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INTRODUCTION

| have dedicated this memoir to a systematic studyh@fequilibrium of multiply-
connected elastic bodies.

In the first chapter, | show that there are someexad equilibrium for multiply-
connected bodies that do not present themselves folysaopnected bodies. The point
of departure for this research is the group of formulgs(l{), (1") of the first chapter.
When one deforms an elastic body, one may calculsedisplacements with these
formulas if one knows the characteristic elementthefdeformation. Formulas (1), )l
(I") characterize the polydromy of the displacements simolw that under regular
deformation a multiply-connected elastic body may preseahe equilibrium of the
deformation without the action of external forcemie@btains these states of equilibrium
by operations that | have callddtortions.

In the second chapter, | have studied the elementsttaedcterize the distortions.

The composition of tensions that act upon the elésnehan elastic body on which
one has performed one or more distortions gives risieeteffortsthat |1 have studied in
chapter Ill. One may express the energy of defoonatif the elastic body by the
characteristics of the distortions and by those ofefff@rts, or by bilinear forms of two
different types of characteristics. | have alscegitwo fundamental propositions in this
chapterthe reciprocity theorenfor the efforts and théheorem of equivalent cuts.

Chapter IV is dedicated to the study of multiply-cotedcelastic bodies that are
symmetric with respect to an axis. The symmetry bfiep the expression for energy,
and from that simplified expression one may deduce akvery singular theorems on
the distribution of efforts.

In chapter V, | have begun some particular applicatimnorder to compare the
results of calculation with those of experiment, #meh continued them in chapters VI
and VII.

| have envisioned a hollow cylinder that is a doubly-cotetedody and | have
calculated the forms that it must take when subjectatiécsix elementary distortions.
One may sketch these forms and compare them withnie that a large, hollow rubber
cylinder takes in practice. The sketches that | just spblead the photographs of the
cylinder are reproduced in these chapters.

Finally, in chapters VIII and IX, | have studied the daling problem:

Determine the efforts from knowing the distortions of a systenpased of several
deformable parts that are rigidly linked together.

One arrives at a theory of the same type as th&irohhoff on the distribution of
electrical currents in wires.

The first seven chapters are a compilation of samieles that | published, with
several repetitions, in tHeomptes rendus de I’Académie dei Lincehave appended the
last two chapters, which are unedited.

| have also appended three notes: The first one refeagproof of formulas (1), (),
(I) that was given by Cesaro after the publication of esukts. In the second one, |
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have described the elegant experiments carried out by iRdle physics laboratory at
the University of Genoa, which is directed by Garbas®y very ingenious optical
experiments, carried out on a hollow cylinder of gelatinge may distinguish the
compressed parts from the dilated ones when one sublectsylinder to distortions.
The third note refers to a method that Almansi just publisfeeddetermining the
deformations of multiply-connected cylinders.

I would like to thank professors Alessandrini and Trandorlithe French translation
of this memoir, professors Sella, Pittarelli, and Zasbi for the experiments, the
sketches, and the photographs, and the engineer Jona fabtier models.

U



CHAPTER|

GENERAL THEOREMS ON EQUILIBRIUM

1. Weingarten has published an interesting nteS(rr la théorie de I'élasticité He
remarked that in the case of an elastic body that igested to no external action
whatever — i.e., one subject to no external forcesatiatipon its internal points — it may
nonetheless be found to not be in the natural statén laustate of tension that varies in a
continuous and regular manner from one point to another.

It is easy to find some practical cases of a bodyeahkat under these conditions: for
example, a ring from which one has suppressed a very #nsverse wedge and then
welded the two extremities together again.

2. In the note of Weingarten, there is a question thaaimes unanswered: Outside
of the ring and other bodies that occupy multiply-coreecpaces, might there exist
simply-connected bodies that are found in these comdi®i

On first glance, the question is not easily soNemyever, intuitively, one will be led
to give an affirmative response. Indeed, one willdaktb believe that, just as in the case
of simply-connected bodies, upon producing a gap and therblfprititroducing a
cuneiform element, or similarly, upon welding the twofatgs of the gap, one may
obtain equilibrium states without external forces, imck the tensions and deformation
vary regularly and without discontinuity from one mioito another as in multiply-
connected spaces. Weingarten has given conditionsntigitbe verified in this case for
them to nevertheless exist.

3. In this chapter, we prove, with the aid of a simphalgtical observation, the
impossibility of this case when one assumes that tlsracteristic elements of the
deformation ) and their first and second derivatives are continuous.

This establishes a close relationship between the quesfioglasticity and an
analogous question of hydrodynamics.

The theorem of hydrodynamics to which we refer isfolewing one:

A finite, incompressible fluid that is found between two fixedd ngalls, and in
which there exist no vortices, must remain at rest if the sipetdat occupies is simply-

() Sur les surfaces de discontinuité dans la théorie de I'élastiité corps solidegRend. R. Acc.
Lincei, 5" series, vol. X, $sem., 1901).

(®) By the phraseharacteristicelements of a deformatipwe mearthe six elementary deformations
i.e., thethree dilatationsand thethree sheargsee CLEBSCH, Théorie de I'élasticité des corps solides
translated by Saint-Venant and Flamant, pp. 46, et se@le characteristics that correspond to a
deformation are also called th&ain according to the nomenclature of the English.
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connected (acyclic); on the contrary, there may be motion if the spemgpied is
multiply-connected (cycli}).

Now, here are the analogous properties for elasticity:

We say that the deformation of an elastic bodegular if the six characteristics of
the deformation are finite, continuous, and monodrdammctions that also have finite,
continuous, and monodromic derivatives of the first awbsd order.

We may then state the following theorem:

If an elastic body occupies a finite, simply-connected (acyclickespaa is subjected
to regular deformations, then it will be found in the natural state whisrin equilibrium
and not subjected to any external forces.

On the contrary:

An elastic body in equilibrium that occupies a finite, multiply-conmle¢tgclic)
space might not be in the natural state; i.e., it might be found in @ stdension, even
when it is not subjected to any external forces and its deformatregusar.

This proposition establishes an essential differencedaet the properties of elastic
bodies that occupy simply-connected (acyclic) spacesherse of the bodies that occupy
multiply-connected (cyclic) spaces.

If we refer to the practical cases that we alreegballed then what we just said
implies that in the simply-connected case the intradnabf a cuneiform wedge or the
suppression of a very thin cut, followed by welding the sedaf the vent, will always
generate an irregular deformation, or lacuna, in thstie system, while the opposite
property might be verified when the connectivity is tiple.

In general, we may affirm that if there exists a bty is not subject to any external
actions, and which is in a state of tension then it ratisér occupy a multiply-connected
space or have some region of irregular deformation.

In this chapter, the second article will be dedicatedthte proof of the stated
proposition and the one that follows with some amzdytexamples that relate to the
multiply-connected elastic bodies that are found inaesbf tension without being
subjected to external forces.

1. Let Ja, Voo V53, Vo3, JA1, Vi represent six functions of the variabley, z that are
monodromic, finite, and continuous, and also have devestof the first and second
order that are monodromic, finite, and continuous in iraply-connected, three-
dimensional domai® Draw a regular ling in the interior of the domai§, represent its
coordinates by, y, z, and letx, Yo, Zo; X1, Y1, 22 denote those of the extremitidsandA;.

() The connectivity of three-dimensional spaces is oftpes:superficially connected or periphaxic
— andlinearly connected- or cyclose The connectivity that is of interest to us is tigel@se kind ¢eeJ.
Clerk MAXWELL, Traité d'électricté et de magnétispeanslated by G. Seligmann-Lui, v. |, pp. 18 et

seq.)
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Let the positive direction afpoint fromAy to A; . Let the values of the quantitigs
at Ao andA; be represented by and y, respectively. Suppose that= . Set:

() ustor SR +r)(,myo+ S04 a2 2)

+L{ {nﬁ(yl 0+ (z- z)ay“}‘j'jxS

(v - y) 61/12 6y22 +(Zl_ Z) ay21+ay31 _ayzs ﬂ
! dy 0z 2 dz 9y dx)| de
+ (Y1_YJ ayzl 0Va1_ 0V +(z - Z)(ay13 ay33j dz } ds.
2 Jz 0y 0X dz 0x)|d
(I v=vo+= (1/32) D CA AR S (y“” (%= X)
+J’ (A_Zj ay32+ay12_ay31 +(X1—X) aLZI_aLﬂ 2(
s 2 ox 0z 0y ox 0y)| ds

0y, |d
[V22+(Z1 2 y22+(>s 3 y"‘z} dys

(21 Z) ayzg ayzs (X1_Xj ay32_+_ay12 ay31 dZ}dS,
0z 0y 2 ox dz 4dy)|d
" _ o) 10
(m w=wy+ E(Vl(g +qo)(X1_Xo)+_(y(23_ PI( Vi~ Y9

+J’ (ay?;l ayllj_*_(yl_yj aylS ayza aylZ dx

ox 0z 2 dy O0x 0z df

+ (Xl_xj Wis s iz |y, )| War oo || Y

2 dy O0x 0z dy 0z)| ds

0 0 dz
+{y33+(xl—x) 224 (- ) m ds} d,

whereuo, Vo, Wo, Po, Co, o are constant quantities.
We seek the conditions far v, w to not depend upon the line of integratgrbut

only on the two extremitie8, andA; ; i.e., upon supposing thay is fixed, we seek the
conditions foru, v, wto be functions o%; , y1, z; .

2. To that effect, it suffices to assume that the $irtloses by making the poinég
and A; coincide, and determine the conditions for thegnals that are taken along the
line sto be zero.

When the linesis closed, Stokes’s theorem transforms theserakeqto:



Chapter I. General theorems on equilibrium. 4

j {(yl_yB— 4 ZCjcosnx{(_zf— 2 Hy—_y%cosnj
o 2 2 2

+|:(yl_ y)G+ 212_ z A}cos nz} @&

L{[(Zi— 7)) E+%( B}cos nxk(zl; e )1(; X%cosn

+[(X1— X) G+ 212_ z B}cos nz} @&

L{[(yl— y)E+ Xlz_x C}cos nx+( (x— % F—%’ C} cosn

+[X1_XA— n- yB}cosnz} @,
2 2

wherecis a surface that hador its contour and is found in the interior of thendon S;
n denotes the normal wtraced in a convenient direction, and:

A= 9 6y31+6y12 _ 9o _Zazyll E= 621/11_621/22_621/33
ox\ ay 9z 9x) 0Dy 0zdy 07 0y
B:i 61/12+6V23_6V31 _2621/22 - 62}/13_621/33_621/11
dy\ 0z 0dx dy 09y 0zox 0X 07’
C= 0 ( 0y +6V31_6V12 _2621/33 _ 62y21_62y11_62y22.
9z{ ax 0dy 0z 0y > oxdy 0y 0¥

It then follows that the necessary and sufficieonditions foru, v, w to be
independent of the lingof integration are:

(1) A=B=C=E=F=G=0.

3. Suppose that the preceding conditions are veritied; w will be functions ofxi,
Y. 4 .

In order to calculate their derivatives with respecxs, yi1, z1, one must remark that
these quantities appear explicitly under the integratign and that they are, at the same
time, the coordinates of one extremity of the lineirgégration. Having made this
observation, the ordinary rules of calculation edsiy to:
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du ov ow

- = 11), —=y§12), _:y(sl:%)’
oV _OW_ 4 OwW_du_ o Ou_ 9dV_ g
_t = 531 —t—= 31 _+__y12'
dz, dy, dx 0z oy 0x

One infers from this that when the quantitjgssatisfy the conditions (II), one may
find three functionauy, v, w that verify equations (1); i.e., that one may consither
guantitiesys to be the six characteristics of the deformatiommfelastic medium. The
converse proposition is easily verified.

4. Formulas (1), (), (I") are useful and interesting since each of them dgives
means to obtain one of the components of the displwteby a simple quadrature when
one is given the characteristics of the deformation.

Kirchhoff (*) and Love ?) have calculated each of the derivativesupf, w by
analogous quadratures. One may, with the aid of simpégrations, pass from the
formulas of Kirchhoff and Love to (I),'QL (I"). Six arbitrary constants, vo, Wo, Po, Jo,
ro appear in them; i.e., the values of the componentiseoflisplacement at the poifg
and those of the vector components, which were cdfledotation by Maxwell. The
equalities (I1) are only the well-known formulas ofirgav/enant.

5. Equations (Il) express the conditions for the values,of, w to be given by
formulas (1), (1), (I") are independent of the line of integration when the esfars
simply connected; however, if the spa&es multiply connected then these values may
depend upon the line of integration while still satisfying toaditions (lI). Indeed,
recall that one has proved the independence of the lindhewalues ofu, v, w in
paragraph 2 where the space was assumed to be simply sahngmn observing that
each closed lins of the space may be regarded as the contour of a surfaslenging to
the same space. However, if the space is multiphwected then this fact is no longer
verified for each lines, and one then sees that the values,of w may depend on the
line of integration. We thus have the following theorem:

An elastic body that occupies a simply-connected space and whose deformation is
regular may always be brought to its natural state with the aid of displaats that are
finite, continuous, and monodromic at each of its points.

On the contrary, we may say that:

If an elastic body occupies a multiply-connected space and its deformategular
then the displacements of the points are not necessarily monodromic.

() Mechanik vol. XXVII, § 4.
() Math. Theory of Elasticityol. |, § 66.



Chapter I. General theorems on equilibrium. 6

Reduce the cyclic space to a simply-connected one by roéarsy/stem of cuts. The
displacements that correspond to the given displacemay then be regarded as finite,
continuous, and monodromic functions in the sectioned spateheir values may not
be continuously attached to the aforementioned cuts. nWhie comes about, if one
desires to bring the body to its natural state thas itecessary to either suppress the
connectivity of the matter along the cuts and produseifes there, or subtract from the
matter, or make the two surfaces of the gap slide eseh othergeethe examples of the
following article).

6. Now, recall the proof that one makeé¥ to prove that an elastic body that is not
subject to any external forces is found in the natueaéstIt presupposes implicitly that
the points of the elastic body are subject to dispheces that are finite, continuous, and
monodromic, and that the deformation of the systenmegmlar. This is why, if one
knows that the deformation is regular, the body ocaugisimply-connected space, and
that it is not subject to external forces then ong omnclude that the system will not be
subject to any internal tension. However, if the bodgupies a multiply-connected
space then the regular deformation may coexist withiydpmomy of displacements, and
then the body may be in a state of tension, evinsiinot subject to external forces.

This is why one may infer the theorem that we statedticle 1.

7. One may easily deduce an interesting corollary oftti@srem:

When one knows the external forces that act upon an elastic body, theateforis
individualized if the space occupied by the body is simply connected;drpvas not
determined if the same space is multiply connected, at least driywé&nowsa priori,
that the system may be brought to its natural state by displacementar¢hénite,
continuous, and monodromic.

The proof of this corollary follows immediately frotmat of the theorem that one just
recalled.

Therefore, the mathematical theory of elasticitysmbe modified in the case of
bodies that occupy multiply-connected spaces, becaustdoisy rests entirely upon the
general fact that the external forces determine therchation of the body. That is the
main interest of the proposition that we just stat€de ordinary theory remains the same
in the case of bodies that occupy simply-connected spaceven when one knowa,
priori, that the system may be brought to the natural statedans of monodromic
displacements.

8. Itis easy to infer from formulas (1),'Y] (I") the nature of the discontinuities that
the displacements, v, w present across the cuts that render the space occuptbe by
body simply connected. Let, vq, W, denote the values on one side of these sectgns,
Vs, Wg, the values on the other side, and set:

Ug—Uz= U, Vg=Vvo=V, wWg—w,= W.

() Seefor example, CLEBSCHyp. cit, pp. 132, et seq.
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Upon denoting the six constants across each sectibmbw, p, g, r, we have:
(1 U=Il+ry—-qgz V=m+pz-rx, W=n+qgx—py,

as Weingarten has proved in another way.

Thus, in the case of a multiply-connected body witbfahe cuts that serve to render
it simply connected, one may make six constants quoresto it that individualize the
polydromy of the displacement that is calculated bymaexd formulas (1), (), (1").

By analogy with what one does in the theory of fuomd, these constants may be
called thesix constants of each cut.

The fundamental proposition of the theory of elastionust then be stated in the
following terms:

If an elastic body occupies a multiply-connected space, and if its deifonnis

regular, then it will be determined by external forces and six corssthat relate to each
of the cuts that serve to render the space simply connected.

Example I.
1. Set:
pX-ay’ B yz
= il A =2
W= =y Iog(x +Y°), G v INyE
By —ax ﬁ 2 2 Xz
=7 4+ =2
142 X2+y2 +2|Og(x +y)’ 1/31 yX2+y
Vo3 = ylog(x* +y?), Yio= 20+ ) -2,
X2 +y

wherea, S, yare constant quantities.

It is easy to verify that equations (lI) of de i@aVenant are satisfied. These
functions have no other singularities than the @aine=y = 0; i.e., along the-coordinate
axis.

Upon thus excluding this singular locus for argér having its axis along tlzeaxis,
in all of the remaining space these quantities b&jnterpreted as the characteristic of a
regular deformatioit.

One easily calculates the componeants, w of the corresponding displacement. It
will thus be given (at least up to an arbitrarydidisplacement) by formulas:
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u= ayarctan§+§x log¢ + ¥ )
(2) v:—ayarctan%+§ y logt¢ + ¥ )
w= yzlog(X + ¥).

The functionss andv are polydromic, and the axis of branching iszfais.

2. Having said this, imagine a homogeneous, isotropic bthat occupies a space
Sthat is bounded by two cylinders of revolutionand oz , that have the-axis for their
axes, and whose radii aRe andR; , and by two planes that are normal to #ais. If
one supposes that the external forces are zero thenintefinite equations of
equilibrium:

KA%u+(L+ K)i 6_U+6_V+6_W =0,
ox\o0x dy 0z

(3) KA*+(L+ K)i ou, v, ow =0,
oy\ox 0y 0z

KA2W+(L+ K)i 6_U+6_V+6_VV =0
0z{0x 0y 0z

will be satisfied by the functions (2) when the follog/equation is verified:
Ka+(L+2X)45+(L+K)y=0,
which, in turn, will be satisfied upon taking:

K

=0, =—a .
4 P L+2K

The calculation of external forces acting on thdasar presents no difficulties. On

the surfaceg;, we find a uniform tension normal m that is directed towards the interior
of the mass, and is given by:

2K
L+2K

Tch: a(L+K)(1+ Iogle,

and similarly ong there is a uniform normal tension that is diredtmslards the interior
of the mass and is given by:
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alL

K(L+3K+Z<Iogr),

%]

wherer denotes the distance from thaxis.

