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§ 1.  Introduction and overview of contents. 
 

 The work of numerous physicists has led to the hypothesis that the cathode rays and 
Becquerel rays of the atom are to be regarded as negative electricity – viz., the so-called 
electrons (1) – in motion.  Research with cathode rays yielded the same value for the 
quotient of the charge and inertial mass of those particles that had been obtained for the 
electrical particles that oscillate in light waves in the simplest form of the Zeeman effect.  
That result allowed H. Wiechert (2), in particular, to link the theory of cathode rays to 
the formulation of the electromagnetic theory of light that goes back to H. A. Lorentz (3), 
and which attributed the fact that matter participates in electrical and optical phenomena 
to the motion of electrical particles.  The problem of the dynamics of the electron is of 
fundamental significance in the electron theory of electrodynamics.  In particular, it begs 
the question: Is the inertia of the electron to be explained completely by the dynamical 
effect of its electromagnetic field, or is it necessary to appeal to a “material mass” that is 
independent of the electric charge, in addition to the “electromagnetic mass”?  The 
former notion was maintained by W. Sutherland (4) and P. Drude (5).  As Th. des 
Coudres (6) and H. A. Lorentz (7) have remarked, the answer to that question depends 
upon the inertial phenomena that the electron will exhibit for large velocities that can no 
longer be neglected in comparison to the velocity of light; in fact, any material that 
adheres to the particle as such that might be present would be independent of the inertia 
of motion that is required by the electromagnetic field mechanism, but must be a function 
of the velocity.  If one succeeds in constructing the dynamics of the electron without 
appealing to a material inertia then that would open the door to an electromagnetic basis 
for all of mechanics (8). 

                                                
 (1) Cf., W. Kaufmann, “Die Entwicklung des Elektronenbegriffes,” Verhandl. der 73. 
Naturforschersammlung in Hamburg, pp. 115; Phys. Zeit. 3 (1901), pp. 9. 
 (2) E. Wiechert, Göttinger Nachrichten (1898), pp. 87; Grundlagen der Elektrodynamik, Leipzig, 1899, 
pp. 93  
 (3) H. A. Lorentz, Versuch einer Theorie der elektrischen und optischen Erscheinungen in bewegten 
Körper, Leiden, 1895. 
 (4) W. Sutherland, Phil. Mag. 47 (1899), pp. 249. 
 (5) P. Drude, Ann. Phys. (Leipzig) 1 (1900), pp. 566 and 609.  
 (6) Th. des Coudres, Verhandl. d. phys. Gesellsch. zu Berlin 17 (1898), pp. 69.  
 (7) H. A. Lorentz, Phys. Zeit. 2 (1900), pp. 78.  
 (8) W. Wien, Arch. Néerland (2) 5 (1900), p. 96  (Lorentz-Festschrift); Ann. Phys. (Leipzig) 5 (1901), 
pp. 501. 
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 We seem closer to its solution for electrodynamics, as well as mechanics, since W. 
Kaufmann (1) proved in his research into the electrical and magnetic deflections of 
Becquerel rays that the velocity of the electrons there did not lie very far beneath the 
velocity of light and that their inertial mass actually increased with increasing velocity.  
For that reason, a resolution of the question of whether the experimentally-found 
dependency of mass on velocity could be interpreted as being purely electromagnetic 
would be impossible, given the present state of the theory.  Indeed, O. Heaviside (2) has 
calculated the magnetic energy of a slowly-moving electron; however, the attempt of J. J. 
Thomson (3) to determine the “apparent” mass of the spherical electron at high velocities 
must be regarded as unsuccessful. The theoretical investigations of W. B. Morton  (4) and 
G. F. C. Searle (5) into the fields of uniformly-moving electrically-charged conductors of 
ellipsoidal form were more successful; it led to a knowledge of the electromagnetic 
energy of the electron.  As a result, only the “longitudinal” mass could be computed from 
it, which counteracts the acceleration in the direction of motion, while the “transverse” 
mass, which can be inferred directly from the deflection experiments, would not be 
determined from the energy.  On the other hand, the formulas for the longitudinal and 
transversal mass that H. A. Lorentz communicated (6), but without giving the method of 
proof, contained only the first two terms in series developments that continue in powers 
of the square of the velocity; that gives a satisfactory approximation for cathode rays, but 
not by any means for Becquerel rays.  That was the state of the theory when I published 
my first paper (7) on the dynamics of electrons.  Indeed, the formulas that I derived for 
the transversal electromagnetic mass do not seem to represent the empirically-found 
dependency upon the velocity in an entirely satisfying way.  As a result, after correcting a 
previously-circumvented error in computation, W. Kaufmann (8) succeeded in bringing 
the theory into agreement with observations when he eliminated the errors that originated 
in the imprecise knowledge of the field strengths of the deflecting electric and magnetic 
fields by a suitable method.  Later, more precise measurements (9) confirmed the validity 
of the formula that was derived from the electromagnetic theory within the limits of error 
in the experiment.  The result can then be expressed as: The mass of the electron has a 
purely electromagnetic character. 
 In the present treatise, whose content I have already reported upon to the Karlsbader 
Naturforschersammlung (10), I pose the problem of constructing the dynamics of the 
electron upon purely-electromagnetic foundations.  I ascribe a spherical shape to the 
electron and homogeneous distribution of the charge in concentric spherical layers; in 
particular, the two simplest assumptions of a homogeneous volume charge and a 

                                                
 (1) W. Kaufmann, Göttinger Nachrichten (1901), pp. 143.  
 (2) O. Heaviside, Phil. Mag. 27 (1899), pp. 324; Electrical Papers 2, pp. 505.  
 (3) J. J. Thompson, Recent researches, 1893, pp. 21.  
 (4) W. B. Morton , Phil. Mag. 41, pp. 488.  
 (5) G. F. C. Searle, Phil. Trans. 187A (1896), pp. 675; Phil. Mag. 44 (1897), pp. 329. 
 (6) H. A. Lorentz, Phys, Zeit. 2 (1900), pp. 78.  
 (7) M. Abraham , Göttinger Nachrichten (1902), pp. 20. 
 (8) W. Kaufmann, Göttinger Nachrichten (1902), pp. 291. 
 (9) W. Kaufmann, Verhandl. der 74. Naturforscherversammlung in Karlsbad; Phys. Zeit. 4 (1902), pp. 
54.  
 (10) M. Abraham , Verhandl. der 74. Naturforscherversammlung in Karlsbad; Phys. Zeit. 4 (1902), pp. 
57.   
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homogeneous surface charge will be preferred.  Along with that, I generally also operate 
with homogeneous volume and surface charges on an ellipsoid, in order to decide which 
results follow from the general basic equations and which ones follow from the special 
assumption of the omni-directional symmetry of the electron. 
 There are three systems of fundamental equations upon which the dynamics of 
electrons rests. The first one – viz., the fundamental kinematical equation (I) − restricts 
the freedom of motion of the electron, and the system of field equations (II) implies the 
electromagnetic field that is generated by the electron, while the third system of 
fundamental dynamical equations (III) determines the motions that the electron will 
perform in a given external field. 
 The kinematics of the electron that is contained in the first fundamental equation 
agrees with that of the rigid body. The electricity in the volume element of the rigid 
electron is distributed just like matter in the volume element of the rigid body.  The 
fundamental kinematical hypothesis might seem arbitrary to many.  Many will invoke the 
analogy with an ordinary, electrically-charged solid body and be of the opinion that the 
enormous field strengths that arise on the outer surface of the electron (they exceed the 
ones that are accessible to measurement by a billion-fold) will deform the electron.  For 
the spherical electron, the electric and elastic forces would then be in equilibrium as long 
as the electron is at rest.  However, the force of the electromagnetic field, and therefore 
also the equilibrium form of the electron, will remain unchanged throughout the motion.  
This picture does not agree with experiment.  The assumption of a deformable electron 
also seems to be inadmissible upon fundamental grounds.  It would then lead to the 
conclusion that the change of form in the electromagnetic forces, or the work that is done 
against them, would provoke an internal potential energy in the electron, in addition to 
the electromagnetic energy.  If that were actually necessary then an electromagnetic basis 
for the theory of cathode and Becquerel rays – which are purely electrical processes – 
would already be impossible, and one would have to abandon any electromagnetic basis 
for mechanics from the outset.  Now, our goal is to give the dynamics of the electron a 
purely electromagnetic basis.  Therefore, we might assign just as little elasticity to it as 
possible, like material mass.  Conversely, we hope to learn about the inertia and elasticity 
of matter on the basis of the electromagnetic picture. 
 Heinrich Hertz  might have described an argument in his Prinzipien der Mechanik 
that is related to the aforementioned one when he allowed only those kinematical 
connections whose existence implied the creation or destruction of kinetic energy.    That 
was necessary because he wished to attribute all energy to the kinetic energy of motion 
and all forces to the kinematical constraints.  Hertz raised the objection that we will find 
that rigid constraints are realized only approximately in reality in the following words (1): 
“In the search for true rigid constraints, mechanics will perhaps need to descend into the 
world of the atom.”  Now, electromagnetic mechanics descends even further.  In atoms of 
negative electricity, those spheres – whose radius amounts to only the billionth part of a 
millimeter – will take on a rigid, unchanging, distribution of electrical charge.  Hertz 
showed convincingly that it is permissible to speak of rigid constraints before one speaks 
of forces.  Above all, our dynamics of the electron refrains from speaking of forces that 
tend to deform the electron.  It speaks of only “external forces” that make it possible to 
endow it with velocity or rotational velocity and “internal forces” that originate in the 
                                                
 (1) H. Hertz, Die Prinzipien der Mechanik, Leipzig, 1894, pp. 41.  
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field of the electron and maintain equilibrium.  Moreover, these “forces” and “torques” 
are only auxiliary notions that are defined by the basic kinematical and electromagnetic 
concepts.  The same thing will be true for the words “work,” “energy,” “quantity of 
motion,” whose choice will generally make the efforts to make the analogy of 
electromagnetic mechanics with ordinary mechanics clearer more definitive. 
 The field equations and the basic dynamical equations will be developed in the 
second section in the context of the Lorentz theory.  In the third paragraph, it will be 
verified that one can derive not only an electromagnetic energy from that theory, but also 
an electromagnetic quantity of motion.  Poincaré (1) first emphasized that fact.  He 
showed that by introducing such a thing, the center-of-mass theorem will be true for 
systems of electrons and asserted the same thing for the surface theorem.  The existence 
of an electromagnetic quantity of motion has a fundamental significance for the dynamics 
of electrons.  It alone will make it possible for one to reduce the internal forces to an 
“impulse” and an “angular impulse” that depend upon the electromagnetic field and will 
thus permit a simplified calculation of the electromagnetic mass and the electromagnetic 
moment of inertia.  The truly remarkable result is that the dynamics of the most important 
class of motions of electrons – viz., the “distinguished motions” – can be described by 
Lagrange’s analytical mechanics.  I have therefore believed that a new derivation of the 
electromagnetic quantity of motion should be given.  The scalar expression for the virtual 
work of the internal forces will be converted with the help of vector analysis, and one 
will simultaneously obtain the Poincaré transformation of the internal forces and the 
corresponding one for internal torque.  In the fourth paragraph, the basic dynamical 
equations (III) will be put into a form (VII) that corresponds to d’Alembert’s principle by 
introducing the transformed expression for the virtual work of the internal forces.  That 
also implies the equations of motion (VII, a, b) of the electron, which determine the 
temporal evolution of the impulse and angular impulse.  The greater difficulty in the 
mathematical treatment of these equations of motion, as opposed to the equations of 
motion of ordinary mechanics, is based upon the fact that impulse and angular impulse 
cannot be derived in a simultaneous and rigorous way as functions of the prevailing 
velocity and angular velocity, but must be calculated separately by integrating the field 
equations for each individual motion according to the way that they were prescribed. 
 In the fifth section, once the field equations are referred to a coordinate system that is 
fixed in the electron, we will arrive at the realization that a class of distinguished motions 
deserves special attention.  It is characterized by the fact that the field is stationary when 
it is evaluated in` a frame that is rigidly bound to the electron, and the related property 
that the vector that relates to the internal force is the gradient of a convection potential.  
Uniform translations and uniform rotations belong to that distinguished class of motions, 
among other things. 
 Pure translations will be examined in the next four paragraphs (6-9).  The laws of the 
field that is generated by a uniformly-moving field are already contained essentially in 
the papers of Morton  and Searle that were cited above.  However, the fact, which 
follows from the field laws, that impulse and energy can be derived from the Lagrangian 
function in the manner that is known to analytical mechanics remained unknown to those 

                                                
 (1) H. Poincaré, Arch. Néerland. (2) 5 (1900), pp. 252.  (Lorentz Festschrift).  J. J. Thompson gave a 
curious derivation of the electromagnetic quantity of motion from the impulse of moving Faraday tubes.  
Rec. res. (1893), pp. 9.  
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authors, and that function can be defined to be the difference of the magnetic and 
electrical energies, and is expressed by an integral that extends over the volume of the 
electron and depends upon the convection potential.  Newton’s first axiom is true for 
pure translations.  The second axiom is also true; i.e., one can define an electromagnetic 
mass.  Admittedly, it is not a scalar, like the mass of ordinary mechanics, but a tensor 
with rotational symmetry whose components − viz., the longitudinal and transverse mass 
– depend upon the velocity in different ways.  In general, the second axiom is true for 
only quasi-stationary motions; i.e., ones that are not accelerating too rapidly.  However, it 
is shown that, in practice, all observable changes of velocity and deflections prove to be 
anything but quasi-stationary. 
 In the tenth section, the general investigation of the “distinguished motions” will be 
taken up again.  A consideration that is based upon the law of energy and the law of 
impulse will lead to the result that the Lagrange equations will be true for stationary and 
quasi-stationary motions of that class.  In the eleventh paragraph, that will be applied to 
the rotation of electrons, and in the twelfth, to the translatory motion of an ellipsoid. 
 The mathematical formulation of all of the relationships that are developed will take 
on not only greater elegance, but a closer connection with the physical viewpoint, when 
one employs vector calculus.  As far as the geometric meaning of the concepts and 
symbols of that calculus are concerned, I shall refer to my article in the Encyklopädie der 
mathematischen Wissenschaften (1).  Here, I shall be content to summarize the following 
symbols and rules of calculation that will be used.  In general, vectors will always be 
denoted by German letters, and their components will generally be identified by an index.  
We define the following: 
 

Symbols: 
 

(A B), viz., the interior product of the vectors A and B, is the scalar: 

 
Ax Bx + Ay By + Az Bz . 

 
[A B], viz., the exterior product of the vectors A and B, is the vector: 

 
Ay Bz − Az By , Az Bx − Ax Bz , Ax By − Ay Bx . 

 
div A, viz., the divergence of the vector A, is the scalar: 

 

yx z

x y z

∂∂ ∂+ +
∂ ∂ ∂

AA A
. 

 
 Gauss’s theorem for the known transformation of a spatial integral into a surface 
integral: 

dv∫∫∫  div A = do∫∫  Av 

                                                
 (1) M. Abraham , Encyklopädie d. mathem. Wissensch. 4, art. 14.  
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will be employed frequently. 
 curl A, viz., the curl of the vector A, is the vector whose components are: 

 

yz

y z

∂∂ −
∂ ∂

AA
, x z

z x

∂ ∂−
∂ ∂
A A

, y x

x y

∂ ∂−
∂ ∂
A A

. 

 
 grad ϕ, viz., the gradient of the scalar ϕ, is a vector with the components: 
 

− 
x

ϕ∂
∂

, − 
y

ϕ∂
∂

, − 
z

ϕ∂
∂

. 

 ∆ϕ is the scalar: 
2 2 2

2 2 2x y z

ϕ ϕ ϕ∂ ∂ ∂+ +
∂ ∂ ∂

. 

 
 ∆A is the vector with the components: 

 
2 2 2

2 2 2
x x x

x y z

∂ ∂ ∂+ +
∂ ∂ ∂
A A A

, 
2 2 2

2 2 2

y y y

x y z

∂ ∂ ∂
+ +

∂ ∂ ∂
A A A

, 
2 2 2

2 2 2
z z z

x y z

∂ ∂ ∂+ +
∂ ∂ ∂
A A A

, 

 
 (A ∇) B is the vector whose components are: 

 

x x x
x y zx y z

∂ ∂ ∂+ +
∂ ∂ ∂
B B B

A A A , y y y
x y zx y z

∂ ∂ ∂
+ +

∂ ∂ ∂
B B B

A A A , 

z z z
x y zx y z

∂ ∂ ∂+ +
∂ ∂ ∂
B B B

A A A . 

 
 Even those whose are not familiar with vector analysis can convince themselves, by 
direct calculation, of the validity of the following: 
 

Rules of calculation: 
 

α) (A B) = (B A). 

β) [A B] = [B A]. 

γ) ([A B], C) = (A, [B C]). 

δ) [A [B, C]] = B (A, C) − C (A, B). 

ε) div ϕ A = ϕ div A – (A grad ϕ) .  By using Gauss’s theorem, one can also write this 

rule of calculation as: 
 

do∫∫  ϕ Aν = div ( grad )dv dvϕ ϕ−∫∫∫ ∫∫∫A A . 
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ζ) div [A B] = (B curl A) – (A curl B).    Gauss’s theorem implies that: 

 

do∫∫  [A B]v = ( curl ) ( curl )dv dv−∫∫∫ ∫∫∫B A A B . 

 
η) curl [A B] = (B V) A + (A V) B + A div B – B div A. 

ϑ) − grad (A B) = [A curl B] + [B curl A] + (A V) B + (B V) A. 

ι) div grad ϕ = − ∆ϕ. 
κ) curl curl A = − grad A – ∆A. 

