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Principles of the dynamics of electrons
By Max Abraham

Translated by D. H. Delphenich

8 1. Introduction and overview of contents.

The work of numerous physicists has led to the hypathbat the cathode rays and
Becquerel rays of the atom are to be regarded as negéiteicity — viz., the so-called
electrons(*) — in motion. Research with cathode rays yielded #mesvalue for the
guotient of the charge and inertial mass of those pastiblet had been obtained for the
electrical particles that oscillate in light wavesie simplest form of the Zeeman effect.
That result allowed. Wiechert (%), in particular, to link the theory of cathode rays to
the formulation of the electromagnetic theory ghtithat goes back td. A. Lorentz (®),
and which attributed the fact that matter participateslectrical and optical phenomena
to the motion of electrical particles. The problentled dynamics of the electron is of
fundamental significance in tledectron theory of electrodynamic$n particular, it begs
the question: Is the inertia of the electron to belamrpd completely by the dynamical
effect of its electromagnetic field, or is it necaysto appeal to a “material mass” that is
independent of the electric charge, in addition to thectelenagnetic mass™ The
former notion was maintained B. Sutherland (*) and P. Drude (°). As Th. des
Coudres (°) andH. A. Lorentz (") have remarked, the answer to that question depends
upon the inertial phenomena that the electron will ekifalo large velocities that can no
longer be neglected in comparison to the velocityiglit] in fact, any material that
adheres to the particle as such that might be presant e independent of the inertia
of motion that is required by the electromagnetic fralechanism, but must be a function
of the velocity. If one succeeds in constructing theadtyics of the electron without
appealing to a material inertia then that would open the woan electromagnetic basis
for all of mechanics?.

() Cf, W. Kaufmann, “Die Entwicklung des Elektronenbegriffes,” Verhandl. dét3.
Naturforschersammlung in Hamburg, pp. 115; Phys. Z€it901), pp. 9.

() E. Wiechert, Gottinger Nachrichten (1898), pp. &rundlagen der Elektrodynamikeipzig, 1899,
pp. 93

() H. A. Lorentz, Versuch einer Theorie der elektrischen und optischen Erscheinumdeswegten
Korper, Leiden, 1895.

(") W. Sutherland, Phil. Mag.47 (1899), pp. 249.

() P. Drude, Ann. Phys. (Leipzig) (1900), pp. 566 and 609.

(®) Th. des Coudres Verhandl. d. phys. Gesellsch. zu Bedlih(1898), pp. 69.

() H.A. Lorentz, Phys. Zeit2 (1900), pp. 78.

() W. Wien, Arch. Néerland (25 (1900), p. 96 (Lorentz-Festschrift); Ann. Phys. (Leip&d1901),
pp. 501.
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We seem closer to its solution for electrodynamassyell as mechanics, sindé.
Kaufmann (*) proved in his research into the electrical and magrustflections of
Becquerel rays that the velocity of the electronsettiid not lie very far beneath the
velocity of light and that their inertial mass actyahcreased with increasing velocity.
For that reason, a resolution of the question of wihethe experimentally-found
dependency of mass on velocity could be interpreted iag Ipairely electromagnetic
would be impossible, given the present state of the theloeed 0. Heaviside(®) has
calculated the magnetic energy of a slowly-movingtedeg however, the attempt 8f J.
Thomson () to determine the “apparent” mass of the sphericatrele at high velocities
must be regarded as unsuccessful. The theoretical ijatstis olW. B. Morton (%) and
G. F. C. Searle(®) into the fields of uniformly-moving electrically-ctged conductors of
ellipsoidal form were more successful; it led to a knolyée of the electromagnetic
energy of the electron. As a result, only the “ibunggnal” mass could be computed from
it, which counteracts the acceleration in the directd motion, while the “transverse”
mass, which can be inferred directly from the deflectexperiments, would not be
determined from the energy. On the other hand, the fasrfor the longitudinal and
transversal mass theit A. Lorentz communicated®, but without giving the method of
proof, contained only the first two terms in series dgwelents that continue in powers
of the square of the velocity; that gives a satistgcapproximation for cathode rays, but
not by any means for Becquerel rays. That was the stahe theory when | published
my first paper {) on the dynamics of electrons. Indeed, the formtHas | derived for
the transversal electromagnetic mass do not seerepi@sent the empirically-found
dependency upon the velocity in an entirely satisfying way.a result, after correcting a
previously-circumvented error in computatiof, Kaufmann (°) succeeded in bringing
the theory into agreement with observations when Ineiredied the errors that originated
in the imprecise knowledge of the field strengths of tHéedkng electric and magnetic
fields by a suitable method. Later, more precise meamms {) confirmed the validity
of the formula that was derived from the electromagribeory within the limits of error
in the experiment. The result can then be expressethasmass of the electron has a
purely electromagnetic character.

In the present treatise, whose content | have alregabrted upon to the Karlsbader
Naturforschersammlung'%, | pose the problem ofonstructing the dynamics of the
electron upon purely-electromagnetic foundationkascribe aspherical shapeo the
electron and homogeneous distribution of the chargemtentric spherical layers; in
particular, the two simplest assumptions ofhamogeneous volume chargad a
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homogeneous surface chargél be preferred. Along with that, | generally alspeoate
with homogeneous volume and surface charges on ano@lips order to decide which
results follow from the general basic equations and hwvhiges follow from the special
assumption of the omni-directional symmetry of thetedn.

There are three systems of fundamental equations wich the dynamics of
electrons rests. The first one — viz., thedamental kinematical equatidl) — restricts
the freedom of motion of the electron, and the sysiéfield equationgll) implies the
electromagnetic field that is generated by the electrghile the third system of
fundamental dynamical equatiorfdl) determines the motions that the electron will
perform in a given external field.

The kinematics of the electron that is containedhm first fundamental equation
agrees with that of the rigid bodyhe electricity in the volume element of the rigid
electron is distributed just like matter in the volume elemerthefrigid body. The
fundamental kinematical hypothesis might seem arbitargany. Many will invoke the
analogy with an ordinary, electrically-charged solidlyp@nd be of the opinion that the
enormous field strengths that arise on the outer sudatee electron (they exceed the
ones that are accessible to measurement by a bitidhill deform the electron. For
the spherical electron, the electric and elastic foveeuld then be in equilibrium as long
as the electron is at rest. However, the forcthefelectromagnetic field, and therefore
also the equilibrium form of the electron, will remainchanged throughout the motion.
This picture does not agree with experiment. The assompf a deformable electron
also seems to be inadmissible upon fundamental grouftdaould then lead to the
conclusion that the change of form in the electroratigriorces, or the work that is done
against them, would provoke an internal potential enarghe electron, in addition to
the electromagnetic energy. If that were actuadlgassary then an electromagnetic basis
for the theory of cathode and Becquerel rays — which arelypatectrical processes —
would already be impossible, and one would have to abandoalectromagnetic basis
for mechanics from the outset. Now, our goal is t@ dhe dynamics of the electron a
purely electromagnetic basis. Therefore, we mighigasjust as little elasticity to it as
possible, like material mass. Conversely, we hopeamlabout the inertia and elasticity
of matter on the basis of the electromagnetic pactur

Heinrich Hertz might have described an argument in Rigzipien der Mechanik
that is related to the aforementioned one when hevatloonly those kinematical
connections whose existence implied the creation orudisin of kinetic energy. That
was necessary because he wished to attribute all ereethg kinetic energy of motion
and all forces to the kinematical constrainittertz raised the objection that we will find
that rigid constraints are realized only approximairleality in the following words'{;:

“In the search for true rigid constraints, mechanids perhaps need to descend into the
world of the atom.” Now, electromagnetic mechanicscdads even further. In atoms of
negative electricity, those spheres — whose radius asoaionly the billionth part of a
millimeter — will take on a rigid, unchanging, distributiof electrical charge.Hertz
showed convincingly that it is permissible to speak ofir@instraints before one speaks
of forces. Above all, our dynamics of the electromaies from speaking of forces that
tend to deform the electron. It speaks of only “extefor@es” that make it possible to
endow it with velocity or rotational velocity and “@rnal forces” that originate in the

() H. Hertz, Die Prinzipien der MechanjKk eipzig, 1894, pp. 41.
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field of the electron and maintain equilibrium. Moveq these “forces” and “torques”
are only auxiliary notions that are defined by the basierkatical and electromagnetic
concepts. The same thing will be true for the words kgfiotenergy,” “quantity of
motion,” whose choice will generally make the etiforto make the analogy of
electromagnetic mechanics with ordinary mechanics@lenore definitive.

The field equations and the basic dynamical equations beilldeveloped in the
second section in the context of therentz theory. In the third paragraph, it will be
verified that one can derive not only @lectromagnetic energyom that theory, but also
an electromagnetic quantity of motionPoincaré (%) first emphasized that fact. He
showed that by introducing such a thing, the center-of-rtfassrem will be true for
systems of electrons and asserted the same thingefeutface theorem. The existence
of an electromagnetic quantity of motion has a fundaateignificance for the dynamics
of electrons. It alone will make it possible for oweréduce the internal forces to an
“impulse” and an “angular impulse” that depend upon thetrlmagnetic field and will
thus permit a simplified calculation of the electrometgc mass and the electromagnetic
moment of inertia. The truly remarkable result ig the dynamics of the most important
class of motions of electrons — viz., the “distinguishextions” — can be described by
Lagrange's analytical mechanics. | have therefore believed & new derivation of the
electromagnetic quantity of motion should be givehe $calar expression for the virtual
work of the internal forces will be converted with thdphef vector analysis, and one
will simultaneously obtain thé&oincaré transformation of the internal forces and the
corresponding one for internal torque. In the fourth papdgréhe basic dynamical
equations (l1) will be put into a form (VII) that corpsnds tod’Alembert’s principleby
introducing the transformed expression for the virtualknafrthe internal forces. That
also implies theequations of motior{VIl, a, b) of the electron, which determine the
temporal evolution of the impulse and angular impulséne §reater difficulty in the
mathematical treatment of these equations of motienp@posed to the equations of
motion of ordinary mechanics, is based upon the fattithpulse and angular impulse
cannot be derived in a simultaneous and rigorous way asidosiadf the prevailing
velocity and angular velocity, but must be calculatquhssely by integrating the field
equations for each individual motion according to the waay they were prescribed.

In the fifth section, once the field equations afferred to a coordinate system that is
fixed in the electron, we will arrive at the realizatibat a class adistinguished motions
deserves special attention. It is characterized byetttethat the field is stationary when
it is evaluated in” a frame that is rigidly bound to ébectron, and the related property
that the vector that relates to the internal foscéhe gradient of aonvection potential
Uniform translations and uniform rotations belong tat ttistinguished class of motions,
among other things.

Pure translations will be examined in the next four papdgr$6-9). The laws of the
field that is generated by a uniformly-moving field are adie contained essentially in
the papers oMorton and Searle that were cited above. However, the fact, which
follows from the field laws, that impulse and energy ba derived from theagrangian
functionin the manner that is known to analytical mecharecsained unknown to those

() H. Poincaré Arch. Néerland. (2% (1900), pp. 252. (Lorentz Festschrift). J. Thompsongave a
curious derivation of the electromagnetic quantity otiomofrom the impulse of movingaraday tubes.
Rec. res(1893), pp. 9.
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authors, and that function can be defined to be thereifte of the magnetic and
electrical energies, and is expressed by an integraktttands over the volume of the
electron and depends upon the convection potenhedwton's first axiom is true for
pure translations. The second axiom is also true;ore,can define aslectromagnetic
mass Admittedly, it is not a scalar, like the massooflinary mechanics, but a tensor
with rotational symmetry whose componentsiz., the longitudinal and transverse mass
— depend upon the velocity in different ways. In genehal,second axiom is true for
only quasi-stationary motions; i.e., ones that are ooglarating too rapidly. However, it
is shown that, in practice, all observable changegeloicity and deflections prove to be
anything but quasi-stationary.

In the tenth section, the general investigation of‘th&tinguished motions” will be
taken up again. A consideration that is based upon theflaamergy and the law of
impulse will lead to the result thdte Lagrange equationswill be true for stationary and
guasi-stationary motions of that class. In the eldvearagraph, that will be applied to
the rotation of electrons, and in the twelfth, to titamslatory motion of an ellipsoid.