3. Now, imagine a fictitious body of the same naturettas bodyC and which
occupies the same space, but which is found in the natatal Without altering the
connectivity, subject it to forces, , T, , andT, that act upon the bases and the lateral

surfaces, respectively. Let, V, W indicate the corresponding components of the
displacement. They will be finite, continuous, andnowromic functions, and if we
take:

u":u—u':a’[ yarctan%—%l_ K x logf¢ + ¥ %—lj,

+ 2K
, y 1 K ,
V'=v-V = g| —Xarctan=—-— lo + -V,
[ X 2L+2Ky 9K yz%

W =w-w =-w

then we obtain a system of displacements of they bthat are not zero and differ by a
rigid displacement. To the displacements,v’, w' there corresponds a deformation that
is non-zero and regular, and consequently, annateension; however, the external
forces are zero. If we indicate by, the characteristics of the deformatibh that

corresponds to the displacements v/, w, then those of the deformatidi’ that
corresponds ta", V', w' are:

Ve =W~ Vs-

4. The functiona”, v' are polydromic, as well as v, and they have theaxis for
their polydromy axis. Leu, V., w, denote the values af, V', w' at a point that is

situated in thexzplane on the positive side of theaxis. Starting from this point,
execute a circuit around tlzeaxis and take the successive valueg'of”, w' that follow
by continuity. Lettinguy, Vi, w, indicate the values when one returns to the pafint

departure, we will have:

Ug =, =0, Vv,-\V,=-2mx W, —w, = 0.

5. It follows that if a is positive then the state of regular deformafiérof the body
may be obtained by taking the body that occupies greviously-considered hollow
cylinder in the natural state, and then makingteatang thexzplane on the positive side
of the x-axis, and finally placing a very small wedge betwé¢he two walls of the cut,
whose thickness varies proportional to the distdirora the axis.

On the contrary, itz is negative then to in order obtain the correspandtate of
tension it is necessary to suppress a very smiaWhase thickness varies proportional to
the distance from the axis, and then weld the wvéases of the gap together.
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Example II.
5. Set:
¥1=0, ¥2=0, ¥53=0,
_ax __ay _
Jé?) - X2 + y2 ) 1/31 - X2 N y2 J’iz 0

The equations (Il) of de Saint Venant are satisfiadlthe preceding functions have
no other singularity than one along thaxis.
The corresponding displacements will be (at lagstp a rigid displacement):

(4) u=0, v=0, w= aarctani;
X

w is therefore polydromic and has thaxis for its branching axis.

Imagine a homogeneous, isotropic body that occupiesaime space defined by the
hollow cylinderS as in the preceding example. The displacements (4jysaquations
(3), and the external forces that act upon the latrghceso; and o> become zero;
whereas the ones that act upon the bases havdltweirig components on one of them:

Xo=- gKyz ’ Yo= ngz ’ Zw=0,
X“+y X“+y
and:
Xo= Xg:.(yZ : Y= ngz ’ Z,=0,
y X“+y

on the other one, respectively.

Now, take a fictitious body of the same substancedbteupies the hollow cylindes
in the natural state and, without changing the connegtisitbject it to the preceding
forces of torsion that act upon the two bases.

Let u', v, w denote the displacements from which it is derived. yTae finite,
continuous, and monodromic functions, and if one sets:

u'=-u, Vi =-V, W =w-w

then these displacements correspond to a statéeohah tension of the body, while all of
the external forces are zero. The deformationatlliously be regular.

7. It is easy to see how one may produce this statensiote One takes the body
that occupies the space defined by the hollow cyligdarthe natural state, cuts it along
thexzplane on the positive side of thaxis, and then one lightly slides the two surfaces
of the cut, one over the other, parallel to #exis in such a manner that the cylinder
takes on a slightly helicoidal form. Having done thise evelds the two parts to each
other along points that are found on its face.
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The two bases thus acquire a serration alongx#mane on the positive side;
however, it is infinitely small, and, without perturbirfgetconditions of the system, we
may imagine removing it and smoothing out the same bases.

NOTE ON CHAPTER |

Cesaro has given a very simple prodfof formulas (1), (1), (1"). It is:

Letu, v, w be the components of the displacement of the primt £) and let:

(1) a:%, b:@, :a_VV,
0x oy 0z

(2) f:i a_\N+a_V , g:&(@-}-a_vvj, h:& @-}-@ .
2{dy o0z 2\ 0z 0x 2 ox oy

We suppose that, b, c, f, g, h and their first and second derivatives are finite,
continuous, and monodromic functions.
These conditions might not be verified g/, w and by the components of rotation:

_1({ow ov _1(du ow _1({ov du
3) p=2|—=-=|, a=2|—-—| r=3|—-—|
2{dy o0z 2\ 0z 0x 2(ox 0dy

In order to calculata at an arbitrary poin¥, start with the formula:

ou oJu Ju
Uu=up+ || —dx+— dy+— dz|,
° I(GX ay Y 0z j

Up being the value adi at an arbitrary poin#l, , and the integral being taken along a line
that goes from the poii, to the point\; .

In order to make the characteristics of the deédion appear in the second integral,
we may write:

[@dz-rdy=[[rdy:-y) —q dz -2)]
=0o(zL —20) —To(y1 —¥o) + [ [(z —2) dg— (y» —y) dr].

Now

(4) %:%—a_g ﬁ:@—% %:@—ﬂ
ox 0z o0x ox o0x ay’ oy 9z oy

As a result:

(5) U =Uo + Go(zs —20) — ro(y1 —Yo) +/ (Edx+ 7 dy+ {d2),

() Comptes rendus de la R. Accademia delle Science fisiche eatiebende Naplesjuly and August
1906.
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where:
£= a+<yl—y)[% ?j <1—)(aj 3,
n=h+ -9 P-22) +@-a 22,
7= g+<yl—y)("’ —‘;—j (1—z)[6—2 ).

The formulas (5) and the analogous formulas that givend w coincide with
formulas (1), (1), (I") of chapter I, but formulas (5) have a very simple anore
symmetrical form.

Cesaro, in his memoirs, extended the formulas andréheothat | just gave in
chapter | to the case of a non-Euclidian space.



CHAPTERIII

THE DISTORTIONS

1. In the preceding chapter, | showed that elastic batietsoccupy spaces that are
multiply connected may be found in equilibrium states #rat very different from the
ones that come about when the elastic bodies ocaopflysconnected spaces. In these
new equilibrium states one has a regular, internalrdettion of the body without it
nonetheless being subjected to external forces.

Imagine that one makes cuts that render the spaces tatupied by the body simply
connected. To each of them there correspond six cusstat we called theonstants of
the cut. It is easy to establish the mechanical significandbedge constants by means of
formulas (I11) of the preceding chapter.

Indeed, make cuts in the material along the aforemeedi sections and let the body
return to its natural state. If, in the process tdmr@ng to that state, certain parts of the
body become superimposed over each other then remove dssgerts. Formulas (lI1)
that we already referred to then show that the pi¢leat are placed on the two sides of
the same section, and which were in contact beforeuheare, by the fact of the cut
itself, subjected to a translation and a rotation iha&gual for all of the pairs of pieces
that are adjacent to the same section.

Upon taking the origin to be the center of reductioe, tiiree components of the
translation and the three components of the rotatlong the coordinates are the six
characteristics of the cut.

Conversely, if the multiply-connected elastic bodtaisen in the natural state then in
order to bring it into a state of tension, one carfopm the inverse operation — i.e., the
sectioning that will render it simply connected — and ttlisplace the two parts of each
cut with respect to each other in such a manner thatethéve displacements of the
various pairs of pieces (which adhere to each othemdunch the cut has separated) are
the resultants of translations and equal rotationsgjlfi, re-establish the connectivity and
the continuity along each cut, by subtracting or addwegrtecessary matter and welding
the parts together. The set of these operationsretete to each cut may be called a
distortion of the body and the six constants may be calledctieacteristic of the
distortion.

In a multiply-connected elastic body whose defornmai® regular and which has
been subjected to a certain number of distortionangpection of the deformation might
in no way reveal the places where the cuts and distsrtisat ensue are produced, and
this is by virtue of the regularity itself. One may say, addition, that the six
characteristics of each distortion are not eleméms$ depend upon the location where
the cut has been executed.

Indeed, the same process that served to establishlé&sifill) for us proved that if
one takes two cuts in the body then one may tramsfine one into the other by a
continuous deformation, so the constants that retataé¢ cut are equal to the constants
that relate to the other.
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It then follows that the characteristics of a distm are not elements that are specific
to each cut, but they depend exclusively on the geometratake of the space that is
occupied by the body and the regular deformation to whicksitoeen subjected.

The number of independent distortions to which anielasidy may be subjected is
obviously equal to the order of connectivity of the spammipied by the body minus 1.

In conformity with what we have found, when two cuts e transformed into each
other by a continuous deformation they may be cadlgdivalent. We also say that a
distortion is known when the characteristics aregj\along with the one cut or the other
equivalent cut that they relate to are given.

2. Having said this, two questions naturally present themseiaesely:

1. For an arbitrarily chosen distortion, will thexlbvays correspond an equilibrium
state and a regular deformation of the body if one suppbaeshe external actions are
zero?

2. |If the distortions are known then what is thatestd deformation?

In order to relate these problems to the other oregswik have already solved, we
prove the following theorem:

If one takes an arbitrary set of distortions in any multiply-connecsedropic, elastic
body then one may calculate an infinite number of regular deformations of thehaddy
correspond to these distortions and which are equilibrated by external sudesms
(which we indicate by T) that have a zero resultant and a zero montlemespect to an
arbitrary axis.

Moreover, in order to recognize whether the givenodisins in an isotropic body
correspond to an equilibrium state, the external fobs#sg zero, it will suffice to see
whether the external forcds with their signs changed and applied to the contouneof t
body when it is not subject to any distortion, deternairstate of regular deformation that
equilibrates the forces themselves. If one may ®¥Wey calculate this state of
deformation then the problem concerning the equilibriumaobody subjected to
distortions will be solved.

Indeed, letl denote the deformation that relates to the givetodiens and the
external forceg that are found to act upon the surface, an@’lelenote the deformation
that is determined by these external forces with thegirsschanged when the body is not
subject to any distortion. The deformatichthat results fronir andl™ will correspond
to the given distortions and to zero external forces.

The aforementioned questions thus come down to seeing wihiethéeformation™
exists and finding it. They thus reduce to problems otielgswhere the distortions do
not appear — i.e., to ordinary problems of elasticity.

However, the external forceb that act upon the surface, by virtue of the stated
theorem, are such that if the body is rigid then theyequilibrated; it then ensues that
they satisfy the fundamental conditions for the eristeof the deformatioh'.
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Now, thanks to the foregoing, one can advance comrditjeusing the new methods
in the study of the existence theorems for questiordasticity, which is why one may
say thatl andl™" always exist, except for certain conditions thaateeko the geometric
form of space occupied by the elastic body (conditibas will not specify here).

With these reservations, one may thus respond afiiredatto the first question in
the case of isotropic bodies.

The second question that we posed relates to the case thie body is not subject to
external actions; however, it may be generalized, and may suppose that the
distortions are given and the body is subject to defexternal forces. Then, if the body
is isotropic, it suffices to solve the problem by supemmpshe deformatior” that is
determined by the distortions and the external foftasith the deformation that is
determined given external forces and the external forCEghat act upon the surface
under the hypothesis that the distortions are absent.

The stated theorem serves in a certain way to elimitie distortions in any case of
isotropy, upon substituting the external surface foraged, it is for this reason that the
guestions that are attached to the distortions revertastigas of ordinary elasticity.

If the body is anisotropic then one easily sees thatstate of deformatioh is
equilibrated by external forces that act upon the sudadeexternal forces that act upon
the interior of the body. It is therefore easye®in this case, to eliminate the distortions,
and then the various questions that may present themseWezsto ordinary problems of
equilibrium in elastic bodies.

Article 1l is dedicated to the proof of theorem stadbdve, and article Il examines a
particular case.

1. In order to prove the theorem that was stated iptaeious article one must first
establish certain preliminary formuld$. (

Upon the denoting the distance between two poigtg £) and &, 77, {) byr, we set,
with Somigliana 9):

1 adr _ a0 a0
ul - _+__21 - - ) Wl - - )
r 2ox 2 0xoy 2 0x0z
_ a0 1 adr a0
u2_ - ) V2__+__21 W2_ - )
2 0yox r 2oy 2 0yoz
_a 0r _a o 1 adr
U= — : = = ;W= S
2 020X 2 0zoy r 2oz

The preceding functions have no other singulariten the one at=¢ y=n,z=¢
and are symmetric with respect to the pairs ofaldeisx, &y, 77; z (.

() 1 have presented these formulas for the first timRisa in myLecons sur la théorie de I'élasticjté
1892; they have already been cited by professor LauriceligsidissertationAnn. Scuola norm. di Pisa
1894).

() Annali di Matemat.2" series, t. XVII.
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+ . - . .
If a=- LL+ 2'?( then each group of three functions vs, ws verifies the differential

equations (3) of the preceding chapter in all of space (eXoephe singular locus
described above), as well as the ones that are ott&iom them by substituting,

n, ¢ for x,y, z Theus Vs, Ws may then be regarded as the components of the
displacements of the points of an isotropic, homogesieelastic medium that is not
subject to external forces that are applied to theiamtef the medium, whether one
considers these components to be functionsyfzor of ¢, 7, ¢

Take an element of the surfadE that passes through the poifit, ¢, and has a
normaln. LetX Ys, Zs denote the components of the unitary tension (corresppmalin
the displacementss, vs, Ws) that is exerted along by the region of the elastic medium
that is placed on one side of the normair the region placed on the other side of the
same normal.

The calculation ofXs, Ys, Zs presents no actual difficulty. Now, th, vo, Wp are
integrals of the differential equations (3) of the pdag chapter, which are regular in
the domainS bounded by a surfacgk, and if Xo, Yo, Zo are the components of the
corresponding tension that acts on the surface theBdhmegliana formulas give:

1

47K
1

4K
1

47K

M o [ U ur 2w [ Xy Yir 2 B = w2

(1) o [t Zw) E4 [ (X4 Yy 20 H=vilk 2,

(1) ﬁjz(xougwow ZwW E+——[ (Xuy+ Yy Z ¥ H=we(x Y, 2,

upon supposing that the poity, z is interior to the domai and¢, 7, { represents the
coordinates of the points of the surfate In the calculation o, Ys, Zs one must
suppose that the normal is directed from the extewithe interior of the domaifi

On the contrary, if the poin y, z is external to the domain then the right-hand sides
of the preceding equations are zero.

2. Now suppose that in the preceding formulas one has:
(2) Ww=l+ry—-qz Vo=m+p z—rX, Wo=n+QgXxX—pYy,
wherel, m, n, p, g, r are constant quantities. Equations (3) of the precedhagter will

be satisfied anio, Yo, Zowill be zero as a result.
One will then arrive at the fact that the integrals

1
U= W.[Z(X1UO+Y1\6+ ZV@ d:’

1
V= WIX(XZUO+Y2\6+ ZZ\M) d:’
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1
W= WIX(X3UO+Y3.\6+ Zw &

will be equal tol + ry — qz m + pz — rx n + gx — py respectively, if the point, y, zis
interior to the spac& and will be zero if the point is exteriot)( Finally, one sees
immediately that upon calculating:

ou Y oW

Loy LAY . CALSY

aX 11 ay 22 62 33
oV _ow_ W U _ U _av__
0z oy @ ox 9z ¢ ody ox

the quantitie$ ; will be zero whethex, y, zare interior or exterior to the spaSe
We may thus conclude that the integrdlsV, W are discontinuous upon traversing

the surface, while the functiond s have no discontinuities. Upon lettitdy , Vi, W
denote the values &f, V, W alongZ on the interior side ande, Ve, We, their values on
the exterior side, we have:

U -Ue =l+ry—-qz

Vi=Ve =m+pz-—rx

W = We =n +ax — py

3. Having said this, divide the surfakento two partscandd and set:
U——I (X1L|O+Y\6+ ZVM) dT
(3) v=—j (X b+ Y%+ 2w o,

w——j (Xl + G+ Z W) o,

and:

_WL,(XM)”L Y+ 42w @,

3) Ve [ Obu Yy 2w @,

1
W.[J,(X3uo+ Yyt 4w @

It is easy to see thatv, w; U, vV, W enjoy the following properties:

() Upon equating the coefficients bfm, n, p, g, r in the two sides of the preceding equations, one
finds integral relations that are analogous to the Glawssuilas in potential theoryCf., the memaoir cited
by Lauricella, chap. Ill, § 3.
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1. The functiong, v, w are finite, continuous, monodromic, and have derivaifes
all orders at all points of space, except for the saréac

2. Theu, v, w satisfy equations (3) of the preceding chapter, exaeptesurfacer.
One may then regard them as the components of thiaackspents of a homogeneous,
isotropic, elastic medium that is not subject to exkforces.

3. U, V,W enjoy the same propertieswas/, wif ¢ is substituted fop;

4. Finally, we will have:

U=u+u, V=v+V, W=w+W.

Now, U, V', W are continuous ow; while U, V, W are discontinuous, 3a v, w will
have the same discontinuities gasU, V, W. Now, calculate:

%:M @:Jé a—\N:Jé

ax oy o0z ¥
@_}_a_W:Jé a_W+%:y3 @+6—V:M
oz ay ox oz oy ox

au’ v ow

&:Vn’ a_y: Vaz: E:Vag’
o  ow ow au au'  av
_ = _t = — 4+ —= .
9z dy Vaa X 9z Vo dy 9x ne

We will have:
M5+VrS:rr5:0.

However, the functiong/, preserve their regularity)(upon traversing the surface
(except for, at most, the contour@f so the functiongs also enjoy the same property.

Upon substituting the values (2) in the formulas (3)ugrvo, wo and ordering the
right-hand sides relative tom, n, p, g, r one arrives at the following theorem:

Being given a surface, set:

1

o 1 o) — _ 1
A(l):mjgxida’ %)—W Y, A”)—HL £a,

B =L [ ((Y-nR)w, B =L [7-¢Nd H=——] 0 XxEYd
471K o 4nK 2o K ‘e

() Seethe cited note in art. |, § 3.
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u= A+ APm+ AD e BY pr B o B
(n v=ADEADmE Ak B pr B) o By
w= AP+ AT Ak BY pr B) o B )

[, m,n, p, q r being arbitrary quantities. One may regard u, v, w as the components of
the displacement of an indefinite, homogeneous, isotropic, elastic metainhas a
deformation that is regular everywhere in space except at mosotheuc L ofg. This
medium is devoid of external forces and is in equilibrium; at the same the

displacements u, v, w are discontinuousconThese discontinuities are individualized by
the equations:

U - =l+ry-qz
(4) Vi ~Vp = Mt pz- rx

W =W, = N+ gx= py

where y, Vo, Wo denote the values of u, v, w on one side of the normal to the suarface
and y, v, w denote the values on the other side of the same normal.

