“Uber die Elektrodynamik des Vakuums auf Grund der Quanterithdes Elektrons,Kongelige Danske
Videnskabernes Sel skab, Mathemati sk-fysiske Meddelelser 24, no. 6 (1936), 3-39.

ON THE ELECTRODYNAMICS OF THE VACUUM ON THE
BASIS OF THE QUANTUM THEORY OF THE ELECTRON

BY

V. WEISSKOPF

Translation by

D. H. Delphenich

One of the most important results in the new developmitite theory of the electron is
the possibility of converting electromagnetic field ggyemto matter. A light quantum,
for example, can, by the existence of other electrowiag fields in empty space, be
absorbed and converted into matter, in the form of a qgfaglectrons with opposite
charges.

The conservation of energy demands that the absorleildgnfiust be static so that the
absorbed light quantum will necessarily impart energyth® electron pair that is
produced. Its frequency must therefore satisfy the oelati = 2mc® + & + &, in which
mc? is the rest energy of the electron, @nénde; are the remaining energies of the two
electrons. We must consider this case, for exampléei production of electron pairs by
a y-quantum in the Coulomb field of an atomic nucleus.

Absorption can also be found in fields that arise father light quanta, in which the
latter can carry the energy of the electron pairhghat in this case the energyr® + &

+ & of the two electrons must be equal to the sum dhallight quanta that are absorbed
in this process.

The phenomenon of the absorption of light in vacuoasgmts an essential deviation
from MAXWELLian electrodynamics. Namely, the vacuuhak be independent of the
fields in it for a light wave that freely penetratéssince fields can be superimposed
independently in it as a result of the linearity of M@XWELL equations themselves.

It is already understandable without the introductibthe special theory of relativity
that in fields that do not possess the necessarggf@rthe creation of an electron pair
deviations from MAXWELLian electrodynamics must aridehigh-frequency light can
be absorbed into electromagnetic fields then so must eéxpect the scattering or
deflection of a light ray whose frequency is not enofeglpair creation, analogous to the
scattering of light by an atom whose smallest absmrdtequency is larger than that of
the light. The light in its passage through the eten&rgnetic fields will thus behave as if
the vacuum took on a dielectric constant that diffesmfunity as a result of the action of
the fields.

In order to represent these phenomena one must attabaten properties with the
theory of empty space that would produce the desired devitbom MAXWELLian
electrodynamics. In fact, the relativistic wave naubs of electrons also leads to such
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consequences, if one uses the states of negativeckemergy that follow from the
DIRAC wave equation for the description of the vacuum.

The basic assumption of DIRAC's theory of the positiothat the physical behavior
of the vacuum can be described, in a certain sensdieblgethavior of an infinite set of
electrons — the vacuum electrons — that are found iesstat negative energy and
collectively define its state. It is self-explangtdhat the determination cannot be
complete, since the vacuum electrons must possesgantimrge and current density,
which must have no physical meaning. However, it shows tbhatexample, pair
creation (and the opposite process) can be regarded mp @fa vacuum electron into a
state of positive energy under the influence of electignetic fields, so it appears to be a
real electron, whereas the vacuum around a negativeragieist poorer, which must
follow from the appearance of a positive electron.e Talculations for pair creation and
annihilation that come out of this picture show good ageggnvith experiments.

The calculation of most other effects that follonwrh the theory of positrons always
runs into the problem of the degree to which the behavioracuum electrons is to
actually be regarded as that of the vacuum. This proldexomplicated by the fact that
the charge, current, and energy densities of the vaalectrons are infinite, such that
one must generally break off a finite piece of thiinite sum and associate it with
reality. The solution of this problem was carried outDdiRAC and HEISENBERG,
who gave a method for determining the physically meanirgdul of the effects of the
vacuum electrons that was free of contradictionswhat follows, it will be shown that
this determination is completely of any arbitrariness¢esiit consequently assumes that
only the following properties of the vacuum electronspmgsically meaningless:

1) The energy of the vacuum electrons in field - free space.

(1) 2) The charge and current densities @& Yacuum electrons in field - free spe

3) Aspatially and temporally constant field - independent eleatricmagneti
polarizability of the vacuum.

These quantitie$ relate only to a field-free vacuum, and it may be méea as self-
explanatory that they can have no physical meaning. thidle quantities prove to be
divergent sums of contributions from all vacuum elecroht must be further added that
a constant polarizability will be in no way establidhéut only total charge and field
strength values, multiplied by a constant factor.

In the next section, we will compute the physical progerof the vacuum that are
slowly varying in time and space on the basis of thesamaptions. We understand this

to mean such field$ that vary only slightly over distance of Ien@%rEEand time

. h . .
intervals of length—;, and thus satisfy the conditions:
mc

! In the sequel, the assumption that 1), 2), or 3) igteebarded as meaningless will be denoted Hy, |
or Is, resp.
2his PLANCK'’s constant divided by72
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In general, the presence of such fields will createaios, since the light quanta that
appear have too little energy. We would like to excludeettieeme cases in which the
radiation density is so high as to allow the collece¥ect of very many quanta or in
which electrostatic fields with potential differencesgeeater than ¢ are present (in
these cases, pairs will be created, on the groundsedfitEIN paradox). Under these
circumstances the electromagnetic properties of tlhewa may be represented by a
field-independent electric and magnetic polarizabilitgwipty space, which leads to, for
example, the splitting of light by electric fields the scattering of light by light. For
weak fields, the dielectricity and permeability tensdrthe vacuum has the following

approximate formE, B, D, H are the four electromagnetic field quantities

Di =) &E. Hi =) /4B,
k k
_ eh 2 _ e
(2) & = A +W[2(E -B%)g, +7BB, ]
e'h - 1, i=k
k= Ok +————| 2(E2 - B?)g, — TEE -
o= Bt e e X ).~ TEE] % {o, iz k.