The mathematical formulation of all of the relabips that are developed will take
on not only greater elegance, but a closer connectitntive physical viewpoint, when
one employs vector calculus. As far as the geometaanmg of the concepts and
symbols of that calculus are concerned, | shall efeny article in th€encyklopadie der
mathematischen Wissenschaft8n Here, | shall be content to summarize the foittmw
symbols and rules of calculation that will be used. géneral, vectors will always be
denoted by German letters, and their components willrgéynée identified by an index.
We define the following:

Symbols

(A B), viz., theinterior productof the vector®l and®B, is thescalar:
Ay By +2Ay, By + A, B, .
[ 98], viz., theexterior productof the vector®l and®3, is thevector:
2y B, — A, By, A, By — Ay By, Ay By — Ay By.
div 2, viz., thedivergenceof the vector A, is thecalar:

oA, oA, oA
+ + .
ox dy 0z

Gauss's theoremfor the known transformation of a spatial integrabima surface

integral:
[|[ dv diver= [[ do 21,

() M. Abraham, Encyklopadie d. mathem. Wissensttart. 14.




Abraham — Principles of the dynamics of the electron. 6

will be employed frequently.
curl®(, viz., thecurl of the vecto®l, is thevectorwhose components are:

oA, A, o, ou, 0A, o
dy 9z 0z Ox  Ox Oy

gradg, viz., thegradientof the scalag, is avectorwith the components:

_9p _9¢ _09
ox' oy 0z
Agis thescalar:
2 2 2
09 0% 0%
x> ody* 07

A% is thevectorwith the components:

%A, %, M %A, oA, 0% %A 9%, 03
X + X + X , y + y + y , z 4 z 4 z ,
x>  oy* 07 x> oy 07 x> oy* 07

(2 O) B is thevectorwhose components are:

o, 0B g OB g 0B o OBy o OBy g 0By
ox Y oy 0z ox Y oy 0z

Even those whose are not familiar with vector anslgain convince themselves, by
direct calculation, of the validity of the following:

Rules of calculation:

a) (A B)=(B A).

B [AB]=[B .

» (& B8], =& [B ).

O [A[B,¢]]=D3B &, ) - & (A, B).

g divgdA=¢gdivd— QR gradg) . By usingGausss theorem, one can also write this
rule of calculation as:

jj do ¢, = m dv¢div2{—m dv(2l gradg ).
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) div [ B] = (B curlA) — & curlB). Gausss theorem implies that:

jj do [2A B], = m dv(%cur@t)—m dv(2L curlsB).

n) curlRAB]=(BV)A+RAV)DB +2divB -8 div.

d) —grad QL B) =[A curlB] + [B curlA] + AV) B + (B V) 2.
/) divgradg =-Ag.

K) curl curl =— gradl —A%.

We give an overview of the most important notagidhat we shall use in what

follows:

b =q+[J1]

$1.<

O Q0

=
oo

Q’ﬁ

Ch, Hn
1

§=€¢+=[v 9],
C

& =5H-=[o €,
C

-
G = 471[6 9]

We, W, W
L =Wn—-We
8, G

Notations:

time

Cartesian coordinates

volume element

surface element on the boundary of the field

exterior normal to it
translation velocity vector of the electron

angular velocity vector
vector that indicates the distance from the ageoftéhe electron to one

of its points.
velocity of the point

virtual displacement vector

its components

magnitude of the translational velocity
speed of light

guotient of the two magnitudes

field strength of the electric (magnetic, resgeldf that is generated by

the electron
field strengths of the external field

Sh =€ +%[U Hnl,

Poynting’s radiation vector

electric, magnetic, and total energy
Lagrangian function
the impulse vector (its magnitude, resp.)
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m angular impulse
R external force
C] external torque
A, A, the work done by the internal (external, resp.) forces
) scalar potential
A vector potential
= - 1 (v A) convection potential
C
P spatial density of electricity
e charge of the electron, in absolute electrostatitsuni
E= lel maghnitude of the charge, electromagnetically measured
C

Mo electromagnetic mass for small velocities

_ _ 1| 1, (1+p 2 | _ o
Us =32 1o X(B) = 2 1o DF{—EIn (m} 1—,82} = longitudinal mass

1|1+ 1+ B

=3 =3 0= In —-1¢ = transverse mass
H s D =k ,6’2{( 26 j (1—/3
p electromagnetic moment of inertia
a radius of the electron

8 2. The basic equations

We assign a charge efto the electron — viz., the atom of negative eieity — and
express it in absolute electrostatic unit$/e regard the free electron that moves in
cathode rays and Becquerel rays as a sphere of unvarying radideamake the two
simplest-possible assumptions on the distributidnclearge: Electricity shall be
distributed either uniformly over the entire voluroé the ball or uniformly over its
surface; we will distinguish these two case by t&ens volume chargeand surface
charge. For that reason, in the general developmentsshad always compute with a
finite spatial density, while we regard the case of surface charge amsitin case of a
uniform distribution over a very thin layer that dsstributed between two concentric
spheres.

Our first basic hypothesis is that electricity shall be distridutaroughout the
volume element of the rigid electron like matter in the volal@ement of the rigid body.
Thus, the kinematics of rigid bodies shall be true for the motioheoélectron and the
electricity that they are endowed withLet q denote the vector that describes the

direction and magnitude of velocity of the centértle electron, or the “translational
velocity of the electron.” Let? be the vector whose magnitude defines the angular
velocity around the center and whose directionnsfithe orientation of the rotational
axis. The radius vector that points from the cetdean arbitrary point of the electron
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will be written byt. The velocity of the point of the electron is tretermined by the

basic kinematical equation:
(1 b=q+[JF]

As in analytical mechanics, in the dynamics of tleeteon, it also preferable to direct
one’s attention to an only imaginary “virtual” displasent of the points of the electron,
along with the actual motion that exists, and that daghent will satisfy the basic
kinematical equation in its own right; we denote itdsyand its components b§; 7, .
The latter must fulfill the equations:

(|a) :% :a_”:% :a_,7+% :%-{-% :g+a_,7’
oOx o0y 0z 0z 0y O0x 0z 0y Ox
which express the idea thiite virtual displacement cannot be linked with arge in
form.
If the motion of the electron is known then theotlomagnetic field that is generated
by the electron will be determined the field equations of the Lorentz theory:

a) Ea—¢=curI5§—4—ﬂDm,
c ot C
109
by —-——=curl¢,
(11 ) <ot
C) dive = 4mp.
d) div$s=0.

Here, €, $ denote the field strengths of the field that is geeerdiy the electron,

measured in absolut&aussan units, andc is the speed of light. A change in
comparison to thédertz-Heaviside form of the field equations will come about only
when the conductor current is replaced with a convectiorent. The convection current
is therefore always determined by the absolute anotf the electron. The field
equationgll) refer to a coordinate system that is fixed in ttreee It shows that a well-
defined absolute velocity of translation that isi@qgto the speed of light will take on the
meaning of a critical velocity in the dynamics lgfcérons.

Here, a form of the field equations might be giver thanore closely connected to
the original Maxwell system of equations; its importatewehe theory of electrons was
stressed bifh. des Coudres(*) andE. Wiechert (%), in particular. Letd be thescalar
potential and let2l be thevector potentigl which are determined from the following

differential equations:

() Th. des Coudres Arch. Néerland (1900), pp. 652 (Lorentz-Festschrift).
(®) E. Wiechert, Arch. Néerland (1900), pp. 652 (Lorentz-Festschrift); Ann. Phys. (Leipi)901),
pp. 667.
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2
€) iza—?—ACD:Mp,
an c gzt
f) 203 _pq=YPg
c” ot C

They will then yield the field strengths by differetiba:

102
¢ =graddp-—-———,
(D) 9 g c ot

h) $H=curl 2.

This form of the field equations makes it cleaattthe field can be regarded as the
superposition of the fields that are generatechiyindividual volume elements that start
in the electron and move into space at the spebghbf

The electron is now found in a given externaldfief field strengthsg, , H,n . In
order to determine the motions that it exhibitspther basic equation will be necessary,
namely, the fundamental “kinetic” or “dynamical” waion. The following argument
will lead us to it:H. A. Lorentz andE. Wiechert have shown one can derive the forces
that act upon electricity at rest and in currentelectric (magnetic, resp.) fields when
one makes the Ansatz for the force that acts upemdividual electron:

R =egh, Sh:€h+%[q55h]-

The electron is regarded as a point charge in thi& distinguish between the volume
elements of the electron and define éx¢ernal force that acts upon the volume element
dv by:

(1) p AV, sh:ezh+%[n P

However, thaVlaxwell-Hertz principle of the unity of the electric and magaodtrce is
valid. If we can trust this principle then we musgard the distinction between an
“‘external” field that is independent of the presemd electrons and an “internal” field
that is generated by the electron itself as bdgiead artificial one. In reality, there is
always only a single field with the field strengtést ¢, , $ + 9, . Accordingly, we
juxtapose the external field with arternal force that act inside the volume element dv of
the electron

1
(1a) pdvy, S=€+E[nﬁ]-
We further refer to the integrals that are extenoleg the volumes of the electrons:

(1b) & = [[] dvo(3, 99,
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(1c) A = [[[dvp(3 oy

as the virtual work that is done by external (intgr resp.) forces, and impose the
requirementThe sum of the virtual works that are done by m&and external forces
will vanish for every virtual displacement of tHeagron.

(1 P+ A = [[[ dvo(3,+5,09=0.

That is oufundamental dynamical equation.
If we apply equation (1), first to a virtual tnalation, and then to a virtual rotation,
then it will decompose into the two vector equation

If avo{z+33 =0,
JIf avole3+3, =o0.

We call:
(1d) &= [[] avps,,
(1e) o= [[[ dvolxFl,

theresultant external force and torque, respnd by contrast:

(19) JIf dvos
and
(19) [I] avpole. 3]

are theresultant internal force and torque, resp.
The two vector equations that are included in gqodlll) then stateThe resultant
internal and external forces and torques preseiyailérium:

(Il a) [[[ dvos +8=0,
(11 b) [[[ avole. 51 +©=0.

The fundamental kinematical equatiqi), the field equations(ll), and the
fundamental dynamical equatioifl) are the foundations of the dynamics of electrons.

8 3. Electromagnetic energy and electromagnetic quantity of main.

In this section, two theorems shall be derivednftbe field equations that correspond
to the laws of energy and the quantity of momenturhe energetics of electromagnetic
fields was developed bWaxwell, Poynting, and Hertz. The expression for the
electromagnetic energy and the energy flux to whiehMaxwell-Hertz theory leads
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also remains true in the theory of electrondda8. Lorentz has shown'j. For the sake
of completeness, we shall present the proof of that:
Thepower that is generated by the internal fore@sounts to:

= m dvpo(o,F) = m dvp (o, ).

When one appeals to the field equatiorgjlithat expression can be put into the form:

d_AI‘ = 4£J'H dvp(@ curlﬁ——%—fj.

Furthermore, from the rule of calculatiod):(

—EJ'J'J' dvp(€curl9) = —EJ'J‘J' dvp(scurle)- EJ'J‘ do[$curle],

and if one recalls the field equationkl| then it will then follow that:

dA __d Vo o __dW
(V) e Il doev-—ams—,ﬁ@ +57 ==
Here:
2) &= ——[]¢ 9]
4

denotes thd?oynting radiation vector,and thus, the second term on the left-hand side
refers to the radiation that passes through thendiog surface of the field towards the
outside. Equation IV then says thédte power that is generated by the internal forces
and radiation will result in an increment with theagnitude:

1

(2a) W= m [q32+5a]

which one refers to as the electromagnetic enefdieofield.

The existence of an electromagnetic quantity ofienccan be derived from the field
equations in a manner that corresponds to theegxistof an electromagnetic energy.
Poincaré (%) showed this, on the basis of a conversion ofekeression (f) for the
internal force that was first given By. A. Lorentz (°). Without giving a proof, he
asserted that the expressiog)(for the internal torque admitted a similar tramsfation.

() H. A. Lorentz, Versuch einer Theorie der elektr. u. opt. Erscheinungen indiew&orper Leiden,
1895, pp. 22.

() H. Poincaré Arch. Néerland. (25 (1900), pp. 252.

() H.A. Lorentz, loc. cit, pp. 26.
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We will obtain the two transformations in one blow when we convevirtiial work that
is done by internal forces with the help of vector analysis.

Initially, the vectords of virtual displacement was defined only for points of th
electron. We shall now extend its definition adolek: We imagine a frame that is
constructed to be rigidly-bound with the electron and which participata motions of
the electron, real, as well as virtual.We now understands to mean the virtual
displacement of a point of the electron or the franiehe componentg, 7, { of the
virtual displacement will be continuous functions of ttwordinates as a result of this
extended definition. The differential equations:

(3) O:%:a_”:%:a_”+%:%+ﬁzg+a_”
OX 0y 0z O0x 0y Ox O0x 0y O0X

are true in all of space; the electron and frame apalde of only virtual translations and
rotations, but not deformation.

