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“There is something like the “real state” of a physmatem that exists objectively,
independently of any observation or measurement, and thgt imaprinciple, be
described by means of physical expressions [What meangadssion is adequate, and,
consequently, what concepts are to be used in this reyardp my knowledge, actually
unknown (Material points? Field? A means to deterntiese things that must first be
created?)]

Indeed, all the men who comprise the quantum theaesichold closely to that
thesis on reality, whereas they do not exactly dsdhe fundamentals of quantum
theory. For example, no one doubts that the centgranfity of the moon occupies a
definite position at a definite instant in the absentero arbitrary real or potential
observer. If one considers this thesis on reality jurely logical and arbitrary way, then
it is very difficult to escape the solipsism. In Sense indicated above, | do not blush at
the thought of elevating the concept of “the real stdita system” to the center of my
meditation itself {).”

“Something that does not please me in the arguments afunetum theoreticians
who feel that quantum theory gives a complete descrigticrlementary phenomena is
their positivistic way of seeing things, which, to my veyseeing things is inadmissible,
and which is the same, in essence, as the princiBerkley: “esse est percig)(’

A. EINSTEIN

() In Louis de Broglie, Physicien et pensefithin Michel edition, Paris, 1953, pp. 7.
() InPhysics Today]950.
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PREFACE

Since the appearance of wave mechanics, which goes bagkfist works in 1923-
24 and, notably, since the confirmation of the ideas atbtsis of that theory by the
works of Schrodinger in 1926, and by the discovery of elediffiraction in 1927, the
guestion of the interpretation that one agrees to givleetaluality of waves and particles,
whose general character is therefore found to be estalliis posed acutely.

Since | was desiring to respect the ideas of determiaistinthe objectivity of the
physical world that are almost always accepted in scjeara more or less consciously
guided by the concern of attaching my interpretation ® itleas of Einstein on the
representation of corpuscles as a sort of field singjyldrdeveloped a curious and subtle
theory in 1927 that | called the “theory of the doubleisoh;” in the spirit of that theory,
it permits us to reconcile the probabilistic significanhbat one first attributes to the wave
W of wave mechanics with an objective causal representat wave-particle duality. |
have also published my ideas in a truncated form, whiokss domplete and profound,
in my opinion, and which | call the “pilot-wave thedrywhich leads into the
hydrodynamical interpretation of Madelung.

However, my ideas raise great difficulties that léhget to completely resolve, and,
from the series of discussion that took place at theagdConference of October, 1927,
the vast majority of physicists have adopted an interjfiwaetaf wave mechanics that is
very different from what | proposed. This interpretafiwhich was first put forth by
Born, Bohr, and Heisenberg, may be qualified as “purely prb&iabi’ it rests on an
abstract formalism and removes all concrete physhalacter from the waves of wave
mechanics, renounces the notions of determinism andtoiijean the physical world,
leads to the interesting, but imprecise, idea of “cemgintarity.” It is uncontestable that
this purely probabilistic interpretation presents considier formal elegance and that,
overall, the calculations that it allowed one to parf have generated predictions that
have been quite remarkably confirmed by experiment.

Nevertheless, certain isolated, but not insignificaplhysicists — Einstein and
Schrédinger, for example- have always protested against the purely probabilistic
interpretation and the abandonment of the ideas of oWjgctand causality that it
implies, and they have posed troubling objections thatmynopinion, no one has
responded to in a truly satisfactory fashion. Einsteim|e recognizing that the present
theory is entirely exact in its statistical prediogp has always affirmed that it does not
give a “complete” description of physical reality. #s myself, discouraged by the very
real difficulties that | encountered in the interprietatof the double solution, for the last
twenty-five years | am rallying to the viewpoint thabiscoming “orthodox,” but | have
always had a certain difficulty in my education regagdilearly expressing myself, and |
have often felt an impression of malaise in studymgain of its aspects.

It was in 1951 that David Bohm, then in the United Stateslighil articles that
tended to recall the fundamental ideas of the oldeznmgt at a hydrodynamical
interpretation of the Madelung-pilot-wave type inigldlly modified and corrected form.
This publication directed attention to my old attempt49%27, and Jean-Pierre Vigier,
who worked for some time at the l'Institut Henri Pa@ire, and diligently, | am sure,
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remarked to me that there was an analogy betweergthdahce law” that | proved in
1927, in the case of the theory of the double solutionaarety important proof that was
given independently in the same epoch by Einstein and Geddgemois on the
movement of material objects in general relativity whea considers the corpuscles to
be field singularities. The curious remark of Vigiereirgsted me greatly; it led me to
think that it is indispensable to introduce into the thieaf the “double solution,” not the
linear wave equations that were originally envisioned, loulimear equations, whose
nonlinearity is, moreover, significant only in very smajions of space that define the
“corpuscles.” Thus, a cordial and fruitful collaboratiasas established almost three
years ago between Vigier and myself in order to tryetall my attempts of 1927, with
an eye towards obtaining a causal objective interpretafiovave mechanics, and trying
to remove the difficulties that it raised in its omigl form.

In the course of that common effort, Vigier hasamd very important results that
properly belong to him. This is why he has extended theyh&ahe double solution
(which | had formerly developed in the framework of theikdGordon wave equation,
which was the only one known at the time) to the Diueagions of the electron, and to
equations that are valid for particles of spin greaten vtz Likewise, this is why he,
together with Bohm, developed a justification that wasewigorous than the one that |
sketched in 1927 for the statistical interpretation f[f and the ideas upon which its
reasoning rests seems to be clearly of interest.

It was also Vigier who was responsible for the adtrction of very important
hypothesis: that the wauewith singularity (or a singular nonlinear region) envid
by the theory of the double solution must have an exteara whose form coincides, in
general at least, with the wakéthat is envisioned by the usual wave mechanics. This
hypothesis, which seems to me to run into strong objectimm the outset, also seems
to me, upon reflection, to be the only one that [gabde of justifying the success of the
calculus of proper values in wave mechanics, and explainiegference phenomena,
such as Young's double slit, when one assumes that ph¢aods more generally,
corpuscles) exist and are localized; it realizes a ebrteconciliation between the
viewpoint of the double solution and that of the hydrodynalntiegory upon attributing a
physical reality, not to the statistical wa\ but to a wave with an objective character
(called ¢ by Vigier in his text), which very often has the samathematical form.
Today, | think that the idea of Vigier is absolutely eesary for the development of the
theory of the double solution, and that in formulatingh&, has allowed for important
progress to be made in that direction.

Finally, Vigier has shown how one may try to introdtice concepts of the double
solution in the formalism of general relativity. Natlly, this is only a first attempt, since
it is almost certain that in order to give the theofyhe double solution everything that it
implies, one must develop it in the framework of a uwitalativistic theory in which
gravitational, electromagnetic, and mesonic fields lsavgular regions (corpuscles) that
are found in the context of waves with vorticial singtiles, which seems necessary for
the representation of electrons and other particldés spin. However, surely a synthesis
that vast will result only from a long-winded effort.

In the doctoral thesis that defines the object optfesent volume, Vigier has given a
clear and detailed exposition of the collection of hierapts at a causal and objective
interpretation of wave mechanics that is founded upenidba of the double solution,
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and, in particular, upon numerous important results thadtalsepersonally derived along
those lines. This research, in which certain pointls @dviously be the object of
criticism or revision, is very brilliantly presenteahd will not fail to interest the intended
readers. The enthusiasm that Vigier has for his relseend the incessant ardent and
creative activity of his imagination render his effoptsticularly noteworthy and worthy
of encouragement.

Certainly, at this present moment one may not consider dausal objective
interpretation of wave mechanics by the double solutidrat@ triumphed over all of the
obstacles that seemingly must be abandoned. If cedifficulties appear to be
minimized, then others persist that seem to be vesgtgnotably, | am thinking of the
ones that relate to the spreading and division of waest the conservation of energy in
guantum processes, etc., questions that are particuldidgtde and whose study Vigier
has not begun in his work. As long as the set of théBeudties has not been reduced,
one is not sure that they are surmountable and thatmigtg not affirm that the causal
objective interpretation of wave mechanics by the coscepthe double solution must
replace the current purely probabilistic interpretatiddeanwhile, if the former enjoys a
day that concludes by superseding the latter then Jeae-Ri@gier must then be
considered as having contributed powerfully to this new arfdreseen evolution of
theoretical physics by his research.

Louis de Broglie






GENERAL INTRODUCTION

The development of the theory of general relativitg ghe discovery of the wavelike
properties of micro-objects have completely disruptedctassical ideas on the nature of
the physical world. Concepts that seemed indestructsaleh as the deterministic
character of phenomena, have been challenged, andh®wersies that they created
have not been settled yet, even after more than tyedys. Likewise, one may confirm
without paradox that the crisis generated by new theoygti to be resolved: Witness the
difficulties that one actually encounters in quantum mpdano the context of nuclear
phenomena.

The research that is described in this work is conceemgéicely with the problems
that were raised in the course of the preceding consmger Therefore, we briefly recall
them, since a discussion of them is liable to clatify mathematical developments that
must follow ¢).

To make things precise, we first study fundamental idedlseokind of physics that
one calls “classical,” i.e., both pre-quantum and plativestic. This study, which is
necessarily schematic, has the goal of exhibiting tfiewlties of this classical theory
and the solutions that are proposed by the new thedrgreTore, it does not do justice to
the results obtained that constitute, without a doabtessential stop in the march of
humanity towards the comprehension and domination ofaatur

For the classical physicists, Isaac Newton and CMeaxwell, external physical
reality existed independently of observers and it woulgdssible to construct a model
that reproduces the objective behavior of phenomena.

This model rests essentially on the distinction thastablished between the general
space in which the phenomena evotvelassical Euclidian spacetimeand the material
substance that it contains.

The existence of this space and the nature of the isitugt which one finds the
matter permit a complete spatio-temporal descripticgh@gvolution of that substance.

Having said this, in conformity with the Cartesian ideaéxplaining by figures and
motions, the object of the theory is to analyze #vslution. In order to do this, we
assume that:

1. The matter is decomposable into material pointsatteeendowed with mass and a
negligible volume in such a way that its motions perms to understand the
aforementioned evolution. (Obviously, this amounts tceeprasentation that is only
approached by the actual behavior of the body.)

2. The accelerations of these particles may bebuatid to force fields with
unspecified characteristics that nevertheless allot® describe the objective behavior of
these accelerations; thus, these fields also comstatptimitive given in the theory.

() This monograph does not exactly reproduce the histatmaelopment of the ideas that the reader
will find remarkably summarized in the work of Louis deo8lie, La Physique quantique restera-t-elle
indéterministeGeneral Introduction.
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In this model, the complete description of phenomerni@s, as a consequence, two
classes of facts that encompass the entire setwsftlaat govern the evolution of the
physical world.

One must first know the laws that determine the eimiudf the fields. These laws,
when expressed in differential form, allow us to predieir value at each point of
spacetime if we take certain boundary conditions iotmant.

One must then discover the laws that dictate theomati the body in the field under
consideration when one gives the body a particulaalimosition and velocity.

Maxwell’'s laws belong to the first type; Newton'deda@rated lawf = ma continues to
be the classical example of a law of the second type

Such is the model of the world that was proposed byicksphysics, in all of its
elegant simplicity. It is essentially and irreducilolgterministic, since being given the
initial conditions (initial positions and velocities tife all of the particles and the initial
values of the fields) allows us, in principle, to cadtal the ultimate evolution of the
ensemble of material processes in full rigor. It waghis form that the celebrated
mechanistic determinism of Laplace was scientificakpressed, and this was a theory
that rested on the differential expression that Hamigave to the laws of mechanics.

We shall not recall the impressive successes and imgrgnl verifications of this
theory at this point. We only note that they presem internal difficulties that are
impossible to resolve.

The first one is that it is impossible to understar@ riature of the classical fields in
this schema. In particular, the separation of théonstof the spatio-temporal context
and the field inevitably leads to the problem of actioa distance. As a result, the form
that Maxwell gave to the electromagnetic field equatisnggests some propagation
effects that continue to be difficult to reconcilgiwelassical ideas.

The second one is that it is impossible to understandatge of the laws of motion,
I.e., the interaction between the fields and theigast

Therefore, up until the definitive experiments of Micbelg&nd the discovery of the
wavelike properties of micro-processes permitted us tdigiralmost all of the known
properties of bodies, the classical model did not proaidemplete explanation, which is
contrary to the ideals of the theory. The great erasof classical physics, including
Newton himself, were not satisfied, and the scientiigtory of the Twentieth Century
was, in part, dominated by the verification of the theothat demanded the construction
of an ether that was capable of lifting the aforemeetbdifficulties.

In Chapter | we shall ultimately return to the idedsEmstein that relate to the
problems that were posed. In effect, they constituteolmgation of the deterministic
realism of classical physics and largely ignore thdopmd upheaval that was provoked
by the development of the probabilistic interpretatioqudntum theory in the context of
micro-phenomena.

Micro-phenomena.
As Louis de Broglieq emphasized, the great drama of contemporary microphysics

has been to explain the duality of waves and partidiest established for light, it was
progressively extended to all of the known partictethe course of the first third of the

%) La Physique quantique restera-t-elle indéterministe? cit.
ysique g
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Twentieth Century. We shall insist upon this point, and @&t the basis for all of the
research that follows.

In order to do this, we shall recall a very interegstitiscussion of Janoss$) ¢hat
accentuates the problems that were raised by this discared the nature of the
solutions that were proposed.

A. — Corpuscular aspects of micro-phenomena.

Numerous properties permit us to give meaning to the corpusspact of micro-
phenomena. For example, experience shows that thectnof light on a photoelectric
plate is composed of distinct localized individual phetomat carry an energy div.
These impacts are independent of each other, and $siyto realize experiments that
involve sufficiently weak sources that one can obsdreatrival of isolated photons that
are separated by appreciable time intervals. Similang, exhibits the localized actions
of the other particles — electrons, nucleons, mesons th® various apparatuses —
counters, etc. Moreover, one must emphasize thairtlyeobservable aspects of micro-
objects are related to their particular properties;kabwn experiments finally come
down to the observation of the quasi-pointlike aspedtstheir evolution or the
interactions of matter.

B. — Wavelike aspect of micro-phenomena.

The wavelike aspect of micro-processes is clearly fiestied in interference and
diffraction experiments.

Consider two screens, | and I, in which the firspisrced with two holesh andB.
A plane light wave impinges on I. If onB is

open then one obtains a uniform illumination on
L IIl. However, ifA andB are open then one obtains
A > an interference pattern on Il that varies with the
form and separation & andB, and which differs
from the sum of the illuminations produced Ay

effects of the photons that comprise the ray.
Similarly, one may arrange for them to appear one
by one; in this case, the interference pattern is
| _ I comprised of the progressive superposition of the
Fg. 1. spots on Il that result from the action of the

individual photons. This pattern is therefore

actually composed of the independent contributions ofsthlated photons.

Therefore, in this experiment, the micro-objects sasively manifest themselves one

by one in the form of spots that appear on either | or However, although the

distribution of these spots is uniform on I, the sasneot true on Il, where they tend to

= andB alone.
Of course, the illumination that is observed on
B > Il is formed by the superposition of the point-like

% Acta Physica Academiae Scientiarum Hungaritame ., fasc. 4, pp 391.
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accumulate only in certain regions (white fringes) Hrat systematically separated from
the other regions (dark fringes).

This phenomenon is adequately explained if one asstiméshe plane wave that
falls onA andB is formed of continuous cylindrical waves that are aest®nA andB.
When just one of the waves falls on Il (by closing tipening) it generates a uniform
distribution. When two waves form simultaneously,ytiterfere and give rise to an
interference distribution.

The foregoing result clearly shows the wavelike oftaraof luminous phenomena.
One may make analogous demonstrations with the aid of mowrktype of particle.
Classical experiment$)(that were made with electrons show the wavelikeaztiar of
electronic beams. Instead of slits, one simply usgstals or metallic networks with
angles of incidence. However, there is no differangarinciple, and the reasoning that
must follow is independent of the exact nature of tiera¥particles or the experimental
setup used.

It is clear that these experiments exhibit propettias are absolutely foreign to the
classical model.

Indeed, observe our interference device under conditi@iswill assure that there is
not more than one object in the apparatus at that time.

With regard to II, this micro-object manifests itselif a corpuscular form. With
regard to I, it behaves like a wave, since the disiobubf the individual isolated
photons on Il is influenced by the presence of two AlisdB. Therefore, each photon
that acts on Il as a particle individually presents aelge aspect. Everything happens
as if it interferes with itself at I, and is finalyeferentially absorbed in the regions where
the diffraction pattern presents maxima.

Experiment has then allowed us to derive a fundamentadeply: The particle
aspects of a set of micro-objects subject to an expetirof the preceding type are
distributed in space with a densityy|?, where ¢ designates a continuous wave that
satisfies one of the linear equations of wave mecharfics. example, in the device of
interest to us the probability for a photon to be pneaé a point of space is proportional
to the square of the amplitude of the light wave to whighassociated.

Such properties obviously pose difficult problems. Theyadaviously incompatible
with the usual ideas about the structure of micro-objedisen so, it amounts to
understanding what happens and explaining, in particulartypee of interference that
comes from things interfering with themselves.

C. — The probabilistic interpretation and complementarity.

A first attempt at treating the question consists, to gantexpression of Rosenfeld,
“in solving it at the highest plane of the theory of Wierge f)” and is the celebrated
probabilistic theory that was developed by the schodaddthe Copenhagen School.”
Indeed, its promoters Niels Bohr, Heisenberg, Born, and Patlcleave to the same
idea that the model is understood to be based in thebfmssjective knowledge of
micro-objects.

(%) See chap. IV.
() Louis de BrogliePhysicien et penseued. Albin Michel. See also chap. Il of the preseork.
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For the Copenhagen School, the classical notion oWladge is senseless. The
object of physics is not to describe the actual behavitiniiogs, but only to construct a
mathematical symbolism that permits one to accountefgrerimental results. The
position known by philosophers under the name of positivssclearly expressed in the
declaration of N. Bohr, who was quoting Heisenbefly (...the (microscopic)
phenomena are generated by repeated observations imsyiie

According to Pauli, any property that is not actuallgessible to measurement is
devoid of real significance.

The theory goes on like this: Knowing anything that iseexl to the process of
measurement is definitely prohibited by Bohr because nabjeets are not describable
in the context of space and time. Moreover, this esgtofound sense of the notion of
complementarity. For the Copenhagen School, microethm@re neither waves (as in I,
for example) nor corpuscles (as in Il), but both at oribepending on how you observe
them, they present one of these complementary asjgeotsservers and always behave
“like ill-defined individuals in finite regions of spacerte.”

In this way of thinking, there is precisely one wayeand one corpuscle, but they
may not be represented in the classical manner. ®hmuscle has neither a precise
position, nor velocity, nor trajectory; it only accesr them at the moment of the
experiment. Therefore, it is simultaneously endowed \aih infinitude of possible
positions and velocities, in general, which are realizedneasurements with certain
probabilities. The wave/ is devoid of physical reality and simply represehts det of
all experimental potentialities of the corpuscle witbit respective probabilities. These
waves constitute “quantum fields” whose properties (intenacwith the measuring
apparatus) and evolution (furnished by the wave equationshwbdd@nger, Dirac, etc.)
embody all of what we may know about the particled Hre associated to them. We
return to this concept in more detail later on in chaider

According to Bohr /), the preceding interference experiment must therelere
interpreted in the following manner (when the micro-olgjearrive at the apparatus of
Fig. 1 one-by-one):

To the left of screen I, the photon has neither pasitior trajectory. It is represented
by a continuous plane wavg that permits us to calculate its probability of exigtat
each point/[>. In regard to I, this wave generates two cylindrical wakemdB. After
I, these probability waves interfere and generate nd@rference pattern on Il that
represents the distribution of the eventual impacti®fphoton considered. Finally, the
photon appears on Il at a point that is impossible terdete in advance, in principle.

If one then repeats the experiment with a large numbghotons that are associated
to identical wavegy/ then they will spread across Il with a distributioatthonforms to
the experimental results.

What explains the great interest in that experimext the interpretation that was
given by Bohr is that it brings out the essential ang particular role that is played by
the notion of probability.

(®) N. Bohr,La théorie atomique et la description des PhénoméRasthier-Villars, Paris, 1932).
(") Cf. P.A.M. Dirac,Principles of Quantum Mechanistroduction].
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A great number of physicists, who base their claimsth@nanalysis of fictitious
experiments made by Heisenberg (of which, the best knmwvrthe microscope
experiment), figure that the Copenhagen School does mitstothe reality of the
movement of the body apart from the observers. HEmaply believe that the notion of
probability, which was introduced because the measuremapdratus perturbs the
observed micro-object, makes it impossible to make anysgrebservation of their true
behavior. This interpretation of the position of BoRauli, and Rosenfeld (which
appears in numerous works) is not exact. It is radicafiposed to the preceding
explanation of interference phenomena that are mtedavith isolated particles.

Indeed, the explanation of Bohr assumes that one mgdsave the right to assume
that the micro-object actually passes through one otvibeslits. As Dirac remarked, if
one can say that it passes throdgbr B then this amounts to saying that there exists one
reality (the trajectory) for which the theory doed mmrk, and one comprehends only
how opening modifies the arrival of a photon that passes throuigh Il.

Therefore, according to Bohr, the interference pattesults from the fact that the
particle is objectively represented at | by his probgbivave ¢. Since this wave
describes only the results of eventual experimentsibe-object is actually confused
with these results, and it is impossible to concaf@nything else. In full rigor, the
particle that moves to the left of the figure does notteaswell as the particle before it
reached the screen Il. The interference patterasergially related to the non-existence
of a trajectory of the particle and not, as some wigh to express the beliefs of the
Copenhagen School would say, the practical impossibilitpbserving that trajectory
without destroying the interference phenomena by thatae.

As was strongly emphasized by Louis de Brod)ethe Copenhagen School reduces
all of physics to the notion of probability and givesthotion a sense that is quite new in
science. In quantum physics, probability does not résutt our ignorance of the actual
behavior of things or the complexity of the phenoménasults from pure contingency.

Such an interpretation naturally entails importantseguences on the orientation
itself of the research that it inspires. Heretar@ examples:

If all knowledge is necessarily statistical thenyolmhear wave equations can have
any physical significance, sincz;ér|2 must satisfy well-known laws on the composition of
probabilities {).

If micro-objects cannot be correctly described in thetext of space and time then it
is vain to ask about their individual structure because austhucture introduces hidden
parameters into the theory that are incompatible weémtition of complementarity.

Such prohibitions- a sort of irreducible limitation on the nature of ouowtedge —
result from taking a philosophical position, not from expental necessity.

Indeed, as Blokinzef and David Bohm have shown, the ibelatgsults that were
obtained by quantum theory do not prove that our knowledgeeoisolated particles is
necessarily statistical. They simply establish tha¢ theory correctly accounts
(obviously within certain limits) for the statisticadtavior of sets of micro-objects. The
predictions that calculated are therefore independethiegprobabilistic interpretation of
their individual behavior. There does not exist an erpant that proves that the
exchange of energy by quanta is necessarily beyond anadysistheorem that allows us

() La physique quantique restera-t-elle indéterminitte, cit.
() Cf. W. PauliWellenmechanikntroduction.
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to prove this. As far as this is concerned, a detaiteshiation t° has shown that the
celebrated reasoning of Von Neumann, which seems to fesitre use of hidden
parameters, rests on the idea that these paramesgrsion exist in the system being
observed and the apparatus used for observation simullpeoHowever, as Von
Neumann himself has recently recognized, this is not reess

Nevertheless, the statistical success that ismddain the context of the probabilistic
interpretation imposes a certain number of conditionsany possible interpretation,
which we shall enumerate:

— One must first explain why a continuous wayethat satisfies linear equations
allows us to account for the statistical behavior ¢ & micro-objects placed in
specific conditions.

— One must then account for the success of the Schrodiageation in
configuration space.

— Finally, one must interpret the relativistic equationsl ghe properties that are
obtained with the aid of the corresponding statistipantities called the Bose-
Einstein and Fermi-Dirac distributions.

However, let us return to interference experimeifiise interpretation that was given
by the Copenhagen School is not the only one possible. n@gemagine at least two
ways of accounting for the wave-particle character hef individual micro-objects,
without, in principle, posing the impossibility of wrig them in the context of space and
time or renouncing determinism.

D. — The interpretation of Schrodinger and Janossy.

The first proposal for the origin of wave mechanics Sghrodinger consists in
rejecting the point-like character of the particles¢cept in their interaction with the
apparatus.

In this way of thinking, one generally assumes that tywaves actually exist, and
that the functiony actually represents an extended particle with a dejgs[fy

Therefore,i no longer represents a probability, but a physical phenomeifio the
left of I, the photon is distributed over its wave packémn I, this real packet is divided
into two parts that interfere afterwards. Finallp, Ibthe wave abruptly contracts upon
the impact of the photon.

One then explains the observed statistical distobubly assuming that this latter
contraction operates precisely with a probabiWHor an arbitrary interaction.

This interpretation (which amounts to saying that theravobjects are actually
sometimes waves and sometimes particles) had beerdaisth at the outset by
Schradinger himself (who did not accept the postulaté&obr, for that matter) because
it raises complications that seem to be insurmountablée first state them without
discussion:

First difficulty: If the micro-objects are idengfl with the usual continuous wave
packets of wave mechanics then it seems difficult sm@ate them with actual fields
since one knows that they necessarily disperse awer the amplitude of the associated

(*% Cf. L. de Broglie, loc. cit., and D. BohrRlfys. Rev.85, pp. 166-180, 1952).
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wave ¢ should then tend to disappear. One may likewise imadeeces that
systematically reduce this amplitude to the scaleefahoratory.
Consider a semi-transparent mirrdd for

which the power of reflection is equal to the power
of transmission. An incident wave packet (I)
strikes this mirror.  After interaction, it is
decomposed into two reflected and transmitted

¥ packets of the same form, g)land (Ik). These
two packets are quite real since it is possible to
reduce the one to the other and obtain interference
effects. However, if they have the same form and
account for the probability then the amplitudes of
the transmitted and reflected packetis and ¢

are equal to the initial amplitude multiplied nyJE. The device thus acts like an
amplitude reducer. If | then consider a large numbesuoh mirrors then | finally obtain
from this sequence a transmitted packéi (whose amplitude is as small as one pleases.
Nevertheless, the packet that was used in the girecenterference experiment will give
me results that are identical to those of theahpiacket (1). Later on, we shall encounter
this question again in another form as it relabethé causal interpretation.

Second difficulty: it has not been possible tocamt for the processes of contraction
that this theory implies.

Go back to the initial device and open just oiteAs| After passing through the slit,
the wave spreads out and is found to be
distributed on Il with a decreasing density staytin

from a lineP that is the geometric image of the Q
slit A.  One must then understand how to brin
about the appearance of a corpuscle at an arbitrgry A > P
point Q. As Einstein indicated, such a process of

I Il

Fig. 2.

contraction must happen instantaneously (with
velocity greater than that of light), which violate
the results that were obtained by the theory qf
relativity. Indeed, the wave contracts no matter
what its extent, and a photon that appears on Il Fig. 3.

collects on a photographic film, even if the #lit

is found on Sirius.

We remark that this phenomenon also constitutes objection against the
probabilistic interpretation. As de Broglie hasnegked: “With our habitual ideas of
space and time, it is impossible to comprehendabethat a photographic effect that is
produced aQ interferes with the production at any other pahthe film, at least as far
as admitting that the corpuscle is, in realityalimed, and occupies a well-defined point
in the associated wave at each instant. Any oty of thinking seems to be
irreconcilable with the idea that physical phenoaemay be completely represented in
framework of space and time or, similarly, Einsi@mspacetime.”

Third difficulty: one must explain how contractowf the preceding type that are
associated with a set of micro-objects reproduealisiribution ¢ fdv, for example.
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Last difficulty: one must account for the behaviorsgétems of interacting particles
in this model and explain the reasons for the succeskeoSthrdodinger equation in
configuration space.

We immediately point out that there exists no quat® theory of the preceding
model that allows us to solve these difficulties. 3agpwho has given his account of the
theory, studied them qualitatively without arriving at athematical formulation of the
solutions that he discussed.

Like Schrodinger, he proposed to describe the elecrdhe photon by an extended
structure. When there are no important perturbatits,structure displaces according
to the linear equations of Schrodinger and Maxwell, althoinghexact evolution is
nevertheless defined with the aid of nonlinear equatidiee solution of these nonlinear
equations differs in the case of strong interactionsdamghg the process of contraction
of the solution of the linear equation. However, theslations reduce to solutions of
linear equations, at least with respect to certain pattensithat relate to initial conditions.
If one prefers, the actual waves differ from theistiaal wavesy, which describe their
mean behavior.

In this work, we shall not study the manner by which thigleh might allow us to
surmount the difficulties raised. It has not been ickefiitly developed to permit a
guantitative discussion and a sound examination like ouredbj We shall see,
moreover, that there exists a simple model that summedse second difficulty, and
whose quantitative development offers encouraging perspscti

E. — The causal interpretation.

The second model, which was likewise proposed in 1927 byatgi®&{and which he
subsequently abandoned when he rallied to the probabiliggcpretation) has been
recently reprised and developed. As a result of a mrevh@. Bohm, which surmounted
one part of the difficulties raised in 1927 by Pauli, aratkndone at I'Institut Henri
Poincaré by the author along these lines, Louis de EBrdgls reprised the question.
Moreover, in our opinion, the results obtained, whialeady recover the better part of
the results that were described by the interpretatioBatir, justify the systematic
discussion that shall make. They constitute whatroane call the “causal interpretation”
of quantum theory. This interpretation rests esseytiall
on the idea that, conforming to classical concepts it i L
possible to furnish a deterministic model that approaches Q
the behavior of the individual micro-objects in the
framework of space and time.

One first assumes that the micro-objects always
present a particle aspect (limited to a region of spiaate
is small in extent), even when we do not see them. This p
signifies that there exist intense phenomena that
propagate along the interior of a tube of small cross
section centered on a line(a trajectory) that joins two poin® andQ when a micro-
object is emitted & and observed &).

Fig. 4.
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This fundamental hypothesis, which introduces elemerts time theory that are
unobservable at the moment, obviously breaks witlpts#ivistic theory of knowledge
because it assumes that the particle aspect of miceatslgxists independently of any
observation. It presents the advantage of explairiegpbint-like effects of micro-
objects without recourse to incomprehensible interactions.

Nevertheless, this point-like aspect does not sufficee @ust endow the particles
with an extended aspect if one wants to comprehend hdmtens. We return to our
fundamental experiment again. Consider particles thadecfrom the left and impinge
upon the two slits. If one places counters belfinghd B that cover them completely
then one may establish for each particle whether gsgsathroughA or B. Of course,
most of the particles do not pass through any slit alidoeriabsorbed by I; however, we
are interested only in the ones that are not absorbed.

The particles thus observed in passing are obviously ladxbdny the counters and do
not reach screen Il. Now remove the counters; canfiy to the idea that the objects
exist even when one does not observe them, we must Huhithese particles, which
were not decelerated by the counters, are effectiadgipg througlh or B, and that any
particle passes through a politto the left of | and follows a trajectoty in order to
arrive at its point of impac@ on Il. This hypothesis on the actual existence of an
unmeasured trajectory qualitatively determines the chaistaterof the proposed model.
Indeed, if one assumes, as we just did, that theresexistjectory. then one concludes
from this that each particle passed through one of itisetglreach) (see figure above).

However, the necessity of associating a field, pilggreaking, to each micro-object
clearly appears then. Indeed, if one places oneself
on Il in the neighborhood of a minimum in the
interference pattern and considers the particles
that pass throughA then one sees that they have g > | A
tendency to not fall in that region. By contrast, if
one closesB then this tendency must disappear.
There are thus particles passing through A whose
trajectories are modified by the opening or closing
of B. This makes it indispensable that we
consider the idea that the motions of the isolated B )
particles are perturbed by the modification of the
macroscopic boundary conditions (such as the
presence or absence Bf for particles passing
throughA), therefore that they are influenced by |
an extended phenomenon that accounts for these
conditions.

It results from the preceding analysis that if one ssitfie objective existence of
micro-objects and the existence of movemdntsf their point-like aspect then one is
necessarily led to also attribute a real extended vkavekpect. This hypothesis thus
leads almost irresistibly to the “model” for the cduséerpretation in which one must
consider the micro-objects to be a singular regidnir{ an extended phenomenon.

Fig. 5. I

(*Y By the term “singular” region, we mean a region tisa¢ridowed with the particular properties and
characteristics that differentiate it in a unique antheraatically proper manner from the extended region
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This viewpoint, which is the objective synthesis of thavelike and particle-like
aspects of micro-objects, thus amounts to considering g#sboth waves and particles;
each micro-object is simultaneously a wave and particle

As we have seen, in order to develop such an interoretabte must solve a certain
number of problems, which we shall enumerate.

In the first place, one must furnish a deterministicdet®f individual micro-objects
that permits us to quantitatively describe their actudlabier — notably, the (non-
classical) motions of their particle aspect.

One must then show that the distribution of the metimina given set of such objects
furnishes, at least approximately, the statistical digtioln that is associated to the
known continuous solutiong of wave mechanics.

Finally, one must treat the question of particles iteraction, interpret the
Schrddinger equations, and treat the questions of rslitivequations and those of
guantum statistics.

These questions determine the plan of this work. We ssivedy study them and
indicate both the results that are obtained and thetsa$alt remain to be solved. We
therefore hope to provoke discussion or research thed bring progress to a theory that
tends to commit microphysics to an exploration of thepprties of matter that are
subordinate to the statistical phenomena that areibeddy the habitual interpretation.

In chapter |, the reader will find an analysis of thstorical development of the
individual “model” of the micro-object that was proposedthe first versions of the
causal interpretation, as well as a discussion optbblems that it raised.

In chapter I, we discuss in more detail certain pragexf the model of the theory
of the double solution with singularity, by insisting on thaetion that the particle
singularities are “guided” by continuous wavgthat correspond to quantum fields.

Chapter Il will be dedicated to the discussion of plssible relationships that that
one can establish between the preceding causal theoryhanessential ideas of the
relativistic unitary theories. In particular, we pravat it is possible to find solutions
with singularities for the relativistic equations thalldw the “trajectories” of the causal
interpretation.

In chapter 1V, we then show that the statistical lma@ecs that is associated with a
collection of micro-objects of the preceding type isatded precisely by continuous
solutions of the usual linear wave equations. This proof,imdgeees with that of Bohm,
rests on hypotheses and analysis that eventually exhi@tgdifference between the
classical mechanistic determinism and the dialectieedrminism that is associated with
the new interpretation.

Chapter V involves a discussion of the problem of maisgcts in interaction and
guantum statistics. These questions are not compkablgd, but sufficient progress has
been made recently to justify a systematic discussimetheless.

In the last chapter, we conclude with a descriptiotheftheory of measurement that
is associated with this new interpretation. In our @winthis theory, which is essentially
due to the work of David Bohm, constitutes a very impartiest step because it begins
for the first time the objective study of interacsobetween the measuring apparatuses

into which it is included as a subset; to a first appnation, one may undoubtedly mathematically
represent this difference by a singularity.
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and the observed micro-objects. In part, it justiiegain results that were postulated by
the old theory and gives a statistical interpretatibthe Heisenberg uncertainties that
strips away the barrier from their character thanjgsosed by knowing them.

This work makes no pretense of constituting a compleebnitive description of
the causal interpretation of quantum theory. Qualifeed grogram” by Pauli more than
two years ago, this interpretation has passed that gidgg; its adversaries themselves
contest only its internal coherence. It is therefaseful to undertake its examination
with the goal of making the results obtained precisg @xpanding upon the problems
that are likely to orient the research towards new rexy@mtal discoveries.

In terminating this introduction, | would like to expresyg profound recognition of
Louis de Broglie, whose work and counsel have guidededearch that was undertaken
at lInstitut Henri Poincaré. | would also like to tta Prof. G. Darmois, A.
Lichnerowicz, and R. Fortet, as well as Mme. Tonnedlad G. Petiau for their
encouragement and counsel.

Finally, I would like to express my gratitude to a certaumber of personal friends:
In the first place, Prof. David Bohm, F. Halbwachs, AgRér, E. Schatzmann, and F.
Fer, for numerous discussions that we have had in dbese of latter years. Their
criticisms and their suggestions have greatly contributegiviog this monograph the
form that it presently takes; in particular, chapterrBsulted from collaboration with
Bohm in Sao Paolo. The detailed results of our cofiafion will be ultimately
published.
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8 1.—- Conforming to the plan we just described, we shall déelidas first chapter to
the study of the possible deterministic models for thevidual micro-objects, which are
considered to have both a point-like aspect and an extexgpect. In order to facilitate
the exposition, we shall first study the causal thaorthe classical approximation (in
which the particle aspect is reducible to a point), ssolvas presented by Bohr),(and
we indicate how one may extend this to the relatwistjuations of Dirac and Petiau-
Kemmer.

§ 2. — Before discussing the models of micro-objectsat@proposed by the causal
interpretation, we shall recall an old version oftieory ¢) that is interesting for the fact
that it exhibits the difficulties of the enterprise.

In this version, de Broglie began with the idea that g describe the objective
behavior of micro-particles in a deterministic fashiaith the aid of continuous
movements that are different from the classical moess.

As a consequence, he reduced the micro-objects to atgtermnts in movement in
fields of a new type, and he proposed to define real toajes that can explain the
success of the laws of quantum statistics.

In order to do this, one might make the following hypsé#ize

A. One introduces a continuous figld which we write in the form:

Y= Rexp(%sj (1.1)

in which SandR are real functions aritis an arbitrary constant. This field satisfies a
field law that is defined by the Schrddinger equiati

ndY [ I
2m

= 0% +V 1.2
P j Yy (1.2)
in which'V denotes the classical potential. This equationghivbne may also write as:

en(adogo-n

splits into two distinct equations (which correspdo the real and imaginary parts of
(1.2)) when one writeg/in the form(1.1). Upon setting® = R they become:

() Physical Review(85, pp. 166, 1952).
(®) Proposed in 1927 at the Solvay Congress by de Broglie.
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2
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(1.3)

whose physical significance we shall ultimatelycdsss.
B. Having said this, the particle is restrictedtins field to follow the particle
trajectory that is defined by:
V:D—S, (2.4)
m

in which we have denoted the velocity of the p#&thlyy v. Upon taking the gradient of
equation (J), one then obtains:

2
mdV__ o[y AR
dt 2m R

-7
4m| P 2 P

which may be interpreted by saying that the pasicfollow a congruencel) of
trajectories that conform to the laws of classicechanics, provided that one adds a
guantum potential:

(1.5)

h? AR hZ{DZP 1(DP)}

C="unR_ aml P 2 P

to the usual potential.

