainin@®y,s are thus arbitrary.
From this, we can derive that:
r*=g K,

in whichK is a function ok, %, »%, X'. 1f we multiply this byy,sthen we have:
MN=K.
We thus obtain the necessary condition for an extrem
r*-gqr=o0.

By lowering the indices, we thus obtain the desired emuét), in fact.
We can also derive equation (1) by demanding that:

[Bg dxt d dx d¥'

be stationary, except that now the functi@f€ are what we vary.
SinceB glzdepends only upopz and®, we now have:

(15) OB dldX d dxX = Tupg? oy % dX dxl dxX dx' =0 .

However, we have:
y af — CI)2 Gaﬂ — GooGa'g,
and:
&Koo = AGoy GosG#)
=Goy Gop IG¥ + 2 Goa G P I
=Goy Gop IG¥ - 2 GyaGop P
== GOa Goﬁ &5”’8 .

We thus obtain the following for the variation jof”:
oy b = Gaﬂ&;oo + Goo&aﬁ = Goo&aﬁ— GooGor IG%* Gaﬁ.
From (15), it then follows that:

[ (T ap Goo— Goa Gopll g° @ % dxt dx dx¢ dx = 0,
or, sinced # 0:
raﬁ - ¢a¢ﬁr =0.



VIII. Five-dimensional associated spaces.
Homogeneous coordinatesin the tangent spaces.

In chap. Il, we established the connection between homoggenpoojective
coordinates and inhomogeneous coordinates in the tangentspaeg of the formula:

(1) dx =

Furthermore, we saw that an arbitrary projective ve¥fodetermines a poirdX of the
tangent space by way of (1). We can also represemeblgonship between projective
vectors and tangent spaces in another form.

Associated spaces.

Suppose one is given a poxjta choice of representation, and five arbitrary numbers
X% X!, ..., X*. We now collect the totality of all contravariantojective vectors of a
given index whose components can be assumed tatmwalues X X*, ..., X* in the
given representation into a single geometrical obje The vectors of a given geometric
object can take on completely arbitrary forms at paiifferent fromx even though they
all assume the valué€, X', ..., X* atx.

We will call the totality of these objects for a givenint and a given index a space,
and indeed, we will call ithe associated space of index N at x

This space is understood by way of coordinate systems, aretliX¥jec, ..., X* are
coordinates of the point that is defined with the helphefsé five numbers. These
coordinate systems on the associated space are asgdaeidt a particular representation
of the base space. Thus, every point of base spassasiated with an associated space
of index N, and every representation of the base space is assbavith a certain
coordinate system in each associated space.

It follows with no further assumptions from the bapioperties of a projective
vector that the definition of the associated spaaedispendent of the coordinates. Thus,
we can actually regard the associated spaces as geonfgiats.

Each transformation of representation of the baseesgafines a transformation of
the coordinateX” in the associated space:

X0 =X°+v X'
@ X' =viX.

The larger set of transformations of representatienthus connected with the
smaller set of linear transformations)tt

L Atthe pointx, the components of a vector are functiong’aff the forme™ . Two different vectors at
the pointx that are associated with the same geometric objedhcarassume the same vald@sX’, ...,
X* when we choose two suitabf®values; however, this remark is valid only whéz.
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For N # 0, the associated spaces are projective spaces singectdls that can
assume the value$’, X%, ..., X* at a pointx will be multiplied by a factok under a
change of’. The point:

plays a special role in any associated space since ttdigat@s remain unchanged under
all transformations (2).

Correspondence between projective associated spaces and tangent spaces.

First, we observe that our associated spaces have gdthido with the tangent
spaces. However, we can relate them to the tangerdgsspgavay of (1):

Thus, the point (1, 0, 0, 0, 0) of the projective spaaeesponds to the origin of the
tangent space. If we then assume thatgthare the components of the polar hyperplane
relative to the previously considered quadric surface tliem (1), this hyperplane is
precisely the hyperplane at infinity.

