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One of the most important results in the new development of the theory of the electron is 
the possibility of converting electromagnetic field energy into matter.  A light quantum, 
for example, can, by the existence of other electromagnetic fields in empty space, be 
absorbed and converted into matter, in the form of a pair of electrons with opposite 
charges. 
 The conservation of energy demands that the absorbing field must be static so that the 
absorbed light quantum will necessarily impart energy to the electron pair that is 
produced.  Its frequency must therefore satisfy the relation hv = 2 mc2 + ε1 + ε2, in which 
mc2 is the rest energy of the electron, and ε1 and ε2 are the remaining energies of the two 
electrons.  We must consider this case, for example, in the production of electron pairs by 
a γ-quantum in the Coulomb field of an atomic nucleus. 
 Absorption can also be found in fields that arise from other light quanta, in which the 
latter can carry the energy of the electron pair, such that in this case the energy 2 mc2 + ε1 
+ ε2 of the two electrons must be equal to the sum of all the light quanta that are absorbed 
in this process. 
 The phenomenon of the absorption of light in vacuo represents an essential deviation 
from MAXWELLian electrodynamics.  Namely, the vacuum shall be independent of the 
fields in it for a light wave that freely penetrates it, since fields can be superimposed 
independently in it as a result of the linearity of the MAXWELL equations themselves. 
 It is already understandable without the introduction of the special theory of relativity 
that in fields that do not possess the necessary energy for the creation of an electron pair 
deviations from MAXWELLian electrodynamics must arise: if high-frequency light can 
be absorbed into electromagnetic fields then so must one expect the scattering or 
deflection of a light ray whose frequency is not enough for pair creation, analogous to the 
scattering of light by an atom whose smallest absorption frequency is larger than that of 
the light.  The light in its passage through the electromagnetic fields will thus behave as if 
the vacuum took on a dielectric constant that differs from unity as a result of the action of 
the fields. 
 In order to represent these phenomena one must attribute certain properties with the 
theory of empty space that would produce the desired deviation from MAXWELLian 
electrodynamics.  In fact, the relativistic wave mechanics of electrons also leads to such 
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consequences, if one uses the states of negative kinetic energy that follow from the 
DIRAC wave equation for the description of the vacuum. 
 The basic assumption of DIRAC’s theory of the positron is that the physical behavior 
of the vacuum can be described, in a certain sense, by the behavior of an infinite set of 
electrons – the vacuum electrons – that are found in states of negative energy and 
collectively define its state.  It is self-explanatory that the determination cannot be 
complete, since the vacuum electrons must possess infinite charge and current density, 
which must have no physical meaning.  However, it shows that, for example, pair 
creation (and the opposite process) can be regarded as a jump of a vacuum electron into a 
state of positive energy under the influence of electromagnetic fields, so it appears to be a 
real electron, whereas the vacuum around a negative electron is poorer, which must 
follow from the appearance of a positive electron.  The calculations for pair creation and 
annihilation that come out of this picture show good agreement with experiments. 
 The calculation of most other effects that follow from the theory of positrons always 
runs into the problem of the degree to which the behavior of vacuum electrons is to 
actually be regarded as that of the vacuum.  This problem is complicated by the fact that 
the charge, current, and energy densities of the vacuum electrons are infinite, such that 
one must generally break off a finite piece of this infinite sum and associate it with 
reality.  The solution of this problem was carried out by DIRAC and HEISENBERG, 
who gave a method for determining the physically meaningful part of the effects of the 
vacuum electrons that was free of contradictions.  In what follows, it will be shown that 
this determination is completely of any arbitrariness, since it consequently assumes that 
only the following properties of the vacuum electrons are physically meaningless: 
 

(1)  

1) The energy of  the vacuum electrons in field - free space.

2) The charge and current densities of  the vacuum electrons in field - free space.

3) A spatially and temporally constant field - independent electric and magnetic

 polarizability of  the vacuum.









 

 
These quantities 1 relate only to a field-free vacuum, and it may be regarded as self-
explanatory that they can have no physical meaning.  All three quantities prove to be 
divergent sums of contributions from all vacuum electrons.  It must be further added that 
a constant polarizability will be in no way established, but only total charge and field 
strength values, multiplied by a constant factor. 
 In the next section, we will compute the physical properties of the vacuum that are 
slowly varying in time and space on the basis of these assumptions.  We understand this 

to mean such fields F that vary only slightly over distance of length2 h

mc
and time 

intervals of length
2

h

mc
, and thus satisfy the conditions: 

                                                
 1 In the sequel, the assumption that 1), 2), or 3) is to be regarded as meaningless will be denoted by I1, I2, 
or I3, resp. 
 2 h is PLANCK’s constant divided by 2π. 
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(1)   
h

mc
| grad F | << | F| ,  2

h F

mc t

∂
∂

<< | F | . 

 
In general, the presence of such fields will create no pairs, since the light quanta that 
appear have too little energy.  We would like to exclude the extreme cases in which the 
radiation density is so high as to allow the collective effect of very many quanta or in 
which electrostatic fields with potential differences of greater than 2mc2 are present (in 
these cases, pairs will be created, on the grounds of the KLEIN paradox).  Under these 
circumstances the electromagnetic properties of the vacuum may be represented by a 
field-independent electric and magnetic polarizability of empty space, which leads to, for 
example, the splitting of light by electric fields or the scattering of light by light.  For 
weak fields, the dielectricity and permeability tensor of the vacuum has the following 

approximate form (E
�

, B
�

, D
�

, H
�

are the four electromagnetic field quantities 1): 
 

Di = ik k
k

Eε∑ ,  Hi = ik k
k

Bµ∑ , 

(2)   εik = δik +
4

2 2
4 7

2( ) 7
45 ik i k

e h
E B B B

m c
δ

π
 − +   

   µik = δik +
4

2 2
4 7

2( ) 7
45 ik i k

e h
E B E E

m c
δ

π
 − −    δik =

1,

0, .

i k

i k

=
 ≠

 

 
The computation of these quantities has already been carried out by EULER and 
KOCKEL 2, as well as HEISENBERG and EULER 3.  In the next section, a somewhat 
simpler method will be employed.  In addition, the properties of the vacuum shall be 
calculated on the basis of the scalar relativistic wave equation for the electron of KLEIN 
and GORDON.  In PAULI and WEISSKOPF, this wave equation yielded the existence of 
positive and negative particles, as well as their creation and annihilation by 
electromagnetic fields, without any further particular assumptions.  Thus, these particles 
possess no spin and obey Bose statistics, so this theory is not applicable to real-world 
electrons.  It is therefore worthy of note that this theory also leads to properties of the 
vacuum for which no physical meaning can be attached.  One thus obtains, for example, a 
likewise infinite spatially and temporally constant field-independent polarizability of the 
vacuum.  By neglecting the corresponding terms, one arrives at results that are similar to 
those of DIRAC’s positron theory.  The physical properties of the vacuum originate in 
the “zero-point energy” of matter, which also depends on absent particles through the 
external field strengths and therefore contributes an additional term to the purely 
MAXWELLian field energy. 
 In section 3, we will treat the consequences of the DIRAC theory of positrons for the 
case of general external fields, and we will show that on the basis of the aforementioned 
three assumptions concerning the effects of vacuum electrons one always comes to finite 
and unique results.  The HEISENBERG subtraction prescription proves itself to be 