We may now regard the expressiort)(bf the virtual work that is done by the
internal forces as an integral that extended ovefieltethat is bounded by the surfa®e
to which the volume elements that lie outside thetedeowill give no contribution, since
they were assumed to be free of electrical charge. cdre convert it by partial
integration. If we employ the defining equatio) df the vectors, the field equations

(Ila, b), as well as the rule of calculatiop),(then we will first get:

= [[[ avpess+ [[] 2L o5, 63

= %Tm dvo(€d9dive + %Tm dv(curlﬁ ——i%—f [ 55]} :

We set:
(39) A = A+ An,
(3b) &e=—[[[ dvesgdive
4rr ’
1 10¢
(30 A = ZTEJ'H dv(curlb—ga,[ﬁ 5@} :

We convertdA. and dAn — viz., the electrical and magnetic parts of théual work oA
— individually, in which the components of the vesté&, $), Js are to be considered as

continuous, differentiable functions of the cooedes and time now. The application of
the rule €) will imply that:

(3d) P = %Tjj do(€ 39 ¢, +%Tm ave, grad & 9).

If one expresses the inner product of the veétand the gradient off( Js) in terms
of the components af and &s then one must remark that the differential quasiest &,
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n, { with respect to the coordinates enter only in combinatibat will vanish as a result
of equations (3). One will have:

¢ ¢ ¢
¢ grad Ep) =— <&l ¢, —2+¢ X+ ¢ X
(¢, grad € %)) { [ ox Sray TE azj

¢, ¢,
h QE ©y ay e 0z
+z[c§ 6@3 ¢, af/2+eza§;j}.

With the help of the field equation ), the factor off can be put into the form:

2
o¢ 0¢, , o 0¢, _10¢ +_1{€ 09, _ g aﬁy}
C

QX X+€ z z
ox 7 ay 9z 2 0x Yot ot

while corresponding expressions will be true fjaand{. One will then have:

(€, grad € &) = (& grade?) = (53 [ aij
c| ot

Furthermore, if one recalls the rulg énd the relation that follows from (3):

(13 6/7 0{ _
ax 6y 0z

div o5 =

then since one must set:
1(%, grade?) = -1 div ¢* &5,

one will ultimately obtain the expressiordf3n the form:

1 1 1 9%
(39) Ae = 8—ﬂ[jj do2(¢ 09 [&,3, % —ZTW d{d,sE[QED .

In this, &s gives the normal component of the virtual displacemanthe boundary; the
surface integral depends upon only the electric field gtherbut not the magnetic field
strength. A corresponding surface integral that depends tlipomagnetic field strength
can be split off from the expressiorc)3

If we observe the calculation rulgg &nd @) then we can write:

1 1 1 o¢
(3f) &m:E[ﬁj dv(curlﬁ,[ﬁés])—ZTEm. d\{d SE[EﬁD .
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Now, from rule ¢), one will have the identity:
(curl$, [$ &) = (9, curl [ &) + div [9, [9 &]];

both terms can be converted. From rufp @nd if one recalls the fact that div= 0
(equation (1)) and divés = 0 (equation (3)), then one will have:

curl [$ o8] = (1) H - 0) s;
one will then obtain:

| €22 +/7‘%*+Z‘”3Xj

(%, curl [ &5))

9
M " vt azyj
9

+9,| & XZ+/7 2+l

The term that originates i)([1) Js will then drop out as a result of equations (3). Upon
employing rule €, we can write:

[9, [ &l = (9, [ &) + H° &B.
With that, we will ultimately have:

(curl [, [% &]) = div[$, (5 &) -19° &,

and (3) will assume the form:

1 2 1 1 o¢
(B9 An= -] dof2(9599, -9, 3 -] d{é&c[ﬁ’ saD

By adding (&), (3g), we will ultimately obtain théransformed expressed for the virtual
work that is done by the internal forces:

(3h) &i:jﬂd (5 ia_ej jj—{z(ws)e -¢23, 3+2(H9 39, - H%9, k.

The surface integral is connected with the sceddilaxwell stresses We let‘J

denote the force that is exerted by the Maxwedsstes of the field that is generated by
the electron on the surface element of the sui@atsat encloses the field, and denote its
components b¥,, Y., Z,. Itis then known that:
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“ Xy = (28, € — €2 COSVR) + = (26, y — HZ COSVN),
8 8

-Y, = 1 (2¢, &, — € cosvy) + 3 (29 Hy —$H7 cosvy),
8 8

-7, = 1 (2¢, &, — ¢* cosva) + 1 (299, Hy—$H7 cosva) .
8 8

The components are endowed with the negative sign, smecéontrary to the usual
practice) understarfi} to mean the force that is exerted upon the su@abg the part of

the field that is inside of it. Thartual work that is done by the force that is exerted by
the Maxwell stressemmounts to:

(B c%):fxv+f7vv+zzv:—8iﬂ{2 (¢ ®) ¢, - as+2 ) & H—H" A9

If we introduce this relation into (3 then we will obtain:

V) 5A\;+Hdo(‘l§c%):—”‘jdv%%—?.

This equation will be true for every virtual displacemehthe electron and the frame
that is rigidly bound with it. By applying a virtual parlltranslation, one will arrive
immediately at thd_orentz-Poincaré transformation of the expressionthe resultant
internal force:

(va) JIf dvps +[[ dop =~ [[f aviz 2,

and by applying a virtual rotation, one will arrive at tmerespondingransformation of
the expression for the resultant internal torque:

(Vb) m de[tg]+jj ddeqy =- m dv[t,c—];%—?]

In the derivation of the relations &y, (\Vb), the virtual displacement that was used
was only an auxiliary mathematical constructiont it& basis, only the field equations
were employed in the derivation of those relatigost like the derivation of relation
(IV). The similarity between the relations 4y (Vb), and (1V) is remarkable. In each
case, an integral that is taken over the volumehefelectron is transformed into a
volume integral that is taken over the entire fi@idd then into a surface integral. In that,
the integrand of the volume integral depends uperfield only insofar as the differential
guotient with respect to time of an expression thatetermined from the field strengths
enters into it. Just as the form of relation (IWjade it possible to define an
electromagnetic energy, the corresponding fornetstions (\a), (Vb) made it possible
to define an electromagnetic quantity of motion.
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We would next like to analyze the interpretation giaion (IV) more closely. To
that end, we imagine that the boundary of the fieldefined by foreign bodies. We
regard the fact that thRoynting vector actually gives the energy flux that falls upon
those bodies as being something that is established by ragpéenvith light rays in the
sense of the electromagnetic theory of light. a&tij the relation (IV) contradicts the
energy principle: The power that is expended by the foine¢ is exerted upon the
electron by the field and the energy radiation this f@pon the bodies that bound the
field do not sum to zero. However, we will obtain tleerect energy principle when we
introduce a new electromagnetic energy that is Oigted throughout the field with
density 1{¢* + $%}, at whose expense, power and radiation will result. eftirely

analogous interpretation can also be ascribed to reda(ida), (Vb). As far as the
Maxwell stresses are concerned, the experimental confirmafithe existence of light
pressure, as well as the law of temperature radigh@infollows from the light pressure,
shows that those stresses determine the force tbatited upon the bounding bodies by
the field correctly. However, the relation gV will then contradictNewton's third
axiom. The force that is exerted by the field upon teetedn, on the one hand, and the
force that it exerts upon the bounding bodies, on therotill not cancel out, any more
than relation (W) will cancel the static moments as a result of However, we will
recover the third axiom when we introduce a new electromagnetic quaintitgtion that

is distributed over the field with a densitylof ¢ &. At all points of the field at which

the Poynting vector varies only in time, one must assume trexetis a reaction force — 1
/ ¢ & / ot per unit volume that can be interpreted as a dynaneiffatt of that

electromagnetic quantity of motion. When one combalesf these individual forces

according to the rules of the statics of rigid bodeese will obtain the resultant force and
torque of the field that partially affects the electtamd partially affects the bounding
bodies. It is only the form of the relations&)y (Vb) that was described above that
demands the existence of an electromagnetic quantiptdn.

8 4. The equations of motion of the electron.

For the moment, in order to explain the physical negoif the surface integral in
relations (IV) and (V), we assume that the boundaryasarof the field is given by
foreign bodies. In reality, such bodies are alwpyssent, and one would always to
consider their presence in any completely rigorous tesatrof the problem of electron
motion. For the study of cathode rays and Becquers| @y would have to consider
the wall of the evacuated tube, and for the study otredat deflection, one would have
to consider the plates of the condenser. The spreaditige electromagnetic field in
those bodies does not result in accord with the field teinsathat are true for the ether.
Since we have defined those equations to be fundamentahusebound the field in
such a way that all foreign bodies are excluded. Aenly, from the standpoint of the
resulting theory of electrons, one can assert tlataninfluences the spreading of the
field that is generated by the electron only to themixthat its own electrons will be set
into motion and generate electromagnetic fields inr ten right. If one asserts that
hypothesis then one will be in a position to include teaction of those bodies on the
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motion of the electron in the vect@y . For that reason, up to now, no one has succeeded

in satisfactorily explaining the effect of matter onhoale rays and Becquerel rays from
the standpoint of electromagnetic theory. Problemshitciwthat effect comes into play
— e.g., the reflection of cathode rays, the emissioBezquerel rays — are then initially
inaccessible to a theoretical treatmeWe shall then restrict ourselves to those electron
motions that are not influenced essentially by matter. We shalldesnsnly purely
electrical and magnetic effectsvhich we shall regard as “external” fields in the

calculation of the field strength&,, $, . Those effects also include the ones that

originate in the other electrons that move in cathogle amd Becquerel rays. It would
probably be simplest to include them in the calculatiarsuch a way that one adds the
electric and magnetic field of the stationary convectiarrent that the beam represents
to the external fields that are generated by the iyateagnets, resp.) The error that one
introduces by neglecting the interaction of the eledtrtvat move in the beam will
vanish as the field strengths of that field tend to dotaina

If we subsume all of the external electromagnetieces on the electron into the
external force and torque and neglect the influence of at{emthat might be present
then it will no longer be necessary to separateetimslies from the field by a surface.
The field that is generated by the electron can be meted in all of space by the
Maxwell-Hertz equations. We then let the boundary of the field go to infinity and
calculate the field of the electron, its energy, and its quantityjaifon as if the electron
were found in space in isolation. The problem of electron motion shakdted in that
idealized form from now on.

It can be proved that the integral that is taken ¢tiverbounding surface in relations
(IV), (V), (Va), (Vb) will vanish when that surface goes to infinity. lustperhaps pose
the problem: Develop the dynamics of an electron th&iuad at rest up to time= 0
when the action of external forces begins. Nows known that the perturbation of the
field that is generated by the motion of the electpompagates with a finite speed —
namely, the speed of light. One would then arrivehatinfinitely-distant points of the
bounding surface only after an infinite length of tin®&t any finite time point, the field
at any point will still be the original electrostaticeprso theéPoynting vector there will
vanish, and therefore the surface integral in relatigh (The magnetic part of the force
B that is exerted by thiglaxwell stresses will vanish as well, while the electric palt

drop off with the reciprocal fourth power of distancH.the surface is, say, a sphere
whose center coincides with the initial position of ttenter of the electron then the
integral that is taken over the surface in relations (Vg), (Vb) will converge to zero
with increasing radius of the sphere, and in fact the aneelations (V), (W) will go to
zero like at least the reciprocal first power oftttzius, and the one in relationd) like
at least the reciprocal second power. If we stat wWie aforementioned first problem
statement then we can drop the relevant terms aogtyd

Now and then, it is preferable to base things upon anptisdlem statement: How
does an electron move when its velocity is constantagnitude and direction from the
start att = — o up to timet = 0, when the action of external forces will thenirnposed.
In that case, one must, in turn, construct the spéerinat its center coincides with the
center of the electron at time= 0. One chooses its radius to be large enough teat th
perturbations that start from the electron still hawee arrived at that time point. The
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field that prevails in the ball will then be the ohattcorresponds to the original uniform
motion. Now, it will be confirmed in § 6 that the fiedtrengths will drop off with the
reciprocal second power of the distance from the ceftdhe electron in such a field. It
will then follow that by increasing the radius of theghere, the surface integrals in
relations (1V), (M) will converge to zero by at least the reciprocalt fpewer of the
radius. The surface integrals will also vanish whengasses to the limit when one uses
this second problem statement as a basis. Thoseonslatan then be interpreted more
simply.