One therefore sees the appearance of an esgdifieeénce between this theory and
the usual field theory.

In classical theory, the trajectory of a partigiea field is defined by (1.5) and by
initial conditions (position and velocity) that mde given arbitrarily. One may thus
obtain an infinitude of possible motions. Thisi@ the case here. Relation (1.4) selects
a particular family I() from among all of these trajectories that isahé/ one that can be
described by the particle considered. For exammie may make this selection by
imposing the following initial condition on thesetions:

my_, =0 g%0), (1.7)

which is obviously compatible with (1.5).

This already strongly suggests the idea that tlaioaship between the particle and
the quantum field is not of a classical nature.erlgthing happens as if the particle is
related to the field in such a way that it cannetdisplaced arbitrarily. This is the idea
that will be developed later on in the model of dogible solution.
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C. Finally, we suppose th® = R represents the density of a set of identical
particles that are associated to the figld This last hypothesis is coherent, since the
continuity equation (C) shows precisely tH2¢x, t) behaves like the density of a set of
particles that are restricted to follow the congaes().

Here again, the foregoing amounts to choosingpéngcular distribution:

P(%,0)= R (%0) (1.8)

from among all of the possible initial densitiestbé particle that one may associate to
(L).

Before indicating the reasons that led us to abardis first attempt, we must first
emphasize that it permits us to formally accountalb of the results of the Schrédinger
equation (1.2). It therefore suggests a profoumalogy, which served as the point of
departure for the research of de Broglie, betwdenwave equation and the expression
that was given by Hamilton and Jacobi for the lafvslassical mechanics. Indeed, what
jumps out at the eyes is that equation (J) reptesegeneralization of Jacobi equation,
since it suffices to makietend to zero in this equation to recover the ctasgquation.

Having said this, it is clear that this versiontloé theory is physically inadmissible,
since it gives two incompatible meanings to thecfiom R, namely:

- in (B), R defines a real quantum potential that influenbesttajectories;

- in (C), R defines a probability density of the particlestthige associated to these

same trajectories.

One concludes from this that everything happertbigiversion of the causal theory
as if the motion of the particle is determined ke tset of possible motions,
sinceR(x t) corresponds to both a real field and a probabilitysuch hypotheses

obviously contradict the objective that was purshgdie Broglie. As Pauli emphasized,
this introduces an unexplained statistical hypashasthe basis for the theory that leads
back to the Bohr interpretation.

This last objection seemed decisive to L. de Bepgind he agreed to abandon his
attempts to defend determinism in the context @roaphenomena.

Nevertheless, recent work has shown that it issiptes to escape the preceding
difficulties while preserving the same equationat httributing a different physical
significance to the symbols.

One thus arrives at what one may call “the clagsapproximation of the theory of
the double solution.” This version of causal iptetation, which has been defended by
Bohm @), in particular, obviously admits the objectivealiy of the micro-phenomena
and proposes to furnish a deterministic descrippibthem. It may be presented in two
different forms.

% Physical Reviewpc. cit.
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|. — First form.

Along with the classical field, one introduces a quantiefd ¢ (which is represented
by a continuous solution of the usual wave equations)isheomposed of a wave that
propagates in spacetime and one agrees that:

A:. ¢ =RexpiS/h satisfies the Schrédinger equation (1.2),

B:. The momentunp of the associated particle is givenjpy [IS.

C:. If we may predict or control the exact positiontlis particle at an exact time
then one must nevertheless introduce a statistitsgémble that has a probability density
P =R = |§ [ the use of statistics is not considered to beraht to the conceptual
structure of the theory, but results from our igmme of the precise initial conditions of
the particle.

This amounts to saying:

1. That each micro-object is formed by a point-liketigée and a real wave; the
first is restricted to follow a streamline of thecend.

2. That an ensemble of micro-objects of the precetypg that is associated with a
wave ¢ identically is necessarily endowed with a density:

P=lgl.

In this version, the waveg represents a true field that is distinct from tisal
statistical wavep. All of the formulas from (1.1) to (1.7) are obusly applicable to it.

The last hypothesis ;Cassumes that the statistical behavior of a seteftical
particles that are associated to the same feisl furnished by a fictitious wave that
satisfies the equality:

Y=Cg, (1.9

in which C is a normalization constant. One therefore distishes two waveg and ¢
that have a different physical significance. Wallskee that this distinction is at the
basis of the theory of the double solution.

We immediately point out that, apart from any ottificulties, the model suggested
by this form of the theory does not appear to hsfaatory. In the first place, one sees
that the fieldg is not a field in the usual sense of the wordgesiih is mathematically
represented by a complex quantity.

If one then accepts the correspondence principtech seems necessary in order for
the macroscopic ensembles of micro-objects to dheyaws of classical mechaniecsh
principle that ensures that one recovers the classiodel and behavior when- 0 -
then one encounters difficulties that seem harndteypret. Indeed, one may not blindly
make 7 go to zero in (1.1) and (1.2), when appliedptdoecause then the fieltland its
motion then lose all significance. In order taieate the classical result, one musake
h go to zero only in (1.3) (with = RexpiSh). Indeed, in this caskR and S become
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independent; equation (J) tends to the Jacobi equation, gndefl@es a continuity
equation that is associated to the particle defsity

This suggests a second form of the model consideredppesis to be more physical
than the previous one to me, and which was the resyitigdte discussions between
Bohm and the author of this work.

Il. — Second form*):

A quantum system such as an electrohis essentially composed of:

1. A quasi-pointlike particle that is endowed with a vdelfined position (which
varies continuously in time) and a velocity that is miedi by a potentich.

2. A real guantum field that is important in the atomic realm, but negligiinleéhe
macroscopic realm.

One then recovers the usual results by postulating that:

Az. The fieldQ is calculable with the aid of an auxiliary functigh= RexpiSh that

satisfies the Schrodinger equation (1.2) by setting

h? AR
Q=-_——.
2m R

B,. The particle moves in this field according te ttassical laws with:

d’x_
mF_ H{Q+V,

but this is true only on the trajectories v& [0S/# (which amounts to imposing the
initial condition (1.7)).

C,. The density of an ensemble of such particles dha associated with the same
field Q is given byP = R.

(It also suffices to postulate (1.8)).

This second form seems more satisfactory thanfitsie since if 7 — 0 then the
guantum fieldQ disappears, and one simply comes back to theickhssodel of a point-
like particle moving in the potenti&(x, t); Sx, t) plays the role of a Jacobi function.

One must nevertheless emphasize, as L. de Brbgfieremarked, that in this form,
one may not be content with the given of the paéi@ upon eliminatingS (which is
defined only by an initial condition), because iancrete problems the boundary
conditions are imposed on the wagewhich is considered to be a solution of the wave
equation. Being given such conditions defiragn the same stroke Q and the possible
trajectories that appear to be inseparable. Thisvidently a peculiar aspect of the
guantum field that distinguishes it from classifialds. In classical mechanics, one is
given boundary conditions on the fields themsemdé®n one devises equations that
involve potentials in order to calculate them (ashe case of the electromagnetic field).

(%) Discussed by D. Bohn®hys. Rev.89, 1458 (1953).
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In this second form, it is necessary to give thenyp@md not onQ and S separately, to
which they are indeed related. Here, one recovers phetise non-classical relationship
between the field and the trajectories that was prelyiqusinted out. L. de Broglie
considers this to be an objection to the second fétersonally, | think that it amounts to
a special property, and not a difficulty. It is not swgipg that the introduction of
wavelike properties makes us leave behind classical procedurd® mathematical
treatment of boundary conditions.

As in the first form of the theory, here one digtilshes two wave® and ¢ (¢ =
const.®) once more; however, the first ogehas a particular meaning. Instead of
representing the field, it plays the role of an auxliunction (a sort of intermediate
calculation); the field itself is composed of the quamipotentialQ. The two models are
therefore physically different:

— In the first, the micro-object is represented by a pliket particle and a complex
field ¢.
— In the second, it is represented by the same partideaapal quantum potential

2
fieIdQ:—g—A—s; in summaryhs plays the role of a coupling constant between
m

this field and particle considered.

Be that as it may, these two models lead to theesaotions and the same statistical
distribution; the first two postulates, A and @&gscribe the individual behavior of the
micro-objects, and the last two; @nd G, describe their statistical behavior.

8 3. - This manner of presenting the causal inezgpion has been the object of a
certain number of criticisms that one may discuameédiately in the context of the
causal interpretation of the Schrodinger equatiecabse they do not depend on the exact
form of the wave equation that is used.

The first refers to postulaté® and G. In particular,Pauli ) has contested their
legitimacy. Indeed, according to him one has gbtrio introduce such a hypothesis into
a theory of the preceding type. In order to corenel its proper sense, “one seeks to
justify the restriction to particular ensembld® £ R, ed. note] by the fact that the
continuity equation guarantees the density distiolouof the parameters if it is realized in
the initial state, provided that the system remainsed. Just the same, as far as that is
concerned, one must add that a hypothesis on thecswf probability is out of place in
a deterministic theory. The name of the contineifijpation seems to me insufficient to
fix this in a general fashion. For example, if #wgerimenter arbitrarily divides this
ensemble into two parts then the distribution abpaeter values will no longer be given
by the amplitude of the functiog, at all. From the fact that there exist all sarfs
phenomena in which the values of these parametess manifest themselves, likewise
in an indirect fashion, these parts do not havieettave in the same fashion, despite the
equality of their functions. The hypothesis of theneral validity of a probability
distribution for parameters that is determined bgtjone function is therefore not
justified from the viewpoint of the deterministicheme.”

(°) Cf., Louis de BrogliePhysicien et Penseulbin Michel.
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In chapter IV of the present work, the reader will findedailed discussion of the
manner by which Bohm and myself proposed to surmount thestidm.

Indeed, according to us, postulatesdd G are not necessary because one may
show that the densitly of an ensemble of particles that has the same quamidn(ih
the sense of forms | or IlI) and is subject to theesamry complex stochastic external
conditions will necessarily tend toward a limit stttat corresponds to:

P=lgl.

In other words, quantum ensembles constitute the equrhbdistribution that is attained
by the particles under the influence of external fluetust for any initial
distributionP(%,0). The distributionP = R thus plays a role that is analogous to the

Maxwell distribution in the kinetic theory of gasesd it is found to be automatically re-
established in the case (envisioned by Pauli) inchvit has been destroyed by the
particular conditions.

One may therefore prove postulatesa@d G of the preceding model, and we shall
no longer speak of individual micro-objects in tbapter.

The second objection is due to Francis Perrinis Httached to the difficulties that
relate to the amplitude discussed in the generabdoction in the context of the
Schrodinger interpretation that considers the oomotis waveg to also represent an
actual phenomenon. We state as follows: “consadeicro-object that is described by a
wave that has been reduced to a wave packet. subject this packet to an arbitrary
amplitude reducer (composed of the semi-transpangnbrs that were introduced in the
case of the photon), or if | let it evolve for affstient time then one knows that the
amplitudeR tends to “flatten out” in the course of time. thterefore becomes very
difficult to comprehend how a wave whose amplitideds to zero may continue to
govern the movement of the particle and produceresaopic interference effects.
Similarly, when the slit®\ andB are separated by macroscopic distances one gbi@ins
example, interference effects from the light of thetant stars, even though the wave that
is associated with it has seen its amplitude dserdi&e 1f (wherer designates the
distance traveled).”

It is possible to treat the problem thus posediffierent ways.

In form | of the interpretation, in whicl directly represents the quantum field, one
may first remark, with Fer, that this objection amts to posing the following question:
What amplitude must one start with in order tha¢ omay consider the wave to lose its
“guidance” law and its physical significance? dtdifficult to respond. Obviously, from
the classical viewpoint one knows that an increggimveak field produces effects that
tend to zero, but this is not true in the contextsidered.

As L. de Broglie suggested, in principle, one nadgo suppose thap satisfies a
nonlinear wave equation such that the usual equationstitute valid approximations
only when ¢ and its derivatives are small. The packet thewnlgeio the form that is
sketched in the figureé? denotes the position of the particle. It is theaatly true that
one must neglect the nonlinear terms in the inteB@ the same may not be true on the
boundary of the packet in the regiohB and CD, where the derivatives gf may take
considerable values. The supplementary terms ititosduced into the equation are
likely to stop the flattening op. If we start with a certain extent (of a sort that i
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impossible to realize in interference experimentshefYoung double-slit type) then the
packet is displaced along with the particle (fig. 7), tlelilike protoplasm that
accompanies the kernel-particle. For example, confayno the very old conception of
Einstein, a light ray is composed of the superpositionedls that are constituted from
photon patrticles and their associated packets (Nadelstgghluin the interior of each
packet one will obviously haw = C¢ ; ¢ satisfies the linear equation everywhere. This
conception of the structure of micro-objects is vetgnesting. Unfortunately, it is very
difficult to mathematically formulate and analyze avthappens in the particular case
considered. As it has not been possible, up till nowgystematically develop it, we shall
therefore not discuss it in more detail here. Nevéfise note that it presents the
advantage of making the wave fronts play a particulasiphl/role, which is precisely
the case in nature (which is systematically ignored ostnof the works on wave
mechanics and optics).

¢A

A B P C D X
Fig. 6. Fig. 7

However, the objection of Perrin presents a diffeaspect when one adopts form I
of the causal interpretation. In this case, the fedd that is responsible for the
movement is the quantum potential:

and notg, which only serves as an intermediate calculati8mce the fieldQ does not
vanish whenR - 0 becausd&) does not change when multipligsby a constant, the
objection does not apply to our new version of tieory; L. de Broglie shares this
opinion. He finds it difficult to admit that a gahysical quantity must be determined by
the ratio of two quantitieAR andR that simultaneously tend to zero, or similarlyhist
ratio remains finite in time. | must say that | ant convinced that the latter argument is
valid. Indeed, there is no shortage of physicangxes of real magnitudes that are
defined by ratios of this nature. For examples tisi the case with the instantaneous
velocity (v = dx/ dt) of a body in classical mechanics, which is defibgdhe ratio of two
guantities §x anddt) that tend to zero; then again, the ratio/dfdefines the resistance
of a circuit no matter how small and| are. We shall not belabor this particular point
further, and we leave it to the reader to formdvig opinions, because we shall return to
this question in the context of the new interpietabf the theory of relativity.
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The third difficulty that has been discussed by variotkaas f) relates to the nature
of the quantum field in relation to the laws of motion.

Indeed, it is clear that the two proposed models ldavelassical difficulty regarding
the relationship between fields and quasi-pointlike pagticieact. As we saw in sec. 1,
this arises again because the proposed models relsérievéntual motion of the particles
that are associated wit# to only one congruenceL). In particular, Takabayasi has
emphasized the strange character of this restrictddnch shows that the quantum
potential is not a potential like the others.

This character becomes more striking if one remarkh,de Broglie, that everything
in this model happens as if the point-like particle is infagehonly by its quantum
potential proper (properly speaking, this does not constaateobjection since this
property accounts for experimental facts, ,
although it resorts to the “non-classical” I
aspect of the quantum potential). For
example, this is true when one realizes } >

fundamental interference experiments with A
two families of photons that are associated

with distinct wavesp andg' that are taken

in such a way that spherical waves that are B >,
produced by the slitAB and A'B' that

were made in the screens | ard are /1\ /1\
superimposed in space and time, in

conformity with the figure. If the fields I A B’
that are defined by andg’ are ordinary ' @’

fields then one might not comprehend why
the experiment shows that the photons that Fig. 8.
belong to the familg’ give an

interference pattern at' lthat definitely does not depend ¢gn(and vice versa), which is
explained only by assuming that these photons are irtfueonly by’ , and then only if

they are found in a region in which the figtds different from zero'}.

In our opinion, this last property is very important beeatisexhibits exactly the
insufficiency of the two models that we just discussé€tbviously, one may respond to
this only by perfecting them, and we shall verify laber that one may explain such
behavior effectively by the condition of passing to theory of the double solution,
hence, abandoning the classical ideas on the nature aflgmrand, conforming to
Einstein, assimilating them to singular regions (bulilah solutions) of the potentials
considered. The preceding discussion of the principttuliies that are raised by forms
| and Il of the causal theory makes no pretense of ekhguse subject. The study of
these difficulties— particularly the second — is underway, and may lead tleqigrg the
proposed models. Similarly, in chapter V we verify,tie context of systems of
interacting particles, that these difficulties raisew problems, which are also being
examined today. At the moment, as D. Bohm has eng#disthe models that are
associated with micro-objects in the causal interpogtanay not be considered to be

(°) Cf., D. Bohm,Progress of Th. Physidgapan), 9, 273 (1953).
(') Furthermore, we return to this difficulty in chap, IH the context of systems of interacting particles.
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definitive. The present interpretation presents just ¢haracter, and in my opinion-
this is a strength, not a weakness, and this suggestsns foealeveloping the particular
models that were studied in sectiorfR (

Before doing this, we shall first extend the models irstjoe to relativistic equations
for particles with spin. Indeed, we are doing this besauwgs till now, the perfections that
we have envisioned have not called into question the ofas®tions of the corpuscle
(L). We therefore proceed with that extension in tHievieng paragraphs, in order to
facilitate the ultimate examination of the theorytleé double solution.

8 4. - First, we briefly return to the Schrédinger equatioit applies to the wave:
= Rexp%.

The two field equations (J) and (C) may be consideréed@&uler equations that are
derived from the Lagrangian:

n* OP
L= —P{S+—(DS + V+8_mF}’

in which S designates the derivative & with respect to time. From this, one
immediately concludes that the momenta that are caalbnconjugate t&s andP arells
=-Pandll, =0, respectively. This gives us the following expresdmra Hamiltonian
density:

n* OP

which, when considered as a functionalS&End I, gives back equations (J) and (C) as
its Hamilton equations.
One then extends forms | and Il of the causal intésipom to the general Schroédinger

equation:
2
{Ei+i(zm—g,&j +eCD+V}¢ =0,
i C

in which we have denoted the general electromagnetit Hiethe quadri-vectdA, ®).
Indeed, (J) and (C) become the relations:

2 2
S+i(D s-£ *A} o+ v BR_g J)
2m (o 2m R

(®) We shall ultimately indicate some of these proposedifications.
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P+ div{ P(DS—E ”%/ r}=0 (C)

and it suffices to attribute the velocity:

V(xt):(ms—g"Aj/ n

and the energy:
E(x)=-S- &

to the particles in order to define the congrughgef possible trajectories (on which an
ensemble of particles will end up being distributeth the density??, as we shall verify
in chapter 1V).

The following step consists of establishing a nmotte a micro-object that
corresponds to the relativistic wave equation ofitdGordon. This extension, which
was proposed by de Broglie in 192, {s carried out without difficulty.

Starting with this equation, which we write in digssical form:

{(?a#—ggjj +mzcz}¢20, (1.10)

in which A, represents the electromagnetic poterdigiepresents the operaEdIn‘,E%j,
c

andu =0, 1, 2, 3 are the indices that denote the $paeeoordinates. If one sets, as
before:

= Rexp%s (P=R)

then, by separating into real and imaginary partsquation (1.10) one again obtains the
fundamental relations:
2
(aﬂs—g”Aj + n%é—th—RR:o Q)
(€)
0, {P(0“S-eAl =0

and it remains for us to interpret them. This rbayaccomplished by remarking, with L.
de Broglie, that the streamlines of equation (1.4@)y be obtained by attributing a
variable proper madd, to the particle, which is defined by the relation:

0,S- oAl § == M é=- 1 &+n?2,

() Cf., La Physique Quantique restera-t-elle indéterministe?
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which amounts to setting:

M,=m+om= m+)lc—?
with:
AQ=mc(y-1)
AR
= 1- 2=
y( d Rj
X= f
v2me'

which implies thayy? AR/R< 1.
One then sees that these streamlines are extremesl of the usual relativistic
Lagrangian, in which one has replageavith My. One therefore has:

o[" £dr =0,
with
L=-M,’\1-5° +§uﬂﬁé’ :—(mc+1—?j(—q,u’)”2+§ y A,

in which u, designate the components of the world-velocityt thaassociated to the
streamlinesl(). The components obviously satisfy the relations:

u :(aﬂs—g A’j/ ny:(aﬂ ere Aj/ M
and
u, W= -c.

This permits us to interpret the relativistic equiag (J) and (C). The first one (J) is
nothing but the relativistic Hamilton-Jacobi eqoatthat is associated with the classical
motion of a body in a scalar potent@bwith the coupling constant, namely:

(aﬂs—f A),jz +( m&A—QJZ =0.

c c
The second one (C) is nothing but the continuityagign that is associated with these
trajectories, namely:

a“s-S n

a,|RO—=C— |=
M0 m+AQr &

O ’
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in which Py = P / my represents the density in the proper system.
The equations of motion dnare then established without difficulty. In the alagen
of an electromagnetic field they become:

d
E(Mocuﬂ) =0, M,

or, more generallgF* = (rot A)*"):

d AQ _ € w_yau
mE{(Hm_(fj u"}— CLLF’” A0 Q.

The componentdX , W) of the energy-momentum quadri-vector are written:

and one finally recovers the Hamilton equations in tHagsical form:

dx _oH dP _ oH

dt  op dt ~ ox
with:

e
H:Pu'”—[,:l M.{.(mé.{_AQ
# 2| m+AQ/ ¢ '

The preceding considerations show that one may extengrdvious two forms of
the causal interpretation to the Klein-Gordon equatidmnch amounts to reducing each
micro-object:

— inform, to a point-like particle and a quantum figddavith:

IS
= Rexp —
6=Rex{ >
such that:

A;. This field is governed by equation (1.10).
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B:. The particle follows the streamlinegwith the world-velocityu,) with which it
initially coincides.

— in form Il, to a point-like particle and a quantum fi€dthat is defined by (1.6)
such that:

A,. This field is calculable by the intermediarydyfwhich satisfies (1.10).
B,. The particle follows the preceding lihe

As in the case of the Schrodinger equation, one the¢sthe motions are effected
classically in the aforementioned two forms under thituence of a supplementary
guantum potentialQ, with the condition that a particular initial condi that is
analogous to (1.7) be imposed upon the motions. In ordabkceviate our discussion,
we leave to the reader the task of agreeing that thiasateof the causal “model” to the
relativistic theory of particles of spin 0 adds nothingh® discussion of section 3, whose
conclusions may be systematically applied to thetivedtic micro-objects that we just
defined.

8§ 5. — It remains for us to extend the causal theotyg@ase of particles with spin 0,
%, and 1. When that extension was performed by the authan the basis of a
suggestion of David Bohm it presented several apparent difficulties becauseethes
particles are defined by spinors that have several coempsin

1S,
¢(n) = I:Q(zr) exp h '

which does not permit us to split the wave equation iribaed imaginary parts that are
easily interpreted.

We must therefore proceed differently. In order t¢othis, first recall a classical
property of tensor analysis:

Lemma If one letd,, denote the components of a second-order antisymmetsorte
that satisfies the following relations:

3,f, +a,f,+0,f, =0 (1.11)

o u
then one may always calculate the componkents a world-vectok , such that one has:
f, =0k, -0k,

in which thek, are determined up to the gradient of an arbitrary sdalaction S
(because one sees that if one $ets k, +0, S then the rotation does not change).

It results from this that if | am given the componehtsf a vector then | may always
uniquely determine a functidband a vectdk that does not contain a gradient, so that:
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{J# =9,S+k (1.12)
9,3,-0,3,=0,k -9,k =1, (1.13)

Indeed, the given af, determines thg, that satisfy (1.11). One may therefore calculate

thek, because of (1.13) and then ded8deom (1.12).
Having said this, we return to particles with spin

The spinors to which they are associated satif\ctassical relations:

nD,¢*a" - ug* =0 '

in which the a, denote the Dirac- or Petiau-Kemmer matrices, theD, denote the
operatorg, —igA,, and i and £ are the constantawc ande/7c, which we leave
undetermined.

Now introduce the magnitud@ that represents the expressieRi¢ ¢ / u in the

Dirac representation, for which:
aa’+ a’'a’= 28",

or —ig* ¢/ 1, in the Petiau-Kemmer representation, for which:

a’a’a’+ a’a’'a’= oI + a°I”,
and the quadri-vector:

sS'=¢"a"¢g.

By applying the preceding lemma, | may alwaysrefi functiorS and a vectdk ,
such that one has:

F a’p=G(0'S+K) (1.15)

because it suffices to repladeéwith Gs” in relations (1.12) and (1.13). Having done this,

one introduces a new spindrwith the aid of the relations:

{¢(ﬂ) =exp(iS /h )b, (1.16)

¢(*m =exp(iS /n )CD(*ﬁ)

and one transforms the express&r= ¢ a’¢ with the aid of relations (1.14). If one
extractsg andg” from (1.14) then one first obtains the identities:

5rarp = Zi(D’;¢*a”ap¢ ~4'a’a'D,p)
L
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that we shall elaborate upon with the aid of thesitat commutation relations.
Upon settind ., = ava,—a,a, one obtains:

1. For the Dirac representation’@” + a’a’= 257):
gra,p=_—— [2(D¢¢ 9D, P)+— 5 (@] ¢)}

or again, upon introducing the functiGihat was previously calculated:

pra,p =
2ig*d e h
. [aps{z 6}+{2¢ ¢(a P'P-DY D) + 859 9, Apm (1.17)

2. For the Petiau-Kemmer representation:
a’a’a’+ o°a’'d’= a°I” + apd”"
g a,p=— {2(D¢¢ ¢'D,p)+0, (@71 ,4)- Fvy¢aapay¢}

or again, upon introducing

c

. 2ig*p e h e
= 0,S5+— — (0, P D-P0 P
¢ ap¢ u [ P + &+{2|¢+¢( P P )

2¢ POy ¢F"V¢+a “ aH (19

Formulas (1.17) and (1.18) are interesting forfdo that they permit us to calculate
the componentk, in (1.15); we write these components in the form:

e
kﬂ_EAI+BI

in which P, denotes the terms in the {} in the right-hand sidiéhe preceding expression.

This result permits us to define the desired mdekupposing that the point-like
aspect of the micro-object that is associated witbinctiong is restricted to follow one
of the streamlinek that are tangent to each poingof

This hypothesis, which constitutes a generalizatbbrihe preceding hypotheses to
guantum trajectory and seems necessary in ordacdount for the experimental results
(in particular, the ones that relate to the statigrstates of the hydrogen atom), defines,
in the same stroke, the quantum forces.

Indeed, set:
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N (A ) (A )
0 2I¢+¢

in whichu' designates the quantiy in the Dirac representation ang/ i the Petiau-
Kemmer representation.
Upon introducing the unitary world-vectai(u, that is collinear withS(s, ) one
thus obtains the equality:
Moy, =0,S+ k,

which permits us to write the Lagrange equatiorthout difficulty.
They become:

2 (M) = D, (y M)
= cUPd,(d, S+ k)
=cwd,(0,S+ k)+ ch(@, k-0, k)
= U3, (Myu,) + cf (@, k -9, k)
ICGVI\/IO+CUB(6[;|$—6V l%)

from which one finally deduces that the point-ligart of the micro-object behaves bn
like a classical particle that is subject to a $aimentary quantum potential that may be
decomposed into:

1. An invariant potentiaMo.
2. A potential quadri-vectd?(P).

One then painlessly generalizes the preceding twaod of the model that are associated
with the individual micro-objects.
A particle with spin may thus be considered to be:

1. A point-like particle that is associated with a wauch that:
Ai. ¢ satisfies equations (1.14).
Bi1. This particle follows the streamlines with whitmitially coincides with a

world-velocityu .

2. A point-like particle that is accompanied by theesxed quantum potentidis,
andP that were previously defined in such a way that:

A. These fields are calculable by starting withave ¢ that satisfies (1.14).
B. The particle again follows a streamlibevith the world-velocityi .
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Here again, the conclusions of the discussion in @ecd may be applied without
modification. In our opinion, the models of micro-obgethat are endowed with spin
must therefore be developed in the sense of the doubleosoifutine wants to surmount
the difficulties that were previously analyzed.

8 6. — We complete the preceding considerations upon bmeatiynining several
properties of the streamlines that are associatedthgtfunctionsg.

In order to accomplish this we generalize the formalig the canonical equations of
motion in the space of special relativity.

Suppose that we write them in the invariant form:

dx’ _ow

dr - an, (1.19)
dp, _ oW

dr  ox

in whichdr denotes proper tim&Y is a scalar function that does not explicitly depend on
the interval, and thdx” are the component, dy, dz icdt (we have introduceiin order

to simplify the g, that pointlessly complicate the calculations), whedtisfy the
classical relation:

c’dr? = =) (dx')?.

One then sees that W is a constant of the movenheasiéed, if W depends on theand
the p,, and not on explicitly on proper time dhen we obtain:

dW _ W d% o Wdp _9 W6 Wa W W

= = 0
dr oxX dr dp & o0Xdp O0poadxX

on account of the preceding relations. From v deduces that the functidvix”, p,)
is a constant of the motion with respect to anyesys hence, it is an absolute constant
since it acts as a scalar function.

Formula (1.19) permits us to simplify the studytleé motions.

For example, in the classical case of a chargeticlgain the electromagnetic field,
upon setting:

2
e
W=—Wf:‘i/‘2( R 'ﬁj ’
one obtains:
dx 1 _e
?m(pﬂ )

namely:
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p: d_>(#+_e
K rn)dr c

as well as the usual equations of motion:

df_m %}:e(éﬁvﬂ),, i=1,2,3
dt{ \1-p? dt c

dl mc |_ = -

— =¢(E

o T—,@Z} e( EV)

with:

dif m dx, |_e. dx
dt| J1-p? dt ] c ™ dt’

One may use the operator notation in the case otlesrtivith spin, and notably in
the case of the Dirac equation.
If one takes into account the classical relationsarfF-commutative algebra:

i of
—(x*f=-fxX)y=——
o —
i of

E(pﬂf - fpﬂ):a7

which are valid for the symbdlwhenf is a function of the¢’ andp,, then one obtains
the following expressions for the equations of motion:

dx* _i B _
W—h(\Nx” XW) =[ W X]
dp, _ i
ar —h(WIO/, pW=[W p]

and, by analogy with the classical case, one fugbts:
. y e
W=-icY a (pﬂ—— Aﬁj’
7 c
which is the proper mass operator that corresptmtle wave equation:

a"(ﬁav—egjw im@=0.
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This gives the following equality for the velocity opiena

and for the velocity itself, we have the expression:

-icg a,p =<¢,ica, ¢ >= [d—&j :
dr

which furnishes the following values for the trrtinsional components:

" :d_)ﬁ -dr _ —C¢ a9
dt dt o
dr

The acceleration operator will then be:

d’x, . da,
——-=-ic .
dr dr
On account of the relations:
ih da, _ aW -Wa,
dr

and
aW-Wa, =-2icp,
one may then write:

ihda” =2a\W +2icp, ,
dr
namely:
2
i3 =0y
dr dr

from which one derives:

da, _(davj “Mwr
=-|—Y% | ehn )
dr dr ),
Therefore, one finally has:

. _Ai .
a, =—ichW‘l+ﬂ(%j en " DW?
2\ dr ),
and

2y
d—&:—icav =—czpv\/\f1+@(—da”j eh OWY,
dr 2 0
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whose first term is the ordinary velocity, since:

—czpu\/\flz—c,zp—_nicz: p/ m,

and the second term represents an oscillating menewhose frequency is given by:
2m,c* =hv/ 1- B*.

One then sees that the trajectorlgsdf the Klein-Gordon equation that correspondi® t
relations of L. de Broglie:

with:

dx.
o i=123

give us the mean trajectories of the trajectoriepanticles with spin; the latter orbit
around the former in a helicoidal motion that iirtkd by the preceding relations.

This precession effect, which furnishes
an intuitive representation of the Schrédinger
“zitterbewegung,” corresponds to the spin
effects that are associated with the relativistic
trajectories of the causal interpretation.

L Klein-Gordon

L Dirac

8 7. — We end this first part with several
considerations that relate to what we may cal
the hydrodynamical representation of ]
quantum fields. Fig. €

Numerous authors have studied this representatitimee context of the probabilistic
interpretation.

Indeed, one knows that one may make a fictitiomsservative fluid correspond to
any wave functiong that satisfies linear equations, and that thigdfikepresents the
evolution of the probability of existencg f for the corpuscle in space. This type of
“probability fluid” permits us to intuitively repsent the behavior of the cloud of possible
points that represent the corpuscle in the intéapiosn of Bohr. One may study them
directly by starting with the wave equations of @ctinger, Klein-Gordon, or Dirac.

The results that one obtains may be transpos#ktoausal theory (with a different
interpretation) because one sees that the precddidgpermits us to describe both the
behavior of the quantum field that is associateth whe waveg and its effects on the
corpuscular aspect of micro-objects. For examidestreamlinesl() constitute possible
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trajectories for that point-like aspect, and the feritet act on the streamlines correspond
to the quantum field in the second form of the causeaipnétation.

As Takabayasi'f) has pointed out, this representation presents thei@auditnterest
of suggesting possible generalizations of the field equations.

A. In what follows, in order to simplify mattersevihave systematically reprised the
notations that were used in the first part of the drapt

The hydrodynamical representation of the Schrodinger egudias been studied
since the beginning of wave mechanics by Madelung and Lratgi®&

The Schrodinger fluid is reducible to an irrotatioraidf (in the absence of exterior

potentials) that is endowed with a velocity potenSal m, a densityR?, and a stress
2

. AR : .
potentlal—;l——R that is equivalent to a stress tensor.
m

This tensor is furnished by the relation:

o _ RazR _0ROR :h_zpaz(logF;
“oml axXox oxoX) 2m 949K

. . . . \Y;
because the equation of motion in the presence @xgerior potentialV (Ki = —a—j

ox'
may be written:

0

0 0
m—(POV)+ m—( IAVY) = PRI K+—g, ,
at( |) an( |w K an ik

0 0 ( W* AR
Ok =Pl —=——= |
o0x ox{2m R

The continuity equation (C) is always satisfiedd an the absence of external fields
the total energy-momentum tensor of the fluid maynwitten:

with:

2
T, =MPY Y+ (PO, RD, P54 P,

in which mP\WV; represents the components of the energy-momentasot for the
2

motion of the fluid molecules aliél—(P‘lak P, P-9,AP represents the components of
m

an internal tension tensor.
The reader is referred to the original literatiaremore details.

(*% Progress of Th. Physic8, pp. 143 (1952).
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B. The generalization of the preceding considerattonshe case of the Klein-
Gordon equation was carried out in 1927 by L. de Brodfie énd ultimately was
independently recovered by Takabaya$i &énd the authory).

As before, one is concerned with a quasi-irrotationgd finoving under the influence
of a quantum stress potential that is equivalent tetifess tenso’” that is furnished by
the relations:

hz hz
g’ =(—j(R6"6” R-0" R’ F}z(—j B“0" (log P.
2m 4am
Once more, the fictitious molecules of the fluid ooty follow the trajectoried).
If one neglects the effects of the gravitationaldfitlen, upon denoting the Galilean

values ofg,, by &/, one also obtains the equations of motion in the forrargby L. de
Broglie %):

2 (Mocy,) =t (9, A-0, A)+ 8, M,

which is interpreted by saying that the corpuscles are ermtloute a variable masl,
and they displace under the influence of a supplemeqtemytum potentidy .

These equations are immediately deduced from the expnés$’ =0, in which

theT/ represent the components of a total energy-momergasot of the fluid, which
one may write in the form:
TA=TH

v (H)v

+T

u
M + 7’-v !

in which:
T(ﬁ)u =mByu'y

represents the energy-momentum tensor of the melecul

u
T(I v

=¢"[20,R0,R-¢€,,(0, R'R R R
represents the internal stresses of the fluid, and:

Tlfl = FﬂUFVU _lngﬂaFﬂg
4

represents the Maxwell electromagnetic tensor.
We shall now make an important remark:

) L. de Broglie,C. R.185 (1927) pp. 1118.
Progress of Th. Physickc. cit.

In an unpublished work.

) C. R.,185-380 (1927).
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The foregoing theory of the charged Klein-Gordon fluithy be obtained by
introducing just two variables: an electromagnetic paieA, and a scalaR, provided
that one imposes a gauge condition on this potentialighdistinct from the classical
relationd ,A“ =0.

Indeed, set, by definition:

e
0,A-0,A,=——F 1.20
,uA}/ vAz mc i ( )
with the gauge condition:
h* AR
A=—-C+—— 1.21

and the classical field equations:
a,F =Sppr. (1.22)
c

One derives the field equations (J) and (C) without diffycicase (J) results from (1.21)
upon setting:

A=r{0,5-4)

m C
and (C) is deduced from (1.22).

This signifies that the classical approximatiornhef Klein-Gordon theory agrees with
the new classical theory of the electrons that praposed by Dirac'{), because if one
makegi go to zero in equation (1.21) then one is leftwite Dirac relations:

AN =-C
_ e
G#A/ _avA)l __FC Fu
d0,Fm =Spar.
Cc

We return to this property later on.

Takabayasi'f) sought to introduce rotational movements intopireceding fluid by
using the Clebsch parametdrands from classical hydrodynamics.

One thus obtains a very interesting generalizavibthe attempts made by Dirac to
introduce effects that are analogous to the pragetlassical theory.

For example, if one sets:

V =0S+&n

then one obtains a generalization of the Schrodiragel Klein-Gordon fluids that
approaches the hydrodynamical representation oPthdi fluid (which corresponds to

(*®) Proc. Roy. SocA. 209 (1951), pp. 291.
(*°) Progress of Th. Physickc. cit.
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the two-component equations f@y that were recently established by Tiomno, D. Bohm,
and Schiller {). We shall not deal with questions of this sort in oscuasion.

