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Foreword 
 

This little book makes no claim to completeness.  It offers little more than a 
representation of a personal viewpoint that I hope will be of use in the further treatment 
of the geometries described here and other applications.  The same is true for the 
bibliography at the end.  No attempt has been made to make it complete.  On the other 
hand, it includes numerous treatises for which no specific mention is made in the text, but 
which I hope can perhaps be of use for further investigations of the topic. 

First, I would like to thank three young German mathematicians very much.  F. 
JOHN assisted me in the preparation of my lecture at Göttingen in the Summer of 1932.  
His elaboration of this lecture defined a first draft of the present manuscript.  I would like 
to make note of Herrn NÖBELING, for the supplementary material that he contributed on 
the occasion of the lectures that I gave in Vienna.  Finally, after my lectures in Hamburg 
G. HOWE helped me with a sweeping revision of the entire manuscript and thus also 
stimulated many various improvements. 

 
Fynshav, in August 1932.     O. VEBLEN. 
 
 
Upon the conclusion of the corrections, I would like to express my thanks to my 

Princeton collaborators, and in particular J. L. VANDERSLICE, who has carefully 
maintained the unity of the manuscript. 

 
Princeton, in November 1932.     O. VEBLEN. 
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I.  Unified theory of gravitation and electromagnetism. 
 

One of the many achievements of EINSTEIN’s general theory of relativity is that the 
theory of gravitation has been geometrized.  This geometrization arises from the 
assumption that one must regard the world of physical phenomena as a four-dimensional 
spacetime continuum.  Such a continuum 
is, by definition, representable by 
coordinate systems.  A coordinate system 
is merely a map of a class of world-points 
to a class of number-quadruples, or, as 
one can also say, number-points (x1, x2, x3, 
x4).  Therefore, the first axiom, or the first 
group of axioms, of relativity theory must 
also represent a statement of the existence 
and the properties of this map.  Whether 
or not I consider it to be important that 
these axioms be clearly formulated, nevertheless, I will not go into the particulars of that 
problem in this work, since J. H. C. WHITEHEAD and myself have thoroughly presented 
those axioms in a recently-appearing work (Bibliography 1932, 10). 

Furthermore, this geometrization implies the assumption of a definite spatial 
structure to the universe.  In fact, this structure resides in nothing more than the existence 
of ten functions of position: 

gij (x
1, x2, x3, x4)    (i, j = 1, …, 4) 

 
(gij  = gji  ) in each coordinate system.  Since these functions are uniquely defined in each 
coordinate system we denote them as the components of a geometrical (or physical) 
object.  If these components are given in one coordinate system then they are determined 
in any other coordinate system by a simple linear transformation law.  Due to the 
particular linear form of this transformation law this geometric object is called a tensor, 
and indeed one refers to it as the fundamental tensor of a RIEMANNIAN space. 

It is not essential for one to use the geometrical language.  Everything proceeds in a 
logically smooth fashion if we regard the gij as ten gravitational potentials and treat the 
entire theory in a purely analytical way.  However, this is not as interesting and 
stimulating (at least for the scientists of our epoch) as when we regard the gij as the 
coefficients of a quadratic differential form: 

 
ds2 = gij dxi dxj 

that RIEMANN defined along a curve: 
xi = xi (t) 

by the integral: 
∫ ds, 

 
and can thus geometrically express and motivate an entire series of theorems.  However, 
one must freely observe that in the case of EINSTEIN’s theory the geometrical 
measurements are connected with gravitational phenomena. 

P

x

World-point

Number-point

Fig. 1.
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Each particular choice of fundamental tensor distinguishes a particular 
RIEMANNIAN space.  Classes of RIEMANNIAN spaces may be obtained as solutions 
of systems of partial differential equations in which the gij represent independent 
variables.  By a clever choice of such a system of equations, EINSTEIN succeeded in 
singling out particular classes of RIEMANNIAN spaces that are capable of being given a 
genuine physical interpretation. 

In order to find this interpretation, one employs coordinate systems (normal or 
inertial coordinates) that have a definite geometrical meaning and allow for a particular 
decomposition into spacelike and timelike components.  By this means, the geometrical 
theorems of EINSTEIN’s classes of RIEMANNIAN spaces may be translated into 
ordinary physical theorems.  One thus finds that a large part of classical physics is 
contained in the ten components gij , and since gravitational phenomena play a leading 
role in this part of the theory, the identification of the gij as gravitational potentials seems 
justified.  The unified character of this theory finds its expression the fact that the 
gravitational potentials are the components of a single geometrical object. 

The essential difference between this theory and the previous NEWTONIAN theory 
of gravitation that we would like to emphasize is the following:  In the older theory, one 
thought of a Euclidian space as being given to begin with, and then introduced 
gravitational potentials into this theory.  However, these potential functions have no 
influence on space itself.  The properties of space are completely independent of those of 
the potentials.  In EINSTEIN’s theory, by contrast, the properties of space are identical 
with the properties of the gravitational potentials gij . 

On the other hand, in the world of these gravitational potentials, electromagnetic 
phenomena have nothing to with the geometrical structure of space.  In EINSTEIN’s 
theory the electromagenetic potentials are − so to speak − foreign, just as the 
NEWTONIAN potential functions were in Euclidian space.  Whether more less matter 
exists in the universe leaves the Euclidian geometry unchanged.  Likewise, no direct 
effect of electricity on spacetime structure was present in the general theory of relativity. 

The problem of discovering a spacetime structure that depends, not only upon the 
gravitational potentials, but also on the electromagnetic potentials was first attacked by 
H. WEYL in the year 1918.  Despite the fact that WEYL’s attempt was physically 
unsuccessful, he has produced a very beautiful geometry as a fruit of that labor.  The next 
attempt was made by T. KALUZA in 1921.  KALUZA replaced the four-dimensional 
continuum with a five-dimensional one, and then introduced a RIEMANNIAN metric 
into this continuum, and he succeeded in establishing field equations that yielded the 
EINSTEIN gravitational equations and the MAXWELL electromagnetic equations in the 
first approximation. 

The KALUZA theory was simplified by O. KLEIN (Bibliography 1926, 5; 1927, 11) 
in such a way that the EINSTEIN-MAXWELL theory emerged, not approximately, but in 
its precise form.  Since then, various other mathematical physicists have pursued the 
theory and found its formal structure very tempting.  However, a fundamental question 
with no satisfactory answer still remains:  What is the meaning of the fifth dimension?  
One has found no compelling basis for doubting our conviction that the physical universe 
is four-dimensional.  Therefore, theoreticians, and above all, EINSTEIN himself, have 
carried out a series of investigations with the purpose of creating a four-dimensional 
theory.  Some of these efforts are listed in the Bibliography at the end of this book. 
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After five or six years, the thought came to me that a possible solution to the 
unification problem for the spaces that many people have investigated in the last ten years 
might be in finding a generalization of projective geometry.  Before we present the basic 
geometrical ideas upon which our solution of the unification problem rests, we discuss 
some notions of ordinary relativity theory. 

We thus now work with the ordinary spacetime that relates to the coordinates x1, x2, 
x3, x4.  We consider the differentials dx1, dx2, dx3, dx4 of the coordinates.  How are they to 
be geometrically interpreted?  Their basic property is that they are transformed linearly 
by a coordinate transformation: 

x i =x i (x) 
according to the formulas 1: 

(1)      dx i =
∂x i

∂x j dxj ; 

 
the dxi may thus be interpreted as affine coordinates in a four-dimensional space.  Any 
point (x1, x2, x3, x4) of the base space is therefore associated with an affine “tangent 
space.”  However, the point (0, 0, 0, 0) of the tangent space, whose coordinates remain 
unchanged under all transformations (1), can thus be identified with the point (x1, x2, x3, 
x4) of the base space and regarded as a contact point.  Each coordinate transformation of 
the base space induces an affine transformation of each tangent space. 

If our base space were – say – one-dimensional then we could represent it as a curve, 
and the tangent space at P would be the usual tangent to the curve at P.  The variable x is 

a parameter that establishes the position of 
a point on the curvem and the parameter 
dx determines the position of a point on 
the tangent line.  In the four-dimensional 
case, such an intuitive picture is no longer 
possible due to the limitations of our 
visual imagination.  Therefore, the 
corresponding geometrical expressions 
prove to be helpful and suggestive.  We 
must therefore start with a four-
dimensional base space or universe and 

then introduce a set of tangent spaces, each of which is attached to a definite point of the 
base space. 

The gij (x) are constant on any given tangent space.  Therefore: 
 

ds2 = gij dxi dxj 
 
is the square of the distance between the origin and the point dx relative to a Euclidian 
metric on the tangent space at x.  The points dx that satisfy the quadratic equation: 
 

gij dxi dxj  = 0, 

                                                
 1 In this work on relativity theory, it is self-explanatory that we use the EINSTEIN summation 
convention. 

dx

x

Fig. 2.
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define a cone through the origin: the light cone.  In the case of relativity theory, this cone 
is real since the quadratic form gij is indefinite.  According a viewpoint that was stressed 
by E. CARTAN in particular (Bibliography 1928, 1) the RIEMANNIAN geometry of the 
base universe should be regarded as the theory of these associated Euclidian tangent 
spaces. 

The generalization that we have in mind is the following one: 
Instead of a cone, such as the light cone that we would encounter in relativity theory, 

we would like to associate a completely 
general non-degenerate surface of second 
order in each tangent space.  By means of 
this quadric surface, a quadratic cone gij 
dxi dxj = 0 is likewise distinguished in 
each tangent space, namely, the tangent 
cone through the origin, and a 
hyperplane: the polar plane of the origin.  
The polar plane includes the contact point 
of the tangent cone with the surface.  The 
polar hyperplane shall represent the 
electromagnetic potentials, whereas the cone represents the gravitational potentials (Fig. 
3). 

Instead of a Euclidian geometry in each tangent space, we now have a non-Euclidian 
geometry, in which our quadric surface is the absolute surface in the sense of CAYLEY.  
Our new geometry is therefore the collective theory of this set of CAYLEY spaces, just 
as RIEMANNIAN geometry was the theory of Euclidian spaces that were tangent to the 
base space. 

The computational apparatus that seems to be the most suitable for our purposes was 
briefly presented by B. HOFFMANN and myself in the “Physical Review” (1930) at the 
conclusion of a previous work in the “Quarterly Journal of Mathematics” (Oxford Series, 
1930).  The correspondence with the formalism of the KALUZA-KLEIN theory is so 
complete that HOFFMANN and myself have regarded our theory to be the geometrical 
basis for the KALUZA-KLEIN theory.  We therefore emphatically stress that our theory 
arises from viewpoints that are completely different from the KALUZA one.  In 
particular, we claim no relationship between electrical charge and the fifth coordinate; 
our theory is thoroughly four-dimensional. 

Independently of our investigations, EINSTEIN and MAYER (Bibliography, 1931, 
3) have published a “unified field theory” that leads to essentially the same results as ours 
(cf. chap. VIII).  Furthermore, various papers of J. A. SCHOUTEN and D. van 
DANTZIG (Bibliography, 1931, 7; 1932, 3, 4, 8, 9; 1933, 1) have recently appeared, in 
which the projective theory of relativity was treated in a different form. 

It is noteworthy that – in a mathematical manner of speaking – all of these theories 
seem to converge to each other.  Therefore, one might hope that one will actually arrive 
at a definitive solution of the unification problem in the manner that is entered into here.  
We will discuss the limitations of this solution in chap. VII. 

 g

 ϕ

 γ

Fig. 3.



 

II.  Projective tensors. 
 

The generalized non-Euclidian geometry that was sketched out in chapter I is the 
theory of a set of tangent spaces, each of which contains a quadric surface.  The theory of 
a quadric surface finds its most satisfactory form in the spaces of ordinary projective 
geometry.  For this reason, it is natural to look for a representation of the generalized 
non-Euclidian geometry in the spaces of a generalized projective geometry.  In fact, such 
a generalized projective geometry is not hard to find now.  It is a branch of the 
differential geometrical investigations of the last decade.  The various ideas of this 
geometry are gradually increasing from the efforts of a great number of mathematicians.  
In particular, the investigations of H. WEYL, E. CARTAN, J. A. SCHOUTEN, L. P. 
EISENHART, and T. Y. THOMAS must be mentioned.  These ideas have been presented 
in very many different forms.  I would like to sketch them out in the form that I myself 
have adopted. 

 
Affine tensors. 

 
Now, for the sake of orientation, we make a few remarks about ordinary − or affine − 

tensors.  There is a large set of admissible coordinate systems on the base space, which 
all go over to each other by means of analytic transformations: 

 
(1)     x i =x i (x1, x2, x3, x4). 
 
On the other hand, in the tangent spaces there is only the relatively small set of 
coordinate systems that are connected with each other by linear transformations: 
 

(2)     dx i =
∂x i

∂x j dxj . 

 
Therefore, we call the tangent spaces “centrally affine” spaces.  Their geometry depends 
on the affine group, and there is a distinguished point – the contact point (0, 0, 0, 0) – 
whose coordinates are unchanged by the transformations (2). 

In this way, the theory of the base space may be reduced to the simultaneous affine 
geometry of this set of affine spaces.  Tensors define a suitable device for the treatment 
of this simultaneous affine geometry.  As a first example, we take a contravariant vector, 
i.e., a contravariant tensor of rank one.  That is a geometrical object that possesses four 
components: 

V1(x), …, V4(x), 
 
that are functions of x in any coordinate system.  A particular point (dx1, …, dx4) in each 
tangent space is determined by the equations: 
 

dxj  = Vi (x). 
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This relationship is independent of the choice of coordinates, since differentials transform 
precisely like contravariant vectors according to well-known tensor transformation laws.  
Therefore, one can associate each point of any tangent space with a contravariant vector. 

Likewise, one can associate each hyperplane through the origin in any tangent space 
with a covariant vector.  The points that satisfy an equation Ai dxi = 0 define a flat space 
of dimension three.  In general, the components of an nth rank covariant tensor are the 
coefficients of the equation: 

Aij…k dxi dxj … dxk = 0, 
 
and the points of any tangent space that satisfy this equation define an nth order cone.  
Above all, the theory of tensors is an affine-algebraic geometry of the tangent spaces with 
respect to their simultaneous behavior. 
 

Introduction of homogeneous coordinates. 
 

The question now lies close at hand of whether there are spaces of other kinds that 
can play the role of tangent spaces and whose totality can then be the subject of a new 
theory.  This question can be answered in the affirmative in various ways.  In our case, 
we extend the ordinary tangent spaces to projective spaces; another viewpoint will be 
discussed in chap. VIII. 

We know how we can geometrically proceed with this extension of the affine tangent 
spaces to the projective spaces.  Each bundle of parallel lines is associated with a 
figurative, or imaginary, point.  This imaginary point represents an “infinitely distant” 
point for each line of the bundle.  Three infinitely distant points are called collinear when 
and only when they are the infinitely distant points of three lines in the same plane.  Four 
infinitely distant points are called coplanar when they are the infinitely distant points of 
four lines in the same three-dimensional space.  However, it must be stressed that this 
introduction of infinitely distant points must take place in each tangent space. 

It is more convenient to use homogeneous coordinates for the analytical treatment of 
projective tangent spaces.  Instead of the four affine coordinates dx1, …, dx4, we would 
like to introduce five coordinates X0, X1, …, X4, such that (X0, X1, …, X4) and (hX0, hX1, 
…, hX4) define one and the same point, which implies that only the ratios of the X have 
any meaning.  A relation of the form: 

(3)     dxi =
X i

ϕα Xα  

 
shall exist between the affine and the projective coordinates, in such a way that the 
infinitely distant points of our space satisfy the equation 1: 
 
(4)     ϕα Xα = 0. 
 

                                                
 1 Greek symbols shall always take the values 0, 1, …, 4; Latin ones only take the values 1, …, 4. 
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We will return to the connection between this definition of the homogeneous coordinates 

and the one that is used in elementary textbooksdxi =
X i

X0

 
  

 
  

. 

 
The proportionality factor. 

 
The homogeneous coordinates are therefore still not completely determined by these 

formulas.  They lack a rule that would specify how the Xα and the ϕα behave under 
coordinate transformations.  In order to obtain a theory of transformations that is able to 
respond to this question, we start with the fact that our homogeneous coordinates are 
determined only up to a proportionality factor k.  It puts forth the fact that we can relate 
the choice of proportionality factor to the choice of infinitely distant plane. 

The proportionality factor is arbitrary for any point of a given tangent space, and also 
for any point of the base space; in particular, it varies from tangent space to tangent 
space.  Here, however, we are not seeking the most general theory that is possible, but 
only a generalization of the usual theory that is suitable for our purposes. 