We then call the integral over infinite space:

5) W= J.J‘J' {QE2 + 9% the energy of the electron
and distinguish between its components:

(5a) W, = J.J‘J' g—]\;efz theelectrical energy

(5b) Win = J.J‘J' g—]\;ﬁz themagnetic energy

We now write relation (1V) as:

W oo,

When this expression is converted with the help of thedmental kinematical equation
(1) and the fundamental dynamical equationsajlind (lllb), we will obtain:

v e n+©@)=[[[ov oo s =2

This equation formulates the law of energy: Theptaal growth in the energy of the
electron is equal to the work that is done by tktermal forces.

If one drops the surface integrals in relationg)(MVb) then those relations will
completely replace the internal forces with the dyicaimeffect of the electromagnetic
quantity of motion. At all points of the field where the density of tlectromagnetic
guantity of motion varies in time, the frame tlathought of as rigidly coupled with the
electron will be endowed with a corresponding fos€eeaction, namely:

106
- ot per unit volume.

CZ

The geometric sum of all of these forces will yiblel resultant internal force, while the
sum of its static moments will yield the resultatgrnal torque. Similarly, as a result of
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relation (V), the virtual work that is done by interf@aices can now be replaced with the
virtual work that those reaction forces will do for atwal displacement of the electron
and its frame.

If one now introduces relation (V) into the fundanaditynamical equation (II1) then
it will take on this form:

(V11 A — mdv(asia—ej 0.

This formulation of the law of motion correspondsitAlembert’s principle.

We will obtain another formulation of the law ofotion when we insert relations
(Va), (Vb), in the forms (l1&), (llIb), resp., into the fundamental dynamical equation.
We call:

(50 6= izEm' dvs theimpulse of the electron
c

and

(5d) Mm = C—lz[J'J'J' dv[t &] its angular impulse

relative to the center of the electron. One va/é:

dt =z
D= L av ["’1 [ o <22

Ot / dt means the temporal change that the radius veaabig drawn from the center of

the electron to a fixed point in space experiemttegg the motion of the electron. Since
q indicates the velocity of that center, one must se

o __
ot 1
One will then have:
1 ot _
Ll of Se|=-tael
and then:
am 06
(5f) o lael+ —ZEjjjdv[rE}.

Combining (®), (5f), (Va), (Vb), and (lb), (lllb) will give the equations that determine
the temporal change in the impulse and angular Isepunamely, the so-callddw of
momentum:

ds
Vila —=5
(Vila) it
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(VIIb) %_9;% [q 6] = ©.

These equations of motion of the electraorrespond completely to the differential
equation that one has posed for the motion of a rigi¢ bodn ideal fluid. Thus, for the
mechanical problems, the components of the impulse aguaax impulse will be linear
functions of the respective velocities of translatom rotation. That is not the case for
the electrodynamical problem; the dependency of those tjganipon the components
of the velocity is anything but lineaindeed, strictly speaking, the impulse and angular
impulse depend not merely upon the instantaneous motion, but on the entisedfisher
motion of the electron.The impulse and angular impulse are defined by integrels o
the entire space that is filled by the field but it esisfrom the superposition of
perturbations that the electron has emitted from bé&ggnto the moment considered.
That situation will impose great complications upon owbfam that might make a
simultaneously general and exact treatment of the dipsawf the electron seem
hopeless. Functional relationships between the compomérthe associated velocity
and impulse will be valid for only special classes ofiows, and they will assume a
linear form only for very low translational velociie

8 5. Conversion of the field equations and equations of motiday the introduction
of a coordinate system that is rigidly coupled with the eleoin.

We have already constructed a frame that is rigidlypted with the electron in the
third section. We would now like to compute the tempolnainge that the field strengths

¢, 9, as well as the vector potenti#y) experience at a point of the frame that moves with

the electron. We then refer these vectors to ana@iss that is fixed in the frame that
participates in the rotational motion of the electrdtris then the temporal changes in the
three vectors, as measured in that frame, that we &ekwrite them:

d'¢ 0'9H 0'A
ot ' ot ot

They will be referred to the axis-cross that is figidoupled with the electron by
introducing them into the field equations.

0'2 / ot is composed of three components: First of all, onet raasount for the
temporal chang@?l / ot that takes place at the relevant point of spacethitpone adds
the change that is provoked by the fact that the relga@nt of the frame moves through
space with a velocity; it amounts tof{ [J) (. Finally, one must consider the change that
comes from the rotational motion of the coordinatetesysitself. It is known from
mechanics?j that this change is expressed fiyf]. The resultant change is then:

) Cf.,, e.g., B. E. J. RoutlDie Dynamik der Systeme starrer KérpgrLeipzig, 1898, pp. 225.
g
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oA oA
(6) E_E-I-(UD)QH-[Q[Z%

and in a corresponding way, one will get:

e _ o¢

(6a) E—E"'(UD)@"'[@ﬂ],
09 _ 99
(6b) E_E-I-(Um)ﬁ-l-[ﬁ J].

The vectors® and 9t — viz., the impulse and angular impulse — will always be

referred to the center of the electron; they willdedgined by integrals over all of space.
The second source of temporal change will drop out for .théam electrons, as for rigid
bodies, one will then have:

d'e _ de
6C — =22 +[® 4,
(60 o ar 107
d'on _ dom
6d e
(6d) ot ar Y

for the temporal changes in the impulse and angular sepwhen referred to the co-
moving coordinate system.

Just as we extended the defining equation (1) of the ¥glgectorv by constructing
the frame that is rigidly coupled with the electrorg shall now also interpret equation
(1a):

F=¢+ 1o,
C

which defines the vectap that describes the internal force, and initially nefd only to
the points of the electron in a more general sefétside of the electron, the vec®r

gives the force that acts upon a unit electric pole that is fixedfiame. Its magnetic
counterpart, namely, the vector:

@ ﬁ=ﬁ+%Wﬂ,

represents the force that the field exerts upon a unit magnetic polenthats with the
frame.

We juxtapose equation (6) with another one that ong \hen one expresses the
vectorg in terms of the potentiab, 2 by means of the field equationsg)l| (11h):
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$ = grad®d - ga_m + E [v curlA].
c ot c

From the calculation rulef is:
—grad o A)=[ocurlA] +[Acurlo]+ (b D) A+ R O) v ;
moreover, since, if one recalls the fundamentalrkegcal equation, one must set:

curlo=29 and Q@DO)ov=-[AJ,
it will then follow that:

[bcurlA]=—grad ¢ A) = O) A -[A .
One will then have:

S = grad{CD—E(nﬁl)}——lE{a—ﬂﬂnD)ﬂﬁlﬂ]} :
Cc c (Ot
If we now consider the relation (6) and set:
1
(7a) ¢:¢_E(U 2),

to abbreviate, then it will follow that the vect®ican be expressed by:

(7b) S = gradg - 102 :
c ot

For the calculation of the gradient, curl, andedgence, it is obviously irrelevant
whether one operates in a spatially-fixed or moarg system. Indeed, only the
relevant relative position of the axis-cross wilinee under consideration for them, but
not its motion. Those operations yield only vestand scalars, which are then quantities
that are independent of the orientation of the dmate system; i.e., they are invariant
under coordinate transformations. Since we emplegtorial notation, we can spare
ourselves of the recalculation of scalars and vsctisat depend upon only the spatial
distribution of the field. We can then, e.q., reafee field equation (H) $ = curl%( to the

new system of axes immediately. The relation:
(70 -——=curlg
o

will then follow from (). It represents aonversion of the second field equat{dirb)
into our axis-cross that is fixed in the electrom a corresponding way, equatiorb)6
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will also imply how, with the help of &, one should now recompute the first field
equation (I8).

We compute the curl of the vectff that is defined by (7), in which we employ the
calculation rule £):

CWUT:QMﬁ—%Ké[Dn—mD)€+nmv€—€mv@.

Now, since one must set div= 0, (€ [0) v = - [& &, if one recalls the field equations
(I1a), (I1c) then it will follow that:

curl$y' = E{6—€+(nD)€+[€ 19]}.
cl ot
Thus, (&) will yield:
10'¢
7d ——=curl9’,
(7d) a1 9

which is an equation that is to be referred tohadfitst field equation, referred to the
frame. From the remark above, the third and fourth fietphations (i), (I1d) will be
true with no change in form.

The new form of the field equation puts us cldsea more detailed consideration of
a class otlistinguished motionsThe distinguished motions are characterized byfdloe
that the fields of the scalab, as well as the vectd!, will be stationary when they are

evaluated from the frame that is fixed in the etett 0’2 / ot, and thereforeg?( / ot, as

well, will vanish for those motions; it will therofow from (7c) that: The field of the
vectorg is irrotational for the distinguished motions. nd7b), ¢ is the scalar whose
gradient is the vectof. It is determined by7a), and will be called the “convection

potential” in the case in question. Only thosddgethat correspond to the distinguished
motions of the electron will possess a convectaierial.

We shall now also recompute the equations of madla), (VIIb) in the axis-cross
that rotates with the electron when we introdueertiations (6), (6d). The transformed
equations of motions will then be:

de
(8) E—ﬁ"'[@ J],
(8a) %—f’tn:eq@ﬂ]—[q ®].

Since the rules of calculatio; (@) give the identity:

(q, [& &) = ([a &], 9) = (F, [q &),

one will have the relation:
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d'e do) _
(19 (52) - g+ 0

The introduction of the energy equation (VI) will yield:

@) dW:( d@j (79 d'zmj_
dt dt dt

This result, which was deduced from the laws of energy and immulsgartant for the
following reason: It therefore represents a general property ofiéhe that is generated
by the moving electron that is independent of the special type ohaxierce. We will
then obtain another form for this relation when vibseyve that for scalars lik#&, (q &)

and Z0O), it is irrelevant whether we base the calculatibriheir time evolution on a
fixed or rotating system, and thus set:

L de dyq
_( %) = (dtj(@dtj,

—(ﬂi)ﬁ) _(ﬂd—fmj (mﬂj
dt dt

One will then have:

d = (699, 97
(80 a[(q®)+(z9€m) V\ﬂ—(@ dtj+(€m dtj'

That is the relation that is connected with energy and impulse, whicleadl us to the
Lagrangian equations in 8 10We shall now give some relations that will be usedethe
The definitions of the vectof® $' imply the identities:

T o) =wes o[ e Io 5D,

III (5 H) =W, - Em—(ﬁ [v €]).

Now, from the rules of calculatiom( S, }), one will have:
(€)= .0 )= (. [E 5D =T o ©),

and as a result, from (1), €p (5d), one will have:

25
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——Em— (@ [0 9])=+= Em—(ﬁ [0 €])

= z—czﬁm dv (b ©) = 1(q &) + 1 (IM).
We will then obtain:

9) m_(e ) =We—1(q ®) -3(IM),

(9a) m—(ﬁﬁ) Wi = (q 6) =3 (5).
It follows by adding (subtracting, resp.) that:

(9b) (9 8) +(IM) - W——m—(em m_(m)

(90) - —m—(em m_(m)

Another expression for the difference of the magnatid electric field follows from
the field equations (lI); from (h) is:

Wi, = m’—(ﬁ curl ),
and the rule of calculatio will yield:

Wo= J]] 2% @t curl ) + [[ <212t 91,

if we once more bound the field by a surf&eThe field equation (8) implies that:

d d 0% d
W= [[] 2200 )+ [[f (2 92 +f £

On the other hand, from g):

_ dv 102
W, = Hj 8—ﬂ(€,grad¢—gﬁj,
or, from rule §):

wo= ([ 222 [ 2 S| - Lo e,

26
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If one now lets the surfad@ go to infinity then the surface integral will go to zésothe
first, as well as the second, of the problems that wesed in 8 4. From the first

assumption on the initial stat¥, $ are always zero on the spherical surfaceps¢,
will be proportional to the reciprocal third power of thpherical radius, as in
electrostatics, and therefore the corresponding sunfaegral will vanish with the —°1
power of the spherical radius. The same thing will be for all stationary motions in
particular, for the distinguished motions that were wamed in 8 10~ so @, &l will

always drop off with the —*1power of the distance to the center of electrod, &n$

will drop off with the — 24 power. The surface integral will then vanish with thg™
power of the radius of the sphere when one goes tontite It will then follow from
(7a) that:

(9d) Wi — W = - [[] =2 Wop ithﬂj—( 2),

which is a relation that naturally makes sense onlynwthe integral:

I e 2

that is taken over infinite space possesses a finiteeydhat is the case for the
distinguished motions, as will be proved in § 10.