                                                
 1 In the sequel, arrows will be placed over vector quantities when confusion is possible. 
 2 H. EULER and B. KOCKEL, Naturwiss., 23, 246, 1935; H. EULER, Ann. d. Phys., v. 26, 393. 
 3 W. HEISENBERG and H. EULER, ZS. f. Phys. 38, 714, 1936. 
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identical with these three assumptions and thus appears somewhat less arbitrary than was 
assumed in the prior literature. 
 None of the following calculations explicitly consider the interactions of the vacuum 
electrons, but exclusively consider a single vacuum electron under the influence of a 
given field.  However, by this choice of path the opposite effect is not completely 
neglected since one can by no means separate the external field from the field that is 
created by the vacuum electrons themselves, such that the field that enters into the 
calculations implicitly partially includes the action of the other vacuum electrons.  This 
process is analogous to the HARTREE calculation of the electron orbits of an atom in the 
field that is produced by the electrons themselves.  For the explicit calculation of the 
interaction one must employ quantum electrodynamics, i.e., perform the quantization of 
the wave fields.  As is well known, even without the assumption of infinitely many 
vacuum electrons this already leads to divergences, and shall not be pursued any further 
in what follows. 
 

II. 
 

 In this section, the electrodynamics of the vacuum shall be treated for fields that 
satisfy conditions (1).  The field equations are established by being given the energy 
density U as a function of the field strengths.  We determine them from the energy 
densityUɶ of the vacuum electrons, which shall be definitive of the behavior of the 
vacuum. 
 It is advantageous to recall the Lagrange function L of the electromagnetic field since 
it is already completely established by the requirement of relativistic invariance.  The 
following relations exist between the Lagrange function L and the energy density U: 
 

(3)     U = i
i i

L
E L

E

∂ −
∂∑ . 

 
In MAXWELLian electrodynamics, one has: 
 

L =
1

8π
(E2 – B2), U =

1

8π
(E2 + B2) . 

 
Anything that is added to this Lagrange function must, like the Lagrange function itself, 
be relativistically invariant.  As long as we only restrict ourselves to slowly varying fields 
(condition (1)), these additional terms will only depend upon the values of the field 
strengths and not on their derivatives.  They can therefore be functions of only the 
invariants (E2 – B2) and (EB)2.  If we develop the additional terms in powers of the field 
strengths up to sixth order then we obtain: 
 

   L =
1

8π
(E2 – B2) + L′, 

   L′ = α (E2 – B2)2 + β (EB)2 + ξ (E2 – B2)3 + ζ (E2 – B2)2 (EB)2 + … 
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and therefore, from (3): 
 

(4)  

2 2

2 2 2 2 2

2 2 2 2 2 2 2 2

1
( )

8

( )(3 ) ( )

( ) (5 ) ( ) (3 )

U E B U

U E B E B EB

E B E B EB E B

π
α β

ξ ς

 ′= + +

 ′ = − + + +

 + − + + − + ⋯

 

 
The addition to the energy density is therefore completely determined by the invariance 
properties; in what follows, it will thus be necessary only for us to determine the 
constants α, β, ξ, ζ, …, that appear in it.  These statements are already based upon the 
special assumption that U′ includes no terms of second order in the field strengths, but 
only ones of higher order.  This is equivalent to the statement that the vacuum possesses 
no polarizability independently of the fields. 
 The calculations of EULER and KOCKEL, as well as those of HEISENBERG and 
EULER, yield the following values for the constants: 
 

α = 
4

2 4 7

1

360

e h

m cπ
, β = 7α , ξ = 

6 3

2 8 12

1

630

e h

m cπ
, ζ = 

13

2
ξ . 

 
The dielectricity and permeability tensor that is given by (2) is obtained from the 
relations: 
 

Di =4
i

L

E
π ∂

∂
,  Hi = − 4

i

L

B
π ∂

∂
. 

 
In what follows, we shall derive these results in an essentially simply fashion. 
 The additional term U′ to the MAXWELL vacuum energy density shall be 
determined from the additional termU ′ɶ that the vacuum electrons contribute.  The energy 
density due to the presence of electrons in the states ψ1, ψ2, …, ψi … is given by: 
 

U = 2 21
( )

8
E B U

π
′+ + ɶ  

U ′ɶ = * 2, , gradi i
i

hc
eA mc

i
ψ α β ψ
   + +   

   
∑

��
, 

 
in whichα� , β are the DIRAC matrices andA

�
 is the vector potential.  The additional 

termU ′ɶ to the MAXWELL density is therefore not equal to the total material energy 
density Umat  :

 ∗ 

                                                
 ∗ Here and in the sequel, when two eigenfunctions ψ and ϕ  are placed between curly brackets: {ψ, ϕ} 
means the inner product of the two spinors ψ and ϕ :  {ψ, ϕ} = k k

k

ψ ϕ∑ , in which k is the spin index. 
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(5)     Umat =
* ,i i

i

ih
t

ψ ψ∂ 
 ∂ 

∑ , 

but: 
(6)      U ′ɶ = Umat − *{ , }i i

i

eVψ ψ∑ , 

 
in which V is the scalar potential.  One can identifyU ′ɶ as the kinetic energy density.  The 
total material energy density Umat may, as we will see, be easily computed: the second 
term of (6) – the potential energy density – can be obtained from Umat in the following 
way: When one thinks of the scalar potential as proportional to the constant factor λ then 
one has: 1 

(7)    *{ , }i i
i

eV dλ ψ ψ τ∑∫ = matU dλ τ
λ
∂

∂ ∫ , 

 
in which the integration is carried out over all of space.  In the limiting case of constant 
fields, which, from the conditions (1), we shall consider here, we can regard the field 
strength E itself as the constant factor λ, and can, moreover, employ the relation (7) for 
the energy density.  We then obtain the kinetic energy density as: 
 

(7a)    U ′ɶ = Umat − matU
E

E

∂
∂

. 

 
If one equates this with (3) then one sees that the same relationship exists between the 
material and kinetic energy densities that exists between – L and U.  Thus, Umat can be set 
equal to the aforementioned addition to the Lagrange function: 
 
(8)      U ′ɶ = − L′ɶ . 
 
 Since the form of U′ is completely determined by the requirement of relativistic 
invariance, it suffices to determineU ′ɶ for a particular field.  We choose a homogeneous 
magnetic field B = (Bx , 0, 0) and a spatially periodic electric field that is parallel to it, 
and whose potential is given by: 

(9)     V = *
0 0

igx igx

h hV e V e
−

+ . 