One infers from this proposition that upon statinith the characteristics of the
preceding deformation and calculating the quastitiev, w by means of formulas (1),
(1), (1") of the preceding chapter, they will be polydromiben the surfacer is open.
The line — or lines — of branching will be formearh the contoul. of o and the
polydromy will be individualized by formulas (4).

4. Now suppose that a bo@yis n+1-connected. Make cuts that render it simply

connected.

Let a1, &, ..., gy denote then surfaces that are defined by the aforementionésl cu
when prolonged in such a fashion that they extendide ofS. Set:

u=> (APL+AYm+ A) n+ &) p+ &) o 8)),
i=1

) V=Y (ADL+ A9 m+ AD n+ B pr ) o B),),

w=Y (AL + AP m+ AD n+ B) p+ ) o+ B)),
i=1

1 aX’ 2 ay, 3 62’
ov  ow _ 0w  du _ Ou  o0v.
Yoz= —+—, 1= —+ —+—

x oz T oy ox’
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wherelj, m, nj, pi, g, ri are arbitrary constants; the deformatiog ()41, )52, V53 Vo3 Va1,
¥i2) will be regular inside o% and will correspond to arbitrary distortions made althey
aforementioned cuts.

If one calculates the external forces acting oninterior of the body then one finds
that they are zero, but in general the forces actindn@ontour of the bodywill not be
zero. Now, the body is in equilibrium, which is why tlorces must have a zero resultant
and a zero moment relative to an arbitrary axis.

The stated theorem of article | is thus proved.

1. Let a finite, simply connected, surfacebe situated in thezplane so that it does
not encounter the-axis. While thexzplane turns around theaxis, suppose that is
deformed and displaced in the plane in an arbitrary manileowt ever encountering
but suppose that, after a complete circuit, it reviertss original configuration. By this
motion, the are@ generates a doubly-connected, annular solid linked tp-dles. Let it
be filled with homogeneous, isotropic, elastic matt&ubject a cut formed by a plane
passing throughto the most general distortion and study the deformatidne body.

2. One knows that the integrals of equations (3) of tkequting chapter must be bi-
harmonic functions; i.e., they must satisfy the doilialelace equation®A? = 0.
Now, ifl, m, n, p, g, r are arbitrary constants then the functions:

1 (I-gz+ry) arctanX :
2ir X

i(m— rX+ p2 arctanx :
2 X

1
217

(n— py+ g® arctanx
X

are bi-harmonic and they have the polydromy that correlgpto a distortion that has the
characteristics m,n, p, g, r.

However, the preceding functions do not satisfy thefinile equations of elasticity
in the case of isotropy.

Therefore, take:

=1 (I-gz+ry) arctanX + A,
2ir X

= i(m— rx+ p2 arctanx + U,
2 X

w :i(n— py+ g% arctan?. + v,
2T X

and determine the monodromic functiohgs, vin such a manner that the expressions for
u, v, wthus obtained satisfy equations (3).
Set:
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A = (ax+ by +cz+e) log(e +y?),
p=@x+by+cz+e€)log( +y),
v=@'x+b'y+c'z+¢e") Iog(x2 + y2)

The constanta, b, ¢, g &, b, ¢, €; a", b", ¢", € are easily calculated, and one finds
that:

1l Y[
u=- _(I qz+ ry)arctan;+( M- pz— oo %Iog(?ﬁ ﬂ,
_1f, y -
(1) V—ET_(m X+ pz)arctan;+( - qz TroK ;}Iog(?ﬁ 9%
w= (n—qz+ r)aarctanz+( px- qy log(k+ 9% .
2| X

It is easy to recognize that the corresponding rdedtion is regular and that one may
easily obtain the tensions that act upon the serfac

Therefore, for the body in question, one may dateuthe deformatioi and the
forcesT of article I, no matter what the distortion thia¢ tbody has been subjected to.
3. The formulas that we have given in article Ilitbé preceding chapter have been

deduced as a particular case of the preceding &sipres. Indeed, the formulas (2) of the
cited chapter are obtained whga 0 by taking:

l=m=n=p=q=0, r=2m,
and the formulas (4) of the same chapter by setting

l=m=n=p=q=0, n = 2rm.



CHAPTER Il

THE EFFORTS

1. In the preceding chapters, | showed that the lawsyaifierium for solid elastic
bodies that occupy multiply-connected (cyclic) spacesvary different from those of
elastic solids that occupy simply-connected (acyclgcses, provided that one assumes
regular deformations in the two cases.

Indeed, if the space occupied by the solid is cylic s may determine a state of
tension in the same body even in the absence of ekfflencas when it is subject to
distortions. However, the same is not true whenhibey occupies an acyclic space.
This is why, in the case of an elastic solid that ocaupieyclic space, we will have to
solve a series of very interesting new problems thaioti@resent themselves in the other
case and which consist in calculating the states mdida in the body due to given
distortions.

In order to facilitate the solution of these problems, briefly present some general
considerations in this chapter that permit us to easihsform them.

2. First of all, we calculate the energy of an etaswlid that is subject to given
distortions.

Represent the characteristics of the tension infarmed elastic solid (thetress
according to the terminology of the English) by, to, tss tes t31, ti2 and the
characteristics of the deformation (1$tea|n) by Vi1, V22, V33, V23 V31 Vi2.

If we let ¢ denote the unitary elastic potential thgnwill be a function that is
homogeneous of the second degree in the quankiiesd we will have:

1

— = ls, ¢:_Ztrsyrs;
2

the energy of the system will thus be:

1
E=- EJ.SZt"Sy"SdS’

in which Srepresents the space occupied by the solid.

Suppose thabis multiply connected (cyclic) and the deformationeigular. Imagine
that one has made cus o, ..., ¢, that rendeSsimply connected. By means of simple
integrations, and upon representingupy, w the components of the displacements of the
points of the elastic solid when starting from the nastede, we will have:
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(1) _J’ atn 6t12+6t13 +v 6t21+6t22+6t23 + 6t31+6t32+6t33 ds
0z oxX 0y 0z 0X 0y 0z

+

+%J.J[U(t11C03nX+ T12 cosny+ t13 COSﬂZ)’ V(El conx ;2 COgy 53 cos:
+W(t3; cosnx + t3; cosny + t33 cosn?)] do
+ %2 J,U (U —up)(t,008Y x+ 4, COY, Y+ t COB 2
i=1 "7

+ (Vo — Vp) (tor cOSNX + ty; cosny + tr3 COSN2)
+ (Vo — Vp) (t21 cosnx + top cosny + t,3 cosnz)] da

whereois the contour 0§ n is the normal tas directed towards the interior 8f andyv;
is the normal taF ; ug, Vo, W, are the values af, v, w on g on the adjacent side of the
regionv; andug, vz, Wg are the values on the other.

Now, letl;, m, ni, pi, g, ri denote the six characteristics of the distort®lative to the
cut g and letX;, Y;, Z represent the components of the unitary tensianhgach element

of the sectiong; . Since the external forces are zero, one wilehafter integrating by
parts:

- :_]_);i-[lﬁ [(|| + riy—in) X + (m + piz_rix) Y, + (Ui +qix_piy) Z|] do

:%izn:[tij Xid0i+”ﬂj inj|-+in'[ Zd
+pf, (Y= 2y dr+ g (Zx Xea+ | ( Xy, Yxa.
If one sets:

= [ Xda, Mi=| Yo, Ni=[ zda,
=|,(Xz=zyd, Q=] (Zz-Xyd,

R=[ (Xy-Y3 &
then one will find that:

%z Lii+Mim+Nn+Pp+Qaqg+Rr).

Let i, &, ..., Oy denote the ® characteristics of the distortions andbgf ..., Eg,

denote the coefficients in the preceding expresiancorrespond to them. We will then
have:



Chapter Ill. The efforts. 24

16n
E—éiZ:l:Eis.

3. For us, the termrelementary distortiomefers to the distortion that corresponds to
having all of the quantities = O, except for one that has the value unity.

Suppose that the latter & and letEj, denote the corresponding values of the
coefficientsg; . One immediately recognizes that if the valukthe characteristics of
the distortions ars,, ..., Ssn then one has:

6n
E = z EnS
=

and, as a consequence:
6n 6n

E=%ZZEhs$«-

i=1 h=1

4. 1t is easy to establish the significance of thargitiesg; andE;, .

To that effect, observe thht M;, N; are the components of the resultant forceRnd
Qi, R are the components of the resultant couple ofehsions that act upon the section
g when one takes the origin of the axes to be theecef reduction.

We may thus call the coefficients, M;, Ni, P;, Q;, R the efforts that act upon the
sectiong, or in general we say that, E,, ..., Es, are theefforts that correspond to the
distortion §, S, ..., Sn . The quantityEp, will be called theeffort of order i that is
induced by the elementary distortion of orderMore simply, the coefficientSiy may be
called thecoefficients of the efforts.

1. Green has proved a fundamental proposition inrpiadletheory by an application
of Gauss’s theorem. By the same process, Bettilisasvered an analogous theorem for
elasticity ¢). However, if the potential is polydromic then e@n’s theorem is
inapplicable. Likewise, Betti's theorem is inagplle if the displacements are
polydromic. We shall nonetheless see that evethim case one may recover the
fundamental idea, and one is led to a law of recipy that is quite interesting.

Envision two distortions,, S, ..., Ssh ands, s,, ..., S, being applied in succession

to a multiply-connected, elastic bo8yhat is not subject to any external forces. ket
¥, be the characteristics of the two different defations that result from it, and let v,

w; U, V', W be the components of the displacements, respgctive
One easily finds that:

o o
jzﬁ Y. ds= jsza_i y.ds,

() Teoria della elasticit{Nuovo Cimento1872-1873).
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whereg' represents the functiopin which one has substituted the quantitjésfor the
Ms -

One infers from this that:
n
ZJ [ (U —u;) (tua COSU X+ 112 COSU Y + i3 COSI 2)
i= 9

+ (V. —V,) (t21 COSV; X + 12 COSU Y + 123 COSVY; 2)
a” VB
+ (W, —W,) (ts1 COSU X + 13 COSU Y + 133 cOSV 2)] o .

n
= Z'L_[ (U, = Uﬂ)(qlcOS\{ X+ 1;2 Cosy y+ t3 cosv z
ERad
+ (Va_vﬂ) (t’21COSV| X+ tIZZCOSI/i y+ t'23 cosV 2

+ (Wa—wp) (t;,cosy X+ t;,cosy y + t,cosV 2] da; .

where the notations are the same as the ones ¢hatalveady in formula (1). Therefore:
6n 6n

2) Y Es=)Es.
i=1 i=1

As a consequence, we have the following theorem:

If two systems of distortions in a multiply-connected elastic boderge two
systems of efforts then the sum of the products of the efforte dfrdt system of
distortions with the characteristics of the second systengualeo the product of the
efforts of the second system of distortions with the charactsristithe first system.

! !

2. From the equality (2), upon taking into accourtt®, S, ..., Sen, S, S,y -y Sy
are arbitrary quantities, one infers that:

(3) Ein = Eni
for any values of the indicesandh. Conversely, equation (2) emerges from these
equalities as a consequence. The reciprocity émedhat we just gave may thus be

stated in the following manner:

The effort of order i that is induced by the elementary distortimrddr h is equal to
the effort of order h that is induced by the elementary distortionde or

By this statement, the theorem takes a form thatmilar to the fundamental theorem
of electrostatic induction.
More simply, the theorem may be further stated:

The coefficients of the efforts do not change value under a transpositrahaess.
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3. Being given the numerous applications of the reciprottigorem, it will be
useful to further examine it from another viewpoint.

Take two arbitrary sectiong ando; of an elastic body, which may also coincide.

First of all, perform a distortion that consists afrelative translatiol; in the
direction ofh; of the elements of the two faces of the ecut Then determine the
projectionS; in the directionh, of the resultant of the tensions that and act upen th
sectiong; .

Finally, instead of the preceding distortion, perform theo displacement that
consists of a translatiof in the directiorh, of the elements of the two faces of the cut
o; and determine the projectian on h; of the resultant of the efforts that act upon the
sectiong; .

The reciprocity theorem gives us:

ST,=5T;,
and, as a result:
S_3S
T T,

i.e., the projections of the two efforts in the direcioaf the two translations are
proportional to the values of the translations tisefhaes.

One obtains a theorem that is completely analogousubsgtituting a rotatio;
around the straight link; for the translatiof;, provided that one replaces the projection
S of the resultant of the tensions that act uponelbenents ofo; with the moment of
these tensions with respect to the straighthine

Finally, with similar substitutions fof, and S, one obtains a new theorem that is
analogous to the first two.

These three propositions are equivalent to the regtgréheorem that we have
already stated in various forms in the preceding paragraph.

.
1. By virtue of the equality (3), one has:

=

EB=—,
0s

and if one let®, denote the coefficients of the reciprocal form @f &éxpression:
PPA=E
i h

then we may express the energy in the system in anfdbkion by means of the

formula:
1
E= EZZQh EE.
i h
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2. In the preceding chapter we proved that when one isngivdeformation of a
multiply-connected system the distortions that cqwesl to its equivalent cuts are equal.

We would now like to complete this proposition and prokat tthe efforts that
correspond to equivalent cuts are equal.

Indeed, envision the sectiam. By definition, one may reduce it to an equivalent
sectiong; by means of a continuous deformation. While one perfthieseduction, the
surfacea, generates a soli@ that constitutes one part of the elastic b8dy

The solidS; will be bounded by, &, and a lateral surfacea We may then imagine
S to be in equilibrium under the action of only tensibmst act uporno; and ¢.. The
equality of the efforts then results from this.

One then concludes that the efforts, like the distast are not elements that are
specific to each cut, but they depend exclusively upon tbmegic nature of the space
occupied by the body and the regular deformation that tthe isssubjected to.

The most fundamental problem that we may proposenhénstudy of multiply-
connected, elastic solids will be the following one:

Being given theén distortions, determine thén efforts if one supposes that the
external forces are zero.

This question amounts to determining the coefficient@gfforts.



CHAPTER IV

DISTORTIONS AND EFFORTS IN A SYMMETRIC, CYCLIC BODY

1. Starting with the principles that we established inpgexeding chapter, we study
them in a particular case of distortions. We vetifgt these principles permit us to go
deeper into the mechanism of the distortions and répas some facts that are quite far
removed from the ones that one must considgpriori, upon examining the question
intuitively. One achieves the goal without recourseh® integration of differential
equations, but with the aid of an elementary discusditimecexpression for the energy of
an elastic system that is subject to given distortions.

In order to briefly give an idea of the results, tettee example that we started with
in chapter 1.

We supposed that a very thin transverse wedge was suppiressedring that varied
in thickness proportionally to the distance from the sytnyaxis, and then we supposed
that we brought the two faces of the cut together andedethem. Left to itself, the
body would cease to be in its natural state. It waake on a state of regular
deformation and its elements would be subject to elasti®$. One may then demand
that they be the actions that are exerted on thdedeflaces. It might seem obvious that
they must be in a state of tension, but things arehabtwtay. There is always a part that
is in a state of tension and a compressed part. Maretihe sum of the forces of
tension is equal to the sum of the forces of comprassi

The present chapter is dedicated to this theorem aritlearenalogous one that cast
an unexpected light on the distribution of elastfore$ that are generated in the body by
the distortions.

2. First of all, we give some definitions. In the préiog chapter, we expressed the
elastic energy of a body that is subject to distostiopthe formulas:

16n
E—;;ES,

where the efforts are represented byEhand the characteristics of the distortions by the
s. We callE; theconjugate efforto the characteristig of the distortion.

Having chosen the center of reduction, the distorthat is applied to each cut may
be decomposed into a translation and a relatiaiont of the elements of the faces of the
cut. We make use of the same center of reductidrcampose the actions that act upon
the elements of a face of the same cut as if theyevapplied to the points of a rigid
system. One thus finds a resultant force and @tags couple. That force and couple
constitute the total effort applied to the secfjoin preceding chap., art I., § 4).

By virtue of the preceding definition, the compotsealong the coordinate axes of the
resultant force are the conjugate efforts of thejgmtion that correspond to the
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translation, and the components of the resultant caanglehe conjugate efforts of the
projections corresponding to the rotation.

If the distortion is elementary then only one ot thharacteristics and, as a
consequence, only one of the preceding projections wiltliferent from zero; the
component of the force or the component of the coupd ts conjugate to that
characteristic may be called tegort conjugate to the elementary distortion.

3. A solid of revolution may be generated by the revolutbm connected, planar
surface (generating surface) around a straight line platse. Letn be the order of the
connectivity of the generating surface. If the axigaifition is external to it then the
order of the connectivity of the solid s+ 1; however, if the axis is composed of one
part of the contour of the generating surface then tteraf connectivity of the solid is
equal ton.

Reduce the generating surface to a simply connected oneéys oinh — 1 linear
cuts. Under rotation, these cuts generate other sutfa@esay be regarded as sections
of the solid. In the second case, these sectiorf&cesub render the solid simply
connected, while in the first case, in order to obth® simple connectivity one must
further make a transversal cudt for example, a cut that coincides with one of the
positions that the generating surface takes when it tumshd the axis.

This latter cut, or any equivalent cut, will be said &odb thefirst kind; each of the
others, or an equivalent cut, will be said to be ofsdmmond kind.

Let a symmetric solid be doubly connected; two casesh@gyesented:

1. The surface generated is simply connected and eXteriie symmetry axis.

2. The surface generated is doubly connected and is parialynded by the
symmetry axis.

In order to reduce the solid to a simply connected weanake a cut of the first kind
in former case and a cut of the second kind in the la#tee, and we say, in the former
case that the body thoubly connected of the first kindnd in the latter case, that it is
doubly-connected of the second kind.

1. Now, let us study the distortions of a symmetric, &asbdy that is doubly-
connected of the second kind. In that study, we asshatg¢hte symmetry is limited by
not only the form, but under the hypothesis of anisotra@pgiso persists relative to the
constitution of the elastic body.

Suppose that the distortion is performed on accatade along one of the positions
that the generating surface takes under rotation.

Place the origin at a point of the symmetry axistake that axis to be theaxis.

The energy of the system will be expressed by the flariisee preceding chapter,
art. I, 8 3):

(1) E=->> E.S§,

6
i=1 h=1

N =
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denote the characteristics of the distortion, acogrth the notations that were employed
in the preceding chapter.

Having said this, observe that, due to symmetry, theggnalthe system does not
change if, instead of applying the distortion to thegioal sectiong, we apply it to
another section that forms an arbitrary angléwith the first one.