In particular, nothing changes when we multiply all homogeneous coordinates by a 
function of position σ(x1, …, x4).  In order to treat the process of extension to an 
analytical function of position, we find it convenient to express the proportionality factor 
in the form: 

k =ex0

. 
 
The homogeneous coordinates are then extended by a function of position 1/ρ(x) through 
the substitution 1: 
(5)     x 0= x0 + log ρ(x). 
 

It is clear that geometrical or physical quantities that are described by a projective 
geometry must be invariant under (5).  As in the usual tensor analysis, we further demand 
that they also must be invariant under coordinate transformations: 

 
(6)     x i =x i (x). 
 
This raises the question of finding the simplest invariants under both classes of 
transformations. 
 

Projective scalars. 
 

In order to study these invariants, we begin with scalars.  An affine scalar has only 
one component in any coordinate system.  The components in two coordinate systems P 
→ x and P → x  are connected by the transformation law: 

 
(6′)     A (x ) = A(x). 

                                                
 1 Instead of this, one can use, e.g., ∫ vi dxi in place of log ρ, in which vi dxi refers to a not-necessarily-
integrable differentiable form. 
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For the definition of a projective scalar, we retain the transformation law: 
 

A = A. 
 
Furthermore, we assume that x0 enters into A as a parameter in the simplest way.  
Namely, A shall have the form: 

A =eNx0

f(x), 
 

in which N is a fixed number that obviously does not transform 1.  From (5), we have: 
 

A =A  =eNx 0 f (x)
(ρ(x))N . 

 
The number N shall be called the index of the scalar A.  It roughly plays the role of a 
weight.  However, we must reserve the word “weight” for another purpose since further 
invariants with a weight in the usual sense can arise. 

The part of A that is independent of x0 obeys the law: 
 

f =
f (x)

ρ(x)N , 

 
whereas A itself is subject to the simple law (6′).  By comparison to an affine scalar, 
which has only one component, a projective scalar is understood to have infinitely many 
components.  Any transformation of the parameter x0 produces a new component from a 
given one. 

However, if one does not transform the parameter x0 then the components of a 
projective scalar behave exactly like the components of an affine scalar.  To say that the 
parameter x0 is not transformed is to say that we keep our space in a particular state, so to 
speak.  If any scalar is given then each such state corresponds to a definite component of 
the scalar.  As we will soon see, that is also true for all of our projective tensors.  In 
particular, each state is associated with a definite coordinate system in each tangent 
space. 

 
Gauges. 

 
Due to the close connection between this notion and the one that was given the same 

name in WEYL’s theory, I would like to call it a gauge.  The parameter x0, which I 
previously regarded as simply a factor, following a suggestion of J.H.C. WHITEHEAD, I 
would now like to call a gauge variable.  We refer to a transformation of the form (5) as a 
gauge transformation. 

Any projective scalareNx0

f(x) may be put into the formeNx0

.  One need use only the 
gauge transformation: 

x 0= x0 + log(f(x))1/N. 

                                                
 1 A possible generalization might be to set, e.g., N = ϕ(x1, …, x4). 
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This gauge transformation is uniquely determined by the requirement that it take a given 
component of a projective scalar with an index that is different from zero to another 
given one.  This assignment is independent of the choice of coordinate system. 

By differentiating a component of a given projective scalar A with an index of N, we 
obtain five functions: 

∂A
∂x0 ,

∂A
∂x1 , …, 

∂A
∂x4 , 

 
of which the first one corresponds to the scalar itself, up to a factor N.  Under an arbitrary 
gauge transformation: 
(5)     x 0= x0 + log ρ(x) 
 
and an arbitrary coordinate transformation: 
 
(6)      x i =x i (x) 
 
these functions go to five functions: 

∂A 
∂x 0

,
∂A 
∂x 1

, …, 
∂A 
∂x 4

, 

which are given by the formulas: 

(7)      
∂A 
∂x α

=
∂A

∂xβ
∂xβ

∂xα   (α, β = 0, …, 4). 

 
We agree to call the pair consisting of a given gauge and a given coordinate system a 

representation.  In what follows, one can regard the pair of transformations (5) and (6) 
collectively as a transformation of the representation. 

 
Projective vectors. 

 
Equation (7) is a special case of the following one: 
 

(8)      ϕ α =ϕβ
∂xβ

∂x α
. 

 
A geometrical object that has, in any representation, five components of the form: 
 

ϕα =eNx0

fα (x1, …, x4) 
 
that obey the transformation law (8) is called a projective covariant vector of index N.  
Each system of five components is thus associated with a definite representation. 

Its null component ϕ0 is a projective scalar, since one has: 
 

ϕ 0  =ϕβ
∂xβ

∂x 0
 = ϕ0. 
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In particular, the matrix of the transformation law is: 
 

∂xα

∂x β
 =

  

1 −
∂ logρ

∂x1 ⋯ −
∂ logρ

∂x4

0

⋮
∂xi

∂x j
0

 

 

 
 
 
 
  

 

 

 
 
 
 
  

. 

 
A coordinate transformation: 

x → x  
induces the transformation: 

ϕ i =ϕ j

∂x j

∂x i
 

 
of any non-null component.  That is to say: The non-null components of a covariant 
projective vector behave like the components of an affine covariant vector under 
coordinate transformations.  A gauge transformation then induces the transformation: 
 

ϕ i =ϕ0

∂x0

∂x i
+ ϕi . 

 
In particular, when ϕα has index zero and obeys the invariant condition: 
 

ϕ0 = 1, 
then the gauge transformation looks like: 
 

ϕ i = ϕi − 
∂ logρ

∂x i
. 

 
We can then say:  The four non-null components are determined only up to a 

gradient
∂ logρ

∂x i
.  This property is already recognized for the electromagnetic potentials.  

In other words:  The four electromagnetic potentials are the non-null components of a 
projective vector whose null component is one. 

A contravariant vector is defined analogously to a covariant vector.  Now, we must 
assume the representation transformation law has the form: 

 

(9)      X α =Xβ ∂x α

∂x β  

 
instead of (8).  When we separate the null component from the other components this law 
looks like: 
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(10)     
X 0 = X0 + X j ∂x 0

∂x j

X i = X j ∂x i

∂x j .

 

 
  

 
 
 

 

 
In other words:  The non-null components behave exactly like the components of an 
affine vector.  By contrast, the null component behaves like a scalar under a coordinate 
transformation, but under a gauge transformation it takes on a linear combination of the 
other components. 

This difference in behavior between the null component and the other ones in the 
case of a covariant and contravariant vector implies that the projective tensor calculus is 
non-trivial.  Otherwise, one could think of these tensors as only arising from a mere 
concatentation of affine tensors.  In fact, one does find a decomposition into affine 
tensors, but it behaves differently for covariant and contravariant tensors. 

The co- and contravariant tensors of higher rank are now formally defined in exactly 
the same way as the corresponding affine tensors.  We will discuss some particular cases 
when the occasion to use them arises. 

 
 

Homogeneous coordinates in tangent spaces. 
 
We are now in a position to define the homogeneous coordinates in the tangent 

spaces precisely.  Suppose we are given a covariant vector ϕα of index 0 that is arbitrary, 
but determined once and for all, and has: 

ϕ = 1. 
 
In order to characterize the homogeneous coordinates of a given point dx of the tangent 
space, we choose an arbitrary number k and set: 
 

(11)     
X i = k dxi

X0 = k(1− ϕ idxi ).

 
 
 

 

 
To choose another number k means only that one multiplies the Xα by a proportionality 
factor. 

In order to invert these equations, we remark that one has: 
 

ϕα Xα = k, 
and therefore: 

dxi =
X i

ϕα Xα , 

 
which constitute the previously introduced equations (3). 

A coordinate transformation: 
x → x  
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of the base space induces the transformation: 
 

dx i =
∂x i

∂x j dx j , 

 
and that, in turn, induces the transformation: 
 

X → X , 
in which: 

     X i =K dx i =
K
k

X j ∂x i

∂x j  

     X 0= K(1 − ϕ idx i ) = K(1 – ϕi dxi ) =
K
k

X0 , 

 
because the ϕi behave like the components of an affine vector.  Therefore, the Xi 
transform like the components of a contravariant vector under coordinate 
transformations.  Therefore, the origin and the opposite side of the reference simplex 
remain invariant. 

A gauge transformation induces no transformation of the dxi other than the 
transformation: 

ϕ i  = ϕi −
∂ logρ

∂x i  

 
of ϕα .  Thus, we have the transformations: 
 

X i =
K
k

X i , 

X 0= K(1 − ϕ idx i ) = K(1 – ϕi dxi  +
∂ logρ

∂x i dxi ) =
K
k

X0 +
∂ logρ

∂xi X i 
 

 
 . 

 
Under a gauge transformation, the Xα behave like the components of a projective 
contravariant vector. 

As we previously suggested and have just now proved, a gauge represents not only a 
particular choice of components for each projective tensor, but also a particular choice of 
the side of the coordinate simplex that is opposite to the origin.  Each gauge therefore 
corresponds to a particular equation for the infinitely distant hyperplane.  Only in one 
particular case can we introduce the projective coordinates by the simple formula dxi 

=
X i

X0 , or, what amounts to the same thing, by way of dxi =
X i

NX0 .  When a projective 

scalar A exists for which we have: 

ϕα  =∂ logρ
∂xα , 
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then we can always have that A =eNx0

and ϕα  =Nδα
0  by a gauge transformation.  

Therefore, we have arrived at the announced conclusion of an elementary definition of 
projective coordinates. 

Since our homogeneous coordinates behave like components of a contravariant 
vector under coordinate transformations we can regard the equation: 

 
Xα = Aα, 

 
as the characterization of one and only one point in each tangent space.  Here, the index 
can be arbitrary, but different from zero; i.e., the functions Aα are of the form: 
 

Aα =eNx0

f α (x)  N ≠ 0. 
 

Exactly as in the affine case, we can now interpret the various projective tensors 
geometrically.  For example, let Aα be a projective covariant vector.  Then: 

 
Aα Xα = 0 

 
is the equation of a hyperplane.  It is possible to choose the gauge such that the equations 
of all of these hyperplanes reduce to the form X0 = 0 when and only when Aα is a 
projective gradient: 

Aα =
∂A

∂xα . 

 

We do indeed know that A can be brought into the form A =eNx0

by gauging. 
 
 

Projective tensors of rank two. 
 

As our next example, we take a projective covariant symmetric tensor of rank two 
and index 2N.  On this occasion, we can make the previously sketched figure upon which 
the projective theory of relativity rests somewhat more distinct. 

The tensor Gαβ obeys the transformation law: 
 

G αβ (x ) = Gστ 
∂xσ

∂x α
∂xτ

∂x β
. 

 
Due to the particular form of a transformation of representation: 
 

     x 0= x0 + log ρ(x) 
      x i  = x i (x), 

we have that: 
∂x α

∂x0 =δ0
α   and 

∂xα

∂x 0
=δ0

α . 

It follows that: 
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G 00= G00 
and: 

G 0α = G0τ 
∂xτ

∂x α
. 

 
Therefore, G00 is a projective scalar and G0α is a projective covariant vector. 

We write: 
(12)     G00 = Φ2 =e2Nx0

f(x) 
and: 

(13)      
Gαβ

G00

 = γαβ , 

as well as: 
G0α

G00

 = ϕα . 

 
The quantities γαβ  and ϕα represent a projective tensor and a projective vector, 
respectively, and both have index 0.  Φ is a scalar of index N.  We have the invariant 
conditions: 

ϕ = 1  and γ00 = 1. 
The equations: 

γαβ  − ϕαϕβ = gαβ  
 
determine a projective tensor that satisfies the invariant condition: 
 

g0α  = 0. 
 
As a result, we have the transformation law: 
 

g ij = gpq 
∂xp

∂x i
∂xq

∂x j
; 

 
i.e., the gij are the components of an affine tensor of rank two. 

The projective tensor Gαβ  includes – so to speak – a scalar Φ, a projective vector ϕα , 
and an affine tensor gij .  In fact, we have: 

 
(13)     Gαβ  = Φ2(gαβ + ϕαϕβ ) = Φ2γαβ . 

 
The tangent space that is associated with a point of the base space is indicated by the 

coordinates X0, X1, …, X4.  Our tensor Gαβ  determines a quadric surface in our tangent 
plane by the equation: 

Gαβ  X
αXβ = 0. 

 
The polar hyperplane of a point Aα of the tangent space relative to this quadric surface is: 
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AαXα = 0, 
in which: 

γαβ A
α = Aβ . 

 
Exactly as in ordinary relativity theory, we will raise or lower covariant or 

contravariant indices by means of the tensor γαβ and the associated tensor γ αβ .  The 
tensor 
γ αβ  is completely defined by the equation: 
 

γ αβ γ ασ  =δβ
σ . 

 
Raising or lowering an index corresponds to passing to the polar form relative to the 
quadric surface. 

The homogeneous coordinates of the origin are: 
 

Xα = ϕα =δ0
α . 

 
In this, we have made use of the relation: 
 

ϕβ γ βα  = ϕα =δ0
α . 

 
Thus, the polar hyperplane of the origin has the equation: 
 

G0α Xα = 0 
or: 

ϕα Xα = 0. 
 
The equation of the tangent cone with its vertex at the origin is: 
 

γαβ X
α Xβ − (ϕα Xα )2 = 0 

or: 
gij X

i Xj = 0. 
 
As is well known, the contact point of the tangent cone with the quadric surface lies on 
the polar hyperplane. 

The decomposition of our projective tensor into the affine tensor gij and the 
projective vector ϕα has the simple geometrical interpretation that the origin and the 
quadric surface in any tangent space determine the tangent cone through the origin and 
the polar hyperplane relative to the surface, respectively. 

As we have already remarked, it is a basic assumption of projective relative theory 
that the coefficients gij in the equation of the cone are gravitational potentials and the 
coefficients ϕα in the equation of the hyperplane are the electromagnetic potentials.  In 
fact, as we will see, the most natural field equation for the γαβ is a unification of the 
EINSTEIN gravitational equations and the MAXWELL field equations. 



 

III.  Applications to classical projective geometry. 
 

Projective coordinates. 
 

In order to present our viewpoint more clearly, we would like to apply it to a 
particular case, which is, in fact, the case of classical projective geometry.  A basic 
projective space is characterized by being given a set of distinguished homogeneous 
coordinate systems that are related to each other by equations of the form: 

 
(1)      Z α = pβ

α Zβ . 

 
We will refer to these homogeneous coordinate systems as projective.  An arbitrary 
allowable coordinate system x is related to an arbitrary projective coordinate system by 
equations of the form: 

(2)          Zα = ex0

f α(x1, …, x4). 
 
Here, x1, …, x4 are the coordinates of an arbitrary point and x0 is an arbitrary parameter.  
The functions on the right-hand side of these equations are obviously projective scalars, 
since the choice of another coordinate system simply means that we substitute: 
 

xi =x i(x ) 
 
in (2), and also that a substitution: 

x0 =x 0− log ( )xρ  
 
changes nothing in the meaning of (2). 

From these considerations, we conclude that classical projective geometry is 
characterized by a family of projective scalars: 

 
(3)      Z = pα Aα, 
 
in which the constants pα are arbitrary.  None of these scalars is distinguished from the 
other ones.  An arbitrary homogeneous projective coordinate system is determined by the 
choice of five arbitrary independent scalars of the family. 
 

Differential equations of projective geometry. 
 

For the purposes of differential geometry, it is useful to eliminate the constants pα , 
and thus to remove the apparent exceptional character of the five scalars A0, A1, …, A4 in 
the representation of an arbitrary scalar: 

Z = pα Aα, 
in the family (3). 

Due to the role of the proportionality factor, we now have: 
 



Application to classical projective geometry                                                21 

(4)      
∂Z
∂x0  = Z. 

 
This equation includes the statement that the proportionality factor isex0

.  It can just as 
well have the value: 

eNx0

, 
 
but for our problem a value of N that is non-zero means the same thing as N = 1. 

We differentiate (3) twice and obtain: 
 

(5)      
∂Z

∂xβ = pα 
∂Aα

∂xβ , 

(6)      
∂2Z

∂xβ∂xγ = pα 
∂2Aα

∂xβ∂xγ . 

We then defineaβ
α by the equations: 

aβ
γ ∂Aα

∂xγ  =δβ
α , 

and find from (5) that: 

pα =aα
β ∂Z

∂xβ . 

 
We then substitute these expressions for pα in (6) and obtain: 
 

∂2Z
∂xα ∂xβ = Παβ

σ ∂Z
∂xσ , 

in which: 

(7)      Παβ
σ  =aγ

σ ∂2Aγ

∂xα ∂xβ  . 