 
 We give an overview of the most important notations that we shall use in what 
follows: 

Notations: 
 

t  time 
x, y, z Cartesian coordinates 
dv  volume element 
do  surface element on the boundary of the field 
n  exterior normal to it 

q  translation velocity vector of the electron 

ϑ  angular velocity vector 
r  vector that indicates the distance from the center of the electron to one 

of its points. 
v = q + [ϑ x]  velocity of the point 

δs virtual displacement vector 
ξ, η¸ ζ its components 
q magnitude of the translational velocity 
c speed of light 

β = 
q

c
 quotient of the two magnitudes 

E, H field strength of the electric (magnetic, resp.) field that is generated by 

the electron 
Eh, Hh field strengths of the external field 

F = E + 
1

c
[v H], Fh = Eh +

1

c
[v Hh], 

H′ = H − 1

c
[v E], 

S = 
4

c

π
[E H] Poynting’s radiation vector 

We, Wm, W electric, magnetic, and total energy 
L = Wm – We  Lagrangian function 
G, G the impulse vector (its magnitude, resp.) 
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M angular impulse 

K external force 

Θ external torque 
Ai , Ah the work done by the internal (external, resp.) forces 
Φ scalar potential 
A vector potential 

ϕ = Φ – 
1

c
(v A) convection potential 

ρ spatial density of electricity 
e charge of the electron, in absolute electrostatic units 

ε = 
| |e

c
 magnitude of the charge, electromagnetically measured 

  
µ0 electromagnetic mass for small velocities 

µs = 3
4 µ0 χ(β) = 3

4 µ0 ⋅⋅⋅⋅ 2 2

1 1 1 2
ln

1 1

β
β β β β

  +− +  − −  
 = longitudinal mass 

 µr = 3
4 µ0 ψ(β) = 3

4 µ0 ⋅⋅⋅⋅ 
2

2

1 1 1
ln 1

2 1

β β
β β β

    + + −    −    
 = transverse mass 

p electromagnetic moment of inertia 
a radius of the electron 
 
 

§ 2.  The basic equations 
 

 We assign a charge of e to the electron – viz., the atom of negative electricity – and 
express it in absolute electrostatic units.  We regard the free electron that moves in 
cathode rays and Becquerel rays as a sphere of unvarying radius a.  We make the two 
simplest-possible assumptions on the distribution of charge:  Electricity shall be 
distributed either uniformly over the entire volume of the ball or uniformly over its 
surface; we will distinguish these two case by the terms volume charge and surface 
charge.  For that reason, in the general developments, we shall always compute with a 
finite spatial density ρ, while we regard the case of surface charge as a limiting case of a 
uniform distribution over a very thin layer that is distributed between two concentric 
spheres. 
 Our first basic hypothesis is that electricity shall be distributed throughout the 
volume element of the rigid electron like matter in the volume element of the rigid body.  
Thus, the kinematics of rigid bodies shall be true for the motion of the electron and the 
electricity that they are endowed with.  Let q denote the vector that describes the 

direction and magnitude of velocity of the center of the electron, or the “translational 
velocity of the electron.”  Let ϑ be the vector whose magnitude defines the angular 
velocity around the center and whose direction defines the orientation of the rotational 
axis.  The radius vector that points from the center to an arbitrary point of the electron 
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will be written by r.  The velocity of the point of the electron is then determined by the 

basic kinematical equation: 
(I)      v = q + [ϑ r]. 

 
 As in analytical mechanics, in the dynamics of the electron, it also preferable to direct 
one’s attention to an only imaginary “virtual” displacement of the points of the electron, 
along with the actual motion that exists, and that displacement will satisfy the basic 
kinematical equation in its own right; we denote it by δs and its components by ξ, η, ζ.  
The latter must fulfill the equations: 
 

(Ia)   0 = 
x

ξ∂
∂

 = 
y

η∂
∂

 = 
z

ζ∂
∂

 = 
z y

η ζ∂ ∂+
∂ ∂

 = 
x z

ζ ξ∂ ∂+
∂ ∂

 = 
y x

ξ η∂ ∂+
∂ ∂

, 

 
which express the idea that the virtual displacement cannot be linked with a change in 
form. 
 If the motion of the electron is known then the electromagnetic field that is generated 
by the electron will be determined by the field equations of the Lorentz theory: 
 

(II)    

1 4
) curl ,

1
) curl ,

) div 4 .

) div 0.

a
c t c

b
c t

c

d

πρ

πρ

∂ = − ⋅ ∂


∂ − = ∂
=

 =

C
H v

H
C

E

H

 

 
Here, E, H denote the field strengths of the field that is generated by the electron, 

measured in absolute Gaussian units, and c is the speed of light.   A change in 
comparison to the Hertz-Heaviside form of the field equations will come about only 
when the conductor current is replaced with a convection current.  The convection current 
is therefore always determined by the absolute motion of the electron.  The field 
equations (II) refer to a coordinate system that is fixed in the ether.  It shows that a well-
defined absolute velocity of translation that is equal to the speed of light will take on the 
meaning of a critical velocity in the dynamics of electrons. 
 Here, a form of the field equations might be given that is more closely connected to 
the original Maxwell system of equations; its importance to the theory of electrons was 
stressed by Th. des Coudres (1) and E. Wiechert (2), in particular.  Let Φ be the scalar 
potential, and let A be the vector potential, which are determined from the following 

differential equations: 

                                                
 (1) Th. des Coudres, Arch. Néerland 5 (1900), pp. 652 (Lorentz-Festschrift).  
 (2) E. Wiechert, Arch. Néerland 5 (1900), pp. 652 (Lorentz-Festschrift); Ann. Phys. (Leipzig) 4 (1901), 
pp. 667. 
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(II)    

2

2 2

2

2 2

1
) 4 ,

1 4
)

e
c t

f
c t c

πρ

πρ

 ∂ Φ − ∆Φ = ∂


∂ − ∆ = ⋅
 ∂

A
A v.

 

  
 They will then yield the field strengths by differentiation: 
 

(II)    
1

) grad ,

) curl

g
c t

h

∂ = Φ −
∂

 =

A
E

H A.

 

 
 This form of the field equations makes it clear that the field can be regarded as the 
superposition of the fields that are generated by the individual volume elements that start 
in the electron and move into space at the speed of light. 
 The electron is now found in a given external field of field strengths Eh , Hh .  In 

order to determine the motions that it exhibits, another basic equation will be necessary, 
namely, the fundamental “kinetic” or “dynamical” equation.   The following argument 
will lead us to it: H. A. Lorentz and E. Wiechert have shown one can derive the forces 
that act upon electricity at rest and in currents in electric (magnetic, resp.) fields when 
one makes the Ansatz for the force that acts upon the individual electron: 
 

     K = e Fh , Fh = Eh + 
1

c
[q Hh] . 

 
The electron is regarded as a point charge in this.  We distinguish between the volume 
elements of the electron and define the external force that acts upon the volume element 
dv by: 

(1)     ρ dv Fh , Fh = Eh + 
1

c
[v Hh] . 

 
However, the Maxwell-Hertz  principle of the unity of the electric and magnetic force is 
valid.  If we can trust this principle then we must regard the distinction between an 
“external” field that is independent of the presence of electrons and an “internal” field 
that is generated by the electron itself as basically an artificial one.  In reality, there is 
always only a single field with the field strengths E + Eh , H + Hh .  Accordingly, we 

juxtapose the external field with an internal force that act inside the volume element dv of 
the electron: 

(1a)    ρ dv F , F = E + 
1

c
[v H] . 

 
We further refer to the integrals that are extended over the volumes of the electrons: 
 

(1b) δAh = ( )hdv sρ δ∫∫∫ F , 
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(1c) δAi = ( )dv sρ δ∫∫∫ F  

 
as the virtual work that is done by external (internal, resp.) forces, and impose the 
requirement: The sum of the virtual works that are done by internal and external forces 
will vanish for every virtual displacement of the electron. 
 

(III)   δAh + δAi = ( , )hdv sρ δ+∫∫∫ F F = 0. 

 
That is our fundamental dynamical equation. 
 If we apply equation (III), first to a virtual translation, and then to a virtual rotation, 
then it will decompose into the two vector equations: 
 

 { }hdvρ +∫∫∫ F F  = 0, 

 [ , ]hdvρ +∫∫∫ r F F  = 0. 

We call: 

(1d) K = hdvρ∫∫∫ F , 

(1e) Θ = [ , ]hdvρ∫∫∫ r F , 

 
the resultant external force and torque, resp., and by contrast: 
 

(1f) dvρ∫∫∫ F  

and 

(1g) [ , ]dvρ∫∫∫ r F  

 
are the resultant internal force and torque, resp.. 
 The two vector equations that are included in equation (III) then state: The resultant 
internal and external forces and torques preserve equilibrium: 
 

(III a)    dvρ∫∫∫ F + K = 0, 

(III b)    [ , ]dvρ∫∫∫ r F  + Θ = 0. 

 
 The fundamental kinematical equation (I), the field equations (II), and the 
fundamental dynamical equations (III) are the foundations of the dynamics of electrons. 
 
 

§ 3.  Electromagnetic energy and electromagnetic quantity of motion. 
 

 In this section, two theorems shall be derived from the field equations that correspond 
to the laws of energy and the quantity of momentum.  The energetics of electromagnetic 
fields was developed by Maxwell, Poynting, and Hertz.  The expression for the 
electromagnetic energy and the energy flux to which the Maxwell-Hertz  theory leads 
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also remains true in the theory of electrons, as H. A. Lorentz has shown (1).  For the sake 
of completeness, we shall present the proof of that: 
 The power that is generated by the internal forces amounts to: 
 

idA

dt
= ( , )dvρ∫∫∫ v F  = ( , )dvρ∫∫∫ v E . 

 
When one appeals to the field equation (IIIa), that expression can be put into the form: 
 

idA

dt
 = 

1
,curl

4

c
dv

c t
ρ

π
∂ − ∂ 

∫∫∫
E

E H . 

 
Furthermore, from the rule of calculation (ζ): 
 

( )curl
4

c
dvρ

π
⋅ ∫∫∫ E H  = ( )curl

4

c
dvρ

π
⋅ ∫∫∫ H E − [ curl ]

4

c
do νπ

⋅ ∫∫ H E , 

 
and if one recalls the field equation (IIb), then it will then follow that: 
 

(IV)   idA

dt
+ do ν∫∫ S = − 2 2[ ]

8

d dv

dt π
+∫∫∫ E H  = − dW

dt
 .  

Here: 

(2)     S = 
4

c

π
⋅⋅⋅⋅ [E H] 

 
denotes the Poynting radiation vector, and thus, the second term on the left-hand side 
refers to the radiation that passes through the bounding surface of the field towards the 
outside.  Equation IV then says that: The power that is generated by the internal forces 
and radiation will result in an increment with the magnitude: 
1 

(2a)     W = 2 2[ ]
8

dv

π
+∫∫∫ E H , 

 
which one refers to as the electromagnetic energy of the field. 
 The existence of an electromagnetic quantity of motion can be derived from the field 
equations in a manner that corresponds to the existence of an electromagnetic energy.  H. 
Poincaré (2) showed this, on the basis of a conversion of the expression (1f) for the 
internal force that was first given by H. A. Lorentz (3).  Without giving a proof, he 
asserted that the expression (1g) for the internal torque admitted a similar transformation.  

                                                
 (1) H. A. Lorentz, Versuch einer Theorie der elektr. u. opt. Erscheinungen in bewegten Körper, Leiden, 
1895, pp. 22.  
 (2) H. Poincaré, Arch. Néerland. (2) 5 (1900), pp. 252.  
 (3) H. A. Lorentz, loc. cit., pp. 26.  
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We will obtain the two transformations in one blow when we convert the virtual work that 
is done by internal forces with the help of vector analysis. 
 Initially, the vector δs of virtual displacement was defined only for points of the 
electron.  We shall now extend its definition as follows: We imagine a frame that is 
constructed to be rigidly-bound with the electron and which participates in all motions of 
the electron, real, as well as virtual.  We now understand δs to mean the virtual 
displacement of a point of the electron or the frame.  The components ξ, η, ζ of the 
virtual displacement will be continuous functions of the coordinates as a result of this 
extended definition.  The differential equations: 
 

(3)    0 =
x

ξ∂
∂

= 
y

η∂
∂

=
z

ζ∂
∂

= 
x y

η ζ∂ ∂+
∂ ∂

=
x x

ζ ξ∂ ∂+
∂ ∂

= 
y x

ξ η∂ ∂+
∂ ∂

 

 
are true in all of space; the electron and frame are capable of only virtual translations and 
rotations, but not deformation. 
 We may now regard the expression (1c) of the virtual work that is done by the 
internal forces as an integral that extended over the field that is bounded by the surface O, 
to which the volume elements that lie outside the electron will give no contribution, since 
they were assumed to be free of electrical charge.  We can convert it by partial 
integration.  If we employ the defining equation (1a) of the vector F, the field equations 

(IIa, b), as well as the rule of calculation (γ), then we will first get: 
 

 δAi = ( ) ([ ], )
dv

dv s s
c

ρρ δ δ+∫∫∫ ∫∫∫E vH  

 = 
1

( )div
4

dv sρ δ
π ∫∫∫

E E + 
1 1

curl ,[ ]
4

dv s
c t

δ
π

∂ − ∂ 
∫∫∫

E
H H . 

 We set: 
(3a)  δAi  = δAe + δAm , 

(3b)  δAe = 
1

( )div
4

dv sδ
π ∫∫∫

E E , 

(3c)  δAm = 
1 1

curl ,[ ]
4

dv s
c t

δ
π

∂ ⋅ − ∂ 
∫∫∫

E
H H . 

 
We convert δAe and δAm − viz., the electrical and magnetic parts of the virtual work δAi  
− individually, in which the components of the vectors E, H, δs are to be considered as 

continuous, differentiable functions of the coordinates and time now.  The application of 
the rule (ε) will imply that: 
 

(3d)  δAe = 
1 1

( ) ( ,grad( ))
4 4

do s dv sνδ δ
π π

+∫∫ ∫∫∫E E E E . 

 
 If one expresses the inner product of the vector E and the gradient of (E δs) in terms 

of the components of E and δs then one must remark that the differential quotients of ξ, 
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η, ζ with respect to the coordinates enter only in combinations that will vanish as a result 
of equations (3).  One will have: 
 

 (E, grad (E δs)) = − x x x
x y zx y z

ξ
  ∂ ∂ ∂+ +  ∂ ∂ ∂ 

E E E
E E E  

  + η y y y
x y zx y z

∂ ∂ ∂ 
+ + ∂ ∂ ∂ 

E E E
E E E  

  + z z z z
x y zx y z

 ∂ ∂ ∂+ +  ∂ ∂ ∂ 

E E E
E E E . 

 
With the help of the field equation (IIb), the factor of ξ can be put into the form: 
 

x x x
x y zx y z

∂ ∂ ∂+ +
∂ ∂ ∂
E E E

E E E  = 
21 1

2
yz

y zx c t t

∂ ∂∂ + − ∂ ∂ ∂ 

HHC
E E , 

 
while corresponding expressions will be true for η and ζ.  One will then have: 
 

(E, grad (E δs)) = (δs, grad E2) = 
1

,s
c t

δ ∂  
  ∂  

H
E . 

 
Furthermore, if one recalls the rule (ε) and the relation that follows from (3): 
 

div δs = 
x y z

ξ η ζ∂ ∂ ∂+ +
∂ ∂ ∂

 = 0, 

then since one must set: 
1
2 (δs, grad E2) = − 1

2  div E2 δs, 

 
one will ultimately obtain the expression (3d) in the form: 
 

(3e)  δAe = 
1 1 1

{2( ) } ,
8 4

do s s dv s
c tν νδ δ δ

π π
 ∂  ⋅ ⋅ −   ∂  

∫∫ ∫∫∫
H

E E E . 

 
In this, δvs gives the normal component of the virtual displacement on the boundary; the 
surface integral depends upon only the electric field strength, but not the magnetic field 
strength.  A corresponding surface integral that depends upon the magnetic field strength 
can be split off from the expression (3c). 
 If we observe the calculation rules (γ) and (α) then we can write: 
 

(3f)   δAm = 
1 1 1

(curl ,[ ]) ,
4 4

dv s dv s
c t

δ δ
π π

 ∂  ⋅ − ⋅   ∂  
∫∫∫ ∫∫∫

E
H H H  . 
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 Now, from rule (ζ), one will have the identity: 
 

(curl H, [H δs]) = (H, curl [H δs]) + div [H, [H δs]]; 

 
both terms can be converted.  From rule (η), and if one recalls the fact that div H = 0 

(equation (IId)) and div δs = 0 (equation (3)), then one will have: 
 

curl [H δs] = (δs ∇) H – (H ∇) δs ; 

one will then obtain: 

 (H, curl [H δs]) = Hx x x x

x y z
ξ η ζ ∂ ∂ ∂+ + ∂ ∂ ∂ 

H H H
 

  + Hy 
y y y

x y z
ξ η ζ

∂ ∂ ∂ 
+ + ∂ ∂ ∂ 

H H H
 

  + Hz z z z

x y z
ξ η ζ ∂ ∂ ∂+ + ∂ ∂ ∂ 

H H H
. 

 
The term that originates in (H ∇) δs will then drop out as a result of equations (3).  Upon 

employing rule (ε), we can write: 
 

[H, [H δs]] = (H, [H δs]) + H2 δs . 

 
With that, we will ultimately have: 
 

(curl [H, [H δs]]) = div [H, (H δs) − 1
2H

2 δs], 

 
and (3f) will assume the form: 
 

(3g) δAm = 21 1 1
{2( ) } , , .

8 4
do s s dv s

c tν νδ δ δ
π π

 ∂  ⋅ − − ⋅   ∂  
∫∫ ∫∫∫

E
H H H H  

 
By adding (3e), (3g), we will ultimately obtain the transformed expressed for the virtual 
work that is done by the internal forces: 
 

(3h)  δAi = 2 2
2

1
, {2( ) 2( ) }

8

do
do s s s s s

c t ν ν ν νδ δ δ δ δ
π

∂ + − + − ∂ 
∫∫∫ ∫∫

S
E E E H H H . 