Now, since the two sections are equivalent the engirgfye system will be the same

whether we apply the following distortion to the sysedong the sectiow.
&l &l 83! &l S\Sl %l

or we apply the following distortion to the same section

S =5 cosf +s,siné, S,=-s.Sinf +s,cosf, S,=
S,= % cosf +s;5sin 6, S=-%Sinf +scosf, S,=

In other words:
@ E=2Y Y Euds

will be independent of, i.e.:

dE_,
do
But:
ﬁ: ' E:— / %:
do 2 o 2 g
ﬂ:sé, %:—S;, %:O,
deo do deo
SO.
o—dT;: (Ei-En)dé+ E{§- 9+ E'Ss B8

+ (E44_E55)§4%+ EAE( g_ '§)+ E46’§’§_ IE:76’$
+(Eu,—E)(S8+ § §)+( B+ B('S's 's)
+ B9~ Es§8%t RS E's.

Now, the quantities, , s,, S;, S,, S, S are arbitrary; it then follows that:

E11=Ex, E44 = Ess, E14=Es, E2s=-Es,
E12 = Ei13= Ex3 = E45= E46 = Ess= E16 = E26= E3s = E35= 0.

As a consequence, the expression (2) will reduce to

Ez%{Eﬂ(ﬁ+§)+E%§+ E( & 3+ E%2 § S5 5
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+ B -9 + ZEis s S

Take thexzplane for the sectioorand envision thelistortion to be of order 6; i.e., a
distortion due to a relative rotation of the two facka outoaround the-axis.

It is obvious that the resulting deformation of thelywill be symmetric with respect
to thexzplane and consequently the elasticity ellipsoid and diresrface {) at each
point of owill have thexzplane for its symmetry plane.

In other words, the elastic actions that are eslestethe elements af are normal to
o. Upon composing these actions and taking the origbetthe center of reduction, one
may obtain only a resultant force that is normalatghaving the directiory) and a
resultant couple whose axis is parallebtolt follows that:

Ei6=Ess=Es6= 0,
which is why:

© E=J[E(S+ 9+ Ed+ B(§ §+ B2 & 55 8
+ Bl -1 )]

In the same manner, envision the elementary distaibidoe of order 2 — i.e., a distortion
that is due to a relative translation of the eleme@ftthe two faces of a cur that is
parallel to they-axis. The resulting elasticity ellipsoid and directorface will be
symmetric with respect to the-plane at each point af. This is why, with the aid of an
argument that is analogous to the one that we just roadejeduces that:

Ei12=Ezx=Es5,=0.
However:
E1s=Es»,
SO.

@ E=J[ES+ 9+ E$+ B(§ §+ B2 & 55 ok

Now, observe that the coefficient Bf; = Ey»; cannot be zero, since otherwise the
energy due to an elementary distortion of order 1 or @dvoe zero, which is absurd.

It then follows that upon composing all of the actitdrt act uporw, by virtue of the
elementary distortion of order 2, one must obtaiesultant that is different from zero
whose line of action meets tleaxis at a pointQ. Indeed, all of these actions are
equivalent to the forck,, being applied to the origin and the couple having the moment
E»4 and thex-axis for its axis.

However, if we take the center of reduction to bhatpointQ then we will havee,,
=0 and, as a result:

© E=JIE(S+ 9+ Bd+ Bl & 3+ B ¥

() SeeCLEBSCH,loc. cit, chap. I, § 6.
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2. Now, let us study the distortions of symmetric bodiegt are multiply connected
of the second kind. Suppose that the distortions arkedpp a cut of the second kind
that is symmetric with respect to the symmetry axihefbody.

The energy of the system will always have the f@tjnand, if we take the-axis to
be the symmetry axis then the expression for this grmargt not change if we rotate the
x andy axes through an angle & in their plane. Therefore, even in this case the
expression (2) must be independentéés a result, anéE must take the form (3).
However, by virtue of symmetry must not vary if one changesinto —ss when one
supposes thaty =, = =S = 0; thus,Ess = 0. Even if one exchanges thandy axes
the energy will not vary; i.e., the quantEBymust be conserved if one substitutes, at the
same times; for s, ands, for —ss . It then results thd;4 = 0, and as a consequence the
energyE must have the form (4).

An argument that is analogous to the one that we nmatlee preceding paragraph
proves that upon conveniently choosing the origin to lpgiat Q one may maké,,
equal to zero. As a consequence, even in the case whateuhle connectivity is of the
second kind, the expression for the energy may be rddadermula (5).

The pointQ will be called thecentral point of the symmetry axis.

3. When one takes into account the principle of equivalets, formula (5) contains
the following theorem:

In a doubly-connected, symmetric, elastic body, each elementarytidistpenerates
only the conjugate effort when one takes the center of reduction to bentingl point of
the symmetry axis.

The following corollary ensues from this theorem:

The total effort that is generated by a distortion that consists efaéive translation
of the elements of the faces of the cut is a force whose leaioh passes through the
central point of the symmetry axis.

The total effort that is generated by a distortion that consists efagive rotation of
the elements of the faces of the cut around an axis that passes throughttakepoint of
the symmetry axis is a couple.

It is then simple to prove that:

If an elastic body has a symmetry plane that is normal to the syynaxés$rthen the
central point is the point of intersection of the symmetry axistive symmetry plane.

4. Now, examine the case where the double connectivby tke first kind and the
distortion has order 6. The effort is then reduced ¢couple that has the symmetry axis
for its axis. Thus, if we consider the elastic actithe act upon a face of the cut then
their resultant is zero. From the theorem state8l 1 of article |, it is easy to complete
this theorem by showing that the moment of the fordetemsion with respect to the
symmetry axis surpasses that of the forces of compressid is precisely equal to the
quantityEGs .
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In an analogous manner, suppose that the cut is madexeplene and consider the
distortion to be of order 2. The induced effort will ddorce normal to the cut whose
line of action will meet the symmetry axis. Thus, Imstcase there must also exist
elements of the faces of the cut that are compresdats the others are in a state of
tension.

Returning to the example of paragraph 1, we may stafeltbeing proposition:

If we suppress a wedge of uniform size from the ring (instead oflgewbat is
proportional in size to the distance from the symmetry axis), argltifien weld the faces
of the gap together then some parts of these faces will be in abtatesion and others
will be compressed. The tensions exceed the pressures (aneéeaiseiyrequal &), but
the moment of the former will be equal to the moment of the laitierrespect to the
symmetry axis.

One very easily deduces from the preceding resultsiftisete suppresses a wedge
from the ring whose thickness is given by:

S —SeX,

letting x denote the distance from the symmetry axis, and then weddsces of the gap
together then one generates a normal effort togbigos whose line of action is directed
along the symmetry axis of:

h:i&_

One thus sees that, upon conveniently choosing thesgdtg , one may arrange that
this line of action is an arbitrary distance from sgenmetry axis.

In the first chapter, we examined the distortion gatsists of sliding the two faces
of the cut relative to each other in the directiorthef symmetry axis in such a manner
that it gives the ring a slightly helicoidal form ati@n welding these two faces together.

This distortion corresponds to a distortion of order 3s &\ consequence, the
corresponding effort has the symmetry axis for its dihaction; this is why the elements
of one face of the cut will be carried along, one ia tlirection of the sliding and the
other in the opposite direction; moreover, the moméiie former action will be equal
to that of the other with respect to an axis that ignab to the section, and which meets
the symmetry axis.

We shall not stop to discuss some other particularsddise are not, just the same,
without interest, but which give rise to some consitl@na and conclusions that are
analogous to the ones that we just developed and formulate



CHAPTER V

HOLLOW CYLINDER OF REVOLUTION — DISTORTION OF ORDER

1. One of the results that | arrived at in the precedimpter was the following one:

Let a ring be symmetric with respect to an axis (E)g. Subtract a thin slicARABB
from it whose size varies with the distance to @aikes (we call this operatiomaking a
radial fissurg. Then, reconnect the facA®& andBB of the fissure, solder them and let
the ring be free.

Figure 1

The soldered faces are not under simple tension, bubfidwem is under tension and
part of them is compressed, and the sum of the fofoesnapression is equal to the sum
of the forces of tensiorséeChap. 1V, art. |, 8 1, art Il, § 4).

Upon subtracting a small slice froAABB (Fig. 2) whose faces are parallel and
equidistant from the axis of the ringniform fissurg, one will again find, after soldering
the two faces and releasing the body itself, thatfltes are partly in a state of tension
and partly compressed. Nevertheless, the conditiontheofoody in equilibrium are
essentially different in the two cases (Chap. IV, I&r§ 4).

Figure 2.
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In the first case, the state of deformation of thdybis symmetric relative to the axis,
in such a way that one will obtain the same state bfopeing the radial fissure at
another arbitrary axial section of the ring [for exdanjat the diametrically opposite place
CC (Fig. 1)] and then soldering the faces. In the secosel, @a order to obtain the same
state of deformation by performing a distortion in thgioe that is diametrically opposite
to AABB, one must make a cut @C and interpose a cut of uniform thicknessdthe
principle of equivalent cuts; Chap. Il, art. I, § 4).

Moreover, the distribution of efforts is entirelyfdrent in the two cases.

In the first case, if we examine the actions thé&texerts orBB, after soldering, and
if we compose all of the efforts of compression betwdeem and then all of those of
tension then find that the line of action of the risul of the former efforts is situated
towards to the interior region of the ring — i.e., $ide AB — and the line of action of the
other efforts, towards the exterior region — i.e., idle A’'B'. By virtue of symmetry, one
will find an analogous resultant in each axial sectibthe ring.

Indeed, we have foundgdeChap. IV, art. Il, § 4) that the resultant of théodas of
tension is equal to the intensity of that of the ¢ffmf compression, but that the moment
of the former resultant relative to the axis of symmnetceeds the moment of the other
resultant.

On the contrary, upon making a similar compositiorhéngecond, one finds that the
line of action of the resultant of the efforts ofrqaression that acts on the f&88', after
soldering, is situated towards the exterior region ofitige— i.e., the sid&'B’ — whereas
the line of action of the efforts of tension is siecatowards the interior region — i.e., the
sideAB. However, one finds the opposite to be true for fhosite sideCC': There, the
line of action of the resultant of the efforts ofngaressions is situated towards the
interior side — i.e., towardS — and the line of action of the resultant of the iters is
towards the opposite side — i.€!,

Indeed, we have proved (Chap. IV, art. Il, § 4) thahenc¢ase of a uniform cut, the
efforts of tension at each transverse section ofitigeexceed those of compression, and
the resultants of the both of them meet orthogornalipe axis of symmetry of the ring.

The results that we just stated are easily deduced &tiner the principle of
equivalent cuts or the law of composition of the @éffd@geethe preceding chapters). One
will arrive at these results intuitively with diffidty, a priori; they seem unexpected to us.
One may account for them by remarking that daily expeegehas accustomed us to
imagining the deformations of the body when it is subjecknown external efforts.
However, in the present case, no external effornmosed upon the elastic body. The
efforts that it experiences are internal, and, spéals, hidden from the observer, in such
a way that they, just like the deformation, appear torii@owns of the problem.

2. In order to have experimental conformation of somehef results that were
obtained, | have experimented on solids made of rubb#r,which it is easy to obtain
very reasonable deformations.

In order to make a comparison between the resultalofilation and experiment, in
this chapter, 1 will commence by going into the first rapde that was developed in
Chapter | in detail — i.e., the case that correspontisetdistortion of order 6seeChap.
IV) — which is due to a radial fissure in a hollow cylinddrrevolution, a case that
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presents less difficulties from the analytical viewpoi The distortions of other orders
will be examined in the following chapters.

1. Formulas (a) of Chapter I, in which one supposes jhat 0, express the
displacements that correspond to a distortion of oddeadial fissure) when the cylinder
is subject to uniform actions along the cylindrical surdateat comprise the lateral
contour of the body and tensions that act upon the lyaspectively. One easily
eliminates the former by composing the displacementsh@) were deduced in said
chapter with the displacements:

u:)lr—);+,ux, V:A%+yy, w =0,

and by choosing the constadtandy suitably.
Upon doing this, one arrives at the displacements:

. y 1 , L+K logR’ -logR x
us= c{yarctan; 2L+2leogr+L+2KF§2F32 R-R 7
+5(1+ K__R'logR - Rlog F§j |
0 217 L+2K RR-R
__ y_ 1 K », L+K 5 5logR*-logR y
V= c{xarctan; 2|_+2Kylogr+L+2KF§2F§ R-R 1
+1(1+ K Rflong—Rilongﬂ,
217 L+2K R-F

which correspond to the hypothesis of a distor{johorder 6) that is due to a radial
fissure whose angular opening s while the only action that acts upon the body is
caused by just two actions that act upon the twesedta These actions keep the
aforementioned bases planar and at the origintdrtis t).

One can easily calculate the six characteristicdension (i.e., the strains) that
correspond to the displacements (I), and one has:

1) tu=

a(L+ KK |2, 2y RER(log B-log B)( 1_2¢)  Rlog R~ Rlog R
L +2K rz Rf_Rgz r2 r4 RZ_ %2 ’

(2) t2=

() In these formulas, as in all of the following ones, lbgarithms are Napierian ones.
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a(L+K)K {logrz+2xz _R'Ri(log B -log F§)(i_ 2y2j_ Rlog B~ Rog R

L +2K r’ R2-R? ot R*- R
_ alK > _R’log R - Rlog B
(3) t33 = oK [1+ logr R-R j
(4) t23: 0,
(5) 31 = 0,

__2a(L+K)K xy{ R’R(log B -log §) 1}
6) tp=- T L =
L+2K r R -R r

The equalitie$,3 = 0 andtz; = 0 prove that the forces act normally to the bases.

That action on the bases, when referred to the @isitidace, must be considered to
be positive when it is directed from the exterior te thterior of the cylinder and
negative in the opposite case. Here is its expression:

(1) Pw=133= c:L;K [1+ logr? - R IOQEE: EIOQ ng

We thus have the following theorem:

A hollow cylinder of revolution that is subject to a distortion (of oi®ethat is due
to a radial fissure of opening/mr keeps its bases planar and at the original distance with
the aid of normal forces that act upon the same bases. These forogiseareby the
preceding formuldll), in which R and R represent the radii of the lateral cylindrical
surfaces and r, the distance from the axis to the various points bases

2. Having said that, we calculate the actions that ardexkem the elements of the
sectiono of the cylinder. That section is made by half of a @ld#rat is detached from
the axis of the cylinder and which forms the angleith thexzplane.

Equations (1), (2), and (6) immediately provide the compaer&ong the axes of the
unitary action relative to each element of the sectibnese components are:

-Fsing, F cosp, 0,
in which:
__ 2a(L+K)K _R'R(ogR-log B) 1 _ Rlog R Rlog
F= L oK 1+ logr R-R z R- R Ej

This proves that each element afis acted upon by a normal forde of unit
magnitude.
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An elementary calculation gives us:
[FFar=o0.
R

It then follows that one finds a zero resultant farpen composing all of the actions
that are exerted on the elementgof

This result verifies the general theorem that wasgatan the preceding chapter, 8 6
in the particular case that we treated.

Indeed, it proves that the sum of the compressionsathaiponois equal in absolute
value to the sum of the tensions. This condition rabstously continue to persist, even
when we no longer act upon the bases of the holldwdgyr with forcesP,,.

One can easily calculate the moment of the actibat act upon the elements of
with respect to the axiz Upon denoting the height of the cylinder lpythis moment
will be:

R 20(L+K)K| R*-R R B(og R-log R)
thszdr L+2K 4 RI-R

3. Set:

_ _RR(ogR-logR)1 _Rlog R Rlog §
(7) f(r) =1 + logr R-R z R- R

The functiorf(r) is increasing, and since:

j::‘ f(r)dr =0,

in then results that equation:

f(r)=0

has just one rogh, betweenR, andR; , and thaff(r) is negative for the values ofthat
are betweelR; ando,, and positive for values betwepnandR; .

This proves that the circular fibers of the cyéndhat have the axis of the cylinder
for their axis, and whose radius is betwdégnand o, are compressed, while the ones
whose radius is betweem andR; are in a state of tension. The neutral fibersehav
radiusp; .

From the equatiof{r) = 0, one deduces that:

o Elog R Iog\/ﬁ Iog\/ﬁ
,01

JRR R
R§

log

@

and upon setting:
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R _ o _
—L=g log =9,
R, JRR
we will have:
gloge ,, 1e*+1
8 =—e“’+———loge—-1.
®) ¢ g2-1 2£%-1 g
If we let:
1_R-R
=1-—-—=21_2
14 . R

then we will have 0 ¢< 1. In the expression (8), we develop the coieffit ofe > and
the successive terms in a series in increasing zoofgz. We get:

¢(m = %(1—1'1/2 +...je‘2¢ —_1(1—_1yz+...j,

6 2 3
S0 one has:
§0 =0,  ¢O)=0, FO==,
which makes:
1
ﬂm_52f+m
and

A =1+t s
24

JRR

i.e., upon neglecting the powers@fF;—thhat are higher than the second, one gets:

el 5 |

If the thickness of the hollow cylinder is smadinepared to the radius and if the ratio
of the thickness to the exterior radius is envietmo be a first-order quantity then the
radius of the neutral fibers will thus be:

P=yRR,

if one neglects the second-order quantities.

4. From formula (7) and the equation:
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R’R(log R-log B) 1  Rlog R~ Rlog F

0=1+logo - R-R e - R ,

one deduces that:

2

R R

f(r) = Iog—r + i 'z(rz_' fj
P Riz_Rg r2p12

Consider Ry —Ry) / R; to be a very small quantity of the first ordery #$me simple
calculations, upon setting = o + & and neglecting the second-order quantities, we
obtain:

f(r) = % 1-

1 R-R_
VRR 4(%

This is why:

__2aL+K)K 2¢ |, 1 R-R
L+2K  JRR 4(R1+sz'
2

Let E be the modulus of elasticity and kebe the Poisson coefficient. We will have:

(L+K)K __E
L+ 2K 41-n7)’

and if we letd denote the angular opening of the radial cut thewill be equal tof/ 27z,
therefore:

(I F=_E 6"(( 13}
A(1-n*) 2 p 4p

where p is the (arithmetic or geometric) mean of the radands is the difference
between the radii — i.e., the thickness of thedwoltylinder.

5. We now pass on to the examination of the law strithution of the force®,, on
the bases of the cylinder.
Set:

_ R’log R - F§logF§
9 =1+I
9) ¢r) =1 + logr® - R

by an elementary calculation, one proves that:
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(10) Lz‘rw(r)dr -0,

and it follows that the equatiognr) = 0 must have a root betweBn andR;, and since
{[r) is an increasing function, that root will be wmq If we call itp, then we will have
that ¢Ar) will be negative if the variable is betweenR, and o, and positive ifr is
betweeno, andR; .

It is easy to show thab > (R + Ry) / 2.