 
One easily sees that these functionsΠαβ

σ  are independent of the choice the five functions 

Aα.  Another choice of these functions must be given by a linear equation: 
 

A α = pβ
α Aβ ; 

 

under such a substitution of the variables Aα, the 
∂2Aα

∂xβ∂xγ , however, behave cogrediently, 

whereas theaγ
α  are contragredient.  Therefore, the Πβγ

α  remain unchanged. 

I would like to call the differential equations: 
 

(8)    
∂2Z

∂xα ∂x β  − Παβ
σ ∂Z

∂xσ  = 0,  
∂Z
∂x0  = Z, 
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the differential equations of projective geometry, since all of projective geometry can be 
considered to be a theory of these equations. 
 
 

Projective connections. 
 

Each coordinate system and each gauge is associated with a particular set of 53 
functions: 

Πβγ
α . 

Under a gauge and coordinate transformation: 
 

(9)      
x 0 = x0 + logρ(x),

x i = x i (x),

 
 
 

 

 
these functions transform like the components of an affine connection: 
 

(10)     Π βγ
α  = Πρτ

σ ∂xρ

∂x β
∂xτ

∂x γ
+

∂2xσ

∂x β ∂x γ
 
  

 
  

∂x α

∂xσ  

in a five-dimensional space. 
One can easily verify this by direct computation.  In these computations we employ 

only formula (7), but not the particular form of the transformation (9).  Obviously, we can 
always interpret our transformations of representation as coordinate transformations in a 
five-dimensional space.  The computation is precisely the same as for the corresponding 
introduction of an affine connection into any flat affine space.  (Bibliography 1932, 10, 
pp. 41-43.) 

We will call any invariant, or any geometric object, whose components are functions 
of the coordinates x1, …, x4, and behave like the components of a five-dimensional affine 
connection under a transformation of representation a projective connection.  The 
functionsΠβγ

α , which we defined by (7) above, are then the components of a particular 

projective connection.  The theory of a general projective connection is a generalization 
of the classical projective geometry. 

If we now transform only the coordinates then our transformation law (10) reduces 
to: 

(10a)     Π jk
i  = Π rt

s ∂xr

∂x j
∂x t

∂x k
+

∂2xs

∂x j∂x k
 
  

 
  

∂x i

∂xs , 

(10b)     Π jk
0  = Π rt

0 ∂x r

∂x j
∂xt

∂x k
. 

 
Under coordinate transformations, the Π jk

i  behave like the components of an affine 

connection and the Π jk
0  behave like the components of an affine tensor. 

 Other hand, if we change only the gauge then we obtain the transformation 
formulae: 
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(10c)  

Π jk
i = Π jk

i − Π jk
0 ∂ logρ

∂x j − Π j 0
i ∂ logρ

∂xk + Π00
i ∂ logρ

∂x j

∂ logρ
∂xk

Π jk
0 = Π jk

0 + Π jk
i ∂ logρ

∂xi + Π0k
i ∂ logρ

∂x i

∂ logρ
∂x j

− Π j 0
i ∂ logρ

∂x i

∂ logρ
∂xk + Π00

i ∂ logρ
∂xi

∂ logρ
∂x j

∂ logρ
∂xk − Π0k

0 ∂ logρ
∂x j

− Π j 0
0 ∂ logρ

∂xk
+ Π00

0 ∂ logρ
∂x j

∂ logρ
∂xk

−
∂2 logρ
∂x j∂xk

.

 

 

 
 
 
 

 

 
 
 
 

 

 
Under transformations of representation, theΠ0β

α andΠβ 0
α behave like the components 

of a projective tensor.  Thus: 
Π0β

α = Πβ 0
α =δβ

α  

 
is an invariant equation.  This equation is obviously satisfied for the particular projective 
connection (7).  In this particular case, the transformation formulae (10c) reduce to: 
 

(10d)   
Π jk

i = Π jk
i − δ j

i ∂ logρ
∂xk −δk

i ∂ logρ
∂x j

Π jk
0 = Π jk

0 −
∂ logρ

∂x j

∂ logρ
∂xk −

∂2 logρ
∂x j∂xk + Π jk

i ∂ logρ
∂xi .

 

 
  

 
 
 

 

 
 

Five-dimensional representation. 
 

At this point, we have made advantageous use of an interpretation that is essentially 
due to T.Y. THOMAS (Bibliography 1925, 8; 1926, 13).  Our entire theory finds a 
representation in a five-dimensional space with coordinates x0, …, x4, which are not the 
most general coordinates, but are subject to the transformations: 

 
      xi =x i(x ), 
      x0 =x 0− log ρ(x). 

 
We can therefore interpret our transformations of representation as the transformations of 
this five-dimensional space.  The lines x1, …, x4 = const., x0 = arbitrary, play a 
distinguished role, due to the particular form of the transformations of representation. 

One now obtains a precise picture of our four-dimensional projective geometry when 
one regards these x0-lines in the five-dimensional space as points in a four-dimensional 
space.  Just as a five-dimensional affine space defines a four-dimensional projective 
space in the elementary geometry of lines through a fixed point, so also does a four-
dimensional “projective” space arise from a five-dimensional “affine” space in the theory 
of a general projective connection.  The role of lines through the fixed point is played by 
the x0-lines here.  The common point of the x0-lines is transformed to infinity here 
(Bibliography 1931, 16; 1929, 2). 
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Projective derivative. 
 
With the help of a projective connection we can construct new projective tensors of 

higher rank from the components of an arbitrary projective tensor by means of the 
formulae of covariant differentiation.  For example, if Aα is an arbitrary projective vector 
then: 

∂Aα

∂xβ + Πσβ
α Aσ  

 
will be the components of a projective tensorAβ

α , which we refer to as the projective 

derivative of Aα.  That theAβ
α are actually the components of a tensor follows directly 

from the five-dimensional affine interpretation of the transformations of representation. 
The same theorems and formulas that were valid for the covariant derivative of a 

general tensor in the affine theory are likewise valid for projective differentiation.  In 
general, there are further theorems that are not found in the affine theory that depend on 
the special form of the gauge transformation.  We will, however, develop those theorems 
only when they are necessary. 

 
Integrability conditions. 

 
Ordinary projective geometry can be characterized as the theory of systems of 

differential equations (8).  These differential equations are therefore not the most general 
differential equations of the form (8).  Rather, they must satisfy a series of integrability 
conditions.  We write the differential equations in the form: 

 

(11a)      
∂Z0

∂xα  = Zα , 

(11b)      
∂Zα

∂x β  = Παβ
σ Zσ , 

 
in which Z0 now means Z.  As is well known, the integrability conditions for these 
equations are: 
(12)      Πβγ

α  = Πγβ
α , 

(13)    Rαβγ
λ  = 

∂Παβ
λ

∂xγ −
∂Παγ

λ

∂xβ + Παβ
σ Πσγ

λ − Πσβ
λ Παγ

σ = 0. 

 
The computation is exactly the same as for the corresponding problem in affine geometry 
(Bibliography 1927, 22; 1932, 10). 

Rαβγ
λ  is a projective tensor of rank four, namely, the curvature tensor of the 

connection Πβγ
α .  If it vanishes then we call the connection flat. 

From (11a) and (11b), one also obtains the invariant relation: 
 

(14)      Πβ 0
α  = δβ

α . 
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We now must prove that the integrability conditions for the case of projective 
geometry are in fact satisfied.  The functions Π have the form (7).  From this, one 
immediately infers the validity of (12).  One can likewise verify condition (13) by 
elementary computation on the basis of (7).  However, the consequences are exactly the 
same as in the affine theory, such that we immediately see that the integrability 
conditions are necessary. 

Conversely, we will now prove that our integrabilitiy conditions are also sufficient.  
With that, we will also prove that equations (8), together with conditions (12), (13), and 
(14), are characteristic of projective geometry. 

We must therefore show that the validity of the integrability conditions implies the 
existence of five independent functions A0, …, A4, from which the usual solutions are 
obtained by forming linear combinations with constant coefficients. 

Next, it is clear from the five-dimensional theory that because of (12) and (13),  
(11b) has precisely one solution vector A0, …, A4, that takes given values at a particular 
point.  We obtain five independent solution vectorsAβ

α  when we start at a definite point 

with five independent vectors as initial values. 
From the five-dimensional representation it further follows that because of the 

symmetry of the Π, the solution vectors are gradients of five affine scalars Aα in five 
dimensions.  However, we must now prove that these scalars take the form: 

 

(15)     Aα =ex0

f α (x1, …, x4). 
 

From (14), it follows that: 
∂Aα

∂x0 =Πβ 0
α Aσ = Aα , 

or: 
Aα =ex0

fα (x1, …, x4). 
 
If we write f instead of f0 then we have that: 
 

Z =ex0

f (x1, …, x4) 
 
is a solution of (8), whereas, due to (11a), the solution vectors of (11b) are the gradients 
of the function Z. 

We have thus proved that classical projective geometry is completely equivalent to 
the theory of differential equations (8) with the conditions (12), (13), and (14), at least for 
a given domain in the base space. 

 
Homogeneous projective coordinates as functions of the boundary conditions. 

 
We denote five independent solutions of the equations (8) by Zα and the 

corresponding solution vectors byZβ
α =

∂Zα

∂xβ .  At the point x = q we now choose(Zβ
α )q=δβ

α  

as initial value.  With that, we determine five independent solutions Zα =ex0

f α (x1, …, x4) 
that we regard as functions of the coordinates, as well as functions of the initial values: 
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Zα = Zα (x, q) . 
 
It now follows that Zα takes the form: 
 

(16)     Zα =ex0 −q0

f α (x1, …, x4, q1, …, q4) . 
 
In fact, (11) includes the equation: 
 

∂2 f α

∂x j∂xk =Π jk
i ∂f α

∂xi + Π jk
0 f α . 

 

As initial values, we can take f α (q) =δ0
α ,

∂f α

∂xi

 
  

 
  

q

=δi
α .  When regarded as functions of the 

coordinates, as well as the initial values, the f α then have the form f α = f α (x1, …, x4, q1, 
…, q4) .  Since any linear combination of solutions is again a solution, we can, in fact, put 
Z α into the form (16), and one confirms that theZβ

α take on the values(Zβ
α )q=δβ

α  at the 

point x = q.  Due to the uniqueness of the solutions of (11), it follows that Z α must 
necessarily have the form (16). 

If we subject the xi to the transformation: 
 

xi =x i(x ), 
then they behave like: 

qi =x i(q ) . 
 
In the transformed coordinate system we now seek a system of solutions with the initial 
valuesZβ

α (q )  =δβ
α . 

Since there can be only five independent solutions, it is clear that there must be 
relations of the form: 

Z α = pβ
α Zβ  

 

between the new and the old solutions, in which thepβ
α are constants andpβ

α  ≠ 0.   If we 

differentiate these equations then we obtain: 
 

∂Z α

∂x β
∂x β

∂xγ = pβ
α ∂Zβ

∂xγ  

 
identically at x.  For x = q, when we employ the initial values we obtain: 
 

∂x α

∂xγ
 
  

 
  

x= q

= pγ
α  

or: 
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Z α (x ,q )  =
∂q α

∂qγ Zγ(x, q) . 

 
Zα, when regarded as a function of q, is therefore a contravariant projective vector that 
has the index –1, on account of (16). 
 

Inhomogeneous projective coordinates. 
 

For the sake of our further development, we employ a special coordinate system to 
our advantage.  A coordinate transformation yi = yi (x) is determined by the equation: 

 

yi = 
Z i

Z0 . 

 
We call the resulting coordinate system yi an inhomogeneous projective coordinate 
system. 

From this coordinate system, we can go to yet another coordinate system; for 
example, by the formulas: 
(17)     Zi = (yi − qi )ey0 −q0

, Z0 =ey0 −q0

. 
 
From the Zα, we further obtain the most general form for our homogeneous coordinates 
when we simultaneously subject the y and the q to the same transformation of 
representation. 

We can compute the Π in this special coordinate system, and the same consequences 
that we demonstrated for the Aα at the start of this chapter are likewise valid for the Zα.  
One thus obtains: 
(18)     Πβγ

α =δβ
α δγ

0 + δγ
α δβ

0 − δ0
α δβ

0δγ
0  . 

 
This means that Π jk

α = 0 and Πβ 0
α =δβ

α .  By comparison, if one makes use of the fact that 

the Zα must satisfy equations of the form (8) in any case then from: 
 

∂2Zα

∂yi∂yk = 0, 
∂2Zα

∂yβ∂y0 =δβ
γ ∂Zα

∂yγ  

 
we again obtainΠ jk

α = 0 andΠβ 0
α =δβ

α . 

We further remark that under a gauge transformation: 
 

x 0= x0 + log ρ(x1, …, x4) 
 
the components (18) of the projective connection take on the form: 
 

(19)     Πβγ
α =δβ

α ϕγ +δ γ
αϕβ − ϕβϕγ δ0

α +
∂ϕβ

∂xγ δ0
α , 
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in which ϕi = −
∂ logρ

∂x i , ϕ0 = 1. 

We can characterize inhomogeneous coordinates as the only coordinates in which the 
Π have the form (19). 

Two inhomogeneous coordinate systems are related to each other by a piecewise-
linear transformation: 

(20)      z i = 
pj

i z j + p0
i

piz
i + p0

. 

 
This follows immediately from the fact that two homogeneous systems as connected with 
each other by a linear substitution. 

From our present viewpoint, we can say that any two coordinate systems in which 
the Π take on the form (19) are linked with each other by a substitution of the form (20).  
When we make the further demand that the form (18) of the Π shall remain invariant then 
we must couple each coordinate system with a certain gauge transformation, namely: 

 

ρ =ku
−1

5 , 
 
in which u is the functional determinant of our coordinate transformation and k is a 
constant.  With these remarks, the relationship between our present theory and the formal 
apparatuses that were presented in the earlier work of T. Y. THOMAS and others 
(Bibliography 1926, 13; 1928, 10); 1930, 5) becomes clearer. 
 
 

Homogeneous projective coordinates as functions of the 
boundary conditions (continued). 

 
We previously saw that the functions: 
 

Z α =ex0 −q0

f α (x1, …, x4, q1, …, q4) 
 
with Zβ

α =δβ
α  for x = q, mediate the transition between the arbitrary coordinate system x 

and the homogeneous coordinate system Z that is coupled to x by means of the boundary 
conditions.  Each point q and each parameter value q0 of the base space is associated with 
a definite coordinate system.  How do the Z behave as functions of q? 

The answer is as follows:  The Z are functions of q that satisfy the following 
differential equations: 

(21)      
∂Zα

∂qβ + Πσβ
α Zσ = 0. 

 
We know that the Z are the components of a contravariant vector of index –1.  We 

now consider the projective derivative: 
∂Zα

∂qβ + Πσβ
α Zσ  
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of this vector.  In our special coordinate system we can now easily calculate that the 
projective derivative of Zα vanishes.  Π has the values (18) in the homogeneous system, 
whereas the Z assume the form (17).  The Z indeed satisfy our boundary conditions 
precisely.  If we give P the value (18) then the components of a tensor of rank two: 
 

∂Zα

∂qβ + Πσβ
α Zσ  

reduce to the form: 
∂Zα

∂q0 + Zα ,  
∂Z i

∂q j +δ j
i Z0 , 

∂Z0

∂q j . 

 
Due to (17), however, all of these components must vanish.  With that, we have 
established the proposed equation (21). 

Since the left-hand side of the equation is independent of the representation we know 
in full generality that the homogeneous coordinates satisfy the equation (21).  Equation 
(21) then characterizes projective geometry just as equations (8) did. 

Its integrability conditions are: 
Rβγδ

α = 0. 

 
If these integrability conditions are not satisfied then we are dealing with generalization 
of classical projective geometry that we will consider in later chapters.



 

IV.  Projective translations. 
 

In the last chapter, we regarded the solutions Zα of the differential equations of 
projective geometry as functions of the boundary conditions.  We saw that the Zα are a 
projective vector of index –1 as functions of q when we demand that: 

 
(Zβ

α )x=q =δβ
α . 

 
Furthermore, we found that the Zα satisfied the differential equations: 
 

(1)      
∂Zα

∂qβ + Πσβ
α Zσ = 0. 

 
In all of this we have always assumed the validity of the integrability conditions. 
 

Translation along a curve. 
 

We now put forth a generalization that is somewhat analogous to the transition from 
Euclidian geometry to RIEMANNIAN geometry.  Namely, we no longer assume that the 
equations (1) are integrable; the tensors: 

Πβγ
α − Πγβ

α  

and: 
Rβγδ

α  

 are thus not necessarily equal to zero. 
By contrast, we now retain the condition: 
 

Πβ 0
α =Mδβ

α . 