                                                
 1 The proof proceeds as follows: When the energy operator H is independent of a parameter λ then the 
diagonal element Hii of the energy operator changes by an infinitesimal adiabatic increment dλ of λ 
according to: 

dHii =
ii

H
dλ

λ
∂ 
 ∂ 

. 

When we now set: 
H = H0 + λeV , 

this yields: 

λ (eV)ii = iiHλ
λ

∂
∂

. 
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We thus equate this result with the general form (4) and will determine the coefficients of 
this form from that. 
 By contrast, HEISENBERG and EULER chose a constant electric field, which results 
in complications as a consequence of the KLEIN paradox: Any arbitrarily small 
homogeneous electric field creates electron pairs when it extends over all of space.  The 
electron content of the energy density is therefore not precisely stationary.  In the 
previous calculations, due to periodicity one can avoid the appearance of potential 
differences greater than 2mc2 so that no pair creation comes about. 
 The material energy density is, by the fact that it represents all negative energy states, 
given by: 
(10)    Umat = *{ , }i i i

i

W ψ ψ∑ . 

 
Wi is the energy that belongs to the eigenfunction ψi , and the summation is over all 
negative states; the sum is obviously infinite.  Which finite piece of this sum has any 
physical meaning will be uniquely deducible from the explicit expression for Umat . 
 The ψi obey the wave equation: 
 

(11)    x

ih eV
ih K

c t c x
α ψ∂ ∂ − + + ∂ ∂ 

= 0 

(12)   K = | |y x

e
ih ih B y mc

y x c
α α β∂ ∂ + − − ∂ ∂ 

. 

 
We temporarily follow the computations of HEISENBERG and EULER (loc. cit.), in 
which we only make inessential changes to the meanings of the variables. 
 For a solution, we start with: 
 

(13)    ψi =
1

( ) ( )
2

z
i

p z
he u y X x

hπ
⋅ . 

 
When the operator K is applied to ψ twice this yields: 
 

K2ψ  = 
22

2 2 2
2

| | | |y z z

eh e
h i B p B y m c

y c c
α α ψ

 ∂  − − + + +  ∂    
. 

We now set: 

η = 2

2

2
zp h b

y
b h

 + 
 

,  b = 
2

| |
eh

B
c

. 

 
b is the magnitude of the magnetic field.  By the introduction of η we arrive at the fact 
that K2 has the form of the Hamilton function for an oscillator.  We therefore set: 
 

u(y) =
1/ 4

2( )
2n

b
H

h
η  
 
 

ɶ , 
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in which ( )nH ηɶ is the nth normalized eigenfunction.  One then has ∫ | u(y) |2 dy = 1 and: 

 

(14)   K2ψ  = 2 2 1

2
xm c b n

σ ψ −  + +  
  

,  σx = iαy αz . 

 
It now remains to choose a representation for the four-component ψ in which σx is 
diagonal: 

σx =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 
 
 
 −
 − 

. 

 
The first two components of ψ correspond to a positive spin in the x-direction and the 
other two, to a negative one.  By this choice, the wave equation (11) decomposes into two 
separate systems of equations for the two components with the same spin, such that we 
obtain two wave equations for two-rowed matrices.  The operator K may then be written 
in the form K = γ | K |, in which γ is a two-rowed matrix that satisfies the condition γ2 = 1 
and | K | means the ordinary number: 
 

| K | = 2 2 1

2
xm c b n

σ− + + 
 

, 

 
which depends upon the value σx of the spin.  Likewise, the matrix αx that enters into the 
wave equation is also two-rowed, and it anticommutes with γ: αxγ  + γ αx = 0 , since, 
from (12), αx also anticommutes with K.  The two wave equations may then be written in 
the form: 

(16)    | |x

ih e
ih V K

c t x c
α γ ψ∂ ∂ + − + ∂ ∂ 

 = 0 , 

 
in which αx and γ are two-rowed matrices that associate the same spin only to a pair of 
components.  The difference between the wave equations for the two spin directions lies 
only in the differing values for | K | .  Since the dependence of ψ on the variables y and z 
has already been established by (13), (16) represents a wave equation for just the function 
X(x).  Up till now, the sequence of calculations has been essentially identical to those of 
HEISENBERG and EULER. 
 We now treat the case V = 0 to begin with.  The eigenvalues and the normalized 
eigenfunctions for (16) read: 
 

(17)   ( ) ( )n xX p± = 
( )

( ) 1
( )

2

x n xip x iW p
t

h h
xa p e e

hπ

±

± ⋅  
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(18)  ( ) ( )n xW p±  = 2 2| |xc p K± +  = 2 2 2 1

2
x

xc p m c b n
σ− ± + + + 

 
. 

 
The upper index (+) or (−) distinguishes the positive and negative energy states. ( )a p±  is 
a normalized 2-component “spinor.”  The equation (16) and its solutions (17), (18) 
represent a one-dimensional analogue of the DIRAC equation in which one finds γ | K | 
ψ, in place of the mass term β mc ⋅ ψ .  One positive and one negative energy eigenvalue 
are associated with an impulse px .  (The other two energy eigenvalues yield the wave 
equation for opposite spin.) 
 If we now substitute these quantities in the energy density (10) then we obtain: 
 

Umat = 

1
21

2 ( ) 2
2

1 0

( ) | ( ) | | ( ) |
2 2

x z
n x n x

n

dp dp b
W p H X p

h hσ
η

π

+ ∞
− −

=− =

 
 
 

∑∑∫∫ ɶ . 

 

As a result of the fact that dpx =
2

b
dη , as well as ( ) 2| ( ) |nX p− =

1

2 hπ
, the integration over 

px yields: 

(19)  Umat =
1

2 3
1 0

( )
8 n

n

b
dp W p

h σπ

+ ∞ −∞ −

+∞
=− =
∑∑∫ . 

 
From now on, we shall write p, instead of px . 
 In order to carry out the summation, we construct: 
 

1

1 0
n

n

W
σ

+ ∞
−

=− =
∑∑ = 0

1

2 n
n

W W
∞

− −

=
+ ∑ . 

 
 We now apply the EULER summation formula for a function F(x): 
 

1

1 1
( ) ( ) ( )

2 2

N

r

F a F a rb F a Nb
=

+ + + +∑ = 

= 2 (2 1) (2 1)

1

1
( ) ( ) { ( ) ( )

(2 )!

n Nb m m m mm

a
m

B
F x dx b F a Nb F a

b m

∞+ − −

=

 
− − + − 

 
∑∫ . 