Thus, we have reached the conclusion of our previous gewelat. Our position is
now essentially that of chap. Il, in which we regarded X“ as the homogeneous
coordinates in the tangent spaces.

The associated projective spaces serve as aids forintheduction of the
homogeneous coordinates. If we do not assume the meastd the map (1), or (3),
resp., then we obtain only one theory of associatecespa€urthermore, the form of our
field equations does not depend upon the validity of (1).wd¥er, we next obtain a
relationship between the associated spaces and spewciabk, surfaces, etc., in the base
space by way of the map (3) or other suitable assumptibimgs, e.g., a correspondence
between a curve: o

X =X (t)

and the tangent spaces that are associated with its poihbe defined by the equation:

. dX
dx = o dt.

However, one possibly requires the map (1) in order tmelef relationship between the
dx and thex’, and thus, a relationship between the points of the @amge¢he associated
spaces. Furthermore, we have made use of (1) in theaden of the differential
equations of massive electric particles.

Five-dimensional associated spaces.
Our definition of an associated space is also validercdse oN = 0. However, the

associated spaces are no longer four-dimensional Hieceomponents of a vector of
index 0 are independent xff and because their absolute values are also thus detgrmine
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From our definition, the associated spaces of index (hasefive-dimensional affine
spaces. A coordinate transformation of the form (R)He five-dimensional associated
affine space is defined by the transformation of representaf the four-dimensional
base space:

@ {X_i ~ X rlogp

X =X ().
Thus, we have:

ViO _ alogi,o
2 e

Vj :a.

From the form of the transformation (2) it followsat the line:
(6) X =0, X° arbitrary,

has the same equation in any of these associatecesp We call this line the
distinguished line.

First map of the five-dimensional associated space onto the tangent space.

We can also use equation (1) to map the five-dimeas associated space at the
spacetime poirtt onto the tangent space that is belongs witfrhis map:

X - dx

is obviously not uniquely invertible. Namely, ifp@int X of the five-dimensional space
goes to a certain poinix of the tangent space then all poirkd®( kX', ..., kX) with k
arbitrary will also go to the same pooht. (1) thus represents a map of the points of the
tangent spaces onto the lines through the origiro{(®, 0, 0) of the associated space.
Thus, the origin of a tangent space correspondheodistinguished line of the five-
dimensional space.

The difference between these considerations angréhgous ones is admittedly not
very significant. Indeed, it is known that theelinthrough a fixed point of a five-
dimensional affine space define a four-dimensi@najective space.

A projective contravariant vecté” (x) of index O singles out a certain point:

X7 =A% (X)
in any five-dimensional associated space. By eshtra projective contravariant vector
B“ (x) with a non-zero index determines a line throughadrigin in any five-dimensional

associated space. The equations of these lines are

(7 X7 =kA” .
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in whichk is arbitrary. Furthermore, a line through the origfreach five-dimensional
associated space is defined by an affine contravariattr#qx). Its points satisfy the
equations: _

X' ;
(8) ¢axa - \/ .

One can realize the connection between the linesghr@a fixed point of a five-
dimensional affine space and the points of a four-dim@asi affine space more
intuitively by intersecting the lines with hyperplaneattdo not pass through the fixed
point. The hyperplane:

Pa X" =p

is particularly suitable for this purpose. If we assuilm&t a certain poinKX that is
determined by (8) shall lie in this hyperplane for a givathen equations (8) (equations
(1), resp.) give us a one-to-one map between the poike dfyperplane and the points
of the tangent spaces. Homogeneous coordinates are defin®dibyhis hyperplane.

For variousp we obtain an entire band of hyperplanes. Our map tleak&rdown
forp=0.

Differentials as coordinates of the five-dimensional space.

The differentials of the coordinates, ..., ¥ and the differential of the gauge
variablex’ transform precisely like the components of a comtriant vector:

dlogp

dx’ = dx° t—— dx',
9) . 0x
oz =X gy
Cox T

One can thus consider the differentidl¢’ to be theintrinsic coordinates of the five-
dimensional associated spaces. The equation:

dx¥’ =A% (x),

in which A% is a projective vector of index 0, determines apim each five-dimensional
associated space.