 
Here, we have made a slight generalization by writingMδβ

α instead ofδβ
α .  

Correspondingly, x0 and q0 enter into Z by way of: 
 

eM (x0 − q0 ) . 
 

From a general technique for treating partial differential equations, we now choose 
an arbitrary curve: 
(2)           qi = xi (t) 
and set, with no loss of generality: 
(3)           q0 = x0(t). 
 
If we multiply (1) by dqβ/dt then we obtain the equations: 
 

(4)      
∂Zα

∂t
+ Πλβ

α Zλ dqβ

dt
= 0. 

Due to the condition: 
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Πβ 0
α =Mδβ

α  

we then have: 

(5)      
∂Zα

∂q0 + Πσ 0
α Zσ = 0, 

 

as long as Zα has the form e−Mq 0

f (t), and for that reason equations (4) mean the same 
thing as the equations: 

(6)      
∂Zα

∂t
+ Πλj

α dq j

dt
Zλ = 0. 

 
The five-dimensional affine theory then implies that (4) is invariant under 

transformations of representation, and from this, the invariance of the four-dimensional 
equations (6) follows as well.  These equations depend only upon the functions Π and the 
curve in the parameter representation (2), and not on (3). 

We now write equations (6) in the form: 
 

(7)      
∂Zα

∂t
+ Πλ

α (t)Zλ = 0 

in which: 

Πλ
α ( t) =Πλj

α dq j

dt
. 

 
From the well-known existence theorem for systems of linear differential equations, 

the solutions to our system have the form: 
 

(8)      Xα =Aβ pβ
α (t), 

 
in which the A are the given initial values at the point t = t0.  Thepβ

α must therefore reduce 

to the valuesδβ
α at the point t = t0. 

In this sense, we can say that the equations: 
 

dXα +Πλj
α Xλ dxj = 0 

 
represent an infinitesimal projective transformation.  Thus, when we connect two points a 
and b with a curve, equation (8) determines a projective transformation of the tangent 
space at a to the tangent space at b.  This map is completely determined by the givens of 
a, b, and the connecting curve.  In the flat case, i.e., when equations (12) and (13) of 
chap. III are satisfied, equations (1) are completely integrable, and map that is determined 
by two points and a connecting curve does not change when we deform the curve 
arbitrarily. 

In the integrable case, we can interpret the Aα and Xα as homogeneous coordinates of 
the base space, and indeed interpret the Aα as coordinates in the coordinate system about 
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the point qi = xi (t0) and the Xα as coordinates in the coordinate system about the point qi 
= xi (t).  Equation (8) then represents a transformation of the base space to itself. 

 
Generalized projective geometry. 

 
We formulate the facts once more in another form: a map of the tangent space at q is 

given by the equation: 
Zα(q) = Xα , 

 
and one can regard it as a covering of the base space by the tangent space.  Since the 
differential equations of projective geometry are completely integrable, all of the tangent 
spaces coincide with the base space, so to speak. 

Therefore, if the differential equations are not integrable then we have no projective 
coordinate system Z(q), and it then follows that we also have no such covering of the 
tangent space over the base space.  In this case, we have only translations along arbitrary 
curves.  The tangent spaces are related to each other by means of these translations, but 
this relationship is not as close as in the integrable case, in which we can regard it as a 
coincidence.  To borrow a notion from surface theory, we can say:  The tangent spaces 
fall apart when the differential equations (1) are not integrable. 

We now see how one can geometrically regard the theory of a non-integrable 
projective connection as a generalization of ordinary projective geometry.  Our general 
viewpoint is the following one: 

A geometry is a theory of geometric objects.   If one of these objects is a projective 
connection then we have generalized projective geometry.  If the projective connection 
satisfies the previously considered integrability conditions then one obtains a classical 
projective geometry, at least locally. 

If the relationΠβ 0
α =Mδβ

α is satisfied then a general projective geometry includes a 

theory of projective translations of the tangent spaces along an arbitrary curve, as we 
suggested above.  We would now like to pursue this a little further. 

One next sees that, just as one usually does in affine theory, the projective translation 
of a hyperplane Bα X

α = 0 is defined through the differential equations: 
 

(9)      
dBα

dt
− Παj

σ Bσ
dx j

dt
 = 0. 

 
Likewise, we can describe the projective translation of algebraic structures of higher 

order, i.e., projective tensors of higher rank.  In particular, we obtain the following 
equations for the projective translation of a quadric surface: 

 

(10)     
dGαβ

dt
− Παj

σ Gβσ
dx j

dt
− Πβj

σ Gασ
dx j

dt
= 0. 
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Translations in inhomogeneous coordinates. 
 

In order to describe translations precisely, we must employ the introduction of 
inhomogeneous coordinates that was given in chap. II, i.e., we must make use of the 
relation: 

(11)      
X i

ϕα Xα = dxi . 

 
The precise form of transformations of tangent spaces must depend upon the 

projective derivative of ϕ; we will now calculate this.  From (14), we obtain: 
 

(12)      Xi = ϕα Xα Vi, 
in which we have set Vi = dxi. 

We differentiate (12): 
 

∂X i

∂x j  = ϕα Xα ∂V i

∂x j + ϕα
∂Xα

∂x j V i +
∂ϕα

∂x j Xα V i . 

 
We now multiply this by dxj/dt.  By the use of (1), this yields: 
 

−Πλj
i Xλ dxi

dt
 =ϕα Xα dVi

dt
+ϕα Πλj

α dXα

dt
V i +

dϕα

dt
Xα V i , 

 
or, if we divide this by ϕα Xα : 

(13)     
dVi

dt
+ ϕα ; j

Xα

ϕσ Xσ V i dx j

dt
+ Πλj

i Xλ

ϕσ Xσ
dx j

dt
 = 0. 

With the help of (12) and: 
X0 = Xαϕα (1 – ϕi V

i ) 
we ultimately obtain: 
 

(14)   

dVi

dt
+ Πkj

i V k dx j

dt
+ (1−ϕ iV

j )Π0 j
i dx j

dt
+ ϕk; jV

kV i dx j

dt

+ϕ0; j (1− ϕ iV
j )

dx j

dt
V i = 0.

 

 
  

 
 
 

 

 
In this expression, ϕα;β means the projective derivative of ϕα .  With this, we have 

derived the inhomogeneous form of a projective translation. 
 

Paths. 
 
Let a curve be given by the parameter representation: 
 

xi = xi (t). 
Its “velocity vector:” 
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(15)              Vi = 
dxi

dt
 

 
determines a point in each tangent space to the points of the curve. 

We now ask whether curves exist for which these points go back to themselves under 
translation along a curve.  For this, we must replace Vi with dxi /dx in (14).  In the case 
where: 

Πβ 0
α =Mδβ

α  

we find that: 

d2x i

dt2 + Π jk
i dx j

dt
dxk

dt
+

dxi

dt
ϕk; j

dxk

dt
dx j

dt
+ M 1− ϕk

dxk

dt

 
  

 
  

2 

 
 
 

 

 
 
 
 = 0. 

 
Since the expression in the square brackets is independent of i, we can put this 

equation into the following form: 
 

(16)     

d2x i

dt2 + Π jk
i dx j

dt

dxk

dt
dxi

dt

 =

d2x l

dt2 + Π jk
l dx j

dt

dxk

dt
dxl

dt

 . 

 
It is noteworthy that these equations are completely independent of ϕ.  (16) is a well-
known expression for a system of paths.  By the phrase “a system of paths,” we 
understand that we are dealing with a system of curves that has the property that inside of 
a sufficiently small neighborhood one and only one curve of the system goes through any 
two given points.  Paths are a generalization of the geodetic lines of RIEMANNIAN 
geometry. 

As one easily verifies, the form of equations (16) does not depend upon the 
parameterization of the paths.  Likewise, one shows, on the basis of equations (10a) of 
chap. III, that equation (16) is also invariant under coordinate transformations.  Finally, it 
follows from (10c) that they are also invariant under gauge transformations. 

Namely, under a gauge transformation the expression: 
 

∂ logρ
∂xk

dxk

dt
−

∂ logρ
∂x j

dx j

dt
 

 
gets added to the left-hand side of (16).  Since this expression is, however, independent of 
i, it cancels out the corresponding expression on the right-hand side of (16), by which the 
invariance under gauge transformations is proved. 

With this, we have obtained the theorem that in the case where: 
 

Π0β
α = Πβ 0

α =Mδβ
α  

 
our connection gives rise to a uniquely determined system of paths.  In the case of 
classical projective geometry these paths are straight lines. 
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General projective connections. 
 

Up till now, we have considered only the particular case of a projective connection, 
for which we have: 

Πβ 0
α =Mδβ

α . 

 
We would now like to look for a translation that does not satisfy this condition. 

We cannot use the equation: 

(17)      
∂Xα

∂xβ + Πσβ
α Xσ = 0 

 
since in the case of β = 0 it will contradict the assumption that x0 enters into X in the 
forme−Mx0

.  However, we must retain this assumption since translation must depend only 
on the curve and its parametric representation: 
 

xi = xi (t), 
 
not on the particular choice of the parameter: 
 

x0 = x0 (t). 
 

In order to arrive at a suitable definition for a translation, we remark that the choice 
of the tensor 0 that appears in the right-hand side of (17) is likewise basically as arbitrary 
as the choice of any other tensor that is invariantly associated with Π. 

We now define a translation by the equations: 
 

(17)      Xα
; β = Xα

; 0Cβ , 
 
in which Cβ is a covariant vector that must satisfy the condition C0 = 1.  Equation (17) is 
satisfied identically for β = 0. 

Instead of equation(17), we now have a set of equations (17), which one obtains 
when one sets Cβ equal to all possible systems of four functions.  The totality of these 
equations is invariantly linked with the connection. 

We can now write equation (17) in the form: 
 

∂Xα

∂xσ + Λβσ
α Xβ = 0 , 

in which we have: 
(18)     Λβσ

α =Πβσ
α − Πβ 0

α Cσ + Mδ β
α Cσ , 

 
where M is an arbitrary index. 

TheΛβσ
α are the components of a projective connection that satisfies the conditions: 

 
Λβσ

α =Mδβ
α . 
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We thus obtain a set of projective translations for any projective connection. 
 

The associated projective connection for the tensor Gαβ . 
 

Two symmetric projective connections are associated with Gαβ , which are both 
characterized by the vanishing of the projective derivatives of Gαβ  and γαβ  .  These two 
connections, which we shall call Π and Γ, are therefore defined by the equations: 

 

(19)     Gαβ  | γ  =
∂Gαβ

∂xγ − GασΠβγ
σ − Gσβ Παγ

σ = 0 

and: 

(20)     γαβ  ; γ  =
∂γαβ

∂xγ − γασ Γβγ
σ − γσβΓαγ

σ = 0. 

 
We denote projective differentiation with respect to Π or Γ by a “ |” or a “;”, respectively.  
If one solves equation (20) in the usual way then one obtains the CHRISTOFFEL 
formulae: 

(21)     Γβγ
α = 1

2γαβ ∂γ βσ

∂xγ +
∂γσγ

∂xβ −
∂γ βγ

∂xσ
 
  

 
  

 . 

 
One obtains equations for Π in which one replaces Γ with Π and γ with G in (21). 

Obviously, the Π must be calculated from the Γ with the help of the scalar Φ.  By a 
simple application of the product rule for differentiation, one obtains: 

 

Πβγ
α =Γβγ

α + δβ
α ∂ logΦ

∂xγ + δγ
α ∂ logΦ

∂x β − γ βγ γ
ασ ∂ logΦ

∂xσ
 
 

 
  . 

If we set: 

Φα =
∂ logΦ

∂xα  

then we obtain: 

(22)    Πβγ
α =Γβγ

α + δβ
α Φ γ + δγ

α Φβ −γ βγγ
ασΦα( ) . 

 
The associated translation for Gαβ . 

 
The projective connection Γ satisfies the conditions: 
 

Γβ 0
α = γ ασ ϕαβ , 

 
as one can immediately read off from (21).  In this, we have set: 
 

ϕαβ = 1
2

∂ϕα

∂xβ −
∂ϕβ

∂xα
 
  

 
  

 . 
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The following important formula is valid for ϕαβ : 
 

ϕα; β =
∂ϕα

∂xβ −ϕσ Γαβ
σ  = ϕαβ . 

Namely, if we multiply (21) by: 
ϕσ  = γσ0 

then we obtain: 

ϕσ Γαβ
σ = 1

2δ0
τ ∂γ βτ

∂xα +
∂γατ

∂xβ −
∂γαβ

∂xτ
 
  

 
  

 = 1
2

∂ϕα

∂xβ +
∂ϕβ

∂xα
 
  

 
  

. 

 
From this, one immediately obtains the stated formula: 
 
(23)      ϕα; β = ϕαβ .  
 

In general, we now have: 
Γβ 0

α =ϕβ
α  ≠ δβ

α . 

 
We require formula (17) for this purpose, in order to arrive at a translation.  In this case, 
this suggests that we use, not the arbitrary vector C, but the vector ϕ that is invariantly 
related to the Gαβ .  Thus, the resulting translation is also invariantly related to Γ itself, 
whereas in the general case this is only true for the set of all translations collectively. 

We define translations in our case by way of: 
 

(24)      Xα
; β = Xα

; 0 ϕβ . 
For Λ, we then obtain: 
(25)     Λβσ

α =Γβσ
α + Mδβ

αϕσ − Γβ 0
α ϕσ , 

 
under the assumption that Xα is of index – M. 

Furthermore, Λ depends upon M.  For σ = 0, one has: 
 

Λβσ
α =Mδβ

α , 

 
such that one again has that for β = 0 the equation: 
 

(26)      
∂Xα

∂xβ + Λσβ
α Xσ = 0 , 

is satisfied identically. 
We will pursue the theory of the translations Λ in greater detail in chap. VI.



 

V.  Non-Euclidian geometry. 
 
In chapter III we applied our general theory to the special case of classical projective 

geometry.  We would now like to take the specialization one step further and consider a 
quadric surface in ordinary projective geometry. 

 
Equation of a quadric surface. 

 
We assume that that a system of functions Π is given in our base space, which has 

the coordinates x1, …, x4, such that the differential equations: 
 

(1)      
∂2Z

∂xβ∂xγ =Πβγ
σ ∂Z

∂xσ  

or: 

(2)      
Z

Z
q

α
α λ
λββ

∂ + Π
∂

= 0 , 

 
are soluble.  Here, q denotes the point at which the Zα possess the initial values: 
 

∂Zα

∂xβ =δβ
α . 

 
If we choose a coordinate system Z that is arbitrary, but fixed by q, then we obtain a 

quadric surface by way of the equation: 
 

(3)      Gαβ Z
α Zβ = 0, 

 
in which G is only determined up to a common factor.  Two arbitrary homogeneous 
coordinate systems go over to each other by a linear homogeneous substitution.  Due to 
(3), the G then transform like the coefficients of a quadratic form under a linear 
substitution. 
 

The Gαβ as functions of q. 
 

We now consider the Z to be functions of q.  Therefore, the ratios of the G must also 
depend upon q0, …, q4, whereas they are naturally constant in a particular projective 
coordinate system. 

The Zα are contravariant vectors of index −1 when regarded as functions of q.  
Therefore, it follows from the considerations above that the G transform according to the 
formula: 

(4)     G αβ (q ) = λ Gστ (q)
∂qσ

∂q α
∂qτ

∂q β
, 

 
in which λ can be an arbitrary function of the q. 
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In order to establish the independence of the G from q we differentiate (3) and 
replace the ∂Zα/∂qβ with the values in (2).  Equation (2) certainly shows how the Zα 
behave as functions of the origin q. 

Thus, we find that the system of equations: 
 

∂Gαβ

∂qγ − Gασ Πβγ
α − Gσβ Παγ

σ 
  

 
  
Zα Zβ = 0 , 

 
must be satisfied for all values of Zα that satisfy equation (3).  Therefore, the expression: 
 

∂Gαβ

∂qγ − GασΠβγ
α − GσβΠαγ

σ  

 
must be proportional to the Gαβ , in which the proportionality factor will naturally be 
different for the various γ, in general.  We thus obtain the system of equations: 
 

(5)    
∂Gαβ

∂qγ − GασΠβγ
α − GσβΠαγ

σ  = Gαβ Aγ . 

 
Equations (5) describe the change in G under a change in the origin q. 
 

Normalization of the Gαβ  . 
 

It is easy to show now that there is no loss in generality geometrically if we set: 
 

Aγ = 0. 
 