C. The study of the hydrodynamical representationeftinac equation is obviously
more difficult because the corresponding fluids are eedowith spin. The study of
such fluids poses a large number of problems because orms imuoduce a
supplementary quadri-vectas that represents the proper kinetic moment. This was
notably undertaken by Lyor®f and, more recently, by L. de Brogli)(on the basis of a
classical theory of particles with spin that was depetl by Weyssenhoff9).

In order to define a fluid endowed with spin one introducalong with the
componentsli, of the world-velocity, an energy-momentum quadri-vegfothat is not
collinear with this velocity.

If one then defines two types of derivation with respet¢ime, namely:

1. The classical Lagrangian derivative that followspagicle:
d f="f=u"0,f
2. The derivation for densities:
D f=d f+fo,u =9,(fL),
then one may define an energy-momentum tefigbwith the aid of the relations:
T = gauﬂ,

which is represented (in the absence of stresses) lagynametric matrix:

g'u ¢
W wW|
c

The equations of motion then become:
0,T =D, g" =0,
because of the preceding definitions, relations to whigd may add the supplementary

condition:

Ds” =g~ d=T -7,

() Nuovo CimentoSupplement, no. 1, 1955.
(*¥) J. YVON,Journal de Physique et le Radiuh940.

(*) L. de BROGLIE La théorie des particules de spjn.
(*° J. WEYSSENHOFFActa Physica Polonica,947.
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which expresses the conservation of total moment of mame(orbital + spin) in the
proper system. This introduces a spin tes&bthat is defined by the relation:

__1 )
ﬂO__?uﬁg )

which gives, on account of the identityu’ = —c?

3 1 1
97 = 44U —guﬁuoé’ﬁwot“g &y

and also:
Sa'gUﬁ: 0.

If one then introduces the following integral quantitiesbynming in the proper system:

G :jg”dab
s7=[ ¢ ay
m, :'[/Jodwo

then one extracts the following relations from the pdény equations:

m=0
and
Saﬂlzs;ﬂzoa

which express that the total mass and total proper momeantel constants.

Weyssenhoff has integrated the preceding equations inrafiffecases, and has
established that in their proper system particles wiih gpe animated with circular
motions that are perpendicular to the spin vector, whichishes a very interesting
image of the their behavior.

The preceding theory has been applied to the caseedDitc equation by L. de
Broglie in the case of plane waves by reducing the tefi%bpf Weyssenhoff to the
canonical energy-momentum tensor of Dirac:

T = Z—IC W' ao'y -o'y aty).

Indeed, (on account of the fact that themust be collinear with the compone&sof the
current) these relations define componegfsand s, and permit us to apply the
Weyssenhoff theory to the fluid thus specialized.

One may generalize this theory without much diffictdtyhe case in which the fluid
is placed in an external electromagnetic field, butsivall not develop this aspect of the
theory here, and we shall return to it in a later work.
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8 1. - Following our program, we shall now begin to examine sanwe
complicated models of micro-objects that are relatedftat one calls the “theory of the
double solution.

This theory, which was introduced in 1927 by L. de Brod)igi§ quite interesting in
the way that it introduces concepts into wave mechahatswere proposed for the first
time by Einstein and Darmois in order to surmount thesadal difficulties that relate to
the nature of the laws of motion.

We shall develop this point. As we saw in the generabduction, the classical
model does not permit us to understand the character ¢f thes in a satisfactory
fashion, and presents genuine difficulties as welteéal, if one reduces the particles to
singular points in the fields then one confirms that:

1. They present infinite proper energies whether gravitationelectromagnetic.

2. The presence of such points signifies that the field teansa are not valid
everywhere, and may not account for the global evarlutif the fields that are
generated by bodies in motion. This signifies that most introduce equations
of motion for the singularities in order to obtain a ptete description for the
behavior of the fields.

There is more. The use of these equations obvioushstibastes only a
phenomenological description of the interaction betwberfields and the particles. In
particular, the experimenters who are scarcely inclined to agree on a mathematical
formalism— raise objections that Faraday expressed in these:terms

“| feel it very difficult to conceive of the atons matter that are assumed to be in
solids, fluids, and vapors, which are more or less stpédrfrom each other and
swimming in a space that is not occupied by atoms; | alsmepergreat contradictions
ensuing from such a viewpoint. | can hardly imaginedifference between a small rigid
particle and the forces that surround it. The matfearo atom touches that of its
neighborhood. Matter is continuous from one to theeiot Matter fills all of space, or at
least, everywhere gravitation extends.”

This criticism introduced a very important idea into tistory of physics, which may
be formulated as: There is no difference in naturedeen fields and matter.

Or furthermore: material particles are nothing but \@mnall regions in which fields
take on values that are large with respect to themabvalues.

Such a conception constitutes an important simpliioadf the classical model since
it reduces material substance to the notion of a figldeducing particles to localized
condensations of fields (called “bunched solutions” by t€iny that must obviously
behave like the point-like aspect of micro-objects. Theiportance has been
emphasized by Einstein, who sought to surmount the céshfticulties relating to the

! Cf. La Physique Quantique restera-t-elle indéterministe?
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nature of the laws of motion while developing them in frEmework of general
relativity. We shall reproduce his analysis becauseasdmt depend on the nature of
the field considered.

Einstein first remarked that if one reduces particlesirigular regions of fields then
only one system of laws the field laws- suffices, in principle, to describe the behavior
of physical reality since there no longer exists thamsdo separate fields and particles.

In the second place, one confirmsand this is a fundamental propertythat it is
impossible to develop such a theory in the framework oflith@ar equations that
habitually used. This is proved without difficulty becauséhe linear theory the sum of
two solutions of the field equations is again a solutidnmay therefore arbitrarily
superpose an arbitrary continuous field and a given pantisolation that represents a
particle without necessarily demanding a relationship Etwee solutions; this amounts
to saying that one may arbitrarily arrange the trajéedaf a particle in an exterior field.

For example, if one consider Maxwell's equations, wiaichdeduced from the linear

LagrangiarC = -1/4F*'F  , then one sees that one may always add a solutionstha

symmetric in ¥ (which represents an electron) and is aligned along rhitraay
trajectory for a given potential.

This analysis leads to the following conclusion: onetmmasort to nonlinear field
equations if one wants to deduce the behavior of the plartieolutions that are
associated with the particles from the general pragsedi the field.

Indeed, in the nonlinear theory, it is possible to addpanticular solutions to obtain
a third one only on the condition that they satisfy $aipentary relations. In general, a
given solution of particle type may be superposed with xdarier field only if its
trajectory satisfies certain conditions that ammparable to laws of motion.

As Einstein said: “In a theory of this type, the tagktle physicist consists of
discovering particular solutions to the field equationshi¢lv are associated with
particles) such that their agreement with the extdigtas leads naturally to the physical
laws of motion.”

In developing this idea, Einstein and Darmois have shianif one starts with the
theory of general relativity, in which the gravitationald is represented by fundamental
metric tensorg,, , which satisfies nonlinear relatiof,, = 0, then one may add a
Schwarzschild solution that is singular i Qivhich describes a particle) to a given
continuous exterior field only if the center of thatgsifarity describes a geodesic of that
exterior field.

Therefore, in relativity the preceding supplementary tmms, which express, in
summary, the compatibility between the singular fieldhef particles and the exterior
field, are precisely equivalent to the laws of motiofhis is a remarkable qualitative
result that constitutes in our opinion— one of the more important contributions of the
theory of relativity to the history of ideas in physichdeed, it suppresses the classical
duality between the laws of the field and the lawsnolvement that seemed irreducible
since the second automatically results from the fisfvided that one adopts a
convenient definition for the particles.

This discussion applies point-by-point to the causal thebmicro-objects.

Indeed, the individual models that one studies arendisBhed in the classical
manner:
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— quantum fields that satisfy the field lavs andA..
— Point-like particles that obey the laws of motBnandB..

One may therefore seek to generalize:

1. by associating the point-like aspect to the particulagudar regions of the
guantum fields,

2. by introducing nonlinear wave equations such that the trajestqs) of these
regions, which are defined W, and B,, automatically result from the field
equations.

This generalization constitutes precisely what one nallythe theory of the double
solution because it distinguishes:

1. wavesu that occupy a singular region, which permit a physicaladtarization of
the individual micro-objects and satisfy nonlinear wayeagions.

2. continuous wavegy that obey classical linear equations, which describe the
statistical behavior of micro-objects placed in theipaldr conditions.

Before we develop these notions, we must emphagiee timportant points:

a) As we have seen, it is impossible to interpret inear wave equations in the
framework of the ideas of Bohr. This results froma fact that their solutions cannot
be superposed according to the laws of the composifipnobabilities. Therefore,
they may not represent statistical phenomena in th& sense of the word.

b) The causal theory that we studied in the first part tigesthe wave equations
with the aid of trajectoried | that account for the behavior of the corpuscular aspect
of micro-objects. This process of quantization is irgieng because it may be
extended to nonlinear equations for which the usual pracedsthe probabilistic
interpretation are inapplicable, in general. For thissuffices to associate the
nonlinear regions of the field with point-like aspectsh&f micro-objects by choosing
them in such a way that they follow familidg ©f the particular trajectory.

¢) In the theory of the double solution this quantizat®ra consequence of the
internal structure of the micro-objects since the nmstif) result from the form of
the particular solutions that represent the partichesidered.

This suggests a physical idea:

The phenomena of quantization are related to the adtstructure of the individual
micro-objects, which is subordinate to the experimntabserved statistical
phenomena. One therefore generalizes the conceptiolsSnstein that deduce the
relativistic extension of classical mechanics from structure of the singularities that are
associated with the particles.
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From the viewpoint that has been suggested by Fock, quantizeems to be a
property that is associated with the individual micro-otge(and not to statistical
ensembles) that have been prepared under particular ghgsicditions, since the
statistical mechanics of the quanta that are assddiatihe objects considered is derived
in our model from the individual behavior of the isolateidro-objects.

8§ 2. — The examination of the theory of the double saluti@ay be undertaken in
various ways. We shall choose an approach that peusiiteeneralize the results that
were obtained in the course of chapter I. To simphiy discussion, we begin with the
scalar case.

1. In the theory of the double solution each micro-abjecrepresented by a
waveu = f exp(iw /1) that satisfies a nonlinear equation.

This wave generalizes the functigh= Rexp(iS/4) that was previously introduced

in the sense that it involves a singular region thatesepits the corpuscular aspect of the
micro-obiject.

2. As before, we thus have two possible interpretsition
|. — The micro-object is represented by a particulart®m u such that:
A;. u satisfies the nonlinear wave equation.

B:. The center of the singular region automaticallyoi@ one of the previously
defined trajectoried() due to the nature of the chosen solution.

Il. — The micro-object is represented by the quanturd f@that is calculated frorh
(instead ofR), which presents a singular region (the singularity e potential
corresponds to the singularity of u such that:

A,. Q may be calculated from the preceding particular salutjovhich satisfies the
nonlinear equation.

B,. The singular region also follows a trajectdry. (

The interpretation that we choose to represent tberobject will obviously depend
on the exact form of the nonlinear wave equation.

Here, we are presented with a first difficulty: Osees that in any sort of linear
theory there is an infinitude of possible wave equatiand, it is hard to choose between
them.

In the absence of physical criteria, one reduced toujabisiy one directly or
deducing it from more general considerations, which we mrawwew.
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For example, one may, with Roséhdnd Finkelstein®, start with the Lagrangian:

1 v * * *
£=—ZF" F, +(D,u)(D*u)+0o’ud,

in whichD, =0, —ieA represents an operator that contains the total eleagoetic

potential (and not just the exterior potential), and Idok spherically symmetric
solutions of the fieldi and the potentigh that behave like particles.

More generally, one may start with a nonlinear etentrgnetic Lagrangiahg (of
Born-Infeld type), and add a generalized scalar Lagrangjan

Ly =L, (Klein -Gordon)rl_z/ au §+--

in which Ly (Klein-Gordon) denotes the expressiopu D*# u* + dquu* (g o, y, etc.,
represent arbitrary constants), and seek to solve the geoblem.

The study of these equations (as well as the equati@isgeneralize the Dirac
equation) is quite interesting from the viewpoint of thesal interpretation. A number
of the results that were obtained without interpretaby the aforementioned authors are
indeed susceptible to being transposed into the causal th@erghall discuss them
gualitatively later on. However, we must emphasiee difficulty in the mathematical
problems that are raised by such equations, whose ana@yill in its infancy. This is
why de Broglie {) and myself have taken a different approach from thginning,
namely, the approach of seeking to deal with the genbembhcter independently of the
exact form of the equations used.

In the absence of selection criteria regarding trecehof wave equation, one may
indeed ponder the difficulty just pointed out by posing thieding question:

What conditions must the solutions of nonlinear equatiatisfg in order for the
singular region to behave like the point-like particlest twere introduced in the causal
interpretation that was defined in the first part of thapter?

The response to that question obviously rests on a mentanber of general
hypotheses that relate to the properties of equationthanmthture of the solutions used —
hypotheses that one may not directly juséfpgriori.

We postulate them provisionally in the form of conditiothat the completely
nonlinear theory must satisfy. We therefore suppoge tha

1. The functionf is governed everywhere by a nonlinear equation that retinites
usual linear wave equation wheris small.

2. The singularity ofu is contained in a small region of radiug (that has
dimensions of order the classical radius of particiasyely 10" cm.), so that the
nonlinear terms play a role in thaterior of the region andu satisfies the
preceding linear equation in igxterior (see figure).

(®) RosenPhys. Reviewg5 (1952).
() Finkelstein Phys. Review83-326 (1951).
(%) La physique quantique restera-t-elle indéterministe?
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Fig. 10.

3. This functionu may be written in the form:

- LW
u= fexp{l hj (2.1)

=W+ ¢,

in which ¢ denotes the previously-introduced physical wawkugns a wave function
such that:

a) Up + ¢ satisfies the nonlinear equation everywhere.
b) uo satisfies the linear equation in the exteriorhaf surfac&’ of radius s.

c) One hasu= ¢, so @ > U at a distance from the center of that singularoreg
(forr >ry).
d) u=uw inthe proximity ofro, SOUy>> @.

One immediately sees that these hypotheses peisnio describe a wave with
singularity that behaves like the desired modelviled that one imposes certain
matching conditions- called guidance conditiorsonu, and¢ in a neighborhood ab;
these conditions must be ultimately deduced froamibnlinear theory one uses.

Let us look at these conditions.

To establish them, we shall generalize what LBdgglie has called the “guidance
theorem” with the aid of the following lemma.

Lemma Consider a conservative world-fluid of scalar signp and world-velocity
vy, i.e., such that one has:
g =
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at each point, with:

aﬂs"zo,

in which s denotes the world-current, and study
the motion of a bump that displaces in this fluid
without changing form.

By “bump,” we mean a zone such that: d¢
n(a;)
1. It is very small and enclosed by a o= const.
surfaceS’, in which one hag = const., Fig. 11
and displaces as a unit in the course of its
motion.

p takes on values there that are very much larger thagxiernal values, so that
one has:

p _
dp!ox, ¢

in a neighborhood &', which amounts to saying that the boundaries & th
bump are of pole type.

At a small distance fro® one hagp = g, whereg andv; denote that values that
p andv take on when there is no bump; these values qunessto the regular
part of the fluid being considered.

Having said this, we let) (i = 1, 2, 3) denote the direction cosines of thet uni
vectom that is a normal at an arbitrary poiAtofS’, and letdé denote the normal
displacement of a point of the bump in the course \eery small time interval, where the
7 symbol refers to an ordinary space vector.

Sincep = const. o1%', we get:

4c%P i + 9% 4t =0 i=1, 2 3,
ox' ox'

which gives a normal velocity of displacement edaoal

_dé_ -aplat

sy

We then write the equation of continuity on the tary ofS' in the following form:
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0p Vv, 0p g (Vv -
LA, , % | M=o, with v,V = 1),
ot v, 0x paxi (VJ ( " )

5(2].

If we take into account the hypothesis that was made) ithen the second term
disappears, and one obtains the relation:

and divide by:

U
v Dap 0.
ap 2 ox”
Z‘[axij
which may also be written: _
vVa —wv = 0.

If one then remarks that one hgs= Wi at every point of§ in whichwdenotes the
velocity of the singularity, then one finally obtaj by substituting in the preceding
equality:

LV

v’

w

which defines the velocity of the bump in the fluid

One then sees that the bump behaves like a patiteias restricted to follow one of
the streamlines of the regular fluid that corregjsono g and v; if one has the
fundamental equality o8 :

VA =vH (2.2)

which generalizes the guidance theorem of L. degiB¥o

If the dimensions of the bump are weak with respedhe variations of; then it
obviously suffices that the equalities (2.2) aréisfad in the center of the singular
region.

The application of this lemma to the case of thHeirkGordon equation and to
equations with spin immediately defines the guidacenditions.

A. If we first start with the scalar equation:

(DvDV_/j) U: O,

which is valid outside the singular region, thepolor hypothesis, one may write:

u= fexp{%j:uowﬁ
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=Uy + Rexp(%j :

in which Rexp( IS /h) also satisfies the wave equation with the extguo&tntial.

In the hydrodynamical representation, the functilhdefine a current with a bump,

and the functio will define what we called the regular currenthe lemma.
One will therefore have:

s = fz(a"a)—£ Nj
c

§'= Rz(a" S—% Aj,

from which one deduces that the guidance conditiag be written:

dw-En=ors-£ p (2.3)
o c
so that:
w=S+ const., (2.4)

which signifies that the singular wave must haweghme phase &as the regular part,
up to a constant.

One therefore recovers precisely the conditiohdha calls “phase matching,” which
was introduced by L. de Broglie in the causal iptetation.

As he himself has emphasized: This condition gdizexs the fundamental idea that
guided the earliest research in wave mechanicsubecd# amounts to considering a
corpuscle as a small clock that must remain in @kath the wave that accompanies it.

B. If one then starts with the equation for mdes with spin:
(a’Dy-)u=0,
and one further sets=up + ¢, in which the functions, up, and¢ represent spinors, then

one further obtains the following relations withethaid of the hydrodynamical
interpretation:

+

14 + + u auu
s =u'a,u=u'u—
u‘u
= (U u)v’
and
v + +al/
s =prp? 90
()
=(g @)V,

which permits us to write the guidance conditiosis a
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u'a’u ¢ a’¢

U o (2.5)

With the aid of relations (1.15) one painlessly verifiest these relations generalize
formula (2.3), which corresponds to the scalar case.

Equations (2.3) and (2.5) constitute the sufficient cantitimposed on the solutions
u of the nonlinear equations in order for them to reptesgro-objects.

Later on, we shall go further and show that theyats® necessary.

In a work that will be ultimately published, Fer hascasted in showing that a
singularity of the pole type that is a solution to theikcGordon equation necessarily

follows a trajectory that is defined BYyw+&cc A . One concludes from this that

condition (1.3) is indispensable in order to recover tla¢ion (L) that was previously
associated with the causal interpretation.

The calculations that we must do may be performddllasvs:

If one represents micro-objects by particular solgtiof nonlinear equations that
satisfy the guidance conditions then the laws of mot@sult naturally from the field
equations.

As D. Bohm remarked, in principle, this permits us to supdtessnitial conditions
on the velocities that were criticized by Takabaysse(D, first part, last section).

8 3. — The theory of the double solution presents anotheméage: it permits us to
comprehend why the particles are influenced only by thepegravaves, as we pointed
out in the first chapter (see D of section 3).

We reason with just two particles because one paiglessénds the results to the
case ol objects.

Consider two micro-objects of the same nature tletdafined by two waves;, and
u. Outside the two singular regions these waves sighasatisfy linear equations.

To associate waves with real fields
amounts to saying that the total field will
be defined at an arbitrary poift by the
sum of the preceding waves, namely:

u=u; + Uy

]

| say that the two singularities continue to
be displaced as if they were being guided
by their particular proper fields uniquely.

Indeed, start with the equations for
particles with spin in the hydrodynamical
representation of the fields. The total Fig. 12.
current will be described by the
expression:
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S'=ua’u
=(u+u) a’ (u+w)
:p\/‘”
with:
p=u‘u
VA = u'a‘u
utu

From the guidance theorem, the motidnsand L, of the two singularities will be
determined by the values taken\pynS andsS, .

Now, from the hypotheses that were made in theeggliag section one sees that as

long as the singularities are separated by distarcg:) + ro2), one has, for example, the
relation:

(U +,) @ (U ) Uy, _ 'a"g,
(u, + U2)+ (U, +u,) U1+U1 ¢1+¢1

which signifies that bump 1 follows the trajectoby that is associated with the
continuous par, of its proper wave in the total field.
Therefore, the same is true for singularity 2 (Q.E

If one wants to use a physical depiction then setbat everything happens as if the
waves that are associated with the particles wgserposed in space without influencing
the particles (except by the intermediary of thassical fields that are related to the
particles) with each one piloting its proper sirayity.

This result is interesting because it suggestsethtdeas that are capable of being
developed further.

a) The first one, which is attached to relativistioitary concepts, amounts to
considering all of the micro-objects to be singtiigs in unique quantum electromagnetic
gravitational fields that are defined gy,, A", andu.

Naturally, this is possible only if one may accofor the quantum structure of all of
the micro-objects with the aid of just one fiald One then sees that if one wants to
account for the effects of spin then it is natwoasuppose that the fundamental quantum
field is the Dirac field that is defined by the fecbomponents spinors. However,
conforming to the ideas of L. de Broglie, one maganstruct any micro-object with the
aid of particles of spin 1/2.

In this schema, the only elementary micro-objedls be charged micro-objects of
spin 1/2, and all of the other ones will necesgdrdve a complex structure and might
possibly be decomposed into particles of spin 1/2.

The set of micro-objects will then be represerigd unique fieldu, which may be
decomposed at a distance into sum of waves th&fysahe linear Dirac equation,
namely,u=u; + U+ ...

We shall not develop this concept here since isdimsyond the scope of our subject.
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b) The second idea is that from the process of devedajie preceding calculations
it is possible to build a foundation for a causal thewri\ micro-objects in interaction
that is based on the idea that one may account foa¢hel motion of the singular
regions by associating a proper waygthat propagates under the influence of classical
potentials that are associated with the other particss theory has already led to a
certain number of results that will be discussed aptér V.

¢) The third idea is that the wave functian describes the structure itself of the
particle, at least outside the surf&e The study of these singular solutions of the linear
equations is therefore likely to furnish physical informatabout the behavior of the
particles in the neighborhood of the singularities.

From this perspective, a certain number of result® H@en obtained at I'Institut
Henri-Poincaré by L. De Broglie, Fer, and Petiau, irtipalar, results that succeed in
giving possible solutions faup in particular cases. These results raise the pbigsiti
proving the existence of some solutions whose possibléerges has been in doul) (
since the beginning of the work by the author on the thebthe double solution. We
summarize them briefly:

— Petiau has calculated possible valuesutoin the case of the particle at rest in a
proper reference frame and in the absence of an ekfeslida we shall give his results.
For the Klein-Gordon equation and the Dirac equation:

1. We start with the Klein-Gordon equation, writterihe form:
(pg = P* —mge®)uy(x,y, 2,t) =0, (2.6)
and seek to determine the formugfin a proper reference frame in which the singularity
is centered at the poirg, Yo, 2.

If one supposes thap is of the form:

e% mec® (t-to)

Uy = 9(X=Xy, Y~ Yo, 2~ Z)

in whichg is independent df then one finds, by substituting in the wave eguat

Ag=0.
One then has various possibilities:

— If one considers a corpuscle as possessing sphssioametry in the proper
system, and one sets, as usual:

() In particular, by Rosenfeld in the work: de Louis de Broglteysicien et Penseupp. 57.
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X=X, +rsindcosy
y =Y, +rsindsing
z=12,+rcosd

in which ¢ refers to an angle, and no longer to the regular partas well as:
Y"(6,¢) = R"(cosd )™,

then the general solution of equation (2.6), when givendistance and presenting local
singularities, may be written:

Al o (t-1t)
u(x y, z 9= Q’LZW Y'©@.9)| € :
Im

in which theA"™ form a series of structure constants that charaeténe nature of the
corpuscle.
By the Lorentz transformation:

mc’t =at' - '

m,c’z = aZ' — pct’

[2' -z —v(t' - t;)]°
1- 37

SEICEPA R VAL
7 -7, - (' —t})

J1- 53

cosd' =

' =¢

one obtains the general solution:

! ! I A(Iym) ' i UL Y -
U (X, ¥, 2, t, %, %, & 3)= Q;+ZF V@ ¢ )| Eaoeb)
I,m

that describes the motion that is associated withssical plane wave.

— By contrast, if one considers a singularity that pesseshe symmetry of an
elongated ellipsoid in its proper system, and one takexigi©Ox that is parallel
to the symmetry axis of the localized corpusclgab z,, then one may write:

X =Xo+ashzysinfcosg¢g
y=Yyo+ashnysinfsing
z=7 +ashncoséd
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and the equatioAg = 0 becomes:

i+cothﬂi+i+cotgi+ 1 + 1 0° g=0
on' on 06? 00 \sin?@ sk’n)og? ’

which admits the solution:

9(6, 1, #) = T(6) H(rp) €™
in which:

T(6) = A" [R"(cosf }+ B"Q"(co® |
and

H(7) = G"R"(chn)+ B"Q"(chy),

andR™andQ™denote Legendre functions of the first and secgpds

The general solutioniy , which is bounded and has a localized singulamtgy
therefore be written, in the proper system:

Uy (% ¥, Z 9 =[G, + 3 A™P" (cod )G (cly ¥” | €Y

It presents a logarithmic singularity along thersegt ¢ a,+ a) that corresponds tg =
0.

If one passes from th@XYZT system to the system of the observer by a spatial
rotation that make®Z point in the direction of motion and a Lorentawfrmation then
one sees that the singular segment will give aetpae segment that is characterized by
the invariant length & which amounts to introducing a fundamental lenttat is
associated with the dimension of the singular negio

2. As far as the Dirac equation is concernedaration that we classically write:
[Po+ (p—a) + mecal Vg =0 j=1,2,3,4, (2.7)
one may look for solutions of the form:

mec? (t=to)

uoj(x’y’z’t):gi(X_Xo,y—yo,z—zo)e% |

in which theg; do not depend oh
If one sets, as usud,, g, =9, 9.,9, =92, (i =1, 2) then the wave equation will
give:
2mycg® +(po)g® =0
{(pa)g(” =0

as well as the relations:
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AgY =0
1
g® = -2 mc(po)g®,
which admit the general solutions for a spherical corpuscl
in 1 m m
%:zmﬁlﬂ.ﬂa—m+nﬁk m 4" - 4"

|h m+ m m,
0 :2—I’T[)C r|+2 |+1l[(I %I ) - él )]

(Im)

0, =2 Y"(O.9)+

(Im)

0, = 2O ¢

which leads to the expression:

1

nfzond]

xK¥+m%qwewwqﬁdUﬂ¢ﬂwwwww

Uy (X, Y, 208, %00 Yo Z o) =

that is associated with ordinary plane waves.
Similarly, Petiau has found the corresponding sohst for the cases of spin 0 and 1.
The solutions are obviously valid only in part@utases, but there do not seem to be
any difficulties, in principle, associated with &bructing them in the general case, in
which the lined. are associated with variable fields.
3. For example, FefY, with the goal of constructing L
a theory of light with the author of this work),( has
studied the scalar equation: A

>

Ou=0.

If one looks for solutionsu, that are constrained to

follow a trajectoryL that is described by a poiAas a Fig. 13.
function of time@with a velocityv that is taken between

a > 0andw< 1 then one finds:

() C. Rendus, 238, no. 5, pp. 567.
(") Which will ultimately be published.
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U (M, 1) :j;w(e)w do

in which the functiong/ ) anda(6) are regular complex functions that are subject¢o th
conditions:
é =0 outside of the interval (Qy > 0),

_(du
w(B) _[dfl’ wbounded,

in which 7 designates the unique valueéfor which:

c(t—1—-r(7)=0.

The expressiony is interpreted by considering to be a signal that is emitted in a
recurring fashion from the poiAt, and wis a property that is propagated by that signal.
For example, if one set&»)=e and yu=9
then up reduces to the Lienard-Wiechart
potential of the moving electron.

ug 4. We conclude this section by
reproducing a calculation of Petiau that
U2 shows precisely that the consideration of
singular functions is apt to lead to physical

consequences.
v/ of VY R r This calculation, which is based on the

preceding calculations and a suggestion of
the author, amounts to supposing (as is
physically reasonable) thatiy, must be
annulled at a distand&, from the center of

Fig. 14

the singularity.
Therefore, if one starts with the Gordon equation:

[P} - p*-m ]y xy zt=0,

with:
R) = +Ei
c ot
PX :—ihi
1)

and one setg, = g(Xx, Y, z)e%” “in which 4 may be different fronm,, conforming to the

guidance formula (one may interpret this as asigproper inertial mass), then one finds,
for to> my, that:
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2 _ 2C2
Ag +%g :O’
or:
Ag + A’g=0,
with:
AZ — ﬂg _mgcz
_—hz _
As before, we then set:
g(x ¥, 9= d(n P(cosd )&
so that:
0° 20 (I +12)
— e+ A - '(r)=0;
L?r2 ror r }g()
hence:

G0 = [ A, 00 B 00 |

The functionsiJ (Ar) are regular at = 0, whereas the functiOﬁ/rlx J_(H;) (Ar)are
r r 2

Jr
singular.
For example, we have:

1 21 . 1 T( sinr cos
—J.(r)=,|—=sinr —J.(r :‘f— —_—
Jr 5() Tr Jr 5() 2( re r j
1 2 cos 1 T( cox ST
—=J. (nN=]-— —J3r=/————
\/F_E() mTor \/F_E() 2("2 r j

2
If one then annulsipy on the boundary of a sphere of radiyys /76—2, in whichz is a
mc

number of order 1, which amounts to saying thatdingensions of the singularity do not
exceed the dimensions of the classical radius atictes, in conformity with
experimental results, then we shall see a relabetweens, and my appear that is
analogous to a quantization of mass.

Indeed, this hypothesis amounts to writing thatiehs:

'J—(|+%) (/] R)) =0

or

eZ

‘]—(|+%) (An n’bCZ) =0,

which leads to the equalities:
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eZ
m,c?

2.4
Fi? =B

- :8|(S)

An

when one considers the singular solutions, for exangpie ill obtain analogous results
by studying the regular parts). One therefore has:

22_22_2202712 (92
HoC —Mm,C” =m,C F? (B")
or
a?
2 = ms{u?wf ﬂ
with
_hc
a—e—z,
so we have, approximately:
a
Ho =my— Y.
°n

If one attaches the radius to the first (1]_%1;) then one makes a possible mass

correspond to each valuelofFor example, fok= 0 one has:

o _ m
5Y = (2S+ 1)5 :
namely:
a m
=m,—(25+ 1
,uo mo n ( )E

with S=0, 1.

Physically, this calculation, which is gross an@mpdmenological, may be interpreted
by saying that if one restricts the singular pdrthe waveu to be annulled on a wall of
dimension &, then one sees conditions appear for supplemewpaapta that might
correspond to the mass spectrum of the elemengatiglps.
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8 1. — Before looking into the statistical problems,sheall develop one last aspect of
the causal theory of micro-objects:

It is obviously not possible to pretend that the “moadéithe double solution that we
just summarized presently constitutes a complete thearedifice that is capable of
solving all of the questions that were raised by quantuemgmena. Such as that is, it
nevertheless presents a remarkable characteristiaveAsvill verify in chapter 1V, it
permits us explain quantum statistics in the framework téld theory with the aid of
deterministic motions that we have analyzed (which ndyuysablong the classical ideas).

Now, if one compares this viewpoint with the ideas thate advanced by Einstein to
surmount the classical difficulties that were indéchin the general introduction then one
sees surprising analogies appear.

It is clear that the theory of the double solution,chihwvas put forth by L. de Broglie
in 1927, rests on a physical idea that is identical toidbas that inspired the work of
Darmois, Einstein, and Grommer in the same epoclieédd, in order to develop the
theory of General Relativity they considered the fiehdl #ahe particle to be different
manifestations of the same physical reality. They atsociated material particles to the
singularities of fields, which were constrained to follawerld-lines that correspond to
the dynamics of general relativity.

As a consequence, the two theories rest on idemticedepts that relate to the nature
and deterministic behavior of micro-phenomena.

This agreement suggests a new path, which has been undxpfotdl now, that
might effect a synthesis between Quantum theorylamtheory of General Relativity.

In what follows, we shall try to examine it, withaaaking any pretense of arriving at
a complete or definitive solution of a very difficuliotem.

For this, we start with the theory of General Reilgt and we analyze two
successive versions of it and summarize their essehtiaents.

l. In order to resolve the difficultied)(that relate to action at a distance, A. Einstein
first disrupted the framework of the classical scheméile still preserving the concept
of a real external world that is independent from theeoler, he boldly abolished the
classical distinction between spacetime and field& wie benefit of a non-Euclidean
spacetime that is described by a Riemannian geometry.

According to Einstein, fields do not constitute rpaénomena that are localized in
external spacetime, but they are a part of it, ancdespand, in summary, to the objective
properties that define the natural geometry. For exampleis theory they,, () must
play the usual role that they inherit as gravitatiomaéptials.

Nevertheless, in an early version Einstein maintathedclassical duality between
fields and matter, which he further defined as an assgmldé particles that were
embedded in the preceding “medium.”

() Which were presented in the general introduction.

(%) Starting now and up till the end of the chapter, werrtife reader to Appendix | to find the meaning
of the symbols used. We therefore simplify the presentdty reducing the argument to its strict
minimum.
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Such a model obviously suppresses the notion of actiardatance. It reduces the
universe to a three-dimensional substance (of spatial typ@erpetual evolution in
which the material bodies swim. The bodies and thistanbs continually interact. Its
successive forms may be described with the aid of admouensional spacetime in which
the particles follow well-defined world-lines that gerizeathe classical trajectories.

Such a model obviously simplifies the search for the ¢lasses of natural laws that
we described in our General Introduction.

The initial choice of a particular geometry thatregsponds to experiment determines
the value of the fields that represent it. For examihle lawR,, = 0 defines the nature of
the gravitational field.

In a presentation of relativity that is very widesplkeane then postulates that the
bodies follow geodesics of the external spacetime, hwhimis defines a relativistic
dynamic that permits one to correctly describe the Wehaof the bodies in the
gravitational field.

The relativistic physicists have even complicated geemetry of the medium in
various ways in order to introduce the electromagnetid.f For example, one may start
with an affine geometry and, with Cartan, associageelectromagnetic potential to the
torsion of spacetime; we shall return to this paréicploint later.

This model is obviously deterministic since, as a studh®fCauchy problem shows,
the givens of initial conditions on a space-like surfagffices to determine the later
evolution. Nevertheless, it does not suppress theicdhshiality between the laws of
fields and the laws of motion since the fields that diescthe behavior of the type of
ether that the matter lives in do not account forggavior of the particles (which leaves
the essential conceptual difficulties of the clasdicabry intact).

[I. The relativists attacked these difficulties insecond version of the theory, a
version that one may call the general theory ottingig. It amounts to abandoning the
preceding definition of matter and substituting the ided particles are singular regions
of spacetime that continually agree with the extere# f

In a series of remarkable memoirs, DarmdjsKinstein f), Grommer ), and Infeld
(°) have showed that the matching conditions lead toefagivistic laws of motion (by
reason of the nonlinear character of the field equgtions

The schema is found to be simple in the extreme:urdat reduced to a unique
spacelike substance that is geometrically describable@meins particle-singularities.
This substance constitutes what one may call mati®rcantinuous part forms the
material field and its singularities represent particlesthis framework, the field and the
particles are different aspects, or, if you prefer, mitstmodes of existence of matter in
motion.

The general theory of relativity is therefore basedaonnique substance whose
continuous evolution may be represented by a four-dimensispatetime. This
evolution is calculable with the aid of the laws of theticular field that permit us to
describe its behavior by starting with well-defined inidahditions. The corresponding

() G. DarmoisMémorial des Sciences Mathématiq(&826).

() EINSTEIN and GROMMERGCit. Preuss. Akad. Wisd.(1927).
(°) EINSTEIN and INFELD Avoir. Math.,41-455 (1940).

(°) INFELD and WALLACE,Phys. Rev.57-797 (1940).
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model is therefore essentially deterministic and previdesimultaneous description of
fields and particles.

Here, we recover precisely the essential ideaseofittuble solution. It thus seems
natural to seek to introduce micro-processes by looking feeva definition of micro-
particlesthat furnishes the continuous motions of the causal interpretation instead of the
classical relativistic motions.

More precisely, one knows that a simple definitiontlee singular regions that
corresponds to a static symmetric solution of the fiedgiations leads to classical
mechanics. It therefore remains to find out whethds ipossible to discover more
complicated solutions of these same equations thatdeadmplex classe4 ) of motion
that are necessary to account for quantum phenomedma.amounts to representing the
corpuscles as the singularities of the metric of sfraeethat will be accompanied by a
particular gravitational wavelike field of which it ispart (in which the waver and
Planck’s constant intervene).

According to this idea, the desired synthesis comesmdo solving the following
mathematical problem: give elementary particles aiquéat singular definition that
satisfies relativistic unitary equations and furnishes ridgedtories that are suggested by
the theory of the double solution as their laws of nmotio

8 2. — The application of geometric theories to physicesaiwo essential questions:

1. One must first choose from the infinitude of possilg@cgtime metrics with
affine connections that particular spacetime that weo@ate with actual
spacetime.

2. One must then determine the geometric tensors thegspmnd to physical fields
(gravitational, electromagnetic, etc.) in this framekvand to the real phenomena
that we observe in nature (particles, etc.).

The first question is solved mathematically by giving @cpdure for calculating the
geometric entities that characterize the spacetimeiene. In the unitary theory, and
in the case of affine geometry this amounts to determiniieg coefficients of the

connectiori, . This may be done in various ways. One may start, resefin did in his

final attempts, with a variational principle that invadvan invariant Lagrangian that is
constructed by means of these quantities. One maygaleothe field equations that
permit one to calculate these coefficients directly.

The second question consists of choosing geometric ititefs of the physical
guantities that one studies experimentally that behkgethese quantities in the chosen
spacetime ).

Obviously, one may do this only by appealing to experience patfticular, it is
evident that the geometric possibilities are sufficienhst that it is not possible to
determine the natural geometry and the entities thatseprehysical quantities priori.