 
Bm is the mth Bernoulli number.  F(m)(x) is the mth part of F(x).  When we apply this to 
(19), we obtain: 
 

(20)  Umat =
2 (2 1)

2 2 0
1

1
( ) ( ) (0)

4 (2 )!
m m mm

m

B
dp F x dx b F

h mπ

∞∞ −

=

 
+ − 

 
∑∫ ∫  

F(x) = 2 2 2c p m c x− + + . 
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In the special case of a pure magnetic field, from (7a), one can set Umat andU ′ɶ equal to 
each other.  This expression already represents the energy density in a development in 
powers of the magnetic field strength b.  Now it is very easy to determine any part of the 
contributionU ′ɶ of the vacuum electrons that shall be definitive for the real vacuum: The 
term that is independent of b represents the energy density of the field-free vacuum and is 
a divergent integral.  Since the energy density must vanish for field-free vacuum, this 
expression can have no real meaning.  Furthermore, the (likewise divergent) terms in b2 
must be omitted since the energy density shall possess no terms of second order in the 
field strengths.  The omission of these terms is well-founded in the assumption that the 
polarizability of the vacuum tends to zero for a vanishing field.  It must be emphasized 
that the subtraction described here is exclusively based on obvious assumptions about the 
field-free vacuum. 
 One then obtains the additional term to the MAXWELL energy density as: 
 

(21)  U′  = 2
4 32 2 2 1

2 2 2 2 2

( ) 1 3 (4 5)

4 (2 )! 2
( )

m
mm

mm
m

Bc m dp
b

h m
p m c

π

∞ +∞

−− −∞
=

− ⋅ −−
+

∑ ∫
⋯

. 

 
The power series may easily be represented by the power series development of the 
hyperbolic coth.  One obtains: 
 

U′  = 
2 2

2 2
2 20

1
coth 1

8 3

mc d
mc e

h
ηη ηη η

π η
∞ −    − −  

   
∫ B B , 

 
in which B is the magnetic field strength measured in units of the critical field 

strength
2 3m c

eh
: 

B =
2 3

eh
B

m c
. 

U′  = 
4 6 3

4 6
2 4 7 2 8 13

1 1

360 630

e h e h
B B

m c m cπ π
− + +⋯  

 
If we equate this with each term of (4) that includes fourth and sixth powers of the 
magnetic field then we obtain: 
 

α  = 
4

2 4 7

1

360

e h

m cπ
, ξ  = 

6 3

2 8 13

1

630

e h

m cπ
. 

 
 We will now consider an electric field, in addition.  To this end, we solve the wave 
equation (16) for X(x) with the method of the BORN approximation.  We expect that the 
part of Umat that depends on the potential V appears in the second approximation, 
proportional to V2.  When we develop Umat in powers of V: Umat = (0)

matU + (1)
matU + … then, 

from (10), we obtain: 
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(22)   (2)
matU = (2) 2 (0) (0) 2 (2)(| | ) (| | )i i i i

i i

W Wψ ψ− −+∑ ∑ . 

 
( )k

iW − , 2 ( )(| | ) k
iψ are the kth approximations in the corresponding developments of iW − and 

2| |iψ .  One observes that (1)
iW − vanishes in the given electric field.  It may be easily 

shown that: 
∫ (|ψ |2)(2) dx dy dz = 0 , 

 
 
such that the spatial mean of Umat is given by only the first term in (22): 
  

(2)
matU = (2) 2 (0)(| | )i i

i

W ψ−∑ . 

 
(|ψ |2)(0) was already computed in the case of a pure magnetic field, and we thus obtain, in 
complete analogy to (19): 
 

(2)
matU =

1
(2)

2 3
1 0

( )
8 n

n

b
dpW p

h σπ

+ ∞ +∞ −

−∞
=− =
∑∑∫ . 

 
 The value of (2)

iW − may be computed by the method of the BORN approximation.  

With the eigenfunctions (17) one gets: 
 

(23) 

( )* ( ) 2 ( )* ( ) 2
(2) 2 2

0

|{ ( ), ( )} | |{ ( ), ( )} |
| |

( ) ( ) ( ) ( )

              (the same thing with ).

n
n n n n

a p g a p a p g a p
W e V

W p W p g W p W p g

g

+ − − −
−

− + − −

  + += +  − + − +  
 + −

 

 
The expression between the { }-brackets represents a scalar product of two two-
component spinors.  By the integration of (23) over p, the second term in [ ]-bracket 
drops out if one carries out the integration of the terms in – g over the variable p′ = p – g: 
 

(24) 

( )* ( ) 2
(2) 2 2

0

| { ( ), ( )} |
| |

( ) ( )

                        (the same thing with ).

n
n n

a p g a p
dpW e V dp

W p W p g

g

+ −
−

− +

 += + − +
 + −

∫ ∫  

 
 This approach is in no way unique since the integration of the second term in the { }-
brackets of (23) leads to a divergent result, which, however, can be made finite by the 
addition of the corresponding terms in – g, or, as in (24), can be made to vanish no matter 
which manner by which one chooses the integration variables.  However, this 
arbitrariness does not affect our computation since in performing the summation over n 
we employed only the terms that were proportional to b2, b4, etc., in which, on the basis 
of the EULER summation formula, only derivatives of(2)( )nW p− up to n appear.  As one 
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can easily convince oneself, these derivatives of second order in the [ ]-brackets no 
longer diverge under integration over p, such the result of this integration is independent 
of the choice of integration variables. 
 Moreover, from (24), this yields: 
 

(2)
ndpW −

∫  = 5
2

2 2
2 2

0 2 2

| |
| |

4 ( | | )

g K
e V dp

c p K
−

+∫ , 

 
in which a series development in powers of g was already carried out and the terms of 
order higher than second were omitted.  This means neglecting the derivatives of the field 
strength on the grounds of conditions (1).  Likewise, as in the previous computation, 

(2)
matU  is now given by (20) if we set: 

 

F(x) = 5
2

2 2 2
2 2

0 2 2 2
| |

4 ( )

g m c x
e V

c p m c x

+−
+ +

. 

 
One then obtains, if one first integrates over p: 
 

(2)
matU  = 

2 2 1
2 2 2

02 2 2 2 2 1 2 20
1 0

( )1 1
| |

4 3 (2 )!

m m
m m

m
m x

Bg dx d
e V b

h c m c x m dx m c xπ

−∞∞

−
= =

  −− +  + +   
∑∫ . 

 
 Since this expression is quadratic in the electric field strengths, from (7a) we obtain 
for the kinetic energy density: 

(2)Uɶ = − (2)
matU . 

 
 From the previously discussed grounds, the terms of fourth and higher order in the 
field strengths can be regarded as physically meaningful for the vacuum, such that the 
divergent integral is omitted.  We now replace V0 with the electric field strength E: 
 

2E =
2

2
02

2 | |
g

V
h

, 

 
in which the overbar means the spatial mean, and we obtain for the first two terms: 
 

(25)   U(2) =
4 6 3

2 2 2 4
2 4 7 2 8 13

5 7 1

360 2 360

e h e h
E B E B

m c m cπ π
− +⋯ 

 
in the limiting case of weakly varying fields whose spatial average can be neglected. 
 If one equates (25) with the terms in (4) that are proportional to E2 B2 and E2 B4 then 
one obtains the relations: 
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β – 2α =
4

2 4 7

5

360

e h

m cπ
, 3ξ – ζ =

6 3

2 8 13

7 1

2 360

e h

m cπ
, 

 
and with the previously computed values for α and β: 
 

β = 7α , ζ =
13

2
ξ . 