The computation of these quantities has alreadyn beseried out by EULER and
KOCKEL ?, as well as HEISENBERG and EULER In the next section, a somewhat
simpler method will be employed. In addition, teperties of the vacuum shall be
calculated on the basis of the scalar relativisawe equation for the electron of KLEIN
and GORDON. In PAULI and WEISSKOPF, this wave emumyielded the existence of
positive and negative particles, as well as theieatton and annihilation by
electromagnetic fields, without any further parlazuassumptions. Thus, these particles
possess no spin and obey Bose statistics, soh#syt is not applicable to real-world
electrons. It is therefore worthy of note thasttheory also leads to properties of the
vacuum for which no physical meaning can be atthcl@ne thus obtains, for example, a
likewise infinite spatially and temporally constdiaid-independent polarizability of the
vacuum. By neglecting the corresponding terms, anges at results that are similar to
those of DIRAC's positron theory. The physical pedies of the vacuum originate in
the “zero-point energy” of matter, which also defemn absent particles through the
external field strengths and therefore contribué@s additional term to the purely
MAXWELLian field energy.

In section 3, we will treat the consequences ef@RAC theory of positrons for the
case of general external fields, and we will shbat bn the basis of the aforementioned
three assumptions concerning the effects of vaceiectrons one always comes to finite
and unique results. The HEISENBERG subtractiorsgigtion proves itself to be

! In the sequel, arrows will be placed over vector quastiwthen confusion is possible.
2H. EULER and B. KOCKEL, Naturwis23, 246, 1935; H. EULER, Ann. d. Phys.,26, 393.
¥ W. HEISENBERG and H. EULER, ZS. f. Phy8, 714, 1936.
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identical with these three assumptions and thus appmauesidhat less arbitrary than was
assumed in the prior literature.

None of the following calculations explicitly considée interactions of the vacuum
electrons, but exclusively consider a single vacuurotrele under the influence of a
given field. However, by this choice of path the opigogffect is not completely
neglected since one can by no means separate the éxfielchdrom the field that is
created by the vacuum electrons themselves, such tbatield that enters into the
calculations implicitly partially includes the action thie other vacuum electrons. This
process is analogous to the HARTREE calculation oétéetron orbits of an atom in the
field that is produced by the electrons themselves. R®rekplicit calculation of the
interaction one must employ quantum electrodynamies, perform the quantization of
the wave fields. As is well known, even without theswamption of infinitely many
vacuum electrons this already leads to divergencesstaltinot be pursued any further
in what follows.

In this section, the electrodynamics of the vaculnallsbe treated for fields that
satisfy conditions (1). The field equations are esthbll by being given the energy
densityU as a function of the field strengths. We determireamtifrom the energy
densityJ of the vacuum electrons, which shall be definitive loé tehavior of the
vacuum.

It is advantageous to recall the Lagrange fundtiari the electromagnetic field since
it is already completely established by the requirenoémelativistic invariance. The
following relations exist between the Lagrange functicand the energy density.

(3) U:ZES—E—L.

In MAXWELLian electrodynamics, one has:

1 2 2 1 2 2
L =— (E° -B), =— (E°+B9).
871( ) 871( )

Anything that is added to this Lagrange function must, likeLgrange function itself,
be relativistically invariant. As long as we only restourselves to slowly varying fields
(condition (1)), these additional terms will only depend uplom values of the field
strengths and not on their derivatives. They can thwxebe functions of only the
invariants E? —B?) and EB)%. If we develop the additional terms in powers of ié&f

strengths up to sixth order then we obtain:

L=t (E>-B% +L/,
8mr
L' = a (E*-B%?+ B(EB)* + & (B —B?)° + { (E* - B (EB)* + ...
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and therefore, from (3):

:8i(E2+BZ)+Ur
7T

(4) U'=a(E*-B?)(3E*+B?%)+ B(EB)*+
+&(E* -B?)*(5E*+B®)+ ¢(EB)*(3E *~ B %) +---

The addition to the energy density is therefore coraplaetetermined by the invariance
properties; in what follows, it will thus be necessamly for us to determine the
constantsa, S, & ¢, ..., that appear in it. These statements are alreasigdbupon the
special assumption that’ includes no terms of second order in the field strendths
only ones of higher order. This is equivalent to theestant that the vacuum possesses
no polarizability independently of the fields.

The calculations of EULER and KOCKEL, as well assth@f HEISENBERG and
EULER, yield the following values for the constants:

1 ¢€'h 1 €hnd
a= —— , =7a, = =
360777 m*c’ p ¢ 63077 méc*?

13
(=2¢.

The dielectricity and permeability tensor that iwegm by (2) is obtained from the
relations:

Di :4lTa—L, Hi :—4776—L.
oE d

In what follows, we shall derive these resultsnreasentially simply fashion.