(") For example, this is why Einstein, by starting with ianfann spacetime subject to the conditions
R, —1/2g, R=0 has shown that thg,,, when considered as gravitational potentials, fieus to

explain the law of universal gravitation.
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In a schema of this type, one must proceed by generatizngxisting theories and
seeking to deduce the consequences of experiment at gacHrsthis context, it seems
that the introduction of trajectoriet)(and the model of the double solution into the
theory is likely to furnish a supplementary control modeone accepts our viewpoint
then the theory must contain solutions that beh&eethe micro-objects of the causal
interpretation.

8 3.— In order to mathematically develop the problem raigexshall put ourselves
in the framework of the “naive” theory of general ref#yi that was developed by
Einstein before the recent extension to the relaivistitary theory. This step obviously
presents the logical inconvenience of introducing physicadotsha priori, without
specifying their geometrical significance. They neved$®lhave the advantage of
applying to the very general field equations that mostlyespond to the Galilean
approximation of the equations that were obtained in tihéegb of the unitary theories
that have been envisioned up till now.

On the one hand, and in the absence of a universallgnmzea unitary theory whose
validity has been experimentally demonstrated, wereiore avoid a number of
discussions that are foreign to ours (for exampleptkeise physical significance of the
geometrical entities that are derived from the afinanection), which, in our opinion,
reinforces the importance and the significance oféiselts that follow. By reason of the
analogies that we just pointed out, one may, in priaciptegrate them in the context of
a unitary theory of the type that was recently consdiéy Einstein and various authors.

The simplification thus obtained facilitates thegarch and will not harm the limited
objective we have proposed because, at the momesgrves only to establish the
possible existence of particular solutions that are capahileproducing the classes of
motion () that were introduced by L. de Broglie, D. Bohm, andatthor in order to
furnish a causal interpretation of quantum theory, butécontext of the relativistic
theory this time.

According to Einstein®}, physical spacetime constitutes a four-dimensional Rigm
manifold (V4) that is defined by a fundamental metric tergpr

The determination of physical space is then obviouslycefte by choosing a
tensorial system of partial differential equations tiaits the generality of that tensor
and relates to the energy distribution of spacetinag¢ is generated by the motions of
matter.

As one knows, Einstein was led to these equationsdimig for generalizations of
the Laplace-Poisson equatiof) that were compatible with the usual conservation
conditions. We shall write them in the classicaht:

Sup=XTap (x = const. =87m)

in which Sz and T,z are two second-rank symmetric tensors.

(®) We shall now follow the “naive” presentation oéttheory that was carried out by Lichnerowicz in
his course at the Collége de France. The reader isa@f® that work for more details.
(®) Which determines the Newtonian potential.
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For Einstein, the tensd®,;z, which generalizes the left-hand side of the Laplace-
Poisson equation, must have a purely geometrical sigmeicthat is characteristic of the
structure of the Riemannian manifold considered. It foezalepends og,, and its first
and second derivatives, and must satisfy the consemvaqjioations:

s¢, =0.

One may then show'% that the only tensorS§,; that satisfy relations (3.1) may be
written in the form:

Ry =5 Go(R B,

in which k designates a cosmological constant that plays aawmle in macroscopic
problems. If one neglects it in the case of intetestis, then one may write the field
equations in the classical form:

1
Raﬁ _E (o R= —87T'l;ﬁ

that we shall use in what follows.

The second tensdr,z has a mechanical significance and generalizes thehagiu
side of the Poisson equation; in this theory, it corredpdo the presence of energy and
momentum in the world-region consideréd.(

Quite a number of studie¥) have been made of the preceding equations by adopting
particular forms forT,s in the right-hand side that are associated to vammesgetic
distributions that appear in nature. One is thereferk tb conceive of thd .z as
generally composed of a sum of terms that correspomwiistobutions of this type and
their mutual interactions.

Depending on the particular form chosen one will theicdincerned with “different
schemas” such as:

- the pure matter schema, in whi€hg = pusUg (U, represents the component of
the world-velocity, angb represents the scalar density),

- the holonomic fluid schema, in whichys = pusus+ Oup(O4s represents a
pressure tensor such that the ve#tdhat is defined byK , =07 is the gradient

of a functionMy); we shall use this schema in the sequel for the dakdéem-
Gordon particles,

- the pure electromagnetic schema, in Whitdy = 745 (745 represents the Maxwell
energy-momentum tensor, etc.),

(*9 Cf., E. Cartan). Math. Pures et appliquéds), pp. 141-203 (1922).

(*Y) By contrast, in the unitary theory it likewise talk@sa geometric significance. For example, if one
uses asymmetric affine connections, then it appesaashatural consequence of the field equations and (just
like S5 depends only on the geometric structure of the spacebmsdered.

(*3 Cf., LICHNEROWICZ, Cours au Collége de France. There will find an analysis of a number of
the cases envisioned above.
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and the general case corresponds to a superpositionatidkie.

In any event, if one wants to account for effectthefelectromagnetic type then it is
necessary to introduce a world-vectgrinto the theory along witly,,. This vector
generalizes the usual vector potentid),(and its components, are determined by the
particular field equations.

In order to simplify the presentation, we start wiliis case. Thus, one introduces a
quadri-potentiak, into the theory (which is determined by certain proper @upusit that
permits us to calculate the tensqyz that appears in the right-hand side of the Einstein
field equations (which fix,,, in turn).

Following Einstein, we assume, in addition, that &t of equations may be derived
from a variational principle. This assumption amountsptéstulating that one may
calculateg,, andk, by introducing an invariant functioh (which depends og,, and its
derivatives, as well dg, andf , =9 k, —0d,k,), such that one has:

5jAdw:o,

for all independent variations gf,, andk,..
In particular, if one writes:

1
Az?/—g R+8mnyL(k,,0,k%, g,), (3.2)
in which yis a constant, then one obtains fields equationg,f in the form of:

1
R,uv _E gpv R= _8”y -,Iz-/v

B.&)
with =gT,, =-—— oL
a 167y ag*”
to which one must append the equationfor
oL odL
0, ——-——=0. 3D
Ty (3.3)
ox*

These two groups of field equations must be corbfgati In principle, they suffice to
determine the&k, and the geometry of spacetime while taking boundanditions into
account.

¥ In the affine unitary theoryk() is related to thergp and geometrically corresponds to a type of
spacetime torsion. For example, if one uses a confgropctive affine connection, then:

[ — I i
e[

in whichk defines the spacetime torsion.



Chapter 1l 63

Depending on the exact form of the chosen Lagrangiame will obtain various

possible electromagnetic theories (Born-Infeld, etc.) dssociatingk, with the
electromagnetic potential. For the moment, we wit be more specific about this
because it still remains for us to establish several piiepehat are useful in the sequel
and do not depend on the choice of expression.

8 4. — The first property relates to the solutions effibld equations, as written in the
form (3.3). One may formulate it as follows: How mangiependent functions does it
take in order to define a particular solution of (3.3)?

On the surface of things, it seems that one needs drfesponding to the 10
components ofy,,. In reality, this is not the case. As one knowsly 6 functions
suffice to define a solution.

In order to see this, it suffices to refer to the kgoon the Cauchy problem in the
space of general relativity; we shall briefly summarthis work along the lines of a
presentation by LichnerowicZ¥.

The Cauchy problem or initial value problem — may be stated in the following
manner:

If one is given a gravitational field and the (electagmetic) field f,, on a
hypersurfaces then determine the corresponding metric and thet(el@agnetic) field
over their entire domains of existence when thesesfishtisfy equations of the preceding
type.

In order to treat this problem, one commences withattief a change of coordinates
that brings us to the simplified case in which the dpaeeis swept out by a family of
surfacesS (x4 = const.). The initial surfac® corresponds ta; = 0 (one may tak& to
be spacelike, but this is not necessary for satisfjniegondition thaSis not tangent to a
characteristic hypersurface).

The Cauchy data are then the twenty functigys 9,9,,, and the six functionk.

As Lichnerowicz then proceeded to do, one may:

1. Prove the physical uniquenes¥)(of the solution that corresponds to the
preceding data.

2. Establish that ifg**#0 everywhere then equations @.3and (3.B) are
subdivided into two distinct groups D) and C) of equationsvolution, namely,

the ones that contain only the space indicgs 1, 2, 3 and the ones that do not.
In particular, the metric equations furnish two groups:

1 -
(D) R > g R+8myT=0 1]=123

(C) Rﬁ—%g;‘R+8nyf=O a=12,3/4

() Course given at the Collége de France, 1953-1954.
(**) The data are preserved, up to a coordinate change.
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Now, if one accounts for the continuity equations:

(Rw—%g”R+&Wij::O (3.4)
B
namely:

T%,=0,

which automatically results from the form itself detchosen field equations, then one
may show that the solutions of equation (3.3) satisfyfahewing lemma:

Lemmal. Any solution of D) that satisfies C) & is a solution to (3.3), or again:
Any solution of D that satisfies C) & satisfies it everywhere.

This implies that if one is given convenient initialb@ solutions that satisfy C) then
the general metric solution, which depends on 10 arbittargtibns, must satisfy only 6
equations (equations D). One may therefore constrain tbesatisfy four arbitrary
supplementary equations that completely characterizadture of the solution.

8 5. — This property of the solutions is related to a wadwn result that we state as
follows:

Lemmall. If we are given a timelike congruence of worldigcaories ) then it is
possible to determine at least one particular metriatisol of equations (3.3) such that
(L) constitutes a geodesic congruence that is associdtetheipreceding problem.

The proof is obvious: Leé¥* denote a manifold that contairs),(and lev'*denote a
manifold that satisfies the field equations (3.3), in wgharbitrarily choose a geodesic

congruencéL’). As one knows, it is always possible to define a mam #* toV'“that

makes ) and(L") coincide. This map obviously transfor¥i§into a new manifolsf”*,
which is likewise a solution of (3.3) that admitg @s a geodesic congruence (since such

an operation preserves the invariant propertiespate). This manifold/"* therefore
constitutes a particular solution that satisfiesdbsired properties.

This result prolongs to a well-known property dfetrelativistic dynamics of
holonomic fluids, as was considered by Lichnerowitadeed, consider a domain \¢f
that is occupied by a material distribution whomesbrT,z may be written:

Taﬁ: r UQUﬁ—@aﬁ,

(in whichr is the pseudo-density of the medium and the unitary velocity vector), and
where one has:

K, =07,
Kz =0,logM,.
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Classically, one knows that everything happens in thie easif the streamlines were
geodesics of the Riemannian metric:

naﬂ = M()Zggﬂ

that is conformal to the world metlgngﬂ that was used in the preceding equations.

It is clear that this conformal metric does not $gatishe field equations
R, ~1/29,,R=-87T,, in general. Nevertheless, one may transform déuich a way
that it satisfies the preceding lemma conformally. @heof this solution may then be
defined by adding symmetric ternfgs to the term$l;g,, such that the tensoy,s +
éqp, satisfies equations (C) and (D).

In the same way, as L. de Broglie has remarked, thdegen congruence of the

possible relativistic trajectories of a mass partialeich is classically determined by the
relation:

) yylmoczds: 0,

is transformed into the relativistic trajectori&3 ¢f the causal interpretation of the Klein-
Gordon equation (subject to the action of a scplatential My), provided that one
replacesmn, with the variable madgl,. Indeed, they are furnished by the condition:

) yylmoczds: 0.

Here again, one sees that everything happensiassi trajectories were geodesics of the
metric:

_Mg
,7;1v _E‘gﬂv’

which is conformal to the Galilean metric. As brefoone may deform this metric (which
no longer satisfies the field equations) into aisoh of (3.3) by setting:

Ouv = v + v

in which the §,, define a tensor that is chosen in such a way ttheg,, satisfy the
relations D) and admiL{ as a geodesic congruence.

8 6. — The third property concerns what we caé tfonservation condition in
relativity (‘°). One defines the Hamiltonian derivative of a ldkonvariantC = L/-g

with respect to a tensaom,, to be the expressielgi that is defined by the equalities:
,7m;1|/

(*%) Cf., EddingtonMathematical Theory of Relativitgec. 100.
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5 Lﬁdw:j;TL5”Lm/jgcb),
v

which one may always write when the variatiang,, are annulled on the boundary of
the region considered.

Therefore, letC be a function that depends on t)g, thek,, and thef,,, and their
derivatives up to no special order, such that:

jﬁdw

is an invariant in the given region.
Upon integrating by parts one obtains the relations:

5j£da):j(£"végw -3, + L0k, dw=0,
in which, by definition:

TH = ,7|— HH = — ,7L jﬂzﬂ

N9, Nt nk,
and we suppose that Gothic letters denote tenswsitehes.
By taking the relation:

oL

K, ,
0x,

7

[cvsf,, =[-2

into account, and by neglecting a complete diffeadrihat transforms into a surface
integral, one thus obtains the relation:

5[ Ldw=[{L" 59, +(2L", + L")k} dw

(in which the symbol “;” denotes the covariant gative), which must be annulled
identically for arbitrary variations of the coordtes sinceC is an invariant.

By comparing the values of the tensors for theesaaiues ok, in the old and new
systems (which permits us to keep the sdade these variations may be written:

a0k,
“oxt ox,
0(d%s) | . 0(,) , 99, 5 .

av a
)4 5 6xﬂ 1) 5

- &, =k

_va = gpv
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and upon substituting them in the preceding equality (whildeoggg a complete
differential and accounting for the antisymmetric chaofH*"):

{272, ~ £ "+ 20 )+, T4, } 0% dw= 0
namely:

v o , 1 1
7, =f.,H", +§ f#aJ”——zkaJ”W

. (3.6)
Py == F o = (1T +K,T",)

v

These relations are independent of the field egomtand constitute what
Schradinger calls the “conservation equations.’thBaorld-invariant therefore furnishes
four relations that one may transform with the @fidhe field equations.

We apply these considerations to the precedingryneWe start with the hypothesis

that the Lagrangiad, which depends on the componegisandk,, which are necessary

in order to determine the natural geometry, is cosep of the sum of a term that
corresponds to Einstein’s theory and a term thheke the potential vector, but does not
contain the derivatives of,, namely:

jmdw:j%mﬁ do+ K £ o,

in whichk = 87y is the Einstein constant. Upon varying the one obtains the field
equations:

1 _
Ru =% 9w R K],

with
J-9T, =7, =170, 0,
w_ 0L 0L
=—+——
dg,, 0g,

If one writes, as before:
L= ﬁ(E)(f/w, g/IV) + ['(M)(k/l---)

then the tensof*” is decomposed into a sum of two terms, namely:

Tﬂv - Téw + T'\,jlzv ,
with:
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"I’EV = a[’(E) +%
® a9, 0g,
0Layy , Lon

agpu agup

Y77
m) —

or further, upon setting =./—g L:J—g(L(E) +Ly):

_oL 1
v _ag,uv E 1
TﬂV = T(E)l/V + -IZM),UV !
with
0L 1

_ Y~E)

() _E_E 9 Ly
_0Ly, 1

M) v -E‘E L L)

Upon introducing the notation:
gu=0L . 9L 0L
akﬂ 6fw afw,

and writing, as before, thdt is an invariant for any coordinate change, onaiabtthe
relations t):

L= THK, +TH f, +1%, .

With this notation, the field equations fgrmay be written:

01" =7, (3.3n)
which gives:
0,J"=0. (3.3n)

One then verifies painlessly that these equatiomulathe right-hand side of (3.6); this
gives back the equality (3.4).

(") Proved by Born,Théorie non linear du champ électromagnetiq(&#nnales de I'Institut H.
Poincaré,” 1937), pp. 172.
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8§ 7. — Tensors are not the only things that one canbpsetroduce in affine
geometry. In particular, in order to interpret theecafparticles with spin, it is necessary
to define the geometrical significance of the spinbas are used in equations of the sort
that we just studied.

For this, one may recall an old idea of Einstein analydd that was ultimately
extended to affine spaces by Fock and Ivanenko. It ¢srsisssociating spinors with
sub-tensors (half-vectors) that permit one to carryaooew type of decomposition for
the classical tensorial expressions.

In particular, one sees that one may associat®isinand matricesr” at each point
of space in such a way that one must define a vé&gtdor example, by the intermediary
of the relations:

k,= ¢ c"p. (3.7)

These quantities behave like the components of a vgotmrided that one defines a
parallel transport ofp that agrees with the corresponding geometrical trahgpat
relates to the tensors thus defined.

We have summarized these considerations in Appendix Iubedhe corresponding
calculations are too well known to make it worth repggitnthe course of the argument.

8§ 8. — We conclude the study of these properties withmansuy of the works of
Einstein and his collaborators that relate to the motib singular regions in general
relativity.

They constitute what one may call the relativistisetiry of guidance” and, as we
have said, permit us to deduce the laws of motion offifld equations by giving
convenient definitions of the particle singularities.

This theory ) essentially rests on the idea that, with the exoepif the points that
are situated on certain singular lines, the potentiats tweir first derivatives are
everywhere continuous. In particular, this must bewien one crosses hypersurfages
that bound time-oriented world-tubes that encircle tagdttories that embody the point-
like aspect of the material particles.

Having said this, we distinguish two cases of the field gous(3.3):

The first one- which is called the “exterior case”corresponds to the solutions of
the equations:

1
Raﬂ _E Q.5 R=0

(in the case for which the potential vector does not)exis

1
Rz _E g, R= _8”yraﬂ’

(*®) Here again, the reader may refer to the previousbd gitesentation of Lichnerowicz for the detailed
proof. We shall content ourselves by recalling the ¢sdeasults.
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in the presence of a potential that represents the Elaenergy-momentum tensor (or
its generalization to the case of a theory of thenBafeld type), a tensor that
corresponds to the case in whigldoes not contain “matter” terms, and depends on the
k. only by the intermediary of tHg,.

The second case — which is called the “interior casasrresponds to the solutions of
the equations:

1
Rz _E 9,z R= _8771/-5;?’

in the case wher&,z contains terms that one calls “matter terms” or ddpeonky,
explicitly.

What makes this distinction so interesting is thagtetmits us to form an idea of the
structure of physical spacetime that corresponds to themsaif matter.

Indeed, the first case contains the case of the m@lysiacuum” because one may
prove that any exteriods that satisfies the axioms of general relativity and is
everywhere regular must be locally Euclidid?).(

This signifies that the presence of matter is nechssssociated with the existence
of either gravitational or electromagnetic singulasitie

This notion of agreement permits us to prove a largebrumf propositions, so we
enumerate only the ones that refer to our problemthérfirst place, one confirms that
any solution of the interior case that is bounded by arsypaceS that is generated by
time lines may agree with a stationary solution of éxéerior case ors only if this
solution is singular in the interior & The particles are then necessarily associated with
singularities (of the Schwarzschild type) of the clzssexterior field.

One then establishes that the spatio-temporal trayectb any singularity of the
exterior case (which is associated with a particle) ihalaced in a regular (interior or
exterior) field necessarily follows a trajectorytsoriented in time and corresponds to
the equation:

a — a _¢€
i ,7[?;0( - kfﬂa’? [k _Ej )

if 77is the unitary vector that is tangent to this trajec(theg,, andf,, that figure in the
preceding expression correspond to the regular soluticsidmyed).

We prove this proposition because it is important intvidléows. In order to do this,
we shall follow the presentation that was given bylthésd Wallace?).

We start with the field equations (which are valid gwdrere except on a set of
measure zero) and which we write, in a convenient systamits, as:

1
RW _E O R+87'ly'll'w =0.

(*% Similarly, one proves in the stationary case that gravitational field and an electromagnetic field
are regular oV, and satisfy equations of the purely electromagnetic sat{exrterior unitary case), as well
as the axioms of general relativity, then the etenignetic field is null ands’ is locally Euclidian.

(*° Phys. Review. 57 (1940), pp. 797.
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By contraction, one thus obtainR = -8m1, which gives, upon
settingT,, ZSW(TW —% I Tj ;

R,+T, =0.

One then sets:
Ouv = &uw + .

The field equations are then equivalent to 6 iedelent equations. | will therefore
introduce the quantities:
_ 1 v
ypv - hpv _Eg,uv‘gﬂ hpﬂ’

and give myself 4 supplementary conditions on ti@dinates, which | write:

€"Yp=0 (Gp=0,).
They lead to the equations:
1
R,uv ZEAypv (38)
with:
-Ay,, =2T,.

If we use Latin indices that vary from 1 to 3 thbis says:

- =27’
{ymn, ss yerO ~ 'mr (3%)
Voass ™ Voo 00~ ZTm
The conditions on the coordinates are written:
— =0
Yinn = Vmoo ) (3.9)
Yonn = Vooo = 0

Relations (3.9) are obviously equivalent to thofeing system:

{Kmnsf(ymns—yms)n, F Y e~V o
KOns,s:(yons_yosr),s:Zrén+y0moo_yoo,no

We denote the direction cosine of normal to a serfthat surrounds a singular line of
the field.

One then proves (on account of the fact #ats and Ko,s are anti-symmetric with
respect to the indiceasands) that:
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[ Kne A"dS=0
[ Kons,A"dS=0.

As a consequence, the field equations (3.9) imply thewalg relations, which are valid
no matter how - O:

J.s(ymnvOO - ymO,nO+ ZT:nn)/]ndS: 0 (3103-)
[ (Fon0= Voano* 2T)A"dS=0 (3100)

which express the compatibility of equations &.and (3.9), and which we- with
Einstein— call “the equations of motion” of the body.

Indeed, choose a hypertube of radiumroundL (we ultimately make go to zero)
and let/7 (t) designate the coordinates of a point.ah a reference system in which the
singularity is at rest at the time origin, and whene has:

2m
h,ul/ = fﬂv[l_Tj .

The calculation shows that one may subdivide thetisas ., of (3.9) into two terms,
namely:

ypv :r,uv+17,uv’

in which they,, are solutions of the homogenous equatibw,,= 0, and thel,, are
particular solutions of equations (3.3).
The equations of motion then subdivide into a sd@integrals that contain:
1) they,,
2) thel
3) theT,,
The only things that naturally persist are the tethat contain 17 in the denominator

because the surface elemdBmay be writterdS=r’dQ (Q = solid angle).
One then immediately shows that:

a) the contribution of the terg,, ism/j, in (3.10) and O in (3.19).

b) the contribution of the terms is null in the casmsidered (it is the same in the
Maxwellian case, in which their development staiith a term ine’/ réinstead of
a term in I¥) because they can be written:

Iirrz) m(r)/j,, =0
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c) the only thing left is therefore the contribution of tkermsT,,, or, more

precisely, the fraction df,, that contains? in the denominator.
One concludes from this that the equations of motidmgiwmay be written:
fa =] TnA"ds= h,

in the chosen system, can be finally expressed imkaimeaty system in the form:

d*p* ] A [dn? dn? _ .
ds* |po] ds ds '

As is well known, whefi, = 0 these agree with the geodesic equations. Wheno,

they signify that the trajectories are subject to gatahal forces and supplementary
forces that depend on theipart ofT;,

This is important because one may thus obtain anitundi® of possible trajectories
according to the nature of the singular solutions thahdefie particle. The problem of
sec. 2 thus comes down to the search for a Lagrahgihat furnishes singularities that
correspond to the classdg pf motions that were defined in the preceding chapter.

For example, if one starts with the classical Makwagrangian:

PP
4 “ 2

then Infeld has proved that when one associates theclpawtith a gravitational
singularity of Schwarzschild type that is joined to aistery singularity (half the sum of
advanced and retarded potentials) of the electromagreitic) then one obtains as the
equations of motion in preceding particular system:

mv = mj” = If) = el V (3.11)

in which h{; denotes the Lorentz force that corresponds to ther{er continuous part

of the field, andf,, andVv* are the components of the world-velocity of the plartic
which corresponds to a classical motion.

By contrast, in the case of an electromagnetiguarity that corresponds to a
retarded potential, one obtains terms that corresporatitation, namely:

v(e)

: 2 2.0 2 5.
mv* =ef/ v’ +§e2v" +=e?Vivh,

Y Loc. cit.
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One arrives at similar results by using nonlinear Lagearggisuch as, for example:

L. =

& =510g(L+F).

N =

Moreover, in the latter case, as was proposed by IMf8ldofie shows without difficulty
(*® that the association of the particle with a sptaly symmetric stationary singularity
is equivalent to the association of the particle waittlassical motion (3.11).

8 9. — These general properties will serve to begige¢neral problem that was posed
concerning the existence of solutions of (3.3) that belleeenicro-objects.

As we have seen, we are necessarily tempted to défmg, andk, to be functions
of the waveu in the double solution, which presents both an extendachcter and a
singular one that might account for the properties dnatattributed to micro-objects by
the causal interpretation.

In the first place, we systematically leave asitle latter character in order to
concentrate on the extended aspect. This amounts\siprally reducing the particle
to a point ) and preserving only the continuous parof the actual wave = uy + ¢
that defines the particle in this conception.

We shall therefore try to determine the solutions d)(&at depend og and give
them a geometric significance that is as simple asilples

A first remark must be made: The unitary theory thatuse involves, at the very
least, a congruence of curves that have a particulangjec significance besides being
geodesics. They amount to curves that are tangeng footlential vectok at each point,
a vector that obviously defines a privileged direction pacetime. It is therefore
tempting to attribute a physical significance to theseeé&nlines” as well. In fact, we
shall see that the proposed solutions associate tlasetdries with the trajectorie&)(
of the causal interpretation.

8 10. — Having said this, it is reasonable in the second ptadest attack the
guantum “models” in the classical approximation beforentryio interpret the more
complicated solutions.

As one knows, if one makéstend to zero and one neglects the effects of spinein t
previously described models then one obtains the claskeaty of the ether that was
recently proposed by Dirac. We shall thus try to mter this in the context of the
unitary theory that we are using.

We start with theg,, andk, that define the metric and the torsion potential vector.
One may do the calculations only if one is given the peeform of the Lagrangialn.

For example, one may write:

I
L—_Zf'u f,uv

(** Proceedings of the Cambridge Philosophical Societ$3 (1937), pp. 70.
() INFELD and HOFFMANN Phys. Revy. 51, 1937, pp. 766.
(*) As in the first version of general relativity.
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(with f,, =0 ,k, =0d,k,), which gives us the Maxwell theory, or use more cocapdid

Lagrangians that correspond to the nonlinear theoAssone is concerned only with the
continuous part ok, which is assumed small, it is reasonable to suppcetk the
preceding value constitutes a good approximation.
As in the example of Dirac, we then seek particuléutems such that the potential
vector:
1. is timelike and
2. has a constant length.

They may be obtained by using the method of Lagranggptrers: i.e., by adding a
term:

1
L) =—§m)|2(w + ),

to the preceding Lagrangian, with, by definition:

mcC
kv =- u,
(S

Cc
=A --9,S,
Ao

in which A, represents the part &f that is not a gradient (calculated by effecting the
decomposition that was defined in the course of chapter ).
By varying thek, and thed, one obtains the Dirac equations:

u,u’ =—c?

__ e
ou,-ou, =-—:Hf

mc *

9,1 == yur
Y C

which shows that? behaves like a world-density.
By varying theg,,, one arrives at the field equations (3.3) With = Tiguw + T,
in which:
Tiguw = —2Euw, (Maxwell tensor)

a 1 o/
:2[fv fra —Zgwf ﬁfaﬂj

and
T = mA? Uy Uy,

eqguations that one may always solve, in principle.
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The conservation relatiofig, =0 then give us the equations of the classical Dirac

trajectories- which agree with the lines of the potential herguite simply because they
may also be written:

U, :mic f, 0" (3.1%ont)

The preceding calculations suggest two important remarks:

a) The Dirac gauge condition is obtained precisely by varylngut it will be
simpler— hence preferable to obtain it directly by starting with the field equats and
adding a ternbg), which is a function of thk,, and gauge terms tqg,.

b) One may physically interpret this classical theory byirgathat the particles are
constrained to follow the lines of torsion that corregpto a timelike vector potential
with constant length. This is a very restrictivendibion, and the idea immediately
becomes one of seeing whether it is not possibl&ipotkis second condition and see if
one does not naturally arrive that the trajectorfab® causal interpretation by supposing
simply that this vector has variable length. From whathave seen, if this is the case
then one must recover, in particular, the Klein-Gorttafectories by replacingy with
the functionMy of L. de Broglie, which was defined in chapter 1.

8§ 11. — We now see what one may accomplish by using resparkthe preceding
section.
We must first define the gauge teki).

The functionp = R€%", which we introduced previously, appears in it.
We further set:

C
k,=A,=0,8 (3.12)

and give the Lagrangidnwy the following expression:

1(n e h e 1
Lyy=—|—0,+— ¥ —9" —— A |g—-=még* ¢, 3.12
M) Zm(iu Cﬁpjfﬁ(i . j¢ > (N (3.12)
which is nothing but the Klein-Gordon Lagrangiatt.is clear that this must make the
length ofk, depend on a variable functiéh

We then arrive at the field equations that are uded from Kk,
(withL =-1/4f#f  +L,):

6/,f"”:j”
with

. e e
=2w5,5-24

and
i“=0. (3.13)
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The equations that correspond to the variation ofgthemay be further written in the
form (3.3) with:

Tw =Tew + T, or  Taw =—2Ew,
and
1 ((h e L7 e .
T(M),uv = _E{(Tap +E A,j¢ (_Iav _E Aj¢+ COnJ}'* g,u l('M)
One therefore has:
1 _
R,uv _E gpv R_ - I( TE);/V + -(I-M)pv) (314)

with the conservation equations:

which, on account of the field equations (3.3) one matewri

9,Tam =1, . (3.14)
One then sees without difficulty:

1. Equations (3.13) and (3.14) automatically lead to the usanad equation fop if
one supposes thatsatisfies a linear equatiorfS)( We do not indicate the proof here in
order to abbreviate the presentation. The reader wallifiin Appendix IlI.

Conforming to the preceding remark a), one sees thahttoduction ot (v leads to
the generalized gauge condition:

kK = & M. (3.15)

2. The potential lines once more agree with the stmeesnof the wave equation
because:

mc |
’ :?¢*"¢ : (3.16)
3. One returns to the classical Dirac approxiamaby lettingi: to zero. Indeed, one
then finds:
1 e

u =—|0,S——
v m( v C Aj
A=mR

1 1
Lo -=f, f*-=Auu +7).

4 y7i% 2 (v )

(*®) Which amounts to assuming that this field is weak, amcesponds to the linear approximation of
the solutions of the field equations.
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4. It is possible find solutions of equations (3.13) suchth®atrajectoriesl() may be
written in the form:
2 U a £
m, dx2 L) H | du” du - £
ds ap| ds ds

} denotes the usual Christoffel symbol, which is defined in

in which the tern{’u
ap

. Ex" : : : . )
Appendix I, an q is the unit vector that is collinear with
<

In order to see this, it suffices to refer to the stadsec. 4.
One further seeks solutions of the form:

2

M
0 ="Yo
gpv - 2 ‘g,uv + S,uv )

(3.17)

which depend on 10 arbitrary functions. Six functions seffic define a solution of
(3.3), and, from lemma Il, one has the right to impgose more arbitrary supplementary
conditions on they,, that transform the congruence of trajectories suligainly the
potentialM, into a geodesic congruence.

These solutions, whose explicit form we will notatdiss here, obviously depend on

@, hence on th&,. They define a proper extended fig@ that defines the wave-like

aspect of the micro-object without spin in this simetif model (in which the particle is
reduced to a point). Moreover, one must remark on ihenner by which

theseg ) depend org (by the intermediary oflo). This seems to favor the second form

of the causal interpretation, in which the physical quanfield is related to a potential of
a new type.

§ 12. — We shall introduce the singular aspect of micro-tsbjeg substituting the
waves of the theory of the double solution for the wanveAs far as the classical Dirac
theory is concerned, this introduction presents nocditfy.

In order to see, by applying the relativistic guidance tdamthat the nonlinear
character of the field equations (3.3) restricts a partiol describe those trajectories
(3.11cont) that it initially coincides with, it suffices to deé the particle aspect of the
micro-object by means of a stationary singularity ofrtiegric and a vector potential with
spherical symmetry (called Schwarzschild and Maxwell simgjigls, resp.).

This is a well-known property whose proof we will neproduce?).

We simply note two points:

(*® In particular, it is developed in the previously citechmo# of Infeld and Wallace.
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a) As it amounts to a classical approximation, thereolwiously a degree of
independence between the trajectories and the field, theefdeing determined by the
position and velocity of the center of the singularity

b) Nothing changes in the preceding result if, instead oMdwewvell Lagrangian:

1

1
L =- £#f, ==2F,
(E) 4 M 2

one uses a more complicated Lagrangian that corresporaisidalinear theory of the
electromagnetic field, for example:

L =-Detlg,, +f, | Born-Infeld theory
or (3.2b)

L. =

(E) log(1+F) Infeld-Hoffmann theory

N =

The latter theory is particularly interesting besa the spherically symmetric
solutions whose explicit form is given in Appendhk furnish fields that are annulled at
the center of the singularity. This permits ustiol the proper field of the particles to the
exterior field in the wave equations without pebing the trajectory of the singularity.
One may therefore write:

h ex I.
D, :Taﬂ —e(AT +AX)

in the formulas:
(aDy-)¢=0

(in which A*" and A" denote the exterior electromagnetic potential #rel proper
potential of the object, respectively), becauselaar that this supplementary potential
AP" perturbs all of the streamlines (by the intermediaf the corresponding Lorentz
force) except for the one that is effectively falled by the center of the electromagnetic

singularity (since‘lff) =0). The same is true for the Klein-Gordon equation.

In order to not overburden the presentation, wer rine reader to Appendix IV for
more details. There, one will find the calculaiand references that are necessary for
the comprehension of that particular nonlinear theo

In particular, as in the note of Infeld, one stes the use of the tenﬁf) that is

associated with the Lagrangidnqe gives back the Lorentz force oh)(because the
expressiorp’ fj that appears in it is the only one that contaireren in 1r* when one
substitutes it in (3.®andd).

d) In the theory of relativity, it is not rigoroyslegitimate to isolate singular regions
in the total field. The field that results frometpresence of several particles in space is
not the sum of the fields of the isolated individymarticles. The deformation of
spacetime that is induced by one particle is pnodiby integrated into the deformation
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that is produced by the other particles, which cannot be aeparfrom it. The
determination of the field of a body may be carriedandy by studying the motion of a
sufficiently weak particle that makes a negligible pdration on the motion (test
particles). Since an actual experiment necessariljunbsr the observed system in
guantum mechanics, such “test particles” do not exist fgiven field, and it becomes
impossible to directly study them in the experimental exintgiven the actual state of
our knowledge.

This raises a certain number of difficulties thdatesto the wave equations that are
used.

In all of the preceding calculations, we have syst@ady introduced the
electromagnetic potentid that is produced by thether particles and not the total,

that is the sum of the exterior potential and the prqyﬂentialA&‘f)of the particle

considered into the wave equations of micro-objectsomFAhe foregoing, this is not
natural and requires a particular theoretical justibcat

For example, one confirms that when one uses thewilaxelectromagnetic
singularity in 1f the introduction of the potenti#dl, into the Klein-Gordon equation
leads to the appearance of infinite terms in the vedtbe center of the singularity. This
suggests the following idedf one postulates that the elementary particles are charged
(") then it is natural to suppose that the appearance of nonlinear terms in the wav

equations corresponds to the small region in which the proper potéfj)t’iaf the

particle takes values that are sufficiently strong that one ledeckntear approximation.

Moreover, the same is true in the classical approximatindeed, equations (3.3)
show that the use of the Lagranglag strongly implies the appearance of singular terms
in the right-hand side when one uses solutions with $sgteerical symmetry (similarly,

when the potentiatb&‘f) remains finite, as is the case in the nonlinear theooif Born-

Infeld and Infeld-Hoffmann). One must therefore neceysassociate a singularity of
the metric to a singularity of the vector potentiadinnitary of the preceding type.

From this, one concludes that if one associates itm+abject with certain values of
the vector potential and the metric that involve a singelgion with spherical symmetry
of the potential then that region likewise correspondbecsingularities of the metric and
the waves that we used to define the gravitational gauge avelet that characterize this
micro-obiject.

In other words, we say that the point-like aspect ef mhicro-object necessarily
corresponds to a triple singularity of the vector pagiotf the metric and the wawethat
serves to define them. The first singularity generétesther two by virtue of the field
equations, which explains the observed relation betweemdiric and electromagnetic
singularities that translates into the classicakhtz law of translatiorfy).

8§ 13. — We will now see what happens in the case ofldia-Kordon equation when
we adopt this postulate.

(*) Neutral particles result from a “fusion” of the chargedticles, in the sense of L. de Broglie.
(*®® Cf., Lichnerowicz Sur les équations relativistes de I'électromagnetishn@ales de I'E. N. S., pp.
269.
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Suppose that the geometry is again defined by the field eqsg8d), in which g
andL ) take the values (3.12) and (3.24), but in which one hdscegbthe function:

) : .0
=Rexp| i— |, with u=fexgi—
’ p( hj ’{ hj
(in whichu = u + ¢), and the electromagnetic potential with the tptatkential:
A&(IO) + A)(,e)’

which is the sum of the proper potential and themor potential. Therefore, one has:

e, :%Iog(1+ F) inthe Infeld-Hoffmann theol

1 .
L =§F in the Maxwell theory

(3.26)

1(h e /] e 1
L,.=—| =0, +—A |u*| =0"—— A |u—=mé &
) Zm(i v cpbj (i c j 2

1 e . ( Klein
F==f"f | f, =rotk, =rot| — :
2 " "” . Lc b [GordonD

From our hypotheses, we shall look for solutiamsthat satisfy linear equations
everywhere except for a small region in which tbalimear terms are involved.

In the exterior of that region the field equatiaiwiously give back the conservation
equations (3.20) and (3.21), in whighs always replaced hy. By applying the theorem
of Appendix Ill, one thus obtains the Klein-Gordeguation foru again.

In the interior of that region one may establistlyovhether these conservations are
sufficient (combined with the hypothesis of relaic invariance) to fix the nonlinear
form of the wave equation imor whether it is necessary to start with a nomlingauge
condition L, (which reduces to the preceding condition (3.26) the linear
approximation)a priori. We leave aside this point because it does ndtipeto the
object of this study directly. Moreover, it is nodispensable in what follows if one
assumes the “guidance conditions” betweemnd ¢ that were furnished in the preceding
chapter.

