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 It seems to me that in the theory of equilibrium for elastic solids the only case that has 
been considered up to now is that of a body whose particles are subjected to some 
displacements of their natural position that vary from point to point continuously in all of 
the space that is occupied by the body itself.  Under such hypotheses, if it is not acted on 
by any external forces, either on its contour or its internal space, then the body is not 
subject to internal tension. 
 Therefore, there certainly do not exist bodies that are subject to internal tension and 
which are not subject to external force on either the contour or the interior.  To give an 
imaginary example, take a ring that is not completely closed whose two free plane 
sections are attached to each other by an infinitely thin stratum that welds them together. 
 A body that is internally stressed and that is not subject to external forces must 
necessarily contain one or more surfaces along which its displacement is discontinuous.  
If the tension that is inside it is continuous in all of the space that is occupied by the body 
then it will have the character of an isolated body.  However, if the tension is not 
continuous then wherever its displacement is discontinuous the body must regarded as 
having the character of an aggregate of several distinct bodies.  In the latter case, the 
discontinuity does not yield any new general theorems on the internal properties of the 
body.  On the contrary, no sharp change in the internal tension exists, and the 
discontinuity in the displacement across the surface is subject to simple and noteworthy 
laws that I propose to develop in this Note. 
 Suppose one has a solid in a state of tension that is not subject to external action and 
is referred to three orthogonal coordinate axes x, y, z.  Let u, v, w denote the components, 
relative to these axes, of the displacement of a point P in its natural position, and consider 
these components to be functions of the coordinates of that point. 
 The tension that is developed in the interior of the body is a linear function of the six 
quantities: 
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which are the coefficients of the arbitrary variations δx, δy, δz in the quadratic form: 
 

δx δu + δy δv + δz δw. 
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 Since we supposed that the internal tension is a continuous function in all of the space 
that is occupied by the body, it so happens that these six coefficients enjoy the same 
property. 
 Now, let S be the internal surface of discontinuity of the displacement.  Distinguish 
the two sides of it by means of the indices a and i, and denote by ua, va, wa and ui, vi, wi, 
respectively, the components of its displacements at the two material points that coincide 
at the point x, y, z of the surface S.  In addition, let α, β, γ be the values of the 
discontinuity that is experienced by the values of the quantities u, v, w when one traverses 
the surface S from one side to the other.  One can consider α, β, γ  to be functions of the 
coordinates x, y, z, although these coordinates are linked by the equation of the surface.  
Along it, one must therefore satisfy the following three equations: 
 

ua – ui = α, va – vi = β, wa – wi = γ, 
 
and if one refers to the points in the infinitesimal vicinity of the points of the surface by 
(x + dx, y+ dy, z + dz) then one will have: 
 

dua – dui = dα,  dva – dvi = dβ,  dwa – dwi = dγ. 
 

 We then examine the difference: 
 

(dx dua + dy dva + dz dwa) − (dx dui + dy dvi + dz dwi), 
 

and observe that of the two quadratic forms that comprise it, the coefficients of dx, dy, dz 
must coincide, by virtue of the continuity that we have supposed, in order that the 
difference between them should be annulled. 
 We may then write the equation: 
 

dx dα + dy dβ + dz dγ = 0 
 
for any point of the surface S, from which follows the theorem: 
 
 One can consider the three discontinuities α, β, γ at any point of S to be the 
rectangular coordinates of the points of a new surface that corresponds to S by the 
orthogonality of linear elements. 
 
 In other words, if one subjects the point (x, y, z) of the surface of discontinuity to a 
geometric displacement that has the components α, β, γ then one will obtain a surface 
that is infinitely close to S. 
 This new form of the preceding theorem amounts to the hypothesis that one neglects 
the powers of u, v, w, and their derivatives higher than the first, as is always done in the 
theory of elasticity for solids. 
 The two different particles that coincide at the point (x, y, z) of the surface from the 
two sides of it have, in the natural state of the body, the coordinates xa, ya, za and xi, yi, zi, 
respectively, and verify the equations: 
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    xa = x – ua , ya = y – va , za = z – wa , 
    xi = x – ui , yi = y – vi , zi = z – wi , 
 
and afterwards, the linear elements dsa and dsi of the two surfaces that are made to 
coincide after the deformation of the body from its natural state will have the squares: 
 
    2

ads  = ds2 – 2(dx dua + dy dva + dz dwa), 

    2
ids = ds2 – 2(dx dui + dy dvi + dz dwi). 

 
 In order for the difference 2

ads  − 2
ids  to be annulled, it must happen that these two 

surfaces can be mapped onto each other. 
 There is a well-known theorem on the deformation of surfaces that says that it is not 
possible for there to exist two distinct mappable surfaces that a have common 
corresponding line, unless there is no common asymptotic line of the two surfaces.  By 
virtue of this, there exists an essential difference between the surfaces of discontinuity of 
the bodies that occupy a multiply-connected space and those of the bodies that fill up a 
simply-connected space.  In the former case, the surface can possess a cut of an arbitrary 
form, and interrupting the material connection along this surface might render the body in 
its neutral natural state.  The slit that this gives rise to will be composed of the two 
separate mappable surfaces.  On the contrary, the surface of discontinuity of the simply-
connected bodies cannot be composed of slits, insofar as in that case the body splits, must 
give rise to a slit that is formed of the two mappable surfaces, one over the other, and 
having a common corresponding line, a condition that cannot be verified, in general, 
except for the particular case that was recalled previously. 
 However, even in this exceptional case, they cannot appear distinctly enough to affect 
the mechanical aspects of an infinitely thin line of soldering that makes the adjacent 
surface elements coincide at the edge formed by the asymptotic line.  Does there exist a 
gap at this edge, no matter how small it might be? 
 No matter what one might say in this regard, the considerations that follow are 
independent of the preceding doubts. 
 If you cut a multiply-connected body with cuts that do not coincide with the original 
surface of discontinuity and put it into a new neutral state then the separate surfaces of 
the bounding slit of the will be mapped onto each other.  Now, if, by means of a small 
elastic deformation of the body, one closes this slit and reattaches its sides to each other 
with a thin layer of solder then the body will generally be in a new state of tension. 
 In order for this state to coincide with the original one that was destroyed, the 
following conditions are necessary: One must have that at the original surface of the 
discontinuity of the body the discontinuity α, β, γ has one of the values: 
 

α = a + qz − ry, β = b + rx − pz , γ = c + py − qx, 
 
in which a, b, c, p, q, r are constants. 
 The three analogous quantities for the surface of discontinuity that come from the 
new soldering possess the same form.  This statement is easily proved. 
 