The additional termU’ to the MAXWELL vacuum energy density shall be
determined from the additional tetithat the vacuum electrons contribute. The energy
density due to the presence of electrons in thesga, ¢, ..., ¢ ... is given by:

U :i(EZ +B?%)+U’
8

U’ :Z{wf,{(ﬁ,$ grad+ eﬁ\j +,8mc2},l/i } :

in whicha, S are the DIRAC matrices am is the vector potential. The additional
termU’ to the MAXWELL density is therefore not equal teettotal material energy
densityUmat : -

" Here and in the sequel, when two eigenfunctigrend ¢ are placed between curly bracketg {}
means the inner product of the two spingrand¢ : {¢, ¢} = Zl//kqjk , in whichk is the spin index.
k
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Ny .0
(5) Umat—|hzi: {4". ,alﬂi} ;
but:
(6) U’ = Una— 2 {4, eV},

in whichV is the scalar potential. One can idenififyas the kinetic energy density. The
total material energy densitymna: may, as we will see, be easily computed: the secon
term of (6) — the potential energy density — carob&ined fromJn4 in the following
way: Wk}en one thinks of the scalar potential apgpronal to the constant factdrthen
one has:

) 0
() AJ 2 vy dr=A o2 U .

in which the integration is carried out over allsplace. In the limiting case of constant
fields, which, from the conditions (1), we shallns@er here, we can regard the field
strengthE itself as the constant factdr and can, moreover, employ the relation (7) for
the energy density. We then obtain the kineticgndensity as:

ouU

mat

(78.) U’ = Umat_ E aE
If one equates this with (3) then one sees that#me relationship exists between the
material and kinetic energy densities that existsvben -L. andU. Thus,Unacan be set
equal to the aforementioned addition to the Lageangction:

(8) U=-L".

Since the form o’ is completely determined by the requirement oftnakic

invariance, it suffices to determibéfor a particular field. We choose a homogeneous
magnetic fieldB = (Bx , 0, 0) and a spatially periodic electric fieldaths parallel to it,

and whose potential is given by:
igx _igx

(9) V=Veh +Vje .

! The proof proceeds as follows: When the energy operhtsrindependent of a parametithen the
diagonal elementd; of the energy operator changes by an infinitesimahtadic incrementA of A

according to:
dH; =(a_Hj dAa -
oA )i

When we now set:
H=H, + eV,
this yields:
OH .
AEV)i=A—L.
04
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We thus equate this result with the general form (d)vaili determine the coefficients of
this form from that.

By contrast, HEISENBERG and EULER chose a congtlaatric field, which results
in complications as a consequence of the KLEIN paradkny arbitrarily small
homogeneous electric field creates electron pairs whextends over all of space. The
electron content of the energy density is therefawe precisely stationary. In the
previous calculations, due to periodicity one can avoid appearance of potential
differences greater thamr? so that no pair creation comes about.

The material energy density is, by the fact thagpresents all negative energy states,
given by:

(20) Umat = Z\N.{w:! W}

W is the energy that belongs to the eigenfuncig@gn and the summation is over all
negative states; the sum is obviously infinite. itdhfinite piece of this sum has any
physical meaning will be uniquely deducible frore #xplicit expression fddma.

The ¢4 obey the wave equation:

iho ev . 0
11 ——-—+a,h—+K =0
(11) {cat c 1 oox }l//
(12) K = ayihi+ax[ihi—9| B |y}—,[>’mc.
oy 0X ¢

We temporarily follow the computations of HEISENB&Rand EULER (loc. cit.), in
which we only make inessential changes to the megarof the variables.
For a solution, we start with:

(13) W :ﬁeh“ W(y) X ().

When the operatdf is applied tay twice this yields:

2

2
Ky = {—hzaa—f—iayaz%lBl{pﬁg |B ij +m202}¢/-

We now set:
2p,h b 2eh
= +—= | [—, b=—|B].
n (y b j\/th CI I

b is the magnitude of the magnetic field. By theaduction of;7 we arrive at the fact
thatK? has the form of the Hamilton function for an dstdr. We therefore set:

uy) =H, () [%j |
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in whichl:|n(/7) is then™ normalized eigenfunction. One then has(y) f dy = 1 and:

1-o0

2*}}1//, o=iay a,.

(14) K2y = {mzcz+b(n+

It now remains to choose a representation for the dommponenty in which o is
diagonal:

10 0 O
o1 0 o0
%o 0 -1 o
00 0 -1

The first two components ap correspond to a positive spin in tkealirection and the
other two, to a negative one. By this choice, theeneyuation (11) decomposes into two
separate systems of equations for the two componertishé@tsame spin, such that we
obtain two wave equations for two-rowed matrices. dperatorK may then be written
in the formK = y| K |, in whichyis a two-rowed matrix that satisfies the conditjor 1
and |K | means the ordinary number:

K| :\/m2c2+b(n+1_zaxj :

which depends upon the valag of the spin. Likewise, the matrix that enters into the
wave equation is also two-rowed, and it anticommuteb witoyy + yax = 0, since,
from (12), ax also anticommutes witk. The two wave equations may then be written in
the form:

(16) {mimxi : eV+y|K|}¢/:0,

c ot _x E

in which ax and y are two-rowed matrices that associate the sanmeaspy to a pair of
components. The difference between the wave emsafor the two spin directions lies
only in the differing values forH | . Since the dependence¢bn the variableg andz
has already been established by (13), (16) repieaenave equation for just the function
X(x). Up till now, the sequence of calculations hasrbessentially identical to those of
HEISENBERG and EULER.

We now treat the casé = O to begin with. The eigenvalues and the nozedl
eigenfunctions for (16) read:

1 ipxX iWni(px)t
(17) xrﬁi)(px): a(i)(px)—e h (& h

27
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(18) W (p,) = ¢ pi+|K [ = ic\/pf+mc +b(n+1 20 j

The upper index (+) orj distinguishes the positive and negative energtesta®(p) is
a normalized 2-component “spinor.” The equatioB) (And its solutions (17), (18)
represent a one-dimensional analogue of the DIRA@&&on in which one findg | K |
¢, in place of the mass terfimc [y . One positive and one negative energy eigenvalue
are associated with an impulpg. (The other two energy eigenvalues yield the avav
equation for opposite spin.)