Be that as it may, it is now possible to solutioh$3.3) that account for the extended
and pointlike aspects of the micro-object by usingstead o#.

They will be defined like the combination of:

with

1. A wavelet of the vector fiek}, accompanied by a gravitational Wavejéﬂt that is

defined by formulas (3.12) and (3.17), in which oaplacesp with u. We impose the
condition that we shall use only those solutiorisat satisfy the guidance conditions:
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L wpu-Duw y=—1(¢ Dg-O¢ (3.27)
uu* pP*

in which ¢ denotes a continuous solution that was used in kkc Indeed, one sees
painlessly that the preceding guidance conditiantaiethe equality of both the phases
and the quantum potentials, so:

n* OR_n*Of

on the boundary of the singular region. In thgard, they also thus entail the equality of
the wavelets that were constructed witnd ¢.

2. Spherically symmetric stationary gravitatiosatgularities and the associated
electromagnetic singularities that necessarilyofelthe center oy, from what we saw
in the preceding paragraph.

They thus follow the trajectoried.)( because of (3.27) and also because of the
relativistic gauge condition€ that correspond to the field equations (3.3)ac8ithese
trajectories satisfy equation (3.11), if we takeéoimccount equations (3.18) and the
equality of the expressions then:

Mo(u, ) = Mo(@, ¢*)

on the singular region, which is deduced from retet (3.27).

This solution obviously corresponds to a posssa&ition of the problem that was
posed in sec. 2 (the existence of convenient sois}iin the case that interests us.

The preceding considerations permit us to makenple geometric representation of
the micro-objects in the context of the “naive”dhe They are conceived to be a
combination of a solution of the exterior case @hhiepresents their classical point-like
aspect) and an extended solution of the interi®e qavhich represents their extended
wave-like aspect), in which one has used a tefigoin the right-hand side that is a sum
of the Maxwellian tensor,z and the tensof().s that one calculates by starting with the
hydrodynamic representation of the fieldwith the condition that we choose the latter to
be the solution that admit&)(as a geodesic congruence (which is possible becatfl
Lemma Il). Together, this amounts to our makingeaargy-momentum tensor figure in
Tap that corresponds to the probability fluid thataissociated with the probabilistic
interpretation.

This proper gravitational field presents the rddahblte property of corresponding to
one of the classical schemas that were studiediddynerowicz: the charged holonomic
fluid. Indeed, it is obtained by using the uswaisorT.. of the Klein-Gordon theory
as the tensof 4z in the right-hand side of equations (3.1), whishiherefore interpreted
without difficulty by using the hydrodynamical resentation of the wave equation.

Indeed, as usual, set:

(*) On the condition that we assume that the expresEigp(u'u) does not contain terms inr/
conforming to the idea that the singular regionsi dfo not become infinite (cf., the solutions that were
envisioned by Rosen and Finkelstein).
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u= fexp(iEJ u* = fexp(—i§j
h h)

and upon using the wave equation, one immediately obtains:
Towuv = Tawy(Klein-Gordon) =MPoyu,u, + £,°20,,f0, f —¢€,,(0, fo'f - fof)},

which conforms to the result that was presented in endpaind one painlessly verifies
that the second term of the right-hand side correspontie stress tensor of a fluid that
is holonomic in the sense of Lichnerowicz.

8 14. — The extension of these results to the cagartitles with spin presents no
mathematical difficulty. It obviously raises probleofsinterpretation that we intend to
come back to in a later work.

We shall confine ourselves to treating the case oddparticles because since the
work of L. de Broglie one knows that it is possible tmstitute any arbitrary particle
with spin with the aid of micro-objects of this type.

We again introduce the continuous wawevith 4 componentsu(= up + @), which
must serve to define the vector poteritjafor us with the aid of considerations that were
presented in D.

We further define the quadri-vector:

¢ a,d
P

Cc
k, ==
&

in which the spinorg and thea, are defined as in Appendix Il, and we introduce the
gauge Lagrangiabpy, in which we use the notations that we defined in tlggnibéng of
this chapter:

Lw>=—%§¢70”%*10¢+com. (3.19)
|
with:

__1ew
L —_Zf'u f,uv’

(E)

(f.v =rotAy). One then finds that the field equationskpare once more:

{a# f/ll/ = ghc¢+av¢ = jv (3 20)

9,j*=0.

The relations that define thi, may again be written in the form (3.3), with, = Tiguv
+ Tonu

Tuw = {#°a,Dp+¢'a,D,p-Dg'a,s-D,¢'a g}
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The conservation equatioiig,.” = 0 also give:

oT :—% j,f (3.21)

Ho(M)uv

This permits us to generalize all of the consideratidtleopreceding paragraph:

1. The conservation equations (3.20) and (3.21) again lethe tDirac equation if
one supposes thdtsatisfies a linear equation because the proof in Appeéhdives not
depend on the exact form of the Lagrangian used.

This furnishes a new gauge condition, for which the lenfithe vectoik, will again
be variable, and will depend on the functMg that was introduced in the analysis that
we made for the Dirac equation.

2. The lines of the vector potential agree with theastilines I().
3. If one neglects spin then one returns to the eapgaaf the preceding paragraph.

4. One may further define a “proper” metric field:

)74 714

M 2
)} =W§£ +S, (3.22)

which satisfies equations (3.3) and admits the relations:

ave (u]ae ot
m){ ds +{a,8} ds ds}_ ) (3:23)

as equations oL{, in whichF, denotes the rotation &f; (f.. is reserved for the rotation
of A,), by imposing the 4 relations (3.18) @p., in which one replacedl, by its
corresponding expression in the Dirac theory. As leefone has therefore established

the existence of solutiomg; that constitute a sort of field that accompaniesntieo-

object.

As in the Klein-Gordon case, this proper field consts a particular solution of the
field equations (3.3) in the interior case that we oldtgiadopting a tensdii,z that is the
sum of a Maxwell tensor,z and a continuous matter tensgry,, that corresponds to a
fictitious fluid endowed with spin in such as one mightaduice when starting with the
hydrodynamical interpretation of the Dirac equation.

We will not develop this viewpoint further here, and itl e the object of a later
publication that is in the course of preparation.

§ 15. — Here again, one may extend the theory of sdo. thke case of particles with
spin by substitutingi for ¢.
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1. One begins by defining the proper vector field and theitgtional field with the
aid of the expressions:

“ e Uu (3.28)
9% = My(u" e, + S,

by further supposing that the singularityw€orresponds to the proper electromagnetic
potentialA” of the micro-object (which is also associated with @rresponding

singularity of the metric).

2. One further deduces the linear part of the wave egsaboru from the
conservations equations by means of the condition thet amd a supplementary
Lagrangian to the gauge Lagrangiam(u‘u) that was given by formula (3.19), which

has the property that the divergence of the correspgeimr,,, , is equal to:

F 1"

in which f, designates the rotation of the vector:

h + v
P, =§6V(u 1,u).

Indeed, in this case one recovers equations (3.20) and (3.@dnsesvation equations.

3. If one then uses a solutianhat satisfies the guidance condition:

ua,u _ ¢ a,d (3.29)
u*u . '

in which the ¢ denote the usual continuous solutions, then one saeshib singular
region follows a trajectorl that corresponds to this continuous solution.

On the other hand, the relativistic guidance equattmmscide with the preceding
motion provided that the solutiogé”v) that are defined by starting with equations (3.3), in
which one has used the fact tliat = rot k, in L(g.v also satisfies four supplementary
equations:

a
ﬁ+{ }\N =97 M, (3.30)
ds |uv

because:

Mo(u"u) = Mo(#" ) and  ku(u'u) =ku(¢"9)

at the singularity.
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As in the case of the Klein-Gordon equation, the priegeafgument shows that there
exist solutions of (3.3) that constrain the singularit@gollow the trajectoriesL() that
were introduced by the causal interpretation of quantuoryhe

8§ 16. — We conclude this chapter with several consid@satoncerning systems of
particles in a theory of this type.

In the previous chapter we saw how the introductioneftstion of wave singularity
combined with the theory of guidance permits us to understagdhe particles are only
“piloted” by their proper waves. This suggests a simplelehthat might illuminate a
possible deterministic theory of micro-objects in iat#ion.

We shall try to use this fact while incorporating the prewetheory.

From what we just presented, the point-like aspectsnotrssemble of charged
particles will be represented by a set of singular regionghe vector potential. On
account of the field equations (3.3) these regions gengragalarities in the metric and
in the uniqgue wave that determines this potential. For plegnone may use the
expression:

+

ua,u
K, :g = (3.38)

for the latter, in which ther, correspond to the Dirac representation, namely:
C + x +
K, =(—e(u D,u-D,u g/ Uy, (3.3b)

when one neglects the effects of spin and confines lhheagsing a functioru with one
component ¢ = f [expi8/#).

As before, one then introduces wavelets for thetorepotential and gravitation,
which are unique for all fields and are construdteen u with the aid of the preceding
formulas, (3.34) or (3.3D), and the expression:

gi/?/) :£va0(u+’ U)+ ng)( lj’ l)

In addition, one obviously assumes thatgﬁ)e satisfy the field equations (3.3) (in

which the total electromagnetic field naturally epp) and four supplementary
conditions that transform the congruence of trajees that are subject only My into a
geodesic congruence.
Finally, one decomposes this wavento a sum of functionsy, that correspond to
individual micro-objects by supposing that the vmdiwal guidance conditions are valid.
Therefore, by hypothesis, one has the identity:

u=>u,

which is valid at each point of spacetime.
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Since one has =y, in each singular region, in the case of (&)3dne may further
write ¢9:
uau_ua,y _¢'a,¢
uu yy o 4

for each singularity, since one has used functiptisat individually satisfy the guidance
conditions.

Geometrically, this signifies that the vector potairaind the total field,, take values
that correspond to particle I, when considered in eawjuldr regionS. It then results
that this particle follows the trajectokythat is defined by its proper waygin the total
field. This waveg, is naturally constrained to satisfy a wave equationhich only the
classical fields (gravitational and electromagneticat thre generated by the other
particles appear.

Later, we shall develop certain consequences of this model

We note only that it is obviously presented in the sgmé as the theory of general
relativity and the celebrated mathematical treatmdnthe n-body problem that was
performed for the first time by Einstein and Infeld. ledeby definition, this treatment
associates these bodies withn singular regions of a unique field that is collectively
constrained to satisfy certain nonlinear equationsmihos, one deduces that, by reason
of this latter character itself, thesingular regions are displaced in a particular fashion,
which amounts to saying, as we have already emphasimdhe laws of motion are a
natural consequence of the field equations.

Properly speaking, there is thus no interaction atsgamite or potential energy
between micro-objects in a theory of this type sineesihgularity-particles are displaced
according to objective laws that govern the mattédgieollectively.

Since the theory that we shall develop in this worlondy a particular case of
Einstein’s theory, one may apply the preceding conataers to it in such a way that the
particles are associated with singular regions of a urfiglade

One must nevertheless note that the mathematiagisobf the problem thus posed
encounters difficulties in the general case thasareonsiderable that they have not been
resolved up to the present.

Meanwhile, one may show — and this is not the leastasting result of Einstein and
Infeld — that if one assumes the Newtonian approximatien,if the world-lines that are
followed by the singularities do not involve velocitieslatcelerations that are too big,
then it is possible to treat the problem of the individuation of these bodies in the
spirit of classical mechanics. Indeed, under theseittoms| everything happens as if the
trajectory of each body is approximately calculabletaytimg with the classical laws and
action-at-a-distance that are attached tath# other bodies.

Therefore, on account of the quadratic character oég@tions that govern them, it
is not legitimate, in principle, to separate the siagutgions that are associated with the
corpuscular aspect of the micro-objects of the fieleeetde. The study of an ensemble
of n micro-objects must be globally undertaken without mhi@ng interaction forces

(*% One obtains analogous formulas by starting with (3.16)
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since the field and its singularities form a whole timaist satisfy nonlinear equations
collectively.

Nevertheless, from the example of Einstein and Infalé, may admit that because of
the theory of guidance one may look for an approximatgisalto then-body problem
in the Newtonian approximation by superposmigolated micro-objects that are subject
to fictitious potentials that represent the actiorhefdther micro-objects.

Indeed, as we will verify later, this approach permisto use the results that were
developed in the preceding chapter and to build a simpleytioéohen-body problem in
the context of the causal interpretation.
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We now propose to apply the preceding results to treythedf stochastic ensembles
of elementary particles. Such a theory is indeed iedsgble if one wishes to reinterpret
the experimental statistical results that were iobthin the context of the usual quantum
mechanics in the context of the unitary “model” of do@ible solution.

Two principal approaches to the question of the signifeathat one agrees to
attribute to quantum statistics are gradually extracted:

The first approach, which is almost universally adoptethyp was developed by
Niels Bohr and Heisenberg. It consists of what oag generally call the approach of
the Copenhagen School; this is a modern variety gbolséivist school of Mach.

According to the Copenhagen School, the ensemble pbaliible information that
one may obtain abowine micro-object is furnished by a “state function” of atistacal
nature.

However, this is not the case, as Niels Bohr hamgly emphasized in a celebrated
article on the “Dialectica” of statistics in the asisense of the word, such as what one
may encounter in classical statistical mechanics,ef@mple. The wave/ does not
describe the micro-object; it only accounts for the poditya that an observer will obtain
a given value for a given physical magnitude after arraot®n between this micro-
object and the apparatus used to measure this magnitudeteaaction that is, in
principle, uncontrollable.

More precisely, if one denotes the operator thass®@ated with this magnitude by
A, and letsg; and A; denote the functions and their corresponding proper végs=
Ai@), then one may write:

y=.cé,

in which we have denoted the components of the develapofep by ¢. One then
admits that §; |* furnishes the probability of obtaining the vallidor the magnitude after
measuring it after this uncontrollable interaction.

It follows from these results that the experimdptabserved statistical character of
guantum phenomena results from the interactions legtvibe micro-objects and the
macroscopic apparatus, which is unpredictable in principlas is why the partisans of
the Copenhagen School defend the positivistic idea thiatimpossible to know and
describe the structure and behavior of micro-phenomena indepiy of the observer.
According to Pauli, for example, the object of physicssimply that of defining a
mathematical apparatus that is capable of predicting timemcal results that are
furnished by particular experiments. In a discussion wiehauthor along these lines,
Rosenfeld estimated that the question of the real mofitime electrons independently of
our existence is devoid of meaning and interest; he judgedd purely metaphysical.

The second approach, which is expressed in various forassjntroduced that the
onset of quantum mechanics by de Broglie and Langevin. édtihda was abandoned for
a score of years, it has been reprised and systathatieveloped in 1947-1948, first by
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the Academy of Sciences in the U.S.S.R. by Blokinzef &erletski, and then more
recently by Bohm, de Broglie, and the author.

For example, TerletsktX summarized this viewpoint as follows:
1) Micro-objects exist independently of any observation.

2) It is possible to forge a deterministic representafiom this that accounts for
both the real individual behavior of these micro-objeutd the objective properties of
statistical ensembles of such objects. This “modeltraasount for the corpuscular and
wavelike aspects that are presented by micro-processes.

3) At least in the eyes of the complementarity princigleantum mechanics [as we
know it, ed. note] is not a theory of individual micro-@dis. Quantum mechanics is a
statistical theory, i.e., a theory that is applicatoleonly statistical ensembles of micro-
objects. Quantum mechanics may not completely représemhotion of an individual
micro-object (electron, photon, etc.), but only theawdr of an ensemble of identical
micro-objects that appear either simultaneously orsaré&s of consecutive experiments.
This is due to the fact that the existing apparatus of goantechanics permits us to
calculate only the possible values for different physmagnitudes (problem of proper
values) and the probabilities of this or that physicatestar the transition probability
from one state to another. The knowledge of the pratyabfla given state for a micro-
object does not, moreover, give complete informatioauahts true state, and, as a
consequence, the description that is given by quantum meshaith the aid of a wave
function does not represent the state of the objertbnt

One may illustrate this viewpoint experimentally.

The celebrated experiments of Vavilo3) bn the microstructure of light, which
developed the experiments of Taylor, Dempster, and Baihdeed showed that the
interference figures that are obtained with the aid light flux of weak intensity present
corresponding fluctuations in the arrival
of the individual photons that comprise E
them. One then observes that if the dark
fringes are maintained without change
then the bright fringes present
independent incoherent fluctuations. This %’
may be interpreted by saying that the
photons are subject to the usual wavelike
laws, despite their apparent chaos.

One may redo these experiments with
electrons. For example, this is why the

S/

() Questions de Physiqueg. Réunis, Paris (1953).
() S.1. Vavilov, Progrés des Sciences PhysiqueX\VI (1936), pp. 892-897.



Structure of micro-objects 91

experiments in the diffraction of electrons emitteg-dy-one have been carried out by
Bibermanm, Souchkine, and Fabrikaft ( Each electron that happens to traverse the
diffraction system that is being used makes a small (@®ettron impact) on a receiving
screen. If one then prolongs the experiments suffilyie these spots, which are
dispersed without order unless they not very numerolemteally form a diffraction
figure that one may predict with the aid of the statefions of quantum mechanics.

In particular, the imag®’ of a point-like sourcé (that emits electrons one-by-one)
that is produced on a screérby a magnetic lenks is composed of a distribution of spots
(with a densityy*) in the diffraction ring that is predicted by the Satiinger equation.

In summation, in the context of this second viewpdimt, essential problem that is
posed to physicists is summarized as follows:

“To find one and only one deterministic micro-mechanicaildel’ of the individual
micro-objects that admits the usual quantum mechanids agatistical mechanical
objective.”

It is in this spirit that de Broglie, for example, é@®ped his theory of the double
solution in 1927, which distinguishes between:

— areal wavau with a singularity that represents both a particle ienfield,
— a wave ¢ of the same phase, which is charged with describing tdtestial
evolution of an ensemble of particles of the preceding type

It is clear that only the second viewpoint is compatibith the foundations of the
relativistic theory that we started with. We thus@atdg and shall now seek to establish
that the statistical laws that are associated vghdefinition of elementary particles that
was given in chapter Il give back the usual quantum meché&niten interpreted in the
context of the preceding viewpoint).

By statistical laws, we obviously mean laws that dbecthe real behavior of
ensembles of the objects considered, laws that haves (@ndess) nothing to do with the
knowledge that a possible observer has about this enseifibteus, the calculation of
probabilities has, in effect, the objective of corneatescribing the manner by which
certain events are actually produced in a very large dileeshevents that are subject to
very complex subordinate causal laws. The proof thatskhadl give constitutes an
illustration of this viewpoint, and will permit us to cdude this chapter with several
aspects of the physical significance of the notion ohckan the theories of the type that
was developed in these researches. Like all of the Janmrsiderations just followed,
they result from the work performed in collaboratiohvwD. Bohm (the results that were
developed and detailed will be published later), and corestttie expression of our
viewpoint on the nature of the statistical consideratithat we agree to introduce in the
context of the causal interpretation of quantum theory.

8§ 2. — Before studying the statistical ensembles ofqgbasti we must devote more
attention to the physical plane and propose a more edpenpilodel of the real behavior of

() Comptes rendus I'’Académie des Sciences de I'U.RtS.RVI, no. 2 (1949), pp. 185-186.
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the micro-objects that correspond to the “model” thask wroposed in the preceding
chapter. The mathematical representation that we gaweobviously provides us with

an approximation for the true properties and one must takéaittiinto account if one is

to state laws that valid for real ensembles of objects.

In our “model” chapter, the elementary particle cqroggled to a singularity
(gravitational or electromagnetic) with spherical sggagymmetry that is associated with
an elementary gravitational wave. It is represented enadhically by a wave with a
singularity (that may have several componegjswhose regular part we designategoy

As we have seem must satisfy the equation:

a'd,¢-pup =0 (4.1)

(if we neglect the action of the ordinary gravitatibfiald), and the center of the
singularity ofu will follow the streamlines:

S, = ¢+a'ﬂ¢ , (42)
with which it initially coincides.
On such a trajectory a classical particle of magsvill be subject to the combined
actions of:
— an invariant potentia¥l, and
- a potential quadri-vectd?,,

and the currend, satisfies the continuity equation:
d,s" =0.

Note that from the viewpoint that is developed in thiskythe given ol permits us
calculate all of the properties of the micro-objecattlappears to be both localized
(concentrated around the center wfand extended (since it is accompanied by the
“‘quantum field” that is defined by). u and¢ are, in fact, indissolubly linked; how the
trajectory of the center of the singularity appears véaldetermined by only the function
@.

If we consider the Newtonian approximation and neglecetteets ofspinthen we
have seen that satisfies the Schrodinger equation. If we thengsetRexp(iS/#), this
decomposes into two parts (real and pure imagindrg) furnish the two classical
equations:

a'@fF+div(|¢|ZDS/m):o

2 2
E-{-@ +V _h_ﬂ%:
ot 2m 2m R

(4.4)
0,

the first of which corresponds to the continuityuation, and the second describes the
streamlines.



Structure of micro-objects 93

In order to use the language of hydrodynamics, one nsamysay that everything
happens as if the center of the singularity is consulaindollow one of the streamlines
of a pilot-fluid whose streamlines are collinear wgth and the whose density is given by
p=¢a,p.

In the previously considered Newtonian approximation, thisl therefore had a
densityp = R?, and its streamlines had the velocity:

Vv =S/m.

The practical application of the preceding model to thal cases rests on the
following essential theorem, which is an immediateseguence of the definitions we
adopted and the field equations:

Theorem

The given of:
— the initial values of,
— the values of the fields that appear in (4.1),
— the initial position of the center of the singularity,

suffices, in principle, to completely calculateif we also use the field equations of
relativity ().

Physically, it is clear that this description may gmigtend to be an approximation of
everything that actually happens in natule (Indeed, the fieldp may be defined and
determined only on the condition that we satisfy hypothése the initial conditions at
the limits, etc.) that are never realized in practice

We clarify this point by analogy with a classical @asFor example, consider a
stationary macroscopic electromagnetic field in theriat of an enclosure. It is defined
by macroscopic stationary conditions on the walls;isi therefore given by the
corresponding stationary solution of the Maxwell equegtioTheoretically, it is perfectly
defined. Physically, it is obvious that this solution magresent only a sort of mean
state for the field, and that this is true for two ppheireasons:

In the first place, the boundary conditions that wergoduced into the field
equations ara priori unrealizable in full rigor. Other than the fact thhas not possible
to absolutely isolate the system considered from #termal universe, real walls are

() Here, we must emphasize that the statistical praafs must follow do not rest on the particular
model used or the form of the quadratic equations thampboyed foru. They suppose only that:

a) The point-like aspect of each micro-object is guided aloagtteamlines by a continuous figddhat
represents its wavelike aspect and satisfies (4.1).

b) The preceding theorem applies if we replace the word$ic¢ssf in principle,...” with *“suffices, in
principle, to completely determine the evolutiongofand the trajectory of the point-like aspects of
the micro-objects.

() To recall a remark that was made by Darmois, thel lef/ schematization is always less than the
complexity of the reality that it represents; howeviermay be sufficient. In truth, it is becoming
insufficient, and the search for a better level mustnally be guided by the concrete notions that result
from a better knowledge — at least, a mental onetheofomplexity in reality.
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necessarily formed, in effect, from very complicatedsitsl systems (molecules) that
are in perpetual oscillation around certain equilibriursifimns that correspond to the
conditions that were used in the calculations.

As a result, Maxwell's equations may not pretend topdetaly describe the nature of
the electromagnetic field. In fact, we know thatytid® not account for the corpuscular
structure of radiation and that they represent only riecroscopic effect of the
ensembles of photons that they define at the “quantum’level

In a similar fashion, as de Broglie has remarked, thecroscopic laws of
hydrodynamics give a continuous approximation of the wenyplex and very rapidly
varying motions of the fluid molecules.

Therefore, if one accounts for both the necessarferfect character of the field
equations and the numerical values that one introduceghetse same equations then
one sees that the results obtained may represena@alst of mean state of the real fluid.
The latter always oscillates in time and at each pariotind the values that are obtained
by calculations that correspond, in summation,otee mean value of the physical
conditions that are actually realized in nature, atitication considered.

This analysis also appliesutatis mutandigo the fieldg.

Consider a fieldu. Everything happens mathematically as if the centethef
singularity follows a streamline of the fictitious qtil fluid that corresponds to the
function ¢ (which is itself defined by the preceding theorem). réfoee, if one wants to
rigorously give the initial values ap on a spacelike surface and the evolution of the
fields that appear in (4.4) then the singularity will quita@y follow the streamlind
(the bold line in the figure), which belongs to the congceel) of the streamlines that
are defined byg,, with which they initially coincide.

Physically, this might not be the case exactly, beedhe external fields and the real
field necessarily fluctuate around the calculated vabfeg, which do not take into
account the complexity of the real systems that aatemwith u, or the subordinate
processes that were neglected in this representation.

‘ L In order to complete our de'_scription, it is
t therefore necessary to make certain hypotheses on
‘ﬁ\ the properties of these fluctuations. These
iy hypotheses constitute the statistical hypotheses at

the basis for statistical mechanics that we propose
to associate with the micro-mechanics of the
causal interpretation. In our theory, they play a
role that is equivalent to the hypothesis of
molecular chaos in kinetic theory, and may be
justified only a priori. They are nevertheless
sufficiently plausible that they may serve as the
basis for our analysis of stochastic processes.

We therefore suppose that, in principle, these
fluctuations are themselves subject to
Fig. 16. deterministic laws:
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1) They are sufficiently complex to be treated statadly. By this, we intend that
they are sufficiently chaotic and devoid of correlasidor them to be considered as
relevant to the calculus of probabilities.

Mathematically, this translates, for example, irte tntroduction of the theory of
fields and random boundary conditions that oscillatehen dourse of time around the
numerical values that are used in the equations tha&ctetly constitute a type of mean
abstraction of the true physical conditions.

2) They may be represented with the aid of a pilot flingt tagrees with the pilot
fluid that is defined by the calculat@dexcept for fluctuationsd is obviously calculated
in terms of the mean conditions that act on theesydieing considered), i.e.:

a) During the fluctuations, the singularity effectiveljidovs a true streamline of the
fluid that represents the actual fluctuations.

b) This fluid is conservative, so that one hag/dt+divpv = 0 during the
fluctuations, whergoandv denote its density and velocity at each poinfppeesvely.

c¢) Everything happens as if the particle singulesitiactually jump to another
trajectoryL’ in the course of a perturbation of a calculateg¢taryL. L andL’ belong
to the congruencelL that one calculates without taking into accoum possible
fluctuations, and corresponds to iheve calculated previously.

Physically, this is interpreted by saying thathe course of time the fluctuations do
not destroy the quantum field that is defined by thlculatedp. This is a very natural
hypothesis because if things were otherwise thevoild not be possible to define the
extended aspect of micro-objects at the microsclewel. b) andc) then translate into
the fact that one may not perturb this field withanodifying the trajectory of this
particle in a well-defined fashion, if one taketimccount the model that is used. This
property is essential because will permit us toasho turn, that this conservation of the
field will entail the existence of quantum statsti

3) They have an origin that is independent of gheperties of the system and its
position in space, and constitute a continuousiaegernon-stationary Markoff process.
Physically, we intend this to mean that:

a) The probability that these fluctuations will appelepends only on time.

b) They generate “jumps” in the molecules of th@tpiluid, in such a way that the
points of arrival are continuously distributed arduhe point of departure.

c) No region of space is forbidden in the displacets®f typeb) if one is given a
sufficiently large interval of time and starts fr@n arbitrary point of departure.
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If one then follows a particle in its motion throughregion in which these
fluctuations are produced then we propose to considethéaidescribe a trajectories of
“steps” that we may mathematically consider to be caag®f pieces of trajectories that
belong to L) linked together with brief jumps (see fig. 17). Itsuatttrajectory sweeps
out a subset of the congruendg. ( Between two spacelike surfaces, suclovasndo’,
one hasyp (real) =¢ (calculated) +5¢.

Therefore, in principle, one may not calculate the motion of thecpadingularity
that rigorously gives us the evolution of the ensemble of physicahsystat act on it. It
is clear that this is not possibleat least unless one wants to attribute something in the
nature of sufficiently extensive information to the ensemble, as osenitbeMaxwell’s
demon in kinetic theory.

We summarize the results of the preceding discussdallows:

A. Whenever one confines oneself to the study of riwgion of one particle
singularity, one sees that it behaves as if it condpimpractice, to the schema that was
described in Figure 16. Indeed, by hypothesis,
one may neglect the effect of the fluctuations
during a finite period, and consider that, in
practice, the particle is always confined to one of
the streamlines of the causal interpretation that is
defined by the wave, which is the regular part
of u. Therefore, if one abstracts from the
phenomena that are attached to the structure of
the particle itself then one may consider them to
be described by, plusthe streamline on which
it is found initially. In this context, an
incomplete description of the “state” of the
individual particle is comprised of the functign
linked with a definite state of external
phenomena that are capable of influencing its

Fig. 17. X motion.  This is, moreover, an immediate

consequence of the classical hypotheses, which

conform to deterministic laws, of the interaction amtigrocal conditioning of the
ensemble of physical systems that constitute Natlitee ensemble composed wand
the phenomena that is influences themselves satisgrrdietstic laws, as long as the
given of ¢ is coupled to the determination - at least macrosclpicaf the systems in a
particular state.u then evolves like an isolated system (under the enfte of certain
potentials) that is in equilibrium with the macroscopiepomena that surround them.
The preceding fluctuations are linked to those propertieseskt phenomena that do not
perturb this equilibrium. In general, they must havetal duration that is negligible
with respect to that of the regime that correspondg whenever one may consider this
“state” to be microscopically well defined in an ardiyr time interval.
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B. Nevertheless, if one wants to determine the ewrlutf a statistical ensemble of
particles of the type just considered over a long peridone then it is necessary to take
into account all of their actual properties that arended to be capable of influencing this
evolution, hence, the possible motions that are destiibFigure 17.

The preceding considerations permit us to undertake tmeimedaon of the statistical
laws that are associated with micro-mechanics ot#lusal interpretation.

The first step along these lines consists of seekipigyaical definition of what one
may call “a statistical ensemble of particles in &egi state.” Such a definition is
necessary since the quantum ensembles of micro-objects deedwte to arbitrary
collections in the context of the usual probabilistteiipretation.

The considerations that were developed in section twibi®fchapter immediately
suggest the following definition:

Definition. An ensemble (1) of non-interacting particles, whiekefined by waves (I
=1, 2, ...), whose regular parts we denotgghywill be said to exist “in a given stag
if one may write:

¢ =9,
everywhere for any.

This amounts to saying that an ensemble of pastislén a given state if the waves
that define them have the same regular part.

This definition has a precise physical sense:

As we have seen, the given g¢fcorresponds t@ne given macroscopic state of the
external physical system that actsgna state that obviously corresponds to what one
usually calls the “preparatiol){ of the statistical system of micro-objects consie
This state does not completely determine the individualctbjesince the given ap,
does not define the uniquely, nor does it indicate, in particular, on whicdjectories
the particles are displaced, but restricts their nmotmosuch a fashion that it is possible,
as we shall see, to deduce the characteristic statigiroperties of the ensemble so
defined.

The definition of statistical state then permits ascommence with the statistical
mechanics of ensembles of particles, which is esdlgrithe object of this chapter.

We subdivide that study as follows:

A. Let (I) be a statistical ensemble of particlesiigiven state, which is defined by a

function ¢.
From the preceding, we know that:

a) Everything happens as if these particles were restriciefollowing the true
streamlines of the pilot fluid that correspondgpin which we denote the density and
velocity at each point by(x, t) and v(x, t). One will, moreover, always have the
classical relation:

) In the following chapter, after having studied systemsanficles in interaction, we will indicate more
precisely what the notion of “preparation” signifiesha quantum level.
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%§+mva:o. (4.5)

b) This fluid has its density and velocityv that are determined at each point and
each instant by the function that was defined by equation, (@xtgpt in certain very
brief intervals in which “fluctuations” appear, whose proipsrwe have defined. Before
and after these “fluctuations,” the fluid is found in ttate defined by the wave function
and equation (4.1), and its streamlines are defined by thgrwence I() that was
previously introduced. Therefore, each fluctuation of tlnel briefly transports a
streamlinel, which is defined by (4.1), to a neighboring line. As altegsuthe course
of time a series of fluctuations transports a fluidngla trajectory in “steps” (whose
pieces are formed from fragments of the streamlined @whose jumps are the
fluctuations), as described by Figure 17.

We then denote the density of the particle-singulariissibuted along the fluid by
P(X, t).

If there are no fluctuations then it is clear thagsth particles simply follow the
trajectory-streamlines with a densRythat corresponds to their initial distribution.

Since this density also satisfies the continuity equati

%§+mva:o, (4.6)

one deduces that the rafigx, t) = P(X, t) / o(X, t), which is equal td® / | ¢ [* in the
Newtonian approximation) remains constant along each toayec Indeed, upon
comparing (4.6) with (4.5), one infers the relation:

a—F+d|vF =0,
ot

which signifies that the derivative ¢f along a trajectoryl( is null, as de Broglie
remarked in 1927. One therefore has:
dF _
dt
or furthermore:
F(x,t)=F(X,t),

if (X, t) and(X,t")define points that are situated on the same stigaml|
As is well known, if one then introduces the fuoofy = PY2exp(S /#), which does
not satisfy the same equation@sn general, but an equation with a right-hane sidn

the case considered (in whigh= R exp(S/7), p= R?, andv = Sm), one may write it in
the following form:

/2
ay-2vy -2l [AR AP jw,

h oot | R P~
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which reduces to the Schrodinger equation onyRfR =AP*?/ PY2in the initial state.

One concludes from this that in the absence atdltions an ensemble of particles
that is initially distributed in an arbitrary fasii on () may not be represented by a wave
 that satisfies the usual wave equations.

This is not the case when one takes the actuabn®oof the particle-singularities into
account because the previously described fluctastiansport the fluid, and, as a result,
the particles of one lineL] to another, conforming to Figure 17. In this egathe
ensemble (l) behaves, in fact, like an ensembleadicles that are displaced dr) (vith
a density that varies in the course of time.

Indeed, if one abandons the thought of followiraghe isolated particle then, on
average, one will never have to be concerned mghprticles that followl(), since, by
hypothesis, one may neglect the duration of thetdlations with respect to that of the
regime defined by the calculated

Similarly, if all of the particles are initially cwentrated then they are finally
distributed on(L) with a density that varies in the course of timesach trajectory.

The preceding relatiord / dt = 0 andF( X, t) =F(X,t") are thereforeot satisfied

on (L). F(x,t) evolves on each trajectory and no longer depepds only the actual
behavior of the fluctuations.

B. Conforming to the “program” of Blokinzef andefletski, we then propose to
prove the following two statistical laws:

I. On each trajectorly the densityP( X, t) tends towards a stable limit independently
of the initial distribution of the particles. Thiensity plays a role with respect to the
previously defined micro-mechanics that is analegéa the one that is played by
Maxwell's density (in the kinetic theory of gas&gg-a-vis classical mechanics.

[I. This limiting density is nothing but:

P = K¢+0'4¢
=KR?,

in the Newtonian approximation, whefes a normalization constant.

Mathematically, this signifies that one may repréghe limiting statistical density by
a wavey that has the same phase and an amplitude thadpsmpional toR, and satisfies
the same linear equation.

This conforms completely to the ideas that wereeligned by de Broglie and the
author on the theory of the double solution, beeaine proof of the preceding laws
permits us to establish that an ensemble of pastiitiat is in the most probable state — in
the sense of the causal interpretation — behaveslgxike the ensembles of Blokinzef
from the statistical point of view.

First, we look at this proof:

It rests on the following lemma, which we shaliaddish with the aid of methods that
are analogous to the procedures that were usedhbtelh, Smoluchowski, and Langevin
in the theory of Brownian motion:
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Lemma If one letsp and Vv denote the density and velocity at each point otial fl
without fluctuations that satisfies the continuity etpra

0o .
—— +divp¥=0
o VP

then any ensemble of particles that is constrained linfdhe streamlined{ ends up by
being distributed with a density that is proportionalgaf one subjects this fluid to
particular random fluctuations of the previously describgxe;t moreover, this will be
true for any initial distribution of particles that igrsidered.

First, we clarify the nature of these fluctuations. otder to do this, we lek( X, t)
denote a very small volume element, each point of wigcbonstrained to follow a
streamline of the fluid without fluctuations with the agity V. In general, such an
element must change form in a very complicated maimntre course of time, but one
may choose it to be very small in order for it to aamconfined in a small volume for
any interval of time considered.

Having said this, the nature of the fluctuations will béingel by four conditions
(which are denoted A, B, C, and D) that translate praseft, 2, 3, 4, of the general
conditions that we have enumerated to the matheahal@ne.

A. By hypothesis, each element of the pilot-fllsdsubject to random perturbations
of very short duratiodt at certain instantsz}.

Because of condition 3, we therefore first suppose titia distribution of these
instants {i} is a Poisson process of densitft) independently of the motion of the fluid
and the position of the molecules. This is reasonéeleause, by hypothesis, the origin
of these fluctuations depends on the external physicalitons that act on it.

In the course of a perturbation at the timeach molecule will be transported from a
position X to a new random position.

In an interval of timeX that is arbitrarily small, but long with respectA) one may
therefore introduce the probability:

v(t)dt K(X, X, t)

for an element to pass from the poitinto the intervatiX that is centered akx' . In
general, it depends on the instaand the position& and X' .
One obviously has:

LK()”(,)”(,t)dS(zl (4.9)

since it must be true that the fluid that leavesx arrives in some part of space.

B. We know, in turn (see 2.), that each fluctrattonserves the fluid that is found in
the state defined byandv before and after.
This conservation therefore translates into theabty:
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(%, 1) :jv K (%, X, )p(X, 1) d, (4.10)

which expresses that the density of the fluid at eacht pemains unchanged when
fluctuations are produced.

This is an essential physical hypothesis on the natutbeofluctuations that are
envisioned—- that they be collectively constrained to conserve iailgged densityo
among all possible densities that one may associale).toCombined with the laws of
motion that we adopted, it allows us to show that thesite of particles that are
transported by the fluid tends to this particular density.

C. Because of condition B(X, X, t)is square-summable and different from zero in a

compact domairD( X) that contains each poirt. Physically, this signifies that the
fluctuations allow the “jumps” to be distributed mo particular way around without
any closely neighboring point being forbidden.