One might reach the conclusion that the hyperptafie= 0 can simply be regarded
as the tangent space with the coordindtés..., dX*. That is, however, impossible, since
dX = 0 is not an invariant condition. One cannoeertthe tangent spaces to the five-
dimensional associated spaces in this way. In faete is a one-to-one map between the
points of the tangent spaces and the lines of $hecaated spaces that are parallel to the
distinguished line; one sees this immediately fr@®). One can also regard this
relationship as a sort of map from the points effitie-dimensional associated spaces to
the points of the tangent space. We represeninésby the equations:
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(10) dX = g, ox7,
in which we now denote the five-dimensional coordinatesoky and the four-
dimensional ones byxX . In the sequeblx, ..., dx* will always mean coordinates in the
tangent spaces ar@l’, ..., ox* will always mean coordinates in the five-dimensional
associated spaces.
Euclidian metric of a five-dimensional associated space.
In the five-dimensional associated spaces, one capiate
Vo OX% OXP
as the square of a Euclidian distance. In each eétbpaces:

Vap OXT = P 0X7

is the orthogonal projection of the vectx’ onto the distinguished line since:

g=¢
is the unit vector of the distinguished line.
The formula:
(11) Vap 0% OXP = g OX X + (@ OX7)?

represents the square of the length of the veéxfras the quadratic sum of the
components that are orthogonal and parallel to thimgigshed line.
The hyperplane:

(12) Pa X =p
is orthogonal to the distinguished line. Thus, from (11):
g 8Xi 8)(j
is the Euclidian distance in such a hyperplane.
The map (8) of the five-dimensional space onto the tdargmace thus represents a
sort of orthogonal projection of the Euclidian spaath the metricy,z onto the Euclidian
space with the metrig; .

Translations of the five-dimensional associated spaces.

The projective connectioin was defined (pp. 48) by the equation:

(13) Yagy =0,
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and the associated translations were defined by the ecgation
Xa;ﬁ:xa;o ¢ﬂ

We have also described these equations (pp. 50) in the form:

ox“ ona
(14) 7 T X N7 0,
in which A takes on the value:
(15) Ny =T5 T 58,

in the case that is of interest to us here, naietyO.
On the basis of the formula that we derived in chapgply/ 49):

Mo = V' #ip,

one recognizes that an equation of the form (13) iswvalb for A. Namely, we have:

ayﬂﬂ 4 o
This means that the length:
Vop X XP

of a vectorX and also the angle between two vectors in the fieeedsional space
remain unchanged under translation.

The distinguished line does not go to itself under thisstadion. In particular, we
find that the projective derivative gf relative toA is:

0 i (N4 a i
a7 %+¢ /\oj: roj:ya¢ij-

Since the process of projective differentiation withs interchangeable with raising and
lowering of indices, (17) yields:
09,

(17a) Fvi PNy = Pap -

We now calculate the covariant derivative of the patam

p=aX?

of the previously considered hyperplane. It is:
08, X" (3¢, _  po )y (GX” o j
ox)  \ox! PolNe ) X"+ Pa ox! XN
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On the basis of (17a) and (14) we thus obtain:

dg, X) _ dx

(18) dt =i X 5 dt -

Equation (18) is valid for the translationfelative to/\ along a curve:
X=X (t).

We now ask when the left-hand side of (18) vanisheswigen a point remains in
the same hyperplane under translation relative. tue to the skew-symmetry @f this
is obviously the can when one has:

dx

(18a) ka

From (11), it also follows that the distance of a pdmoim the distinguished line is
invariant in the case (18a).

We now write formulas (14) in somewhat more detdilwe single out the case =
0 then, due to chap. VI, (20) and (21), we obtain:

dax' fiedx! o,
g {Jk}x dt+¢j¢gx =0.