 
 The expression for U(2), which is exact in the magnetic field strength, is then given 
by: 

U(2) =
2

2 2
2 0

1 1
{ coth 1}

8 3

mc d
mc e

h
ηη η η

π η
∞ −  − 

 
∫E B B . 

 

in which E =
2 3

eh
E

m c
. 

 The higher approximations in E may be easily determined up to a constant factor.  Let 
us think of the kth approximation ( ) ( )k

nW p− for the energy as being determined by the 

given p and n states: on the basis of the wave equation (16), it will have the following 
form: 
 

( ) ( )k
nW p− = gk ek | V0 |

k ⋅ G(e, h, | K |, p) , 

 
in which G is a function in which only the given quantities figure.  As a result of the 
gauge invariance, W(k) must be of at least kth order in g.  The higher powers of g are 
disregarded.  The energy density in kth order then becomes: 
 

(26) ( )
mat

kU =
2 1

2
02 3 2 10

1 0

1
| | ( )

4 (2 )!

m
k k k m mm

m
m x

B d
g e V dx G dp b G dp

h m dxπ

−∞∞ +∞ +∞

−−∞ −∞
= =

  − + −  
   

∑∫ ∫ ∫ . 

 
The integral over G must have the dimension (energy)−(k – 1) (impulse)−(k – 1) , and may 
longer depend upon the quantities c, h, | K |, which is possible only in the form: 
 

G dp
+∞

−∞∫ = 1 2 2

1

| |k k k
f

c K− − = 1 2 2 1

1

( )k k k
f

c m c x− −+
, 

 
in which fk is a numerical factor. 
 When one substitutes this in (26) ( )

mat
kU is given completely, up to a factor fk. 

 However, the numerical factor fk is easily determined by the fact that, from (8), Umat 
must be relativistically invariant.  Since Umat must depend upon only E2 – B2 and (EB) 2 in 
this way, one must have, for instance, that the coefficient of E4 differs from the 
coefficient of B4 only by the factor (−)k/2 .  The latter coefficient was already computed, 
and is given by (21).  One then obtains: 
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f2m =
3 22

(2 1)

m mB

m m

−

−
, 

 
and can therefore calculate the representation that HEISENBERG and EULER have 
given for L′ 1: 
 

L′  = 
2

2 2 2
2 20

1
coth cot 1 ( )

8 3

mc d
mc e

h
ηη ηη η η

π η
∞ −   − ⋅ − + −  

   
∫ B B B E B  

 

E = 
2 3m c

E
eh

,  B =
2 3m c

B
eh

. 

 
 This expression is computed for parallel fields.  In order to generalize it to arbitrary 
fields, one must write is as a function of the two invariants E2 – B2 and (EB) 2 .  This is 
made possible by HEISENBERG and EULER in a simple way by the relation: 
 

cot α cot β  = 
2 2

2 2

cos 2 conj.

cos 2 conj.

i
i

i

β α αβ
β α αβ

− + +
−

− + −
, 

and one obtains: 
 

  L′  = 
2 22

2
2 3 2 20

cos 2 ( ) conj.1
( )

8 cos 2 ( ) conj.

ie d
e i EB

hc i

η ηη η
π η η

∞ −
 − + +− 

− + −
∫

E B EB

E B EB

 

     
4 6 2

2 2
2 2 ( )

3

m c
B E

e h

η 
+ + − 


. 

 
 Due to the reality of the total expression this is actually dependent only on E2 – B2 
and (EB) 2. 
 In the scalar theory, the computation of the energy density and Lagrange function of 
the vacuum is carried out with the same mathematical tools.  An energy density of the 
vacuum comes about in this theory by way of the zero-point energy of the vacuum.  The 
total energy is given by PAULI and WEISSKOPF (loc. cit., formula (29)) as: 
 

Emat = ( 1)k k k
k

W N N+ −+ +∑ , 

 
in which Wk is the energy of the kth state and kN +  is the number of positrons, whilekN −  is 
the number of electrons that are associated with this state.  In an empty vacuum, the sum 
is taken over all remaining energies Wk , in which the energy Wk , which characterizes the 
states of impulse p and the quantum number n in a magnetic field B, has the value: 

                                                
 1 As for the question of convergence of this integral, we refer to the comments in the work of 
HEISENBERG and EULER on that matter (pp. 729). 
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scal( , )nW p B = 2 2 2 1

2
c p m c b n

 + + + 
 

. 

 
The summation over all states and division by the total volume leads to the energy 
density, which, by analogy with (19), is easily given by: 
 

Umat =
scal

2 3
0

( , )
8 n

n

b
dpW p B

hπ

∞ +∞

−∞
=
∑∫ . 

 
The only difference from the prior computation is in omitting the summation over the two 
spin directions.  One now easily verifies the following relation between the energy  

scal( , )nW p B  in the scalar theory of electrons and the energy ( , )nW p B−  in DIRAC’s 

theory: 

scal

0

2 ( , )
N

n
n n

W p B
=
∑ = 

1 1 2

1 0 1 0

( , ) ( , / 2)
N N

n n
n n

W p B W p B
σ σ

+ +
− −

=− = =− =

−∑∑ ∑∑ . 

 
We can thus express the energy density scalU ′ɶ  in the scalar theory in terms of the energy 

density U ′ɶ  in the DIRAC theory of positrons in the following way: 
 

scal2 ( )U B′ɶ = ( ) 2 ( / 2)U B U B′ ′−ɶ ɶ . 

 
 One thus sees here, as well, that the quadratic part that is independent of the field 
strengths is infinite.  The latter thus yields an infinite polarizability that is independent of 
the field strengths.  In order for the field-free vacuum to produce a useful result, one must 
further delete these two parts, and as a result of the relation: 
 

coth β – 2 coth
2

β
 = 

1

sinβ
−  

one obtains: 
 

scalU ′ɶ  = 
3 2

2 2
2 3(0)

1 1
1

16 sin 2

mc d
mc e

h
ηη ηη

π η η
∞ −   − − +  

   
∫ B B

B
. 

 
 Carrying out an analogous perturbation calculation in an electric field leads in the 
same way to an additional term in the Lagrange function of the field that is achieved in 
the DIRAC theory of positrons and is very useful: 
 

scalL′   = 
2 2 4 6 2

2 2
2 3 2 22 2(0)

1 2 ( )
( )

16 6cos ( ) 2 ( ) conj.

e d i EB m c
e B E

hc e hi

ηη η η
π η η

∞ −
  − + − − 

− + −  
∫

E B EB

. 

 
For the coefficients α, β that were defined in (4) one thus obtains: 
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α  = 
4

2 4 7

7 1

16 360

e h

m cπ
,  β  = 

4

7
α . 