D. The domain®(X) are such that it is always possible to pass fagmintO; to an
arbitrary point in spac®y by passing through a finite number of intermedEaentsO-
Os, ..., On-1, such that the corresponding domain®©;),
..., D(On), partially cover the domains of the points that
immediately precede them and follow them (see I§).
Physically, as we have seen, this hypothesis is/algut to
the fundamental hypothesis that was introduced bykbVv
in the theory of stochastic examples. It signifieat one
may always find an interval of time that is suficily large
that a fluid element can pass through a very thiment
tube to another one that encloses the trajectékigsand
with a probability that is different from zero.

Let us move on. In the course of that interdal
fluctuations are produced that contract and exptosd
fluid, hence the particles in any volume elementhef preceding typAa( X, t) that we
might like to follow along its trajectory.

Thus, if there are no fluctuations then the nunddeparticles that are contained in
Aw namely:

Fig. 18

AN = P(X (t) CAaf X (1)),

will not change and depends only on their deri3fty (t)).

When there are fluctuation&N must vary in the course of time, and one must
necessarily study the variation of the distributmiparticles. In order to do this, we
follow what happens to a given eleméat( X (t)).

Let AN denote the variation aiN during the timedr. | say that this variation is
equal to the number of particles, such that thenfjg” that end i\ X (t)) diminish the
number of particles whose jumps begimi( X (t)); what we are calling “jumps” are the
motions of the particles away from the trajectofleswhen acted on by the fluctuations
considered.
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Indeed, the particles whose jumps end An(X(t)) are subdivided into two
categories, namely:

a) the particles that come from the exterioAa X (t)),
b) the particles that come from the interiorAadf( X (t)).

Similarly, the particles whose “jumps” startAmf X (t)) may be decomposed into two
categories, namely:

a) the particles that leav®a( X (1)),
b) the particles that remain ik X (t)).

If one remarks that the particles of the two categob) andc), are obviously equal
in number, since they both represém numbeiof particles that remain ihaf X (t)) in
the course otX, then one sees that the preceding proposition amdargaying — as is
obviously exact - that the variati@@N is obtained by subtracting the particles that leave
Aaf X (t)) from the particles that enter it during the timesmatl considered.
Obviously, the number of particlesajp andb) may be then written:

v(t)5tjAa)($<(t))EP(3{( 9) OK(X%, % 9, Odk. (4.12)
The integrand denotes, quite simply, the numbepasficles that are contained X

multiplied by their probability of passing inthaf X (t)). The number of particles in
categories¢) andd), is subsequently given by:

V()| Aa(X()) TR(R(9) OK(%, % 3, Od%= ()0 Bax( () XN,  (4.12)

on account of (4.9), since one must integrate ailef the possiblex' .
As a consequence, we obtain the expression:

AN = (OB X [ FCX(D) KX X ), Ddx- RN .

which may also be written (sine® = AN/A):

oP _ _ o .
5 = VO PROIKR % 9, 0dk= (Y] (4.13)

This integro-differential equation defines the ation of the number of particles &w
due to fluctuations. It permits us to prove thatexd lemma.
Indeed, set:

F(x (1)) =P(X(®) (X (D).
AN = FP(X(t) LA X (1))}

One may then write:
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=Daf X (1)) D% (1) F(X(1),

since, by hypothesis, the produchwremains constant along a streamline.
Upon equating the two values &« one therefore obtains:

%?aa»=wv“Fo«md%§%5D«Xxo - RXD}

:v(t){ J L% % IR, Y dx- FX 9)} , (4.14)

if one setd (X, X, t) = K(X, %, t)[p (X%, )/ o (% t) wheng( X, t) is different from zero.
Because of (4.10), we then obtain:
jL(x', X, dx =1, (4.15)

and if we change the time scale, i.e., if we replc= v(t)& (which assumes tha(t) >
£>0):

= [L(%, % D) F(R (@) d% - F(X1)). (4.16)

We therefore recall a classical argument of Markd@ne first sees th&t = const. is a
solution of (4.16) (because of (4.15)) becausariués the right-hand side.
We then let X, (r)and X (7)be the values ofx for which F(x,7) attains its

maximum and minimum valuel|(7) andm(7), at the instant.
The inequalities (4.15) and (4.16) immediatelydléa

dMir) FM (D)< M(7)

(4.17)

d“”+wn>mn

if M(7) andm(7) are absolute extrema in the domé&i(x,, ) and D(X) .
From this, one deduces that the functid(g) andm(7) are monotone in the course
of time, namely, non-increasing and non-decreasegpectively.

If we then setA(7) = M(7) — m(7) then we will obviously havellmﬂ—o by

hypothesis/(7) is monotone and non-increasifidA/ dt< 0).
Now, the inequality (4.16) implies:

dA@) _

" “A@)+ [ {L(X, %y, 1) = LK %, 1)} F(X,T) %,

or furthermore, if we add a null term:
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dA(7) _
dr

==A(r) + | L(X,%,,7)(F(X,7)~ m(z)) dx
= L%, % DIF(X, 1) = m(7)] dk.

One may therefore finally write:

L @) -1+ [ {LR %, 1) LK %, 7 EF(X DM gy (a18)
A1) dr A(7)

We distinguish two cases:

1. lim A(7) =0. In this case, one sees tHatx, 1) —» const everywhere, and is

T -0

equal to the common value that is takerivbgndm.
2. lm A(r) =k £0. In this case, if we set:

T -0

M () =M, =const
m(c0) = m = const

then equality (4.18) gives, in the limit:

jL(X’,Xw,m){M}ﬂ :1+L|_(>*<',xn,oo){F(7’;lﬂ}a3z (4.19)

This is obviously possible only if one has:

F(X,00) =M, everywhere along D(X,, ) whenr - o (4.2(n)
F(X,0)=m “ “ D(X,)“ “ (4.20b)

because of (4.15) and the fact Lﬁé{’jﬂs 1 for anyr.

|

However, relations (4.20) are not compatible, Wheccontrary to the hypotheses that
A(7) # 0 andM, = m everywhere. Indeed, because of hypotheses C amhd® may
extend relations (4.20) and (4.20) to all of space by analytic continuation, whih i
possible only if Mandm are equal.

Therefore, iff(t) = £ > 0 during the time that is necessary for thetlingidistribution
to be established (which is natural if one considéat the origin of the fluctuations is
external to the fluid considered) then one seessthigdensityP of particle-singularities
tends strongly té&o in the course of timek(is a constant that one may take to be =1 by a
suitable renormalization), siné€ X, t) always tends to 1.
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One therefore ha®(Xx, 1) = (X, 1), which proves the stated lemma. Therefore, an
arbitrary distribution of particles will necessarilynteto p in the course of time; the
densityP = p constitutes a stable limiting distribution that will lemger be destroyed by
the preceding fluctuations.

By virtue of the hypotheses we made, it is clear tihiatlemma applies to the causal
definition of an ensemble of particles in a given stdte;qilot-fluid plays the role of the
preceding fluid.

Therefore, an ensemble of particles in a given stétenecessarily satisfy the two
statistical laws that were stated at the beginning,déBs that we state as follows: The
density of an arbitrary stochastic ensemble of micredaibjin a given statg in the sense
of the causal interpretation tends toward a stableitighdistribution that is described by
a wavey of the same phase and an amplitude that is propdrtioriee continuous real
wave ¢ that defines the state considered.

This proof is physically interpreted without difficulty lspying that the conservation
of the quantum field, without fluctuations, forces the tipk-singularities to be
distributed with a density that is proportional i[] by reason of the particular
relationship between this field and its trajectories.

We conclude this subject by briefly discussing the questibmbhe time that is
necessary in order for the preceding equilibrium, in wiich |¢ [, to be established.
This time obviously depends on the valuesv(j and K(X,X,t), and may not be

specified at the actual point in time.

Nevertheless, as Bohm and Feynman have emphasizesl, n@y, without
inconvenience, suppose that our fluctuations are as raveeabkes, because the exact
value of this relaxation time is devoid of physical siguaihce in any domain in which
the usual interpretation is valid. Indeed, any matter ihased in our experiments is
possessed of a practically unlimited time, depending onhghehis equilibrium has
been established, and we know that once this distribusicestablished it may not be
destroyed by any process to which the usual form of quatiteory applies. This is
why, for example, an ensemble of electrons in a hmeteessarily satisfieB = | [*; the
same is also true for neutrons in nuclei, etc. cémformity with the program of
Blokinzef, the probabilistic theory of the new irgeetation therefore recovers the
domain of validity of the probabilistic interpratat, with the condition that we suppose
that the quantum ensembles that are equivalenheéoBbhr ensembles correspond to
ensembles of micro-objects that have attained dwiilibrium. Since those are the only
ones that we are concerned with at this partiou@mment, this only seems natural.

One may complete this discussion with the follayvobservations that allow us to
elaborate upon the significance of the foregoing:

1. If we wish to be rigorous then it is not nexay to introduce the hypothesis that
the fluctuations of the type considered are quiteequent in the preceding proofs (see 2.,
sec 3).

If one does not do this then the preceding prosisain valid, but the trajectoriek)(
lose all physical significance. The densRyobviously tends tog|[* again, but the
particle-singularities individually follow the vergomplicated trajectories that one
encounters in Brownian motion. This will certairldg the case in a neighborhood of
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material bodies and sources where the fluctuations lmeagufficiently important as to
generate a considerable diffusion of (I).

2. Nothing will change if the fluctuations are sufficigiteak O(X) is very small),
provided that the ensembles considered have had timedio tfegir equilibrium states.
In this case, the trajectoriek)(are actually followed by the particles and possess an
important physical significance.

Only experiment is likely to indicate how the two pmiog possibilities are actually
realized in nature. Personally, we estimate that doersl is more realistic (except,
perhaps, in the immediate proximity of material aggregasdthough there is no proof of
this. It is nevertheless suggested by observations iroMileambers, in which it clearly
seems that the electrons that are associated witie phaves follow the rectilinear
trajectories that are predicted by the theory.

3. The statistical model that just discussed permitsousot only prove thatg||?
represents precisely the density of an ensemble (I) nicles in the state of having
attained their equilibrium distribution, but also to kxp why the measures that were
performed on (I) appear, after measurement and by reasoime odictual interaction
between the measurement apparatus and the micro-objattarénbeing observed, to
have the proper valuek that correspond to the operators A that were introducéoke
probabilistic interpretation; furthermore, this happerth wie probability f [* that was
introduced at the beginning of this chapter. This resuiichwis due to David Bohm,
constitutes a very important step in the theory. facefit permits us to integrate all of
the results that were postulated in the old theommedsurement into the context of our
new interpretation, which eliminates a number of possbjections.

For the moment, we content ourselves with adngittins result, which we study only
in the last chapter (because it uses notions that &eant to the causal theory of
particles in interaction, a theory that we have mgumn up till now).

4. The set of preceding calculations shows thad jpassible to imagine physical
processes that are capable of generating the statidistebutions that we observe in
nature in the context of the causal interpretationontfary to the statements of the
advocates of the probabilistic interpretation, thesee amecessarily neither
incomprehensible nor inexplicable, provided that one abanth@npositivistic postulates
that form the starting point of the Bohr interpretatidOnly experiment is likely to show
whether the hypotheses that Bohm and myself have madehese processes
(fluctuations) are realized in fact. In our opiniongyhnevertheless present two
advantages: they are simple, reasonable, and agre¢heittassical hypotheses that one
usually makes in statistical theory, and they may subsdguérdad the way to
experimental research that might clarify the natufeqoantum statistics, whose
interpretation was forbidden by the old theory, in pritecip
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8 4. — We conclude this chapter with several general ksmar

As we saw above, the new interpretation is absolutglposed to the usual
interpretation as far as the significance that fikaites to the notion of probability itself
is concerned.

For the Copenhagen School, probability is an irreducilelment of the theory that
definitively limits our knowledge of nature. For Bohr,uRaand Heisenberg, it is, for
example, definitely impossible to solve the problem led totion of the individual
micro-objects in the quantum framework; this ruins deteism forever. By its nature,
the distributionP = |¢ [* will be inexplicable, unanalyzable, and inalterable, raiten
what physical conditions apply to the particles.

On the contrary, in the causal interpretation iha$ necessary to introduce such a
limitation on our knowledge. As we just saw, it is polesio furnish a deterministic
“model” of individual micro-objects that permits us to @ent for the distributiorP =
|¢ ' of an ensemble of such objects in a given state whertakes into account the
phenomena that are external to the system of paritclesidered.

Nevertheless and it is important to emphasize this — the new ingtgbon does not
constitute a return to the mechanistic determinismagiidce. We do not think that any
model of a particle and a single system of laws withpeus to calculate, once and for
all, the evolution of all nature when one is giverfisigintly extended initial conditions.

On the contrary- and this is what, in our opinion, constitutes, in p&, interesting
aspect of the stochastic theorems that were estathligh this chapter we have
systematically introduced and utilized the dialecticafiamothat the character of any
theory that relates to the nature of micro-objects nmestat the same time absolute
(because it conforms to the objective reality of thingsdl relative (because no model
may pretend to exhaust the possibilities).

Neither Bohr nor myself believe that the causalrprgtation, even if it passes the
test of experiment in a satisfactory manner, consstatgthing but an approximation for
the state of matter. It will always exist outsidee ttheory of very complicated
phenomena that act as if they were, in fact, govebyechance, no matter how they are
determined individually. This is what we introduced in m&c2 when we spoke of the
“level” of organization of matter.

For us, a set of laws describes a level of modeliagh ss, for example, classical
mechanics or Mariotte’s gas laws. In general, theyatid only at this level, and must
be replaced with new laws when one goes to a diffdesel. Experiment has therefore
shown that one may thus extend the classical “mddelie individual micro-objects that
constitute classical matter, and that it must be dhtced into kinetic theory if one would
like to take the molecular structure of the gas int@ant

It is not precise to say that the old laws constiarteapproximation of new laws
(which one obtains by “adding decimals,” to recall an egpion of Kirchhoff). One may
only say that they translate very complicated std@hasffects that are subject to
completely different subordinate laws. For examizke the case of classical mechanics,
which, according to Ehrenfest’s theorem, describesra cfomean motion of micro-
objects that are endowed with wavelike properties thatadsolutely foreign to the
classical model.
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Moreover, as David Bohm remarked, this notion of leselat necessarily related to
that of dimension (for example, the “quantum level’ esponds to dimensions ranging
from 10" cm. to ones that indicate the beginning of a profoundly level, etc.). It may
also be associated with particular physical conditisnsh as large densities, very high
energies, or an extraordinary complexity of organization

In this conception, each level is governed by detertignlaws, and its form is
subject to the stochastic laws of chaotic action ofitfi@ite ensemble of levels that
constitutes nature itself. Any physical phenomenomrethee seems to interweave
causality and chance inextricably, and is, at the same & synthesis and an ongoing
result of the infinitely complex motions of the mattieat it suggests.

There is more: In order to attribute the formatidmwantum limit densities to their
associated fluctuations amounts to taking a step with ce$peguantum theory that is
analogous to the one that was taken by Perrin, EinstethSanoluchowski when they
attributed Brownian motion to a chaotic agitation of rales that no one has observed
up till now instead of assuming that this motion is, bynature, inexplicable.

They thus led the way not only to the observation e$¢hhypothetical particles, but
also to theoretical investigation of numerous phenomewa similarly hope that the
hypotheses that were made in the course of this chapteotheges that amount to
attributing the density = || to the action of subordinate phenomena, lead thetway
the study of these phenomena themselves, since theintewpretation raises new
problems that were inconceivable in the context of ttiéreory. Under what conditions
might one haveP = | %, for example? What is the time interval that isessary in
order for an ensemble of micro-objects in a given statthain the limiting densitip =
|@wf? These are the kinds of questions that we hope edlll Ito a new kind of
experiment.

We know that the theory that was proposed in this enapfy not pretend to be
definitive; for example, it contains only a very genel@dcription of the fluctuations that
are capable of generating the quantum probabilities. Wertheless hope that its
development will provoke new research into the propediesatter that are subordinate
to the “level” that is actually described by quantum theory.
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8 1. — At this stage of our work we have treated only the c&ssolated particles in
the context of the causal interpretation. One mugt stop there, but extend this
interpretation to systems of particles in interactioh,one wishes to recover the
experimental results that were predicted by the probabiligerpretation.

Moreover, there is no rigorous physical sense in speaKingplated micro-objects
because such objects do not exist in nature. Any descripti@am individual micro-
object is an abstraction that is valid only to the extleat such isolation can be realized
effectively in physical processes. Likewise, one megitimately assert that in the
context considered one must start with a theory ofoviobjects in interaction a priori
and then deduce only the real behavior of the individualavobjects.

The essence of the model that corresponds to theldaasay of micro-objects in
interaction is found in the article of L. de Broglie in 198Y We shall nevertheless
discuss the results so obtained here since it hastieberen possible to improve them in
directions that seem to open up interesting perspedtvdabe ultimate development of
the new interpretation.

We commence by briefly recalling the theory of matgy@nts in interaction in the
probabilistic interpretation.

This theory, which is due essentially to the work ohr8dinger, rests on the
hypothesis that if one starts with a systeniNahaterial points, which are denoted by the
index,I (1 =1, 2, ...,N), and one lets:

X, (t) denote the vector (with componentg) that locates the position of
corpuscld with massm in space.

O be the partial derivative with respect to the coordinatéth components
0/0%, ).

F the external potentials that act on each particle, and

Fis the interaction potential between particles.

One may describe the behavior in the Newtonian approximatith the aid of a
continuous waveP(x , X,,, X, 1), that propagates in theNadimensional configuration

space that one may construct from thecdordinatesi of the N points f).
This wave satisfies the equation:

0D (AP A, ®
—h ot + z F +§ F,|® 5.1
% ot [qu 2m j [ — & Uj G-

and the square of its amplitude gives the expression:

() Cf. La Physique Quantique restera-t-elle indéterminisgaithier-Villars, Paris, 1953.
(%) Each position of a representative point in this sgéméously corresponds to a given positionN\of
points in the actual space.
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O*P dy,

(with dv=dw ... dy), which designates probability of the presence of theeeentative
pointP(X, , ..., Xy , t) in the volume element at each point of configuratiorcegahich

is equivalent to a probability of the presenceNgboints inN given positions¥, in the

current space).

This hypothesis seems natural because equation (5.1) tatasstan immediate
generalization of the wave equation for one partidiereduces to the product of the
continuous solutions that correspond to the points éf makes the mutual interactions
disappear. This is satisfied since one then sees pdyntbas the probabilities of the
presence of th&l points are completely independent, which conforms tahieerem of
composed probabilities.

Moreover, they lead to a great number of theorepeadlictions that conform to the
experimental results and undoubtedly constitute even egresafccesses of quantum
theory.

One must therefore interpret this success in theegoof the causal theors)(

In order to do this, we shall follow steps that aral@gous to the ones that we
discussed in the first part of the first chapter.

8 2. — First note, with de Broglie, that it sufficediteat the case of two micro-objects
in interaction; the extension, by recurrence, of thesoaing to the case &f micro-
objects presents no difficulty, in principle.

Having said this, one may present the causal interpretiativarious forms.

One may first — with David Bohm — assume that the behafitwo micro-objects is
described with the aid of a function:

cD(X;]_, Xo, t) = R(Xl, Xo, t) eprS(XL X2, t)/h ),
on configuration space, with the condition that we yplage that:

Ai. @ satisfies the equation:

0D _hz[Aldb L00

ih— om 2mzj+(Fl+F2+Flz)q>. (5.2)

ot

Bi. The particles are associated with points in spamegalwo particular current
linesL; andL; that belong to congruencds ) and (,) that are defined by the relations:

() In the preceding form, the probabilistic theory gktems seems, on first glance, even more
irreconcilable with the classical ideas than the theaf isolated systems. Since — according to the
Copenhagen Schoel material points may not have trajectories, it seelfficult — and this has been

strongly emphasized by L. de Broghdo give any meaning to the coordinaﬁé§by the aid of which one

constructs the abstract configuration space. Onedbes that the propagation of a wave in such a space is
obviously devoid of physical significance, and may no longeadsaciated with an arbitrary “wavelike
aspect” in actual spacetime.
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v, =0,S/

4= (5.3)
v,=0,S/m

This amounts to saying that the particles are displatadtual space like the projections

of the figurative point on the three dimensional surfabhasare defined b = X .

C.. As before,Rdv represents the probability of the presence of thesttati
ensemble of figurative points (which collectively représeall of the possible pairs of
material points that are associated ViA)hin the elementlv.

One then painlessly shows that these postulates abotw recover all of the results
that were obtained by the probabilistic interpretatidtnis clear that, along the way, one
recovers certain elements of the discussion in enadpt

Postulates Aand B introduce a supplementary quantum interaction potential in

space:
o-"[1AR, 1AR
2lm R m R)

since one easily verifies that everything happens as ifigheative point is displaced
under the influence of a forcelQ. As David Bohm remarked, this amounts to
introducing a sort of quantum Van der Waals force in spatech depends on the
position of both point-like particles and also on the pgapan conditions and boundary
conditions (and therefore on the value of the potlsnéaall the points of configuration
space). On each patrticle, the value of this forgeasided by the expressions:

01Q(X = X)) and Q(X = X,).

Moreover, the third postulat€; must be deduced from the theory here, on the pain of
introducing an unjustifiable statistical element and givittge function R two
incompatible meanings (since it serves to define a @edohd a statistical representation).
In fact, we shall immediately show that this poseil& unnecessary and that the
distribution Redv may be derived starting with considerations that aréogaoas to the
statistical hypotheses of chapter IV.
Indeed, one sees that if one s&ts= Rexp(S /%) then the complex equation (5.2)

subdivides into two equations that correspond ¢oréfal and imaginary parts, namely:

s, (0,9’ , (0,9 AR B AR

+F +F,+F,- = J

ot 2m 2m, 1 7 % 2m R 2m R )
R 1 1

ot +HD1(R2D18)+ED2( ﬁDz 320 (C)

in which the second one (C) is associated withcth@inuity equation of a real fluid of
density R* whose molecules follow the trajectorids) (of the representative points in
configuration space.
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Since, for us, the material points have completelil-eefined coordinatesx, and

trajectoriesL; and L,, the system of two moving bodies will be described by a
representative point whose six velocity componentsheilgiven by relations (5.3). One
may therefore compare that system to a patrticleishednstrained to follow one of the
streamlines of the preceding fluid in configuration space.

If one now considers an arbitrary ensemble of suchtp@ivhich corresponds to an
arbitrary initial distribution of the particle positienthat are associated with the same
wave® in configuration space, | say that these points wilditeo distribute themselves in
that space with a densifdy, if one assumes that the functionis subject to stochastic
fluctuations that preserve it in the course of time.

This amounts to saying that if one considers a clouémesentative points that are
associated with the same stdteand constrain it to always follow some trajecto(les
except during time intervals that correspond to extepeaturbations of the system
considered, then the dens®xi, X, t) of this cloud will tend to the densif that is
postulated by the probabilistic interpretation if one assithat these perturbations do
not destroy the functio®; one will thus haved,es = Pcaiculatedbefore and after.

This theorem is established immediately. Indeed, inrdmdeduce thaP — R, it
suffices to apply the conclusions of the fundamentaima of chapter IV to the fluid
configuration that corresponds tb. Indeed, the conclusions of this lemma do not
depend on the number of dimensions to space, but ortlgeoaexistence of a continuity
equation and its conservation law. All of the statadtreasoning we did is thus valid in
the case of the six-dimensional fluid that was preWomsroduced.

Physically, one sees that the jumps performed by ths
representative points of this system, jumps that make
them pass from one trajectory to another that !
corresponds to a simultaneous displacement of particles ;‘
1 and 2 under the influence of an external perturbation ,
that makes them jump from two compatible trajectories
L; and L, to two new trajectories. This is natural
because any perturbation acts on 1, as well as 2, due tp
the classical interaction potential.

§ 3. — The preceding causal theory, when reduced to Fig. 19 X
postulates A and B, may not be considered as
satisfactory because it does not include a complete gesoriof the behavior of the
system in actual spacetime. This leads us to poseltbeihg problem: Is it possible to
give a representation of the system of two particleactual space that permits us to
recover the preceding postulatesahd B?

The solution obviously permits us to complete the desletdrministic model since
these postulates suffice, in principle, to recover theults of the probabilistic
interpretation when one introduces some natural hypotlweseerning the effect of the
external perturbations.

This problem, which was posed for the first time by L. degBe, is difficult to treat
in full generality. We shall discuss the attempts thate made without pretending to
arrive at a complete response that might answer thetigne
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If one refers to chapter Il — in particular, the pdwat concerns the theory of the
double solution — one sees that it is possible to redreseh micro-object with the aid of
a singular wavey, that describes both their point-like and extended behavithese
waves may be written in the form:

u = U + ¢,

in which ¢ represents the regular part, which satisfies the uswedr equations and
determines the congruenck))(of streamlines that the center of the singularity hhig

follow.
t 1 L, L, The guidance theorem then shows us that if the
particles do not interact then everything happens aseif on
“"‘M? were dealing wittN wavesy, in actual space, with:

', r"ﬂw

Us U, U=+ U+ ... + U,
which are superposed without interaction; each singularity

. Is “piloted” by the regular par#, of its proper wavey,
Fig. 20 X along a trajectoryL; that is fixed by¢ . When the

particles interact by the intermediary of classiazteptials
— their Coulomb field, for example — this is no longeet
The electromagnetic field at each point then dependh®@position of all the particles
and the wavesg, may not be considered as independent.

This analysis may be extended to the case of miceetshjn interaction. From the
model that was proposed in the last section of chaptaf dne recalls the unitary idea
that we discussed then one may consider the poina$igect of micro-objects as having
singular regions in a unique wave, and that the partictgikarities remain separated by
a distance >13, which satisfies a nonlinear equation in the total ed@sagnetic field. It
will then be possible, in principle, to separate the Wewg@henomena that are associated
with the two particles, and one must solve this equatidato if one is to determine the
trajectories that are followed by the singular regiiis One may nevertheless remark
that, from what we have seen, if one uses the guiddneogem then everything happens
as if one may represent each particle by a proper wabat moves in the classical total
external field (and which comprises the field that isdpied by the other particles).
Indeed, since one has:
u=u +uz+ ...

one may writau < u; in the neighborhood of the singular region that is @ased withu;;
of course, the guidance condition:

(%) We shall not begin the general problem here. Indeésl,very difficult, and the calculations one
undertakes are also too fragmentary to be published. Weeongdhasize their theoretical importance. In
the context of the preceding ideas, it is indeed somepiudable that one must study the corpuscular
singularities independently in the interior of a very Bmemion of order 10%, for example, with the aid of
linear approximations to equations that are actuallsensomplicated. In a later stage of this work, we are
forced to infer results from the proposed nonlinear égpustthat might confront experiments since only
such results permit us to select from all of the possi@nlinear theories the one that constitutes a
convenient approximation to the properties of mattéihe domain considered.
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u'a’u _uatu _¢'a"g
u'u uu ¢

entails the piloting of the singular partwfby the regular pag, of the associated wave
U, in the fieldu.

This suggests that we try, as L. de Broglie did, to reptesa&ch micro-object by a
singularity in a wavelike phenomenon that takes placepace, and see whether this
model might lead, under certain conditions, to the emichs that were postulated by the
probabilistic interpretation in configuration space.

We therefore assume that, in the first approximatewerything happens as if each
micro-object acts on the propagation of the wave thassociated with the other object
by the intermediary of the action of its classicalper field on the evolution of the wave
that it defines. The two particles are thus represebyetivo wavesu, such that the
center of the two singularities are constrained toovolltwo streamlines that are
associated with the two corresponding continuous wav@s= 1, 2). By neglecting the
effects of spin and confining ourselves to the Newtongaraimation (low velocities)
one may use distinct Schrodinger equations to define themyhich the external
potential that appears in them is the sum of the eXt@ot@ntial F, that acts on the
particle and the potenti&ik that represents the action of the other particle erpérticle
considered.

Physically, this amounts to saying that one may reptetfem system of two
interacting micro-objects with two distinct wavgsand two particles that are constrained
to follow two streamlined.; and L, that are defined by these waves. These waves are
superposed without direct interaction (such as two systémgples on the surface of a
pond), but each of them sees its evolution determined diyonly the external
electromagnetic field, but also by the motion of theigia that it does not influencé)(

It remains to show that this schema is coherent,that it is possible to find a well
defined system of such waves when one is given thel ioatraitions.

One easily sees that this is the case.

Indeed, suppose we are given the valuegafhe initial positiondy; and Py, of the
particle singularities, and the values of the externaltmagnetic field on a spacelike

surfaceoy .
t The given of the pointBy; and Py, permits us to
calculate the value of the value of the fields that a
o, on ¢ and @, everywhere. On account of the wave
equations, these values, combined with the initial
conditions, obviously determine the valuesgafand
Pos o> i, @, and therefore the new pos_itions of the partielgas
02 andPi, on a closely neighboring spacelike surfage
They represent the new complete initial conditions on
> g that allow us to calculate the values of the as
Fig. 21. X well as the trajectoriels; (which are composed of the
points P,1) of the two singularities everywhere in a

Py P12

() This is by the intermediary of the classical intéoacpotential that is attached to that particle.
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stepwise fashion. As a consequence, the problem isdeftied, and we shall dedicate
the next section to discussing the results that wiet@reed by de Broglie and the author,
which show how the preceding viewpoint recovers the iclalssesults of the
probabilistic interpretation in configuration space in thewkbnian approximation by
recalling postulates fand B of section 2.

8 4. — To clarify these results, we first briefly a#cas in the example of de Broglie
(°), what happens in the case of two classical intergggmticles.

First assume that the trajectdry of one of the two particles — the second one, for
example — is known. Its electromagnetic field isedmined at each point and each
instant, and there is a corresponding congruence of pogssiiions for the first one
when one is given its initial velocity. One then Wwsothat if one denotes the external
potential that acts on particle 1 By( X, t), and the potential (which is a function of the

componentsx,= X —X, of the distance between the two particles) that semps the

action of the second one on the first one, then theists a Jacobi functio® such that
one has:

my, = 0S, (5.4)

in which we have denoted the velocity of particle 1, \thihcomponents,; , by V,. The
equations of motion may then be written in the Lagrdoge:

Eagl :% i=1.2.3
dt| av, | 0x o

in which £, denotes the classical Lagrangian:
£(1) =imV —Fi(X, t) —Fi( X, 1), (5.5)

and the potentiafFi, is a function of the distance between the two pasiciherefore of
the trajectory that is chosen for the second particle

By fixing the trajectoryL; one likewise obtains analogous equations (by permuting
the indices, 1 and 2, in the preceding relations) foretteemble of possible trajectories
for particle 2.

One may then make two essential remarks: it is alwmssible to represent the
motions that we just described by constructing a fietgisix-dimensional configuration
space that is based on the coordinated = 1, 2 and = 1, 2, 3) of the two patrticles.
Indeed, to any fixed trajectoy, that is given byx(t) there correspond trajectories
that are provided by the preceding equations. Any pair opatibile trajectoriet; and
L. may then be represented by a unique trajectory of therdypointX = (X, X,, t) of

the new space. The system of two moving bodies aillibesdescribed at each instant
by a representative point, whose six velocity componentg will be given by equations
(5.3). As de Broglie has noted, if one then assunmesthie initial velocities are given,

() Cf. op. cit.
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but not the initial positions, then one sees thatetheme diverse trajectories of the
representative point that correspond to the diverse hgpeshthat we make. As a
consequence, the set of all these simultaneous cobtepassibilities is described by a
cloud of representative points whose motion satisfiecontinuity equations:

%—f+div,a\7 =0 (5.6)

in which p(x1, X2, t) denotes the density of this cloud, and its velocity (with
components).

de Broglie has then shown that if one may separatéethes in the Lagrangians
andL; that depend on the mutual actions from the ones that dinerotone may find a
function§(x, X, t) in configuration space such that one has:

—— (5.7)
0%y,

which is equivalent to relations (5.3). The equations ofion are then written in the
Lagrange form:

d{as}_as (._@j

dt| aq| aq 9t

in which g denotes any of the six variabbesand £ denotes a function in the new space

that is obtained by taking the sum of the terms ofstend type, added to the half-sum
of the terms of the first type, namely:

g=imy+imv-F-RK-F, (5.8)

with the condition that one h&s, = F»;, which translates into the principle of action and
reaction.

8 5. — Therefore, let two micro-objects be representdsvbywavesu and letg, = R,
exp(iSI /h) denote the continuous parts, which satisfy the two $amgér equations, by

hypothesis. Each of these waves moves in the exfezlthand the electromagnetic field
of the particle that it does not influence. These g@agiare constrained to follow two
given streamlines that correspond to the waves that gargnthem, conforming to the
relations:

mvi=095.

As we have seen, if one assumes that the trajeofdhe second corpuscle is known
then the Schrddinger equation of the first one, whearséed into real and imaginary
parts, gives the generalized Jacobi equation:
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oS 1 s
-2 =" 52| +F;+Fp+0Q, 5.9a
~ 5 Ei {axj 1+ F2+ Q1 ( )

for the trajectory of the first one, in which we hdeeQ; denote the quantum potential
that is given, in the first approximation, by the equati

_ (MR
o= ZM[RLZQ

Here, conforming to the ideas of the causal interpoeta®; represents the phase of
the regular wave that is associated with the firspascle in the classical force field that
is created by the second, taking into account the quyneling boundary conditions
(which might create interference or diffraction pbew®na), if there are anRi( X, X,, t)

represents the amplitude of this wat®s signifies(US),., - Fi(%, t) andFi( X, t)

has the meaning that was previously introduced. The erergy not constant, in
general.

On the contrary, if one fixes the trajectdryof the first corpuscle then one obtains
the generalized Jacobi equation over all the compdtible

2
9s, 1 [0S
- 2= =—_ —= F Foo+ , 5.9b
P 2 =5 i[an +Fo+Fpo+ Qo ( )

in which Q; is the quantum potentiaQ, = —(2*/2m*)(AR / B),., , while F> andF1,

have the previously-defined meanings (assurking= F,1, as always). The ener@y is
no longer constant, in general.

Conforming to the ideas of de Broglie, the generalizadibtine classical concepts to
the case considered is obtained by constructing it frentdlordinatest, and X, of the
two singularity-particles. Any pair of compatible tictjgriesL; andL, will be further
represented by a trajectoby of the current pointx= (X ,X,) in that space since the

velocity vV has the componentgand v, in the two three-dimensional subspaces that are

associated with the two particles. It then implies éxistence of a generalized Jacobi
function§( %, X,, t) = Y X, t) in that configuration space, such that one has:

Vv=0S/m=0S/m, (5.10)
at each point. This function plays the role of a sizd function and permits us to
simultaneously describe the motion of the particlesefary possible pair of associated

trajectoried.; andL,. We are then led to pose the following problems:

1. Is it possible to represent the simultaneous motiongheftwo particles in
configuration space with the aid of functibre R(X, t) exp(iS/ %) such that:
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a) The trajectories are given by relations (5.8)?

b) The functionR allows us to calculate the potential of quantum or@ithat acts
on X, while R, behaves like a matter density that is constrainedndéee along the
congruencel()?

2. If yes, what equations mu®t R, andS satisfy, and what are their relations with
@1 and@,?

8 6. — The response to the first problem was given by dgliBrwith the aid of the
following lemma, whose proof is immediate:

Lemma Letx andy be two variables and let(x, y) be an arbitrary function. The
necessary and sufficient condition for one to hdeefbllowing relations between three

functionsG;(X, @), Ga(y, @, andG(x, Yy, @):
S E) 5
ox ), \ox ), ay ), Loy )

G(xw) =G;(R+ G,(w),
G,(y.w) = Gy(Y) + Gy(w),
G(x Y,w) = G (X+ G,( Y+ G(w),

is that one have:

with G12 = Go1.
If we accept this lemma then one sees that theaeta

{n‘lvlzmlazmls
rnZVZ :DZ%:DZS
{DlQl :DlQ’
DZQZ :DZQ’

which are necessarily satisfied in order for the precegroblems to have solutions,
imply the relations of de Broglie between the phasdslaa amplitudes:

SO % 9= S I+ S K ¥ 32
S(X % 9= S(7% I+ S % 1 (5.11)
S(%, % 9= (% J+ (¥ %)L
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QX X2 D= Q% 9+ QX D, Q7 Q,
Q (% X5, 1) = Qu(3, 9+ Qy(X, ), (5.12)
QX %, )= Q,(%, 9+ Q,(% I+ QLX, )

The solution to the second problem is then obtained wiitddficulty. The equation of
continuity in the configuration space is written:

2
Royst L[RZEJZO,

Tk Ha)ﬁk 0 %

in whichl =1, 2, denotes the patrticles, dd 1, 2, 3, their coordinates. Since:

R = d*d
and:
o 0P 0P _ 2 05
X, 0%, ho 0%,

by substitution, one obtains the equality:

[Lﬁ_ﬁ 10

- +con}. =0,
ot 2i4Em ax j

which is valid at every point.
If one then duplicates an argument that we already (sbith is developed in
Appendix II1), by multiplying the preceding equality by a réanhction, such that the

product:
. 5
jf o) ai—ﬁ iadza +conj.; dvdt,
ot 2im, 0x,
is integrable, and integrating, one shows thaeipgession:
2
i_EZia_ D,
ot 2i47m 9%

is an anti-Hermitian operator that commutes withxh.
One finally has:

ar
0 10 iy
ot 2i<¢m 0%, &

in whichK is a function of onlyX,, X,, andt that multiplies® due to the linear character
of the wave equation.
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Since, by hypothesis, the motions that are described beuglentified with actual
motions,K is well defined because it suffices to decompose theegnag equation into
real and imaginary parts in order to recover, on the leend, equation (C), and the
generalized Jacobi equation (J), on the other. This Eeusito write:

K=F;+F;+ Fya,

since one must recover the classical equation wherd.

The preceding argument has the consequence that if arte with the proposed
model in which the micro-objects are represented by wewvesal space then one may
describe their behavior with the aid of a wave in configomaspace that is constructed
from the coordinates of the singularity-particles ahiyne satisfies two conditions:

1. Relations (5.11) and (5.12) of de Broglie must be satisfietth@trajectories.
2. ® must obey the Schrodinger equation in configuration space.