 
 The surface integral is connected with the so-called Maxwell stresses.  We let P 

denote the force that is exerted by the Maxwell stresses of the field that is generated by 
the electron on the surface element of the surface O that encloses the field, and denote its 
components by Xv, Yv, Zv .  It is then known that: 
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 − Xv = 
1

8π
(2Ex Ev – E2 cos vx) + 

1

8π
(2Hx Hy – H2 cos vx), 

 − Yv = 
1

8π
(2Ey Ev – E2 cos vy) + 

1

8π
(2Hy Hv – H2 cos vy), 

 − Zv = 
1

8π
(2Ez Ev – E2 cos vz) + 

1

8π
(2Hz Hv – H2 cos vz) . 

 
The components are endowed with the negative sign, since we (contrary to the usual 
practice) understand P to mean the force that is exerted upon the surface O by the part of 

the field that is inside of it.  The virtual work that is done by the force that is exerted by 
the Maxwell stresses amounts to: 
 

(P δs) = ξ Xv + η Yv + ζ Zv = − 
1

8π
{2 (E δs) Ev – E2 δv s + 2 (H δs) Hv – H2 δv s}. 

 
If we introduce this relation into (3h) then we will obtain: 
 

(V)   δAi + do∫∫ (P δs) = − 
2

1
dv

c t

∂⋅
∂∫∫∫
S

. 

 
This equation will be true for every virtual displacement of the electron and the frame 
that is rigidly bound with it.  By applying a virtual parallel translation, one will arrive 
immediately at the Lorentz-Poincaré transformation of the expression for the resultant 
internal force: 

(Va)   dv doρ +∫∫∫ ∫∫F P  = − 
2

1
dv

c t

∂⋅
∂∫∫∫
S

, 

 
and by applying a virtual rotation, one will arrive at the corresponding transformation of 
the expression for the resultant internal torque: 
 

(Vb)   [ ] [ ]dv doρ +∫∫∫ ∫∫r F rP  = − 2

1
,dv
c t

∂ 
 ∂ 

∫∫∫
S

r . 

 
 In the derivation of the relations (Va), (Vb), the virtual displacement that was used 
was only an auxiliary mathematical construction.  At its basis, only the field equations 
were employed in the derivation of those relations, just like the derivation of relation 
(IV).  The similarity between the relations (Va), (Vb), and (IV) is remarkable.  In each 
case, an integral that is taken over the volume of the electron is transformed into a 
volume integral that is taken over the entire field, and then into a surface integral.  In that, 
the integrand of the volume integral depends upon the field only insofar as the differential 
quotient with respect to time of an expression that is determined from the field strengths 
enters into it.  Just as the form of relation (IV) made it possible to define an 
electromagnetic energy, the corresponding form of relations (Va), (Vb) made it possible 
to define an electromagnetic quantity of motion. 
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 We would next like to analyze the interpretation of equation (IV) more closely.  To 
that end, we imagine that the boundary of the field is defined by foreign bodies.  We 
regard the fact that the Poynting vector actually gives the energy flux that falls upon 
those bodies as being something that is established by experiment with light rays in the 
sense of the electromagnetic theory of light.  Initially, the relation (IV) contradicts the 
energy principle: The power that is expended by the force that is exerted upon the 
electron by the field and the energy radiation that falls upon the bodies that bound the 
field do not sum to zero.  However, we will obtain the correct energy principle when we 
introduce a new electromagnetic energy that is distributed throughout the field with 
density 1

2 {E2 + H2}, at whose expense, power and radiation will result.  An entirely 

analogous interpretation can also be ascribed to relations (Va), (Vb).  As far as the 
Maxwell stresses are concerned, the experimental confirmation of the existence of light 
pressure, as well as the law of temperature radiation that follows from the light pressure, 
shows that those stresses determine the force that is exerted upon the bounding bodies by 
the field correctly.  However, the relation (Va) will then contradict Newton’s third 
axiom.  The force that is exerted by the field upon the electron, on the one hand, and the 
force that it exerts upon the bounding bodies, on the other, will not cancel out, any more 
than relation (Vb) will cancel the static moments as a result of it.  However, we will 
recover the third axiom when we introduce a new electromagnetic quantity of motion that 
is distributed over the field with a density of 1 / c2 S.  At all points of the field at which 

the Poynting vector varies only in time, one must assume that there is a reaction force – 1 
/ c2 ∂S / ∂t per unit volume that can be interpreted as a dynamical effect of that 

electromagnetic quantity of motion.  When one combines all of these individual forces 
according to the rules of the statics of rigid bodies, one will obtain the resultant force and 
torque of the field that partially affects the electron and partially affects the bounding 
bodies.  It is only the form of the relations (Va), (Vb) that was described above that 
demands the existence of an electromagnetic quantity of motion. 
 
 

§ 4.  The equations of motion of the electron. 
 

 For the moment, in order to explain the physical meaning of the surface integral in 
relations (IV) and (V), we assume that the boundary surface of the field is given by 
foreign bodies.  In reality, such bodies are always present, and one would always to 
consider their presence in any completely rigorous treatment of the problem of electron 
motion.  For the study of cathode rays and Becquerel rays, one would have to consider 
the wall of the evacuated tube, and for the study of electrical deflection, one would have 
to consider the plates of the condenser.  The spreading of the electromagnetic field in 
those bodies does not result in accord with the field equations that are true for the ether.  
Since we have defined those equations to be fundamental, we must bound the field in 
such a way that all foreign bodies are excluded.  Admittedly, from the standpoint of the 
resulting theory of electrons, one can assert that matter influences the spreading of the 
field that is generated by the electron only to the extent that its own electrons will be set 
into motion and generate electromagnetic fields in their own right.  If one asserts that 
hypothesis then one will be in a position to include the reaction of those bodies on the 
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motion of the electron in the vector Fh .  For that reason, up to now, no one has succeeded 

in satisfactorily explaining the effect of matter on cathode rays and Becquerel rays from 
the standpoint of electromagnetic theory.  Problems in which that effect comes into play 
– e.g., the reflection of cathode rays, the emission of Becquerel rays – are then initially 
inaccessible to a theoretical treatment.  We shall then restrict ourselves to those electron 
motions that are not influenced essentially by matter.  We shall consider only purely 
electrical and magnetic effects, which we shall regard as “external” fields in the 
calculation of the field strengths Eh, Hh .  Those effects also include the ones that 

originate in the other electrons that move in cathode rays and Becquerel rays.  It would 
probably be simplest to include them in the calculations in such a way that one adds the 
electric and magnetic field of the stationary convection current that the beam represents 
to the external fields that are generated by the battery (magnets, resp.)  The error that one 
introduces by neglecting the interaction of the electrons that move in the beam will 
vanish as the field strengths of that field tend to dominate. 
 If we subsume all of the external electromagnetic effects on the electron into the 
external force and torque and neglect the influence of any matter that might be present 
then it will no longer be necessary to separate those bodies from the field by a surface.  
The field that is generated by the electron can be determined in all of space by the 
Maxwell-Hertz  equations.  We then let the boundary of the field go to infinity and 
calculate the field of the electron, its energy, and its quantity of motion as if the electron 
were found in space in isolation.  The problem of electron motion shall be treated in that 
idealized form from now on. 
 It can be proved that the integral that is taken over the bounding surface in relations 
(IV), (V), (Va), (Vb) will vanish when that surface goes to infinity.  Let us perhaps pose 
the problem: Develop the dynamics of an electron that is found at rest up to time t = 0 
when the action of external forces begins.  Now, it is known that the perturbation of the 
field that is generated by the motion of the electron propagates with a finite speed – 
namely, the speed of light.  One would then arrive at the infinitely-distant points of the 
bounding surface only after an infinite length of time.  At any finite time point, the field 
at any point will still be the original electrostatic one, so the Poynting vector there will 
vanish, and therefore the surface integral in relation (IV).  The magnetic part of the force 
P that is exerted by the Maxwell stresses will vanish as well, while the electric part will 

drop off with the reciprocal fourth power of distance.  If the surface is, say, a sphere 
whose center coincides with the initial position of the center of the electron then the 
integral that is taken over the surface in relations (V), (Va), (Vb) will converge to zero 
with increasing radius of the sphere, and in fact the ones in relations (V), (Vb) will go to 
zero like at least the reciprocal first power of that radius, and the one in relation (Va), like 
at least the reciprocal second power.  If we start with the aforementioned first problem 
statement then we can drop the relevant terms accordingly. 
 Now and then, it is preferable to base things upon another problem statement: How 
does an electron move when its velocity is constant in magnitude and direction from the 
start at t = − ∞ up to time t = 0, when the action of external forces will then be imposed.  
In that case, one must, in turn, construct the sphere so that its center coincides with the 
center of the electron at time t = 0.  One chooses its radius to be large enough that the 
perturbations that start from the electron still have not arrived at that time point.  The 
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field that prevails in the ball will then be the one that corresponds to the original uniform 
motion.  Now, it will be confirmed in § 6 that the field strengths will drop off with the 
reciprocal second power of the distance from the center of the electron in such a field.  It 
will then follow that by increasing the radius of the sphere, the surface integrals in 
relations (IV), (Va) will converge to zero by at least the reciprocal first power of the 
radius.  The surface integrals will also vanish when one passes to the limit when one uses 
this second problem statement as a basis.  Those relations can then be interpreted more 
simply. 
 We then call the integral over infinite space: 
 

(5)   W = 
8

dv

π∫∫∫ {E2 + H2} the energy of the electron 

 
and distinguish between its components: 
 

(5a)  We = 
8

dv

π∫∫∫ E2  the electrical energy, 

 

(5b)  Wm = 
8

dv

π∫∫∫ H2  the magnetic energy. 

 
 We now write relation (IV) as: 
 

dW

dt
= − idA

dt
 = − dv∫∫∫  (v F). 

 
When this expression is converted with the help of the fundamental kinematical equation 
(I) and the fundamental dynamical equations (IIIa) and (IIIb), we will obtain: 
 

(VI)   
dW

dt
= (q K) + (ϑ Θ) = dv∫∫∫  ρ (v Fh) = hdA

dt
. 

 
This equation formulates the law of energy: The temporal growth in the energy of the 
electron is equal to the work that is done by the external forces. 
 If one drops the surface integrals in relations (Va), (Vb) then those relations will 
completely replace the internal forces with the dynamical effect of the electromagnetic 
quantity of motion.  At all points of the field where the density of the electromagnetic 
quantity of motion varies in time, the frame that is thought of as rigidly coupled with the 
electron will be endowed with a corresponding force of reaction, namely: 
 

− 
2

1

c t

∂
∂
S

  per unit volume. 

 
The geometric sum of all of these forces will yield the resultant internal force, while the 
sum of its static moments will yield the resultant internal torque.  Similarly, as a result of 
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relation (V), the virtual work that is done by internal forces can now be replaced with the 
virtual work that those reaction forces will do for a virtual displacement of the electron 
and its frame. 
 If one now introduces relation (V) into the fundamental dynamical equation (III) then 
it will take on this form: 

(VII)    δAh − 2

1
,dv s
c t

δ ∂ 
 ∂ 

∫∫∫
S

= 0. 

 
This formulation of the law of motion corresponds to d’Alembert’s principle. 
 We will obtain another formulation of the law of motion when we insert relations 
(Va), (Vb), in the forms (IIIa), (IIIb), resp., into the fundamental dynamical equation.  
We call: 

(5c)  G = 
2

1
dv

c
⋅ ∫∫∫ S   the impulse of the electron 

and 

(5d)  M = 
2

1
[ ]dv

c
⋅ ∫∫∫ rS   its angular impulse, 

 
relative to the center of the electron.  One will have: 
 

(5e)  
2

2 2

1
,

1 1
.

d
dv

dt c t
d

dv dv
dt c t c t

∂ = ⋅ ∂
 ∂ ∂    = ⋅ + ⋅    ∂ ∂   

∫∫∫

∫∫∫ ∫∫∫

G S

M r S
S r

 

 
∂r / ∂t means the temporal change that the radius vector that is drawn from the center of 

the electron to a fixed point in space experiences during the motion of the electron.  Since 
q indicates the velocity of that center, one must set: 

 

t

∂
∂
r

 = − q . 

One will then have: 

2

1
dv

c t

∂ ⋅  ∂ 
∫∫∫

r
S  = − [q G], 

and then: 

(5f)     
d

dt

M
= − [q G] + 2

1
dv

c t

∂ ⋅  ∂ 
∫∫∫

S
r . 

 
Combining (5e), (5f), (Va), (Vb), and (IIa), (IIIb) will give the equations that determine 
the temporal change in the impulse and angular impulse, namely, the so-called law of 
momentum: 

(VII a)     
d

dt

G
= K, 
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(VII b)     
d

dt

M
+ [q G] = Θ. 

 
These equations of motion of the electron correspond completely to the differential 
equation that one has posed for the motion of a rigid body in an ideal fluid.  Thus, for the 
mechanical problems, the components of the impulse and angular impulse will be linear 
functions of the respective velocities of translation and rotation.  That is not the case for 
the electrodynamical problem; the dependency of those quantities upon the components 
of the velocity is anything but linear.  Indeed, strictly speaking, the impulse and angular 
impulse depend not merely upon the instantaneous motion, but on the entire history of the 
motion of the electron.  The impulse and angular impulse are defined by integrals over 
the entire space that is filled by the field but it arises from the superposition of 
perturbations that the electron has emitted from beginning to the moment considered.  
That situation will impose great complications upon our problem that might make a 
simultaneously general and exact treatment of the dynamics of the electron seem 
hopeless.  Functional relationships between the components of the associated velocity 
and impulse will be valid for only special classes of motions, and they will assume a 
linear form only for very low translational velocities. 
 
 
§ 5.  Conversion of the field equations and equations of motion by the introduction 

of a coordinate system that is rigidly coupled with the electron. 
 

 We have already constructed a frame that is rigidly coupled with the electron in the 
third section.  We would now like to compute the temporal change that the field strengths 
E, H, as well as the vector potential A, experience at a point of the frame that moves with 

the electron.  We then refer these vectors to an axis-cross that is fixed in the frame that 
participates in the rotational motion of the electron.  It is then the temporal changes in the 
three vectors, as measured in that frame, that we seek.  We write them: 
 

t

′∂
∂
E

, 
t

′∂
∂
H

, 
t

′∂
∂
A

. 

 
They will be referred to the axis-cross that is rigidly coupled with the electron by 
introducing them into the field equations. 
 ∂′A / ∂t is composed of three components: First of all, one must account for the 

temporal change ∂A / ∂t that takes place at the relevant point of space.  To this, one adds 

the change that is provoked by the fact that the relevant point of the frame moves through 
space with a velocity v; it amounts to (v ∇) A.  Finally, one must consider the change that 

comes from the rotational motion of the coordinate system itself.  It is known from 
mechanics (1) that this change is expressed by [A ϑ].  The resultant change is then: 

 

                                                
 (1) Cf., e.g., B. E. J. Routh, Die Dynamik der Systeme starrer Körper, 1, Leipzig, 1898, pp. 225.  
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(6)    
t

′∂
∂
A

= 
t

∂
∂
A

 + (v ∇) A + [A ϑ], 

 
and in a corresponding way, one will get: 
 

(6a)   
t

′∂
∂
E

= 
t

∂
∂
E

 + (v ∇) E + [E ϑ], 

 

(6b)   
t

′∂
∂
H

= 
t

∂
∂
H

 + (v ∇) H + [H ϑ]. 

 
 The vectors G and M – viz., the impulse and angular impulse – will always be 

referred to the center of the electron; they will be defined by integrals over all of space.  
The second source of temporal change will drop out for them.  For electrons, as for rigid 
bodies, one will then have: 
 

(6c)   
d

dt

′G
= 

d

dt

G
 + [G ϑ], 

 

(6d)   
d

dt

′M
= 

d

dt

M
 + [M ϑ] 

 
for the temporal changes in the impulse and angular impulse when referred to the co-
moving coordinate system. 
 Just as we extended the defining equation (I) of the velocity vector v by constructing 

the frame that is rigidly coupled with the electron, we shall now also interpret equation 
(1a): 

F = E + 
1

c
[v H], 

 
which defines the vector Φ that describes the internal force, and initially referred only to 
the points of the electron in a more general sense.  Outside of the electron, the vector F 

gives the force that acts upon a unit electric pole that is fixed in a frame.  Its magnetic 
counterpart, namely, the vector: 

(7)      H′ = H + 
1

c
[v E], 

 
represents the force that the field exerts upon a unit magnetic pole that moves with the 
frame. 
 We juxtapose equation (6) with another one that one gets when one expresses the 
vector F in terms of the potential Φ, A by means of the field equations (IIg), (IIh): 
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F = grad Φ − 
1

c t

∂
∂
A

 + 
1

c
 [v curl A]. 

 
From the calculation rule, ϑ is: 
 

− grad (v A) = [v curl A] + [A curl v] + (v ∇) A + (A ∇) v ; 

 
moreover, since, if one recalls the fundamental kinematical equation, one must set: 
 

curl v = 2ϑ and (A ∇) v = − [A ϑ], 

it will then follow that: 
 

[v curl A] = − grad (v A) = (v ∇) A – [A ϑ]. 

One will then have: 

F = grad 
1 1

( ) ( ) [ ]
c c t

ϑ∂   Φ − − ⋅ + ∇ +   ∂   

A
vA v A . 

 
If we now consider the relation (6) and set: 
 

(7a)    ϕ = Φ − 
1

c
(v A), 

 
to abbreviate, then it will follow that the vector F can be expressed by: 

 

(7b)    F = grad ϕ − 
1

c t

′∂
∂
A

. 

 
 For the calculation of the gradient, curl, and divergence, it is obviously irrelevant 
whether one operates in a spatially-fixed or moving-axis system.  Indeed, only the 
relevant relative position of the axis-cross will come under consideration for them, but 
not its motion.  Those operations yield only vectors and scalars, which are then quantities 
that are independent of the orientation of the coordinate system; i.e., they are invariant 
under coordinate transformations.  Since we employ vectorial notation, we can spare 
ourselves of the recalculation of scalars and vectors that depend upon only the spatial 
distribution of the field.  We can then, e.g., refer the field equation (IIh) H = curl A to the 

new system of axes immediately.  The relation: 
 

(7c)    − 
1

c t

′∂
∂
H

= curl F 

 
will then follow from (7b).  It represents a conversion of the second field equation (IIb) 
into our axis-cross that is fixed in the electron.  In a corresponding way, equation (6b) 



Abraham – Principles of the dynamics of the electron. 24 

will also imply how, with the help of (6a), one should now recompute the first field 
equation (IIa). 
 We compute the curl of the vector H′ that is defined by (7), in which we employ the 

calculation rule (η): 
 

curl H′ = curl H – 
1

c
{(E ∇) v – (v ∇) E + v div E – E div v}. 