 
 Now, we will prove the following property of the Lagrange function of the vacuum:  
For very large field strengths E or B the highest term in the addition L′ to the 
MAXWELLian Lagrange function in the DIRAC theory of positrons has the form: 
 

L′ ≈
2

2
2

 ln 
24

e
E

hcπ
− E ,  L′ ≈

2
2

2
 ln 

24

e
B

hcπ
B , resp. 

 
The ratio between the additional term L′ and the MAXWELLian Lagrange function L0 

=
1

8π
(E2 – B2) is thus logarithmic in the field strengths for higher values of them, and is, 

moreover, multiplied by the factor
2e

hc
: 

 

0

L

L

′
≈

2

ln 
3

e

hcπ
−

E ,  
0

L

L

′
≈

2

ln 
3

e

hcπ
− B , resp. 

 
The nonlinearity of the field equations thus represents only a small correction for field 

strengths that considerably higher than the critical field strength
2 3m c

eh
.  The agreement 

that was observed in the note of EULER and KOCKEL (loc. cit.), as well as in the work 
of EULER (loc. cit.), between the nonlinearity in the field equations that follows from the 
theory of positrons and the nonlinear field theory of BORN and INFELD 1 is therefore 
superficial.  In the latter theory the MAXWELL equations are already completely 

changed by the critical field strength F0 =
2 4

2

m c

e
 at the “surface of the electron,” such that 

the finitude of the self-energy of a point charge is then achieved.  By contrast, here the 
deviation from the MAXWELL field equations is still very small for fields of magnitude 
F0 and drops off much too slowly to play a similar role in the self-energy problem.  The 
extrapolation of the foregoing computations to the fields at the “surface of the electron” is 
generally not free of objections since the conditions (1) are not satisfied there.  It is 
therefore not obvious that an exact analysis in this context would yield an essentially 
different result. 
 

III. 
 

 In this section, the influence of arbitrary fields on the vacuum will be treated.  We 
restrict ourselves first to the static fields.  The stationary states of the electrons on the 
basis of the DIRAC wave equation and its energy eigenvalues will generally divided into 
two groups, which, when one turns on the static field adiabatically, originate in the 
                                                
 1 M. BORN and L. INFELD, Proc. Roy. Soc. 143, 410, 1933. 
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positive (negative, resp.) energy levels of the free electrons.  This happens, for example, 
in the Coulomb field of an atomic nucleus and for all static fields that are found in 
Nature. 
 There are also static fields in which such a subdivision breaks down, in which 
transitions from negative to positive states take place as a result of the field.  A well-
known example of this is a step potential of height > 2mc2.  These exceptional cases are 
not treatable as stationary fields and must be treated as time-independent fields that were 
turned on in a given time interval.  This is all the more necessary since such fields can 
hardly be maintained as stationary, as a result of pair creation. 
 However, in the case in which the eigenvalue spectrum can be subdivided into two 
groups one can compute the energy density U and the current-charge density i

�
, ρ of the 

vacuum electrons by the formula: 
 

(29)  { }
{ }

*

*

*

,

,

, ,

i i
i

i i
i

i i
i

U ih
t

e

i e c

ψ ψ

ρ ψ ψ

ψ αψ

 ∂ =   ∂ 
 =

 =


∑

∑

∑
� �

 

 
in which the summation is over the states that correspond to negative energy states of the 
free electrons.  The sum, as written, will diverge.  However, when the physically 
meaningful part is broken off we will obtain a convergent expression. 
 In order to establish this part on the basis of assumptions (1), we develop the 
summands in expression (29) in powers of the external field strengths in such a way that 
we think of the latter as multiplied by a factor of λ and then develop in powers of this 
factor.  This approach is identical with a successive perturbation calculation that starts 
with the free electrons as the zero order approximation. 
 Assumptions I1, I2 demand, above all, the vanishing of terms that are independent of 
λ, which arise from the contributions of the field that are independent of the free vacuum 
electrons.  If we temporarily consider only those free vacuum electrons whose impulse 
satisfies | p | < P then we obtain the following contribution for them: 1 
 

                                                
 1 This is really the current

2 2 2

ecp

p m c+

�

that is associated with the impulsep
� and the number of states 

3 34

dp

hπ

�

in the intervaldp
�

. 
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(30)  

2 2 2
0 3 3

| |

0 3 3
| |

0 3 3 2 2 2
| |

1
,

4

,
4

.
4

p P

p P

p P

U dp c p m c
h

e
dp

h

e cp
i dp

h p m c

π

ρ
π

π

<

<

<


= − +



 =


 =
 +

∫

∫

∫

�

�

�
� �

 

 
The total contribution of all electrons – i.e., P → ∞ – naturally diverges. 
 However, by separating the terms that are independent of λ assumption I2 is no longer 
completely satisfied.  The charge and current density ρ0, 0i

�
 of the field-free vacuum 

electrons also expresses itself by the fact that the presence of the potentials V, A
�

 yields 

additional terms ρ0V and 0( )i A
��

in the energy density, which must likewise be separated 

out.  These additional terms appear since the energy and impulse of the vacuum electrons, 
still unaffected by the fields, will also be changed by the presence of potentials by the 

amount eV (
e

A
c

�
, resp.). 

 Thus, assumptions I1 and I2 are not completely satisfied until one modifies the 
omitted contributions (30) in the following way: 
 

(31)  

2
2 2

0 3 3
| |

0 3 3
| |

0 3 3 2
| | 2 2

1
,

4

,
4

,
4

p P

p P

p P

e
U dp c p A m c

h c

e
dp

h

e
c p A

e c
i dp

h e
p A m c

c

π

ρ
π

π

<

<

<





    = − + +  
    


 =



  + 
  =

  + +   

∫

∫

∫

�

�

��

� �

 

 
in which, again, only the part that originates in the free vacuum electrons with impulse |p| 
< P is written down.  Now we still have to satisfy condition I3.  For that, we observe that 
a constant field-independent polarizability leads to terms on the energy density U(x) that 
are proportional to the squares E2(x) and B2(x) of the field strengths at the point x.  
Likewise, they lead to a current and charge density that is proportional to the first 
derivative of the fields, on the grounds of the relations: 
 

     i = rot M + 
dP

dt
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     ρ = div P,  
 
in which M and P are the electric and magnetic polarizations, which are proportional to 
the fields in the case of a constant polarizability.  In order to satisfy condition I3 the terms 
in the energy density U of the vacuum electrons that are proportional to E2 and B2 must 
therefore vanish, and in the current-charge density the terms that are proportional to the 
first derivatives must be neglected.  It is practical to not give the form of these terms 
explicitly, but to only recognize their properties in the course of computation. 
 By way of explanation, we calculate the charge and current density of the vacuum 
under the influence of an electric potential: 
 

(32)    V = 
( ) ( )

*
0 0

i gr i gr

h hV e V e
−

+
�� ��

 

and a magnetic potential: 
 

(33)   A
�

= 
( ) ( )