This is satisfied since the passage fr®mand Q, to Q is done as in classical
mechanics. The passage fr&mandE; to E takes the mutual energy term only once.
Indeed, if one compares(J(J%), and (J) then one obtains the relations:

E=E+E-F:+Q-Q-0Q,
by taking relations (5.11) into account. Relations (5.12) tiee:

E=hk+E;—Fi2+ Qu2,
=imV +imv+Fi+Fo+ Fro+ Qi+ Q2+ Quo,

which symmetrically treats the ordinary and quantum aat@wn potentialé;, andQi».
We conclude with a physical remark. In real spacewtneeu;, for example, may be
decomposed into two parts, such as:

Up = Uo1+ @i .

Up1 IS non-trivial only inside a tubE; of radiusry; that surrounds the trajectoy. This
tube is physically important. As we have seen, thdange relations, for example, must
be valid inside it and on the boundaried @f and not just on the trajectoky, sincelL;
constitutes a limiting representation of the singuégyion when one confines oneself to
consideringg;.

Having said this, we return to relations (5.11), which we megdao call the de
Broglie conditions. The geometric significance isacl€). They simply express that if
one fixesxy(t) on L, in configuration space, then the isophase surf&esd S, are
tangent to the pointg(t) alongL;, and they have a contact of order 1 (equality of the
first derivatives with respect tq onL,) in the subspace that corresponds to particle 1. In

4 By differentiatingSand$S, in (5.11) with respect t& , one sees that,S =[0,S;; X, is fixed.
0 %
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summation, this assumes that particle 1 reduces to anghpaint on the trajectorly;.
Such conditions are the only ones that are possiblemnayeseek to generalize them. For
example, one may assume that the de Broglie L,

conditions are valid up to higher-order hiS=0hS
infinitesimals, not only onL, but also in its
immediate neighborhood — for example, the
interior of the tubel;. Geometrically, this
amounts to assuming that the preceding contact
betweeng:, S, andSis of order higher than one
at the point. For example, one might assume
only that one substitutes the equality of first and

S

second derivatives, namely: Fig. 23
0,5 =0,3
9°S _9°S (5.13)
oz 9’

which corresponds to a contact of order two, for refstib.11). With these conditions,
the de Broglie conditions remain valid to the approximatonsidered in the entire
region that surroundks;, in which one may content oneself with the firsbtierms of a
Taylor series development 8fnamely:

S= S0, 1) + (ThS +KOyS +10,S) 1+%(h25§5+...),

in which we have denoted a pointlof by X,,, and the infinitesimal components of the

distance to neighboring points Iy k, andl. For the given dimensions &f, if one
wishes to impose stronger conditions then one is letht@mse an order of contact that
corresponds to the powersrgf that one has neglected. Inthe case envisioned, fohwhic

ror = 102 cm., one sees that one can legitimately neglectjtietities of order?, and

thus content oneself with a contact of order twolLerbetweenS, andS. The same
argument obviously applies to particle 2.

In other words: If, instead of de Broglie’s mathemataanditions, we consider the
guidance condition from the physical viewpoint then wee thbat we must account for the
fact that a linear trajectory, suchlas obviously constitutes the mathematical abstraction
of an extremely thin tube that is described by an extesotgyularity that is bounded by a
surface §. When one considers, as is necessary, not onlynéar ltrajectory, but the
tube itself, one sees that the de Broglie conditionstéct alond-;) do not suffice, and
that the contact must be defined — up to a sufficippraimation — over the entire
interior of the tube, which imposes a contact of otdgher than one.

8 7. — In our opinion, the preceding conditions are quiterasting in that they
specify the mathematical nature of the relationship tinies the wave#; and ¢, that
propagate in actual spacetime with the amplitude andepbéghe wave® in the
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fictitious configuration space. Even so, they are mhmetely satisfactory for two
reasons:

1. We have not proved that any system of two waesnd ¢, (the regular parts of
the wavesu; andu,) that is associated with interacting particles givasedated pairs of
trajectoried; andL, that are representable with the aid of streamlinesvedve®. This
is a very difficult problem that we have not treatedtillpnow. In the opinion of de
Broglie, one may attempt to prove that conditions (5a (5.12) are always satisfied
by using a system of coordinates that is centered ateiigercof gravity of the two
corpuscles. We have not succeeded in this attempt,yas. ol he principal difficulty lies
in the fact that these conditions must be satidbgdctual initial conditions, even if it
may be shown that they are effectively satisfiedllimfathe physically meaningful cases
that have been treated by equation (5.2). In fact, h@incertain that this is true. It may
be that in certain real cases it is not legitimatpdss to the intermediary of configuration
space in order to describe the behavior of the systemi@mats It will then be
necessary to solve a system of simultaneous equationsal spacetime instead of
starting with the Schrodinger equation in configuration spaldee use of configuration
will then be less general than our model.

2. One must show that any solutidnof this Schrodinger equation in configuration
space gives pairs of actual trajectotigandL, that are associated with wavgsand ¢,
satisfy two Schrédinger equations in real space, conformongur model. This is
necessary because one knows that a number of actbémpin wave mechanics may
be treated with the aid of such solutions. If our mosl@xact then it must apply to the
set of these cases, at minimum. That proof is thexef@cessary to establish the
equivalence of the two interpretations.

One may present it as follows:

We start with a particular solutioh (%) of the Schrédinger equation that correctly
accounts for the behavior of an actual physical syst€@ne then needs to know whether
the given of® will determine two wavesp; and ¢» that accompany two particles,
conforming to the proposed model, and consequently satistietBeoglie conditions.

In order to do this, we first demand to know what intice give us knowledge of
relative tog; and ¢, in the context of the preceding ideas.

According to our model, to any streamlibethat is defined byp there correspond
two correlated trajectorids; andL, that are actually followed by the two particles. We
therefore know:

a) OnlL; andL,, the manner in which the two particles displace in tinmamely,
X, () and X, (t) — in which X, and X, denote their coordinates in actual space.

() Which is defined by given initial conditions.
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b) At X (t) and X, (t), the values of the phas& and &, and their first four
derivatives[1, S and,S; S andS, are determined only up to an additive constant.

This results from the hypotheses that we made. FormgamordS/ox, 0S/dy, and
0S,/0z this results from the relations:

0S(% (1) = U S(X,, %, 1),
which expresses the law of motion we assumed, the tieev@s,/ot is given by the
Jacobi equation () for corpuscle 1, which gives this quantity as a functioguantities

that are assumed to be known.

C) At xi(t) andxy(t), the values of the quantities:

n A A
Q=- i and Q=- _RZ
2m R 2m, R
as well as their spatial derivative¥); and [JQ,. This also results from the proposed
‘) L, model since one has, by hypothesis:
{DQ]_ = D]_Ql
0Q, =0,Q.

o At this stage, one then sees that the problem is not
M determined by the de Broglie conditions (5.11) and
(5.12), in general.

. X Indeed, in our model, from the Cauchy-Kovalewska
Fig. 24. theorem, the determination off; necessitates, in
principle, the knowledge of the Cauchy conditions tl@atrespond to the Schrodinger
equation:

2%y
ot

A
Zf; +(F +F)y

on a tubd ; that surrounds; (sinceF, is determined by the knowledge of the motions
onLy).

In the particular case, these Cauchy conditionsoaisly reduce to the knowledge of
S, 0S, R, andJRy, provided that the tube is not tangent to the dmatteristics of the
wave equation, i.e., to the light cone (which ist nhe case in the Newtonian
approximation that we considered).

Now, if we know all of the values & andS, on[l; because ob, etc., then the
same is not the case B and[JR;, which are simply constrained to satisfy the eiguat
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_M AR
om R Q1

in I;; sinceQ is determined by the first two terms of the Taylor d@yment onl;
(since one know&IQ; for each value o).

Mathematically, there thus exists, in principle, annitdide of possible values &%
andoR; that constitute acceptable Cauchy condition§ onOne may obviously say that
the physical conditions select from among all of tredations, the ones that give values
of ¢1 on a surfacerthat correspond to the initial physical givens, but hdothink that
such a determination is satisfactory. Instead of thBrdglie conditions, one must adopt
condition (5.13), which corresponds to a contact of ordemd®determines the waveés
and g, completely.

Indeed, under that hypothesis, we know not @ilypn Iy, but alsodS; and 0°S,,
since one has:

’s %S
ox; 0%

I

1=1, 2, i=1,2,3, (5.14)

onL.
We shall see that this determirfgsandJR; onl";. In order to do this, we first prove the
following lemmas:

Lemmal.

Let G(u) = Au + c[l be an equation of elliptic type in three-dimensiomsce (in
which ¢ designates a continuous function of the variables)rtat be satisfied inside a
sufficiently small domairk that is bounded by a surfac®.( One may always uniquely
determine an integral of the preceding equation that isaegut and takes given values

on (9.

The proof of this property is found in numerous treatisesnalysisJ), so we shall not
develop it here.

Lemmall.

If one is given the values afSand?Son a trajectory. of the causal interpretation,
which is defined as a streamline of a solutigr= R exp(iS/#) to the Schrédinger

equation, then it is possible to calcul&and[IR up to a multiplicative constant on this
trajectory.

The proof rests on the use of the continuity eguafiC). Indeed, return to the
hydrodynamical equation, and consider, as we ditiernstochastic proof of chapter IV, a

() Cf. GOURSAT,Traité d’analyset. Ill, pp. 513; HILBERT and COURANTMeth. Der Math. Physik,
pp. 280.
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volume elemenfAweach point of which follows the fictitious fluid thatassociated with
@. In the course of a time intervéllwe have, due to equation (C):

ARAG =0,
namely:
AwR + RROAw= 0.

We then denote the arc of the cukvby s. We then have:

OR ds

OR? =2R— —(dt
s dt
_2RORIS, 2R RdS
m 0s0s mo s ds

since the fluid velocity along is given bydS / ds / m Since one has, on the one hand:

D= div D—mSAa)dt,

by hypothesis, the preceding formula becomes:

AwEB(Za—RiS+ RdivDSj =0,
m\ ds ds

which determines the evolution BfalongL by the expression:

_ _1,s| divOS
R =R ex 2~LD iS. ds;,
ds

which is calculable, in principle, since one kna¥ws values of div]S anddS / don the
trajectoryL.
Let us continue.

Due to Lemma Il, one first sees that the giveraiditions (5.13) determind®(t)
onL; up to a multiplicative constant, provided that @heoses a trajectory on whiéh
is non-null {9).

We then attribute a very small radigsto I'; (which we ultimately make go to zero),
and cut it by constant time sections, and assuateRiitakes the previously determined
valuesR;(t) on these sections.

(*% Which is the general case, because in the contragQzebecomes infinite, which may happen only
for particular trajectories or in regions that the et do not enter.



12¢€ Structure of micro-objects

One then easily sees tHtis likewise determined on the interior Iof, since it must
satisfy the relations:
hZ
— AR = ,
om AR =QR

in which @, is fixed by the Taylor development in (since we now knov®; and[1Q;
on L;), and must take the preceding vall), on [l 1; this is what we replace in the
conditions of Lemma |.

We thus knowR; everywhere i 1; hence, the value of its derivatives, as well. If one
then assumes as is natural — that these derivatii# do not experience discontinuities
when they cross the surface of the tube then one Isaesrte knows the set of Cauchy
conditions onl; (relating to the Schrdodinger equation) that are rsgsin order to
determine a solutiog;(ro1) outside ofl’; (indeed, one knowR;, OR;, S, and1S) in
spacetime.

Finally, it suffices to makey; go to zero in order for this solution to go to the akir
solutiong; in the limit ¢%).

Since this reasoning is valid fg@e, one concludes from this that the hypothesis that
the de Broglie conditions remains valid in a neighborhoédLo and L, (which
corresponds to the physical notion of guidance) and andemawler contact of the
surfacesS;, S, andS’ suffices to uniquely determirg and g».

We may therefore state the following theorem:

Theorem

To any solution® in configuration space there bijectively corresponds two
continuous waveg: and ¢, in real space, which conforms to the previously proposed
model and which satisfies the conditions that were gqsegp by de Broglie in a
neighborhood ok; andL,.

This suffices to prove the physical equivalence otweeinterpretations for all of the
cases that are actually known.

8 8. — We shall now reproduce an argument of de Brogdie reHates to quantum
statistics in the case of particles of the same adtur=n, =m).

As one knows in the usual wave mechanics, it is nacgss assume that the wase
of the system in configuration space is either symmetrianti-symmetric when the
regions possible existence overlap each other if ones tddee experimental facts into
account. If one then refers to the preceding ideashichathese particles are represented
by two wavesl, then one sees that it is natural to assume tkla¢se waves overlap then
they are superposed, and finally form a single wave:

u="fexp(iS/h),

(* An operation that is always meaningful here, sinceamyg considersf(ro,) that are continuous and
bounded.



Chapter V 127

for which the amplitudé has two distinct singularities. With the preceding nomst we
then have:

SU% s % 0 = (X %, D).

Namely, from formulas (5.11):

{Su(X’ )= %2(_.)& ) (5.18)

S(% %, % 9= (% 3+ (¥ )¢ %)

in which S designates the phase of the system in configuratior spac
One may make the same argument for amplitudes. Qaesb

Ru(X, X5, 1) = Rea( %, %5, 1),
which gives, due to (5.12), the following equalities for thenta potentials:

Quu( X, 1) = Q2 X, 1),
QX X, %50 1) = Qua( X, 1) + Qua( %y, 1) + Qua X5, 1),

which, like formulas (5.19), translate into the mathecahfact that the two singularities
may be exchanged without anything being modified in the lk&vstate. From this, one
concludes that the quantum potential in configuration space:

I 1 (B, +D,)R(% % %0 D
Q( le lt): - L i - - : H
e 2m R % % )

must be symmetric irX, and X, .

If R is then the amplitude of an arbitrary (asymmetrichtsmh of the wave equation
in configuration space then one must form a linear combimaf the form:

R =CR +RC
in whichC andD are complex constants, such that the quantity:

CAR+ DAR

CR+DR 7Q (B=hitl),

IS insensitive to permutationd and X,, which translates into exchanging the positions

of the singularities. By writing this condition exptlgj one easily findsC?> = D2,
namely,C = | D |, or furthermore:

2argC=2argD + 2n7g
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C=|C|e,
D=+|C|d“=%C,

which expresses that one may allow only symmetric drsgmmetric forms for the
wave @ in configuration space; this conforms to the classiesiilits of the probabilistic
interpretation as it applies to the particles of e nature. On the other hand, here, as
de Broglie has pointed out, we find that this resultlteen deduced from the model of
the theory of the double solution, instead of being posti&f&iori.

In the sequel, we shall not account for spin effectéonetheless, the preceding
calculation that it might also be possible to derive Riaalli principle from the theory if
one proceeds to show that for fermions the wavmay be composed of only one
singularity, whereas in the case of bosons it magolbeposed of several.

8 9. — The preceding considerations allow us to finaBpoad to the partial criticism
of the causal interpretation that was raised by R&)li We formulate it as follows: the

introduction of exact positiong into the theory of the point-like aspects of micro-

objects is necessarily devoid of all experimental sigaifce because if one analyzes the
effects of these parameters then two cases presgnséives:

1. They never physically manifested themselves antsempently amount to
considering a “metaphysical’ character.

2. They are physically manifested by modifying the wlavetions in a manner that
depends on their precise values and, at the same tisteoydethe validity of the Bose-
Einstein or Fermi-Dirac statistics, even in the domautgre they have verified by
experiment.

We respond to this criticism by showing that point 2 aflPa based on an arbitrary

concept, and unjustified in the manner by which the hidden paeasné may be

experimentally manifested.
We commence with a preliminary remark:

A number of people have imagined that the validityhef Bose-Einstein and Fermi-
Dirac statistics signifies that particles of the sama¢ure are necessarily indiscernible
from each other. According to them, if one may enateethem, as will be the case if
they have continuous trajectories, then one will Ibdged to use the statistics of
Boltzmann regardless of whether the wave functiognsnsetric or anti-symmetric.

This inexact concept is applied to a very widely used pnétation of the “Gibb’s
paradox” in classical statistical mechanics. In ordeplbtain a correct value for the
entropy of a system of n particles one must divide Esal volume of phase space by
n!, which is interpreted by saying that the exchange of twtcpes does not lead to a
new state of the system. From this, one obviouslylodes that in order to obtain the

(*?) In the work: LOUIS de BROGLIERhysicien et Penseur.
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Bose-Einstein or Fermi-Dirac statistics one must mssuthat the particles are
indiscernible, in the sense that it is not possiblattisbute distinct identities to them.

The weak point in this argument is that it rests am higpothesis that all of the
elements of phase space that have the same energyually probable when one applies
the laws of classical mechanics to the motions. A®msequence, it only applies to
classical particles.

Since we know that the classical laws do not accéamthe behavior of micro-
objects in the context of the causal interpretation, sees that one must calculate this
probability in phase space and introduce forces of quantigimowhich then leads to
the statistical conclusions that were predicted byptiodabilistic interpretation in all of
the cases.

In order to see this, one must first note that in @nesal theory particles that have
well-defined trajectories are, in principle, identifiablerom this, one concludes that the
exchange of two trajectories actually leads to a newe sihthe system considered.
However, having said this, it results from the precediegtiens that the external
fluctuations generate the distributigh= | ¢ f, for an ensemble of systems. This
distribution - whether symmetric or anti-symmetric -H wherefore not be destroyed by

the exchange of the paramet€(§ and fw. Now, as Bohm has shown, the distribution

P = | [ suffices to establish that the new interpretation ghesk all of the statistical
results that are associated with the ideas of the@wmen School).

In domains where the usual form of the theory ceasbs valid, i.e., at distances less
than 102 cm., it will obviously be possible, in principle, tehgbit the processes that are
capable of destroying the distributi®r= |¢ [, and the validity of the Bose-Einstein and
Fermi-Dirac statistics. This will be the case, daample, if a measure of thecalization
of the individual micro-objects becomes possible at #n&ll However, even in this
case, the external perturbations that were describetapter 1l quickly re-establish the
distribution.

Objection 2 of Pauli consists of affirming that it i©tnpossible to obtain
manifestations of at this or that level without destroying the symmetrypprédes of
the wave functions, even in the levels where we knowthigey account for experimental
phenomena. To prove this, Pauli implicitly assumeat the only possible physical
manifestations fo€ appear through their action on the wave function.

If one then recalls, for example, the hypothesis Budtm made, that it is possible to
introduce terms into the Schrédinger equation that depenthe positioné of the
particles as in the case of two particles (I = 1, 2):

(*3) If one hasP = | then one sees, for example, that the predictionsatibtital mechanics depend
uniquely on the values of the energy levels and the odoapartobabilities for each level. Since the values
of these levels (which depend only on the wave functionithabmmon to the two interpretations) and
their statistical treatment is identical on the camndomain of validity of these two theories, one inth
led to the same occupation probability exf(/KT) for each level (in whicli, desighates the value of the
energy andK, Boltzmann’s constant). One concludes from this treatwlo interpretations lead to the same
statistical results.
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ihaa—f:—hZ(Al+Az)¢+v¢+ F(%, %, &.4,),

one sees that iF does not have special properties then, in time, thif leald to
considerable changes inthat destroy its symmetry, evendif represents a perturbation
that has only the effect of altering things at the lefal0™* cm.

This argument is not valid for two reasons:

In the first place, there is no reasonfoto not have the same symmetry properties as
¢, which excludes the appearance of cumulative effectsctable of destroying this
symmetry. Pauli did not explain this point clearly.e deemed to believe that this
hypothesis will further prevent the particles from mastifeg themselves individually,

even if thef remain “metaphysical,” and that it will be vain to diiiie a distinct

identity to the micro-objects considered. In our opinidis is not exact because they
then manifest themselves collectively with a behathat is different from the behavior

that is predicted by the usual interpretation that makesdessary to introduce the
into the theory.

In the second place, it is not necessary that &henanifest themselves uniquely
through their influence on the fielg, as Pauli assumed. In a recent arti¢fy, (for
example, Bohm has envisioned the introduction of potem/(aq?s) into the theory that
act on the particles directly without touching thédfi¢z. Such an interaction allows us
to observe the individue&'ﬂ) with a unlimited precision without altering The f(”) may

therefore manifest themselves without destroying thélitsalof the Bose-Einstein or
Fermi-Dirac statistics at the level where quantunoyes valid, provided that one lets
an interval of time pass that is sufficient for ttistributionP = |¢ [ to be re-established.

(%) Progress of Theoretical Physidgol. 9, No. 3, pp. 273, 1953.
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8 1. - The theory of interacting micro-objects that was used in the preceding
chapter plays an essential role in the new interpo@tatlt has allowed David Bohm to
define the basis for a causal theory of measuremenagnaes with the postulate 6f
Bohr and Heisenberg on the results of measurement®lbalpitistic theory. One may
therefore address the principal objections that wereedaisy the adversaries of
determinism to the causal interpretation, and, withstmae stroke, understand one of the
essential properties of matter in the context ofatganization considered: the exchange
of energy by quanta between systems of interacting noiojects.

We shall give a brief summary of it and refer thedex to the works of David Bohm
for more detalils.

We first analyze what happens for an isolated micreatbjyhen the wave is a
superposition of two plane waves, namely:

§=Capa(%,) exXp(-IE/ 1) + Copa %) exp(-iE,t/ ),

in whichC; andC; are real. Settingh = R1, ¢ = Ry, ¢ =R exp(iS/#), one immediately
has:

R =C,R+CR+2GG RRcos[( & B) tz]
with:

tan{sﬂEl_ 5)”2}: GRB- Q'i\’tan{( E B }t
h C,R +GR 2h

These relations show that everything happens e isingularity-particle is subject
to a quantum potential that fluctuates with an damgfiequencyw = (E1 — Ex)/. The
energyE = - 0S / ot, and the moment of the particle then oscillatehwiite same
frequency along a very complicated trajectory inagparent state of Brownian motion
(®. In the absence of any interaction, these @sititis persist indefinitely, which is
reasonable since a transition from one state tthana@emands an exchange of energy
with the external systems.

Therefore consider an exchange of this type — dwample, the Franck-Hertz
experiment — i.e., the inelastic collision of ar@tary electron that belongs to a hydrogen
atom in a stationary stak with an incident electron.

Before the collision, these two particles are espnted by the wave = @
exp(—iE,t/#) and the wave-packet:

fo(y, 1) :jeRy f(k—-k)exp( ik t/ m)dk,

(") That were discussed at the beginning of chapter IV.
(%) Cf. Takabayasioc. cit.
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respectively, in whicly designates the coordinates of the incident particlee cEnter of
this packet coincides with the extremum of the phaadunction otk — and is therefore
found at the pointy = ik t/ m.

As one knows, in the absence of interaction, whichthis present case, the

corresponding motions are represented by a unique functioanfiguration space that
depends orx and y as a product of the preceding two functions. One theréias:

D; = go(X) exp(-iE,t/h) fo( Y, 1),

and the two particles move in space independently.

During the collision, the two micro-objects interaeind the wave function in
configuration space — a solution of the corresponding Soigédequation — may be
written:

® = ¢+ 4, (X) expCiE L In)f, (Y 1),

in which thef, are the coefficients of the developmenthointo thegd,, which correspond
to the energy levelg, of the planetary particles. The motion of the fpasticles is then
very complicated, and governed by proper and iotema (classical and quantum)
potentials.

From the interaction, one verifies without diffiguthat the function® tends to the
asymptotic form:

O =@(X,y) +>. 0, (x)expHE,t /7)D

explik I — (k2 / 2m)t]

: g,(8,®, K) dk,

[ f(k-k)

with #°k? /2m= (%K’ / 2m)+ Eo — E, (which corresponds to the conservation of energy).
The preceding terms in t@ sign in the right-hand side represent diffuse waaekets

(in which the particle takes the velocimzn /' m) correlate with the functiong,(x) that
represent the corresponding states of the atoreatreh. The center of th# packet is
given by Fn:(hIZn /m)t, and one easily sees that these packets end g $eparated by
a classically describable distances because thkicity depends on the quantum number
n.

In the causal theory, the functi@nallows us to calculate both the densiigp* and
the trajectoriesm v, = [J; S of an ensemble of particles that are pairwise @asad with

the state considered. As a consequence, if orggvéen the initial positions of two
electrons and the initial values of the state fiomst then one may predict the motion of
the micro-objects, in principle. From our desaoipt it is clear that two particles follow
very complicated trajectories during and after ititeraction, even though the emerging
wave packets are superposed in space. This sngei the case during a certain time in
which the function® tends to the preceding asymptotic form (6.1). Toenplex
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behavior of the system then subsides progressively. nWihe packets are

macroscopically separated, one sees that the incidesttan is necessarily in one of
them (the one that is characterized by a given valug sihce it does not penetrate into
the regions where the function is negligible. Trenptary electron itself is finally found

in the energy state that corresponds to the asymptot@agenent. Since the incident
electron remains thenceforth in the emerging packedidered, one may practically treat
the ultimate evolution of the system by limiting thatstfunction to the corresponding
term of the development)( namely:

®p= ¢, (X) exp(iE,t /)0

Jf (K-K) exp{i[k F —(nk?/ 2m)t]} 0. (6.0, K dk.

in whichn defines the packet that actually contains theigdart This function represents
an atomic electron in thé" quantum state and an emerging electron of enkfgy/2m

that evolves in an independent fashion since iuced to a product of functions of
xandy .

The energy of that atomic electronBsbecause its wave function may be written in
the form¢(X)exp(-iE t/#); this proves precisely that energy is always fiensd by

guanta of magnitudg, — Eg in inelastic collisions of the preceding type.

We have therefore obtained a causal descriptid@arms of the new mechanics of the
exchanges of energy by quanta without resortingti® postulates of Bohr and
Heisenberg.

Such exchanges take place in a continuous (althcaygidly varying) fashion during
the collision, and are quantized only by interagtivith systems. The probability of each
process is obviously equal to the one that onarabta the probabilistic interpretation.

8§ 2. — It finally remains for us to discuss thedhy of measurement in the new
interpretation. In order to facilitate its compeelion, we first recall the essential
principles of that theory in the interpretationBifhr, which we state in the same order as
they are usually presented fi.

1. According to the Copenhagen School, the natiomeasurement must be placed
at the basis for any theory of micro-phenomenadedal, as we saw in the preceding
chapter, Bohr and Heisenberg estimated that sticbcay does not have the objective of
giving a representation (however approximate) afrgting that happens in nature
objectively, but only that of giving a mathematisgimbolism that allows us to predict
the results of measurements that are performeah lopserver.

() Indeed, one may show that the other packets maytesfdre with the packet considered, by reason
of their interaction with the macroscopic systems soatound the system
(%) Cf. the beginning of chapter IV.
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2. The results are not determined in advance, in gebgreeason of the fact that the
interactions between the measuring apparatus and the-abgcts are unpredictable, in
principle.

The probabilistic interpretation therefore describedquocesses by associating a
Hermitian operatoA (which admits a spectrum of functions and proper vaguesdA;)
to every measuring apparatus that is supposed to measurtaia ceagnitude, and a
wave functiony/ to every micro-object.

During a measurement, the preceding interaction, whiclunigredictable, by
definition, then generates one of the values that dieedeby the operatof, and this
happens with a probabilityd; [* that corresponds to the square of the Fourier coefficien
Ci of the development of the characteristic functipiof the micro-object that is being

measuredy =) Cig).

According to Niels Bohr and Heisenberg, the wayeis therefore a sort of
representation for the ensemble of potentialities efrtieasurement of the particle, with
their respective probabilities. It is no longer a “pcade element,” to recall the
expression of Destouches, which is capable of beingyornedified when the observer
acquires new information.

This “reduction of the wave packet by the measurement’ was described by
Heisenberg suffices to show the non-physical and puréfgstive character of the wave
. The Copenhagen School therefore opposed the detemma micro-phenomena in
an irremediable fashion because if it is true that udbability waves evolve in a
rigorous fashion between measurements then one easd\tlss#t any observation of the
information that it carries interrupts the courséhid determinism of the probabilities.

The causal interpretation takes the counterpoint optbeeding positions. Indeed,
according to it, micro-objects and apparatuses, whichharagelves composed of micro-
objects, exist independently of us in nature. They neagldscribed, at least at the levels
considered, by wavasthat give an approximate representation. As we have Hesse
waves, by the intermediary of their regular part®y alkow us to calculate the statistical
density of particle ensembles in a given state that httedned their equilibrium state.
The “hidden parameters” characterize both the descrigtidine micro-objectand the
measuring apparatus.

Before the interaction, the micro-object and the agtparevolve independently, and
their state functions are governed by distinct Hami#osi

During the measurement, there is an interaction letvlee apparatus and the micro-
object; it is represented by the introduction of an ateon HamiltonianH;. The
apparatus and the micro-object mutually influence eachr,odind the original states of
the micro-object and the apparatus are obviously perturbethat hteraction is
characterized by the measurement process because ipatisal interpretation the
observed variations in the apparatus may be related tol atates of the micro-object
and the apparatus before the measurement.

After the measurement, if the interaction ceases the apparatus and the micro-
object must evolve independently in states that diffiegeneral, from the states in which
they were previously found. One may predict them, in prieacwhen one is given the
initial states of the micro-objects and the distribotof the observation.
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We remark that these ideas constitute a natural extea$ihe classical ones on the
nature of the measurement process. In full rigor, pucsbesses always perturb observed
systems; however, at the classical level one adhmtissuch perturbations are negligible.
The same is not true at the quantum level, where theattions are such that they do not
leave such systems in the state in which they foundréeéhe measurement, except for
exceptions. This is, moreover, a fundamental properthefobservations at the level
considered: They must permit the causal theory of meammt to explain the
experimental success that was attained by the probmbihserpretation and to clarify
the new physical significance that one must attribotehe Heisenberg Uncertainty
principle.

8 3. — The general analysis of measurement processes al® to single out a
number of properties, which we summarize as follows:

a) The measurement of an arbitrary variable must beopeed by means of an
interaction between the observed system and a convep@h of the measurement
apparatus. In order to give it a precise macroscopuifisignce, the measurement
apparatus must be constructed in such a fashion that a gaterosthe observed micro-
system ultimately corresponds, at the classical leged, certain interval of states of the
apparatus that is used. During a measurement the interactroduces a correlation
between the state of the system that is being obsanethe state of the apparatus, with
a precision that depends on the preceding interval.

b) Then consider the measurement of a certain observab@mitudeQ that is
associated with a given micro-object with the aid aeaain apparatus. Let be the
position coordinates of that object andhe coordinate (or coordinates) of the apparatus
that is associated with that observable. One may saswWwavid Bohm did, by analysis
of the physical properties of the apparatus that is ubatl,one may confine oneself to
the use of apparatuses of the “impulsive” type; i.e. hsti@at the duration of the
interaction between the object and the apparatus icisutfiy brief that one may neglect
the evolution that one subjects the micro-object and afysat@ during this time interval.
We may thus suppress the parts of the Hamiltonian thassaciated the apparatus and
the isolated micro-object during this interaction, and ladpH,. That Hamiltonian will
obviously depend on the observallehat one must measure for the micro-object and
also the operators that act gnthis is necessary for the system observed and the
apparatus to be coupled.

Having said this, we shall show, by way of examp)e that the apparatuses act
objectively like “spectral analyzers,” i.e., they mititely decompose the state functipn
that is associated with the micro-object into distinevevpackets that correspond to the
proper functions and values @ As in the case of the Frank-Hertz experiment, the
micro-object will enter into one of the two with a patldity gives us the results that
were postulated by the probabilistic interpretation.

(°) Cf. D. Bohm, loc. cit. An analysis of the apparasuteat were actually used shows that this property
is valid for all types of apparatuses. The proof thdoved therefore has a completely general character
when one uses real apparatuses at the level considered.
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By way of illustration, we treat the Hamiltonigh = — aQp,, in whicha is a constant
andpy is the momentum conjugate o

In the causal interpretation, as we have seenblete@n of two systems during the
interaction is represented by a function fy, andt that allows us to describe the
motion of the singularity-particle and the systemanfguration space.

This functiony satisfies the Schrédinger equation:

Oy a9
|E—a/thyDy/—( ialh )Qay . (6.2)

It may be developed into a series of proper fumstigy(X), of the operatoQ, whereq
designates a proper value@fnamely:

UK, ¥, 0 =D @, () (1) (6.3)
q
SinceQy(X) = qyy(X), one obtains the following equality for each wabfq:

. of . of
i—(y,t) = (mia/h*)Q—(y,1),
p (y,t)=( )Qay(y )
which admits the value:
foy, § = £, (y — aqt/ #?%)

as a solution, in which the index O refers to thgal values.
It then obviously follows thag, which may be written:

WX, Y, D) =D, () O (y - aqt/ 7%)

must separate into distinct wave packets in theespdy. Indeed, one has, initially:

Wo(X,Y) = do(X)Go(Y) = oY) D (%), (6.4)

in which the ¢ refers to the state function of the micro-objesshce in the absence of
interaction the functio reduces to a product of functions »fandy alone. Thes, are
generally unknown coefficients in the developmehthe state function of the micro-
object into theyy; go is the initial state function of the coordingt®f the apparatus, a
function that takes the form of a packet of dixe

By comparing (6.3) and (6.4), one sees ftﬁmy) =¢,%(Y); by substituting this

result into (6.2), this gives:
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WX, Y, D) =D (R g y- aqi 7%).

This relation, which is analogous to (6.1), allowsto repeat the argument that we
made in the context of the Frank-Hertz experiment.

Before the interaction, the micro-object and tppaatus evolve independently, and
may be described by distinct wave functions.

During the interaction, the wave functighis very complicated. The micro-object
and the apparatus are subject to violent oscitlatihat are analogous to the previously
described processes.

After the interaction, one sees that their behastabilizes after a certain length of
time because the packetg(y— aqt/#*) that correspond to the different valuescpf
cease to be superposed in the spage tfideed, the" packet is centered in that space at

the pointq =A%y/ at, and the adjacent packets are obviously sepabgtad interval:
dy = atoq/ h?,

which (if g andt are sufficiently large) may be made much largen tha

It then results from this analysis that the paglege classically separated in the space
ofy.

When one observes a given micro-object under tbesditions, one sees that the
variabley of the apparatus enters naturally into one pdaicwave packet, which is
determined by the initial conditions, in principtace the observation is completed. The
final result of the measurement is therefore detezcth by the initial form of the state
function ¢o( X, y), and the initial positionsk andy of the particle and the variable that
characterizes the apparatus.

As before, one may therefore eliminate the othekgis (which no longer act on the
quantum potential or the momemsandp, of the micro-object and the apparatus) of the
state function that thenceforth may be written:

WX, Y, 1) = go(X)Go(y — aqt/a*),

in which g corresponds to the packet that actually contahes variabley. This
expression shows that the apparatus and the migeatoevolve in a manner that is
independent of the measurement. If one then abttie approximate value of the
coordinate of the apparatus with a preciglyr= dy then one sees that the wave function
of the particle will bey after the interaction, and the observa@Qlewill assume the
numerically definite valueg. (As in the probabilistic interpretation, if th@oduct
atdq/ h* is less thay then no precise measurement will be possible.)ths recover
the first part of the postulates of N. Bohr.

If one then observes an ensemble of micro-objactee same state, in the sense of
the causal interpretation, then one obtains annelnigeof results of the preceding type
that is statistically represented hy . We then seek to evaluate the probability of
obtaining each particular valwg It is obviously obtained by integrating which is
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normalized over all the& andy in a neighborhood of thg" packet. Since these packets
are separated in space, one concludes that it suffidegegrate the expressi@l {q(X)
do(y — aqt/#*) . Sinceyy andgo are normalized, the probability that the particle el

variable observed enter into tof packet is consequently given by the equaltgy=
|Cq|2; l.e., precisely the value that is postulated by theadihibtic interpretation.

We have therefore proved that the new interpretagoavers all of the postulates of
the old theory by attributing to the measurement an tlgesense of interaction that is
absolutely foreign to the positivistic concepts that govke Copenhagen interpretation.

It is clear that the preceding theory may not pretém answer the question of
measurement at the present time. We confine ourselés following remarks, which
precisely clarify the orientation of the researchartaken.

1. Whenever one is reduced to observing micro-objectstha aid of macroscopic
apparatuses that are made of a very complicated enseimblgects of the same type,
powerful interactions are inevitable. The values & fghysical quantities that are
attached to the micro-objects that are given by such nexasuts will therefore be
distinct real values, the values before measurement.

2. In principle, the preceding theory must be repeateeaoh class of apparatus that
is associated with a given magnitude since it comes dowarphysical description of the
actual process of interaction. All of the Hermitiaperators that do not strongly
correspond to the observations have a physical signde as in the probabilistic
interpretation. This general correspondence, which wasulptesd by N. Bohr, is
obviously not provable, in principle. In particular, in tual analysis of the effects of
known apparatuses (cf., D. Boh@uantum Theorypp. 594), one will find the extension
of the preceding theory to measurements of spin and niemeks David Bohm has
remarked, the canonical invariance and the theory offtranations do not play an
essential role in the new interpretation; howevels thinot necessary on the physical
plane, provided that one may causally account for theepties that are verified by
experiments, namely:

- the existence of discontinuous energy levels in matter

- the quantization of electromagnetic energy;

- the appearance of integer quanta of energy in the photaeleffect, even when the
electromagnetic wave is macroscopically extendepace.

- The appearance of interference phenomena, even whehobens are introduced
into the system separately and independently (cf. therements of VAVILOV);

- The analogous phenomena for particles, namely the traofmergy by quanta,
even when the force of interaction is weak (seeRtanck-Hertz experiment) and
the appearance of diffraction phenomena when the partaies introduced
separately and independently into the apparatus.

In particular, the causal theory that gives a spatipbral description of the
preceding phenomena considers the general theory oftoseta be a mathematical
procedure that is devoid of any physical significance.

The only known observables at the moment are positiomenta, angular momenta,
several functions of position (such as dipole and quadrupoteents), energy, and spin.
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As all of these quantities are now included in the cansaipretation one deduces from
this that the two interpretations recover the expemtaleresults. Bohr’'s general theory
of transformations, which assumes the existence of qgdiysperations that allow us to
observe an arbitrary Hermitian operator, obviously dagsest upon any experimental
justification, and may therefore not be used as an argumgainst the model that we
have proposed in this work.