If we now substitute these quantities in the epe@nsity (10) then we obtain:

Urae= 3. 31D (p) (n)F[thj X0 ()F

-1n=0

As a result of the fact thalp, :\Edn, as well ag X (p) F:ﬁ, the integration over
px yields:

_ b J& e
(19) Unai= s 2, 2. [, dpW, (P

o=-1n=0

From now on, we shall writg, instead ofx .
In order to carry out the summation, we construct:

z ZW =W, +2ZW‘

o=-1n=0

We now apply the EULER summation formula for actiom F(x):

—F(a)+ZF(a+rb)+ F(a+Nb)=

=1

:E n+Nb N/ 2my = (2m-1 E (am-1
b{jﬁ F (x)dx mz:l() o )Ib {FC™Ya+Nb - {a)]

Bm is them™ Bernoulli number. F™(x) is them™ part of F(x). When we apply this to
(19), we obtain:

m (2m)!

F(X) =—Cy p> +m%c’+X.

1 2m m m 2m-1
(20) Umat:4ﬂ2h2.[dp{[ F(x)dx+ Y b2 0 ()« >(0)}
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In the special case of a pure magnetic field, from (@a®, can setyma; andJ’ equal to
each other. This expression already represents thigyedensity in a development in
powers of the magnetic field strendih Now it is very easy to determine any part of the

contributiorJ’ of the vacuum electrons that shall be definitive forrdsd vacuum: The
term that is independent bfrepresents the energy density of the field-free vacanons
a divergent integral. Since the energy density mustskafor field-free vacuum, this
expression can have no real meaning. Furthermore, kiesvidie divergent) terms iof
must be omitted since the energy density shall possessrms of second order in the
field strengths. The omission of these terms is ¥eelixded in the assumption that the
polarizability of the vacuum tends to zero for a vanishieddfi It must be emphasized
that the subtraction described here is exclusivelydaseobvious assumptions about the
field-free vacuum.

One then obtains the additional term to the MAXWHdrlergy density as:

am-3 °

(21) U’ = c i B,(-)" b2m1[3... (4m- S)FOO dp
- (pz +m202)7

4ht = (2m)! 221

The power series may easily be represented by the powes sievelopment of the
hyperbolic coth. One obtains:

1 mc)’ podn n?
U’ =—nc?| — —Le"{ncothyB - 1-—9B% ¢,
Sﬁm(hj jo 7 {/7 /] 3

in which 8 is the magnetic field strength measured in unitsth@ critical field

3
strengthrrﬁ ;
eh

eh
Bt
, 1 ¢eh _, 1 eh® _;

= - +
360777 m*c’ 6307° m&®®

If we equate this with each term of (4) that indadfourth and sixth powers of the
magnetic field then we obtain:

g = 1 ¢€'h 1 ¢€n
36072 m*c’’ 63077 mfc®

We will now consider an electric field, in additio To this end, we solve the wave
equation (16) foX(x) with the method of the BORN approximation. Weest that the
part of Uny that depends on the potentldl appears in the second approximation,

proportional toV>. When we develop)ma in powers oV: Upa= U@ +U® + ... then,
from (10), we obtain:
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(22) U= 2 W2 (g FYO+ 2 WO (g, ).
W (g, B)¥are thek" approximations in the corresponding developmehta/oand

|¢, F. One observes that/"®vanishes in the given electric field. It may besilga

shown that:
[ (P @ dxdydz=0,

such that the spatial meanWfa: is given by only the first term in (22):
V=Y W (g F)O.

(|¢/|2)(°) was already computed in the case of a pure maxjfieid, and we thus obtain, in
complete analogy to (19):

T b E & e
U@ = dpW, @ (p).
= g 20 2 )., P ()

The value ofW®may be computed by the method of the BORN apprdioma
With the eigenfunctions (17) one gets:

W =gy, | 27 (P+0). a(PH"  [{a7(p+9, & (pH*
(23) W, (p)-W, (p+09) W, (p)-W, (p+09)
+ (the same thing withg ).

The expression between the { }-brackets representscalar product of two two-
component spinors. By the integration of (23) opgethe second term in [ ]-bracket
drops out if one carries out the integration oftérens in —-g over the variablp’'=p—g:

(+)* () 2
fopw =1, fop 1 (B2 OO,
W, (p)-W, (p+9)
+ (the same thing witly ).

(24)

This approach is in no way unique since the irgtegn of the second term in the { }-
brackets of (23) leads to a divergent result, whithwever, can be made finite by the
addition of the corresponding terms ig-or, as in (24), can be made to vanish no matter
which manner by which one chooses the integrati@nialdles. However, this
arbitrariness does not affect our computation singgerforming the summation ovaer
we employed only the terms that were proportiondt b*, etc., in which, on the basis

of the EULER summation formula, only derivatives\gf”(p) up ton appear. As one
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can easily convince oneself, these derivatives of secoter an the [ ]-brackets no
longer diverge under integration oyersuch the result of this integration is independent
of the choice of integration variables.

Moreover, from (24), this yields:

2
; K
[apw;@ = -€|v, L[ ap 2' -
47 c(pH|KFY

in which a series development in powersgoias already carried out and the terms of
order higher than second were omitted. This means negjebe derivatives of the field
strength on the grounds of conditions (1). Likewisejnathe previous computation,

U@ is now given by (20) if we set:

mat

2 m’c?+ X
FO) = -€ |V, P& —T= X
4 c(p® +m’c®+x)?