*
0 0

i gr i gr

h hA e A e
−

+
�� ��

� �
, 0( , )A g

� �
= 0 , 

 
with the help of perturbation theory.  These computations have already been carried out 
by HEISENBERG 1, and more generally by SERBER 2and PAULI and ROSE 3, and shall 
serve as only an illustration of our physical interpretation of the subtraction terms here.  
The charge density ρ is given, up to first order, by ρ = ρ(0) + ρ(1), where: 
 

ρ(1) = 
*{ , }ki i k

i k i k

H
e

W W

ψ ψ
−∑∑ + conj., 

 
in which the i is summed over the occupied states and k is summed over the unoccupied 
states, and Hik is the matrix element of the perturbation energy.  If we substitute the 

potential (32) as the perturbing potential then we obtain (W(p) = 2 2 2c p m c+ ): 

 

  ρ(1) = 
2 2 2 4

0
3 3

( ) ( ) ( , )

8 ( ) ( )[ ( ) ( )]

e V W p W p g c p p g m c
dp

h W p W p g W p W p gπ
− + − + −⋅ + + + +

∫
�

 

     +
( )the same thing 

conj.
with 

i gr

he
g

 
+ − 

��

 

 
 If one develops this in powers of g

�
 then one obtains: 

 

  ρ(1) = 
( )2 2

0
3 3 38 ( )

i gr

h
e V c

dp e
h W pπ

⋅ ∫
��

�
 

                                                
 1 HEISENBERG, Z. f. Phys., 90, 209, 1934. 
 2 R. SERBER, Phys. Rev. 48, 49, 1935. 
 3 W. PAULI and N. ROSE, Phys. Rev. 49, 462, 1936. 
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2 2 2 2 4 4 2 2 6 4

2 2 4 6

( ) 25 ( ) 21 ( )

2 ( ) 4 ( ) 16 ( ) 8 ( )

g c pg c g c pg g c pg

W p W p W p W p

 
− − + − + 

 
⋯ + conj. 

 
 Which part of this charge density is physically meaningful?  Due to assumption I2 , ρ0 
must drop out.  In ρ(1), the terms in g2 are proportional to second derivatives of V and thus 
to the first derivatives of field strengths and must be neglected as a result of I3 .  We also 
remark that only those terms lead to divergences.  The remaining ones yield finite 
integrals and, from HEISENBERG, are written in the form: 
 

(34) ρ(1) =
22

2

1

60

e h
V

hc mcπ
  ∆∆ 
 

+ higher derivatives of V . 

 
The exact computation in the first approximation was given by SERBER and PAULI and 
ROSE (loc. cit.). 
 As a further example, we consider the current densityi

�
of the field (33) in the first 

approximation: 

(1)i
�

= 
*{ , }ki i k

ik i k

H
e

W W

ψ αψ
−∑
�

+ conj. 

 This yields: 
 

(1)i
�

 = 
( ) 2 2 2

2 0
3 3

( ) ( ) ( ) ( ) 2 ( , )( , )

8 ( ) ( )[ ( ) ( )]

i gr

h
cA W p W p g E p c pg c n p g n p

e dp e
h W p g W p W p g W pπ

 + + + − +− + + + + 
∫

���
�

 

     +
the same thing 

conj.
with g

 
+ − 

, 

 
in which n is the unit vector in the directionA

�
.  When this is developed in g it yields: 

 

(35) 

2
(1)

3 3 3

2 2 4 2 6 2 2
2 2 2

2 4

4 2 2

2

1

4 ( )

3 ( ) 5 ( ) ( )
( ) ( )

2 4 ( ) 2 ( )

3 ( )
 terms of  order 4 and higher in .

4 ( )

e cA
i dp

h W p

c g c pg c np pg
W p c np

W p W p

c np g
g

W p

π


= −

  − − + − +


 
 + + 
 

∫
�

� �

 

 
 Terms that are independent of g − hence, gauge invariant − also appear in this 
expression.  However, they are identical with the omitted contribution 0i′

�
 from (31).  

Namely, if one develops 0i
�

 in A
�

 then one obtains: 
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         0i′
�

  = 
2

3 3 3

( )

4 ( ) ( ) ( )

e cp eA c p eA p
dp

h W p W p W pπ
 ⋅+ − + 
 

∫
� � �

�
⋯  

   = 0i
�

+ { }2 2 2 2
3 3 3

1
( ) ( )

4 ( )

cA
e dp W p c np

h W pπ
− +∫

�
�

⋯ . 

 

The terms of first order inA
�

 correspond with the terms in (35) that are independent of g.  
The terms that are proportional to g2 in (35) will likewise drop out, and the remaining 
ones give the following convergent result that corresponds to (34): 
 

(1)i
�

= 
22

2

1

60

e h
A

hc mcπ
  ∆∆ 
 

�
 + higher derivatives. 

 
 The two examples shall show that the omitted contributions are immediately 
recognizable under a perturbative calculation, and that the remaining ones, by assumption 
(1), do not create contributions from the vacuum electrons that would lead to divergences 
in the summation.  Indeed, the cited example proves this only in the first approximation.  
However, the consequences can be extended to higher order approximations with no 
further assumptions. 
 The treatment of time-dependent fields is not essentially different from the above.  It 
is necessary to let the time-dependent fields act from a time point t0 onward, such that 
before t0 the vacuum electrons were in a field-free state, or in stationary states that could 
be unambiguously subdivided into occupied and unoccupied states.  The timelike 
variation of these states from the time point t0 onward may be represented with the help 
of a perturbative calculation in powers of the external fields.  The expression (31) and the 
terms that follow from condition (I3) can then be separated in such a way that the 
remaining terms no longer lead to divergences.  The computation of the charge and 
current density of the vacuum for arbitrary time-dependent fields in the first 
approximation can be found in SERBER (loc. cit.) and PAULI and ROSE (loc. cit.).  The 
parts to be stripped off were formally extracted in the HEISENBERG work.  They are, 
however, completely identical, as would follow from assumption I. 
 How does one now express the creation of pairs by time-dependent fields?  The pairs 
are not immediately expressed by the energy, current, or charge densities.  Pair creation 
shows itself only in a total energy that increases proportional to time and corresponds to 
the energy of the electrons that were created.  The charge and current density is not 
immediately influenced by the pair creation since just as many positive and negative 
electrons will always be produced, which first affects the current-charge density, and the 
external fields can act on the electrons thus created only by way of the various charges. 1 
 It is therefore practical to calculate the pair creation in an external field directly as the 
transition of a vacuum electron into a positive energy state.  The creation probability of 
the electron pair is then identical with the increase in the intensity of the positive energy 