8§ 3. The existence of powerful interactions betweenafigaratus and the objects
observed is not contradictory in itself if the theaflpws us to calculate, in principle, the
values of the magnitudes that exist before by startiny thi¢ values that are observed
after the measurement. We take only one examplehotographic screen or plate that
registers the impact of an electron or a photon obviouestiurbs the micro-object that is
observed (which must likewise be annihilated), but givedatively precise indication of
the position of that object at the instant of its nueasient. In particular, the observation
of spectral lines that are due to the photons emittedHyglaogen atom annihilates these
photons, but gives exact indications about the endedg sf the atom in question. For
us, the apparatus here acts only on a part of the spdteenved — the photon — and is not
responsible for the phenomenon of emission in théhtglgy. The measurement even
permits us to deduce the initial and final state of thenatbserved.

It is not the same in the probabilistic interpretatiovhere, in full rigor, it is the
provisional interaction between the apparatus and tha #tat makes it pass from a
proper valuek, of the energy to anothét, with a probability that is described by the
wave function that is associated with the planet&gteon.

When, as is the case in a number of experimentsttme is found on the Sun and the
observer is on the Earth, this interaction has arosaopic character. If there is no
logical difficulty in this, as Bohr has shown (becawssording to him, it is not possible
to describe this interaction, in principle) then onentd help but feel a certain malaise,
at least if one believes in the actual existence of palprocesses.

We shall return to this particular point later on in¢batext of angular correlations.

8 4. — It is clear that the preceding theory transfornes dignificance of the
uncertainty principle.

Indeed, as we have seen, the actual interaction betleapparatus and the object
measured makes the primitive stgt®f the micro-object practically pass into one of the
proper functions of the observalffebeing measured. The valgethat is obtained by
this measurement is, as a consequence, automaticallydue@d if one repeats the
experiment considered.

Then suppose that one performs two successive measusernestmicro-object that
correspond to two observabl@sandP that do not commute: the second one is defined
by a variablez. The state function, after the two interactiondl, be transformed into the
expression:

MUX,zt) =) a. P (X)g(z- aptr?),

in which ®, is a proper function oP, that corresponds to the valpe andayp is the
coefficient defined by:
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Wo(X) =D a, P ().

Since the packets that correspond to differentesbfp separate from each other in
the course of time in the spacetpbne further deduces that this function may ballfin
replaced by:

¥ =ap®p(X) go(z- apt' %),

in which p represents the packet in which the coordirzagaters. The probability of
obtaining the valuegp by starting with an ensemble of such measuremthas are
associated with an ensemble of micro-objects irsfimae state may be therefore written:

| @pq ?,

exactly as in the probabilistic interpretation.

From this, one concludes thatRfand Q do not commute then it is impossible to
make a simultaneous measurement that gives twoewvgduand g with precision.
Conforming to the proposed model, the perturbatadnthe micro-object that is
introduced by the apparatus makes one precise negasat incompatible with the other
since the measurement®transforms the state functighinto ¢,: This is a function that
may be given a valug with certainty only if it is also a proper funati@f Q. (As one
knows, this is impossible P andQ do not commute.) It then follows that in the caus
theory the uncertainty principle does not expredsralamental, forever inexplicable,
limitation of the precision with which one may silbameously measure the position and
momentum of one micro-object. In effect, in tHatdry, the principle does not apply to
measurements that are performed on the individueorobjects (whose motions are, in
principle, perfectly defined and describable), buty on ensembles of measurements.
One may formulate this as follows: In the contextjuestion, the interaction between the
measurement apparatus and the quantum ensemblescraf-objects being observed
obligates the uncertaintieAp and Aq that are associated with an ensemble of
measurements of the complementary observablesisfydae relations:

Ap[Aq =2 7.

The Heisenberg uncertainties thus simply expressstatistical property of
measurements that one actually performs. As weotl&know how to determine the true
properties of the micro-objects (positions and mataeof the particles, etc.) by such
measurements one is constrained, from the stafistiewpoint, to limit oneself to them
and to consider those properties that charactbotde the object and the apparatus to be
provisionally hidden parameters. The observabled tve are concerned with are
meaningful with respect to the objects observeg ahthe classical level where one may
neglect the effects of the apparatus. At the quarievel, they do not characterize these
objects alone since the results obtained resuth fam interaction that is impossible to
neglect, in general.
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8 5. — As D. Bohm has emphasized, this leads one tavisether it is possible to
measure, not the usual “observables,” whose physicalfis@nce is ambiguous, but
guantities that are actually hidden, such as the positiomemcity of the particle-
singularities. We shall not treat that question irs thork. It obviously raises very
delicate theoretical and experimental problems that woalgremature to discuss here
(°). We nevertheless note that the unobservable ceamfdthe elementary trajectories at
the present time does not signify, as we have alreatharked, that the causal and
probabilistic interpretations are physically equivalentFor example, one owes
Schradinger for the description of an experiment thakes this distinction clear. With
the same stroke, he makes certain difficulties ofptladabilistic interpretation stand out
as they relates to the classical difficulties with tnstantaneous action at a distance.

Consider two charged particles, 1 and 2, of differentsemshat arrive with known
probability distributions as wave trains of limited dimens.

The directionsl and2 intersect in a regioW outside of which we may neglect their
interactions.

When leavingy, the incidence directiorisand2 correspond to probable directions of
refraction that are pairwise coupletignd2 ,1"and?’, ...), and calculable in advance.

Assume that we place a detecibmatA' that registers the arrival of 1 in that region.
We will then have that 2 is found Bi.

Fig. 25.

In the probabilistic interpretation, one says thhe action ofD (which is
indescribable, by definition) on the system of tparticles that are observed leavivig
will oblige 1" to go intoA" and 2' to go intoB'. As it is possible to separateA’,
andB’ by macroscopic distance, this signifies, as Sdhg#t remarked, thdD acts on
the particles 1 and 2 instantaneously, even ifdbeond one is separated from it by
macroscopic distances, and this happens in the &sh®n for any detector employed
(plate, counter, etc.). This is the “magic” in #rgression of Schrdodinger because if one
assumes the actual existence particles outsidelberver, it implies the existence of

(®) For example, in an article of H. RENNINGEReit. F. Physikt. 136, Heft 3, pp. 18, one will find the
schema for an experiment that is capable of exhibitotg the corpuscular and the extended character of
photons.
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physical actions of a new type that are unknown in Natprtill now and run contrary to
relativistic thinking, moreover.

In the causal interpretation, one says that the paxicles have followed actual
trajectories that are linked in probability by the mannewhich they entered. If the
trajectory of particle 1 leads in#d then the associated trajectory of 2 will lead Bto
etc. The introduction dD into A", which permits us to confirm the presence of 1, does
not act on 2, which is found BI since the interaction between 1 and 2 occurs when they
have traversed.

We have recovered exactly those essential traitsofhgosed the two interpretations
here.

The Copenhagen School denied any possibility of knowing ebmatside of the
effects of their action on the measurement apparatukkewise assumed, a priori, the
forever-incomprehensible character of such an actwhpse exact mechanism
definitively escapes the analysis of human endeavor. iherefore logically confined,
as de Broglie has noted, to “a sort of ‘subjectivism’ apjpg in idealism, in the
philosophical sense...that tends to deny the existence of a ghysality that is
independent of the observer.”

On the contrary, the causal interpretation, whichtstaith the objective existence of
micro-objects independently of any observation, affirthe possibility of giving
deterministic “models” that are valid at the differdavels considered. It therefore
necessarily indicates a spatio-temporal analysis césarement processes that are
realized in Nature, as well as an exact descriptionefriteractions that occur between
the measurement apparatuses and the micro-objectsehaiag observed. The analysis
that was previously sketched out makes no pretension gfletaness; in our opinion, it
marks progress towards returning a real character to ne@asor processes that is
describable, in principle, in the framework of the propokedry. At the level of micro-
phenomena, any description of such processes must téaeaatount both the
macroscopic (therefore complex) and microscopic charaaf the apparatuses used
(since, in the final analysis, they reduce to ensemlflesaro-objects that belong to the
same level as the objects observed). In general, adherefore concerned with powerful
interactions that are impossible to neglect and, raaog to us, explain the statistical
character that was given up till now for the quanturothef measurement.

In summation, the new interpretation justifies #ssential role that is attributed to
stochastic phenomena in the old theory by the impeetdéimat it attached to interactions
and to the reciprocal conditioning of the micro-phenomefdis importance, which
gives the causal theory a somewhat peculiar aspewirams us to consider Nature to be
an extraordinarily complex continuous ensemble of micomgsses in a state of
interaction and perpetual transformation.

Moreover, it is in the theory of measurement, whea smcceeds in accounting for
the complex motion of things, that the new micro-medas which, in a sense, extends
(") the mechanistic materialism of classical theongspa to the quantum level to bring
about the dialectical evolution of matter in motion.

(") Since it preserves two essential traits: theatisje reality of the external world and the determinism
of phenomena.
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8 1. Any ordered set ofreal independent variabl&s(in whichi takes the values 1,
2, ...n) may be considered as defining a point imadimensional spac¥,.

If ¢'(X, ..., X), withi = 1, 2, ...,n represents real functions whose Jacobian is not
zero then the equations:

X' =g (Xt x™) (1.1)

define a change of coordinatesvin

Let X be the coordinates of a poit. The coordinates of points that are infinitely
close toM may be obtained by giving the coordinatearbitrary infinitesimal increases
dX. IfM'is such a point and + dX, its coordinates, then we say that the poMts
andM’ define an infinitesimal vector that is attached to thetdd and the components
dx.

We then perform the coordinate change (I.1). Takimg account the usual
convention on summation over repeated indices, we get:

ox' 4

dx =
ox'“

, (1.2)

which indicates that the componentsMi# ' are transformed by a linear substitution.
We then say that the set of vectors that arenealh with the infinitesimal vectors that
are attached to the poikt define an affine vector space attached to the point, wich
may call the affine tangent spacevpat M.
In this space, the notion of contravariant, covariantmixed tensor is immediately
introduced with the aid of the usual formulas.

For example, the expressioasandA” represent the contravariant components of a
vector if:

v OX

A=A ==
'x?

(1.3)

A covariant vector field will be given by its comporem, which satisfy the
transformation formulas:

oxk
/7_' = Z\] , 1.4
boax (4)

or by:

Xt
,7i - axl |]7k1

and, more generally, the notion of a mixed tensor figltlbe related to transformation
formulas such as:
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L.mn o f...IS aXI axp aX’r aX’S
R = R...Ip '’ ox'" "'axm "

(1.5)

8 2. We have thus defined the general notion of tesiseach point. It remains for
us to provide the means to compare the values of thepa@oents at different points. To
do this, one introduces the notion of coefficients @banection that will permit us to
generalize the covariant derivative of ordinary Riemamispaces.

The differentiation of (1.3):

04 04 ox' ox'? Y a°x'  ox'”?
ox! ax’™* ox'? ox! OX'79x'# ox!

, (1.6)

shows, because of the last term in the right-hadé, shat the partial derivatives af
andA" are not the components of a tensor.

By contrast, one remarks that if one introduces theetindex expressiolfig andr,, ,
which are functions of andx’, and satisfy the equations:

ox’

9%x' . ox' ox®
+

NP K oxT axP o ox'’’ (.7
then the quantitied; andA’; , which are defined by:
A ﬂu T
)¢
MMJI (1.8)
Am — +Alyr[7
B aX"B
satisfy the relations:
ox ox'*?
)l. A ——— : 1.9
P ox'T ax) (19)

and behave like the components of tensor.
More generally, one may show that if the quantiﬁgsgmp , are the components of a

tensor then the quantities:

aarl Tm 1-m
arl..-r — z arl la- 1Jka+1 Tm r Ta z a o k (I . 10)

Sy +Sp i S, Sg_1KSg4q"S Spl

are the components of a tensor of onteip+1.
Therefore, the introduction of connection coefﬁc’m'rj); that satisfy (1.7) (which are

therefore not tensors) permits us to generalize tt®m of covariant derivative, and
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notably, to gradually compare the components of tensatsatie attached to different

tangent affine spaces. These spaces, as well as #wesgw thé,,, define the most
general affine space.
By starting with thé&,, , one constructs the usual generalized curvature tensor:

arlr arls I |
:_axks __axkf +MAr —Tars,, (1.11)

Rer

which plays the usual role when one parallel displacesctor or tensor along a closed
contour. _

To define such an infinitesimal contour passing through iat @(x), one will
arbitrarily define two infinitesimal vector fields by tveystems of differentiald, andd,
which define two point#(x + dx) andB(x + oX). At A, the vector fieldd defines a
vectorAM; atB the fieldd defines a vectdM . The coordinates il are:

X +dX + K + doX,
and those oM ' are: _ _ _ _
X + X +dX + XX

By virtue ofdd = &iX, M andM'agree, and we have a closed contour. Parallel
displace a vectok' along this closed contour. One then finds that theatiansA\' of
theA' have the expression:

A = —)IPR;rpded(f, (1.12)

or, more generally, for a two-index tendgf.
A= (-1PR,, + f RS )AXOX" . (1.13)

If we let the symbolsdf) and [af], denote the symmetric and antisymmetric parts of
a quantity with two indices3, as usual'j:

o _ 1
FO =2 (T + 1)

(1.14)

a1
f[ﬂ] _E(faﬂ_ fﬂa)’

then, with Cartan, one may call the expressi‘cmsthe “components of the torsion of
space.”

() Ed. Note: | did not have the original symbols used by Vijgie | substituted alternative symbols.
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Unlike therl”,., ther[ike] are the components of a tensor.

The geometric significance is clear: When one irdgimally parallel displaces
around a closed circuit, a vector experiences not oelyisnal Riemannian rotation, but
also a displacement that corresponds to torsion.

More precisely, if one displac€A alongOB then it becomeBA'. If one displaces
OB along OA then it become8B'. If O is taken as the origin then the coordinates
of A" are:

XK' +dx +dxPr K",
and those dB' are
dx + ' + KT dxP.

B'A’ is therefore a second order infinitesimal and hasdhegponents:

&' =T dxPox" .

8§ 3. The Riemannian notion of a geodesic line is imnelgigeneralized to affine
spaces. It is characterized by the fact that its tangemains parallel to itself for any
displacement along the line itself.

Any geodesic line will therefore satisfy the secordieodifferential equation:

d2x'  _, dxP dx' dx’
+I, + A
dt> " dt dt dt

=0, (1.16)

in which A is an arbitrary scalar function that one may elabé¢ by a change of parameter
t.

Therefore, these lines depend only uporTthe, and do not change if one modifies
the torsion of space without changing the symmetimponents dT,i)k.

8 4. In all of the foregoing, we have not introdd the notion of a metric (or that of
the length of a vector). As usual, this will bdated to the definition of the scalar
product &, y) of two vector(&) andy(7).

To do this, we introduce a symmetric second ocderriant tensor fieldjx that we
call the fundamental tensor.

The scalar product ofandy will be given by the formula:

X, Y =g é 7" (1.17)

By definition, &, X) corresponds to the scalar “square of the lengthhe vector.

Other than these covariant componait®ne may also introduce the “normalized”
minors of the determinarg of the elementsj , i.e., the contravariant componerfs
such that one has:

gipgpk :Jik, (1.18)
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in which thed, have the usual significance.

This permits us to define the operations of loweringa@ing an arbitrary index. For
example, one sets:

{‘(i = Gud" (1.19)

n'=9"&

and one does not consider two tensors to be disfitbey can be deduced from each
other by raising or lowering an index.
After a change of variables, the square root of the detannofgy then satisfies the

equality:
Jg =g 2¥ (1.20)

D(x)’

and therefore transforms as a scalar density, whetls multiplied by the functional
determinant of the transformation.

The introduction of they then permits us to define a simple solution t@)(lwhich
permitted Riemann to define the covariant derialfiv his metric spaces. One obtains

them by setting:
C )21 (99, 09y _ 09y
My = == =+ == - : .21
“ {kl} 29 (ax' ox*  ax° (1)

This solution has the essential property of comsgr length under parallel
displacement. Moreover, the most gengfahat satisfy this condition must satisfy the
condition:

00
gl:( -0 r|I<r - glkrilr =0, (|-22)
0X
which may also be written:
Oikr = 0.

It admits the following expression — which leawés torsion indeterminate — as
general solution (which is obtained by permuting k, and combining the relations so
obtained):

S S 1 rs
My = {ik} +§ g (r[ir],k g + r[kr],i) , (1.23)

in which one has set:
r[ir],k = Ok r[lir]'

Conversely, the existence conditions (which arduded from (1.22)) for a metric
whose length is conserved by parallel displacenmean affine space may be written:

Oip B gRi =0. (1.24)
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Weyl has proposed to give a meaning to not only the fundairtensor, but also the
notion of a scale.

This amounts to considering the fundamental tensor tofiedd of quadrics such that
when the quadric of the fielgk placed aM is parallel transported along an arbitrary path
to N is transported into a homothetical quadric of the quadribeofield that is placed at
N.

This definition leads us to substitute the relation:

Oik,r = — Oik &r , (1.25)

for (1.22), in whichg; is a well-defined covariant vector at each point otepa
Then consider a change of scale:

O = A0y, (1.26)

in which A is an arbitrary scalag must be replaced g/ , such that:

gi'k,r =-0,9,, (1.27)
from which one deduces:
10/
'z —-= , .28
p. =9, o (1.28)

which leads us to replace (1.23) by the expression:
S S 1 S 1 S S S
M = {ir} +§gk (r[ik]r g + r[ir]k) +§(5. ¢ +0¢ —0,¢9).

We conclude this subject with the definition of the ootof the weight of a tensor:

one says that a tensor has weiglfitits components are multiplied by under the scale
change (1.26).
If we then introduce the symbal , =a_nr + ¢, then (1.25) is written simply:

Onr = 0.

8 5. We conclude our brief summary of the essentistbmamf geometry with an
affine connection with several considerations on therd&itions of spaceé, .

A deformation is obviously defined by a modificationtér, — namelyd,, — that
entails corresponding modifications of all of the polesderived tensors.

One may then define a certain number of simple defiwnsthat we will use in the
sequel, namely:
—the isometric deformation:

which corresponds to a change of affine connection wita@iange of metric.
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Let Aic be an arbitrary covariant tensor that is anti-sytnimé the first two indices;
taking (1.13) into account, the corresponding isometriomhedtion, may be written:

d_ili = grs(/\ir,k +/\kr,i +/\ik,r)’ (|29)

— the projective deformation:

which conserves the geodesic lines of the given afmaection.
As we have already seen, these lines do not depend siontcand one may

setd” Ii<p = /\i[kp] arbitrarily. It therefore remains for us to look fthe modifications that

relate to the symmetric part of tﬁg; and obey the stated condition.
They may satisfy the property:
L, E5EP = A&, (1.30)

in which x(&) is an arbitrary vector, and is an arbitrary scalar. From (1.30), one
deduces:

(@& =T KENEPE =0
(1.32)
(Gqd =3, 5 )EPEE7 =0,
which is identically annulled if one has:

d, =09 +0,0,,

in which ¢; is an arbitrary covariant vector.
The general projective deformation is therefore given by:

A =079 +.0, +/\S[ik]' (1.32)
- the conformal deformation:
which conserves the metric tensor up to a scalar.
We have already seen this case when we discussed abfesstgde. If we abstract to
an arbitrary isometric deformation then the confortraxisformation is thus written:
d_ui = 5iscbk +5|fq)i _gikcbs’
in which®y is an arbitrary tensor.

— the conformal projective deformation:
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which is both conformal and projective. It is obviouslgtained by comparing the
expressions:

A =0°P +Ocp — G P° + grs(/\[ir]k + Ny + Nir)
and
A =0°P, +5,, +/\Tik] ,

which gives, by addition and circularly permuting tkie
¢ = 20,
and

Nink = Ok ®Pr — G ®Pi + Mirk

in which Ty is arbitrary, except thallix = — Mk = — Mik.
The desired deformation is therefore finally written:

d._ili = 5is¢k + grsn ikr *

From this, we deduce that the simplest affine spaceghmbjectively conformal to
an ordinary Riemann space will be defined by:

: i .
rl = + 5I ,

in which £ is an arbitrary constant aid is an arbitrary vector.
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The introduction of spinors into affine theory may béee&kd in the following
manner:

One begins by defining a system of orthogonal axea&t pointP of spacetime,
which are in the affine tangent spacetime to the sgacensidered.

This system will be determined by the componetjts of the unitary vector€,

that are collinear with these axes (called “Beingnisd®y Einstein). The index ()
indicates the ordering number of the vector and the witleout the () indicates the
component. Both may take the values In.and we use the usual summation convention
on repeated indices in both cases.

These “Beingrossen” obviously satisfy the relations:

gy = 35 (2.4)
hhi, =9, .

One then introduces a system Mfcomplex functions that are attached to the
preceding system of axes at each point. One representshly the notatiogf?, a = 1,

..., nand denotes their Hermitian conjugates/s{?.

These functions define a “semi-vectef’or spinor— that is attached to the system
considered. If one designates it gryhen one may show that it is always possible to als
introduce n N-dimensional Hermitian matriceg” in this system, such that the
magnitudes:

Yooy =

(in which D designates a scalar matrix that we shall define latgrbehave like the
components of a vector.

As various authors have showh, (thesey and the preceding permit us to
construct all of geometry from sub-tensors that afated to the theory of groups. We
content ourselves by recalling several classical relatihat are associated with the
possible changes of axis.

Suppose we change coordinates in such a way that the céystem of axes is
rotated (Lorentz transformation in the case of the luspacetime), which we
symbolically write {):

X, =t(x,) =t;X,.

It corresponds to a unitary linear transformafiérs T, of the spinor, which may be
written:

=Ty,

() Einstein & Mayer, Infeld & Van den Waerden, Schrédinger,.e
() In this paragraph, we systematically use the netatamd results that were presented by BHABHA
(Th. Of Particley Rev. Mod. Phys. 1949.
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such that one has:
[ ] — -1
a, —t#av =T aﬂT

in order forg/'Da” ¢ to behave like a tensor.
We then remark that any product of thematrices is transforms according to the
relation:

] [ B /] —_ -1

Wa.a, =ttt aa.a, =U"a,a,a,---U.
Moreover, transformations of this type obey the synchadimposition law:
Ueo U

toeT

N ut - UT.

For the sake of simplicity, we shall now confine owselto the usual case of four-
dimensional spacetime (the line of reasoning is immelyiagjeneralized to the case of
Vh).

The rotations considergdeduce to the Lorentz transformation. One knowsttiet
orthochronous group (which reverses the time axis) malyaked on the infinitesimal
transformations,

X, =X, +U,X 2.1
u :1—Eup‘7| o0 .
2

in which theu,, are the antisymmetric infinitesimal magnitudeg, (+ uy,, = 0), and the
l,0 are likewise antisymmetric, since they are the ndrithat correspond to the
elementary Lorentz rotations.

The conditioruay, = a, u gives:

(A % po) = Qup Qo= QuoQp - (2.12)

As usual, A, B) represents the commutator of the matrisesdB, namely,AB — BA
In the same fashion, the conditiofut — T UT gives:

(vl pa) == Quol o= Gvol o + Guolvp + Qupl o - (2.13)

These commutation relations ultimately permit us to ifp#te representations chosen.
Finally, suppose there exists a maDisuch that:

(@)D =Da*
U*DU =D (2.14)
U'D=DU™
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in whichU is arbitrary, andd4”)" is the Hermitian conjugate matrix of. One therefore
obtains:
| ,,D+DI, =0, (2.15)
and also
nysD =Dn,,

if 7o is the matrix that reverses the spatial axes.
Under these conditions, any given expression of the:form

Swp ... =4/ Dayava, ... ¥ (2.16)

behaves like a tensor with indicesp.
In particular, if we are given 4 fundamental matrieceghat satisfy (2.5), (2.12),
(2.13), etc., then one may find a representation ofrtlsech that:

1. (/'Dajy transforms like the components of a vector,
2. Y'Dasyand ' Davmaszasy transform like scalars,
3. One has the Bhabha relation:

L = (ap,an). (2.17)

After having summarized the major aspects of the thebspinors, which are valid
in every Galilean space that is tangen¥iq we shall define a procedure for passing to
spinors that are attached to a tangent space thainisalyf close to the first.

To do this, we shall first reproduce the results obthaimg Fock and Weyl by using
the notations used by Fock in his fundamental memoitg&aift fir Physik, v. 57, pp.
500).

We verify that the definitions used are equivalent ta@pkementary postulate that
defines a mode of variation of the entities (the sintrat were introduced in space.

Fock introduced operatof§ that serve to define a covariant variationgotinder a
displacement of the componedts in the tangent space.

By definition, one will therefore have:

oY =C,dsy (2.18)
5¢/+ :w+C|+dSI '

namely, if we set& = ¢/'Da;y then:

{55 =0y ' Day +y*Da,oy (2.19)

=('C'Day+y* ' Da,Cy)ds

Fock then determines tl@& by postulating:
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1. This variation is identical to the usual covariamtataon, which gives:

o =y & ds, (2.19cont)
from which one infers:
ai CI + CIWLa'i = yill(ak (220)

in which they, designate the usual Ricci rotation coefficients:
W + Wi = 0.
2. TheC, are compatible with the existence of the matrix. aAsonsequence, the

¢/'Da g, satisfy the usual formulas of covariant derivations immediately furnishes
the condition that was written for the first time \jey!:

%_runan_ClJrai +0'|C, g.n,|a'n
% (2.21)
_99; n
Oij.x _67_rikgnj w0

Equations (2.20) and (2.21) then admit the following exprasas a general solution:
1 s
G ZEV@I +iP,,

which was calculated by Fock and Weyl (in whighis an arbitrary vector ).
Therefore, the variation af is written:

0
¢y, = % -Cy
in the tangent space, namely:
0
v, =Yy
0X

in arbitrary coordinates (withy = his C¥).

The definition of semi-vector and the corresponding esgiwas for their covariant
variation permit us to introduce a covariant procedtirdof decomposing expressions
such as:

yDay  and (¢Day).

Indeed, consider a spinor withhcomponents that is defined as before. To each Lorentz
transformation matrix (generalized rotation), theoeresponds a matrid. The set of

() Cf. BHABHA, “Theory of Elementary Particles,Rev. Mod. Phys., 1949.
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these matrices constitutes a representdai the Lorentz group. A classical theorem
then tells us that it is possible to subdivide this @sentation into a sum of irreducible
representation®,, by a convenient change of axes, namely:

R=>CR, . (2.32)
4

In the case of the Lorentz group, it results fromwork of Bhabha that when:
%= dd - d'd,

and the relations (2.12) and (2.13) are satisfied, thesesegations are isomorphic to
the irreducible representations of the restricted Largnbup in five dimensions, which
may be written:

R5{A1, Az} in which A1 <A <0.

These/ are both integers (including 0) or half-integers (excluding@)e then has:

R=> R4}, (2.33)

Mz

as one knows that fdr=1there is only one possible representation of degrig{2,1}
(the Dirac matrices). Fot = 1, there are twd3s{1, 1}, of degree 10, an&s{1, 0}, of
degree 5, which correspond to the matrices of vauoesons and scalars, and so on, with
increasing degrees.

The decompositions just stated are obtained imemelgi Let be a semi-vector
with N components, and leta; be the
corresponding matrices; one performs successive
changes of axis until formula (2.33) is satisfied.

The matricesr andu may then be exhibited

in diagonal form: q=
! ai={A, 13
d = af A, A}, (2.34)
in which only the cross-hatched parts, which 7 /
correspond to the preceding irreducible =
representations, contain terms different from Fig. 26.

zero.
As a consequence, the expressigiBai ¢ and (¢/Daiy); are separated into a sum
of distinct parts that correspond to the irredueit@presentatiors{ A1, A2}

W Daw = ¢ Da;(A | A, (2.35)

Mo
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in which we have taken the decomposition effected into wmtcq(in which
ay = Zm{)ll)lz}z// and the products{A,,A,}a,;{A;A;} are null because of (2.34)).

A, Ay



APPENDIX Il

§ 1. Letg, be a symmetric energy-momentum tensor, as in BelefRosenfeld,
that is deduced from an invariant functiob(¢, ¢*) of the functions /%,

@ 9 y@ 9 @ gnda
v ’6x"¢l ’aka ’ -
One knows that satisfies the following conditions:

a) If Ais a real constant, then one hég;, ) = L(e*y, e y¢*) (gauge invariance of
the first type).

O

o oL (oL ) | e
) awi(n) - aw(ﬂ) awt(a) - aw(a)
a k
0X oxk
oL daL d d li [ d their derivati
aaw(a) an @ epend linearly oy, ¢#, and their derivatives.
ox«

c) If one replaces the operat%g% with the operators:
X

0 .
ak 267_|€Ak
then one has:
_ 0A
L@ A) = [e w. ey, A —L—j
£ Ox~

(gauge invariance of the second type).
We then introduce the expressions:

0 0
f=2 A -2 A,
fax ax"A

+ dL oL
(@) — -
Rl/l —ak(akw(g)j aw(g)

Za: (w(a)j 0 -

ox~
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. oL R oL
- (@) _ @
Sk "§ VO Y Taga |
6 k 6 k
0X 0X
and also
F/Luv :%(fvﬂp + f,u/h/ + fv/}p)
oL a
Faw == Fun = ; P 0,4
%)
0X,
The tensoig,, is classically written as:
_ 0
6, =T, +67FW.
We therefore have the equality:
O gw =0 quwy 0 0 ¢ ' 0 g (3.24)
ox* ox* ax* ox* M ax#

which we shall transform by taking the preceding defingionto account.
Indeed, if one remarks that the operators satisfyelagions:

(0,,0,) =&y,
(a:’a;):iéfik
9

fxg)=0,f*g+f*o
an( 9)=0.f*g <9

whenf* and g are two functions, which are multiplied by ande', respectively, under a
gauge transformation of the first type. One olstdime following equalities without
difficulty:

6)(1"-% =~ fvysﬂ + Z(Rw(a)akw(a) +conj)
0 0 _ - _
S g P = 0 (sinceF . = — Fu) (3.25)

d 9 . . .
5 B =—Z[6X—#(R¢/‘ 1,0 ))+conj}
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and finally:

0
ox*

a a a a a .
Owy = = 8" +Z{[Rw‘ 0, = (RY1 4 >)}+conj} . (3.26)

k
8 2. Similarly, one finds that the divergelcgg? has the value:
X

os~ _ 50 (a) :
—- ==Y iRy +conj} (3.27)

ox~

on account of the gauge invariance of the firsetyp

These two properties permit us to effect the dtpteof.

Indeed, introduce thg,gthat are defined by (3.21). Because of the piagesults,
it necessarily satisfies (3.22), which may be enitt

0 ds*
6)(—#9(/”) = —fV#S# _A/f))(_ﬂ (3.28)

and furthermore, because of (3.26) and (3.27),ave:h

K@iy = ZHRw‘”avw‘”) - Ry —ien mw‘”w“”} +conj]
a U
_0. (3.29)

This relation is valid at each point. We set, sisal
<g|ly> ZZJ¢*(”)¢/(”)d>S‘“ dx,

when ¢ and ¢ are square-summable functionsxgf ..., X,. We shall multiplyK by if,
wheref represents an arbitrary real square-summableifumathich is such that product
Kf is also square-summable. By integrating, we tigain:

iR—a'—aP [fR—fA/ij|w>—conj.:O. (3.30)

<[i6vf R-1;, 0 R-—

From this, it results that the operator:

. v . 0 .0 .,
[Iavf—lw [rla7_|a7lﬂvf_€fA/jR
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is Hermitian. Sinc® is also Hermitian, one deduces from this that the ¢qrara

o v e 0 .0 .
J:[|avf_|#v Df|a7_|a7lﬂvf_€fA/j

andR necessarily commute for ahy

SinceR is independent off, this is impossible, in general, except whey = Cy,
whereC is a real constant sinéeis Hermitian.

Indeed, consider a complete normed sequence of orthdgoc&ons ;. One may
always findf such that one has:

Ry =0

for any J; since the relations]( R)¢ = 0 eliminate only a denumerable set of functions
among the infinitude of possibfe In general, one will infer:

G Ryz0
for any developmengy =>"c,y; .
i
Therefore, if §, R) = 0 then it is necessary that

either: R=C,,
or: J=C,,

in whichC; andC, are two constants.

We examine the first case.
If Ry = Cythen it suffices to substitute this into (2.39) in ordenave:

CHw*avw—a%(wwww) —isA»z//*z//}+conj] =0. (3.31)

Two cases then present themselves:

1. C =0, in which casey satisfies the relation®y = 0.
2. C#0, in which case, one has:

K'(y y) :{¢+6vw—a%(¢/+lww)}+conj.:0, (3.32)
i

since the terms insA, ¢/ ¢ disappear, as they are pure imaginary. |If we tymnly the
same reasoning ' as we did t&, then one deduces the equality:
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. .9 .0 o
< |avf_|/w |:na7_|a7|ﬂv|]f ¢l|l//>—C0nJ.—0, (333)

which may also be written:

<[i6v =il c’)xi"jwlw > —conj. =0,

(because the term,| , fi axi"w | >, may be writter ¢ liaxi" fl ,@>,ie.
<l fiil/l @ >)
o axH '

As in the foregoing, one deduces from this that the dxpreg%v—+6ﬂl #, commutes
X

with f for anyf, and it therefore reduces to constant terms, whichvite in the most
general form:

0
+d,1% -Ca,-C) i =0,
[axy H v ij

in whichC'is a constant arfd; are the components of a constant vector. If we thake

C enter into the constant term Bf(which is legitimate, since it is also indeterminate)
then we therefore obtain, in any case, equationg/thiat are expressed as:

Ry =0; (3.36)
I.e., precisely the usual linear wave equations thatvateen in Bhabha form:
(@0, -y =0, (3.37)

which are subject to satisfy the auxiliary relations (3.Bba certain case.
For them to be compatible with (3.37), they must be enitt

[ av +0,1% +,uavj¢/ =0, (3.38)
0X

i.e., auxiliary conditions that are precisely simitarthe ones that were postulated by
Dirac in his theory of particles with spin.

The second case, for whidh= C, gives the same result. The conclusion is theeefor
general.

As one knows, this likewise applies to the Klein-GordDirac, and Petiau-Kemmer
equations.
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The use of nonlinear Lagrangians permits us to introdatiersary singularities with
spatial symmetry into electromagnetic theory in whiah phoper potentia4\2 does not

go to infinity like 1f.
Introduced for the first time by Born and Infeld, this cgpt may be introduced
without difficulty into the unitary theory. We shadlaall several classical results:

a) In the first case, B. Hoffmann has shown that iwst general metric solution
with spherical symmetry for the equation:

1 _
Rﬂv _Eg'”'/ ER— _SIM-#V

may be written in the form:
ds’ = Adf —A*dr? —r? (d&" + sirf6 d¢?)

in cylindrical coordinates, where we have written:

Ar) =1—%{(m0 Fm(r)],

in whichmy is a constant, with:
m(r) = 471.[0r T/r?dr = I471 T dr,

because of a theorem of v. Lauem(r) represents the totality of all mass of
electromagnetic origin. At a distance, one hass (m, + m(r)),_., (proper mass of the

particle).

b) It remains for us to calculate the form of thectlemagnetic field, which is
symmetric around the singular world-liheand centered at the gravitational singularity.

One knows that the most general spatially sphdyisgimmetric solution of Detd,,

+ f| may be written:

-a 0 0 iw,
-5 irvsind O
0 -irvsind -psin’8 0
—iw 0 0 o

in which a, S, s,v andw are functions of alone, and thg,, figure only on the principal
diagonal.
If we use the preceding values for thg then one sees that:
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o=t

_1_
0_ b
B=r?
namely:
Q= —A7, Gn=-r° G=-rSifh go=A gu=0,if uzv;
hence:
11 22 1 33 1 44 -1
= —-A, =—-—, = =—-A"
g d r? g r¢sin?é@ g

expressions that can be substituted in Rgt # . | while leavingF andG unchanged.
From this, one concludes that a singularitygafof type (4.1) does not modify the value
of the fieldf,, that is obtained from the Galile&p, . This remark enormously simplifies
the calculations and has permitted Inféjdt¢ completely solve the problem.

If we first assume, with Einstein and Schrodinger, tihat space componenis
represent the electric field then the magnetic fieldesponds to the time componefts(
If we then set:

oL
P = 4.2
5 (4.2)
then we shall have, with the usual symbols:
(f23, fa1, f12) - E
(fra, fos, f20) - B
(4.3)

{(stipsrplz) - D
(P14’P24’P34) - H

In the preceding particular case of the polar systeraxef that are related to the
particle, one sees thBt=H = 0, whileE andD depend only on.
2 2
Moreover, one has’¥ G = 0; L =—b7log[1+b—12 Fj , Which, because of the field

equationsa—a—l' =0, may be then written:
ox, of ,

{ rotE=0 4.4)

divD =0.

() INFELD and HOFFMANN Phys. Reviews1, pp. 765.
(®) Ed. Note: This seems to be the opposite of what auédaexpect.
() Bis a constant that depends on the units chosen.
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This has a spherically-symmetric solution of the Inddaffmann form:

D, ziiz in which e = integration constant,

Aur

(4.5)
2
L= ezElxi4 WithX:L; ry = &
A (L+X7) ro 47b
The electric potential may be written:
e (= ridr
e(r) = —— 4.6
=1 (4.6)
-_© log L+y2r+r? -2tan™ \/Erz
arm, I1- Jor +r2 1-r

and its value for = 0 is:

=% 2d 4.7)
arr, 4

by virtue of a general relation that was provedBayn for the quadratic theorgis a
constant that depends on the chosen units. Onefahe has:

o 2

— 4.2 —
W_4¢Lnrdr-§dm
_ e' J20r

4, 6

e4
~4m,

(4.8)

[D.741

In order to determine the Born constant, we makectlassical hypothesis that the mass
of the electron is essentially of electromagnetigin.
More exactly, one sets:

2
mo (electron)x ¢2 = 1 (infinitely small mass) +-

[0.741,

0

which gives, ife is the charge of the electron and one neglagcts

_ 0741

I

©" 12361

b= 0.741 — ~396M10" ues
1.2361

232 3a7m0% ¢
(4.9)
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which is an acceptable value for the classical raditiseoelectronr(~ 2x10™* cm.).
The upper limit on fields is so great that it plays practical experimental role
(except for making the electromagnetic divergence disappeiae classical theory).