Namely, if we multiply (5) by Gαβ then since: 
 

Gαβ 
∂Gαβ

∂qγ  = 
∂ logG

∂qγ  

we obtain the equations: 

(6)      
∂ logG

∂qγ − 2Πσγ
σ  = 5Aγ , 

in which: 
G = | Gαβ | . 

 
Now, it follows immediately from chap. III (13) that Πσγ

σ satisfies the equation: 

 
∂Πσγ

σ

∂qδ −
∂Πσδ

σ

∂qγ = 0. 

We can therefore put Πσγ
σ  into the form: 
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Πσγ
σ =

∂ log f
∂qγ , 

 
in which we do not need to make any more specific statements about how f behaves 
under changes of representation.  f is a function of only q1, …, q4 since q0 does not enter 
into Π anywhere. 

On the basis of (6) we therefore obtain: 
 

(7)      Aγ =
1
5

∂ logA
∂qγ , 

in which: 

A =
G
f 2 . 

If we now make the replacement: 

Gαβ =Gαβ
* A

1
5  

in (5) then it follows that: 
 

∂Gαβ
*

∂qγ A
1
5 + Gαβ

* ∂A
1
5

∂qγ − A
1
5Gασ

* Πβγ
σ − A

1
5Gβσ

* Παγ
σ =A

1
5Gαβ

* Aγ , 

or: 

(8)     
∂Gαβ

*

∂qγ − Gασ
* Πβγ

σ − Gβσ
* Παγ

σ = 0 . 

 
Obviously, we can replace Gαβ withGαβ

*  in (3): 

 
(3*)      Gαβ

* Zα Zβ = 0 . 

 
It is self-evident thatGαβ

* also obeys the transformation law (4). 

Since theGαβ
*  are chosen in such a way that (8) is valid in every coordinate system it 

then follows that the quantity λ in (4) must be constant.  If we set q =q  in (4) then we 
find that λ has the value 1.  From now on, we omit the asterisks. 

We thus obtain the transformation law: 
 

(4′)     G αβ (q ) = Gστ   
∂qσ

∂q α
∂qτ

∂q β
 

for the Gαβ . 
 

Computation of the Gαβ from Φ. 
 

Equation (8) then yields the conditions: 
 

Πα 0
σ =δα

σ  
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As a result, we have, in particular, the invariant equations: 
 

(9)     
∂Gαβ

∂q0 = 2 Gαβ 

and: 

(10)     
∂G00

∂qγ = 2 G0γ 

and: 

(11)     
∂Gα 0

∂qγ − Gσ 0Παγ
σ = Gαγ  . 

 
From the first equation, it follows that Gαβ is of the form: 
 

Gαβ = e2q0

fαβ (q) . 
 

If we then take (4) into account then it follows that Gαβ is a second-rank projective tensor 
of index 2. 

The theory of a quadric surface is therefore included in the theory of a second-rank 
tensor that satisfies equations (8).  Π is therefore an integrable projective connection.  
The quantities Π are given by the existence of a projective space, in the usual sense, from 
the outset.  One can then ascertain the Gαβ by integrating equations (8). 

From equations (10) and (11), one sees that the entire theory of our tensor depends 
upon the scalar: 

G00 = Φ2. 
From equation (10), we have, in fact: 
 

(12)      
G0α

G00

= ϕα =
∂ logΦ

∂qγ  . 

 
Equation (11) means the same thing as: 
 

∂(Φ2ϕα )
∂qβ − Φ2ϕσΠαβ

σ = Φ2γαβ 

or: 
∂ϕα

∂qβ − ϕσ Παβ
σ  = γαβ − ϕα ϕβ  . 

Therefore, we have: 

gij = 
∂ϕ i

∂q j − ϕσΠ ij
σ + ϕ� ϕ�  , 

or, from (12): 

(13)     gij =

∂2Φ
∂qi∂q j −

∂Φ
∂qσ Πij

σ

Φ
 . 
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One thus obtains ϕα and gij from Φ with the help of equations (12) and (13), and 
thus, since: 

γαβ = gαβ + ϕα ϕβ   
and: 

Gαβ = Φ2 γαβ , 
one also obtains γαβ and Gαβ  . 

A homogeneous projective coordinate system Z is completely determined for a given 
choice of point of origin, coordinate system, and gauge.  In this coordinate system, the 
surface has the equation: 

Gαβ Z
α Zβ = 0, 

 
in which the coefficients Gαβ are the values of the solutions of (9), (10), and (11) at the 
point q. 
 

 
The equation of the surface in inhomogeneous projective coordinates. 

 
We now take an inhomogeneous projective coordinate system and a gauge such that 

Πβγ
α takes on the values: 

Πβγ
α =δβ

α δγ
0 + δγ

α δβ
0 − δ0

α δβ
0δγ

0 . 

 
It then follows from (8), (10), (11) that we have: 
 

∂Gij

∂qk  = 0 , 

∂G0i

∂q j  = Gij , 

∂G00

∂qi  = 2G0i . 

By integration, we then find that: 
(14a)      Gij =e2q0

aij , 
(14b)      G0j =e2q0

(aij q
j + aj 0 ) , 

(14c)      G00 =e2q0

(aij q
i qj + 2ai 0 q

j + a00 ) , 
 
in which the aαβ are constants. 

The equation of the quadric surface is: 
 

0 = Gαβ Z
α Zβ, 

 
or, by making use of (14) and chap. III (17): 
 
    0 =e2(x0 − q0 ) (Gij (x

i − qj )(xj − qj ) + 2Gi 0 (x
i − qj ) + G00 ) , 

or, finally: 



Noneuclidian geometry                                                 43 

    0 =e2x0

(aij x
i xj + 2ai 0 x

j + a00 ) . 
 
With this, we have established that the surface is associated with a quadric surface with 
constant coefficients in any inhomogeneous coordinate system. 
 

The distinguished gauge. 
 

As we saw in chap. II, a particular gauge is always determined by a choice of 
projective scalar.  In our case, we can assume that the scalar Φ has the form: 

 
(15)          Φ = ex0

. 
Namely, if Φ has the form: 

Φ =ex0

ρ(x) , 
 
then we need to apply only the gauge transformation: 
 

x 0= x0 + log ρ = log Φ . 
 
Due to (12) the vector ϕ then satisfies: 

ϕi = 0 . 
 
Since no further gauge transformations exist that leave the form (15) of Φ invariant, 

we no longer have a projective geometry, only an affine one.  Due to the existence of the 
tensor gij, this affine geometry is a metric one. 

Relative to our distinguished gauge, we have: 
 

(16a)      Gij =e2q0

gij 
and: 

(16b)      G0α =e2q0

δ0
α , 

 
and the equation of our quadric surface is then: 
 

(17)     e2q0

(gij Z
i Zj + Z0 Z0) = 0 . 

 
Furthermore, from (8) and (16), we have the following equation: 
 

∂gij

∂x k − gisΠ jk
s − gjsΠik

s  = 0 . 

 
If we solve these equations in the usual way then we obtain: 
 

(18)    Π jk
i =

i

jk

 
 
 

 
 
 

 = 
1
2

gis
∂gjs

∂xk +
∂gks

∂x j −
∂g jk

∂xs

 
  

 
  

 . 
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From (13), if we make use of (15), it follows that: 
 

(19)      Π jk
0 = − gjk . 

 
Due to (18) and (19), it is clear that Π jk

i  is an affine connection and Π jk
0  is an affine 

tensor; this is a simple application of formulas (10a) and (10b) in chap. III. 
 

CAYLEYIAN geometry. 
 

We are given a RIEMANNIAN metric in our base space by way of the tensor gij .  
Since this metric is invariantly related to our quadric surface, we surmise that the 
RIEMANNIAN metric is precisely the only non-Euclidian metric that our quadric surface 
possesses as an intrinsic structure. 

A non-Euclidian – or CAYLEYIAN – metric may be easily defined with the help of 
a “tangential” Euclidian one.  The general notion of a tangential metric that is due to E. 
CARTAN (Bibliography 1928, 1, chap. IV) is the following one:  Two metrics that 
possess the same gij at some point are called tangential at the point in question. 

A Euclidian metric exists at every point q of our space that makes the quadric surface 
precisely a ball of radius 1 and midpoint q.  The infinitely distant hyperplane of this 
Euclidian space is the polar hyperplane of q relative to the quadric surface.  The 
infinitesimal non-Euclidian distance at q shall now correspond with the infinitesimal 
distance of the Euclidian metric at q. 

We now seek the analytical expression for our Euclidian metric. 
In the non-homogenous coordinate system that is defined by: 
 

Z i

Z0  = zi 

the equation of our quadric surface is: 
(20)      gij (x) zi zj + 1 = 0 . 
 

Equation (20) is the equation of a ball of radius 1 and midpoint q relative to a 
Euclidian metric with the line element: 

 
(21)      ds2 = − gij (x) dzi dzj . 
 
Therefore, (21) is also the CAYLEYIAN metric at the point q that is given by the quadric 
surface. 

 In order to reconcile this definition with the one that CAYLEY himself gave, we 
calculate the CAYLEYIAN distance of the point Z from O.  The line through O and Z 
intersects the ball at A and B.  The double ratio of the four points O, Z, A, and B is: 

 

α =
OA
OB

:
ZA
ZB

 =
1+ −gij z

i z j

1− −gij z
i z j

 . 
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The CAYLEYIAN distance from O to Z is then m log α, in which m is constant.  From 
this, it follows by taking the limit that: 
 

ds = 2m −gij dzidzj . 

 
Up to a constant, the CAYLEYIAN distance then corresponds with: 
 

ds2 = − gij dzi dzj . 
 

Naturally, all of the formulas for the points on the absolute surface break down 
when: 

Φ = 0 . 
 
On this basis, WHITEHEAD (Bibliography 1931, 15), who has thoroughly investigated 
these matters, has proposed the name “missing (n–1)-space” for this surface.  Obviously, 
the transition from a projective geometry to an affine one arises from a choice of gauge 
when the missing (n-1)-space is not a quadric. This idea is developed further in the work 
of WHITEHEAD.  It is quite possible that one might find other interesting geometries in 
this direction. 



 

VI.  Generalized theory of conic sections. 
 

The metric part of geometry. 
 

The theory of a general second-rank projective tensor of index 2N may be considered 
to be a generalization of the non-Euclidian geometry that was discussed in the previous 
chapter.  A second-rank tensor gives rise to a metric geometry, namely, by way of the 
RIEMANNIAN geometry that is given by the affine tensor gij . gij is defined by the 
equation: 
(1)                Gαβ = Φ2(gαβ + ϕαϕβ ) . 
 
Our geometry is, however, not only a metric geometry; rather, it contains other elements 
that are not metric. 

We have a CAYLEY metric in this tangent space that is related to the quadratic 
form: 

Gαβ X
α Xβ. 

 
The well-known theorems and formulas of CAYLEY geometry are thus valid in a tangent 
space.  For instance, we have the following formula for the distance between two points 
of the tangent space: 

(2)     cos id =
Gαβ Xα Xβ

Gαβ Xα XβGστY
σYτ

 . 

 
The affine tensor gij is uniquely determined by the projective tensor Gαβ, and the gij 

then define a RIEMANNIAN metric with the line element: 
 

(3)      ds = −gij dxidx j . 

 
As is well known, a RIEMANNIAN metric defines a Euclidian metric in every tangent 
space.  Relative to the measure (3), the surface: 
 

Gαβ X
α Xβ = 0 

 
seems to be precisely a sphere of radius 1 in the tangent space, with its midpoint at the 
contact point.   As we saw in the last chapter, the infinitesimal CAYLEY distance agrees 
with the one given by (3) at the contact point. 

Obviously, the CAYLEY metric can be applied to the base space only in an 
infinitesimal neighborhood of the origin.  Therefore, the CAYLEY metric in the tangent 
space has precisely the same influence on, say, the formula: 

 
∫  ds 

 
for the arc-length as the as the tangent metric at the various points of the curve.  From an 
expression that was established by HOWE, because of (3), we can regard the Euclidian 
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metric as the metric on the tangent space to the CAYLEY tangent space at a given point 
when both tangent spaces have the same contact point with the base space. 

If we restrict ourselves then to the metric viewpoint then we find only a 
RIEMANNIAN space with the line element: 

 
(3)      ds2 = − gij dxi dxj . 
 

However, this line element does not account for the entire effect of the CAYLEY 
space on the base space since ϕ and Φ do not appear in (3).  The non-metric properties of 
Gαβ first appear when one considers the associated projective translations Γ and Π, as we 
began to do in chap. IV. 

In particular, we will find systems of curves that are invariantly related to these 
translations.  However, in order to describe these curves concisely, we must first develop 
our formal apparatus somewhat further. 

 
Invariants of gij . 

 
Any enumeration of the invariants of Gαβ must include the invariants of the affine 

tensor gij and the projective vector ϕα, in particular.  The tensor gij possesses a series of 
well-known invariants or associated geometric objects. 

Now, the determinant: 
g = | gij | 

 
is a relative scalar1 of weight 2.  Its transformation law is: 
 

g =g
∂x
∂x 

2

, 

 
in which|∂x / ∂x | is the functional determinant of the coordinate transformation x → x . 

Furthermore, we have to name the contravariant tensor gij , which is determined by 
the relation: 
(4)            gij g

ik =δ j
k . 

 
Furthermore, we obtain the components of an affine connection from the 

CHRISTOFFEL formula: 

(5)     
i

jk

 
 
 

 
 
 

 =
1
2

gia
∂gaj

∂x k +
∂gak

∂x j −
∂g jk

∂x a

 
  

 
  

 . 

 
We can covariantly differentiate affine tensors relative to this affine connection.  For 

example, the covariant derivative of a mixed tensorϕ j
i is: 

                                                
 1 Often, invariants that I am calling “relative scalars” are referred to as “scalar densities.”  I would 
therefore like to reserve this name for relative scalars of weight 1, such as g , since physical densities are 
always of weight 1. 
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ϕ j,k
i  = 

∂ϕ j
i

∂xk + ϕ j
s

i

sk

 
 
 

 
 
 

−ϕs
i

s

jk

 
 
 

 
 
 

 . 

 
We denote the affine covariant derivative by a comma (,).  From (5), it is well known that 
that the tensor gij satisfies: 

gij,k = 0 . 
 

One obtains the fundamental RIEMANNIAN curvature tensor: 
 

(6)    Rjkl
i  = 

∂
∂xl

i

jk

 
 
 

 
 
 

−
∂

∂xk

i

jl

 
 
 

 
 
 

−
i

rk

 
 
 

 
 
 

r

jl

 
 
 

 
 
 

+
i

rl

 
 
 

 
 
 

r

jk

 
 
 

 
 
 

 

 
from the CHRISTOFFEL symbols in the theory of the tensor gij in the usual way. 

One derives the RICCI tensor from the curvature tensor: 
 

(7)           Rij =Rikj
k  

 
by contraction, and, upon multiplying this by the RIEMANN tensor gij and contracting, 
one obtains the scalar curvature: 

R = gij R ij . 
 

One derive an infinite sequence of new invariants from these tensors by the process 
of covariant differentiation (cf., e.g., Bibliography 1927, 22). 

 
Affine invariants of ϕα . 

 
A further affine invariant is determined by the projective vector ϕα : 
 

(8)      
1
2

∂ϕ i

∂x j −
∂ϕ j

∂x i

 
  

 
  

= ϕij 

 
must be an affine tensor, since: 

∂ϕα

∂xβ −
∂ϕβ

∂xα , 

 
vanishes, as long as α or β assumes the value 0.  The important tensor ϕij plays a central 
role in electromagnetic theory. 

We agree that Latin indices shall be raised or lowered by means of gij and gij , 
whereas the same processes are carried out on Greek indices by means of γ αβ and γ αβ , as 
we already mentioned.  Therefore, one has, e.g.: 

 
(9)      ϕ j

i = gij ϕkj . 
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In order to define this situation uniquely we assume that when more than one lower 
indices are present it is always the first index that shall be raised.  This assumption 
determines the sign ofϕ j

i . 

Since ϕi and ϕi g
ij are not affine tensors, we cannot raise the Latin index of ϕi by 

means of gij.  Rather, as we agreed, one has: 
 

(10)      ϕα = γ αβϕβ =δ0
α . 

Thus, for just the ϕi, one has: 
ϕi = 0. 

 
 

Invariants of γαβ . 
 

We can derive a sequence of invariants from γαβ in a way that formally agrees with 
the route that we took with the gij .  We obtain its determinant as: 

 

(11)    g = |γαβ | =

1 ϕ1 ϕ2 ϕ3 ϕ4

ϕ1

ϕ2 (gij + ϕ iϕ j )

ϕ3

ϕ4

 = g . 