 
Now, since one must set div v = 0, (E ∇) v = − [E ϑ], if one recalls the field equations 

(IIa), (IIc) then it will follow that: 
 

     curl H′ = 
1

( ) [ ]
c t

ϑ∂ + ∇ + ∂ 

E
v E E . 

Thus, (6a) will yield: 

(7d)     
1

c t

′∂
∂
E

= curl H′, 

 
which is an equation that is to be referred to as the first field equation, referred to the 
frame.  From the remark above, the third and fourth field equations (IIc), (IId) will be 
true with no change in form. 
 The new form of the field equation puts us closer to a more detailed consideration of 
a class of distinguished motions.  The distinguished motions are characterized by the fact 
that the fields of the scalar Φ, as well as the vector A, will be stationary when they are 

evaluated from the frame that is fixed in the electron.  ∂′A / ∂t, and therefore, ∂A / ∂t, as 

well, will vanish for those motions; it will then follow from (7c) that: The field of the 
vector F is irrotational for the distinguished motions.  From (7b), ϕ is the scalar whose 

gradient is the vector F.  It is determined by (7a), and will be called the “convection 

potential” in the case in question.  Only those fields that correspond to the distinguished 
motions of the electron will possess a convection potential. 
 We shall now also recompute the equations of motion (VIIa), (VIIb) in the axis-cross 
that rotates with the electron when we introduce the relations (6c), (6d).  The transformed 
equations of motions will then be: 
 

(8)     
d

dt

′G
= K + [G ϑ], 

(8a)    
d

dt

′M
= Θ + [G ϑ] – [q G]. 

 
Since the rules of calculation (γ, α) give the identity: 
 

(q, [G ϑ]) = ([q G], ϑ) = (ϑ, [q G]), 

one will have the relation: 



Abraham – Principles of the dynamics of the electron. 25 

d d

dt dt
ϑ

′ ′   +   
   

G M
q  = (q K) + (ϑ Θ). 

 
The introduction of the energy equation (VI) will yield: 
 

(8b)    
dW

dt
= 

d d

dt dt
ϑ

′ ′   +   
   

G M
q . 

 
This result, which was deduced from the laws of energy and impulse, is important for the 
following reason: It therefore represents a general property of the field that is generated 
by the moving electron that is independent of the special type of external force.  We will 
then obtain another form for this relation when we observe that for scalars like W, (q G) 

and (ϑ Θ), it is irrelevant whether we base the calculation of their time evolution on a 
fixed or rotating system, and thus set: 
 

 
d

dt
(q G)  = 

d d

dt dt

′ ′   +   
   

G q
q G , 

 

 
d

dt
(ϑ M)  = 

d d

dt dt

ϑϑ
′ ′   +   

   

M
M . 

One will then have: 

(8c)   
d

dt
[(q G) + (ϑ M) − W] = 

d d

dt dt

ϑ′ ′   +   
   

q
G M . 

 
That is the relation that is connected with energy and impulse, which will lead us to the 
Lagrangian equations in § 10.  We shall now give some relations that will be used there. 
 The definitions of the vectors F, H′ imply the identities: 

 

 
8

dv

π∫∫∫ (E F) = We + 
1

8

dv

c π
⋅ ∫∫∫ (E, [v H]), 

 

 
8

dv

π∫∫∫ (H H′) = mW − 1

8

dv

c π
⋅ ∫∫∫ (H, [v E]). 

 
Now, from the rules of calculation (α, β, γ), one will have: 
 

− (E, [v H]) = (H, [v E]) = (v, [E H]) = 
4

c

π ⋅⋅⋅⋅ (v E), 

 
and as a result, from (I), (5c), (5d), one will have: 
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− 1

8

dv

c π
⋅ ∫∫∫  (E, [v H]) = + 

1

8

dv

c π
⋅ ∫∫∫ (H, [v E]) 

= 
2

1

2
dv

c
⋅ ∫∫∫  (v S) = 1

2 (q G) + 1
2 (ϑ M). 

We will then obtain: 

(9) 
8

dv

π∫∫∫ (E F) = We − 1
2 (q G) − 1

2 (ϑ M), 

 

(9a) 
8

dv

π∫∫∫ (H H′) = Wm − 1
2 (q G) − 1

2 (ϑ M). 

 
It follows by adding (subtracting, resp.) that: 
 

(9b) (q G) + (ϑ M) – W  = − 
8

dv

π∫∫∫ (E F) − 
8

dv

π∫∫∫ (H H′), 

 

(9c) Wm − We  = − 
8

dv

π∫∫∫ (E F) + 
8

dv

π∫∫∫ (H H′). 

 
 Another expression for the difference of the magnetic and electric field follows from 
the field equations (II); from (IIh) is: 
 

Wm = 
8

dv

π∫∫∫ (H curl A), 

 
and the rule of calculation (ζ) will yield: 
 

Wm = 
8

dv

π∫∫∫ (A curl H) + 
8

do

π∫∫ [A H]ν , 

 
 
if we once more bound the field by a surface O.  The field equation (IIa) implies that: 
 

Wm = 
2

dv

c

ρ
∫∫∫ (v A) + 

8

dv

c tπ
∂ 

 ∂ 
∫∫∫

G
A  +

8

do

π∫∫ [A H]ν  . 

 
On the other hand, from (IIg): 
 

We = 
1

,grad
8

dv

c tπ
∂ Φ − ∂ 

∫∫∫
A

E , 

or, from rule (ε): 

Wm = 
2

dvρ Φ
∫∫∫ − 

8

dv

c tπ
∂ 

 ∂ 
∫∫∫

A
G  −

8

do

π∫∫ ⋅⋅⋅⋅ Φ Eν . 
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If one now lets the surface O go to infinity then the surface integral will go to zero for the 
first, as well as the second, of the problems that were posed in § 4.  From the first 
assumption on the initial state, A, H are always zero on the spherical surface, so Φ, Eν  

will be proportional to the reciprocal third power of the spherical radius, as in 
electrostatics, and therefore the corresponding surface integral will vanish with the – 1st 
power of the spherical radius.  The same thing will be true for all stationary motions − in 
particular, for the distinguished motions that were considered in § 10 − so Φ, U will 

always drop off with the – 1st power of the distance to the center of electron, and E, H 

will drop off with the – 2nd power.  The surface integral will then vanish with the – 1st 
power of the radius of the sphere when one goes to the limit.  It will then follow from 
(7a) that: 

(9d)   Wm – We = − 
1

( )
2 8

dv d dv

c dt

ρϕ
π

+ ⋅ ⋅∫∫∫ ∫∫∫ EA , 

 
which is a relation that naturally makes sense only when the integral: 
 

8

dv

π∫∫∫ (E A) 

 
that is taken over infinite space possesses a finite value; that is the case for the 
distinguished motions, as will be proved in § 10. 
  
 

§ 6.  Uniform translation. 
 

 We shall now go on to treat special motions, for which, we shall proceed as follows: 
We shall assume a motion that satisfies the fundamental kinematical equation (I); we then 
determine the electromagnetic field from the field equations (II).  Finally, we convince 
ourselves that the fundamental dynamical equations (III) are fulfilled, and indeed we then 
start with the conversion of the fundamental dynamical equations that we called the 
“equations of motion” [equation (VIIa), (VIIb)].  That conversion general assumes the 
vanishing of certain integrals that taken over the boundary when it goes to infinity.  We 
must now subsequently persuade ourselves that the field strengths behave at infinity in a 
manner that would be required by the vanishing of those integrals. 
 The problem to be addressed in this section makes the second of the assumptions that 
were mentioned in § 4 about the initial state.  The electron shall move in a translatory 
way with a velocity that has been constant in direction and magnitude since an infinite 
time in the past.  Such a motion, for which one sets ϑ = 0, v = q, is compatible with the 

fundamental kinematical equation (I) with no further assumptions.  We draw the x-axis 
parallel to the direction of motion, such that we will have qy = qz = 0, and set the 

magnitude of qx = q, and its ratio with the speed of light equal to q / c = β. 

 In order to ascertain the field, we start with the form (IIe to h) of the field equations.  
As we pointed out, we regard the field of the scalar potential Φ, as well as that of the 
vector potential A, as something that arises from the superposition of contributions that 
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are due to the volume elements of the electron, corresponding to their velocity.  The field 
will thus depend upon the velocities that the electron was moving with from the 
beginning to the time point in question.  Now, under uniform motion, which we are now 
treating, the history of the motion will always be the same at each moment.  Thus, the 
field of the scalar Φ and the vector A will be constant when it is referred to a co-moving 

translatory axis-cross.  Uniform translation then belongs to the distinguished motions. 
 The field equations (I) refer to a coordinate system that is fixed in the ether.  If we 
now base things upon a co-moving system then if one recalls the stationary character of 
the field then one must set: 

t

∂
∂

= − q 
x

∂
∂

; 

equations (IIe), (IIf) will then become: 
 

(10)   

2 2 2
2

2 2 2

2 2 2
2

2 2 2

(1 ) 4 ,

(1 ) 4 .x x x

x y z

x y z

β πρ

β πρβ

 ∂ Φ ∂ Φ ∂ Φ− + + = − ∂ ∂ ∂


∂ ∂ ∂ − + + = −
 ∂ ∂ ∂

A A A
 

It will then follow that: 

(10a)   

,

and, by contrast :

0.

x

y z

β = Φ


 = =

A

A A

 

 
 One derives the electromagnetic field from the scalar and vector potential thus-
determined from equations (IIg), (IIh): 
 

(10b)   

2(1 ) ,

,

x
x

y z

x x x

y z

β β∂∂Φ ∂Φ = − + = − − ∂ ∂ ∂
 ∂Φ ∂Φ = − = −

∂ ∂

A
E

E E

 

 

(10c)   

0,

,

.

x

x
y z

x
z y

z z

y z

β β

β β


 =


∂ ∂Φ = = = − ∂ ∂
∂ ∂Φ = − = − = + ∂ ∂

H

A
H G

A
H G

 

 
The components of the vector F = G + 1 / c [q H] are: 
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(10d)   

2

2 2

2 2

(1 ) ,

(1 ) (1 ) ,

(1 ) (1 ) .

x x

y y z y

z z y z

x

x

x

β

β β β

β β β

∂Φ = = − − ∂


∂Φ = − = − = − − ∂
∂Φ = + = − = − − ∂

F E

F E H E

F E H E

 

 
We can summarize these equations in a vector equation: 
 
(10e)   Φ = grad ϕ, ϕ = (1 – β 2) Φ. 
 
Since the motion considered belongs to the distinguished ones, the existence of a 
convection potential whose gradient is the vector F can also be inferred directly from the 

results of § 5; in fact, the value that one obtains for it will follow from (7a), (10a).  
Finally, as far as the vector: 

H′ = H –
1

c
[q G] 

 
is concerned, it follows from (10c) that: 
 
(10f)     x

′H = y
′H  = z

′H  = 0. 

 
In regard to that, equations (9c), (10d) will then imply that: 
 

(10g)  
2 2 2 2

( ),
8

(1 )( )}.
8

m e

x y z

dv
W W

dv
π

β
π

 − = −

 = − + − +


∫∫∫

∫∫∫

GF

{G G G

 

 
The latter value can also be obtained directly from the definition of the electric and 
magnetic energy, along with equation (10c).  If one recalls (10f) then equation (9b) will 
yield: 

(10h)    q Gx – W = − ( )
8

dv

π∫∫∫ GF . 

 
It should be emphasized that the equations (10) to (10h) for an arbitrary distribution of 
electrical charge.  No assumption about the symmetry of the electron has been used up to 
now. 
 We now investigate the behavior of the scalar Φ at infinity.  We map the electron and 
its field to a rest system that points in the direction of the x-axis by means of the 
transformation: 

(11)     x′ = 
21

x

β−
. 
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The transformation will lead to a real system when β < 1 – i.e., when the speed of the 
electron does not attain the speed of light.  If we assume that then the scalar Φ will 
determined by the Poisson equation: 
 

(11a)    
2 2 2

2 2 2x y z

∂ Φ ∂ Φ ∂ Φ+ +
∂ ∂ ∂

 = − 4π ρ 

 
in the deformed system.  Thus, Φ should be interpreted as the potential of an ellipsoid of 
rotation that is charged homogeneously over its volume or a surface layer.  In potential 
theory, one learns that such a potential will vanish at infinity with the first power of the 
reciprocal distance from the charged body.  As a result of equations (10a), (10e), the 
same thing will be true for Ax and ϕ ; it follows from (10b), (10c), (10d) that the 

components of G, H, F will vanish to second order at infinity.  That state of affairs does 

not change when one reverts to the moving electron with the help of transformation (11), 
either.  Thus, by the second of the assumptions that were made in § 4 about the initial 
state, the assumptions upon which the proof of the vanishing of the surface integrals in 
relations (IV), (V), (Va), (Vb) is based will also prove to be correct.  Anyone who is 
familiar with calculations of that sort who feels the need to carry out the aforementioned 
proof in more detail and extend it to an arbitrary distribution of charge will then 
encounter no fundamental difficulty.  A more precise treatment of the calculations in 
question would distract our attention from the other viewpoint that is essential to the 
present problem far too much here.  What is important is the result: The equations of 
motion (VII a), (VIIb), as well as d’Alembert’s principle (VII) and the law of energy (VI), 
can be applied when the initial state (viz., from t = − ∞ to t = 0) corresponds to uniform 
translational motion, assuming that its speed does not attain the speed of light. 
 We would like to assume that the latter assumption has been fulfilled.  We must then 
further investigate whether the action of an external force (torque, resp.) is or is not 
necessary for one to maintain uniform translational motion.  Since the electron moves by 
translation with its field, and therefore also its impulse and angular impulse, one will 
have: 

d

dt

G
 = 

d

dt

M
 = 0. 

 
An external force K is therefore not required, but possibly an external torque Θ = [q G], 

if one is to orient the impulse vector parallel to the direction of motion.  The fact that an 
external torque must come into play when the impulse is oriented skew to the direction of 
motion follows, in fact, from general laws of impulse.  Namely, in that case, the static 
moment of the impulse relative to a fixed point in space will change steadily, since the 
impulse is certainly to be thought of as something that is attached to the center of the 
electron.  That change in the static moment of the quantity of motion will require just the 
needed action of an external torque.  A uniform translational motion can proceed in the 
absence of forces if and only if the impulse vector points in the direction of motion. 
 Whether that condition of force-free motion is fulfilled will depend upon the form of 
the distribution of convectively-moving charge.  The symmetry that we ascribe to the 
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electron will now become meaningful.  We would initially like to maintain somewhat 
general assumptions about the form and distribution of the charge.  We assume that both 
are symmetric with respect to two mutually-perpendicular planes that go through the 
direction of motion.  We shall show that the components Gy , Gz of the impulse that are 

perpendicular to the direction of motion will vanish with that assumption. 
 We choose the two symmetry planes to be the (xy) and (xz) planes.  It will then be 
immediately obvious that the differential equation (10) will keep its form and sense when 
one switches y with – y and z with – z.  Thus: 
 

Φ(− y) = Φ(y),  Φ(− z) = Φ(z). 
 

If one recalls (10b), (10c) then it will follow from this that: 
 
 Ex , Ey , Hz are symmetric with respect to the (xy)-plane. 

 Ez , Hy are anti-symmetric with respect to the (xy)-plane. 

 Ex , Ez , Hy are symmetric with respect to the (xz)-plane. 

 Ey , Hz are anti-symmetric with respect to the (xz)-plane. 

 
Since Hx = 0, it follows that: Sy is anti-symmetric with respect to the (xz)-plane, and Sz 

is anti-symmetric with respect to the (xy)-plane.  That will then annihilate the 
contributions that two volume elements that are mirror images with respect to the (xz)-
plane make to the component Gy of the resultant impulse and the contributions that two 

volume elements that are mirror images with respect to the (xy)-plane make to the 
component Gz.  Moreover, one easily confirms by further pursuing the symmetry 

considerations that all three components of the angular impulse will vanish.  Here, we are 
interested only in the result: If the distribution of the moving charge is symmetric to two 
mutually-perpendicular planes that go through the direction of motion then the impulse 
vector will be oriented parallel to the direction of motion. 
 The condition for stationary, force-free motion would then be fulfilled for, e.g., a 
homogeneously-charged ellipsoid that advances parallel to one of the three principal 
axes.  Meanwhile, we will show in § 12 that of those three possible motions, only the one 
that is parallel to the greatest axis will be stable.  However, the symmetry condition 
above will be fulfilled for motion in an arbitrary direction for our spherical electron with 
a homogeneous volume or surface charge.  Newton’s first axiom will then be true for an 
electron in the following form: If the motion of the electron is uniform, translatory motion 
from the beginning onward, and the speed is smaller than the speed of light then no 
external force or torque will be required to maintain that uniform motion. 
 
 

§ 7.  Derivation of the impulse and energy from a Lagrangian function. 
 

 In anticipation of the analogy to analytical mechanics that will come about later, we 
call the difference between the magnetic and electric energy of the electron its 
“ Lagrangian function”: 
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(12)     L = Wm – We . 
 
The equation that follows from (10g): 
 

L = − 
8

dv

π∫∫∫ (E F) 

can be brought into the form: 

L = − 
8 8

dvdv νϕρϕ
π π

+∫∫∫ ∫∫
G

 

 
with the help of (IIc), (10e), and the rule (ε).  If the boundary of the field goes to infinity 
then ϕ will vanish to first order and Eν , to the second order, as was shown in the previous 

section; the surface integral will then vanish as one goes to the limit.  The relation: 
 

(12a)     L = − 
2

dvρ ϕ
∫∫∫ , 

 
which goes back to Searle (1), will then be true.  It expresses the Lagrangian function in 
terms of an integral that is taken over the volume of the electron and depends upon the 
convection potential. 
 For the translatory motion that is considered here, the Lagrangian function will 
depend upon only the velocity q for a given distribution of electricity.  We differentiate 
with respect to it, when we start with (10g): 
 

 
dL

dq
 = − 2 2 2 2[ (1 )( )

8 x y z

dv

q
β

π
∂⋅ + − +
∂∫∫∫ E E E  

  = 2 2 2[ ] (1 )
8 4

yx z
y z x y z

dv dv

c q q q

β β
π π

 ∂  ∂ ∂ ⋅ + − + − +  ∂ ∂ ∂   
∫∫∫ ∫∫∫

EE E
E E E E E . 