8 6. Uniform translation.

We shall now go on to treat special motions, for whieé shall proceed as follows:
We shall assume a motion that satisfies the fundahkinematical equation (I); we then
determine the electromagnetic field from the field equmsti(ll). Finally, we convince
ourselves that the fundamental dynamical equationsafi® fulfilled, and indeed we then
start with the conversion of the fundamental dynamehations that we called the
“equations of motion” [equation (Vd&), (VIIb)]. That conversion general assumes the
vanishing of certain integrals that taken over the boundéen it goes to infinity. We
must now subsequently persuade ourselves that the tiieftjghs behave at infinity in a
manner that would be required by the vanishing of those alsegr

The problem to be addressed in this section makes thedsettre assumptions that
were mentioned in 8§ 4 about the initial state. The macshall move in a translatory
way with a velocity that has been constant in dioecand magnitude since an infinite
time in the past. Such a motion, for which one $&$s0, v = q, is compatible with the

fundamental kinematical equation (I) with no furthesuamptions. We draw theaxis
parallel to the direction of motion, such that welwave qy = g, = 0, and set the
magnitude ofjx = g, and its ratio with the speed of light equadjtoc = .

In order to ascertain the field, we start with tbent (lle to h) of the field equations.
As we pointed out, we regard the field of the scalar piatie#®?, as well as that of the
vector potentiakl, as something that arises from the superposition ofibatibns that



Abraham — Principles of the dynamics of the electron. 28

are due to the volume elements of the electron, sporeding to their velocity. The field
will thus depend upon the velocities that the electron wasing with from the
beginning to the time point in question. Now, under uniforatiom, which we are now
treating, the history of the motion will always be ttame at each moment. Thus, the
field of the scala® and the vecto®l will be constant when it is referred to a co-moving

translatory axis-crossUniform translation then belongs to the distinguished motions.

The field equations (1) refer to a coordinate systeat it fixed in the ether. If we
now base things upon a co-moving system then if one sdat@llstationary character of
the field then one must set:

equations (&), (1If) will then become:

0°d 0°Dd 0D _
+

2
. Q- )6x2 + o o7 =-4mp,
2 2
e a2
It will then follow that:
A =LP,
(10a) and, by contrast :
2, =%A,=0

One derives the electromagnetic field from thelascand vector potential thus-
determined from equations @)l (11h):

@X:—aﬁ+ﬁamx :—(1—’32)6;‘)’
(10b) 0x 0x 0X
_9® c = 9%
Yo oy ‘0z’
=0,
oA 0P
10c = Zx = g - _pe,
oA 0P
= - X =—f— =+06.
9 oy '862 Fo,

The components of the vectgr=& + 1 /c[q $H] are:
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5. =€, :—(1_132)62,

0X

2 2 aq)

(10d) Sy:ny—ﬁﬁZ =(1-p )ny =-@1-p5 )&,
5.=¢,+B9, =1-p)E, =—(1—ﬁ2)%)'

We can summarize these equations in a vector equation:
(10e) ® =gradg, ¢=(1-57 .

Since the motion considered belongs to the distihgaisones, the existence of a
convection potentiavhose gradient is the vectgrcan also be inferred directly from the

results of 8§ 5; in fact, the value that one obtainsitfowill follow from (7a), (10a).
Finally, as far as the vector:

1
9 =H—[q &]
c
is concerned, it follows from (H) that:
(20r) 9=9,=9,=0

In regard to that, equationsc)9(10d) will then imply that:

w, v =—{]] £ (@3),
(10g)
—m—{@ +1L-B)(B]+6 ).

The latter value can also be obtained directly frowa definition of the electric and
magnetic energy, along with equation L0 If one recalls (10 then equation (® will
yield:

(10n) -W=- jﬂ—(@&)

It should be emphasized that the equations (10) th) (b® an arbitrary distribution of
electrical charge. No assumption about the symmétityeoelectron has been used up to
now.

We now investigate the behavior of the scdlat infinity. We map the electron and
its field to a rest system that points in the directaf the x-axis by means of the
transformation:

(11) X =
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The transformation will lead to a real system witea 1 — i.e., when the speed of the
electron does not attain the speed of light. If wsuane that then the scalé@r will
determined by th@oissonequation:

0°P 0°d 9D
11a + + =-4r
(112) x> oy° 07 p

in the deformed system. ThuB,should be interpreted as the potential of an ellipebid
rotation that is charged homogeneously over its volume surface layer. In potential
theory, one learns that such a potential will vanisimfatity with the first power of the
reciprocal distance from the charged body. As a treduéquations (18), (10e), the
same thing will be true foRlx and ¢; it follows from (1®), (1Cc), (10d) that the

components o, $, § will vanish to second order at infinity. That stateatfirs does

not change when one reverts to the moving electronthlinelp of transformation (11),
either. Thus, by the second of the assumptions theg made in 8§ 4 about the initial
state, the assumptions upon which the proof of the vanishingecfurface integrals in
relations (1V), (V), (M), (Vb) is based will also prove to be correct. Anyone wgo
familiar with calculations of that sort who feels theed to carry out the aforementioned
proof in more detail and extend it to an arbitrary dsition of charge will then
encounter no fundamental difficulty. A more predissatment of the calculations in
guestion would distract our attention from the other pemt that is essential to the
present problem far too much here. What is importantdsrésult:The equations of
motion(VIl a), (VIIb), as well as d’Alembert’s principl@/Il) and the law of energiV1),
can be applied when the initial sta@z., fromt = — « to t = 0) corresponds to uniform
translational motion, assuming that its speed du#sattain the speed of light.

We would like to assume that the latter assumptiorbkas fulfilled. We must then
further investigate whether the action of an extefoate (torque, resp.) is or is not
necessary for one to maintain uniform translationafiom. Since the electron moves by
translation with its field, and therefore also itspitse and angular impulse, one will
have:

An external forceR is therefore not required, but possibly an external to@ee[q &],

if one is to orient the impulse vector parallel to theection of motion. The fact that an
external torque must come into play when the impuglsgiented skew to the direction of
motion follows, in fact, from general laws of impuls&amely, in that case, the static
moment of the impulse relative to a fixed point in spadechange steadily, since the
impulse is certainly to be thought of as something thatttached to the center of the
electron. That change in the static moment of thetgyarf motion will require just the
needed action of an external torqu&.uniform translational motion can proceed in the
absence of forces if and only if the impulse vegtants in the direction of motion.
Whether that condition of force-free motion isfifidd will depend upon the form of
the distribution of convectively-moving charge. The symynétat we ascribe to the
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electron will now become meaningful. We would initialiile to maintain somewhat
general assumptions about the form and distributioneothiarge. We assume that both
are symmetric with respect to two mutually-perpendicplanes that go through the
direction of motion. We shall show that the compis&, , &, of the impulse that are

perpendicular to the direction of motion will vanishiiwthat assumption.

We choose the two symmetry planes to be Xge dnd &2 planes. It will then be
immediately obvious that the differential equation (1d) ka@ep its form and sense when
one switchey with —y andz with —z Thus:

D(-y) = D(y), D(-2) =P(2.
If one recalls (1B), (10c) then it will follow from this that:

&y, €y, $; are symmetric with respect to the)-plane.
&, Hy are anti-symmetric with respect to thg)¢plane.
&y, &, Hy are symmetric with respect to the)¢plane.
¢y, 9, are anti-symmetric with respect to the){plane.

SincefHy = 0, it follows that:Gy is anti-symmetric with respect to the)tplane, andS,

is anti-symmetric with respect to theyf-plane. That will then annihilate the
contributions that two volume elements that are mimeages with respect to th&z-

plane make to the componedy of the resultant impulse and the contributions that two

volume elements that are mirror images with respecthe &y)-plane make to the
component®,. Moreover, one easily confirms by further pursuing Hygnmetry

considerations that all three components of the angufaulse will vanish. Here, we are
interested only in the resulf: the distribution of the moving charge is symmetric to two
mutually-perpendicular planes that go through the direction of motion then thesinpul
vector will be oriented parallel to the direction of motion.

The condition for stationary, force-free motion we then be fulfilled for, e.g., a
homogeneously-charged ellipsoid that advances parallel ¢oobrthe three principal
axes. Meanwhile, we will show in § 12 that of thoge¢hpossible motions, only the one
that is parallel to the greatest axis will be stableowelver, the symmetry condition
above will be fulfilled for motion in an arbitraryréction for our spherical electron with
a homogeneous volume or surface chafgewton’s first axiom will then be true for an
electron in the following form: If the motion of the electron igarm, translatory motion
from the beginning onward, and the speed is smaller than the speed othé&ghha
external force or torque will be required to maintain that uniform motion.

8 7. Derivation of the impulse and energy from a Lagrangian funan.
In anticipation of the analogy to analytical mechartltat will come about latewe

call the difference between the magnetic and electric energy ofeldwtron its
“ Lagrangian function”:
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(12) L=Wn—W.

The equation that follows from (@

=~ [l gre®

= (1 52+ "5

can be brought into the form:

with the help of (It), (10e), and the ruleq). If the boundary of the field goes to infinity
then ¢ will vanish to first order and,, to the second order, as was shown in the previous
section; the surface integral will then vanish as aresdo the limit. The relation:

122 - e,

which goes back t&earle(?), will then be true.It expresses theagrangian function in
terms of an integral that is taken over the volume of the electromemends upon the
convection potential.

For the translatory motion that is considered hdne,Lagrangian function will
depend upon only the velocityfor a given distribution of electricity. We differgate
with respect to it, when we start with @0

& = [l gt va-poe; ved

dg
d ¢, ¢ ¢,
Em sz%i]‘fﬂ MV{ezx o9 s (ey aqy+ez 6qj}

We write the partial differential quotients withspect toq under the integral sign in
order to suggest that the differentiation refersatovell-defined point of the moving
system; since the charge distribution is assumeoetomdependent of the velocity, one
must sebp/dq= 0. However, (10) will imply the following expression for the seabn
of the integrals above:

dv ¢, ¢ ¢,
- e, v, |

In regard to (16) and the behavior af and€, at infinity, one will get:

() G. F. C. Searle Phil. Trans.187A (1896), 675-713. In my previous publication [Gétt. Nachr.
(1902), pp. 29], | called = W, — W, the “force function of the electron” and placed the agalto
electrostatic energy in the foreground.
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Hj 477@56_0“ - Hj a4 6q

as the value of the integral. When the first integgadonverted with the help of (&0
one will arrive at the relation:

Gom Tl e 0. me0) = S]] wve,

or

(12c) By = —.

One will get the component of the impulse that falls along the directiorobdn when
one differentiates th&agrangian function with respect to velocitghe relation (12)
corresponds to the one that one calls fire¢ of the Lagrange equationsin analytical
mechanics.

The expression for energy in terms of thagrangian function that is known from
analytical mechanics:

(12d) W=-L+qt
dq

also follows now from (12), (12, (10g), (10n). Relations (12) to (1§ are true for an
arbitrary charge distribution; the assumptions that weaide about the symmetry of the
electron were not employed in their derivation. As wfagwn in 8§ 6, the symmetry of
the electron demands that the magnitude of the impulsé leuS = &, . Equations

(12c), (1) then allow one to reduce the calculation of the impulse and energy of the
electron to the determination of thegrangian function.

In order to ascertain tHeagrangian function of the electron with the help of @2
we next determine the convection potential. As a redudtquations (10), (X) of the
previous paragraph, it must satisfy the differentiatiquiagion:

(13) @ ﬁ)"‘f 09,99

2
o Oy 07 - =FY,

In order to solve it, we appeal to a mapping processwhatapplied byH. A. Lorentz
(M), as well asSearle(®). We map the moving syste®+ namely, the spherical electron
and the field of its convection potential — to a restesys®’ by the transformation:

Z=z

(13a)

x.

I
<

I
<

A H.A orentz loc. cit, pp. 36t seq.
() G.F. C. Searle Phil. Mag.44 (1897), pp. 32%t seq.
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The systen®’ then arises whe8 is parallel to the direction of motion with a ratd1 :

\J1- 3% . The volume element that corresponds to the ehsingll then be the same, and
thus:
(13p) p'=p1-58°.
(13) will then imply that:

2 2 2
(130) 00,09 ,99_

=— 4’ (1 -59.
ox? oyt oz AP =69

By contrast, the electrostatic potentain the rest system fulfills theoissonequation:

62¢1 62¢1 62¢1
13d t— o=
(13 ox* oy’ o02°

41’

It will then follow that:
(13¢) p'=¢1-5".