 
We have already given the defining equation for γ ασ : 
 
(12)      γ ασγσβ   =δβ

α . 

 
The tensor γ ασ has a very simple relationship to gij and ϕi .  Namely, from (12), one 

has: 
δ j

i = γ αiγαk  = γ αi (gαk + ϕα ϕk ) 

or, due to (10) and g0k = 0: 
δ j

i = γ ik gkj , 
or finally, due to (4): 
(13)      γ ij  = gij. 
 
Likewise, we can calculate γ 0i from gij and ϕj : 
 
(14)      γ 0i = −gij ϕj . 
 
Equation (14) follows immediately from: 
 

δ0
i = 0 = γ αiγα0 = gijϕj + γ 00, 

or: 
(15)      γ 00 = 1 + gijϕi ϕj  . 
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The connection Γ. 
 
We have already introduced the projective connection Γ by the formulae: 
 

(16)      γσβ ; γ   = 0 
and: 

(17)     Γβγ
α  =

1
2

γασ ∂γ βσ

∂xγ +
∂γσγ

∂xβ −
∂γ βγ

∂xσ
 
  

 
  

 . 

 
Let us write (17) a bit more explicitly: 
 

(18)  0

1 1
( )

2 2
i ii i

i ii

g g g

x x x x x
β γ βγ β γα α α α

βγ γ β β γγ β γ β

ϕ ϕ
γ δ γ ϕ ϕ ϕ ϕ

∂ ∂ ∂ ∂ ∂   
Γ = + − + + + +   ∂ ∂ ∂ ∂ ∂   

. 

 
This means that: 
(19)    Γ00

α  = 0 , 
(20)    Γβ 0

α  = γ iαϕiβ , 

(21)    Γ jk
i  = Γ jk

i{ }+ ϕ j
i ϕk + ϕk

i ϕ j , 

(22)    Γ jk
0  = −ϕ iΓ jk

i +
1
2

∂ϕ j

∂xk +
∂ϕk

∂x j

 
  

 
  

. 

 
Due to (14), equation (20) may be decomposed into: 
 

Γ j 0
i =ϕ j

i , Γ j 0
0 = −ϕiϕ j

i , 

 
Finally, we mention once more the formula that we proved in chap. IV: 
 

(23)      ϕα; β = ϕαβ . 
For β = 0, this means that: 

(23a)      ϕσ Γα 0
σ  = 0 . 

 
 

The curvature tensor for Γ . 
 

Just as in the affine theory, one can also define a curvature tensor: 
 

Bβγδ
α  

 
for the connection Γ.  By contraction, one obtains an analogue of the Ricci tensor from it: 



                                                 51 

(24)   

Bασβ
σ =

∂Γασ
σ

∂xβ −
∂Γαβ

σ

∂xσ + Γασ
ε Γεσ

σ − Γαβ
ε Γεσ

σ

= Rijδα
i δ β

j −ϕ i,s
s (δα

i ϕβ +δ β
i ϕα ) +ϕβ

sϕsα +ϕ t
sϕs

tϕα ϕβ

= Bαβ .

 

 

 
 

 

 
 

 

 
We can then derive a scalar from Bαβ that corresponds to the scalar curvature: 
 

(25)      B = γ αβ Bαβ = R −ϕt
sϕs

t. 
 
 

The projective translation Λ. 
 

A projective translation is associated with the connection Γ for any index by way of 
the differential equation: 

Xα
; β = Xα

; 0 ϕβ , 
 
as we showed in chap. IV, pp. 35, 36.  Along a curve: 
 

xi = xi (t) 
 
the tangent spaces are displaced according to the equation: 
 

dXα

dt
+ Λσj

α Xσ dx j

dt
= 0 . 

Thus, one has: 
(26)     Λστ

α =Γστ
α − Γσ 0

α ϕτ + Mδσ
α ϕτ . 

 
 

Invariance of the non-Euclidian distance. 
 

The translation Λ satisfies the equations: 
 

(27)     
∂γαβ

∂xγ − γασ Λβγ
σ − γ βσ Λαγ

σ = −2M γαβ ϕγ 

and: 

(28)      
∂ϕα

∂xγ − ϕσ Λβγ
σ = ϕαβ − 2M γαβ ϕγ , 

as one easily confirms. 
An application of (27) is the theorem that the non-Euclidian distance between two 

points Xα and Yβ in a tangent space is preserved under the translation Λ. 
The non-Euclidian distance between the points is determined by way of: 
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D =
(Gαβ Xα Yβ )2

(Gαβ Xα Xβ )(GαβY
αYβ )

=
(γαβ Xα Yβ )2

(γαβ Xα Xβ )(γαβYα Yβ )
 . 

 
Differentiating γαβ X

α Yβ with respect to xγ yields: 
 

∂
∂xγ  γαβ X

α Yβ =
∂γαβ

∂xγ − γασ Λβγ
σ −γ βσ Λαγ

σ 
  

 
  

Xα Yβ  . 

From (27), we then obtain: 
∂

∂xγ  γαβ X
α Yβ = − 2M γαβ X

α Yβ ϕγ , 

or: 
∂ logγαβ Xα Yβ

∂xγ  = − 2M ϕγ . 

 
Since the right-hand side of this equation is independent of X and Y, we actually 

obtain: 
∂ logD

∂xγ  = 0 . 

 
Therefore, under translation by Λ any figure in a tangent space goes to the same figure in 
another tangent space. 
 
 

Translation in inhomogeneous coordinates. 
 

In chap. IV, pp. 32, we derived the equation: 
 

(29)  

dVi

dt
+ Λkj

i V k dx j

dt
+ Λ0 j

i dx j

dt
(1− ϕ iV

j ) + ϕk; jV
kV i dx j

dt

+ϕ0; j (1− ϕkV
k )

dx j

dt
V i = 0.

 

 
  

 
 
 

 

 
In this equation, the Π of chap. IV (14) has been replaced with Λ, and the projective 
derivative of ϕα relative to Λ is denoted by ϕα;β .  An application of (26) then yields: 
 

(30)  

dVi

dt
+ Γkj

i Vk dx j

dt
− Γk0

i Vkϕ j

dx j

dt
+ MV kϕ j

dx j

dt
+ (1−ϕ iV

j )Γ0 j
i dx j

dt

+ϕk; jV
kV i dx j

dt
+ ϕ0; j (1−ϕkV

k)
dx j

dt
V i = 0.

 

 
  

 
 
 

 

 
If we replace ϕk;j and ϕ0;j in (30) with their values in (28) then we arrive at the 

equation for translation along a curve in inhomogeneous notation in the form: 
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(31)   
i j j j

k k i i
kj j

idV dx dx dx
V V V

kjdt dt dt dt
ϕ ϕ 

+ + + 
 

 = 0 . 

 
 

The world-lines of an electric particle. 
 

On the basis of (31), we can now define a system of curves that may be regarded as a 
generalization of the geodetic lines of a RIEMANNIAN space. 

A given curve in a definite parameter representation: 
 

xi = xi (t) 
 
distinguishes a point in the associated tangent space to each of its points through the 
equation: 

(32)      k
dxi

dt
= Vi . 

Here, k is an arbitrary constant. 
We now look at curves along which the point V is translated to itself according to 

(32).  For this to happen, we must substitute (32) into (31).  Due to the skew-symmetry of 
ϕij , (31) then becomes: 

(33)     
2

2

1i k j j
i
j

id x dx dx dx

kjdt dt dt k dt
ϕ 

+ + 
 

 = 0 . 

 
Equations (33) yield conditions for the parameter representation of the curve as well 

as for the curve itself. 
When: 

(34)      
1
k

 = 0 , 

 
the curves (33) are precisely the geodetic lines that are characteristic of the metric gij . 

When (34) is not satisfied then the differential equations are not homogeneous in t.  
If we fix k then through any point, a curve with a given velocity vector is completely 
determined.  Curves through the initial point with the initial direction are determined only 
for geodetic lines. 

If we replace 1/k with e/m in (33) then we obtain: 
 

(33a)     
2

2

i k j j
i
j

id x dx dx e dx

kjdt dt dt m dt
ϕ 

+ + 
 

 = 0 . 

 
In the context of general relativity theory, we must interpret these equations as the 

equations of motion of an electric particle.  e and m are the charge and mass of the 
particle, whereas the gij and the ϕi are the gravitational and electromagnetic potentials of 
the field in which the particle moves. 
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The connection Π. 
 
We would now like to consider the connection Π that we also defined in chap. IV.  

We have seen that Π may be computed from Γ and Φ.  Just as we expressed theΓβγ
α in 

terms of i

jk

 
 
 

 
 
 
, ϕk , ϕij , etc., by means of equations (19), (20), (21), and (22), likewise we 

would like to now express Λβγ
α  in terms of Γβγ

α , ϕ, and an undetermined quantity Θ. 

We set: 

Φα =
∂ logΦ

∂xα  

and: 
(35)      Θα = N ϕα – Φα . 
 
Since Φ0 = N, we have Θ0 = 0.  Θ4 is therefore an affine tensor.  We now replace Φα with 
the quantities Θi = gij Θj . 

Next, we have: 
Φσ = γ 0α Φα = N γ 0α + γ 0j Φj . 

 
From this, it follows, with the help of (13), (14), and (15) that: 
 
(36)   Φi = N γ  i 0 + γ ij Φj  = − gij (Nϕj – Φj ) = − Θi 
and: 

Φ0 = N γ  00 + γ  0j Φj  = N − gij ϕi Φj  + N gij ϕi ϕj  , 
or: 
(37)      Φ0 = N + ϕi Θi . 
 
ΦαΦα can be calculated from Θ in a particularly simple way: 
 

ΦαΦα = (N + ϕi Θi )N + Θi (Θi – Nϕi ) = N2 + Θi  Θi. 
 
For Πβγ

α we now obtain the following formulas by using (35), (36), (37), and (22) in 

chap. IV (pp. 35): 
(38a)    Π00

0 =Γ00
0 + N − ϕiΘ

i  
(38b)    Π00

i =Γ00
i + Θ i  

(38c)    Π j 0
0 =Γ j 0

0 + Θ j − ϕ iϕ jΘ
i  

(38d)    Π j 0
i =Γ j 0

i + Nδ j
i + Θiϕ j  

(38e)    Π jk
0 =Γ jk

0 − (gjk + ϕ jϕk )(N +ϕ iΘ
i ) 

(38f)    Π jk
i =Γ jk

i +δ j
i Φk + δk

i Φ j + Θ i (g jk + ϕ jϕk ) . 
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The covariant derivative of Φ relative to Γ. 
 

With the help of the quantities Θ that we just defined, we can also arrive at a 
sequence of simple formulas for the covariant derivatives of Φ relative to Γ.  We will not, 
however, carry out all of the elementary intermediate calculations in detail. 

For the covariant derivative of Φ, we obtain: 
 

Φα; β  = 
∂Φα

∂xβ − Γαβ
σ Φσ . 

In particular, due to (19), we have: 
Φ0; 0 = 0. 

 
From (20), (21), (36), and (37), we obtain: 
 

(39)    Φα
; α  = 

∂Φα

∂xα + Γσα
α Φα  = −

∂Θi

∂x i −
j

ji

 
 
 

 
 
 
Θ i , 

or: 

Φα
; α  = Φi

; i = −
1

g

∂(Θi g)

∂xi . 

 

In this, we have denoted the (affine) covariant derivative relative to i

jk

 
 
 

 
 
 
 by a comma (,). 

Ultimately, we find: 
(40)     Φi

; 0   = −ϕ j
i Θ j  

and: 
(41)    γ σj Φi

; σ = gia (N ϕ j
i − Φi

; a ) = − 1
2gia gjb (Θa,b + Θa,a ) . 

 
With this, we have reduced the covariant derivative of Φ relative to Γ to the covariant 

derivative of Θ relative to i

jk

 
 
 

 
 
 
, to a certain degree. 

 
The curvature tensor of Π. 

 
We now return to the connection Π and calculate the curvature tensorPβγδ

α that is 

constructed from it.  In order to expressPβγδ
α in terms of Γ and Φ in a convenient way, we 

define a new quantityTβγ
α by the formula: 

 
(42)      Πβγ

α − Γβγ
α =Tβγ

α . 

 
From chap. IV, T has the value: 
 
(43)     Tβγ

α = (δβ
α Φγ + δγ

α Φβ − γ βγΦ
α ) . 
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By the use of (42), we now obtain the following equation for Pβγδ
α : 

 
(44)     Pβγδ

α =Bβγδ
α + Tβγ ;δ

α − Tβδ ;γ
α + Tβγ

σ Tσγ
α − Tβδ

σ Tσγ
α  

or: 

(45)   

Pβγδ
α = Bβγδ

α + δγ
α (Φβ ;δ − Φβ Φδ + ΦσΦσγ βδ )

− δδ
α (Φβ ;γ − Φβ Φ γ + ΦσΦσγ βγ )

−γ βγ (Φα
;δ − Φα Φδ )

+ γ βδ (Φα
;γ − Φα Φγ ).

 

 
 
 

 
 
 

 

 
By contraction, we further obtain a tensor Pβδ and a scalar P that correspond to the 

quantities Bαβ and B in formulas (24) and (25): 
 

(46)    Pβδ = Bβδ + (n – 1)(Φβ; α – ΦβΦδ + Φσ Φσ   γ βδ  ) + γ βδ     Φσ
; σ  , 

and: 
(47)     P = B – 2nΘi

,i + n(n – 1)(N2 + Θi Θj ) . 
 
From (46), we finally obtain the affine invariants: 
 
 Pij = γ iα γ jβ Pαβ = Bij + (n – 1)[gij (N2 + Θp Θp

 ) – Θi Θj ], 
 P0

i  = γ jα Pα0 =B0
i  + (n – 1)[NΘi  −ϕ j

i Θj  ] 
 P00 = B00 + (n – 1) Θi Θi − Θi ,i . 
 

The translations associated with Π. 
 

A translation is associated with Π in a manner that is completely analogous to the 
invariant translation Λ that is associated with Γ, by means of the equation: 

 
(48)     X| j

α  =X|0
α ϕj , 

or: 

(49)    
∂Xα

∂x j + Πσj
α Xσ = (− MXα +Πσ0

α Xσ ) ϕj . 

 
Equations (48) correspond to equations (24) in chap. IV. 

If we now write: 
 
     Σβγ

α  = Πβγ
α − Πβ 0

α ϕγ + Mδβ
αϕγ  

   = Λβγ
α + δβ

α Φ γ +δγ
α Φβ − gβγ Φα − Nδ β

αϕγ −δ0
α Φβϕγ  , 

 
then we obtain the analogues of (27) and (28): 
 

(50)   
∂Gαβ

∂xγ − Gασ Σβγ
σ − GσβΣαγ

σ = 2(N – M) Gαβ ϕγ , 
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(51)   
∂ϕα

∂x β − ϕσ Σαβ
σ = ϕαβ − Mϕαϕβ +ϕα Θ β + Ngαβ

= ϕα ;β + ϕα Θβ + Ngαβ

 
 
 

  
 

 
and the analogue of (31): 
 

(52)   

dVi

dt
+ kj

i{}V k dx j

dt
+ϕkjV

k dx j

dt
V i +ϕ j

i dx j

dt

= (δ j
i Θ k − gkjΘ

i)Vk dx j

dt
− NgkjV

kV i dx j

dt
− Nδ j

i dx j

dt
.

 

 
  

 
 
 

 

 
We will make no use of the formulas for Π in the following chapters.   However, it is 

not unlikely that they might be of use in some later version of the theory (cf. chap. VII). 



 

VII.  Field equations. 
 
In the previous chapters, we have seen that a projective tensor of rank two includes 

the formal apparatus for a theory of gravitation and electromagnetism.  We regard the 
quantities gij as gravitational potentials, and the ϕα as electromagnetic potentials.  
Furthermore, we know that the motion of an electric particle can be described by the 
projective translations that depend upon theΓβγ

α . 

The projective scalar Φ played no role in any of these considerations.  We therefore 
set Φ = 1 in this chapter, so that we only need to deal with the theory of tensors with 
index 0. 

 
The field equations in projective form. 

 
We now seek a class of γαβ that is a limiting class, in a certain sense, and indeed one 

that will hopefully occur.  Just as in ordinary relativity theory, we look for differential 
equations here that are not as reduced as: 

Bβγδ
α  = 0 . 

 
The next level of complexity might be to use field equations of the form: 
 

Γαβ = Bαβ − 1
2  γαβ B = 0 . 

 
However, this would not work, since we would obtain fifteen, instead of fourteen, 

equations.  The Ansatz: 
(1)       Γαβ  − ϕαϕβ Γ = 0 , 
 
seems more promising, in which Γ is defined by the equation: 
 

Γ = γ αβ Γαβ  = − 3
2B . 