Indeed, we have:

»_ RlogR' - Rlog K _

11 1+ logo, - > =0,
(11) + logo. R-R
so:

21 R

RS log—

20, _ R, R _1
log R1+R2_ R-F +log R- R 2+Iog2,

and upon setting:

R _ 20, _
g =& Iogm—)((s),

it then follows that:

5—5—2Iog£
X'(@=—5 =1w(£) -
(g2 -1y E(fz -1)°

£
If one writes, as we did previously (8 3),= 1 — 1l£ and if one develops the

logarithm, and thely’ (¢) in a series in powers ¢fthen one will have:

X (Oe1=0, x(=1=0.
@ (8) = (1—% |
£

which is why (&), and consequently(&), are positive fore > 1. Thereforex(¢) is an
increasing function foe> 1. However,lir_rll x(€) =0, so:

However:

log i> 0,

R+R

R+R
pr> =

or rather:

Sincey (&)=1 = 0, one deduces from formula (12) that:
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1 5
£) = — + ...,
X&) 241/

and, in turn:

SO

if we neglect powers oR; + Ry) / 2 that are higher than the second in the esprador
0.
We may thus conclude that the circle that separtte region in a state of tension
from the compressed region at each base point haslias that is the arithmetic or
geometric mean of the extreme radii, up to secaddrajuantities.

6. From equations (9) and (11), it then results that:

W) =2 log—,
2
so, for formula (Il), one has:
2aLK r
[4): I -
L+2K ~p,

and upon introducing the modulus of elasticity, Basson coefficient, and the angular
openingd of the radial fissuresge§ 4), one sets:

(”’) P,=- —Z—log—

One infers from this that in order to keep the tvases of the cylinder planar and at
the original distance one must compress them inr¢giggon between these circles of
radiusR, andp, and stretch them in the region between the cimieadiusp, andR; .

From the formula (10), one deduces that the atgelsum of all the forces that act
upon a radial band that is found on one of the $a&sequal to zero; i.e., the resultant of
the tensions has the same intensity as the resoltéime pressures. The totality of all the
forces that act upon the radial band is then edgnvdo a couple.

Upon setting = o + & we will have €/ g | <1 wheno: > (R +Ry) / 2 (see§ 5). It
will thus be possible to develop the function oo, in a series in powers @/ p,, and
formula (II') will be written:

2 3
b= _E1 i[i_1<‘_+_1£+...)
1-n> 2

2 2

P, 2p, 3p;
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If the thickness of the cylinder is small then uponleeing terms of second order,
we will have:

B Po=- 1 9 ¢

1-ffomp,

1. Now suppose that the two bases of the cylindernardonger subject to the
actionsP,,, but are left free, and look for the form that dyéinder will take by virtue of
only the distortion when no external force actsrupo

To that effect, it will suffice to apply the geaéprinciples that we stated in Chapter
I, article I, paragraph 2 — i.e., that one mugiespose the deformation (1) with that one
that is due to the forces P, that act upon the bases of the cylinder. Howetles,
deformation (I) preserves the form of the body asyiénder of revolution, so it will
suffice to examine the deformation that a cylindedergoes when subjected to actions —
P, on the two bases.

Figure 3 represents one of the bases of the @ylind

Figure 3.

The large circle and the small circle are the bwandaries of the base; the patterned
circle is the line of separation between the regi@t must be in a state of tension under
the forces- P, (it has been lined) from the region that must dmgressed by the forces
- Py (it has been left white).

Now consider (Fig. 4) an infinitely small longitndl slit ABCDEFGHin the hollow
cylinder and imagine that is has been detached themest of the body. From what we
found in paragraph 6 of the preceding article,dtmn of the compressions that act upon
the upper basABCD will be equal to the sum of the tensions; the santiebe true for
the lower bas&FGH, so the two bases will be acted upon by the celle- P1; Py, —

P2, respectively.

It then follows that the slit bends in such a nanthat the generators of the face
DCGH curve and take on a concave form. The generatiotise faceABFG likewise
curve, but become convex. At the same time, th®neof the upper bas&BCD that is
adjacent toAB will be raised and the region of the same baskeishadjacent t&CD will
be lowered. The inverse is true for the lower base
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Figure 4.
— Pl
Pr
......................................................... P2
H G

It is easy to calculate the lift, the lowering, &heé bending of flexion relative to the
slit, when considered by means of the usual formuldexfire. We refer to the plane
that is normal to the axis that leads through the umedvith the same axis; we will have:

Lifting of the points on the upper base:

1 h g ¢éh
(13) we-Lep)h-_n 08¢
E 2 1-n° 2 2p,
Lowering of the points of the lower base:
. 1 h g ¢éh
(13) w=-tepyh-_n_06¢
E 2 1-n° 2 2p,

Bending of flexion:
2 2
(14) g=- b __n 6N

E€8 1-7° 2w 8p,’

whereh represents the height of the cylinder.

One will get the same result for any other inghitthin longitudinal band on the
cylinder if one assumes that it is separated from rest of the body. The mutual
couplings between the various bands will change dafementioned raising and
lowering if one repeats them and, above all, reglilce bending of flexion; however, the
process of deformation will obviously remain unedtk and the corrections that must be
made to the values that are found will be even lemalich that the cylinder will be lower
and the thickness, relative to the radii of theesasvill be smaller'j.

() One may obtain this result with great ease; it sesfio formulate the problem in an equation by
means of the equations of elasticity, when transforimedcylindrical coordinates.
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Figure 5.

The original cylinder, which is represented by Figure 5, thigéin, by virtue of the
distortion, take on the form that is represented by Eigrwhere we have exaggerated
the deformations in order to make them more visible.

Figure 6.

According to formulas (13), (18 (14), and upon taking, = (R; + Ry) / 2, the total
height of the lateral surface that bounds the solermatlly, after distortion, will be equal

to:
h+ nl ZiRi_th
1-n" 2nR+ R

and the total height of the lateral surface thatrois the solid externally will become:

nl iR_th
1-7° 2TR+R

Therefore, the difference between the heightshef tivo surfaces that bound the
interior and exterior of the cylinder will be:

(15) H=-21 FR-Ry
1-n" 2nR+ R
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and the bending of flexion will be:

7 8 W
(16) 1 2t aR+R)

2. | have done experiments with a hollow rubber cylindethwhe following
dimensions:
Ri=28 mm, R, =12 mm, h=28 mm,

and | made a radial cut of 680.

After the distortion, all of the peculiarities thaere predicted by the calculations
were manifested: The difference between the heightheostirfaces that bounded the
solid internally and externally were measured and fouroetequal to 2.1 mm and the
length of the bending of flexure was 0.35 mm. After having dbeecalculations by
means of formulas (15) and (16) and taking 1/2, | obtained:

H = difference between the heights = 2.6 mm,
g = bending of flexion =0.53 mm.

The agreement between the calculations and the dmeasurements is therefore
very satisfactory.

Jona, an engineer at the Pirelli establishment iarMihas kindly prepared a hollow
rubber cylinder with the following dimensions:

Ri=5cm, R, =2.95cm,h=13 cm.

He made a radial cut with an angular magnitude &f 78

Since the soldering tended to open it up, in order tohx form of the deformed
solid, | made a plaster cast, which is reproduced photogealytit Figure 7 ().

This solid obviously showed all of the peculiaritiest tiiee calculations predictet
i.e., the internal elongation, the external shrinkemgd the lateral flexior as is indicated
in Figure 8. In order to make the phenomena more obvibaghotograph was taken
with a set square resting against the left side of thedsyl. In figures 7 and 8, one sees
quite well the places where the cuts and then the rsoldere made.

Figure 9 represents a photograph of the plaster cadteotdre of the cylinder.
Having placed a ruler on the left side, the internal @ume becomes clearly visible.

Due to the great height of the cylinder when compared the radius of the base,
formulas (15) and (16) are not applicable in this case.

() Translator’s note: The photographs in originaickrt(Figures 7, 8, 9) were not reproduced in this
translation.



CHAPTER VI

HOLLOW CYLINDER OF REVOLUTION — DISTORTION OF ORDER

1. In the preceding chapter, | began by pointing out (ar€@ 1) the essentially
different conditions that present themselves whenimpeses a distortion that is due to a
radial cut (distortion of order 6) or a uniform cut (distortof order 1) on a hollow
cylinder. | then expanded upon the former case and shokatdthe body, after
distortion, does not preserve its cylindrical form: Tihielinal boundary of the two bases
is swollen and lifted, while the external boundary istcacted and the middle part of the
cylinder has shrunksgeFigures 6, 7, 8, 9 of the preceding chapter). The defansa
that are produced in the case of a uniform cut are memeonable and also more
singular, since the body ceases to be symmetric thftedistortion. | propose to develop
this case in the present chapter, in spite of the faat the calculations are very
complicated. Since the results that were predictedalyulation in the preceding case
are quite well confirmed by experiment, the case catssitan instructive example in the
domain of elasticity. Indeed, mere intuition, unguided bicudation or experiment,
cannot predict, even in a gross, qualitative manner, whatl¢formation will be that is
produced in the body by the distortion.

One will thus arrive at the following very curious ukslf one suppresses a slit in a
symmetric ring that has the form of a hollow cylindsert it is impossible to preserve the
cylindrical form of the ring after soldering the facestlod cut. Indeed, if one makes a
radial cut then the body takes the form that was atdat in Figure 6 of the preceding
chapter. If the cut is uniform then the body ceaedset symmetric and takes the form
that is indicated in Figure 6 of the present chapter.

By means of a cut that one may consider to be thdt iifsa cut or radial corner and a
cut or corner with parallel faces, one may always/arat a state of deformation where
the symmetry with respect to the axis is lost.

In practice, the metalworkers that must narrow dowabe in which there is a slit
first make a radial cut. Then, after bringing the $aoé the cut together, they file the
internal part in such a fashion as to make the one tit the other one exactly and with
as little effort as is possiblé)( Finally, they solder them. But then, since theis no
longer radial, the tube does not keep the form of a eblidvolution.

() In order for us to get an idea of the magnitude of thetiens, suppose that our hollow cylinder is a
symmetric steel ring with a rectangular section whogan diameter is 5 cm and whose thickness is 1 cm.
Apply formula (111) of the preceding chapter upon taklbg 19459 (kg. per square millimeter; Wertheim),
n=0.3,,=25ys=1. Likewise, takef/ 2/r= 1/ 360 (upon supposing that the angular amplitude of the
radial fissure is 9, &= 0.5, in order to calculate the pressure in the reglmtsare adjacent to the external
surface. One will then obtala = 10.7; i.e., the calculated pressure or tension will®& kg. per square
millimeter, and for each degree of angular amplitude of éldel fissure that was made in the ring. One
obtains these efforts when one supposes that the basasted upon by actions that keep them planar and
at the original distance. Upon calculating theseomstiby means of formulas ()l of the preceding
chapter, one finds that they take the value 3.6 kg.cp&re millimeter at the boundaries of the bases.
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2. We recall Figure 2 of the preceding chapter and seekotheufas that relate to
the uniform fissure.

Suppose that the z-axis is the symmetry axis and thatuthbas been performed
along thexzplane on the positive-axis. Upon setting:

|=n= p=q=r= 0
in the formulas of paragraph 2 of article Il of Chapteve will have:

1m 2 m y
1 u=-=——Ilog (X +vy9), v =—arctan=.
(1) > o g (¢ +y’) o

X

These formulas correspond to the uniform cut of sizeMeanwhile, the body will be
subject to surface tensions that equilibrate between thesaggeeart. | of Chap II).

Represent the internal radius and external radiughef hollow cylinder that
constitutes the ring bR, andRy, respectively. By a simple calculation, we find #ie
characteristics of deformations and the tensions, iwhitl be zero on the two bases,
while the unit tensions that act upon the laterales@d will be parallel to theaxis and
equal toKm / 7R; on the external surface andkm / 7R, on the internal surface,
respectively.

One must now eliminate these lateral tensions. @neyo about achieving this goal
in the following manner: Abstract from thecoordinate and in place of the body in
guestion, substitute an elastic stignie that is bounded by two circles of radiesand
Ri . Begin by eliminating the tensions that act uponntermal circumferenc€, . For
this, suppose that the strip is not bounded by the exteincaimferenceC,, but that is
extends indefinitely in all directions externally@ . The question is then presented in a
manner that is perfectly analogous to a problem in atielaedium that is external to a
sphere that | solved in a course that | gave in Pisa in 1@93hat Professor Tedon8 (
has recently taught again.

In other words, we will eliminate the tensiongdxnif we compose the displacements
(1) with the displacements:

2
U = m L+3K{IO - L+ K (rZ—RZZ)a Iogr]

2 T 2mL+ 2K 2L+ X) P
2
_m L+K (rZ—Rj)alogr,
2mr2(L+ XK) oxay

in whichr = \/x*+y* andL andK denote the elasticity constants, as in the pragedi

chapters.

However, upon composing the preceding tensionsatiauponC; by virtue of the
displacements (1) with the tensions that are geegi@nC; by the displacements (2), one
finds tensions o, that have the components:

() Comptes rendus du Cercle mathématique de PalermIl, 1903, pp. 259.
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_ mK(L+K) R*-R
mL+2K) R’

cosd,

_ mK(L+K) R*- Rzzsin28
mL+2K) R ’

whered = arctary / X — i.e., @represents the angle that the radius vector foritistivwex-
axis.

Now, these latter tensions may be eliminated, eltlgeneans of the displacements:

. 2A
4K (L+K)
, 2A

V=20 (L+3K)xy,
4K(L+K)( )y

[(BL+5K) Y + (L- K)»],
()

or by means the displacements:

2
u'= B—a 6')(229 ' ,
%) d%logr
V'=B ,
0xoy

upon suitably choosing the consta#sand B, or by a linear combination of these
displacements.

We may now take advantage of the arbitrary charauft that linear combination to
make the resultant displacement of the displacesninatt are represented by formulas
(1), (2), (3), (3 generate zero tensions, not only@n, but also on the circle; . In this
manner, one easily arrives at the formulas:

:ﬂ{ K logr + L+ K (rz— RR jazlogr
2 [L+2K 2L+ X)) RP+R ) 0X
1 2 2
()] +2(L+2K)(R12+R§)[(3L+5K)y +(L+K)x ]},
_m y, L+K [, RR |do’logr_ L+ 3K
V_zn{amtanfz(uzm(r R+ ng 20y (L 2K(R+ Fg)xy}

3. If the one adjoins:
(1 W=0
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to the preceding formulas then one will obtain the comptsnef the displacements that
are due to a distortion that is generated by a uniforsuriés of sizem, under the
hypothesis that the two bases are acted upon by foraearth capable of keeping them
planar and at their original distance.

It is easy to calculate the characteristics of itenghat correspond to these
displacements. They are given by the following formsula

_ mK L 1 2 K 0logr
(4) t11=— X| —=-— +
m |L+2K (r? R’+R) L+2K 0x

L _L+K {Zxazlog“{rz_ R°R jazlogr}+ L -K x},
2(L+2K) 0x° R+R) oX (H+2K(R+ B

5) =KL i 2 |, X
2T L2k (127 R+RE) X+ Y

2 2 2
L+K {Zya Iogr_{rz_ R’R Ja |ogr}_ L+X }

+2(L+2K) oxdy R+KB) o0y | (2 K(R+ @)X
_ mKL (1 2
(6) tss—mx(r—z —R12+RJ’
_mK| K Jdlogr vy L+ K
(N he= 277{L+2K dy X+y  2(L+2K)
y d°logr a7 logr ., RIR )0%logr 2L +K )
{Zy e  Faxay A F§+F§ja>%ay (52 B( R+ Eoy}’

(8) thz =131 = 0.

From these formulas, one infers that:

mK L+ K (r’=R’)(r*-R?) d0°logr
2m L+2K R+ R X

X +tpy=

mK L+ K (r’=R’)(r*-R?) 0°logr

tauX + b2y = ,
AT T O LK R+R X0y

which are quantities that are annulled for R; , r = R, . One thus verifies that the
external actions are annulled on the lateral segfad the hollow cylinder.
One then has:
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U 9V AW mK 1 2
0=—+—+ = Xl =—-—————
0x dy 9z m(L+2K) (r*? R+R?

for the value of the cubic dilatation.

We may thus establish the division between theatllgart and the compressed part
of the elastic body.

To that effect, draw the circle of radius:

R+R
2

r=

which is the intermediate circumference in Figure 10 thafound between the two
extreme circumferences of ra&j andR, . Then, trace thg-axis.

Figure 10.
ty

)

These two lines divide the circular rimoQuronn@ into four regions that we have
distinguished in Figure 10 by white and dark shading. The wég®ns represent the
projections onto they-plane of the dilated parts of the elastic body anditr& regions
represent the projections on the same plane of tinprassed parts.

In the figure, we have indicated the construction thast be made in order to obtain
the intermediate circumference. It is sufficierdlyious that it requires no explanation.

LN

1. We now go on to the determination of the form thatken by the elastic body
after the distortion, while always assuming that the bases are kept planar and at their
original distance.

For this, it will suffice to see how the bases deforBy means of formulas (1), we
may calculate the values &f andV on the circumferences: and & that define the
original contour of the two bases and have ®BdandR;, respectively.



Chapter VI. Hollow cylinder of revolution. Distortiaif order 2. 52

Upon representing these values by the same ldtkeand V, to which we add the
indicesa; andoz, we will have:

m( K L+K R = R
n[L+2KIOgR1+L+2KRf+R§ 7+ Fgcosz?j,

V, :ﬂ(e— R sin2‘9j,

m( K L+K R R
U, =— logR, + - cosd
% 2m\ L+2K 9% L+ XK R*+R R+ R j

vV, = ﬂ(e— RfFfRf sin 29}.

The displacementsU, and V, can be decomposed into three elementary

displacementsd), (b), (c) that have the components:

. mK _Rf
(a) U“‘zna+2K{bgR Rﬁ+¥j

V. =0,

2
u’ =mLsin29,

[ T 2+
(b) = i
V), =—— zRi sind coY
bR+ R
Uz =0,
C
() Va’_":me,
vo2r

respectively.
The first displacementa) consists of a translation parallel to thkeaxis and

consequently it does not change the form of the cifetenceo; .

One then has, in turn:
U; cos@+V, sin =0,

2
U’ sing-Vv, cosg="" zRi sin é.
S TR R
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This proves that the under the second displacembnteéch point of the
circumferencen is displaced tangentially to the same circumferdaycthe quantity:

m_R
TR +R

Under the second displacement, the points of theroierences; always remain on
it, up to second-order quantities that one can neglect.

By virtue of the third displacement)( each point of the circumferenae moves
parallel to they-axis by a quantity that is proportional to the arc @f tircle gi that is
between the origin of the arcs and the point itself.

One then sees that if one neglects the second-ordetitggsathen the form of the
circle a1 after deformation will be obtained by taking only thepiikcementd) into
account.