One then obtains, if one first integrates gwer

R 1 2 o dX 00 - Bm _\m d2m—1 1
U = e S M| [ e B | |
x=0

4Ph’c 3 o m’ci+x (2m)! | dx*™™* mc?+x

Since this expression is quadratic in the eledteid strengths, from (7a) we obtain
for the kinetic energy density:
Jg@=-y®@

mat *

From the previously discussed grounds, the terhfswth and higher order in the
field strengths can be regarded as physically medmli for the vacuum, such that the
divergent integral is omitted. We now replagewith the electric field strength:

in which the overbar means the spatial mean, andbtagn for the first two terms:

5 ¢'h 7 1 e
25 U= — _EB*-———— E®B*+.-.
(25) 3607 mc’ 2 3607° mtc*®
in the limiting case of weakly varying fields whosgatial average can be neglected.
If one equates (25) with the terms in (4) that@m@portional toE” B andE? B* then
one obtains the relations:
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1 €hn
3607 m°ct®

5 ¢'h

_ 2a - ,
p 360777 m*c’

7
3¢E-{=—
¢—¢ >
and with the previously computed values doandp.
13
L=Ta, { :EE :

The expression fo®, which is exact in the magnetic field strengththien given
by:

2
U@ =1 e[ M€ L2 m%e‘”{n%cothn%—l}.
h)3 Jonp

inwhiche =—_ g

m?c?

The higher approximations hmay be easily determined up to a constant fadtet.
us think of thek™ approximationW, ™ (p)for the energy as being determined by the

given p andn states: on the basis of the wave equation (1&yjllithave the following
form:

W, (p)=d€| Vo [ [G(e h, [K|,p),
in which G is a function in which only the given quantitiaguire. As a result of the

gauge invarianceM® must be of at leak™ order ing. The higher powers df are
disregarded. The energy densityihorder then becomes:

_1 . oo o N d2m—1 oo
26) U= s 0 IV | o] Gapr b e oy (dxzm’lj‘“dej }

m=1

The integral ovelG must have the dimension (enerdy) ¥ (impulse)® ~? | and may
longer depend upon the quantite$, |K |, which is possible only in the form:

1 1
J‘ de fk k llK |2k 2 fk k l(m C2+X)k—l

in whichfy is a numerical factor.

When one substitutes this in (28} is given completely, up to a factfr

However, the numerical factéyis easily determined by the fact that, from Bat
must be relativistically invariant. Sintkn, must depend upon onl? —B? and EB) ? in
this way, one must have, for instance, that theffic@nt of E* differs from the
coefficient ofB* only by the factor<)“? . The latter coefficient was already computed,
and is given by (21). One then obtains:
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23m—ZBm
T m2m-1)’
and can therefore calculate the representation HEEEENBERG and EULER have
given forL"*;

, 1 mc) ¢=dy _ N o oo
L'=—mc?| — || —Le"{nBcothnBlonB- B ¢*—B
8 ( h jjo n? {,7 7 K 3 ¢

m2C3 m2C3

¢= E, B =
eh eh

B.

This expression is computed for parallel fields.order to generalize it to arbitrary
fields, one must write is as a function of the tweariantsE?> — B and EB) 2. This is
made possible by HEISENBERG and EULER in a sim@g tw the relation:

Z_a’+ + '
cotacotf = —i COS\/’B a”+ 2ap conj’
cos\/,[z’2 —-a®+ 2aB - conj

and one obtains:

0097\/62—%2+ 2 &5 )+ conj
0097\/62—%2+ 2 &5 )- conj

o 1€
L= 8 hcI

0

me”%{inz(EB)

e’h

m'c® 2
+ 2 +?(BZ_E2)}-

Due to the reality of the total expression thisdsually dependent only dif — B?
and EB) 2.

In the scalar theory, the computation of the epelgnsity and Lagrange function of
the vacuum is carried out with the same matheniatcds. An energy density of the
vacuum comes about in this theory by way of the-geint energy of the vacuum. The
total energy is given by PAULI and WEISSKOPF (lott., formula (29)) as:

Erar= YW, (N] +N; +1),
k

in which W is the energy of thk" state and\;" is the number of positrons, whig is

the number of electrons that are associated wishstate. In an empty vacuum, the sum
is taken over all remaining energh&, in which the energy\W, which characterizes the
states of impulsp and the quantum numbeiin a magnetic field, has the value:

! As for the question of convergence of this integral, refer to the comments in the work of
HEISENBERG and EULER on that matter (pp. 729).
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W= (p, B):c\/ p? + m%c? +b(n+%j .

The summation over all states and division by the tetdme leads to the energy
density, which, by analogy with (19), is easily given by:

Umat =

b c +oo scal
52 ). AW (p,B).
n=0

The only difference from the prior computationnsomitting the summation over the two
spin directions. One now easily verifies the failog relation between the energy

W:*!(p,B) in the scalar theory of electrons and the enevgy(p,B) in DIRAC's
theory:

N +1 N +1 2N
2> W (p,B)= D D Wi (p,B)=Y. D W, (p,B/2).
n=0n o=-1n=0 o=-1n=0

We can thus express the energy density, in the scalar theory in terms of the energy
densityU’ in the DIRAC theory of positrons in the followingay:

20..,(B)=U"(B)-20"(B/2).

One thus sees here, as well, that the quadratictipet is independent of the field
strengths is infinite. The latter thus yields afinite polarizability that is independent of
the field strengths. In order for the field-frecuum to produce a useful result, one must
further delete these two parts, and as a restiteofelation:

cothp-2 cothé = —_i
2 sing

one obtains:

. 1 mc)’ ¢ d 1 2
U mcz(_jf D erinp——-1+L 7.
1677 h ) Jonp sinB 2

Carrying out an analogous perturbation calculatiomn electric field leads in the
same way to an additional term in the Lagrangetfanof the field that is achieved in
the DIRAC theory of positrons and is very useful:

o= 1 e_zj-oo d_ne_,, 2in* (EB) N m?*c® _/7_2(BZ _E?)
seal 1677 hc’'© p? 2_gp2 — coni. €h* 6 '
n cosr7\/ ¢ —B° )+ 2 B )- con;

For the coefficientsr, Sthat were defined in (4) one thus obtains:
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g = 7 1 ¢h
16 3607° m*c”’

Now, we will prove the following property of theagrange function of the vacuum:
For very large field strength& or B the highest term in the additiob’ to the
MAXWELLian Lagrange function in the DIRAC theory pbsitrons has the form:

eZ

 24rPhe

2

e
E?Ine, L'=
24°he

/

B*In B, resp.