 
We write the partial differential quotients with respect to q under the integral sign in 
order to suggest that the differentiation refers to a well-defined point of the moving 
system; since the charge distribution is assumed to be independent of the velocity, one 
must set ∂ρ / ∂q = 0.  However, (10b) will imply the following expression for the second 
of the integrals above: 

4
yx z

x y z

dv

q q qπ
∂ ∂ ∂⋅ + ⋅ + ⋅ ∂ ∂ ∂ 

∫∫∫
EE E

F F F . 

 
In regard to (10c) and the behavior of ϕ and Ev at infinity, one will get: 

 

                                                
 (1) G. F. C. Searle, Phil. Trans. 187A (1896), 675-713.  In my previous publication [Gött. Nachr. 
(1902), pp. 29], I called U = We – Wm the “force function of the electron” and placed the analogy to 
electrostatic energy in the foreground. 
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div
4

dv

q
ϕ

π
∂⋅
∂∫∫∫ E = 

4

dv

q

ρϕ
π

∂⋅
∂∫∫∫  = 0 

 
as the value of the integral.  When the first integral is converted with the help of (10e), 
one will arrive at the relation: 
 

dL

dq
= 

1
[ ]

4 y z z y

dv

c π
⋅ −∫∫∫ E H E H  = 

2

1
xdv

c
⋅ ∫∫∫ S , 

or 

(12c)     Gx = 
dL

dq
. 

 
One will get the component of the impulse that falls along the direction of motion when 
one differentiates the Lagrangian function with respect to velocity; the relation (12c) 
corresponds to the one that one calls the first of the Lagrange equations in analytical 
mechanics. 
 The expression for energy in terms of the Lagrangian function that is known from 
analytical mechanics: 

(12d)     W = − L + q
dL

dq
  

 
also follows now from (12), (12c), (10g), (10h).  Relations (12) to (12d) are true for an 
arbitrary charge distribution; the assumptions that were made about the symmetry of the 
electron were not employed in their derivation.  As was shown in § 6, the symmetry of 
the electron demands that the magnitude of the impulse must be G = Gx .  Equations 

(12c), (12d) then allow one to reduce the calculation of the impulse and energy of the 
electron to the determination of the Lagrangian function. 
 In order to ascertain the Lagrangian function of the electron with the help of (12a), 
we next determine the convection potential.  As a result of equations (10), (10c) of the 
previous paragraph, it must satisfy the differentiation equation: 
 

(13)   (1 – β 2) 
2 2 2

2 2 2x y z

ϕ ϕ ϕ∂ ∂ ∂+ +
∂ ∂ ∂

= − 4πρ (1 – β 2). 

 
In order to solve it, we appeal to a mapping process that was applied by H. A. Lorentz 
(1), as well as Searle (2).  We map the moving system S – namely, the spherical electron 
and the field of its convection potential – to a rest system S′ by the transformation: 
 

(13a)   x′ = 
21

x

β−
,  y′ = y,  z′ = z. 

 
                                                
 (1) H. A. Lorentz, loc. cit., pp. 36, et seq.  
 (2) G. F. C. Searle, Phil. Mag. 44 (1897), pp. 329, et seq. 
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The system S′ then arises when S is parallel to the direction of motion with a ratio of 1 : 
21 β− .  The volume element that corresponds to the charge shall then be the same, and 

thus: 

(13b)     ρ′ = ρ 21 β− . 

(13) will then imply that: 

(13c)    
2 2 2

2 2 2x y z

ϕ ϕ ϕ∂ ∂ ∂+ +
′ ′ ′∂ ∂ ∂

= − 4πρ′ (1 – β 2). 

 
By contrast, the electrostatic potential ϕ in the rest system fulfills the Poisson equation: 
 

(13d)    
2 2 2

2 2 2x y z

ϕ ϕ ϕ′ ′ ′∂ ∂ ∂+ +
′ ′ ′∂ ∂ ∂

= − 4πρ′. 

It will then follow that: 

(13e)     ϕ′ = ϕ 21 β− . 

 
This equation reduces the determination of the convection potential in the moving system 
S to the determination of the electrostatic potential in the system S′, which has been 
deformed according to (13a), (13b).  It will then follow that: 
 

2

dvρ ϕ
∫∫∫  = 21

2

dv ρ ϕ β′ ′ ′
⋅ −∫∫∫ . 

If we write: 

eW′ = 
2

dv ρ ϕ′ ′ ′
∫∫∫  

 
for the electrostatic energy of the system S′ then the expression (12a) for the Lagrangian 
function will become: 

(14)     L = − 21 eWβ ′− ⋅ . 
 
The determination of the Lagrangian function is thus reduced to the calculation of the 
electrostatic energy of a system at rest.  It arises from the moving one when one performs 
a stretching (13a) that is parallel to the direction of motion, under which the charge of 
the volume element − and thus the total charge, as well − will remain constant. 
 This result is true for an arbitrary charge distribution; we shall now apply it to our 
spherical electron of radius a.  In the case of a uniform volume charge in the electron, its 
image in S′ will be a charge that is uniformly distributed over the volume of an ellipsoid 
of rotation whose semi-axes are: 

(14a)    
21

a

β−
= a′,  a, a. 
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If one is dealing with the case of surface charge in the system S′ then the charge will be 
uniformly distributed over an extremely thin layer that is bounded by two similar and 
similarly-charged ellipsoids.  The potential ϕ′  of the latter distribution is known to be 
constant in the cavity, so the distribution will correspond to the equilibrium distribution 
on the surface of a conducting ellipsoid.  If we call Q′ the capacity of an ellipsoid of 
semi-axis (14a) then the following formula will be true (1): 
 

(14b)  
1

Q′
 = 

2 2

2 2

ln
a a a

a

a a

 ′ ′+ −
 
 
 

′ −
 = 

21 1
ln

2 1

β β
βα β
−  +⋅  − 

. 

 
The electrostatic energy of the surface charge in the system S′ then amounts to: 
 

(14c)   eW′  = 
2

2

e

Q′
 = 

22 1 1
ln

2 2 1

e

a

β β
β β
−  +⋅ ⋅  − 

. 

 
 However, we can immediately reduce the case of the volume charge to that of surface 
charge.  Namely, there is a remarkable theorem in potential theory (2): The self-potential 
(electrostatic energy) of two ellipsoids of the same form, one of which is charged 
uniformly over its volume, while for the other one, the distribution of the same total 
charge corresponds to the equilibrium distribution on the surface of the conducting 
ellipsoid, behaves like 6 : 5.  It follows from this that the electrostatic energy for a 
volume charge in the system S′ is: 
 

(14d)   eW′ = 
23

5

e

Q
⋅

′
= 

22 13 1
ln

5 2 1

e

a

β β
β β
−  +⋅ ⋅  − 

. 

 
From equation (14), the same constant ratio 6 : 5 will exist between the values of the 
Lagrangian function of the electron for volume (surface, resp.) charge. 
 For a volume charge, the Lagrangian function will be: 
 

(15)   L = − 
22 13 1

ln
5 2 1

e

a

β β
β β
−  +⋅ ⋅ ⋅  − 

, β = < 1. 

 
From (12c), the impulse of the electron has the magnitude: 

                                                
 (1) Cf., e.g., J. C. Maxwell, Treatise 1, pp. 244 in the German translation.  
 (2) I gave a proof of this theorem in my first publication [Göttinger Nachrichten (1902), pp. 36].  The 
theorem follows directly when one substitutes the expression that E. Betti (Lehrb. d. Potentialtheorie, 
1885, pp. 259) gave for the capacity (Q′ ) of the conducting ellipsoid into the expression for the 

electrostatic energy of the complete ellipsoid [§ 12, eq. (29a)].  One will then get 
e

W′ = 3
5 e2 / Q′ for the 

energy of the ellipsoid. 
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(15a)  G = 
dL

dt
= 

2 23 1 1 1
ln 1

5 2 1

e

ac

β β
β β β

    + + ⋅ ⋅ ⋅ −    −    
 

 
and, from (12d), the energy is: 
 

(15b)  W = − L + q G = 
23 1 1

ln 1
5 1

e

a

β
β β

  +⋅ ⋅ ⋅ −  −  
. 

 
By adding (subtracting, resp.) (15), (15b), one will get the following value for the 
magnetic (electric, resp.) part of the energy: 
 

(15c)  Wm = 
2 23 1 1

ln 1
5 2 1

e

a

β β
β β

    + + ⋅ ⋅ ⋅ −    −    
, 

 

(15d)  We = 
2 23 3 1

ln 1
10 2 1

e

a

β β
β β

    − + ⋅ ⋅ ⋅ −    −    
. 

 
 If one develops the last two expressions in series of powers of β 2 and neglects 
quantities of order β 4 then one will have: 
 

(15e)  We = 
23

5

e

a
⋅ , Wm = 

2 2

2

4

5 2

e q

ac
⋅ ⋅ . 

 
 For the low speeds of slow cathode rays, the electric energy will then be independent 
of the velocity, and the magnetic energy will be proportional to its square, like the 
potential (kinetic, resp.) energy of ordinary mechanics.  The assumption that is at the 
basis for how analytical mechanics arrives at the relations that couple energy and impulse 
with the Lagrangian function is still valid here.  That assumption will no longer be true 
for large speeds; the dependency of electric and magnetic energy upon speed will then be 
a complicated one.  However, our electromagnetic basis for those relations is true for 
arbitrary speeds that are less than the speed of light.  It extends the sphere of influence of 
Lagrangian mechanics in a very remarkable way. 
 
 

§ 8.  Quasi-stationary translational motion.  Electromagnetic mass. 
 
 In the last two sections, we learned about the field, energy, and impulse that 
correspond to uniform translation of the electron.  They depend upon only the velocity; 
admittedly, that is rigorously true only when the velocity has been uniform for an infinite 
time interval.  Any acceleration that that the electron experiences will act in such a way 
that spherical electromagnetic waves will spread into space from the location at which the 
electron is found at that point in time.  The field strengths of those waves, and therefore 
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also the densities of energy and quantity of motion that they contain will depend upon the 
acceleration that is assigned to the electron at that point in time.  Thus, if any sort of 
acceleration has occurred then the energy and impulse would no longer depend upon the 
instantaneous velocity exclusively, and the formulas of the previous paragraphs would 
then be no longer exact.  That situation complicates the rigorous treatment of non-
uniform electron motion.  We will appeal to an approximation method that has already 
proved itself in the electrodynamics of conduction currents. 
 If the electric current that flows through a conducting wire is stationary – i.e., if the 
current strength has always been constant − then the magnetic field will be determined 
from the current strength.  However, as soon as the current changes in intensity, the field 
will no longer correspond precisely to the instantaneous current strength; it would also 
depend upon the temporal change in the current strength.  The latter dependency comes 
into consideration essentially for fast oscillations of Hertzian frequency.  In particular, 
they make themselves known in the waves that are emitted by a Hertzian generator.  By 
contrast, in the theory of low-frequency alternating current, one prefers to ignore that 
fact.  One calculates the magnetic field of the prevailing strengths and distribution of 
currents as if the current were stationary; one derives the self-induction that counteracts a 
temporal variation of the current strength from the energy of the field thus computed.  
This theory of “quasi-stationary currents” has proved to be entirely trustworthy for 
sufficiently slow current oscillations; the radiation that is not contained in it will come 
under consideration only for very rapid current oscillations. 
 A stationary conducting current corresponds to a stationary convection current here – 
that is, uniform electron motion.  A quasi-stationary current corresponds to quasi-
stationary motion.  We refer to a motion of an electron as quasi-stationary when its 
change in velocity happens so slowly that one can compute the impulse from the present 
velocity, just as for stationary motion.  In the next paragraphs, we shall seek to discover 
when it is permissible to consider a motion to be stationary. 
 The self-induction in the theory of conduction currents corresponds to the 
electromagnetic mass in the dynamics of the electrons.  As was mentioned in the 
introduction, experiments have led us to attribute an inertial mass to the electron, which is 
a mass that is remarkably constant for the slowly-varying cathode rays, while it is a 
function of the velocity for Becquerel rays.  One has then confirmed Newton’s second 
axiom here, at least, in the sense that the quotient of the force and the acceleration is 
independent of the magnitude of the force.  In order to deduce that sort of behavior from 
electromagnetic theory, we start with a motion of the electron that satisfies Newton’s first 
axiom, namely, pure translational motion.  We alter it with an external force; if the 
acceleration proves to be quasi-stationary then the relationship between force and 
acceleration can, in fact, be characterized by an electromagnetic mass. 
 For quasi-stationary, irrotational motion, the impulse of the electron is directed 
parallel to its current velocity; one will thus have [q G] = 0, and the angular impulse will 

vanish, as well.  The second of the equations of motion (VII b) will then be fulfilled 
without having to add any torques to the motion, which is assumed to be translational.  
The impulse will be changed by the external force K according to the first equation of 

motion (VIIa).  One has: 

(16)     
d

dt

G
 = K . 
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The magnitude G of the impulse will then depend upon only the current velocity q, as 
was assumed. 
 We decompose the external force K into a component Ks that is parallel to the 

direction of motion and one Kr that is perpendicular to it.  The former provokes an 

increase in the component of the impulse that is tangential to the path, and the latter, a 
change in the direction of the impulse.  Since G and q point in the direction of motion, 

the components of the temporal change of those vectors in the direction of the path 
tangent will be equal to the temporal change in their magnitudes.  It will then follow that: 
 

dG

dt
 = 

dG dq

dq dt
⋅  = Ks . 

 
We call the quotient of the components of the force and acceleration in the direction of 
motion: 

(16a)     µs = 
dG

dq
 

 
the “longitudinal electromagnetic mass.”  One computes the component of the temporal 
change in the impulse that is perpendicular to the direction of motion as follows: The 
impulse vector is always parallel to the direction of motion; like that direction, it will 
rotate in space with an angular velocity (q / r), where r denotes the radius of curvature of 
the path.  The desired component of dG / dt then amounts to G ⋅⋅⋅⋅ q / r = Kr ; it is referred 

to the center of curvature of the path.  The component of the force Ks that provokes that 

change in impulse will then be likewise parallel to the radius of curvature of the path.  
The corresponding component of the acceleration amounts to q2 / r, so the quotient of the 
transversal force and the transversal acceleration – viz., the “transverse electromagnetic 
mass” – will then be: 

(16b)     µr = 
G

q
. 

 
 For slow motion, as the series development (15a) would describe, the impulse G is 
approximately proportional to the velocity q.  In that case, the longitudinal mass will be 
equal to the transverse mass; this experimentally-observed result for slow cathode rays 
can be explained in the sense of electromagnetic theory by formulas (16a), (16b).  One 
will obtain: 
(16c)     µs = µr = µ0 
 
for the limiting value of the two masses, in which: 
 

 µ0 = 

2

2

4
for a

5

2
for a .

3

volumecharge
a

surface charge
a

ε

ε






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Here, ε = | e | / c denotes the magnitude of the charge, measured in absolute 
electromagnetic units.  The aforementioned measurements for cathode rays (1) yield: 
 

0

ε
µ

= 1.865 × 107. 

 
We then obtain the radius of the electron as: 
 

(16d)   a = 

7

7

4
1.865 10 for a

5
2

1.865 10 for a .
3

volumecharge

surface charge

ε

ε

 ⋅ ⋅ ×

 ⋅ ⋅ ×


 

 
The slight difference between the numerical factors that separates the volume and surface 
charges does not count for as much here as the uncertainty in our knowledge of the 
elementary quantum of electricity.  If one sets the charge of the electron equal to the ionic 
charge then one will have (2): 

2 × 10−10 < | e | < 20 × 10−10, 
so 

10−13 < a < 10−12 cm. 
 
 The electrical field strengths | e | / a2 that originate on the surface of the electron at 
rest range from 2 × 1015 to 2 × 1016 in absolute electrostatic units.  The magnetic field 
strength that appears on the surface of the electron for large velocities has the same order 
of magnitude.  The field strengths that we compute with in our theory then exceed the 
ones that are accessible to direct measurement by a billion-fold. 
 If the velocity of the electron is no longer small then the impulse will no longer be 
proportional to the velocity; the longitudinal and transverse masses will then depend 
upon the velocity, and indeed, in different ways.  Formula (15b) yields: 
 

(16e)   

3
04

2 2

( ),

1 1 1 2
( ) ln ,

1 1

eµ µ χ β

βχ β
β β β β

= ⋅


  + = ⋅ − ⋅ +   − −  

 

 

(16f)   

3
04

2

2

( ),

1 1 1
( ) ln 1 .

2 1

rµ µ ψ β

β βψ β
β β β

= ⋅


    + +  = ⋅ ⋅ −     −    

 

 
These formulas for the longitudinal and transverse mass refer to the volume charge, as 
well as the surface charge. 