This equation reduces the determination of the ection potential in the moving system
S to the determination of the electrostatic poténhathe systentS’, which has been
deformed according to (&8 (13b). It will then follow that:

(242 = i £ 57

If we write:
' av o' ¢’
w= [ 0L

for the electrostatic energy of the syst8fthen the expression (&Rfor theLagrangian
function will become:

(14) L=-1-B W .

The determination of thieagrangian function is thus reduced to the calculation of the
electrostatic energy of a system at rest. It arigem the moving one when one performs
a stretching(13a) that is parallel to the direction of motion, undehich the charge of
the volume elementand thus the total charge, as wellvill remain constant.

This result is true for an arbitrary charge digition; we shall now apply it to our
spherical electron of radiss In the case of a uniform volume charge in tleetebdn, its
image inS’will be a charge that is uniformly distributed ovke volume of an ellipsoid
of rotation whose semi-axes are:

(14a)
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If one is dealing with the case of surface charge irsyiseemS’ then the charge will be
uniformly distributed over an extremely thin layer thab@unded by two similar and
similarly-charged ellipsoids. The potential of the latter distribution is known to be
constant in the cavity, so the distribution will @spond to the equilibrium distribution
on the surface of a conducting ellipsoid. If we @llthe capacity of an ellipsoid of
semi-axis (14) then the following formula will be trué)(

_ In{wzﬁ} :Wm[l+ﬁj_

(14b) =
Q a’-a 2Ba 1-3

The electrostatic energy of the surface chargééngystem $hen amounts to:

(140 w=Z - Epth ['h[le'
20 2a 28 -3

However, we can immediately reduce the case o¥ohene charge to that of surface
charge. Namely, there is a remarkable theorenoianpial theory?): The self-potential
(electrostatic energy) of two ellipsoids of the saform, one of which is charged
uniformly over its volume, while for the other ortae distribution of the same total
charge corresponds to the equilibrium distributmm the surface of the conducting
ellipsoid, behaves like 6 : 5. It follows from shihatthe electrostatic energy for a
volume charge in the systemiS

(14 =2 F A [["[Hﬁj'
5Q 5a 28 1- B

From equation(14), the same constant rati® : 5 will exist between the values of the
Lagrangian function of the electron for volume (surface, rgsparge.
For a volume charge, thegrangian functionwill be:

(15) L:—§£@'1_’32D}1[1+'Bj, B=<1.
5a 28 1-3

From (12), theimpulse of the electronas the magnitude:

() Cf., e.g.J. C. Maxwell, Treatisel, pp. 244 in the German translation.

() | gave a proof of this theorem in my first publicati@ttinger Nachrichten (1902), pp. 36]. The
theorem follows directly when one substitutes the espwesthatE. Betti (Lehrb. d. Potentialtheorje
1885, pp. 259) gave for the capaci®’() of the conducting ellipsoid into the expression for the

electrostatic energy of the complete ellipsoid [§ 12, eqa){290ne will then getW, = %ez / Q' for the
energy of the ellipsoid.
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(15a) G_%_§ge_glg{1+ﬁ2jm[l+ﬁj—1}
dt 5 ac g 28 1-3
and, from (18), theenergyis:
(15b) W= —|_+qG__ge_g{ 1+ﬁ }
B \1-p8

By adding (subtracting, resp.) (15), b one will get the following value for the
magnetic (electric, resp.) part of the energy:

o w2 (25
(15d) we:%ggg{(g;gzjmqﬁi@—l}

If one develops the last two expressions in seviepowers of 32 and neglects
quantities of orde* then one will have:

3¢ 4 &
150 W= w, =2t
(150) *" 5 a "5 a2 2

For the low speeds of slow cathode rays, the rdeshergy will then be independent
of the velocity, and the magnetic energy will bepgortional to its square, like the
potential (kinetic, resp.) energy of ordinary meuba. The assumption that is at the
basis for how analytical mechanics arrives at ékgtions that couple energy and impulse
with the Lagrangian function is still valid here. That assumptionlwid longer be true
for large speeds; the dependency of electric arghet& energy upon speed will then be
a complicated one.However, our electromagnetic basis for those relaiis true for
arbitrary speeds that are less than the speedgbt.li It extends the sphere of influence of
Lagrangian mechanics in a very remarkable way.

8 8. Quasi-stationary translational motion. Electromagnetic mass

In the last two sections, we learned about thél,fienergy, and impulse that
correspond to uniform translation of the electrarhey depend upon only the velocity;
admittedly, that is rigorously true only when tredocity has been uniform for an infinite
time interval. Any acceleration that that the &l experiences will act in such a way
that spherical electromagnetic waves will spread gpace from the location at which the
electron is found at that point in time. The fisldengths of those waves, and therefore



Abraham — Principles of the dynamics of the electron. 37

also the densities of energy and quantity of motionttiet contain will depend upon the
acceleration that is assigned to the electron d@tpgbmt in time. Thus, if any sort of
acceleration has occurred then the energy and impwusé&wo longer depend upon the
instantaneous velocity exclusively, and the formulashefrevious paragraphs would
then be no longer exact. That situation complicékes rigorous treatment of non-
uniform electron motion. We will appeal to an approxioratmethod that has already
proved itself in the electrodynamics of conduction cugen

If the electric current that flows through a condugtmre is stationary — i.e., if the
current strength has always been constatiten the magnetic field will be determined
from the current strength. However, as soon as threrduchanges in intensity, the field
will no longer correspond precisely to the instantanesaueent strength; it would also
depend upon the temporal change in the current strength.lafier dependency comes
into consideration essentially for fast oscillatiaxfsHertzian frequency. In particular,
they make themselves known in the waves that areeshbit aHertzian generator. By
contrast, in the theory of low-frequency alternatingrent, one prefers to ignore that
fact. One calculates the magnetic field of the aileng strengths and distribution of
currents as if the current were stationary; one dethveself-induction that counteracts a
temporal variation of the current strength from thergyef the field thus computed.
This theory of “quasi-stationary currents” has proved ¢oeotirely trustworthy for
sufficiently slow current oscillations; the radiatihat is not contained in it will come
under consideration only for very rapid current oscolasi

A stationary conducting current corresponds to a statyjoconvection current here —
that is, uniform electron motion. A quasi-stationawyrent corresponds tguasi-
stationary motion We refer to a motion of an electron as quasi-statip when its
change in velocity happens so slowly that one can cartpetimpulse from the present
velocity, just as for stationary motion. In the npatagraphs, we shall seek to discover
when it is permissible to consider a motion to betatiy.

The self-induction in the theory of conduction curremsresponds to the
electromagnetic mass the dynamics of the electrons. As was mentiomedhe
introduction, experiments have led us to attribute an alemnass to the electron, which is
a mass that is remarkably constant for the slowlyimgrgathode rays, while it is a
function of the velocity for Becquerel rays. One hbasn confirmedNewton's second
axiom here, at least, in the sense that the quotiettieoforce and the acceleration is
independent of the magnitude of the force. In order to @ethat sort of behavior from
electromagnetic theory, we start with a motionhaf €lectron that satisfidééewton’s first
axiom, namely, pure translational motion. We altewiith an external force; if the
acceleration proves to be quasi-stationary then thdiomthip between force and
acceleration can, in fact, be characterized by astrelmagnetic mass.

For quasi-stationary, irrotational motion, the imputsethe electron is directed
parallel to its current velocity; one will thus hawed] = 0, and the angular impulse will
vanish, as well. The second of the equations of mofdhb) will then be fulfilled
without having to add any torques to the motion, which isiraed to be translational.
The impulse will be changed by the external fafcaccording to the first equation of

motion (Vlla). One has:

d®
16 — =R.
(16) p
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The magnitudes of the impulse will then depend upon only the current vBlagi as
was assumed.

We decompose the external for@einto a componeniRs that is parallel to the
direction of motion and one, that is perpendicular to it. The former provokes an
increase in the component of the impulse that is tarentithe path, and the latter, a
change in the direction of the impulse. Sigtendq point in the direction of motion,

the components of the temporal change of those vedatotise direction of the path
tangent will be equal to the temporal change in thegmtades. It will then follow that:

dG _ dG dq _
dt  dgq dt

S

We call the quotient of the components of the fartd acceleration in the direction of

motion:
dG
(162) Hs =

_d_q

the “longitudinal electromagnetic mass.One computes the component of the temporal
change in the impulse that is perpendicular to thectiine of motion as follows: The
impulse vector is always parallel to the direction aftion; like that direction, it will
rotate in space with an angular velocity/ (), wherer denotes the radius of curvature of
the path. The desired componenddf / dt then amounts t& [/ r = K, ; it is referred

to the center of curvature of the path. The compoottiie forceRs that provokes that

change in impulse will then be likewise parallel be tradius of curvature of the path.
The corresponding component of the acceleration amdangt / r, sothe quotient of the
transversal force and the transversal acceleratioviz., the “transverse electromagnetic
mass” — will then be:

(160) M= —.
q

For slow motion, as the series development)dgould describe, the impul€s is
approximately proportional to the velocy In that case, the longitudinal mass will be
equal to the transverse mass; this experimentally-obdamsult for slow cathode rays
can be explained in the sense of electromagnetic thgofgrmulas (16), (1@). One
will obtain:

(16c) Ms = U = Lo

for the limiting value of the two masses, in which:

4 £?
5a
2¢&?
3a

fora volumecharge

Ho
fora surface charge
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Here, £« = | e | / ¢ denotes the magnitude of the charge, measured in absolute
electromagnetic units. The aforementioned measursrf@ncathode rays) yield:

£ —1.865x10.
Ho

We then obtain the radius of the electron as:

gEfEl.865>< 16 for a volumecharge

(16d) a= 5
3 [2[1.865< 10 for a surface charge

The slight difference between the numerical factbas separates the volume and surface
charges does not count for as much here as the untertaiour knowledge of the
elementary quantum of electricity. If one sets tharge of the electron equal to the ionic
charge then one will havé)(
2x10"%<|e| <20x 107",
SO
108 <a< 10 cm.

The electrical field strengthse|| / & that originate on the surface of the electron at
rest range from X 10 to 2 x 10 in absolute electrostatic units. The magnetic field
strength that appears on the surface of the electrdarfge velocities has the same order
of magnitude. The field strengths that we compute with in our theory then exceed the
ones that are accessible to direct measurement by a billion-fold.

If the velocity of the electron is no longer small then the impuibeno longer be
proportional to the velocity; the longitudinal and transverse massestivait depend
upon the velocity, and indeed, in different walfermula (18) yields:

1, =20 X(B),

(169) X(B) :% E{—% n (%j ' 1—22 }
1, =30 0(B),

(160) w(B) =%E{[1;§ jm{i,@_l}

These formulas for the longitudinal and transverse mass refer to theevchange, as
well as the surface charge.

() S. Simon Wied. Ann.69 (1899),Jsp. 599W. Seitz Ann. Phys. (Leipzig® (1902), pp. 233.
(®) Cf., E. Riecke Lehrb. d. Phys.2" ed., 1902, pp. 382 and 386.
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Formula (16) is the one thatw. Kaufmann checked on the basis of his
measurements of the deflection of Becquerel rays inntleeval (8 = 0.60 to = 0.95,
perhaps). He confirmed the formula to within the enrait$ of the test (1 to 1.5%). So
far, there have been no attempts to measure thingaddium velocities = 0.3 tof =
0.6). Neither have there been any measurements obtggtudinal acceleration of
rapidly-moving electrons, which might serve as checkddomula (1&). Furthermore,
these formulas would probably not be as useful as fasn{il%®) and (1B) for impulse
and energy, which directly determine the velocity #raklectron in an external field at a
given time (on a given line segment, resp.) is endomitd

If one orders them in increasing powers @fthen one will obtain the series
developments:

(169) ,us=,uO{1+§EBZ+$EB4+1—92gB6+...},
(16h) th = po{ 1+ S 5% + S8 + B0+ ],

which converge fo3< 1.