One may decompose the displacemésts V,, in an analogous manner. One thus

obtains the following three elementary displacements:

sin @,

, mK R

U =— | IlogR, - ,
@) o 277(L+2K)[ 9k Rf+R§j

V. =0,

2

U;l—m RZRzzstH,
(b))

V;':—m R sind coY

1 T R22

ur =0,
(C’) m_ "'

“2m

In order to obtain the form that is taken dgyafter deformation, one can neglect the
displacementsa) and ') and take into account only the third displacement fhich
is perfectly analogous to the preceding displacengnt (

The two displacements)(and @') consist of two translations. Their difference will

be:
) R )

Upon setting Ry — R2) / Ry = yand developing the preceding expression in powers of
¥, one will obtain:
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mK 1
o= — _y2 +..0
2m(L+2K)\ 3

i.e., upon introducing the modulus of elastidityand the Poisson coefficient (seethe
preceding chapter, § 6), one will have:

_ma-2)(l,, )
'2n2(1—n)(3y2+ j

therefore, if the thickness of the ring is smalatiee to its external radius then the
differenced of the two translations will be negligible.

In Figure 11, we have constructed the contoumefdeformed bases by taking the
origin of the arcs of the two circles and ¢z to be their intersection with the negative
side of thex-axis. The two circumferences that are represehtethin lines are the
original contours of the two bases. The two thiclkees represent the contours of the
deformed bases. The rectilinear lines are thdatisments that the points of the contour
have experienced by virtue of the displacemegjtsauid €'). The lineAB represents the
size of the cut. The differen@avas neglected.

Figure 11.

2. Formula (6) gives the characteristyz . Upon introducing the modulus of
elasticity and the Poisson coefficient it will beitten:

t :—m EI] X i— 2
% 2m1-n* \r? RZ+R?)

Upon taking this formula into account, along wikle preceding results, we can state
the following theorem:
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A hollow cylinder of revolution that has experienced a distortion (ofrd2yi¢hat is
due to a uniform fissure keeps its bases planar and at their originadndestby
subjecting them to normal forces that are given by:

m Ep (1 2
P=—_— = - ,
2 1-n? X(rz R+ Rfj

where one imagines the actions that are directed towards the intdrihe body to be
positive and ones that are directed in the opposite sense to be neddtihe. same time,
the bases deform according to the previously established$aes-ig. 11).

Figure 10 can thus be interpreted in another manner: Upon sogloat the circular
rim represents one of the bases in the original folne,shaded region will represent the
part of the base that will be compressed on the aitler after the distortion and the
white region will indicate the part that must be sined to the outside in order to keep
the bases planar and at the original distance.

4. Figure 12 represents the cylinder before the distorti@hFagure 13 represents
the same cylinder after the distortion when the base&ept planar and at the original
distance.

Figure 12.

The bases themselves are divided into four regions at@twhite and shaded,
respectively. The shaded regions are the ones thabamgressed from the outside and
the white regions are the ones that are stretchdw s&nse of these external actions is
obtained by inverting the direction of the arrows thiatteaced in the figure.

Figure 13.
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It is easy to compose these actions that act upovedes.
First, consider a radial badBCD on one of the bases with an angular opemnitagd
whose middle line forms an angfwith thex-axis (see Fig. 14).

Figure 14.

We calculate the resultant of the actiéhthat act upon the baeBCD. By a simple
calculation, one obtains:

. a
_m B __(R-RFa 47"
m1-n° 3R+ R)(R+ R) a
2

wherea represents the surface area of the band.
If the band is infinitely thin then one can substitutdty for sin%/%, and one will

obtain:
_m K (R-R)’
m1-n° 3R+ R)(R+ B)

acosp.

Upon setting:

_m & (R-R)’ iy
ml-n* 3R+ R)R+ R)

one will have the following expression for the resultaction:

M acospg,

i.e., the resultant action will be proportional to theface area of the infinitely thin band
and to the cosine of the angle that it forms withx{aeis.
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Now consider a band'B'C'D’ of thicknessh in the circular rim that is between two
lines that are parallel to theaxis. The resultarf® of the forces that act updXiB'C'D’

will be:
ml-n? ’

R R+R

I.e., that resultant will be proportional to the thicksef the band.
If we develop the preceding expression in poweng(of, art. 1l, 81) then we obtain:

_m & (1., .
771—/72(31/24- jh.

If we suppose that the ring is thin and we negleetpowers oj/that are higher than
the first then this expression, as well as thatipfvill become negligible quantities, and
the expression fdP can then be written:

P:2m =] < cos4,

TP R+R
in which the radius vector is:
2
- R ; R ¢

and we letddenote the angle that the radius vector forms thtx-axis.
Under these hypotheses, each radial band of teesbean be regarded as being
approximately subject to a couple.

2. We now look for the form that the cylinder wilkwhen one no longer subjects
the bases to the actioRs but rather one leaves them free; i.e., we seeldim that the
cylinder takes by virtue of just the distortion whi¢ is not acted upon by any external
force.

For this, it will suffice to apply the principlethat we established in Chapter I,
article, paragraph 2 (alssee the preceding chapter, art. 1ll) and then studg th
deformation of a body that has the form that isesented in Figure 13 in the natural
state and is subject to the actionB en the two bases. One must then suppose that the
body is stretched in the shaded regions of thesbaseé, on the contrary, it is compressed
in the white regions. In other words, one mustpsge that the bases are subject to
forces that are represented by the arrows in FigjBre

Here, we may proceed in the same fashion as ipréeeding chaptecf, art. 11l) and
suppose that the body is divided into radial wedgBise couples that act upon the bases
will flex the wedges that are situated to the iefsuch a manner as to raise the internal
boundary aC and lower it aD (see Fig. 13), while they will lower the exterbalundary
at A and raise it aB. At the same time, the generat@B will curve and take on a
concave form, whereas the generatoB will become convex. The contrary case will
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exist on the right; however, if one takes into accdbhetresistance that is presented by
the edgeEF then the curvature of the generatBFsandGH will be less reasonable.

The body will thus take on the form that is represeénin Figure 15, where the
deformations have been exaggerated in order to make tbeenvmible.

Figure 15.

Thanks to the hospitality of Mr. Jona, an engineethatPirelli factory in Milan, |
have been able to confront the results of calculattimthe experiments.

He procured a large hollow rubber cylinder for me that waghly 7.7 cm in height
and whose internal and external radii were 2.95 cm and5respectively; he cut a
wedge in the cylinder whose faces were parallel and okrtegs 2.3 cm, and then
soldered the faces of the cut. The cylinder was for@bupled by means of a string, and
when one untied it, that tended to open it up along theesal on the interior side,
while the two extreme boundaries of the soldering ienably compressed, one against
the other. In this way, the exactitude of the predisti@f the calculation of the
distribution of the tensions along the cut was vatifieSince the cylinder, when left to
itself, tended to open up, | made a plaster cast in oodegdp its form. Figures 16 and
17 reproduce the photographs in two different positions Ypon comparing them with
Figure 15, one sees the perfect analogy with the forat ¥as indicated by the
calculations.

NOTES ON CHAPTERSYV AND VI.

1. Mr. Rolla, doctor of physical sciences, has soughtetafy the results that we
found in the preceding chapters. He proposed to find a metheetification that one
can show in a course of lectures. To that effechdseemployed an optical method.

Dr. Rolla has carried out his research in the phylsiosratory of the University of
Genoa, under the direction of professor Garbasso, ama$ published it in theomptes
rendus de I'Académie des Linogi XVI, 1% semester 1907). In this note, we shall
present Rolla’s research.

() Translator’s note: The photographs in Figures 17 tweé¥® not reproduced in this translation.
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The chosen substance was gelatin, and the defornvediemietermined by observing
the birefringence that it produced, which one can compensatby a well-known
method, with a strip of the same deformable substana&known manner.

2. In the two preceding chapters, | have envisioned thertdans of order 6 and 2
on a hollow cylinder of revolution and | have comparedrdsilts of calculation with
those of experiment. The optical method, in turn, fiermne to establish the
comparison, but under conditions that are more sinttarthe hypotheses of the
calculations.

First of all, gelatin is cast into a cylindrical matd tin-plate with a height of 6 cm
and an exterior radius of 5 cm and an interior radiu® oim. The mold has a radial
fissure of about 56and is endowed with four small mobile brass cylindest Hre
arranged in such a manner as to produce four holes in thdiedlgelatin cylinder that
penetrate up to the middle of its thickness. Thrededd holes are open on the exterior
face of the cylinder and the fourth one, on the intdaoe (Fig. 18).

The position and direction of the holes are caledlah such a fashion that the faces
of the gap {), once soldered, will have two of the exterior hdfea straight line and the
third one will correspond to the interior one.

At the bases of the cylinder, after soldering the fissame,clearly sees (Fig. 19) the
deformations that my calculations have predicted.

Now, if one carefully attaches the two bases atbeg entire surfaces to two wooden
planes, in such a manner that they remain planar atlikatriginal distance then the
phenomena of accidental double refraction must appear.

Indeed, in red light between two crossed Nicol prieme easily observes that the
light does not fade as it traverses the two extdraes, and likewise does not have a
minimum intensity. On the contrary, if one obsertleat the light has traversed the
exterior hole and its corresponding interior holentiibe gelatin will prove to be
isotropic. Upon destroying one of the holes — i.e., ugmerving how the polarized light
traverses just one hole by means of an analyzlee birefringence returns.

All of this conforms to the theory perfectly. Indedlle two regions that are
compressed and dilated, respectively, are symmetricvelati the axis of the hollow
cylinder, and they are separated by a coaxial cylindermtst radius of the arithmetic
mean of the extreme radii of the original cylindeheTnhature of the deformation can be
recognized with the aid of the method of paragraph 2, lalvays proves to conform to
the predicted deformation.

3. In the case of a uniform cut, the experiment is elytisimilar to the one that we
just described, although the results are different. mdilel (Fig. 20) has a fissure of 6 cm
and four small cylinders that are disposed as before.r affteching the faces of the gap,
the cylinder takes the form that is represented in Figlire

() In order to make the soldered joint, one coats thesfa€the cut with a little of the dissolved gelatin
and then pastes them together by an arbitrary meansxdmple, one applies any object until the gelatin is
solidified. The adhesion happens rapidly, given the higbosity of the gelatin when prepared according
to the method that was described in paragraph 2.
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The distribution of tensions and compressions is dedusetdiately upon attaching
the bases to two wooden planes, as in the precedieg @aagd observing the polarized
light that traverses the various regions of the cdgimwith a Nicol prism.

Upon observing the light that traverses the exteraed) the gelatin proves to be
isotropic. Upon observing the way it traverses an @ttéole and an interior one, it
exhibits birefringence of the highest degree. Finally, upaserving the traverse of just
one hole, the birefringence always remains very obvidnghe latter case, it is easy to
establish the sign of the deformation.

4. The experiments described can be made visible to a larggnaedy means of a
projector, and for this reason, are quite suitable fectte demonstration.



CHAPTER VII

HOLLOW CYLINDER OF REVOLUTION — DISTORTION OF ORDER, 3, 4, 5.

1. In the preceding two chapters, | have considered thertitist® of a hollow
cylinder of revolution that are due to a radial fissureé arcut with parallel faces — i.e.,
the distortions of orders 6 and 2. Now, in order to iclemsall of the possible distortions,
we must examine the ones of order 1, 3, 4, 5.

However, the distortions of order 1 can be reduced to ohesder 2 by a simple
change of coordinate axes. Similarly, the distogicof orders 4 and 5 can be
transformed into each other by an analogous changeesf alt thus remains for us to
study the distortions of order 3 and 4. We first obse¢hat the calculation of the
deformation of the cylinder has been carried out by elinmigatll of the actions along
the lateral surfaces and keeping only the actions obabes. Now, in the formulas that |
gave in Chapter | for the distortions of order 3, theerdt actions were already
eliminated. All that remains for us to do is then toneixee the case of distortions of
order 4 in detail.

In this chapter, we will show that this case candmiiced to that of the distortion of
order 2 f). We may then say that that the problem of the deftiom of a hollow
cylinder of revolution that is subjected to the most galrdistortion and whose bases are
not acted upon is solved.

In order to obtain the form that the cylinder takes byuei of just the distortion
without being acted upon by anything external, one mustirelien the actions on the
bases. One can carry out this elimination in an apmate manner, as we have already
seen in the cases that we treated in the precedipgecba

2. Inthe formulas that we found in article 11l of chaptl, we successively set:
t=n=p=qg=r= 0
and

|:m:n:q:r:0;

we obtain the following values for the right-hand sides:

() The method that is followed is analogous to the oneviaa employed by professor Almansi in his
memoir: Sur la déformation des cylindres sollicités lateralem{@umptes rendus de la R. A. des Lincei
sessions on 5 and 19 May 1901).
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—imlog(xz + ),
4

(1) imarctanx ,
21T X

01

L pzlog(X + ¥),
iyr
(2) 1 pzarctanX ,
21T X

1 pzarctanz+i pzlog(X+ y )
21T X 4

respectively.

Formulas (1) give the displacements that corresporal distortion of order 2 and
formulas (2) give the displacements that corresponddistartion of order 4. It is now
easy to recognize that the first two expressions (2pednferred from the corresponding
expressions (1) by multiplying the latter py mx On the other hand, in the preceding
chapter (art. 1, 8§ 2), where we envisioned the uniform Bssue showed that in the case
of a hollow cylinder of revolution whose lateral surfad®ve radiR; andR; , one can
eliminate the tensions along the lateral surfaces byhgdte quantities:

u'+ Au + BU',
(3) V' + AV + BV,
0

to the expressions (1), respectively, and choosing thsta@tsA andB suitably. We
then seek to eliminate the lateral tensions in the abde distortion of order 4 by taking
the components of the displacement that are given by:

u:B z[—i mog( X+ y)+ U+ AU+ B’ﬂ}: zU
m 4
(4) v zﬁz(i marctany + v+ AU+ B(’/j: zV,
m \ 27 X

w=-—= pyarctan’ +—— pxlog(€ + ¥ ) (x, yF W (X )
2T X 4

where®(x, y) is a regular, unknown function that must be deiteed.
Upon substituting for the lettem in formulas (I) of the last chapter, one will oiota
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:_p{ K |Ogr+ L+K (rz_ R12R22 jazlogr
2ir | L+ 2K 2L+ X) RP+R ) 0¥
1 2 2
(5) +2(L+2K)(R12+R§)[(3L+5K)y +(L+K)x ]},
_p y, L+K (, RR |d%logr_ L+3K
V—Zn{arctan;+2(L+2K)(r Rf+F§j 30y (F 2K)(R+ I2:z{)xy}

Then, upon setting = x* +y* we will have:

(5) W= 1 py arctany + ipx logr.
2 z 2

3. If we replace these expressions (4) in the indefi@tpations for elastic
equilibrium:

KA2u+(L+K)% =0,
0X

K A v+(L+K)%
oy

KA2W+(L+K)% =0,
0z

where

then we will easily see that the first two equations satisfied. The third equation
becomes:

(6) KA?® + (L +K)| — M Vo
ax 6y

Call the characteristics of tension that corregponthe displacements (&) , t22, tss,
tos, t31, tiz . One easily verifies that along the lateral swa$aaf the hollow cylinder one
has:

t11 cOsSnx + t3» cosny +t;3 cosnz= 0,
to1 cOSNX + ty; cosny + tp3 cosnz= 0,
t31 cosnx + t3; cosny + tzz cosnz

ow 0o oW 0o
=|U+—+— |cosnx+| V+——+— | cosny,
ox 0X dy 0y
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wheren denotes the normal to the contour. Moreover, in diftirthe displacements (4)
correspond to zero lateral tensions, it will be nemgsand sufficient that:

(2) (U +M+a£jcosnx+ V+6—W+a£ cosny = 0.
ox 0X ady 0y

1. By virtue of formulas (6) and (7) of the preceding agtithe problem that we are
proposing amounts to the determination of the funcdigry) in the spacew between
two circumferencegn and o> of radii R; andR; that have their centers at the origin. In
this field, the functiord satisfies the differential equation:

(6) N D=

_LeK(aU ov
K (ox ady)

and on the contour, the condition:

0P =- W _ (U cosnx+ V cosny).

7' _—
() on on

Now, by simple calculations, one transforms the etyu@') into:

6 No=- pix(%—%j,
mL+2K) (r° R +R

and the conditions (Yinto:

2
ID(I‘ngKlogRﬁl— K R jcosﬁ org,

- oo | 27\ L+2K L+ K R+R
oan 2
_ P L*3K logR, +1- A ZRZ coy o,
2 L+2K L+ 2K R+ R
where
cos @ = cosnx.
One easily verifies that:
[ Nodw+ ai)daﬁ'[ ai"daz: 0,
@ o 0n 7 dn

when one supposes that the normak directed towards the interior of the fietd
Indeed, the three integrals of the preceding formulazeare when taken separately. It
then follows that conditions (6and (7) are mutually compatible.
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2. If one makes:

_p L+K 1 r?
8 e=-— logr -=——— |x +¥
) 271L+2K[ J 2Rf+R§jX

then equation (§ will be transformed into:

AW =0,
and conditions (7 become:

2
-P_K 1+ 2logR + 3L+ K zRi co¥ o,
op | 2mL+2K K R+R
on 2
_P_K logR, + 3L+ K sz co®d  om,
2L+ 2K K R+R
Therefore:
W=Mx+N =,
r

in whichM andN are constants. They may be calculated easily, aedinds:
2 —
©) wo_ P Kx §L+K+R1IogF§§ Rlog B
2mL+2K | 2 K RR-K

R [log Ry S0 K1 H
U R-R 2K ReR)J

so, upon combining formulas'{5(8), and (9) one easily infers the valuenof

3. Upon taking formulas (4) and (5) into account,wmithen have:

65
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:E{ K logr + L+ K (rz_ Rlszz jazlogr
2| L+ 2K 2L+ X)) RP+R ) aX
1 2 2
+2(L+2K)(Rf+R§)[(3L+5K)y +(L+K)x ]}
_pz y, L+K [, RR )d%logr_ L+3K
*) V_Zr{amtanfz(uzm[r R+ ng 00y (L 2K)(R+ g)xy}’
W:—ﬂarctmz_ﬂ( K § L+ K+ Rlzlog Rz_ F§|Og Fg_logr
2T X 2mL+2K|2 K R-R
 RR(logR-logB 3+ K 1 1 K Ff
r’ RI-R 2K R+R 2 K R+ RB)J

SO one infers that:

pLK (1 __ 2
TonL+K) Tt RIARY)
ow
B t,=2K|U +— |,
@ J-fu22)
ow
tzg_ZK(V'i'a—yj

One thus determines the tensions that act upon theasesb

1. In order to obtain a distortion of order 4 in practiteuffices to make a uniform
fissure in the hollow cylinder, as is indicated in Feg@2, in such a manner that the two
faces of the fissure meet along a radius of oneefwio bases (e.g., tlxeaxis). Having
done this, one brings the two faces of the fissuretbhegend solders them. If the faces
of the fissure are equally inclined to the base theifottme that deformed solid takes after

soldering is symmetric with respect to a plane perperatitalthe base.