                                                
 (1) S. Simon, Wied. Ann. 69 (1899), pp. 599; W. Seitz, Ann. Phys. (Leipzig) 8 (1902), pp. 233.  
 (2) Cf., E. Riecke, Lehrb. d. Phys., 2nd ed., 1902, pp. 382 and 386.  
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 Formula (16f) is the one that W. Kaufmann checked on the basis of his 
measurements of the deflection of Becquerel rays in the interval (β = 0.60 to β = 0.95, 
perhaps).  He confirmed the formula to within the error limits of the test (1 to 1.5%).  So 
far, there have been no attempts to measure things for medium velocities (β = 0.3 to β = 
0.6).  Neither have there been any measurements of the longitudinal acceleration of 
rapidly-moving electrons, which might serve as checks for formula (16e).  Furthermore, 
these formulas would probably not be as useful as formulas (15a) and (15b) for impulse 
and energy, which directly determine the velocity that an electron in an external field at a 
given time (on a given line segment, resp.) is endowed with. 
 If one orders them in increasing powers of β then one will obtain the series 
developments: 

(16g)   µs = µ0{ }2 4 66 9 12
5 7 91 β β β+ ⋅ + ⋅ + ⋅ +⋯ , 

 

(16h)   µr = µ0{ }2 4 66 9 12
3 5 5 7 7 91 β β β⋅ ⋅ ⋅+ ⋅ + ⋅ + ⋅ +⋯ , 

 
which converge for β < 1. 
 It emerges from them that if one assumes the limiting case of very slow motion then 
the longitudinal mass will always be larger than the transverse mass.  Now, if the 
external force is oriented skew to the direction of motion then its longitudinal component 
will provoke a smaller acceleration than the transversal component.  The resultant 
acceleration will then subtend a larger angle with the direction of motion than the force 
vector, so let both angles amount to 0 or π / 2.  The functional relationship between force 
and acceleration will be represented in the dynamics of electrons by a linear vector 
function of a more general kind than the one that is used in ordinary mechanics.  The 
electromagnetic mass – viz., the system of coefficients of the linear vector function – is a 
tensor (1) with rotational symmetry whose symmetry axis is determined by the direction of 
motion of the electron. 
 
 

§ 9.  Radiation from accelerating electrons.  Limits of quasi-stationary motion. 
 

 The definition of an electromagnetic mass and the validity of Newton’s second axiom 
in the form that was just given assume quasi-stationary motion in an essential way.  What 
then are the limits of the quasi-stationary state of motion?  That question is not easy to 
answer.  If one would like to compute precisely the error that one introduces when one 
lets the impulse depend upon current velocity as in equation (15a) for a given non-
uniform motion then one must give exactly the field that corresponds to the history of the 
motion.  For that reason, here, where we are concerned with only crude estimates order of 
magnitude of the field in question, we shall appeal to another method that will be 
described in this section.  It replaces the electron with an electrical point and computes 
the field and impulse with the help of the point-potential theorem that was presented in 

                                                
 (1) Cf., W. Voigt, Die fundamentalen physikalischen Eigenschaften der Krystalle, Leipzig, 1898; M. 
Abraham, Enckl. der mathem. Wissensch. 4, 1901), art. 14. 
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the Lorentz-Festschrift by E. Wiechert (1) and Th. des Coudres (2).  One then starts with 
the following problem statement: 
 The electron shall be thought of as having been in uniform translatory motion since 
the beginning; we denote its velocity by q1 .  External forces begin to act at the point P1 at 

the time t1 .  The time interval of the non-uniform motion that now begins lasts until the 
time t2 ; the electron might be found at the point P2 then.  From then on, one will again 
assume a velocity q2 that is constant in direction and magnitude.  One then waits for a 

certain time (t3 – t2).  On the basis of the point theorem, one can say the following about 
the field that exists at time t3 : 
 Outside of the sphere K1 that is constructed around P1 with a radius of c (t3 – t1), the 
field will correspond to the stationary motion that is determined by q1 .  Inside of the 

sphere K2 that is constructed about P2 with a radius of c (t3 – t2), the field that prevails 
will correspond to a uniform velocity of q2 .  We assume that the speed of light is never 

attained or exceeded; K2 will always lie inside of K1 then.  Only the part of the field that 
is bounded by these two eccentric spheres will depend upon the acceleration that the 
electron is endowed with in the interval from t1 to t2 .  Now, the electron will be regarded 
as a point charge in those regions of the field whose distance from the electron is very 
large in comparison to its radius.  We make the: 
 

Assumption A:  (t3 – t2) (c – q2) is larger than a, 
 
which says that: The distance from the electron to the next point of the sphere K2 is large 
in comparison to the radius of the electron, so the same thing will be true a fortiori for all 
points that lie outside of the sphere K2 .  Admittedly, one can compute the field from the 
point theorem only when yet another assumption is fulfilled.  Namely, the derivation of 
the point theorem rests upon tacit assumption that cannot be ignored here where we are 
dealing with non-uniform motion.  The electron was initially assumed to be spatially 
extended in the proof of the theorem; its volume elements yield contributions to the fields 
of the scalar potential Φ and the vector potential A that propagate from the reference 

point in question with the speed of light, and which depend upon the speed of the volume 
element essentially.  Now, if the velocity of the electron changes noticeably in the time 
interval (2a / c – q) that the light needs in order to cross the moving electron parallel to 
the direction of motion then different velocities for the individual volume elements must 
be introduced into the calculations if one would like to ascertain the field at the reference 
points at which the electron is moving.  The passage to the limit of a point charge would 
then be inadmissible; it would be allowed only when: 
 

Assumption B:  
| | 2a

q c q
⋅

−
ɺq

is small compared to 1 

 

                                                
 (1) E. Wiechert, Arch. Néerland. (2) 5 (1900), pp. 549; Ann. Phys. (Leipzig) 4 (1901), pp. 667.  
 (2) Th. des Courdres, Arch. Néerland. (2) 5 (1900), pp. 652. 
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is fulfilled.  The relative acceleration cannot be too large then, and the velocity cannot be 
too close to the speed of light.  (For non-uniform motion with superluminal speed, the 
point theorem cannot be applied at all.) 
 We assume that the acceleration that exists in the time interval t1 to t2 is small enough 
that Assumption B is true, and wait until a moment t3 when Assumption A is fulfilled.  
One can then derive the field inside of the space that is bounded by the spheres K1, K2 
from the point theorem. 
 E. Wiechert and Th. des Coudres have confined themselves to calculating the 
potentials Φ, A; they skipped the calculation of the electromagnetic field of an 

accelerated point charge from equations (IIg), (IIh).  Once I had performed the somewhat 
laborious differentiations and thus ascertained the field strengths E, H, I calculated the 

energy and impulse that was contained in the part of the field that is enclosed between the 
two spheres.  The radii of the two spheres increase constantly as the time t3 increases.  
Those quantities then then converge to well-defined limiting values ∆W, ∆G, for which I 

have found the following expressions: I set: 
 

(17)    f (β) = 
2 2

2 2

(1 sin )

(1 )

β η
β

− ⋅
−

. 

 
In this, η denotes the angle that the velocity q and acceleration ɺq  vectors subtend at the 

time point in question t1 ≤ t ≤ t2 .  One will then have: 
 

(17a)    ∆W = 
2

1

2
2

3

2
( ) | |

3

t

t

e
dt f

c
β⋅ ⋅ ⋅ ⋅∫ ɺq , 

 

(17b)    ∆G = 
2

1

2
2

5

2
( ) | |

3

t

t

e
dt f

c
β⋅ ⋅ ⋅ ⋅ ⋅∫ ɺq q . 

 
 These formulas yield the energy and impulse radiation that emanates from an 
accelerating electron.  Formula (17a) would come into play when one is dealing with the 
calculation of the energy of Röntgen rays that are generated by the collisions of very 
rapidly moving electrons.  (Thus, Assumption B must be fulfilled.)  One can interpret that 
formula as follows: The energy radiated per unit time amounts to: 
 

2
2

3

2
| | ( )

3

e
f

c
β⋅ɺq . 

 
In the limiting case of very slowly motion, one will get the known formula: 
 

2
2

3

2
| |

3

e

c
ɺq  
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for longitudinal, as well as transverse, acceleration.  By comparison, for rapid motion, the 
radiation will be different according to whether one is dealing with longitudinal or 
transverse acceleration.  In the former case, one will have: 
 

η = 0,  f(β) = 2 3

1

(1 )β−
, 

and in the latter: 

η = 
2

π
, f(β) = 2 2

1

(1 )β−
. 

 
The radiation of energy is smaller for transverse acceleration than it is for longitudinal; 
the same thing will be true for the radiation of impulse.  The impulse radiated that is 
calculated per unit time is given by (17b) as a vector of magnitude: 
 

2
2

4

2
( ) | |

3

e
f

c
β β⋅ ⋅ ⋅ ɺq . 

 
It proves to be parallel to the direction in which the electron moves, as if it were endowed 
with the acceleration in question. 
 Formula (17b) shall now serve to limit the validity of the theory of quasi-stationary 
motion.  That theory would compute the impulse that was due to the field at the time t3 
from the instantaneous velocity q2 of the electron as if the motion had been uniform from 
the beginning onward; i.e., from equation (15a).  We let G2 denote the impulse thus-

computed, and let G3 denote the impulse that is actually contained in the field at time t3 .  

Now, it is easy to prove that as the time interval (t3 – t2) increases, G3 will converge to 

the limiting value: 
(18)     G3 = G2 + ∆G.   

 
In fact, from the way that the field strengths of the stationary field behave at infinity in § 
6, one concludes that the entire impulse G3 will already be found in the field that is 

enclosed by the sphere K3 when the time t3 fulfills Assumption A; on the same basis, the 
impulse of the field that lies outside K1 and corresponds to the uniform velocity q1 will 
vanish in comparison to G2 .  Finally, the impulse of the field that is found between the 

two spheres will amount to ∆G.  Now, the theory of quasi-stationary motion sets: 

 

(18a)      G2 – G1 = 
2

1

t

t
dt∫ K ; 

 
i.e., one neglects the radiated impulse.  The relative error that is committed in the 
calculation of the impulse then amounts to: 
 

(18b)     3 2

2 1

| |

| |

−
−

G G

G G
 = 

2 1

| |

| |

∆
−
G

G G
. 
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If we make: 
 

Assumption C:  
2

2
4

2
( ) | |

3

e
f

c
β β⋅ ⋅ ⋅ ɺq  is small compared to | K | 

 
then if we recall (17b), (18a), we can neglect the error (18b) in the effect of an external 
force K whose direction does not change essentially in the interval t1 < t < t2 .  | K | can 

then be calculated from the theory of quasi-stationary motion. 
 For longitudinal acceleration, one has: 
 

| K | = | Ks | = µs ⋅⋅⋅⋅ 2| |ɺq , 

and for transverse acceleration: 
| K | = | Kr | = µr ⋅⋅⋅⋅ 2| |ɺq . 

 
In this, from (16c), (16e), (16f), one must set: 
 

µs = 
2

2

3
( )

5

e

c a
χ β⋅ , µr = 

2

2

3
( )

5

e

c a
ψ β⋅ . 

 
One can then replace the condition (8) with two other ones: 
 

(C1) 2 2 3

10 | |

9 (1 ) ( )

a

c

β
β χ β

⋅ ⋅
−

ɺq
 is small compared to 1 for longitudinal acceleration, 

 

(C2) 2 2 3

9 | |

10 (1 ) ( )

a

c

β
β ψ β

⋅ ⋅
−

ɺq
 is small compared to 1 for transverse acceleration. 

 
If the magnitude of the acceleration is low enough and if the speed is far enough below 
the speed of light that condition (C1), [(C2), resp.] is fulfilled then one calculate the 
change in impulse that takes place from the theory of quasi-stationary motion, but 
admittedly only when condition (B) is simultaneously true.  If Assumption (B) is not true 
then the argument that is based upon the point theorem that leads us to condition (C) will 
break down.  We write condition (B) as: 
 

(B)    2

1
2 | |

(1 )

a

e β β
⋅ ⋅ ⋅

−
ɺq  is small compared to 1. 

 
  A thorough discussion of the question of which of the condition (B), (C) demands 
more and which demands less would take us too far afield.  One will see the answer 
immediately for slow motion, since the factor of | |ɺq  will be larger in (B) than it is in 
(C1), (C2).  Therefore, all motions to which the point theorem will apply are then to be 
considered as quasi-stationary here.  In order to evaluate the approximation to which 
those conditions are fulfilled for rapid, but still observable, motions, we single out a case 
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that is as inconvenient as possible, namely, the fastest of the Becquerel rays that 
Kaufmann examined; β = 0.95, 1 – β = 0.05, ψ(β) = 3 for them.  Since one is dealing 
with a transverse acceleration, formula (C2) will come into question, in which one might 
set: 

| |ɺq  = 
2q

r
 = 

2e

r
; 

 
r is the radius of curvature of the path, which amounts to 12 cm. in a magnetic field of 
300 absolute units.  Finally, if one sets a = 10−12 then one will obtain the same value – 
viz., 3×10−12 – for the quantities that must be small compared to 1 according to (C2) [(B), 
resp.].  When one makes the magnetic field itself 100 times stronger, the relative error 
that is committed by applying the point theorem and the theory of quasi-stationary 
motion will still not reach 10−9.  One sees from this that: The theory of quasi-stationary 
motion is applicable to all practical cases, and also for the fastest Becquerel rays. 
 Moreover, one would err in trying to improve the theory by considering the term ∆G.  

We have always treated only the idealized problem in which the electron was considered 
to be alone in space.  However, it is precisely the radiation that is emitted by the electron 
that will be influenced essentially by the bodies that bound the field.  Furthermore, very 
many electrons will be present in cathode rays and Becquerel rays.  In a magnetic or 
electric field, they will be accelerated “coherently.”  Since the densities of energy and 
quantity of motion are not linear in the field strengths, one cannot by any means 
superimpose the energy and impulse that is radiated by the individual electrons.  
Formulas (17a), (17b) give only the radiation of an incoherently-accelerated electron 
swarm.  (That would be present for the emission of Röntgen rays.)  The free motion of 
the electron swarm, as well as the electrically or magnetically deflected ones, presents a 
stationary current; the radiation from such a current is zero.  Thus, it is obvious that when 
one neglects the radiation from the individual electrons, our theory will remain just inside 
those limits of precision that would be indicated if one neglects the influence of foreign 
bodies and the interaction of the individual electrons from the outset. 
 
 

§ 10.  Derivation of the Lagrangian equations for the distinguished motions. 
 

 In section seven, we showed that certain relations from analytical mechanics would 
be true for a purely translational motion of an arbitrarily-distributed charge that would 
make it possible to reduce its impulse and energy to a single function.  The proof that was 
given there showed that one was therefore dealing with a property of the stationary field 
that is generated by the uniform motion of electricity; at the time, we did not bring 
acceleration under consideration at all.  In this section, we would now like to extend the 
domain of validity of Lagrangian mechanics even further; we would also like to include 
rotational motions, which belong to the class of “distinguished motions.”  For that, we 
would like to follow a different method of proof: We will arrive at the relationships that 
exist between the Lagrangian function and components of the impulse when we apply the 
laws of energy and impulse to the quasi-stationary motions.  This second, more general, 
proof will subsume the first one and will thus lay the dynamical foundations for the 
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Lagrange equations.  By contrast, like the first proof, it does not make it entirely clear 
how one is to derive the dynamics of the distinguished motions from the Lagrangian 
function on the basis of the properties of stationary fields.  On the other hand, no one can 
object to the enlistment of quasi-stationary motions, precisely because one is dealing with 
the derivation of properties of stationary motions.  Indeed, the accelerations can be 
arbitrary, and in fact they can be chosen to be small enough that the error that is 
introduced by calculating with quasi-stationary motions is arbitrarily small.  All of the 
relations that are obtained will be exact in the limiting case of an infinitely-small 
acceleration; those of them that no longer contain the components of the acceleration will 
define properties of stationary motion. 
 The fields of the distinguished motions (cf., § 5) were stationary when considered 
from the frame that is rigidly-coupled to the electron.  This is a characteristic property of 
pure translational motion for an arbitrarily-distributed electron (cf., § 6).  In fact, in § 
12, we will treat the stability of the translation of an ellipsoid on the basis of the 
relationships that we will now develop.  However, if we direct our attention to rotations 
then we would like to always restrict ourselves to our spherically-symmetric electron.  
We investigate motions of it for which the vectors q, ϑ of translational and rotation 

velocity, resp., possess constant magnitude and fixed directions in space.  The same 
argument that was presented in § 6 in regard to the history of the motion is true here.  It 
leads to the conclusion that the field will be stationary if it is referred to a pure 
translationally-moving coordinate system; the field equations (IIe), (IIf) will assume the 
form: 

(19) (1 – β 2) 
2 2 2

2 2 2x y z

∂ Φ ∂ Φ ∂ Φ+ +
∂ ∂ ∂

   = − 4π ρ, 

 

(19a)  (1 – β 2) 
2 2 2

2 2 2
x x x

x y z

∂ ∂ ∂+ +
∂ ∂ ∂
A A A

 = − 4π ρ β – 
4

c

π ρ
(ϑy z – ϑz y), 

 

(19b)  (1 – β 2) 
2 2 2

2 2 2

y y y

x y z

∂ ∂ ∂
+ +

∂ ∂ ∂
A A A

 = − 
4

c

π ρ
 (ϑz x – ϑx z), 

 

(19c)  (1 – β 2) 
2 2 2

2 2 2
z z z

x y z

∂ ∂ ∂+ +
∂ ∂ ∂
A A A

 = − 
4

c

π ρ
 (ϑx y – ϑy x). 