                                                
 1 The current and charge density that was computed by SERBER for pair-creation fields is therefore 
attributed to the fluctuations of vacuum electrons and is perhaps not the “created current-charge density.”  
The resonance condition that appears originates in the fact that these oscillations are particularly strong 
when the external frequency approaches an absorption frequency of the vacuum. 
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eigenfunction in question (the decrease in the intensity of the corresponding negative 
energy eigenfunction, resp.), as a result of the effect of the time-dependent field on the 
state that existed up to time t0 .  The calculation was carried out by BETHE and 
HEITLER 1, HULME and JAEGER 2, etc. 
 Pair annihilation and the resulting radiation of light, like any other spontaneous 
radiation process, can only be treated by the quantization of the wave fields, or by a 
corresponding inversion of the light absorption process. 
 In the representation used up to now, the parts of the vacuum electrons that were 
taken away were not explicitly given, but only their form and their dependence on the 
external field was determined.  In order to represent them explicitly, one must choose one 
of several options since these parts certainly include divergent expressions.  For this, the 
density matrix that was introduced by DIRAC is suitable, and which DIRAC and 
particularly HEISENBERG (loc. cit.) have applied to this problem.  The density matrix R 
is given by the following expression: 
 

(x′, k′ | R | x", k") = * ( , ) ( , )i i
i

x k x kψ ψ′ ′ ′′ ′′∑ , 

in which x′ and x" are two spacetime points, and k′ and k" are two spin indices.  The sum 
shall extend over all occupied states.  From this matrix, one can then easily construct the 
current and charge densities i

�
, r and the energy-impulse tensor 3 U µ

ν on the basis of the 
relations: 
 
 i
�

= lim ( ) ( | | )k k
x x

k k

e x k R x kα ′ ′′′ ′′→ ′ ′′

′ ′ ′′ ′′∑
�

 

 ρ = lim ( | | )
x x

k k

e x k R x k
′ ′′→ ′ ′′

′ ′ ′′ ′′∑  

 U µ
ν =

1
lim [ ( ) ( )] ( ) ( | | )

2 k k
x x

k k

ich e A x A x x k R x k
x x

µ µ ν

µ µ

α ′ ′′′ ′′→ ′ ′′

  ∂ ∂ ′ ′′ ′ ′ ′′ ′′− − +  ′ ′′∂ ∂    
∑  

      α4 = identity matrix. 
 
The density matrix has the advantage that for x′ ≠ x" the summation over the vacuum 
electrons does not diverge, although an expression that is given for x′ = x" will be 
singular. 
 From the assumptions (I), one can now say uniquely which part of the density matrix 
of the vacuum electrons turns into the omitted part when x′ = x", and one then arrives at 
an explicit representation for these terms. 
 The physically meaningless part must then consist of those terms that are independent 
of the field strengths, those that lead to terms in the current density, those that are 
proportional to the derivatives of the fields, and lead to terms in the energy density that 

                                                
 1 H. BETHE and W. HEITLER, Proc. Roy. Soc. 146, 34, 1934. 
 2 H. H. HULME and J. C. JAEGER, Proc. Roy. Soc. 
 3 The complete energy-impulse tensor is composed of the sum ofU µ

ν and the MAXWELLian energy-

impulse tensor of the field.  The component4
4U is therefore not the entire material energy density, but only 

the kinetic part. 
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are proportional to the square of the field strengths.  Moreover, the part of the density 
matrix that was removed must still be multiplied by the factor: 
 

u′ =
3

1

exp
x

i ix
i

ie
A dx Vdt

hc

′′

′
=

  −  
  
∑∫ , 

 
in which the integral inside the exponent is taken along the straight line from the point x′ 
to the point x".  This factor adds a contribution to the removed energy-impulse tensor that 
is precisely the one that originates in the fact that the unperturbed vacuum electrons in the 

field acquire an additional energy eV and an additional impulse
e

A
c

�
, and shall be omitted, 

as a consequence of assumption I2. 
 Since the part of the density matrix that was removed is, up to the factor u′, of at most 
second order in the field strengths, it may be obtained from a perturbative calculation 
from the density matrix of the free electrons.  This, in principle simple, but in practice 
very complicated, calculation laid the foundations for the determination of this matrix by 
HEISENBERG (loc. cit.).  The result may be formulated in a mathematically simple way 
when one always takes the mean of any quantity that is calculated with the help of the 
foregoing theory and those that are calculated with the help of a theory in which the 
electron charge is positive and the negative electron represents a “hole.”  The result is 
indeed the same in both cases.  The density matrix R will then be replaced with R′: 
 

(x′ k′ | R′ | x" k") = * *1
( ) ( ) ( ) ( )

2 i i k k
i k

x k x k x k x kψ ψ ψ ψ ′ ′ ′′ ′′ ′ ′ ′′ ′′− 
 
∑ ∑ , 

 
in which the first sum is taken over the occupied states and the second one is taken over 
the unoccupied states. 
 The omitted part (x′ k′ | S | x" k") then has the form: 
 

(x′ k′ | S | x" k") =
2

0 2

| |
lg 

| |

a x x
u S b

x x C

′ ′′−′ + +
′ ′′−

. 

 
In this, S0 is the matrix R′ for a vanishing potential, a and b  are functions of the field 
strength and their derivatives; C is a constant.  These quantities are given explicitly by 
HEISENBERG (loc. cit.) and by HEISENBERG and EULER (loc. cit.). 
 For the sake of doing particular calculations it is more practical to understand the 
structure of the omitted terms than to fall back on the explicit expression of 
HEISENBERG.  This is, above all, simpler since the remaining expressions will no 
longer be singular for x′ = x", such that one does not need the formal assistance of the 
density matrix for that calculation at all.  The summation over all vacuum electrons thus 
no longer leads to divergent expressions.  In general, the explicit HEISENBERG 
representation is suitable for showing the relativistic invariance and the validity of the 
conservation laws in the process. 
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 It is therefore apparent that the determination of the physical properties of the vacuum 
electrons that was described here involves no essential arbitrariness since only those 
effects were omitted that must be omitted on the grounds of the assumptions of positron 
theory: the energy and the charge of the vacuum electrons that were unperturbed by the 
field and the physically absurd field-independent constant polarizability of the vacuum.  
All physically meaningful effects of the vacuum electrons will be considered and lead to 
convergent integrals.  One may very well reach the conclusion that the hole theory of 
positrons leads to no difficulties for the electron theory as long as one restricts oneself to 
the treatment of unquantized wave fields. 
 At this point, I would like to express my heartfelt thanks to Profs. BOHR, 
HEISENBERG, and ROSENFELD for many discussions.  Also, I am grateful to the 
Rask-Ørsted-Fond, who made it possible for me to pursue this work at the Institut for 
teoretisk Fysik in Copenhagen. 
 

___________ 
 

 This paper deals with the modifications introduced into the electrodynamics of the vacuum by 
Dirac’s theory of the positron.  The behavior of the vacuum can be described unambiguously by 
assuming the existence of an infinite number of electrons occupying the negative energy states, 
provided that certain well-defined effects of these electrons are omitted, but only those to which it is 
obvious that no physical meaning can be ascribed. 
 The results are identical with those of Heisenberg’s and Dirac’s mathematical method of 
obtaining finite expressions in positron theory.  A simple method is given of calculating the 
polarizability of the vacuum for slowly varying fields. 
 