Figure 22.
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Upon applying the results that we just found and employirsgomng that is
analogous to what we followed in the preceding two chapdeescan get a rough idea of
the form that the cylinder takes when it is subjecomty a distortion of order 4 — i.e.,
when one supposes that the tensions on the bases laveliminated. However, we
suppress that discussion and we confine ourselves to preséfig. 23 and 24)) an
image of a rubber cylinder that has been acted upon byaatiistof order 4.

The two photographs (Fig. 23 and 24) of the plaster casteofleformed solid, as
seen from two different sides, clearly show the fasithe two bases. The edge
corresponds to the soldering. The rubber cylinder was mehbafere the distortion to
have an exterior diameter of 10.6 cm, and interior diam& 6 cm, and a height of 5.9
cm. The angular opining of the wedge was arourid 38

2. In order to complete the images of the six elemgntiistortions of a hollow
cylinder of revolution, we reproduce the photographs ofpllaster casts here of three
large rubber tubes that were subjected to distortions of ardr5, respectively.

Figure 25 refers to a distortion of order 1 of a hollowrmdr. It was obtained by
making an axial cut¢plane,z, on the positive side of theaxis) and then sliding the two
faces of the cut over each other in a direction thatormal to the axis of the cylinder
(viz., thez-axis).

Figure 26 refers to the distortion of order 3 (cf., cHaprt. 1ll, 8 7). The cylinder
was cut as in the preceding case, and one then slidésdhaces of the cut over each
other in the sense of the axis of the cylinder (Vire ztaxis).

Finally, Figure 27 represents a hollow cylinder that wasestlip a distortion of
order 5. After making the cut, one rotates the two fag#srespect to each other around
the perpendicular (viz., theaxis) to the two faces, guided by the middle of the cytinde
axis. The origin is therefore situated at the middlehefcylinder axis. We observe that
in order to make the construction of the model for theodien of order 4 easier, we
have chosen the origin to be the center of one dbdkes.

NOTE ON CHAPTER V, VI, VII.

1. Almansi has dedicated two noté$ to the study of regular deformations of the
cylinder when the displacements are polydromic.

In the first note, with the-axis parallel to the generators of the cylinder, Almansi
imagined the case where the characteristics of thgotenwere independent nfwhile
in the second note, he imagined the general case.

() Translator’s note: The photographs depicted in Fig2#4e®7 were not reproduced in this translation.
() Sopra una classe particolare di deformazioni a spostamenti polidromi diii gibhdrici (Rend. d.
R. Accademia dei Lincelanuary 1907).
Sulle defomazioni a spostamenti polidromi dei solidi cilindrici (RehdR. Istituto Lombardo
1907).
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2. Let an elastic cylinder be in the natural state. Suppuseittis deformed by
forces that act upon the bases, and suppose that up@osiogmthe forces that act upon
each base, one finds that the resultant force amdtaescouple are zero. Almansi then
called the deformation of the cylindedaformation of typ®s . He remarked that in the
problem of De Saint-Venant one finds the deformation ©flimder that is acted upon by
given forces that act upon the bases by neglecting andation of typeDs . Now, in the
problem of De Saint-Venant one envisions only the caserevthe displacements are
monodromic. Almansi proposed the following problégsiven a homogeneous, isotopic,
multiply-connected, elastic cylinder that is not acted upon by extevr@dd, determine
the most general deformation of the cylinder, while neglecting a defiom@dttype I3 .

3. He began by proving the following theoreim: the case envisioned, one can
always represent the characteristics of the tensions by lineaidasatf z.

Take thex andy axes to be the principal axes of inertia of a norse&kion of the
cylinder. He then proved thahe can calculate the characteristics of the tensions in the
case envisioned by the formulas:

=200 OV o0 W
Ty ey ax oy’
b= 200 OV U W
27 % o’ ¢ dy ox’
U oV o
tio=z—+——, ta3=n(zAU +A°V),
T e o B =N v)

wheren denotes the Poisson coefficigs¢eChap. V)and U, V, W do not depend upon z
and are regular, biharmonic functions of the vategx and yseeChap. Il, art. 1ll, § 2).
The following relations must exist between U and W:

0N W oAU 0N W oAU
— =@A-n : — =-@1-n :
X oy oy 0x

Let g be the base of the cylinder, and suppose thatdh&ur of that base is formed
by several closed lines, @, ..., d,. On each linegi, one must have:

U=agx+by+g, V=g x+hy+l,
oU _d(axthy+t¢) oV _ o(gx+hy+])
ov ov ’ ov ov ’

W=n(a x-by+k),
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where the quantities ab, G, g, h, || are constants and v denotes the normal to the line
s that is directed interior to the area

4. If the functionU is zero then the characteristics of the tensiongndependent of
z Inthis case, one has:
AW = const.

and the characteristics of the tensions are givehdjormulas:

- oV _ 0w

11 _6y2 : 21 —ay :

v oW

2= o7 257 o
oV

12 = tss=n AV,



CHAPTER VIII

CYCLIC SYSTEMS OF PLIABLE, ELASTIC ELEMENTS

1. At the end of Chapter Ill, | stated thendamental problenthat is posed in the
theory of distortions of multiply-connected elastali¢ bodies in the following terms:
Being given the distortions of the elastic system, determindftrese In this chapter, |
would like to present the principles of the solutiontlo problem in one case that
presents an especial intere’$t (

2. In order to fix ideas, consider a rectilinear rod vehtreinsverse dimensions are
very small relative to its length.

Imagine particle#\ andB that form the extremities of the thin rod. We int¢malt A
andB represent the two extrenesd facef the thin rod, whose widths have the same
order of magnitude as the transverse dimensions.

When the body is deformed, the relative displacemehA andB are, in general,
very large relative to the pure deformation of the pasichemselves, as well as any
other element of the body whose dimensions are ofséime order as the transverse
dimensions of the thin rod.

We may thus considéy andB approximately to be two rigid elements whose relative
displacement will be the resultant of a translatiad a rotation. We also suppose that
the relative displacements AfandB are such that one may neglect the powers higher
than the first of the components of the aforememtiomtations and translations.

3. Now assume the exterior forces that act upon tleiantof the rod are negligible.
Suppose that the exterior forces are applied only to thelparA andB, and that the
system is in equilibrium. Under that hypothesis, imaginarbitrary transverse section
othat divides the thin rod into two pasandS,, the first of which contains particke
and the second of which contaiBsand compose the actions that the Saxerted on
the partS, along g; after taking an arbitrary poif@ to be the center of reduction. It is
obvious that if one keeps this point fixed and changes tt®ser in any way then the
resultant force and couple are independent of theoseciihey will also be respectively
equal to the resultant force and couple that one woulirobpon composing the forces
applied atB, and will be equal and opposite to the force and the cdabateone would
find upon composing the forces applieddatvhile O is always the center of reduction.

4. Suppose, to consider the simplest case, that the tthirs ngotropic and that the
natural state has the form of a cylinder of revolutiblengthl and radiuf.

() SeeCLEBSCH,loc. cit, Chap. VIII.
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Take the origirO to be in the center of the base adjacent to thic|ea# and take the
z-axis to be the axis of the cylinder. Upon choosing thgiroO to be the center of
reduction, let:

(ab) (ab) (ab)
XE XX

represent the components of the resultant force oéxterior actions applied &, and
let:

(ab) (ab) (ab)
XE XX

represent the components of the resultant couple.
Let:

(@ (@ (@)
X0 X700 %

denote the components of the translation that is eq=yd byA relative to the natural
state, and let:

(@ (@ (@
Xy oo X570 %o

denote the components of the rotation that is expexiehyg the same particles. Let:

(B) y(b) (D) y(b) y(b) (D)
X7 %7 X7 X7 X0 X

be the analogous quantities for the partiBle The components of the translation and
rotation ofB relative toA will be:

b) _ b) _ b) _

(@ 0 _ (@) (@ () _ (@) (@ () _ (@
X X' X7 X7 7KL X T XX T X % T X

X

respectively. Between the forces® and the quantitiex® - x®, there exist the
following relations:

x®) = %2 ZEE(_ X +_§ X(2 |j’

E u
2
(A) X =% = %I—(+ X +§ X4 Ij,
U
X =% =0;

X = ) = é';(z X+ X(),

(A') Xéb) _ Xéa) :£|_(2 Xéab) _ Xiab |)’
Eu

2(1+n) |
(b) _ (3 — - X(ab)
X =% £ %
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where E denotes the modulus of elasticity,is the elastic constant that was already
introduced in the preceding chapter, and 7R%/2 is the moment of inertia of the circular
section of the thin rod relative to its center. la greceding formulas, we have supposed
that the forcesX® are of the same order of magnitude and we have negleaerms

of order higher than the ones that figure in th&m (

5. These formulas prove that if one arbitrarily choasesthree components of the
relative rotation oB with respect tA and the two components of the relative translation
in the normal sense to the thin rod then one can alfimysome exterior forces that are
capable of generating them. The relative translatiathensense of the axis of the thin
rod is, on the contrary, of the order of negligiblergjuges.

However, it will be simple to slightly modify theonditions of the system in such a
way as to make it likewise possible to have a relataestation in the sense of the axis.
Indeed, suppose that the exterior forces are appliedasitvall sliding loopsdoulants
that are capable of sliding along the cylinder in thegikmadinal sense and held against
the cylinder by two springs such that efforts that haieesame order of magnitude as the
ones that produce the flexions and torsions of the tdninduce relative displacements
in the two loops in the sense of the axis and of theesarder of magnitude as the former
ones. If one supposes that the two loops are situathd aktremities of the thin rod and
if one calls themA andB then formulas A) and @') are not altered. Only the third
formula must be replaced with this one:

® X =P = mxg,

wherem is a positive quantity of the same order of magnitudinesoefficients of the
quantities X* in the preceding formulas.

6. The elastic energy of the deformed system is:

6
H= 23 (7 - X)X
i=1

10
E u
=X X+ X X,

1 al 1 al m al al al al
[50(1( b)|)2+—3(><§ b)|)2+—3(><§ )2+ (XET) 7+ (X™)  + 1+n)(Xe™)?

which is a positive-definite form i is non-zero. However, ih is zero (as in the case
where the loops are missing) thdris a positive form that may be annulled regardidss

whether X{* is zero. However, in order fdd to be zero it is necessary thxt™,
X XE X E) X ) pe zero. It thus suffices that just one of the quantiti€d —
x® be different from zero in order for H to also benrrera

(*) One may obtain the preceding formulas in severgswdor example, by employing the method of
De Saint-Venant3eeKIRCHHOFF, Vorl. tber Math. Physik; MechaniRy7, 28 Vorl.).
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4. One may imagine an infinite number of other casewhith bodies of widely
varied forms have properties analogous to the onesvihaist examined. The thin rod —
with or without loops — may be regarded as a typical.c&ssiring to place ourselves at
a general viewpoint, we envision bodies to whichatteibute certain propertiegn an
absolute manner These properties will be the same ones that werdieder
approximately in the case examined in the preceding article

1. There exist two particled andB of the body that we shall call iextremities
whose deformations are negligible with respect toréfetive translations and rotations
that they are subjected to.

2. If one assumes that the exterior actions araeapphly to the extremitie& andB
and the body is in equilibrium then the component$efttansiations and rotations Bf
with respect toA may be represented linearly by means of the comporentee
resultant force and couple of the exterior actionieg@tB.

3. The elastic energy of the deformed system (whicavigys positive) may be
annulled only in the case where all of the componentthefrelative translation and
rotation ofB with respectA are zero.

We call bodies that have the stated properpkable elastic elementsand we
distinguish them into two categories:

1. Freely pliable, elastic elementse., ones such that if one arbitrarily chooses the
three components of the translation and the thregponents of the rotation of one
extremity with respect to the other one then one atagys find exterior actions that are
capable of generating them (of the same type as theotthiwith loops).

2. Pliable elastic elements that are subject to constrasush that the components
of the rotation and translation of one extremity witbpect to the other one are related by
one or more linear relations (of the same type asithple thin rod).

2. We indicate the pliable, elastic elementA®and the components of the resultant
force and couple of the exterior action applie@ aty:

() xl(ab), xéab), xéab); xiab), xéab), xéab).

By virtue of equilibrium, the components of resultaoicé and couple of the exterior
action applied af will be:

— Y@y _y(a) _ y(ab). —y (@) _ y(ab) _ y(ab)
Xl ! XZ ! x3 ’ x4 ’ x5 ’ x6 ’

which we represent by:
(ba) (ba) (ba) . (ba) (ba) (ba)
PO D S R ¢ D S ¢
respectively.
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If one imagines an arbitrary transverse sectidhat divides the body into two parts
S and S, the first of which possesses teetremity Band the second of which, the
extremity A then the quantities (2) will be the components ofrdsultant force and
couple that one will obtain upon composing the actioasttie par§, exerts or, along
o(*). One must assume that the same center of reduw® been chosen for all of these
compositions of forces, and that it is the originhef toordinate axes.

The quantities (2) are called tblearacteristics of the efforts or simply, theefforts—

that the elemenB is subject to. Denote the components of the tréaslay x®, x{,

x®, and the components of the rotation ofef&emity Aby x{, x®, x®.
We call these quantities tlkibaracteristics of the displacemesftthe pointA.
We denote the analogous quantities forekeemity Boy x®, x®, x; x® x,
The linear relations that link the relative displaeais of the two extremities to the
efforts may be written in general:

6
(3) X = XD = A X (=12 .., 6),

s=1
and one will obviously have:

b) — b
A= A,

3. The quantitie®\* depend only upon the nature of the body and its positidn wit

respect to the axes. They are calleddinect constants of the elemenit.is easy to see
the values that they take if one changes positioneobtuy with respect to the axes. To
that effect, suppose that the precedingstantsare known when the body is referred to a
certain system of axes and then suppose that the axehamged. Some well-known
equations of statics give us the relations that existd® the forces and the analogous

quantities X* that one finds if one changes the directions ofakes and the origin,
which is the center of reduction of the forces. Lilsayisome elementary formulas of
kinematics give us the relations that exist betwgeantities xX® and x® and the

analogous quantities referred to new axes and a new oéméestuction.
Some simple operations of substitution in the form@®sthus suffice to give the

linear relations that exist between the coefficiem§® and the corresponding
coefficients relative to new systems of axes.

4. If the elastic element is freely pliable then th@a&lities (3) will be invertible, and
we will have:

&) X = Y08 -

() If the body is multiply connectedde for example, Art. V, § 3) then the sectiorthat divides the
body into two parts might be formed from distinct parts
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The determination of the coefficientg and their variations, if the axes change,
presents no difficulty.

We call the coefficients® theinverse constantsf the elemenaB.

When the pliable, elastic element is subject to caimds it is impossible to invert the
equations (3).

5. The elastic energy of deformed system will be given

1 6 1 6 6
H== X (D) (y(B) _ y(ay — = (ab) y (ab) ye(ah
E3XPO A =23 AKX

2 i=1 s=1

The preceding form will thus be @ositive form and it will bedefinite if the elastic
system is freely pliable; on the contrary, it vaht be definite if the system is pliable, but
subject to constraints.

In the former case, we again have:

6

2a” (X7 =407 - £7).

6
i=1 s=1

H =

N =

1. The preliminary considerations that were presemetie preceding articles will
now serve as the basis for us in the study of tfi®rdions of a cyclic system composed
of several pliable elements. Indeed, imagine tihay are united by an arbitrary number
of pliable, elastic element$at rigidly unites the extremitiesn such a way that they
form acyclic set, all of whose parts are in the natural std& shall study the effect of
the distortions in this system.

A

Figure 28.
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2. In order to fix ideas, suppose that we have four thinjlirear rods. Connect
their extremities pair-wise by fixing four of them rigidvith hand clamps in such a way
that the rods form the edges of a quadrilatAEBCD and the four hand clamps form its
summits, as is indicated in Figure 28. One then makes mtoubne of the edges and
performs a distortion along the cut. We shall see tieasystem is deformed and what
efforts are induced in it.

3. Assume, in general, that the pliable, elastic elesmantount tan, in total, and
that the extremities are rigidly unitedratnodes. Suppose, in addition, that the system is
devoid of any external action.

First consider an arbitrary element that links theéas# andB, whose extremities are
thenA andB; denote that element AB.

By making use of the same notations that we emplayete preceding article, we
will find that if the element is not subject to any distor then the following relations

subsist:
6

(3) XD =P = AX®  (i=1,2 ..,6).

s=1

However, if the element is subjected to a distortidgth the characteristicgr®”,
al®, al®, a®, al®, al™ then the preceding equations must be replaced with:

6

(1 X® =X —g(® = 3 ADXESD (=12, ..,6).

s=1

Thus, if, in general, one executes a distortion alh edement theione will have six
equations that are analogous to the preceding doesach element.

Now consider a node, which we denote by the I&te¢hat bounds and rigidly unites
the extremitie\ of the elementéB, AC, AD, ...

For equilibrium, we must have the six equations:

() X@ 4 x(29 4 (294 =0 (=12 ..6).

One will thus have six equations that are analogtmushe preceding one for each
node.

4. Suppose that the constants of each element andhhmcteristics of each
distortion are known- i.e., all of the coefficient8®” and all of the characteristiag®”
— and suppose that the components of the translation®atidns of each extremity and
the efforts that each element are subjected to araownk We will have B + 6m
unknowns that verify ther6+ 6m linear equations (1) and (l1).

Nonetheless, observe that six of the equationsignsistem follow from the other
ones. Indeed, upon adding both sides of the equalitiethélt correspond to the same

indexi we will find that the left-hand side is identicallyrag because each terg®”
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that appears in one equation is eliminated by the téf#fi that appears in another. This

result is easily explained because it is obvious tleathtee components of the translation
and the three components of the rotation of a nodarbiteary.

5. We now prove the following fundamental theorem:

In any cyclic system of pliable, elastic elements, if the antsbf each element and
the distortions performed at each of them are known then the elatimslations and
rotations of all the nodes will be determined, as well as the sfftoat act upon all of the
elements of the system that are freely pliable.

In order to simplify this, suppose that the three coraptsof the translation are zero
and the components of the rotation that corresponds tade @@ chosen arbitrarily.