The affine expression for B is: 
B = R − ϕt

sϕs
t. 

 
Incidentally, the tensor Γαβ satisfies a series of equations that correspond to the 

conservation law in EINSTEIN’s theory: 

;
α
β αΓ = 0 . 

 
These theorems are obtained from the five-dimensional affine interpretation of our theory 
with no further assumptions. 

Equations (1) are the differential equations of a four-dimensional variational 
principle.  Namely, we demand that the integral: 

 

(2)      ∫ B g
1
2 dx1 dx2 dx3 dx4 , 
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should be stationary under variations of the γαβ with the extra condition that γ00 = 1, then 
one obtains the EULER-LAGRANGE equations (1) precisely.  We will explore this 
further at the end of this chapter. 

It is not out of the question that this property might give physical meaning to our 
equations.  They are also of interest due to the fact they make the consistency of our 
equations apparent. 

In the sequel, we will therefore assume that equations (1) are the differential 
equations of empty space; here, “empty” means that neither mass nor charge density is 
present.  Only in this case will the field equations be valid, along with the path equations 
of electric particles. 

 
Decomposition of the field equations. 

 
We would now like to decompose equations (1) into their affine parts.  The left-hand 

side of (1) represents a projective tensor Tαβ , such that we can write the field equations in 
the abbreviated form: 
(4)      Tαβ = 0 . 
 

By raising the indices with the help of γ αβ, we obtain two more systems of equations 
that are equivalent to (4): 
(5)      Tβ

α = 0 

and: 
(6)      Tαβ = 0 . 
 

Next, one can conclude from the form of the transformation of representation that Tij 
is an affine tensor.  Likewise, we know that T00 and T0

i  are affine invariants.  The 
following equations then follow from (4): 

 
Tij = 0,  T0

i= 0,  T00 = 0 . 
 

Or, more specifically: 
(7)     Rij –1

2gij R + 2Sij = 0 , 
(8)      ϕis

, s   = 0 , 
(9)      R = 0 . 

Thus: 
(10)     Sij =gstϕs

iϕ l
j + 1

4 gijϕ t
sϕs

t  
 
is the MAXWELL stress tensor, whereas: 
 

ϕis
, s  = Ji 

 
represents the electric current vector.  Equations (7), (8), (9) agree with the ones that are 
derived in relativity theory. 
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The limitations of the solution. 
 

We now have a purely formal solution to the unification problem.  Many physicists 
have hoped that some suitable solution to the unification problem might lead to 
knowledge of new physical phenomena; unfortunately, that is not the case here.  The 
solution that we just described leads to only the field equations of classical relativity and 
precisely the same equation of motion for an electric particle that one obtains from 
relativity theory and MAXWELL’s theory.  On the contrary, the theory contains no 
foreign elements. 

 
Geometrical restrictions of the theory. 

 
We now ask about the extent to which we have actually used the geometrical 

apparatus of our theory. 
By the decomposition into the theory of gravitation and electromagnetism, we have 

made use of the position of the contact point of the tangent space with the base space 
relative to the quadric surface. 

On the contrary, we have subjected ϕ to restricted assumptions.  First, through the 
introduction of inhomogeneous coordinates with the help of the formula: 

 

dxi =
Xi

ϕα Xα  

 
we demanded that the polar hyperplane to the origin agrees precisely with the hyperplane 
at infinity relative to the quadric surface.  This implies a restriction on the position of the 
quadric surface in the tangent space; this assumption has no influence on the field 
equations.  Physically, it first comes to light in the differential equations of electric 
particles. 

Furthermore, we used the vector ϕ instead of an arbitrary vector of index zero in the 
definition of the translation that Γ defines; this is likewise meaningful for the motion of 
electric particles.   Perhaps it might be possible to replace this assumption with other 
convenient assumptions.  The field equations therefore remain unchanged. 

 
Generalizations of the theory. 

 
Furthermore, we must emphasize that we have made no use of Φ.  Φ determines 

another projective vector of index 0, namely: 
 

∂ logΦ
∂xγ  = Φγ , 

 
which is amenable to a geometrical discussion. 

In order to have an apparatus that is capable of formulating far-reaching physical 
theories, it is necessary to introduce new geometrical ideas.  One can expect that one 
might be able to find physical applications that go beyond projective relativity theory for 
the extension of our geometrical apparatus that follows from the introduction of Φ. 
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TheΓβγ
α  no longer represent the generalization of the connection Π that is introduced 

in ordinary projective geometry.  Rather, instead of the Γ, we must consider the 
connection Π that is defined by the Gαβ in the same way that Γ is defined by the γαβ .  In 
this way, one might succeed in constructing the field equations, which are perhaps of the 
type: 
(11)      Γβγ

* = 0 . 

 
The Γβγ

*  are thus constructed from the Πβγ
α in the same way that the Γαβ are constructed 

from the Γβγ
α  (Bibliography 1930, 9).  One equation that is so obtained is identical with 

the SCHRÖDINGER equation in quantum theory.  For that reason, it seems possible that 
a unification of quantum theory with projective field theory might exist in this direction.  
Admittedly, it is disappointing that the consistency of equations (11) can no longer be 
proved in this case.  Furthermore, up till now no one has succeeded in deriving the 
equations from a four-dimensional variational principle.  Finally, the physical 
interpretation of the equations raises difficulties. 

It is not entirely miraculous that an equation of the SCHRÖDINGER form appears at 
this point.  It is merely due to the fact that one can transform a second-order differential 
equation of the general type in such a way that the theory of its invariants is precisely a 
projective theory (COTTON, WIENER, and STRUIK, Bibliography 1900, 1; 1927, 19, 
20). 

The generalized non-Euclidian geometry is only one of an entire sequence of 
geometries that are mathematically very interesting.  For example, it is possible to shape 
a generalized conformal geometry with tools that are completely similar to our projective 
tensors.  It is not impossible that these geometries might be amenable to physical 
applications in extensions of relativity theory.  Making a choice of one or the other such 
geometry will, however, require a new physical insight, and not merely the concatenation 
of two theories.  New physical facts can be obtained from the theory only by introducing 
new quantities. 

 
Derivation of the field equations from a variational principle. 

 
We will now show, as we previously suggested, that the field equations (1) are the 

EULER-LAGRANGE equations of the variational principle: 
 

∫ B g
1
2  dx1 dx2 dx3 dx4   is stationary. 

 
Thus, we must vary the γαβ under the subsidiary condition: 
 

γ00 = 1. 
 
For the calculation of the variation, we employ an elegant method that goes back to 
PALATINI (Bibliography 1919, 2). 

We have: 
(12)      B = Bαβγ αβ . 
We next show that one has: 
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(13)     ∫ γ αβ g
1
2  δB dx1 dx2 dx3 dx4 = 0 . 

The functions: 
δΓβγ

α  

 
are the components of a projective tensor, since they are the differences of the 
components of two projective connections.  We now take the covariant derivative of this 
tensor: 

(δΓβγ
α );δ =

∂(δΓβγ
α )

∂xδ − (δΓβε
α )Γγδ

ε − (δΓεγ
α )Γβδ

ε + (δΓβγ
ε )Γεδ

α  . 

 
From this, it follows that: 

(δΓβγ
α );δ − (δΓβδ

α );γ =δBβγδ
α , 

or, by contracting α and γ: 
(δΓβα

α );δ − (δΓβδ
α );α = δBβδ . 

 
If we multiply this by γ βδ then we obtain: 
 

γ βδ δBβδ = {γ βδ (δΓβα
α ) − γ βα (δΓβα

δ )} ; δ . 

 
By using the fact that γ = g we then have: 
 

  ∫ γ αβ g
1
2  δB dx1 dx2 dx3 dx4 

  = ∫ 
∂

∂xδ γ βδ (δΓβα
α )g

1
2 −γ βα (δΓβα

δ )g
1
2[ ]  dx1 dx2 dx3 dx4 . 

 
We can omit the term with δ = 0, since the expression in the square brackets does not 
depend upon x0.  From the generalized GREEN theorem, it now follows that: 
 

∫ 
∂

∂xi γ βi (δΓβα
α )g

1
2 −γ βα (δΓβα

i )g
1
2[ ]  dx1 dx2 dx3 dx4 = 0 . 

 
The expressions δΓβγ

α indeed vanish on the boundary of the integration domain. The 

validity of (13) is thus proved. 
The extremum condition then yields the equation: 
 

δ ∫ B g
1
2  dx1 dx2 dx3 dx4 = ∫ B αβ δ(γ αβ g

1
2 ) dx1 dx2 dx3 dx4 = 0 . 

 
Due to the fact that δγ = − γ γαβ δγ αβ, it then follows that: 
 

∫ (B αβ g
1
2 δγ αβ   – B στ γ στ ( 1

2 g
1
2 )γ γαβ δγ αβ  ) dx1 dx2 dx3 dx4 = 0 , 

or: 
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(14)  
(Bαβ − 1

2 Bγαβ )g
1
2δγαβdx1dx2dx3dx4∫

= Γαβ g
1
2δγ αβ dx1dx2dx3dx4 = − Γαβ g

1
2δγαβdx1dx2dx3dx4 = 0.∫∫

 
 
 

  
 

 
Due to the fact that γ00 = 1, we have δγ00 = 0.  The remaining δγαβ are thus arbitrary.  
From this, we can derive that: 

Γαβ =δ0
α δ0

β K, 
 
in which K is a function of x1, x2, x3, x4.  If we multiply this by γαβ then we have: 
 

Γ = K . 
 
We thus obtain the necessary condition for an extremum: 
 

Γαβ −δ0
α δ0

β Γ = 0 . 
 
By lowering the indices, we thus obtain the desired equation (1), in fact. 

We can also derive equation (1) by demanding that: 
 

∫ B g
1
2  dx1 dx2 dx3 dx4    

 
be stationary, except that now the functions Gαβ are what we vary. 

Since B g
1
2 depends only upon γαβ and Φ, we now have: 

 

(15)   δ ∫ B g
1
2  dx1 dx2 dx3 dx4 = ∫ Γαβ g

1
2  δγ  αβ

  dx1 dx2 dx3 dx4 = 0 . 
 
However, we have: 

γ  αβ
  = Φ2 Gαβ = G00G

αβ, 
and: 
          δG00  = δ(G0α G0β G

αβ  ) 
     = G0α G0β δGαβ   + 2 G0α G

 αβ  δG0β   
     = G0α G0β δGαβ   − 2 G0α G0β 

 δGαβ  
   

     = − G0α G0β 
 δGαβ  

  . 
 
We thus obtain the following for the variation of γ  αβ

 : 
 

δγ  αβ
  = GαβδG00 + G00δGαβ = G00δGαβ − G0σ G0τ δGστ  Gαβ . 

 
From (15), it then follows that: 
 

∫ (Γαβ  G00 −  G0α G0β Γg
1
2  δΓαβ

  dx1 dx2 dx3 dx4 = 0, 
or, since Φ ≠ 0: 

Γαβ   −  ϕα ϕβ Γ = 0 . 



 

VIII.  Five-dimensional associated spaces. 
 

Homogeneous coordinates in the tangent spaces. 
 

In chap. II, we established the connection between homogeneous projective 
coordinates and inhomogeneous coordinates in the tangent space by way of the formula: 

 

(1)      dxi =
X i

ϕα Xα . 

 
Furthermore, we saw that an arbitrary projective vector Xα determines a point dxi of the 
tangent space by way of (1).  We can also represent the relationship between projective 
vectors and tangent spaces in another form. 
 

Associated spaces. 
 

Suppose one is given a point x, a choice of representation, and five arbitrary numbers 
X0, X1, …, X4.  We now collect the totality of all contravariant projective vectors of a 
given index whose components can be assumed to have the values X0, X1, …, X4 in the 
given representation into a single geometrical object 1.  The vectors of a given geometric 
object can take on completely arbitrary forms at points different from x even though they 
all assume the values X0, X1, …, X4 at x. 

We will call the totality of these objects for a given point and a given index a space, 
and indeed, we will call it the associated space of index N at x. 

This space is understood by way of coordinate systems, and indeed X0, X1, …, X4 are 
coordinates of the point that is defined with the help of these five numbers.  These 
coordinate systems on the associated space are associated with a particular representation 
of the base space.  Thus, every point of base space is associated with an associated space 
of index N, and every representation of the base space is associated with a certain 
coordinate system in each associated space. 

It follows with no further assumptions from the basic properties of a projective 
vector that the definition of the associated space is independent of the coordinates.  Thus, 
we can actually regard the associated spaces as geometric objects. 

Each transformation of representation of the base space defines a transformation of 
the coordinates Xα in the associated space: 

 

(2)     
X 0 = X0 + vi

0X i

X i = v j
i X j .

 
 
 

  
 

 
The larger set of transformations of representations is thus connected with the 

smaller set of linear transformations of Xα. 

                                                
 1 At the point x, the components of a vector are functions of x0 of the form eNx0

.  Two different vectors at 
the point x that are associated with the same geometric object can thus assume the same values X0, X1, …, 
X4 when we choose two suitable x0-values; however, this remark is valid only when N≠0. 
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For N ≠ 0, the associated spaces are projective spaces since all vectors that can 
assume the values X0, X1, …, X4 at a point x will be multiplied by a factor k under a 
change of x0.  The point: 

Xα = δ0
α  

 
plays a special role in any associated space since its coordinates remain unchanged under 
all transformations (2). 
 

Correspondence between projective associated spaces and tangent spaces. 
 

First, we observe that our associated spaces have nothing to do with the tangent 
spaces.  However, we can relate them to the tangent spaces by way of (1): 

 
(3)      X → dx . 
 
Thus, the point (1, 0, 0, 0, 0) of the projective space corresponds to the origin of the 
tangent space.  If we then assume that the ϕα are the components of the polar hyperplane 
relative to the previously considered quadric surface then, from (1), this hyperplane is 
precisely the hyperplane at infinity. 

Thus, we have reached the conclusion of our previous development.  Our position is 
now essentially that of chap. II, in which we regarded the Xα as the homogeneous 
coordinates in the tangent spaces. 

The associated projective spaces serve as aids for the introduction of the 
homogeneous coordinates.  If we do not assume the existence of the map (1), or (3), 
resp., then we obtain only one theory of associated spaces.  Furthermore, the form of our 
field equations does not depend upon the validity of (1).  However, we next obtain a 
relationship between the associated spaces and special curves, surfaces, etc., in the base 
space by way of the map (3) or other suitable assumptions.  Thus, e.g., a correspondence 
between a curve: 

xi = xi (t) 
 
and the tangent spaces that are associated with its points will be defined by the equation: 
 

dxi =
dxi

dt
dt. 

 
However, one possibly requires the map (1) in order to define a relationship between the 
dxi and the Xα, and thus, a relationship between the points of the curve and the associated 
spaces.  Furthermore, we have made use of (1) in the derivation of the differential 
equations of massive electric particles. 
 

Five-dimensional associated spaces. 
 

Our definition of an associated space is also valid in the case of N = 0.  However, the 
associated spaces are no longer four-dimensional since the components of a vector of 
index 0 are independent of x0, and because their absolute values are also thus determined. 
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From our definition, the associated spaces of index 0 are thus five-dimensional affine 
spaces.  A coordinate transformation of the form (2) for the five-dimensional associated 
affine space is defined by the transformation of representation of the four-dimensional 
base space: 

(4)     
x 0 = x0 + logρ
x i = x i( t).

 
 
 

 

Thus, we have: 

(5)     
vi

0 =
∂ logρ

∂xi

v j
i =

∂x i

∂xi .

 

 
  

 
 
 

 

 
From the form of the transformation (2) it follows that the line: 
 

(6)     Xi  = 0,  X0 arbitrary, 
 
has the same equation in any of these associated spaces.  We call this line the 
distinguished line. 
 

First map of the five-dimensional associated space onto the tangent space. 
 

We can also use equation (1) to map the five-dimensional associated space at the 
spacetime point x onto the tangent space that is belongs with x.  This map: 

 
X → dx 

 
is obviously not uniquely invertible.  Namely, if a point X of the five-dimensional space 
goes to a certain point dx of the tangent space then all points (kX0, kX1, …, kX4) with k 
arbitrary will also go to the same point dx.  (1) thus represents a map of the points of the 
tangent spaces onto the lines through the origin (0, 0, 0, 0, 0) of the associated space.  
Thus, the origin of a tangent space corresponds to the distinguished line of the five-
dimensional space. 

The difference between these considerations and the previous ones is admittedly not 
very significant.  Indeed, it is known that the lines through a fixed point of a five-
dimensional affine space define a four-dimensional projective space. 