 
The x-axis is once more laid along the direction of translation.  Here, one also easily 
convinces oneself with the help of potential theory that the potentials Φ, A, and the field 

strengths E, H behave at infinity in the same way as what was assumed for the derivation 

of the law of energy (VI) and the laws of impulse (VIIa), (VIIb). 
 Which of the motions considered belong to the class of distinguished motions?  For 
which of them can the errors in the scalar Φ and the vector A also be stationary when one 

considers them from the frame that moves with the rotating electron? 
 It emerges immediately from the form of the differential equations (19) to (19c) that 
the x-axis is a preferred direction of the field, even when no translatory motion at all is 
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assumed.  However, the field is therefore stationary when it is considered in the frame if 
and only if the direction of the vector q, which is fixed in space, possesses a fixed 

position in the frame; i.e., when the direction of motion and the rotational axis coincide.  
Hence: Uniform translation, when coupled with a uniform rotation around the direction 
of motion, is a “distinguished” motion of the electron; it contains the special case of pure 
translation and pure rotation.  Since the field of that motion is stationary relative to a 
coordinate system that is co-moving with only a translation, as well as relative to one that 
is simultaneously co-rotating, the impulse G and angular impulse M of the field will 

possess constant magnitudes and directions that are fixed in space, as well as in the 
electron.  Its directions then coincide with the common direction of the vectors q, ϑ.  It 

follows from this: The motion of the electron considered fulfills the equations of motion 
(VIIa), (VIIb) without requiring the action of an external field or torque. 
 In order to go further into the field of the motion that we are discussing, we set ϑy = 
ϑz = 0 in equations (19) to (19c) and set ϑx = ϑ, to abbreviate, and get: 
 

(20) (1 – β 2) 
2 2 2

2 2 2x y z

∂ Φ ∂ Φ ∂ Φ+ +
∂ ∂ ∂

   = − 4π ρ, 

 

(20a)  (1 – β 2) 
2 2 2

2 2 2
x x x

x y z

∂ ∂ ∂+ +
∂ ∂ ∂
A A A

 = − 4π ρ β, 

 

(20b)  (1 – β 2) 
2 2 2

2 2 2

y y y

x y z

∂ ∂ ∂
+ +

∂ ∂ ∂
A A A

 = + 
4

c

π ρ ⋅⋅⋅⋅ ϑ z , 

 

(20c)  (1 – β 2) 
2 2 2

2 2 2
z z z

x y z

∂ ∂ ∂+ +
∂ ∂ ∂
A A A

 = − 
4

c

π ρ ⋅⋅⋅⋅ ϑ y . 

 
If, as in § 6, we set: 

x′ = 
21

x

β−
 

 
then these differential equations will be put into the form of ordinary potential equations.  
Here, as there, it also follows that Φ and Ax will vanish at infinity to first order in the 

reciprocal distance to the electron.  However, Ay (Az , resp.) would correspond to 

potentials whose signs go to the opposite one when the sign of z (y, resp.) is inverted, and 
thus, ones whose total mass would be zero; such potentials would then vanish at infinity 
to second order.  However, it would then follow that the scalar: 
 

ϕ = Φ – 
1

c
(v A) = Φ – β Ax + ϑ (z Ay – y Az), 
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which is defined by (7a) and has the meaning of a convection potential for the 
distinguished motions here, would vanish to second order.  Furthermore, since the 
components of the field strengths E, H vanish at infinity to at least second order, it would 

then follow from the rule (ε), just as it did in § 7, that one would have the relation: 
 

(20d)    
8

dv

π∫∫∫ (E A) = 
2

dvρ ϕ
∫∫∫ . 

 
 The validity of equation (9d) in § 5 also assumes the vanishing of certain integrals 
that are taken over the infinitely-distant boundary surface, which is now easy to verify.  
Moreover, equation (9d) is based upon the assumption that the integral: 
 

8

dv

π∫∫∫ (E A), 

 
which is taken over the entire infinite field, will take on a finite value. We must now 
persuade ourselves of the validity of this assumption, and all the more so, since we will 
set the differential quotient of that integral with respect to time equal to zero, 
corresponding to the stationary character of the field.  It follows from the differential 
equations (19) to (19c), on the basis of the symmetry properties of the electron, that: 
 
 Φ, Ax , Ay , Az ,  are symmetric with respect to the (y z)-plane, so 

 
x

∂Φ
∂

, x

x

∂
∂
A

, y

x

∂
∂
A

, z

x

∂
∂
A

 are anti-symmetric with respect to the (y z)-plane, 

 Ay  is symmetric and 
y

∂Φ
∂

 is anti-symmetric with respect to the (x z)-plane, 

 Az  is symmetric and 
z

∂Φ
∂

 is anti-symmetric with respect to the (x z)-plane. 

 
 We now compute the integral: 
 

8

dv

π∫∫∫ (E A) = 
8

dv

π∫∫∫ ∫∫∫ {Ex Ax + Ey Ay + Ez Az}. 

 
From (IIg), and since one sets: 

t

∂
∂

 = − q 
x

∂
∂

, 

one will have: 
 

Ex = − x

x x
β ∂∂Φ +

∂ ∂
A

, Ey = − y

y x
β

∂∂Φ +
∂ ∂

A
, Ez = − z

z x
β ∂∂Φ +

∂ ∂
A

. 

 
Now, it follows immediately from the above that: 
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 Ax ⋅⋅⋅⋅
x

∂Φ
∂

, Ax ⋅⋅⋅⋅ x

x

∂
∂
A

, Ay ⋅⋅⋅⋅ y

x

∂
∂
A

, Ay ⋅⋅⋅⋅ z

x

∂
∂
A

 are anti-symmetric with respect to the (y z)-

plane, 

 Ay ⋅⋅⋅⋅
y

∂Φ
∂

 is anti-symmetric with respect to the (x z)-plane, 

 Az ⋅⋅⋅⋅
z

∂Φ
∂

 is anti-symmetric with respect to the (x y)-plane. 

 
If one adds the contributions that the eight volume elements that arise by reflection in the 
coordinate planes contribute to the integral then one will get zero for the sum.  The 
vanishing of the integral: 

(20e)     
8

dv

π∫∫∫ (E A) = 0 

 
will then follow.  Now, equation (9d) will give the following expression for the 
Lagrangian function: 

(21)    L = Wm – We = − 
2

dvρ ϕ
∫∫∫ . 

 
The same thing will then be true for not only the pure translation of an arbitrarily-
distributed charge [cf. (12a)], but also for the other distinguished motions of the electron 
that are considered.  It follows further from (21), (20d), and (9c) that: 
 

(21a)     
8

dv

π∫∫∫ ⋅⋅⋅⋅ (H H′) = 0. 

 
Thus, the right-hand sides of (9b) and (9c) will be equal, and we will obtain: 
 
(21b)    L = (q G) + (ϑ M) – W. 

 
 For pure translation, one will have H′ = 0, so (21a) will be true; (21b) was contained 

in (10g), (10h). 
 We now go back to the relation (8c), which was obtained from the law of energy and 
impulse.  For the distinguished motions, it now takes on the form: 
 

(21c)    
dL

dt
 = 

d d

dt dt

ϑ′ ′   +   
   

q
G M . 

 
In this, the temporal change in the vectors q, ϑ is judged from an axis-cross that is fixed 

in the electron; correspondingly, G, M are also to be evaluated from that same axis-cross.  

Equation (21c) will tell us nothing new when it is applied to the stationary motions that 
we consider, for which q, ϑ possess constant magnitude and fixed directions in the 

electron, while the impulse and the Lagrangian function will also be constant; it would 
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yield zero on the left-hand side, as well as on the right.  However, we cannot also apply 
the relation (21c) to those quasi-stationary motions that represent a consequence of 
distinguished motions.  Equation (8c) will then refer to arbitrary motions, and (21c) will 
arise from it when one substitutes the relation (21b) in it, which was proved for the 
stationary motions that are being considered.  It is now precisely the impulse, angular 
impulse, electric and magnetic energy that must be calculated from the velocity and 
angular velocity that are characteristic of the quasi-stationary motions, as if the motion 
were stationary.  If the velocity and angular velocity change continually in such a way 
that the state of motion at each moment belongs to the class that we speak of then 
relations (21b) and (21c) will be true.  We can then think of, e.g., the pure translation of 
an arbitrarily-distributed charge as varying in a quasi-stationary way, whether or not its 
continuation might require an external torque.  One must then set ϑx = ϑy = ϑz = 0, since 
otherwise the motion would be one of the distinguished ones.  However, the components 
of q can be changed arbitrarily, and at any moment, they will correspond to values that 

the Lagrangian function, as well the components of G, possess then.  It follows that for 

sufficiently-small, but still arbitrary, values of: 
 

xd

dt

′q
, yd

dt

′q
, zd

dt

′q
, 

the following relation will exist: 
 

yx z

x y z

dd dL L L

dt dt dt

′′ ′∂ ∂ ∂⋅ + ⋅ + ⋅
∂ ∂ ∂

qq q

q q q
 = yx z

x y z

dd d

dt dt dt

′′ ′
⋅ + ⋅ + ⋅

qq q
G G G . 

 
That will yield the components of the impulse, referred to axes that are fixed in the 
moving system: 

(22)   Gx = 
x

L∂
∂q

, Gy = 
y

L∂
∂q

, Gz = 
z

L∂
∂q

. 

 
This the first of the Lagrange equations. 
 On the other hand, if we are dealing with the pure rotation of an electron, for which 
one sets qx = qy = qz = 0, then we can imagine that ϑx , ϑy , ϑz will vary in a quasi-

stationary, but arbitrary, way.  Equation (21c) will then lead to the relations: 
 

(22a)   Mx = 
x

L

ϑ
∂
∂

, My = 
y

L

ϑ
∂
∂

, Mz = 
z

L

ϑ
∂
∂

. 

 
 However, if the rotation is coupled with a translation in the direction of the rotational 
axis then the components ϑy , ϑz , qy , qz that are perpendicular to that direction (viz., the 

x-axis) cannot be changed independently without the motion losing its character as a 
distinguished motion.  Here, only ϑx , qx are independent variables, so one will have: 

 



Abraham – Principles of the dynamics of the electron. 51 

(22b)    Gx = 
x

L∂
∂q

, Mx = 
x

L

ϑ
∂
∂

. 

 
However, we already saw above that in this case the impulse and angular impulse point in 
the direction of the x-axis; the remaining components of those vectors then vanish.  In 
summary, we say: 
 For the distinguished motions considered, the impulse and angular impulse are 
determined by the first of the Lagrange equations. – This result is true for quasi-
stationary motions that represent a consequence of distinguished motions to an arbitrary 
degree of approximation when the accelerations are sufficiently small; it is therefore 
exact for the stationary motions that we are examining.  We can refer to the equations of 
motion (8), (8a), in which the components of the impulse refer to the axes that are fixed 
in the electron, as the second of the Lagrange equations.  Here, the relations (22), (22a), 
(22b), which express the components of the impulse as partial differential quotients of the 
Lagrangian function with respect to the components of the velocity, must be noted in the 
event that one is treating a quasi-stationary consequence of the distinguished motions.  
The energy of such motions can be derived from the Lagrangian function by means of 
(21b) in the way that is known from analytical mechanics. 
 One will obtain a simplified formulation of Lagrangian mechanics when one goes 
from the Lagrange equations to Hamilton’s principle.  Its meaning as a minimum or 
maximum principle will generally be compromised by the restriction to distinguished 
motions.  We thus content ourselves with carrying out the proof for purely translatory 
motions.  We then go back to equation (VII), which represents d’Alembert ’s principle in 
our electromagnetic mechanics.  We integrate over an interval from t0 to t1 and obtain: 
 

1

0
2

1
,

t

ht
dt A dv s

c t
δ δ ∂  −  ∂  

∫ ∫∫∫
S

 = 0. 

 
We imagine that the virtual parallel translation δs of the point of the electron (the frame 
that is rigidly-coupled to it, resp.) is arranged so that it demands Hamilton ’s principle.  
There must be initial and final positions for the actual, as well as the varied, motion (δs = 
0 for t = t0, t = t1), and furthermore, one must imagine traversing corresponding positions 
of the actual and varied motions.  One will have: 
 

s

t

δ∂
∂

 = δq . 

Partial integration over time will give: 
 

1

0
2

1
,

t

ht
dt A dv

c
δ δ  +  

  
∫ ∫∫∫ q S  = 0. 

Now, one has, however: 

2

1
,dv
c

δ 
 
 

∫∫∫ q S = (G δq), 

and furthermore, from (22): 
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(G δq) = x y z
x y z

L L Lδ δ δ∂ ∂ ∂+ +
∂ ∂ ∂

q q q
q q q

 = δL, 

so: 

(23)    
1

0

t

t
dt∫ { δAh + δL} = 0. 

 
Hamilton’s principle is true for quasi-stationary translational motions.  The motion of 
the electron is changed only by virtual translational displacements in it; the validity of the 
principle will be restricted in a similar way for the other distinguished motions. 
 We have derived Lagrange’s analytical mechanics from the fundamental equations of 
the dynamics of electrons for the distinguished motions that are considered, which are 
simultaneously quasi-stationary.  This result has not only epistemological, but also 
economical, significance, since it reduces the dynamics of those motions to the 
calculation of the Lagrangian function.  The Lagrangian function is then determined by 
means of (21), just like for pure translation, by an integral that is taken over the volume 
of the electron and depends upon the convection potential; the convection potential, in 
turn, is reduced to the scalar potential Φ and the vector potential A by (7a).  In the next 

paragraph, we will treat the pure rotation of the electron with the help of the Lagrangian 
function, and in the one after it, we will treat the translation of the ellipsoid. 
 
 

§ 11.  Rotating electron.  Electromagnetic moment of inertia. 
 

 In the developments of sections 6 to 9, the assumption that no external torque acted 
upon the electron was always made.  When does an external torque appear? 
 In a homogeneous electric field, one will have, from (1e): 
 

(24)    Θ = dv∫∫∫ ρ [r Fh] = , hdvρ 
 ∫∫∫ r F . 

 
Here, one then has that Fh = Eh is the same vector for all points of the electron.  Now, 

since ∫∫∫ dv ρ r = 0 for our spherically-symmetric electron, it will then follow that: No 

torque will appear in a homogeneous, external, electrical field.  The same thing will be 
true for a homogeneous magnetic field when the electron is free of rotation.  In that case, 
Fh = [q Hh] ⋅⋅⋅⋅ 1 / c is likewise the same vector for all points of the electron. 

 Things are different when the electron is already in rotation: A term: 
 

[ ]1
[ ], hc
ϑ r H  

 
will then appear in the vector Fh that can be brought into the form: 

 

− 
c

ϑ
(r Hh) +

1

c
(ϑ Hh) 
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by means of the rules of calculation β, δ.  Performing the integration will give: 
 

(24a)     Θ = 
2

5

ea

c
 ⋅⋅⋅⋅ [ϑ Hh] 

 
in this case for the resultant torque in a homogeneous magnetic field in the case of 
volume charge.  (For a surface charge, one would have to replace 1

5  with 1
3 .)  The torque 

will then be perpendicular to the direction of the rotational axis and that of the magnetic 
field. 
 Rotating forces also appear in inhomogeneous fields when no rotation is originally 
present.  We would like to perhaps treat the case in which a cathode ray goes through an 
inhomogeneous electric or magnetic field that is perpendicular to the line of force.  We 
lay the x-axis parallel to the direction of the beam, and the positive y-axis parallel to the 
electrical field strength Eh , or, when we are dealing with a magnetic deflection, lay the 

negative z-axis parallel to the magnetic field strength Hh .  The vector Fh will then point 

in the direction of the y-axis; we call its magnitude F.  (In the first case, one will have F = 
| Eh |, in the second case, F = β ⋅⋅⋅⋅ | Hh |.)  Now, the field strengths shall vary along the x-

axis; F′ = dF / dx is a measure of the inhomogeneity in the field.  Inside of the region that 
is occupied by the electron, one can set F = F0 + 0F ′ ⋅⋅⋅⋅ x with adequate approximation, 

where F0, 0F ′  refer to the center of the electron.  The external form will then become Ky = 

e ⋅⋅⋅⋅ F0 , while the external torque is: 
 

(24b)     Θz = 
2

05

ea
F ′⋅  

for a volume charge. 
 How does the electron behave under the action of rotational external forces?  We 
firstt answer that question for the case in which the velocity q of the center is zero.  As 
was shown in the previous section, the pure rotation belongs to the distinguished motions 
whose dynamics depend upon the Lagrangian function.  We calculate it in the way that 
was given there.  We next determine the potentials Φ, A when we set β = 0 in equations 

(20) to (20c); ϑ will then give the magnitude of the angular velocity.  The fact that we 
have laid the x-axis parallel to the rotational is inessential here.  We then have the 
differential equations: 

(25)  ∆Φ = − 4πρ, ∆Ax = 0, ∆Ay = 
4

c

πρ ϑ x, ∆Az = − 4

c

πρ ϑ y . 

 
From (7a), one will have: 

(25a)    ϕ = Φ – 
1

c
(v A) = Φ + 

c

ϑ
(z Ay  – y Az), 
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and the Lagrangian function can be calculated from (21).  For a volume charge on a 
spherical electron of radius (a), the differential equations for Ay , Az can be integrated 

with the Ansatz: 
 

(25b)  

2

3

2

3

2

3

2

3

1 3
,

2 10

1 3
,

2 10

,
5

.

y

z

y

z

e r
z

c a a
r a

e r
y

c a a

e a
z

c rr a
e a

y
c r

ϑ

ϑ

ϑ

ϑ

   
= − ⋅ − ⋅   

   <    = + ⋅ − ⋅   
 

= − ⋅ ⋅  > 
  = + ⋅ ⋅ 

A

A

A

A

 

 
They also fulfill the continuity conditions that are prescribed for the potentials of spatial 
mass distributions  for r = a, and behave as would be required at infinity.  Moreover, 
since Ax = 0, and Φ is an electrostatic potential, one will have: 

 

 L = − 
2

dvρ ϕ
∫∫∫  

 = − ( )
2 2 y z

dv dv
z y

c

ρ ϕ ϑ ρ− −∫∫∫ ∫∫∫ A A  

 = − 
2 2 2

2 2
2 3

3 1 3
( )

5 2 2 10

e dv r
e y z

a c a a

ϑ ρ ϕ  
+ ⋅ ⋅ + − 

 
∫∫∫ . 

 
Performing the integration will yield: 
 

(25c)   L = − 
2 2

2
2

3 2

5 5 7

e e a

a c
ϑ+ ⋅

⋅
 

 
as the Lagrangian function of the rotating electron in the case of volume charge. 
 In the case of surface charge, a corresponding calculation will yield: 
 

(25d)    L = − 
2 2

2
2

1

2 9

e e a

a c
ϑ+ ⋅ ⋅ . 

 
 The additive constant is inessential for dynamics.  The variable part of the 
Lagrangian function is proportional to the square of the angular velocity, as it is for a 
rigid, material ball.  If we set: 
 

(25e)    p = 
4

5 7⋅
 ε2 a (for volume charge) 
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then, since ϑ = 2 2 2
x y zϑ ϑ ϑ+ + , equations (22a) will give: 

 
(25f)  Mx = p ϑx , My = p ϑy , Mz = p ϑz , or M = p ϑ . 