The ratio between the additional tetmand the MAXWELLian Lagrange functioly

zsi(E2 —B? is thus logarithmic in the field strengths foghér values of them, and is,
T

2
moreover, multiplied by the factﬁr—:
C

! a2 [
L. In¢, L.
L, 3rhc L,

eZ

3rrhe

InB, resp.

The nonlinearity of the field equations thus reprgs only a small correction for field
3
strengths that considerably higher than the ctitiedd strength%. The agreement

that was observed in the note of EULER and KOCKIeL.(cit.), as well as in the work
of EULER (loc. cit.), between the nonlinearity hretfield equations that follows from the
theory of positrons and the nonlinear field theofyBORN and INFELD' is therefore

superficial. In the latter theory the MAXWELL edions are already completely

4

changed by the critical field strendth = at the “surface of the electron,” such that

e

the finitude of the self-energy of a point chargeahen achieved. By contrast, here the
deviation from the MAXWELL field equations is stilery small for fields of magnitude
Fo and drops off much too slowly to play a similalerm the self-energy problem. The
extrapolation of the foregoing computations tofibkls at the “surface of the electron” is
generally not free of objections since the condgiql) are not satisfied there. It is
therefore not obvious that an exact analysis ia tuntext would yield an essentially
different result.

In this section, the influence of arbitrary fields the vacuum will be treated. We
restrict ourselves first to the static fields. Tdtationary states of the electrons on the
basis of the DIRAC wave equation and its energgrarglues will generally divided into
two groups, which, when one turns on the statitd fediabatically, originate in the

! M. BORN and L. INFELD, Proc. Roy. Sot43 410, 1933.
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positive (negative, resp.) energy levels of the freetelas. This happens, for example,
in the Coulomb field of an atomic nucleus and forstditic fields that are found in
Nature.

There are also static fields in which such a subdimidireaks down, in which
transitions from negative to positive states takeeplas a result of the field. A well-
known example of this is a step potential of heightme®2 These exceptional cases are
not treatable as stationary fields and must be treatéidha-independent fields that were
turned on in a given time interval. This is all the enoecessary since such fields can
hardly be maintained as stationary, as a result ofcpaation.

However, in the case in which the eigenvalue spectambe subdivided into two
groups one can compute the energy dengiand the current-charge density p of the
vacuum electrons by the formula:

U :ihiz{w?,%wi}
(29) p=e>{w .}

i =e>{y cap},

in which the summation is over the states thatespond to negative energy states of the
free electrons. The sum, as written, will divergédowever, when the physically
meaningful part is broken off we will obtain a cengent expression.

In order to establish this part on the basis fuagptions (1), we develop the
summands in expression (29) in powers of the eatdmld strengths in such a way that
we think of the latter as multiplied by a factordfind then develop in powers of this
factor. This approach is identical with a sucoesgerturbation calculation that starts
with the free electrons as the zero order appraoima

Assumptions 4, I, demand, above all, the vanishing of terms thatratependent of
A, which arise from the contributions of the fieldht are independent of the free vacuum
electrons. If we temporarily consider only thossefvacuum electrons whose impulse
satisfies p | <P then we obtain the following contribution for theln

! This is really the current__S°P____ &P that is associated with the impu and the number of states
y 2 2.2 p
\ p? +m’

_ P i the intervatlp .
ar’h®
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Uoz—ﬁ '[ dpc /p2+mzcz,

Ipl<P

_ e ~
(30) Po = m“ﬂ[P dp,
b= [ o P
0 3 [ .
4n3h |pl<P p2 + m2C2
The total contribution of all electrons — i.B.,—~ o — naturally diverges.

However, by separating the terms that are indegr@naf A assumption,lis no longer
completely satisfied. The charge and current densi i, of the field-free vacuum

electrons also expresses itself by the fact thatptiesence of the potentidlsA yields
additional termsaV and (QA) in the energy density, which must likewise be safsat

out. These additional terms appear since the graerd impulse of the vacuum electrons,
still unaffected by the fields, will also be chaddgey the presence of potentials by the

amounteV (S A, resp.).
c

Thus, assumptions; land b are not completely satisfied until one modifieg th
omitted contributions (30) in the following way:

_ 1 " e N, oo
U, = = I dp{c\/{pn\’Aj +m°c }

[pl<P
(31) [ o,
Ipl<P

0 -_©
°  47°h’

o c(p+§,&j
04 I P 2
PP \/(p+eAj +mec?
c

in which, again, only the part that originateshe free vacuum electrons with impulpg |
< P is written down. Now we still have to satisfy dution Is. For that, we observe that
a constant field-independent polarizability leanlserms on the energy densityx) that
are proportional to the squar&(x) and B%x) of the field strengths at the poirt
Likewise, they lead to a current and charge dengiat is proportional to the first
derivative of the fields, on the grounds of thatieins:

i:rotM+£
dt
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p=divP,

in whichM andP are the electric and magnetic polarizations, whrehpaioportional to
the fields in the case of a constant polarizabilityorader to satisfy conditiory the terms
in the energy density of the vacuum electrons that are proportionaEt@ndB? must
therefore vanish, and in the current-charge densityaimas that are proportional to the
first derivatives must be neglected. It is practicahot give the form of these terms
explicitly, but to only recognize their properties ie ttourse of computation.