A similar differential equation is also valid .
The point in the five-dimensional space:

X = kd—x, $o X7 = const.,

is associated with the velocity vector of the curvkwe demand that this point goes to
such a point under translation along the curve then tlh@nvol differential equations
for the curve and its parameter are true:

dx' [i]dx) dx e
(19) ar ﬁ}ﬁﬁ m?

Jdt_

We have thus set the constaptX” equal toe/m

These equations for the distinguished curves in the $jzsee agree precisely with
the equations of chap. VI (33a), which we obtained forcdse ofM # O, hence, for a
four-dimensional associated space. Thus, we have al#ained a geometric
interpretation for the world-lines of an electric pa#iin terms of the five-dimensional
associated spaces.
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Introduction of general coordinatesin the associated spaces.

We can introduce completely general affine coordinatés the tangent spaces
through the non-degenerate transformation:

(20) W =M dX.

If we assume, e.g., thilt!, ...,M " are four covariant vectors then ¥kare scalars. We
refer to coordinates that are obtained in this wagcatar coordinates. However, we are
still free to choose other transformation laws forl\tlje

Likewise, we can introduce completely general affin@rdmates in the five-
dimensional associated spaces. The equation:

20a oxP =NPU“ .
(20a) a

All of our formulas assume a general form in the galiesd coordinates. However,
their geometrical and physical meaning naturally remairchamged. For example, in
general coordinates, the non-degenerate map (10) takes fomrth

(21) W =t U?,
in which: _ o
t,=NSOM; .

EINSTEIN and MAYER (Bibliography 1931, 3) always use this gaheoordinate
system. In their work, the map (21) plays an esserlial as we hope to clarify in the
sequel. EINSTEIN and MAYER use the notatiginstead of out,. Furthermore, they
write gap instead of ouy,s andA, instead ofp, .

Second map of the five-dimensional space onto the tangent space.

For our present purpose it suffices for us to work g coordinateslX and ox°.
Nevertheless, we shall write (10) in the form:

(21) dx =t ox*,

in order to emphasize the fact that this transformatsoa geometric object. In our
coordinates, one thus has:

(22) =4,

We now seek to present the relationship that was giver{2hy between the
coordinates of the associated spaces and tangent spacesher geometrical form. In
order to do this, we must invert (21). The inversion of (@I)ot uniquely determined
since (21) is not a unique transformation. In any casdptimula:
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ox' = d¥

must be true, whereas the choice of @kethat goes withdyx', ..., dX)) is unrestricted.
We determine the inverse thfvhile making the least possible demands upon the
relationship between the metrics in both spaces. hivedefine:

(23) t" =y, t* = g; t%, ti =gt

If we use (22) then we obtain:

(24) t" =y,
(25) "= (us— 4 9p) vy =& - & 9,
(26) ta =3, Gi -

We thus have the identities:

27) t't, =4, =0 ~ & ¢,
(28) tm taj :5'1-, tm.tla :5;—5g¢ﬂ,
(29) ttg =i, "t =y - § &

In harmony with our definition (3), we consider the sfanmation:
(30) oxT =t dx
to be the inverse of (21). Under the assumption (22)her have:

X' =FdX - ¢ dX ,
or:

ox° =—g,dx
(31) {6xi =dx.

From (31), one immediately sees that all of the paixtén the tangent space will be
mapped uniquely onto the points of the distinguished hyperplane

(32) Pa0x" =0
in the five-dimensional space. If one restricts effem (21) to the points of this

hyperplane then (21) is the unique inverse of (30). It iswartly that (32) is the only
hyperplane in the band:

Pa0X"=p

in which the previously given transformation (8) fails.



Five-dimensional associated spaces 73

With the help of the quantiti¢sandt’, we can now present the desired
correspondence between the structures in the five-diowad space and those in the
four-dimensional one.

Thus, e.qg., the affine vector:

(33) B :tiaAa =A —Aodi

corresponds to the projective covariant veddgr In order to interpret this formula
geometrically, we consider the hyperplane:

BidX =k
in the tangent space. We have:

BidX =B t,ox"= (A t,— Ao 1) X7,
or.
Bi dX = Ay X7 — Aoq OX°.