 
As we already discovered in § 10, the angular impulse is parallel to the rotational axis.  p 
gives the electromagnetic moment of inertia.  Equation (16c) then gives: 
 
(25g)    p = 1

7 ⋅⋅⋅⋅ µ0 a
2  for a volume charge. 

 
By contrast, for a surface charge, one will get: 
 
(25h)    p = 2

9 ⋅⋅⋅⋅ ε 2 a = 1
3 ⋅⋅⋅⋅ µ0 a

2. 

 
(It is known that the moment of inertia for a mass M that is distributed uniformly through 
the volume or surface of a material ball is: 
 

P = 2
5 ⋅⋅⋅⋅ Μ ⋅⋅⋅⋅ a2,  [P = 2

3 Ma2, resp.].) 

 
 For quasi-stationary rotational motion, from (VIIb), one will have the equation of 
motion: 
(26)     pϑɺ  = Θ. 
 
If the electron rotates in, say, a homogeneous magnetic field then the torque will be 
determined by (24a).  It will be: 
 

(26a)   ϑɺ  = 
2

5

ea

c p
⋅⋅⋅⋅ [ϑ Hh] = 

0

7

5

e

cµ
⋅ ⋅⋅⋅⋅ [ϑ Hh] . 

 
The vector ϑɺ  is always perpendicular to ϑ ; the magnitude of the angular velocity will 
then stay constant.  The direction of the rotational axis describes a regular precessional 
motion in space around the magnetic field (1).  The angular velocity of that precession 
has a magnitude of 75 ⋅⋅⋅⋅ ε / µ0 ⋅⋅⋅⋅ | Hh | (ε / µ0 ⋅⋅⋅⋅ | Hh |, for surface charge), and is then 

determined from the cathode ray constant ε / µ0 = 1.865 × 107.  If one knows of 
phenomena for which this precessional motion makes itself known then one can decide 
between volume and surface charge. 
 If one assigns a translational motion to the rotating electron then it will leave the 
domain of distinguished motions.  Meanwhile, if the velocity q (angular velocity ϑ, resp.) 
is so small that β 2 and β ⋅⋅⋅⋅ a ϑ / c can be neglected in comparison to 1 then from the 
differential equations (19) to (19c), the vector potential A will split into two parts; the one 

partial vector will depend upon q linearly, while the other one will depend upon ϑ 

                                                
 (1) Cf., W. Voigt, Gött. Nachr., 1902; Ann. Phys. (Leipzig) 9 (1902), pp. 115, equations 56-58.  The 
moment of inertia was not interpreted electromagnetically there. 
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linearly.  The same thing will then be true for a magnetic field strength H; however, the 

electric field strength must be considered to be constant for slow motion.  As a result, the 
Poynting vector will also decompose, and therefore the impulse G and the angular 

impulse M will also split into two such parts.  One will obtain the parts that are linear in 

q when one sets ϑ = 0, and we will find that G = µ0 q, M = 0 then.  One will obtain the 

parts that are linear in ϑ when one sets q = 0; the have magnitudes G = 0, M = p ϑ.  One 

must therefore also set: 
(27)     G = p q, M = p ϑ 

 
for simultaneous translation and rotation in the event that β 2, β ⋅⋅⋅⋅ ϑ a / c can be neglected 
in comparison to 1. 
 We now calculate the angular velocity that a slowly-moving electron will be endowed 
with in an inhomogeneous field, and indeed in the special case that leads to the 
expression (24b) for the external torque.  Here, the equations of motion will read: 
 

(27a)    µ0 
yd

dt

q
= e F0 ,  p ⋅⋅⋅⋅ zd

dt

ϑ
 = 

2

05

ea
F ′⋅ . 

 
If q is the speed of the electrons that move in the cathode ray that is originally present and 
parallel to the x-axis, and if the force F that stems from the external field increases from 
the value 0 for x = x0 up to the value F1 for x = x1 then one will have: 
 

(27b)   qy = 
1

0
0

0

t

t

e
F dt

µ
⋅ ⋅∫  = 

1

0

0

0

x

x

F dxe

qµ
⋅ ∫  = 1 0

0

( )x xe
F

qµ
−⋅ ⋅  

 
for the lateral velocity that is attained in the x1 direction for small path curvature, in 
which F  denotes the mean value of the force. 
 By contrast, the angular velocity that is attained will be: 
 

(27c)    ϑz = 
1

0

2
0

5

x

x

F dxea

p q

′
⋅ ∫  = 17

5
0

Fe

qµ
⋅ ⋅ . 

 
We calculate the quotient of the energies of rotational and lateral translatory motion that 
arise in an inhomogeneous field.  From (25g), it amounts to: 
 

(27d)    
2

2
0

z

y

pϑ
µ q

 = 

2

1

7
z

y

aϑ 
  
 q

= 
2

1

1 0

7

25

F a

F x x

 
⋅ ⋅ − 

 . 

 
If we now assume that the external field increases from the value zero to its final constant 
value along a line segment of x1 – x0 = 0.1 cm, and set F  = 1

2 F1 then the quotient will 

amount to only 2 2
0/z zpϑ µ q  = 10−24 to 10−22.  We conclude: The energy of the rotational 
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motion that arises in inhomogeneous field will vanish completely in comparison to that of 
the translational motion, at least for slow cathode rays.  Moreover, the assumption that β 
⋅⋅⋅⋅ ϑ a / c should be small compared to 1, which equation (27) is based upon, is certainly 
fulfilled here.  ϑ a / q = ϑ a / c β is already small compared to 1, so β 2 will be small, and 
β ⋅⋅⋅⋅ ϑ a / c will be even smaller. 
 It is much more difficult to investigate the influence of rotational forces on rapid 
electron motions, for which, the factor (1 – β 2) must be considered in the differential 
equations (19) to (19c).  One can generally treat rotational motion around the direction of 
translation on the basis of the Ansätze of § 10.  I have calculated the Lagrangian 
function of such a motion, although I have refrained from publishing the result, since the 
problem is much too specialized.  In some situations, exceptionally strong rotations can 
generally affect the character of the motion of free electrons, as well as the magnetically-
deflected ones, in Becquerel rays in very complicated ways; however, so far nothing 
suggests that such rotations exist.  Rather, one finds that the theory that considers the 
rotational motions to be inessential for the dynamics of the electron is in harmony with 
experiment. 
 
 

§ 12.  Stability of translational motion. 
 
 In the sixth section, it was proved that if one is to maintain uniform translational 
motion for an arbitrarily-distributed charge then, in general, an external torque: 
 
(28)     Θ = [q G] 

 
would be required.  Force-free, stationary motion will be possible only when the impulse 
G points parallel to the direction of the velocity.  Formulas (22) of § 10 allow one to 

write the condition for force-free, stationary motion in the form: 
 

(28a)    qx : qy : qz = : :
x y z

L L L∂ ∂ ∂
∂ ∂ ∂q q q

. 

 
We let qx , qy , qz denote the components of the velocity when referred to an axis-cross 

that is fixed in the electric charge.  If the Lagrangian function is known for motion in an 
arbitrary direction then equation (28a) will determine the directions, parallel to which, 
force-free translation will be possible.  We already know from § 6 that the three principal 
axes of a homogeneously-charged ellipsoid will fulfill that condition.  Now, the question 
arises of which of those translational motions might be stable.  We shall next give a 
criterion for the stability of the translational motion of an arbitrarily-distributed charge 
and then apply it to the ellipsoid.  We single out the position of the direction along which 
stability is to be tested for the moving charge, and choose it to be the x-axis.  Conditions 
(28a) must be fulfilled in any case, and they will give: 
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(28b)    
y

L∂
∂q

= 
z

L∂
∂q

 for  qy = qz = 0,  qx = q. 

 
The magnitude of the impulse is: 

(28c)     G = 
0y z

x

L

= =

 ∂
 ∂ q q
q

. 

 
We now imagine that the direction of motion has changed.  We choose the plane in which 
the deflection takes place to be the xy-plane; we now have qy > 0 or qy < 0 then.  In order 

to maintain the motion thus-altered, an external torque will be required, whose z-
component is: 

Θz = qx Gy - qy Gx = x y
y x

L L∂ ∂−
∂ ∂

q q
q q

. 

 
The corresponding component of the “internal torque” that preserves that equilibrium 
will then be: 

(28d)     − Θz = y x
x y

L L∂ ∂−
∂ ∂

q q
q q

. 

 
We now call the original motion stable when the internal torque that is aroused by 
changing the direction of motion always strives to adjust the x-axis that is fixed in the 
charge into the new direction of motion.  That will be the case if and only if (− Θz) < 0 or 
(− Θz) > 0 for qy < 0 or qy > 0, resp. 

 We develop the right-hand side of (28d) into a series of increasing powers of qy .  

From (28b), the initial term will be zero.  The term that is linear in qy will amount to: 

 

     
2

2

0y z

y
y

L
G q

= =

  ∂ −    ∂   q q

q
q

 . 

 
Thus, the stability criterion for small changes in the direction of motion can be 
formulated as: 

(28e)    
2

2

0y z
y

G L

q
= =

 ∂−   ∂ q q
q

> 0 

 
for an arbitrary position of the y-axis, which is perpendicular to the direction of motion. 
 On the other hand, we develop the Lagrangian function in a Taylor  series in 
increasing powers of qy , and write L0 for the value of that function when qx = q, qy = qz =  

0.  Moreover, we would like to think of the change in the motion as having been 
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completed in such a way that the contribution of the velocity q = 2 2
x y+q q  remains 

constant, so we set: 

qx = 2 2
yq -q = q − 

2
1

2
y

q

q
. 

One will then have: 
 

L = L0 + 2
2

0 0 0

1
( )

2
y y y

x y y
x y y

L L L
q

= = =

    ∂ ∂ ∂− + ⋅ + ⋅        ∂ ∂ ∂     q q q

q q q
q q q

, 

 
when terms of order three in qy are not considered.  From (28b), (28c), one will then 

have: 

(28f)    L = L0 − 
2

21
2 2

0y z

y
y

G L

q
= =

  ∂ −    ∂   q q

q
q

. 

 
The stability criterion (28e) is then fulfilled if and only if small changes in the direction 
of motion always reduce the Lagrangian function when the magnitude of the velocity is 
held constant.  It follows that: 
 
 The translational motion of an arbitrarily-distributed charge is stable when the 
Lagrangian function possesses a maximum for the direction in question for a constant 
magnitude of the velocity. 
 
 Not only formula (16a) for the longitudinal mass, but also formula (16b) for the 
transverse mass, applies to such stable motions.  Thus, when no actual adjustment of the 
x-axis that is fixed in the charge results from the altered direction of impulse (motion, 
resp.), but rather an oscillation around it, the directions of the impulse vector and the 
velocity vector will then exhibit no noticeable deviation in the limiting case of 
sufficiently-small path curvatures, so the assumptions upon which formula (16b) was 
based will apply. 
 We shall calculate the Lagrangian function of an ellipsoid that is homogeneously-
charged over is volume for an arbitrary direction of motion.  We again lay the x-axis in 
the direction of motion, which shall now have an arbitrary position in the ellipsoid.  
Equation (14) of § 7 gives the following expression for the Lagrangian function: 
 

(29)     L = − 21 eWβ ′− ⋅ . 
 
In this, eW′  means the electrostatic energy of the distribution of charge e that arises when 

the ellipsoid is subjected to a stretching parallel to the x-axis with a ratio of (1 : 
21 β− ). 
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 Another ellipsoid will be created by that stretching whose axes are a′, b′, c′.  The 
electrostatic energy of such a thing amounts to (1): 
 

(29a)  

23
10 0

2 2 2

,
( ; , , )

( ; , , ) ( )( )( ).

e

ds
W e

D s a b c

D s a b c a s b s c s

∞ ′ = ⋅ ⋅ ′ ′ ′
 ′ ′ ′ ′ ′ ′= + + +

∫
 

 
We now come to the problem of finding the direction in the original ellipsoid (with the 
semi-axes a, b, c), parallel to which the stretching must be performed in order to produce 
a minimum electrostatic energy for the stretched ellipsoid. 
 Since the x-axis is, in general, skew to the principal axes of the ellipsoid, we shall 
write its equation as: 
(29b)   α ⋅⋅⋅⋅ x2 + β ⋅⋅⋅⋅ y2 + γ ⋅⋅⋅⋅ z2 + 2δ yz + 2ε zx + 2ζ xy = 1. 
 
The entire function of third degree in s that gives the negative squares of the semi-axes 
for its roots when it is set equal to zero, and which accordingly remains invariant under 
coordinate transformations, is: 
 

(29c) g3(s; a, b, c) ≡ 

1

1

1

s s s

s s s

s s s

α ζ ε
ζ β δ
ε δ γ

+
+

+
 ≡  2 2 21 1 1

s s s

a b c
   + + +   
   

. 

 
The following identity then exists: 
 
(29d)   D2 (s; a, b, c) = a2 ⋅⋅⋅⋅ b2 ⋅⋅⋅⋅ c2 ⋅⋅⋅⋅ g3(s; a, b, c). 
 
 Let the equation of the stretched ellipsoid be: 
 
(29e)   α′ ⋅⋅⋅⋅ x′2 + β′ ⋅⋅⋅⋅ y′2 + γ′ ⋅⋅⋅⋅ z′2 + 2δ′ y′z′ + 2ε′ z′x′ + 2ζ′ x′y′ = 1. 
 
Since (29b) will go into (29e) by the substitution: 
 

(29f)   x = x′ ⋅⋅⋅⋅ 21 β− = x′ λ,      y = y′,      z = z′, 
one must set: 
(29g)  α′ = αλ2,      β′ = β,      γ′ = γ,      δ′ = δ,      ε′ = ε λ,      ζ′ = ζ λ, 
 
and as a result: 

                                                
 (1) Cf., E. Betti, Lehrbuch der Potentialtheorie, 1885, pp. 134.  
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(29h) 3( ; , , )g s a b c′ ′ ′ ′  = 

1

1

1

s s s

s s s

s s s

α ζ ε
ζ β δ
ε δ γ

′ ′ ′+
′ ′ ′+
′ ′ ′ +

 = 

2

2

1

1

1

s s s

s s s

s s s

α ζ ε
λ

ζ β δ λ
ε δ γ

+

+ ⋅
+

 

 
The identity (29d) corresponds to this one here: 
 
(29i)   D2 (s; a′, b′, c′ ) = a′ 2 ⋅⋅⋅⋅ b′ 2 ⋅⋅⋅⋅ c′ 2 ⋅⋅⋅⋅ g3(s; a′, b′, c′ ). 
 
Since the volumes of the two ellipsoids have a ratio of: 
 

a′ ⋅⋅⋅⋅ b′ ⋅⋅⋅⋅ c′ : a ⋅⋅⋅⋅ b ⋅⋅⋅⋅ c = 1 : λ 
 
for the given stretching, moreover, it will then follow that: 
 

(30)  D2 (s; a′, b′, c′ ) = a2 ⋅⋅⋅⋅ b2 ⋅⋅⋅⋅ c2 ⋅⋅⋅⋅ 

2

1

1

1

s s s

s s s

s s s

α ζ ε
λ

ζ β δ
ε δ γ

+

+
+

, 

and if one recalls (29c), (29d) then: 
 

(30a)  D2 (s; a′, b′, c′ ) = a2 b2 c2 ⋅⋅⋅⋅ 3 2

1 1
( ; , , 1

1

s s
g s a b c

s s

β δ
λ δ γ

 + + − ⋅   +  
. 

 
 The equation of the intersection with the original ellipsoid that is perpendicular to the 
x-axis will be obtained when one sets x = 0 in (29b): 
 
(30b)    β y2 + γ z2 + 2 δ y z = 1. 
 
We call h1, h2 the two semi-axes of that intersection.  We will then have: 
 

(30c)   g2 (s; h1, h2) =
1

1

s s

s s

β δ
δ γ
+

+
= 

2 2
1 2

1 1
s s

h h

   
+ ⋅ +   

   
 = 

2

2 2 2 2
1 2 1 2

1 1
1

s
s

h h h h

 
+ + + ⋅  

. 

 
The function of second-degree in ε that was just computed is the only one in the right-
hand side of (30a) that expresses the dependency on the position of the x-axis; it is 
multiplied by a factor that depends upon the constant stretching ratio 1 : λ, but is always 
positive.  For a given, positive s, D2(s; a′, b′, c′ ) will certainly assume its greatest value 
when 2 2

1 21/h h , as well as 2 2
1 2(1/ 1/ )h h+ , have their greatest values for the position of the 

x-axis in question.  Now, that is, in fact, the case, so (h1 h2) will be proportional to the 
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area of the ellipse (30b), and that is known to be smallest when the (y z)-plane is laid 
through the two smallest semi-axes of the ellipsoid.  Furthermore, it follows from the 
relation: 

2 2 2
1 2 3

1 1 1

h h h
+ + = constant, 

 
which is true for any three perpendicular radii of the ellipsoid, that 2 2

1 21/ 1/h h+  will attain 

its maximum when the x-axis coincides with the greatest semi-axis of the ellipsoid.  If 
one then lays the x-axis through the greatest semi-axis then D2(s; a′, b′, c′ ) will assume 
its greatest value for an arbitrary positive ε. 
 It follows from (29a) that: 
 
 By stretching parallel to the major axis, the electrostatic energy eW′  of the stretched 

ellipsoid will become an absolute minimum.  Equation (29) will now say: The 
Lagrangian function for constant velocity will be an absolute maximum for motion that is 
parallel to the major axis. 
 
If one recalls the theorem that was just proved then it will follow from this that: 
 
 For an ellipsoid that is homogeneously-charged throughout its volume, motion that 
parallel to the greatest axis will be stable. 
 
 That result can be important when one is compelled to introduce the assumption of 
spherical symmetry − say, for the positive electron.  If one then goes on to an ellipsoid of 
rotation that advances parallel to the axis of rotation then the ellipsoid of rotation will 
need only to be lengthened, not flattened; in the latter case, the motion would be unstable. 
 
 Wiesbaden, in October 1902. 
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