By way of explanation, we calculate the charge andeaurdensity of the vacuum
under the influence of an electric potential:

i) i)
(32) V=Ve" +Ve "
and a magnetic potential:
i _i(g) .
(33) A= Ae" +Ae ", (A.,9)=0,

with the help of perturbation theory. These comparnathave already been carried out
by HEISENBERG, and more generally by SERBE&1d PAULI and ROSE, and shall
serve as only an illustration of our physical interpretabf the subtraction terms here.
The charge density is given, up to first order, hy= 09 + &, where:

Pz ey y Muld ) Hk|{¢/|!¢/k} + conj.,

in which thei is summed over the occupied states lamgisummed over the unoccupied
states, andHix is the matrix element of the perturbation energy.we substitute the

potential (32) as the perturbing potential then we obtA{p)=c,/ p’ +m’c?):

AV = eV,  dp {W(IO)W(IO+ g)-c’(p.p+g)-mc’
8rh’ W (pW (p+g)[W(p) +W(p+g)]

[the same thini} i) _
H o e " +conj.
with —g

If one develops this in powers @f then one obtains:

2 i(gr)

P = Vo E_fdf) S

8°h® 3 W3(p)

! HEISENBERG, Z. f. Phys90, 209, 1934.
2R. SERBER, Phys. Rex8, 49, 1935.
¥ W. PAULI and N. ROSE, Phys. Re#9, 462, 1936.
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{g_z_cz(pg)z c’g* |, 25¢*(p9)’g 21c6(pg)“+“}+conj_
2 W?(p) 4w’ (IO) 16 W'(p) 8W°(p)

Which part of this charge density is physically meanirgfDlue to assumption ) o
must drop out. @'Y, the terms in Gare proportional to second derivatives/cdnd thus
to the first derivatives of field strengths and must églected as a result af | We also
remark that only those terms lead to divergences. €hmining ones yield finite
integrals and, from HEISENBERG, are written in therfo

1 € (h
34 b= AAV + higher derivatives of .
(34) A= 607 he [ j 9
The exact computation in the first approximation was givenEREER and PAULI and
ROSE (loc. cit.).

As a further example, we consider the current densitythe field (33) in the first
approximation:

ro= gy Hulth, alh) Hk|{¢/|! v | con
This yields: | k
1= B et {W(p)W(p+g)+E (p) +c*(pg) =2¢*(n, p+ g)(M, p)}
8n3h3 W (p+g)W(p)W(p+g)+W(p)]

(the same thini} _
H o +con;.,
with —g

in whichn is the unit vector in the directioh. When this is developed @it yields:

o) = _ eZCA.[ 5 1
470 W3 (p)
208 20z 9% 3c’(pg)’  5c°(p)*(pg)?
{W(p) T AW ) 2 whp)

(35)

,3c'(p)’g”
4 W(p)

+ terms of order 4 and higher{g}

Terms that are independent @f— hence, gauge invariant also appear in this
expression. However, they are identical with theiti@eh contributioni; from (31).

Namely, if one developg in A then one obtains:
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e Idf’{ o , e _ch(e&Eﬁ)+,,}

° "2t Pl T Wip) T WA(p)
_ 2 cA L1 2 2 2, ]
=i +e 4ﬂ3h3J'de3(p){W (p)—c’(np)®+-} .

The terms of first order iA correspond with the terms in (35) that are indelpen ofg.
The terms that are proportional ¢ in (35) will likewise drop out, and the remaining
ones give the following convergent result that esponds to (34):

'_’(l)_ 1 ez h 2 e . . .
I = ———| — | AAA + higher derivatives.
6077° hc\ mc

The two examples shall show that the omitted dmutions are immediately
recognizable under a perturbative calculation, thatithe remaining ones, by assumption
(1), do not create contributions from the vacuuet&bns that would lead to divergences
in the summation. Indeed, the cited example prowssonly in the first approximation.
However, the consequences can be extended to hayder approximations with no
further assumptions.

The treatment of time-dependent fields is not sséy different from the above. It
IS necessary to let the time-dependent fields @eh fa time pointy onward, such that
beforety the vacuum electrons were in a field-free staten stationary states that could
be unambiguously subdivided into occupied and umpied states. The timelike
variation of these states from the time pdgmdnward may be represented with the help
of a perturbative calculation in powers of the exaéfields. The expression (31) and the
terms that follow from condition {J can then be separated in such a way that the
remaining terms no longer lead to divergences. ddwmmputation of the charge and
current density of the vacuum for arbitrary timeeedent fields in the first
approximation can be found in SERBER (loc. citg &AULI and ROSE (loc. cit.). The
parts to be stripped off were formally extractedha HEISENBERG work. They are,
however, completely identical, as would follow frassumption I.

How does one now express the creation of pairsnig-dependent fields? The pairs
are not immediately expressed by the energy, cyroercharge densities. Pair creation
shows itself only in a total energy that incregsegportional to time and corresponds to
the energy of the electrons that were created. clhagge and current density is not
immediately influenced by the pair creation sinast jas many positive and negative
electrons will always be produced, which first affethe current-charge density, and the
external fields can act on the electrons thus eteanly by way of the various chargés.

It is therefore practical to calculate the pa&ation in an external field directly as the
transition of a vacuum electron into a positiverggestate. The creation probability of
the electron pair is then identical with the ina®an the intensity of the positive energy

! The current and charge density that was computed by SER&Epaif-creation fields is therefore
attributed to the fluctuations of vacuum electrons amgeibiaps not the “created current-charge density.”
The resonance condition that appears originates in tteHat these oscillations are particularly strong
when the external frequency approaches an absorption figgokthe vacuum.
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eigenfunction in question (the decrease in the intemditthe corresponding negative

energy eigenfunction, resp.), as a result of the efiethe time-dependent field on the

state that existed up to tintg . The calculation was carried out by BETHE and
HEITLER !, HULME and JAEGER, etc.