It emerges from them that if one assumes theihmitase of very slow motion then
the longitudinal mass will always be larger than the transverse massw, if the
external force is oriented skew to the directiomuoftion then its longitudinal component
will provoke a smaller acceleration than the tramsal component. The resultant
acceleration will then subtend a larger angle \thign direction of motion than the force
vector, so let both angles amount to Omr2. The functional relationship between force
and acceleration will be represented in the dynamics of electrors Imear vector
function of a more general kind than the one that is used in ordinary meshanice
electromagnetic mass — viz., the system of coefficients lmehe vector function — is a
tensor(*) with rotational symmetry whose symmetry axis is determineuehyirection of
motion of the electron.

8 9. Radiation from accelerating electrons. Limits of quasstationary motion.

The definition of an electromagnetic mass andvilelity of Newton's second axiom
in the form that was just given assume quasi-statip motion in an essential wayhat
then are the limits of the quasi-stationary state of motidrifat question is not easy to
answer. If one would like to compute precisely éneor that one introduces when one
lets the impulse depend upon current velocity aggoation (1&) for a given non-
uniform motion then one must give exactly the fithdt corresponds to the history of the
motion. For that reason, here, where we are caedewith only crude estimates order of
magnitude of the field in question, we shall appealanother method that will be
described in this section. It replaces the electwtih an electrical point and computes
the field and impulse with the help of tpeint-potential theorenthat was presented in

() Cf., W. Voigt, Die fundamentalen physikalischen Eigenschaften der Krystatipzig, 1898;M.
Abraham, Enckl. der mathem. Wissensdh1901), art. 14.
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the Lorentz-Festschrift bi. Wiechert (*) andTh. des Coudres(?). One then starts with
the following problem statement:

The electron shall be thought of as having been in imitoanslatory motion since
the beginning; we denote its velocity dpy. External forces begin to act at the pétniat

the timet; . The time interval of the non-uniform motion tmaw begins lasts until the
time t, ; the electron might be found at the pdiatthen. From then on, one will again
assume a velocity, that is constant in direction and magnitude. One theitsvior a

certain time s —t;). On the basis of the point theorem, one can lsaydllowing about
the field that exists at timg :

Outside of the sphet&; that is constructed arouy with a radius ot (t3 —t;), the
field will correspond to the stationary motion thatdietermined byy;: . Inside of the

sphereK; that is constructed abo& with a radius ot (t3 —t2), the field that prevails
will correspond to a uniform velocity @t . We assume that the speed of light is never

attained or exceedeHy will always lie inside oK; then. Only the part of the field that
is bounded by these two eccentric spheres will depend th@acceleration that the
electron is endowed with in the interval framot, . Now, the electron will be regarded
as a point charge in those regions of the field whosartistfrom the electron is very
large in comparison to its radius. We make the:

Assumption A: (ts —t2) (c — @) is larger thara,

which says that: The distance from the electroméonext point of the spheke is large

in comparison to the radius of the electron, so theesamg will be truea fortiori for all
points that lie outside of the sphate. Admittedly, one can compute the field from the
point theorem only when yet another assumption is ledfil Namely, the derivation of
the point theorem rests upon tacit assumption thatotdyenignored here where we are
dealing with non-uniform motion. The electron was aliyi assumed to be spatially
extended in the proof of the theorem; its volume elésngirld contributions to the fields
of the scalar potentiab and the vector potenti@l that propagate from the reference

point in question with the speed of light, and which depepon the speed of the volume
element essentially. Now, if the velocity of tHeatron changes noticeably in the time
interval (2 / ¢ —q) that the light needs in order to cross the movingtelagarallel to
the direction of motion then different velocities fhe individual volume elements must
be introduced into the calculations if one would likeasgertain the field at the reference
points at which the electron is moving. The passage tbniteof a point charge would
then be inadmissible; it would be allowed only when:

Assumption B: lil[—lﬁ is small compared to 1
q ¢c—q

() E. Wiechert, Arch. Néerland. (25 (1900), pp. 549; Ann. Phys. (Leipzig(1901), pp. 667.
() Th. des Courdres Arch. Néerland. (25 (1900), pp. 652.
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is fulfilled. The relative acceleration cannot be targe then, and the velocity cannot be
too close to the speed of light. (For non-uniform owtwith superluminal speed, the
point theorem cannot be applied at all.)

We assume that the acceleration that exists inrttesintervalt; to t; is small enough
that AssumptiorB is true, and wait until a mometyf when AssumptiorA is fulfilled.
One can then derive the field inside of the space thavunded by the spheré&s, K-
from the point theorem.

E. Wiechert and Th. des Coudreshave confined themselves to calculating the

potentials ®, 2A; they skipped the calculation of the electromagnetidd fof an

accelerated point charge from equationg)(l{llh). Once | had performed the somewhat
laborious differentiations and thus ascertained thlel Strengths®, ), | calculated the

energy and impulse that was contained in the parteofield that is enclosed between the
two spheres. The radii of the two spheres increasstantly as the timé& increases.
Those quantities then then converge to well-definedihmivaluesAW, A®, for which |

have found the following expressions: | set:

_ Q- B sinty)

17 f
40 D= gy

In this, 77 denotes the angle that the velogjtgnd acceleratio vectors subtend at the
time point in questioty <t <t,. One will then have:

(17a) sw=2E d arr (paf,
3 ¢ Ju
(am) 86 = e A (B0
C 1

These formulas yield the energy and impulse ramihatihat emanates from an
accelerating electron.Formula (13@) would come into play when one is dealing with the
calculation of theenergy of Rontgen raythat are generated by the collisions of very
rapidly moving electrons. (Thus, AssumptBmust be fulfilled.) One can interpret that
formula as follows: The energy radiated per unitetiamounts to:

2e” .
= O @).
In the limiting case of very slowly motion, one gkt the known formula:

2e* .
¥|q|2
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for longitudinal, as well as transverse, accelerat®y.comparison, for rapid motion, the
radiation will be different according to whether one is dealing with longitudoral
transverse accelerationln the former case, one will have:

1
=0, f =
7 D= =y
and in the latter:
T 1
=_, f R —
7732 D=y

The radiation of energy is smaller for transverse acceleration thenfatr longitudinal;
the same thing will be true for the radiation of impuls€he impulse radiated that is
calculated per unit time is given by @@7as a vector of magnitude:

2¢
3¢

(A0l

It proves to be parallel to the direction in whtble electron moves, as if it were endowed
with the acceleration in question.

Formula (1B) shall now serve to limit the validity of the thhgoof quasi-stationary
motion. That theory would compute the impulse thas due to the field at the tinhe
from the instantaneous velocty of the electron as if the motion had been unifénom
the beginning onward; i.e., from equation L5 We let®, denote the impulse thus-

computed, and lat; denote the impulse that is actually containedhanfteld at times .
Now, it is easy to prove that as the time inteital t,) increases®s will converge to

the limiting value:
(18) G3 =B, +AG.

In fact, from the way that the field strengths lod stationary field behave at infinity in 8
6, one concludes that the entire impu®e will already be found in the field that is

enclosed by the sphekg when the time; fulfills AssumptionA; on the same basis, the
impulse of the field that lies outsid@ and corresponds to the uniform veloagywill

vanish in comparison t®,. Finally, the impulse of the field that is foubdtween the
two spheres will amount #&. Now, the theory of quasi-stationary motion sets:

(18a) &, -1 = [ Adt;

i.e., one neglects the radiated impulse. The ivelagrror that is committed in the
calculation of the impulse then amounts to:

&=, | __|A8]

(18b) .
|®2_®1| |®2_®1|
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If we make:

2¢

3¢ F(B)Ogf is small compared tof |

Assumption C

then if we recall (1B), (181), we can neglect the error (8n the effect of an external
force 8 whose direction does not change essentially inrtegvalt; <t <t,. |K | can

then be calculated from the theory of quasi-statipmotion.
For longitudinal acceleration, one has:

[ &= |~@5|:,Us|:|él|21
and for transverse acceleration:

|R=& =1 0O4qF.
In this, from (16), (16e), (1), one must set:

3¢ 3¢

K= g X B = W(h).

One can then replace the condition (8) with tweptines:

0a, £ 4l

C
) S A B

Is small compared to 1 femngitudinal acceleration

Sa, B lal

(&) —= 53 is small compared to 1 féransverse acceleration
10¢® A-B°) ¢ B)

If the magnitude of the acceleration is low enoagl if the speed is far enough below
the speed of light that conditiofC,), [(C,), resp.]is fulfilled then one calculate the
change in impulse that takes place from the thewfryquasi-stationary motion, but
admittedly only when conditigi8) is simultaneously truelf Assumption B) is not true
then the argument that is based upon the pointéhethat leads us to conditio@)(will
break down. We write conditioB) as:

g L

(B) 5
e SA-P)

0g| is small compared to 1.

A thorough discussion of the question of whichtlid condition B), (C) demands
more and which demands less would take us tooffalda One will see the answer
immediately for slow motion, since the factor |gf| will be larger in B) than it is in
(C1), (Cy). Therefore, all motions to which the point theorwill apply are then to be
considered as quasi-stationary here. In ordervéduate the approximation to which
those conditions are fulfilled for rapid, but stilbservable, motions, we single out a case
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that is as inconvenient as possible, namely, the fasteshe Becquerel rays that
Kaufmann examined,5 = 0.95, 1 -8 = 0.05,(Af) = 3 for them. Since one is dealing
with a transverse acceleration, formula)(will come into question, in which one might
set:

q2
T

2
jgl=+ =%
r
r is the radius of curvature of the path, which amisdo 12 cm. in a magnetic field of
300 absolute units. Finally, if one sets 102 then one will obtain the same value —

viz., 3x10™? — for the quantities that must be small compaoeti &ccording toQy) [(B),
resp.]. When one makes the magnetic field itse@# times stronger, the relative error
that is committed by applying the point theorem dhd theory of quasi-stationary
motion will still not reach 17. One sees from this thathe theory of quasi-stationary
motion is applicable to all practical cases, andafor the fastest Becquerel rays.
Moreover, one would err in trying to improve tineory by considering the terfy®.

We have always treated only the idealized problenvhich the electron was considered
to be alone in space. However, it is preciselyrtitBation that is emitted by the electron
that will be influenced essentially by the bodieattbound the field. Furthermore, very
many electrons will be present in cathode rays Bedquerel rays. In a magnetic or
electric field, they will be accelerated “cohergritl Since the densities of energy and
guantity of motion are not linear in the field stgéhs, one cannot by any means
superimpose the energy and impulse that is radiedhe individual electrons.
Formulas (17a), (17b) give only the radiation of emoherently-accelerated electron
swarm. (That would be present for the emission of Romtgge/s.) The free motion of
the electron swarm, as well as the electricallynagnetically deflected ones, presents a
stationary current; the radiation from such a aurre zero. Thus, it is obvious that when
one neglects the radiation from the individual &tees, our theory will remain just inside
those limits of precision that would be indicatédne neglects the influence of foreign
bodies and the interaction of the individual elect from the outset.

8 10. Derivation of the Lagrangian equations for the distinguishedhotions.

In section seven, we showed that certain relatfoore analytical mechanics would
be true for a purely translational motion of anitaabily-distributed charge that would
make it possible to reduce its impulse and enaygydingle function. The proof that was
given there showed that one was therefore dealittgavproperty of the stationary field
that is generated by the uniform motion of eletiricat the time, we did not bring
acceleration under consideration at all. In tleistisn, we would now like to extend the
domain of validity ofLagrangian mechanics even further; we would also like toudel
rotational motions, which belong to the class abtidguished motions.” For that, we
would like to follow a different method of prodfve will arrive at the relationships that
exist between the Lagrangian function and companehthe impulse when we apply the
laws of energy and impulse to the quasi-statiomaotions. This second, more general,
proof will subsume the first one and will thus lthe dynamical foundations for the
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Lagrange equations. By contrast, like the first proof, it does make it entirely clear
how one is to derive the dynamics of the distinguisimedions from theLagrangian
function on the basis of the properties of statiorigigs. On the other hand, no one can
object to the enlistment of quasi-stationary motions;ipedy because one is dealing with
the derivation of properties of stationary motions.deled, the accelerations can be
arbitrary, and in fact they can be chosen to be smalugm that the error that is
introduced by calculating with quasi-stationary motionsrisitrarily small. All of the
relations that are obtained will be exact in the timgi case of an infinitely-small
acceleration; those of them that no longer contairctimponents of the acceleration will
define properties of stationary motion.