If we further restrict ourselves to the points of thpdmplane (32) then we obtain a
one-to-one map of the hyperplane: _
Bi d)d =k

in the four-dimensional space onto the intersectioniimial of both hyperplanes:

A ox =k
and:
Pa0x" =0
in the five-dimensional space.
In particular, ifA, = @, then the transformation (33) reduces to:

0=t"da,
as we would expect geometrically.
Conversely, an affine covariant vector correspondiee@tojective vector:

UB =t (A=A d)=Ar—Aoda.

The intersection manifold ofA; — A@,)ox” = k with ¢, 0x? = 0 agrees with the
intersection manifold oA, ox” =k andg, 0x“ = 0.
The correspondence between the fundamental tensoeslisted by the formulas:

yaﬂt? tf: Oij
and: .
g t;t;J; = Yop— PaPp -
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Relations between the trandations.

We now concern ourselves with the translations of tdrggent spaces that are
induced by the translation of the five-dimensional spaCenversely, we can also ask
what sort of translation of the five-dimensional sgasedefined by an ordinary LEVI-
CIVITA translation of the tangent space.

We start with the unique map:

(34) V =t X“ and X7=t"V,
of the point of the tangent space to the point of the ripjgee:
(32) Pa0x"=0

in the associated five-dimensional space. By diffeaéing (34), we obtain, after making
use of (14): _
avl i \yO i g
(35) %:—rajx + FJOX ¢j .
Due to (15), we thus obtain:

avi__ I k i g
axj - {kj}v ¢j¢ax '

If we now use the fact thad is restricted to the hyperplane (32) then we obtain:

ov' [
(37) oy +{kj}v =0.

Thus, if the map (34) breaks down then the affine traosl§37) corresponds to the
translation (14) of the five-dimensional space.
If we substitute (36) in (35) then this yields:

atglz i AO k I i
(38) W - ta/\nj +ta{kj} = _¢j¢n'

In this, we must use the fact théf can take on any arbitrary value in five-dimensional
space.

Next, equation (38) is only one of the identities thaé @an construct out of
equations (15), chap. VIII, and (20) and (21), chap. VI, as came naturally verify
immediately on the basis of these equations. Howewer can regard (38) as the
equation for the covariant derivative of the mixed quastfiewhose indices relate to
the tangent space (five-dimensional space, resp.).

Previously, we have stressed that the map of the targpade onto the five-
dimensional space is a geometric object that takeshercomponents, =4, in our
special coordinate system. Equations (38) represent dhsldtion of this geometric
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object. If the quantitie1$are given then (38) gives us the desired relation between
translations in both spaces.
One has the equations:
(39) R0 _{k}t”: # ¢,
ox’ I ij|x v

One immediately derives equation (39) from (38) by raisind) lawering a andi
with the help of#? andg; . If one does not want to use (38) then one can aisfy (39)
immediately on the basis of (25).

EINSTEIN and MAYER define the left-hand side of (37) a® ttabsolute
derivative” ofV' and the left-hand side of (39) as the “absolute derivatif/tf . In this
way, equations (39) are introduced by geometric assumptieirean (37) and (39), one
can then derive the properties of the translations efassociated five-dimensional
spaces. The resulting geometrical structure admittedgeagwrith the one that we gave
above. The field equations are also equivalent tortlee that we gave.

One can also replace equations (39) with other ones.examnple, EINSTEIN and
MAYER, in a later work (Bibliography 1932, 5), have propodeddquation:

o oo JKla_ o ar
(40) a—xaj+/\ajti —{ij}tﬁ " Ly + Y7 Vi .
Thus, we have:
Fij=—-F;j
and:
Viij == Vij ==V, .

Obviously, the gquantitied in these equations must now be different from/thtbat
we used before. The introduction of new equations, su¢d®@stherefore implies the
choice of a new translation and with it, the possibdf arriving at new field equations.

The physical meaning of equations (40) is still not clear. vilMenot go into this
matter any further, either.
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