Pair annihilation and the resulting radiation of lighke any other spontaneous
radiation process, can only be treated by the quamtizati the wave fields, or by a
corresponding inversion of the light absorption process.

In the representation used up to now, the parts of dbewn electrons that were
taken away were not explicitly given, but only theirnioand their dependence on the
external field was determined. In order to represemn teplicitly, one must choose one
of several options since these parts certainly includergent expressions. For this, the
density matrix that was introduced by DIRAC is suitabled avhich DIRAC and
particularly HEISENBERG (loc. cit.) have applied tostproblem. The density matik
is given by the following expression:

(X, K IRIX, K =2 4 (XKW (X' K",

in whichx' andx" are two spacetime points, akidandk" are two spin indices. The sum
shall extend over all occupied states. From thasrimy one can then easily construct the

current and charge densitiés r and the energy-impulse ten§oUV" on the basis of the
relations:

i=lim eZ(c?) aer (XK' R| X'K")
X=X e

p=lim e> (XK' | R| x'Kk")
X=X K

UY¥=Ilim =<ich i—i - A“(X) + A“(X)] Z( a’) e XK'| R X'k")
- X 0X 0X KK"

U U
a* = identity matrix.

The density matrix has the advantage thatxfot X' the summation over the vacuum
electrons does not diverge, although an expressianis given forx = x" will be
singular.

From the assumptions (I), one can now say unigwéigh part of the density matrix
of the vacuum electrons turns into the omitted pdrénx = x", and one then arrives at
an explicit representation for these terms.

The physically meaningless part must then counsigiose terms that are independent
of the field strengths, those that lead to termgh@a current density, those that are
proportional to the derivatives of the fields, dedd to terms in the energy density that

! H. BETHE and W. HEITLER, Proc. Roy. Sdai6, 34, 1934.
2H. H. HULME and J. C. JAEGER, Proc. Roy. Soc.

% The complete energy-impulse tensor is composed of theosurfiand the MAXWELLian energy-

impulse tensor of the field. The componigfiis therefore not the entire material energy density.obly
the kinetic part.
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are proportional to the square of the field strengthkreover, the part of the density
matrix that was removed must still be multiplied by thetda

u :exp“—ij.: [Z:, Adx —thﬂ :

in which the integral inside the exponent is taken alongtifaaght line from the point
to the pointx". This factor adds a contribution to the removed enargulse tensor that
is precisely the one that originates in the fact titunperturbed vacuum electrons in the

field acquire an additional energy and an additional impuls?eﬁ\, and shall be omitted,
c

as a consequence of assumption |
Since the part of the density matrix that was remasieap to the factou’, of at most

second order in the field strengths, it may be obtainech fa perturbative calculation
from the density matrix of the free electrons. Timsprinciple simple, but in practice
very complicated, calculation laid the foundationstfer determination of this matrix by
HEISENBERG (loc. cit.). The result may be formuthte a mathematically simple way
when one always takes the mean of any quantity thedldsilated with the help of the
foregoing theory and those that are calculated withhidp of a theory in which the
electron charge is positive and the negative electrpresents a “hole.” The result is
indeed the same in both cases. The density nRtul then be replaced witR':

(X K |R[X"K’) =%{Z¢ﬁ* (XK) ¢ (XK") —Zwl(x'k')wk(x"k")},

in which the first sum is taken over the occupied statel the second one is taken over
the unoccupied states.
The omitted part{ k' | S| X" k") then has the form:

, a _ |X1_Xn|2
X K|S|X'K")=uS§ + +bl
( | | ) S) |X1_Xn|2 g C

In this, § is the matrixR for a vanishing potentialgand b are functions of the field
strength and their derivative€; is a constant. These quantities are given ekpliby
HEISENBERG (loc. cit.) and by HEISENBERG and EULH&. cit.).

For the sake of doing particular calculationssitmore practical to understand the
structure of the omitted terms than to fall back the explicit expression of
HEISENBERG. This is, above all, simpler since tieenaining expressions will no
longer be singular fox' = x", such that one does not need the formal assestahthe
density matrix for that calculation at all. Tharsmation over all vacuum electrons thus
no longer leads to divergent expressions. In g#ndéhe explicit HEISENBERG
representation is suitable for showing the relatiwiinvariance and the validity of the
conservation laws in the process.
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It is therefore apparent that the determination opthesical properties of the vacuum
electrons that was described here involves no essemtatariness since only those
effects were omitted that must be omitted on the groohtise assumptions of positron
theory: the energy and the charge of the vacuum electha were unperturbed by the
field and the physically absurd field-independent constalarigability of the vacuum.
All physically meaningful effects of the vacuum eleasavill be considered and lead to
convergent integrals. One may very well reach theclosion that the hole theory of
positrons leads to no difficulties for the electroedty as long as one restricts oneself to
the treatment of unquantized wave fields.

At this point, | would like to express my heartfelt thanto Profs. BOHR,
HEISENBERG, and ROSENFELD for many discussions. Alsam grateful to the
Rask-@rsted-Fond, who made it possible for me to pursuenvtrk at the Institut for
teoretisk Fysik in Copenhagen.

This paper deals with the modifications introduced inb the electrodynamics of the vacuum by
Dirac’s theory of the positron. The behavior of thevacuum can be described unambiguously by
assuming the existence of an infinite number of ele@ns occupying the negative energy states,
provided that certain well-defined effects of theselectrons are omitted, but only those to which it is
obvious that no physical meaning can be ascribed.

The results are identical with those of Heisenberg’sand Dirac’s mathematical method of
obtaining finite expressions in positron theory. A snple method is given of calculating the
polarizability of the vacuum for slowly varying fields.