Suppose, moreover, that to the same system of valuehashcteristicsa® and
coefficients A® there correspond two systems of values for the quesit® and

X @ which we denote bx® and X, X® and X® , respectively. Write:

T@) _ w@ — z@

X X =&Y,
y (@) _ ¢(ab) — =(ab)
X X ==

These quantities verify the equations:

6

(4) g(-(b) — g(-(a) = ZA(sab)E(sab) ,

s=1
(5) = =9 4= =0,

Multiply the two sides of equation (4) *” and the two sides of equation (5) by

&® and add the corresponding sides of all of the equatiw@iswte just obtained. The
left-hand side will be identically zero as a resudt, s

ZiiA(sab)Ei(ab)Egab - O

ab =1 s=1

One intendsz to mean a sum of terms relative to all of the elastic elements that
ab

constitute the system.
However, each form:

Zﬁ“ A(Sab)EEab)E(sab

6
i=1 s=1

is positive; thus, by virtue of the preceding equationswillehave:
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6

(6) izA(ab) Eab) (ah — -0,

i=1 s=1
and consequently:
g(i(b) _in(a) =0
so:
ED=0 and X© =x@.

Thus, the components of the translations and rogtidnthe nodes cannot differ
between the two solutions.

From formula (6), one infers that if the elem@i&is freely pliable then the quantities
= might be zero, and, as a resif*” = X® . As a consequence, the efforts relative

to the elementAB), if it is freely pliable, cannot differ between ttweo solutions.
The stated theorem is thus proved.

6. The following corollary follows immediately from thereceding theorem:

In a cyclic system of freely pliable elastic eletaén which one knows the constants,
the efforts are determined by the distortions, am& may obtain them by solving a
system of equations of the first degree.

Upon always supposing that the elements are freely @liad@ have found that the
formulas (4) and (5) have no other solutions tggh = 0, =” = 0 if we assume that the
guantitiesé are zero for a given node.

This proves that the equations (I) and (Il) are alwaysually compatible, in such a
fashion that one can choose #g8” arbitrarily, so:

In a cyclic system of freely pliable elastic eletaghe distortions may be chosen in a
completely arbitrary fashion.

7. If the elastic elements are not all freely pliaihien formulas (4) and (5) might not
admit solutions where the unknow&$™ are not all zero. The same situation may be

encountered in the case where the formulas (4) and (Spaséied only for zero values

of the quantities=®”. In the first case, the distortions cannot be ehoarbitrarily,

whereas in the second case the distortions areasbitin addition, in the first case, the
efforts are not determined, while in the second casg attee

One immediately sees that if the elastic elemargssimple, rectilinear rods then we
will have the latter or the former case, respecyivatcording to whether the system is or
is not statically determinate.
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V.

1. Equations (I) and (Il) present close analogies withkiinehhoff equations for the
propagation of currents in a system of conducting wirasfdrm a network; however, in
our case there are six Kirchhoff equations. The commenef the efforts appear in
equations (1) and (Il) like elements analogous to the cum&mnsities, the components of
the translations and rotations of the nodes, appeaelétaents analogous to the electric
potentials at the nodes of the network, anddmaracteristics of the distortiongplace
the electromotive forcesThe relations (1) replace the equation that expreSses's law.
The constants of the elastic elements have the sal@eas the inverses of electric
resistances.

2. Once this analogy has been established, it is eagxamine some cases that
present themselves in a manner that is analogous to that8tmne bridge in the study of
electricity, and to profit from them by determining tlenstants of the electric elements.

3. Theprinciple of equivalent cut@Chap. Il, Art. I, § 1) permits us to substitute a
distortion that is carried out on a given sectiorhvanother one that is performed in a
section that is obtained from the first one by continwtefermation.

One understands that in practice one will have a simpeans of obtaining
distortions in a cyclic system of pliable elementewlone performs them at the nodes,
which one may do in the same manner by which one attacheexttemities of the
elements between them.

V.

1. Before passing on to the next chapter, where we prdpdseat a particular case,
we would like to prove the following general theorem anetisd other propositions:

The direct constant&® (seeArt. Il) of each element verify the equations:

A = A
S 1 *

Indeed, suppose that taforts X* correspond to the displacemenf& and x® (i
=1, 2, ..., 6) of the extremitie& and B of the elemenAB and that theefforts =*”

correspond to the displacemenf&’and &” (i = 1, 2, ..., 6). We call the two

deformations that the elemeAB is subjected to théirst and seconddeformations,
respectively.
Consider the quantity:

i(xi(b) _ X(a) E-(ab) .
i=1

It is the work done by the tensions that generagesecond deformation of the element
AB by virtue of the first deformation of the elemefiihe quantity:
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i (Q(i(b) _ gti(a) ) Xi(ab)

is the work done by the tensions that generate thed@fstrmation of the eleme@B by
virtue of the second deformation.

However, by virtue of a general principle of elasticBe{ti's theorem geeChap. I,
Art. 1l, 8 1)] that we extend to pliable, elastic bodidgese two works are equal and, as a
consequence:

6 6
( (b) _ (2 Ei(ab) - (Q(i(b) _gti(a))xi(ab)
WA=

or:
N (ab) ye (ab)=(ah N (ab)=(ab) y¢ (ah
a abh—(ah — ab)—(al ay .
ZAS xs =i - ZAS =s Xi ,
i=1 s=1 i=1 s=1
this is why:
A(ab): (ab)
s it

Upon passing from the direct constants to the invenes a® (Art. I, § 4), one
obviously finds that the analogous relation:

(ab) — L(ab)
is — “Y%Si

is verified.

2. When one has pliable, elastic elemens Az, Ay As, ..., AnAns1, ONE May unite
the one with the other in such a way that two camsez element®\_1 A, A Ai+1, have
the common extremitied; rigidly attached between them. One will thus obtaimique
elastic elemenf; An.1 . One will call this constraira series composition of the given
elementsand the element thus obtained, éfement composed by series.

Call A**) the direct constants of each element compo&ing..; and A**< | the

direct constants of the composed element, which arayalreferred to the same system
of axes. By virtue of equations (3), we will have:

6

A = z Al
s )

h=1

The direct constants of an element that is composed by series aireedtdiy adding
the corresponding constants of the composed elements.

This theorem corresponds to the proposition that oweusters in the theory of
electric conduction — viz., the resistance of sevavatluctors connected in series is the
sum of the electrical resistances of each condusemg(1 of the preceding Art.).
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3. The constraint on several pliable elastic elemehtgt they must define a
composed element may also be accomplished in another waleed, taken pliable
elements AB);, (AB),, ..., (AB), that have the same extremitidsandB in their natural
states, and suppose that they rigidly link thextremities that are &, as well as tha
extremities that are @. This constraint will be called eomposition of the given
elements by derivatior or in parallel. The composed elemeAB will be called the
element composed by derivation

Suppose that each composed element is freely pliatdecaha*®

S

, the inverse
constant of each of them amd*™®, the inverse constant of the composed element; due to
equations (3, we will have:

n
(AB) — 2 (AB);, .
h=1

The inverse constants of an element that is coetbbg derivation are obtained by
adding the corresponding constants of the compebkadents.

This theorem also corresponds to a theorem on elecbnduction. Indeed, the
electric conductivity of a conductor formed from the unminseveral conductors in
parallel is the sum of the conductivities of each coreporonductor.

U



CHAPTER IX

PLANAR CYCLIC SYSTEMS OF PLIABLE ELASTIC ELEMENTS

1. When a pliable, elastic elemehB is planar and subject to forces that are situated
in its plane, if one takes it to be the first plane dawte then one will find that the three
characteristics of the efforts:

(ab) (ab) (ab)
XE X @

are zero. Likewise, the characteristics of theldggments of the extremities:

b b b
will be zero.
In order to simplify, letx, y represent the coordinate axes, ¥t°, Y M

represent the effortsX®, X X&)  resp., and lex®, y@, r® represent the

(ab)

characteristics, whilex®, x{, x{* are the displacements of the extrenfity At the
same time, lex®, y®, r® indicate the quantities that correspondd®d, x, x.

2. Having said this, we prove the following theorem:

If a pliable, planar, elastic element AB is subjected to forcés plane then one will
always find a pair of orthogonal axes X, y, in this same plane such that:

x®) — x(@ = } x(@®

M Yo =y = X,
r® _p@ =, ()

Indeed, we will have, in general, that:

x® - X =g X + g, ¥9+ g M?,
(2) y? - y¥ =2, X+ a,¥" + g, M?,
r® @ =g X 4+q y@4g M,

in whichays = agr.

Upon transporting the origin to the point with cdioatesé, 7, without altering the
direction of the axes, and upon distinguishinggbantities relative to the new system of
axes by a suffix, we will have:

X = X = x® _y@ 4 _pla)



Chapter I1X. Planar cyclic systems of pliable, elaskéments. 83

YOy =y ) g0 _ (@)

rlw) —rf@ =B @

X (@ = X@)
Y = y@b)
M@ = M@ — x(@) ) 4. ylab) &

as a result, formulas (2) will become:

X" =X = (a,+ 278, +n° a) X{7 +(a,+n a & arén a) ¥
+(ay +nag) M,
W -y =(a,—Eaytna,—dnay) X +( 8,28 ad” a) ¥
+ (8,5~ fa) MY,
rl(b) _rl(a) = (a31+’7a33)x(13b) + (a32_§(a33Y1(ab) ta, Miab)-

(2)

It will thus suffice to take:

Oz—g, f:%,
53 g3

which is always possible &3 # 0, in order to make the preceding equations become:

X1(b) _ Xia) — 84,853~ aia Xiab) + A,855~ azsa13Yl( a
83 A3
2" Yo - @ = 8833~ A38,3 X 4 855~ ézaY( al)
A3 A3
rl(b) r(a) =a, (ab).

If a3 is zero therays andays will also be zero (Chap. VIII, Art. I, § 1 %property),
and then the formulas (2) will originally have tioem (2').

Upon now changing the orientation of the axesz- wipon choosing them to be the
principal axes of the conic:

(a11833 — 8123) X+ 2(au2 @3z — @z &13) Xy + (@x2a33 — a;g) y2 = ass,

we may reduce the formulas'{2o the form (1).
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3. We call the origin of the axes y the center of the elastic elemefdr which
formulas (1) are verified, and these axes themselvlsbaithe principal axes of the

element The coefficientsd and i are called thecoefficients of tractiorand v is the
coefficient of flexion
It is easy to prove the following theorem:

If the elastic element admits two symmetry axes then thelgeapincipal axes of the
element.

It is also easy to calculate thenstants of an elemerglative to arbitrary axes when
one knows theoefficients of traction and flexion

Let £ andn denote the coordinates of the center of the elensdative to the axes y
and letX', y' denote the principal axes. Let the table of cosingiseofwo systems of axes
be:

Xy
Xl a B
Yy o
and letd andu be the coefficients of traction with respect toxhandy axes. Then
formulas (2), relative to the axgsy, take the form:

x® — X = (A cos G+ pu sirt @+vn? X + [A - )sird cof-vén Y
—uM @,

y® =y =[(A - ) sin@cosf —vén )X + P sirf G+ p cof+véE? Y&
FVEM@,

Y — @ = —pp XD 4 EYED ) D,

3)

4. Let Ay Ay, Ao As, ..., An A ben planar elements, and suppose they are rigidly
linked pairwise by common extremitie®, As, ..., An — i.e., suppose that they are
composed in seriesg¢eChap. VIII, Art. V).

Mark the quantities!, 1, v, & 1, 8 by the index when they are referred to tifé
element. The formulas relative to the planar el@mgenerated by means of the
constraint between the given elements will then be:

XA — W = N(A cos @ + gy sirf g +yn? XA
i=1

+ D [(A - p)sing cosg —y &n YA
i=1

- Zn:Vi/Z M (A

i=1
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YA =R 3[4 - 4)sing cosf —y & XA
i=1

+ (A sin? g + i cod g +y &2 YA

i=1

n
+ ZV|5|M (AAL) ,
i=1

n n n
rAm) _p (A) = _ zviﬂi X (Ahw) +2Vi§(iY(AlAH) +ZV| MAAD
i=1 i=1 i=1
However, if the axes, y are the principal axes of the composed elemAg®,.1 then

one will have:

zvifi:O’ zvi”i =0,
i=1 i=1

D (A -p)sing cof) ~vi & 17, =0

i=1

In addition, the coefficients of traction and tleefficients of flexion will be:

A=) (AcoS g +y sitq+un®,

=
B=Y (Asin’g +uy cosq +y &2,
=

n
N=)>v,
=1

respectively, from which, the following theoremé éaut:

The center of a composed element is the centeranfity of the centers of the
component elements if one supposes that at eattiewf there is a concentrated mass
equal to the coefficient of flexion.

From the center of an element that is composesgiies, draw unitary segments that
are normal to the axes of each component elemadtaathe extremity of each of them
concentrate a mass equal to the corresponding icaft of traction, and, at the same
time, consider masses equal to the coefficientiexibn of each component element that
are concentrated at the centers, respectively. akes of inertia of this system of masses
are the principal axes of the composed elementitangrincipal moments of inertia of it
are the coefficients of traction.

The coefficient of flexion of an element thatamposed in series is the sum of the
coefficients of flexion of each component element.
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1. Now, consider an arbitrary planar elastic body tlsatlaubly connected, and
subject it to distortions that keep it planar. If thes y are situated in the same plane,
and if we indicate the six characteristics of th&altions byl, m, n, p, g, r then we will
have geeChap. IlI):

n=p=q=0

and, upon representing the effortsthy, N, P, Q, R one will have:
N=P= Q =0,

while the relations between the characteristics aacettorts becomesgeChap. 111, Art.
I, 8 3):

L =Bl +Eiam+Est,

M=Ez | + Ezam+Epst,

N =Eg1 | + Egom+ Eggr.

Upon transporting the origin to the point with coordesaf, /7 without altering the
direction of the axes, we will have:

L1 =Euli + Eromy + (Ei6 — Ew7 + E12é) 11,
My =Eunli +Epom + (BEis— E1in + Er2é) 11,
Ri =Ear—Euf +Exn ) l1 + BEr2—Eon+Exé m
+ (Eoo — 2E16/] + Zng &+ Xop &2 — AE1EN + 2E22 &%) 11,

wherelL; =L, M1 =M, Ry; |1, my, r1 =r are the efforts and the characteristics relative to
the new system of axes.

However, we may choose the coordinagesnd # in such a manner that the
coefficients ofry in the expressions fdr; andM; are annulled, and as a result also the
coefficients ofl; andmy in the expression d?; .

Upon then conveniently orienting the axes, we may retheeelations between the
characteristics and the efforts to the following form:

L =Eunl,
M =Ezxm,
R =Eser;

ie.:

Being given a doubly-connected, planar system that is subjected to diston@ins
preserve the plane, there exists a system of axes in that pldnéhati@ach elementary
distortion produces only the conjugate effort relative to that system.

2. Now, suppose that the doubly-connected, planar systdonneed from pliable
elementsAiAz, A Ag, ..., Ay Ap that are rigidly linked pair-wise between themselves by
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the common extremities i.e., are obtained from a series compositioand that in the
natural state the first and last extremfycoincide and are rigidly linked.

In order to obtain the axes that we spoke of in theggliag paragraph, it will suffice
to apply the rules given in § 4 of the preceding artwlend the center and principal axes
of the element that is composed in series from thaeiesAiAz, A2 Az, ..., AnA1. The
three coefficients of the efforts are obtained bygwlating the inverses of the coefficients
of traction and the coefficient of flexion of the corspd element.

3. In the preceding chapter (Art. 1V), we compared the shedrdistortion of a
system composed of pliable elastic elements with tleory of Kirchhoff on the
propagation of currents in wires. The results thajuseobtained shed a new light on the
relationships that exist between the two theories.

Indeed, the theorem that we just proved in 8§ 4 of theeplieg article- i.e., the
coefficients of flexion of the composed circuit is the sum ofideats of flexion of each
element- corresponds to this propositiohhe electrical resistance of a circuit is the sum
of the resistances of all of the parts which, when connected iesséefine the circuit
itself (seeChap. VIII, Art. V, 8§ 2). However, the rule for obtaig the coefficients of
traction is much more complicated, and does not have alogue in the theory of
electrical conduction. In addition, the consideratwdnhe center and the principal axes,
which is fundamental in the present theory, is missingptetely from the electrical
theory.

1. In article I, we treated the case of a planar sysbé pliable, elastic elements
connected in series, and determined the axes and ea@iof traction and flexion of
the composed element if one knows the analogous axescaegificients of the
component elements.

We now propose to solve the same question by studyingpasition of elements in
parallel (by derivation)deethe preceding Chap., Art. V, 8§ 3).

2. Upon supposing that we have a freely pliable planar eieme will have, upon
referring to its principal axes¢eformula (1), Art. 1]:

x@ = L o _ o)
A )

v = 2 oy

1

M@ = = (r® ).

With the aid of very simple calculations, one firttlat if the principal axes, y' form
angles with thec andy axes whose table of cosines is:
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!

X Yy
Xl a B
Yy O
and if the center of the element has the coordingtgshen the formulas that express the
efforts by means of the displacements will be:

X = 2t 47| (<) - X) 4| Zay+= 58 (v - )
A 7 A Y7

+(1,7a__15'3j(r(b)_r(a)),

A

Ye = Gay+1ﬁ5j(x‘b> - %@){—1% +—152j(¢*” - )
U A U

+(1,7y__155j (r(b) _r(a)) ,
A H

M = Gna——lfﬁj(x‘m - %@){—%y——l@jw@ -y
U A U

14

[1+ n*+-= Ej(r(b)—r(a)).
A H

3. Compose then elements AB)1, (AB)2 , ..., (AB), . Upon distinguishing the
guantities that relate to the elemeAB], with an indexh, we will have the following
formulas with respect to the composed element:

X@0 = Zn:(j- ,Bh j(x(b) x®) +Z[ At ﬁhéhj( Yo - y¥¥)

h=1 h h

n

Z{ hay,— 5h,3hj(r(b) -r®),

h=1

Y = Zn:(/]iahyh +_1ﬁh5hj(x(b) X(a))'*'Z(

h=1

v 2 - ¥
A, H

n

__— (b) _ (&
Z( MoV ﬂfh j(r -r'?),

o= L, o4+ gL o -y

h=1
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o1 1, 1, () (a)
)| —+—n +—& |(r™-r).
;[Vh o Iy m hj( )

The following theorem emerges from these formulas:

From an arbitrary point, draw arbitrary unitary segments that are paraitelthe
axes, and, at the extremity of each of them, concentrate a masdcethelnverse of the
corresponding coefficient. The axes of inertia of that set of massgsarallel to the
principal axes of the composed element and the principal moments o& iaextithe
inversesl/A and 1/u of the coefficients of traction.

Upon considering these axes of inertia to be coordinate axes, thicieomt$fof > —
r® in the expressions for® and ¥ will be respectively equal to the coordinates
n and ¢ of the center of the composed element, multiplietdbgnd—1/4 .
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