A projective contravariant vector Aα (x) of index 0 singles out a certain point: 
 

Xα = Aα (x) 
 
in any five-dimensional associated space.  By contrast, a projective contravariant vector 
Bα (x) with a non-zero index determines a line through the origin in any five-dimensional 
associated space.  The equations of these lines are: 
 
(7)              Xα = kAα  . 

 



Five-dimensional associated spaces                                                          67 

in which k is arbitrary.  Furthermore, a line through the origin of each five-dimensional 
associated space is defined by an affine contravariant vector Vi (x).  Its points satisfy the 
equations: 

(8)           
X i

ϕα Xα = Vi . 

 
One can realize the connection between the lines through a fixed point of a five-

dimensional affine space and the points of a four-dimensional affine space more 
intuitively by intersecting the lines with hyperplanes that do not pass through the fixed 
point.  The hyperplane: 

ϕα Xα = p 
 
is particularly suitable for this purpose.  If we assume that a certain point X that is 
determined by (8) shall lie in this hyperplane for a given V then equations (8) (equations 
(1), resp.) give us a one-to-one map between the points of the hyperplane and the points 
of the tangent spaces.  Homogeneous coordinates are defined by (7) in this hyperplane. 

For various p we obtain an entire band of hyperplanes.  Our map thus breaks down 
for p = 0. 

 
Differentials as coordinates of the five-dimensional space. 

 
The differentials of the coordinates x1, …, x4 and the differential of the gauge 

variable x0 transform precisely like the components of a contravariant vector: 
 

(9)     
dx 0 = dx0 +

∂ logρ
∂x j dxi,

dx i =
∂x i

∂x j dxi .

 

 
  

 
 
 

 

 
One can thus consider the differentials dxα to be the intrinsic coordinates of the five-
dimensional associated spaces.  The equation: 
 

dxα = Aα (x) , 
 
in which Aα is a projective vector of index 0, determines a point in each five-dimensional 
associated space. 

One might reach the conclusion that the hyperplane dx0 = 0 can simply be regarded 
as the tangent space with the coordinates dx1, …, dx4.  That is, however, impossible, since 
dx0 = 0 is not an invariant condition.  One cannot extend the tangent spaces to the five-
dimensional associated spaces in this way.  In fact, there is a one-to-one map between the 
points of the tangent spaces and the lines of the associated spaces that are parallel to the 
distinguished line; one sees this immediately from (9).  One can also regard this 
relationship as a sort of map from the points of the five-dimensional associated spaces to 
the points of the tangent space.  We represent this map by the equations: 
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(10)      dxi = δα
i ∂xα, 

 
in which we now denote the five-dimensional coordinates by ∂xα and the four-
dimensional ones by dxi .  In the sequel, dx1, …, dx4 will always mean coordinates in the 
tangent spaces and ∂x0, …, ∂x4 will always mean coordinates in the five-dimensional 
associated spaces. 

 
 

Euclidian metric of a five-dimensional associated space. 
 

In the five-dimensional associated spaces, one can interpret: 
 

γαβ ∂x
α ∂xβ 

 
as the square of a Euclidian distance.  In each of these spaces: 
 

γαβ ∂x
αδ0

β = ϕα ∂xα  
 
is the orthogonal projection of the vector ∂xα onto the distinguished line since: 
 

δ0
β = ϕβ 

is the unit vector of the distinguished line. 
The formula: 

(11)     γαβ ∂x
α ∂xβ = gij ∂x

i ∂xj + (ϕα ∂xα )2 
 
represents the square of the length of the vector ∂xα as the quadratic sum of the 
components that are orthogonal and parallel to the distinguished line. 

The hyperplane: 
(12)      ϕα ∂xα  = p 
 
is orthogonal to the distinguished line.  Thus, from (11): 
 

gij ∂x
i ∂xj 

 
is the Euclidian distance in such a hyperplane. 

The map (8) of the five-dimensional space onto the tangent space thus represents a 
sort of orthogonal projection of the Euclidian space with the metric γαβ onto the Euclidian 
space with the metric gij . 

 
Translations of the five-dimensional associated spaces. 

 
The projective connection Γ was defined (pp. 48)  by the equation: 
 

(13)      γαβ; γ  = 0, 
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and the associated translations were defined by the equations: 
 

Xα
; β = Xα

; 0 ϕβ . 
 
We have also described these equations (pp. 50) in the form: 
 

(14)      
∂Xα

∂xγ + Xσ Λσγ
α = 0 , 

in which Λ takes on the value: 
(15)      Λβγ

α = Γβγ
α − 0

α
β γϕΓ  

 
in the case that is of interest to us here, namely M = 0. 

On the basis of the formula that we derived in chap. IV (pp. 49): 
 

0
α
βΓ  = γ iα 

 ϕ iβ , 

 
one recognizes that an equation of the form (13) is also valid for Λ.  Namely, we have: 
 

(16)      
∂γαβ

∂xγ − γσβ Λαγ
σ − γασ Λβγ

σ  = 0 . 

This means that the length: 
γσβ   X

α  Xβ 
 
of a vector X and also the angle between two vectors in the five-dimensional space 
remain unchanged under translation. 

The distinguished line does not go to itself under this translation.  In particular, we 
find that the projective derivative of ϕα relative to Λ is: 

 

(17)      
∂ϕα

∂x j + ϕσ Λσj
α = Γ0 j

α = γ  iα ϕij . 

 
Since the process of projective differentiation with Λ is interchangeable with raising and 
lowering of indices, (17) yields: 

(17a)      
∂ϕα

∂x j − ϕσ Λαj
σ  = ϕαβ . 

 
We now calculate the covariant derivative of the parameter: 
 

p = ϕα Xα 
 
of the previously considered hyperplane.  It is: 
 

∂ϕα Xα

∂x j  =
∂ϕα

∂x j − ϕσ Λαj
σ 

 
 
 X

α + ϕα
∂Xα

∂x j + Xσ Λσj
α 

  
 
  

 . 
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On the basis of (17a) and (14) we thus obtain: 
 

(18)      
d(ϕα Xα )

dt
= ϕij X

i 
dxi

dt
 . 

 
Equation (18) is valid for the translation of p relative to Λ along a curve: 
 

xi = xi (t) . 
 

We now ask when the left-hand side of (18) vanishes, i.e., when a point remains in 
the same hyperplane under translation relative to Λ.  Due to the skew-symmetry of ϕij this 
is obviously the can when one has: 

(18a)      Xi = k
dxi

dt
. 

 
From (11), it also follows that the distance of a point from the distinguished line is 
invariant in the case (18a). 

We now write formulas (14) in somewhat more detail.  If we single out the case α = 
0 then, due to chap. VI, (20) and (21), we obtain: 

 
dXi

dt
+

i

jk

 
 
 

 
 
 
Xk dx j

dt
+ ϕ j

i ϕσ Xσ  = 0 . 

 
A similar differential equation is also valid for X0. 

The point in the five-dimensional space: 
 

Xi = k
dxi

dt
,  ϕα Xα = const., 

 
is associated with the velocity vector of the curve.  If we demand that this point goes to 
such a point under translation along the curve then the following differential equations 
for the curve and its parameter are true: 
 

(19)     
d2x i

dt2 +
i

jk

 
 
 

 
 
 

dx j

dt
dxk

dt
+

e
m

ϕ j
i dx j

dt
 = 0 . 

 
We have thus set the constant ϕα Xα equal to e/m. 

These equations for the distinguished curves in the base space agree precisely with 
the equations of chap. VI (33a), which we obtained for the case of M ≠ 0, hence, for a 
four-dimensional associated space.  Thus, we have also obtained a geometric 
interpretation for the world-lines of an electric particle in terms of the five-dimensional 
associated spaces. 
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Introduction of general coordinates in the associated spaces. 
 
 We can introduce completely general affine coordinates into the tangent spaces 

through the non-degenerate transformation: 
 

(20)      Wi =M j
i dxj . 

 
If we assume, e.g., thatM j

1 , …,M j
4  are four covariant vectors then the Wi are scalars.  We 

refer to coordinates that are obtained in this way as scalar coordinates.  However, we are 
still free to choose other transformation laws for theM j

i . 

Likewise, we can introduce completely general affine coordinates in the five-
dimensional associated spaces.  The equation: 

 
(20a)      ∂xβ =Nα

β Uα . 
 
All of our formulas assume a general form in the generalized coordinates.  However, 

their geometrical and physical meaning naturally remains unchanged.  For example, in 
general coordinates, the non-degenerate map (10) takes on the form: 

 
(21)         Wi = tα

i Uα , 
in which: 

tα
i =Nα

βδβ
j M j

i . 

 
EINSTEIN and MAYER (Bibliography 1931, 3) always use this general coordinate 

system.  In their work, the map (21) plays an essential role, as we hope to clarify in the 
sequel.  EINSTEIN and MAYER use the notationγα

i instead of ourtα
i .  Furthermore, they 

write gαβ instead of our γαβ and Aα instead of ϕα . 
 
 

Second map of the five-dimensional space onto the tangent space. 
 
For our present purpose it suffices for us to work with the coordinates dxi and ∂xα.  

Nevertheless, we shall write (10) in the form: 
 

(21)      dxi = tα
i
∂xα , 

 
in order to emphasize the fact that this transformation is a geometric object.  In our 
coordinates, one thus has: 
(22)      tα

i =δα
i . 

  
We now seek to present the relationship that was given by (21) between the 

coordinates of the associated spaces and tangent spaces in another geometrical form.  In 
order to do this, we must invert (21).  The inversion of (21) is not uniquely determined 
since (21) is not a unique transformation.  In any case, the formula: 
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∂xi = dxi 
 
must be true, whereas the choice of the ∂x0 that goes with (dx1, …, dx4) is unrestricted.  
We determine the inverse oftα

i while making the least possible demands upon the 
relationship between the metrics in both spaces.  We thus define: 
 
(23)    tαi = γ αβ tβ

i ,  ti
α = gij t

αj,  tαi = gij tα
j . 

 
If we use (22) then we obtain: 
 
(24)    tαi = γ αi, 
(25)    ti

α = (γiβ – ϕi ϕβ ) γ αβ =δi
α − δ0

α ϕi , 
(26)    tαi =δα

i gij . 
 
We thus have the identities: 
 
(27)    ti

α tα
j =δi

j ,  ti
α tβ

i =δβ
α − δ0

α ϕβ , 

(28)    tαi tαj =δ j
i ,  tαi tβi =δβ

α − δ0
α ϕβ , 

(29)    ti
α tαj = gij ,   tαi ti

β  = γ αβ − δ0
α δ0

β .  
 
In harmony with our definition (3), we consider the transformation: 
 
(30)      ∂xα = ti

α dxi  
 
to be the inverse of (21).  Under the assumption (22), we then have: 
 

∂xα =δi
α dxi −δ0

α ϕi dxi , 
or: 

(31)          
∂x0 = −ϕ idxi

∂xi = dxi .

 
 
 

     

 
From (31), one immediately sees that all of the points dx in the tangent space will be 
mapped uniquely onto the points of the distinguished hyperplane: 
 
(32)      ϕα ∂xα = 0 
 
in the five-dimensional space.  If one restricts oneself in (21) to the points of this 
hyperplane then (21) is the unique inverse of (30). It is noteworthy that (32) is the only 
hyperplane in the band: 

ϕα ∂xα = p 
 
in which the previously given transformation (8) fails. 
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With the help of the quantitiestα
i andti

α , we can now present the desired 
correspondence between the structures in the five-dimensional space and those in the 
four-dimensional one. 

Thus, e.g., the affine vector: 
 

(33)     Bi = ti
α Aα = Ai – A0ϕi  

 
corresponds to the projective covariant vector Aα .  In order to interpret this formula 
geometrically, we consider the hyperplane: 
 

Bi dxi = k 
in the tangent space.  We have: 
 

Bi dxi = Bi tα
i
∂xα = (Ai tα

i − A0ϕi tα
i ) ∂xα, 

or: 
Bi dxi =  Aα ∂xα − A0ϕα ∂xα. 

 
If we further restrict ourselves to the points of the hyperplane (32) then we obtain a 

one-to-one map of the hyperplane: 
Bi dxi = k 

 
in the four-dimensional space onto the intersection manifold of both hyperplanes: 
 

Aα ∂xα = k 
and: 

ϕα ∂xα = 0 
in the five-dimensional space. 

In particular, if Aα = ϕα then the transformation (33) reduces to: 
 

0 = ti
α ϕα , 

as we would expect geometrically. 
Conversely, an affine covariant vector corresponds to the projective vector: 
 

tα
i Bi  = tα

i ( Ai – A0 ϕi ) = Aα – A0 ϕα . 
 
The intersection manifold of (Aα – A0ϕα )∂x

α = k with ϕα  ∂x
α = 0 agrees with the 

intersection manifold of Aα  ∂x
α = k and ϕα  ∂x

α = 0. 
The correspondence between the fundamental tensors is mediated by the formulas: 
 

γαβ t i
α t j

β = gij 

and: 
gij tα

i tβ
j = γαβ − ϕαϕβ . 
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Relations between the translations. 
 

We now concern ourselves with the translations of the tangent spaces that are 
induced by the translation of the five-dimensional space.  Conversely, we can also ask 
what sort of translation of the five-dimensional spaces is defined by an ordinary LEVI-
CIVITA translation of the tangent space. 

We start with the unique map: 
 

(34)    Vi = tα
i Xα and Xα = ti

α Vi , 
 
of the point of the tangent space to the point of the hyperplane: 
 
(32)      ϕα ∂xα = 0 
 
in the associated five-dimensional space.  By differentiating (34), we obtain, after making 
use of (14): 

(35)     
∂V i

∂x j =−Γσ j
i Xσ + Γσ 0

i Xσϕ j . 

Due to (15), we thus obtain: 
∂V i

∂x j = −
i

kj

 
 
 

 
 
 
V k − ϕ j

i ϕσ Xσ . 

 
If we now use the fact that X is restricted to the hyperplane (32) then we obtain: 
 

(37)     
∂V i

∂x j +
i

kj

 
 
 

 
 
 
V k = 0 . 

 
Thus, if the map (34) breaks down then the affine translation (37) corresponds to the 

translation (14) of the five-dimensional space. 
If we substitute (36) in (35) then this yields: 
 

(38)     
∂tα

i

∂x j − tσ
i Λα j

σ + tα
k

i

kj

 
 
 

 
 
 

 = −ϕ j
i ϕα . 

 
In this, we must use the fact that Xα can take on any arbitrary value in five-dimensional 
space. 

Next, equation (38) is only one of the identities that one can construct out of 
equations (15), chap. VIII, and (20) and (21), chap. VI, as one can naturally verify 
immediately on the basis of these equations.  However, we can regard (38) as the 
equation for the covariant derivative of the mixed quantitiestα

i , whose indices relate to 
the tangent space (five-dimensional space, resp.). 

Previously, we have stressed that the map of the tangent space onto the five-
dimensional space is a geometric object that takes on the components tα

i =δα
i  in our 

special coordinate system.  Equations (38) represent the translation of this geometric 
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object.  If the quantitiestα
i are given then (38) gives us the desired relation between the 

translations in both spaces. 
One has the equations: 

(39)     
∂tα

i

∂x j + Λσ j
α ti

σ −
k

ij

 
 
 

 
 
 
tk
α = ϕα ϕij . 

 
One immediately derives equation (39) from (38) by raising and lowering α and i 

with the help of γαβ and gij .  If one does not want to use (38) then one can also verify (39) 
immediately on the basis of (25). 

EINSTEIN and MAYER define the left-hand side of (37) as the “absolute 
derivative”  of Vi and the left-hand side of (39) as the “absolute derivative” of ti

α .  In this 
way, equations (39) are introduced by geometric assumptions.  From (37) and (39), one 
can then derive the properties of the translations of the associated five-dimensional 
spaces.  The resulting geometrical structure admittedly agrees with the one that we gave 
above.  The field equations are also equivalent to the ones that we gave. 

One can also replace equations (39) with other ones.  For example, EINSTEIN and 
MAYER, in a later work (Bibliography 1932, 5), have proposed the equation: 

 

(40)     
∂tα

i

∂x j + Λσ j
α ti

σ −
k

ij

 
 
 

 
 
 
tk
α = ϕα �ij  + γ αr Vrij  . 

Thus, we have: 
Fij = − Fji 

and: 
Vrij  = − Virj  = − Vrji . 

 
Obviously, the quantities Λ in these equations must now be different from the Λ that 

we used before.  The introduction of new equations, such as (40), therefore implies the 
choice of a new translation and with it, the possibility of arriving at new field equations. 

The physical meaning of equations (40) is still not clear.  We will not go into this 
matter any further, either. 
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