The fields of the distinguished motions (cf., 8 5) wstaionary when considered
from the frame that is rigidly-coupled to the eleatrorhis is a characteristic property of
pure translational motion for an arbitrarily-distributed electrgef., 8§ 6). In fact, in 8
12, we will treat the stability of the translation af ellipsoid on the basis of the
relationships that we will now develogdowever, if we direct our attention to rotations
then we would like to always restrict ourselves to our spheyisginmetric electron.
We investigate motions of it for which the vectarss of translational and rotation

velocity, resp., possess constant magnitude and fixedtidmecin space. The same
argument that was presented in 8 6 in regard to the histomg enotion is true here. It
leads to the conclusion that the field will be staignif it is referred to a pure
translationally-moving coordinate system; the field eigust (1le), (1If) will assume the

form:

(19) a-p922 ‘:qj 22 =amp

(1%) (14 ZQ‘ 63‘ +6622‘22X pB-2L (8,2-5,y),
(19) -5~ o2, aaj +a?z; == 2L (9,x- 8,2

(1%) a-p) 2% 623‘;+6629‘z; = AT (5y-8,%).

The x-axis is once more laid along the direction of tramstat Here, one also easily
convinces oneself with the help of potential theory thatpotentialsb, 2, and the field
strengths®, §) behave at infinity in the same way as what was asduor the derivation
of the law of energy (VI) and the laws of impulse I@y] (VIIb).

Which of the motions considered belong to the classistinguished motions? For
which of them can the errors in the scabaand the vecto®l also be stationary when one
considers them from the frame that moves with thatirg electron?

It emerges immediately from the form of the diffeéifal equations (19) to (9 that
the x-axis is a preferred direction of the field, even whentnanslatory motion at all is
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assumed. However, the field is therefore statiomdrgn it is considered in the frame if
and only if the direction of the vectar, which is fixed in space, possesses a fixed
position in the frame; i.e., when the direction aftimn and the rotational axis coincide.
Hence:Uniform translation, when coupled with a uniform rotation around the direction
of motion, is a “distinguished” motion of the electron; it containsgpecial case of pure
translation and pure rotation.Since the field of that motion is stationary relatto a
coordinate system that is co-moving with only a trangiaés well as relative to one that
is simultaneously co-rotating, the impulgeand angular impuls&t of the field will
possess constant magnitudes and directions that are ifixgpace, as well as in the
electron. Its directions then coincide with the comrdoaction of the vectors, 4. It
follows from this: The motion of the electron considered fulfills the equations of motion
(Vlla), (VIIb) without requiring the action of an external field orqoe.

In order to go further into the field of the motiorathve are discussing, we s@t=
7, = 0 in equations (19) to (tPand set’ = J, to abbreviate, and get:

0? CD 62CD 0°P
(20) 1-B8 ) ¥ + 37 =-A4rmp,
22( 622[ 02
(20a) (1-5% S +t——" =—4mpf,
oy o7
22( GZQI oA 4 p
200 1- L+—2 =+ 09z,
(200) 1-p ) 6y2 37 o
22( 622[ 0% 4T
(200) (1-B% 2+ 2 == TPy
ay> 07 c
If, as in § 6, we set:
X
X =

then these differential equations will be put into thenfef ordinary potential equations.
Here, as there, it also follows thét and®ix will vanish at infinity to first order in the

reciprocal distance to the electron. Howevdy, (A, , resp.) would correspond to

potentials whose signs go to the opposite one whesigheofz (y, resp.) is inverted, and
thus, ones whose total mass would be zero; such potemtalsl then vanish at infinity
to second order. However, it would then follow thatdbalar:

¢:q>—%(n A) = —fA + I 22y —y A,
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which is defined by @ and has the meaning of a convection potential for the
distinguished motions here, would vanish to second ordasrthéfmore, since the

components of the field strengtéis$ vanish at infinity to at least second order, it would
then follow from the ruled), just as it did in 8 7, that one would have the refatio

(29 [ 2 e 2= [ 222,

The validity of equation @ in 8 5 also assumes the vanishing of certain integrals
that are taken over the infinitely-distant boundaryfesie, which is now easy to verify.
Moreover, equation (9 is based upon the assumption that the integral:

I e o,

which is taken over the entire infinite field, will tak@ a finite value. We must now
persuade ourselves of the validity of this assumptiod,adinthe more so, since we will
set the differential quotient of that integral with pest to time equal to zero,
corresponding to the stationary character of thel fielt follows from the differential

equations (19) to (X9, on the basis of the symmetry properties of theteda, that:

D, Ay, Ay, Ay, are symmetric with respect to thez-plane, so

oA
6;13’ o2, , —~, o2, are anti-symmetric with respect to tlyez-plane,
oX O0x 0x O0x

: . (O . L
2ly Is symmetric ana% Is anti-symmetric with respect to the4-plane,
y
2, IS symmetric an 3 Is anti-symmetric with respect to the)-plane.
z
We now compute the integral:

M gre 0= gr ]Il (e &2, + &2

From (llg), and since one sets:

i = - q i
ot ox
one will have:
oA
@X:—aﬁ-{-ﬁamx, @y:—aﬂ-}-ﬁ y’ @Z:—aﬁ-{-ﬁamzl
0x 0x oy 0x 0z 0X

Now, it follows immediately from the above that:
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oA

A IZ-fE , Ay Ef& A, F—, 2, Ef& are anti-symmetric with respect to theZ-
0x 0x 0x 0x

plane,

2y %2 Is anti-symmetric with respect to the4j-plane,
y

2, %2 Is anti-symmetric with respect to they)-plane.
z

If one adds the contributions that the eight volunegneints that arise by reflection in the
coordinate planes contribute to the integral then ornkeget zero for the sum. The
vanishing of the integral:

(20e) mg—]‘;(wt):o

will then follow. Now, equation @ will give the following expression for the
Lagrangian function:

(21) L:Wm—V\é:—m

dvog
>

The same thing will then be true for not only the pure translation of hitraly-
distributed charge [cf. (12a)], but also for the other distinguished mstidrihe electron
that are consideredlt follows further from (21), (26), and (2) that:

(212) T as s =o.

Thus, the right-hand sides otjSand (€) will be equal, and we will obtain:
(21b) L=(q &)+ ((ZM-W.

For pure translation, one will hayg = 0, so (2&) will be true; (2b) was contained

in (10g), (1Ch).
We now go back to the relation (8c), which was obtained from the lameadyeand
impulse. For the distinguished motions, it now takes on the form:

(21c) dc = (@ﬂj+(9ﬁﬂj
dt dt dt

In this, the temporal change in the vectgr# is judged from an axis-cross that is fixed
in the electron; correspondingl$, 9t are also to be evaluated from that same axis-cross.

Equation (2t) will tell us nothing new when it is applied to thgtionary motions that
we consider, for whichy, ¢ possess constant magnitude and fixed directions in the

electron, while the impulse and thagrangian function will also be constant; it would
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yield zero on the left-hand side, as well as on thiet.rigdlowever, we cannot also apply
the relation (21c) to those quasi-stationary motions that represent a conseqaenc
distinguished motionsEquation (8) will then refer to arbitrary motions, and Qwill
arise from it when one substitutes the relationb{2h it, which was proved for the
stationary motions that are being considered. It i8 poecisely the impulse, angular
impulse, electric and magnetic energy that must beuledésl from the velocity and
angular velocity that are characteristic of the qgéaionary motions, as if the motion
were stationary. If the velocity and angular velp@hange continually in such a way
that the state of motion at each moment belongs docthss that we speak of then
relations (2b) and (2&) will be true. We can then think of, e.the pure translation of
an arbitrarily-distributed charges varying in a quasi-stationary way, whether or not its
continuation might require an external torque. One ithest setd, = &, = &, = 0, since
otherwise the motion would be one of the distinguished.otowever, the components
of q can be changed arbitrarily, and at any moment, thdycaitespond to values that

the Lagrangian function, as well the components ®f possess then. It follows that for
sufficiently-small, but still arbitrary, values of:

d’qx d’qy d’qz
dt = dt ' dt

the following relation will exist:

oL fq, , oL da, oL dq, _ . da, o e . de,
dq, dt dq, dt dq, dt *dt Y dt ° o dt

That will yield the components of the impulse, referredakes that are fixed in the

moving system:
(22) By - oL

_ oL . = O _ oL
0q,

-+ L
dq, T ag, ’

This thefirst of theLagrange equations.

On the other hand, if we are dealing with the pure amadf an electron, for which
one setsyx = qy = g, = 0, then we can imagine th& , &, , &, will vary in a quasi-
stationary, but arbitrary, way. Equation €2Will then lead to the relations:

(22a) =t =95 om0t
39, 99, 39,

However, if the rotation is coupled with a tranglatin the direction of the rotational
axis then the component%, &, qy , q. that are perpendicular to that direction (viz., the
x-axis) cannot be changed independently without the motisimd its character as a
distinguished motion. Here, ond, qx are independent variables, so one will have:
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(22b) o=t o=t
aq PE)

However, we already saw above that in this casénthalse and angular impulse point in
the direction of thec-axis; the remaining components of those vectors tlaamsk. In
summary, we say:

For the distinguished motions considered, the is@uhnd angular impulse are
determined by the first of theagrange equations.— This result is true for quasi-
stationary motions that represent a consequencestmgliished motions to an arbitrary
degree of approximation when the accelerations are isufig small; it is therefore
exact for the stationary motions that we are exarginiwe can refer to the equations of
motion (8), (&), in which the components of the impulse refer toakes that are fixed
in the electron, as the second of tlagrange equations. Here, the relations (22),4R2
(220), which express the components of the impulse as baifterential quotients of the
Lagrangian function with respect to the components of the vgjponust be noted in the
event that one is treating a quasi-stationary consequdnite distinguished motions.
The energy of such motions can be derived fronlL#geangian function by means of
(21b) in the way that is known from analytical meaals.

One will obtain a simplified formulation dfagrangian mechanics when one goes
from the Lagrange equations tdHamilton’s principle. Its meaning as a minimum or
maximum principle will generally be compromised by therrestn to distinguished
motions. We thus content ourselves with carrying batgroof for purely translatory
motions. We then go back to equation (VII), which repmess#Alembert’s principle in
our electromagnetic mechanics. We integrate oventanval fromt, to t; and obtain:

I ajon-[fof o535 )| =0

We imagine that the virtual parallel translatigmof the point of the electron (the frame
that is rigidly-coupled to it, resp.) is arranged sa thaemandsHamilton’s principle.
There must be initial and final positions for the aktaa well as the varied, motiods(=

0 fort =to, t = t3), and furthermore, one must imagine traversing correlipg positions
of the actual and varied motions. One will have:

00s
oA

Partial integration over time will give:

jtodt{aAh+m {50,, - j}:

Now, one has, however:
] dv(éq,c—lzej: ® &),

and furthermore, from (22):
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(© a)= 500,405 q, + g, = L
0 X 0 y z
SO:
(23) jf dt{ A, + d} = 0.

Hamilton’s principle is true for quasi-stationaryanslational motions. The motion of
the electron is changed only by virtual translationalldegments in it; the validity of the
principle will be restricted in a similar way for tbéher distinguished motions.

We have derivetagrange's analytical mechanics from the fundamental ecregiof
the dynamics of electrons for the distinguishedionstthat are considered, which are
simultaneously quasi-stationary. This result hag only epistemological, but also
economical, significance, since it reduces the dyina of those motions to the
calculation of thed_agrangian function. TheLagrangian function is then determined by
means of (21), just like for pure translation, by an intethral is taken over the volume
of the electron and depends upon the convection potengatdhvection potential, in
turn, is reduced to the scalar potentiabnd the vector potenti@l by (7a). In the next
paragraph, we will treat the pure rotation of the electah the help of théagrangian
function, and in the one after it, we will treat th@nslation of the ellipsoid.

8 11. Rotating electron. Electromagnetic moment of inertia.
In the developments of sections 6 to 9, the assumgtatnno external torque acted

upon the electron was always made. When does an aXtierque appear?
In a homogeneous electric field, one will have, frds):(

(24) o= [[[avole s = | [[[ dvor.5, |-

Here, one then has thg@t = ¢, is the same vector for all points of the electrdyow,
sincel[] dv pt = O for our spherically-symmetric electron, it wilen follow that:No

torque will appear in a homogeneous, external, telead field. The same thing will be
true for a homogeneous magnetic field when thereleds free of rotation.In that case,
Sh=[q $Hr] OL /cis likewise the same vector for all points of thecélon.

Things are different when the electron is alreadsotation: A term:
1
=|[F1],
(94, 9,]

will then appear in the vect@, that can be brought into the form:

= Z (e ) + 1 (9 5)
C C
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by means of the rules of calculatignd. Performing the integration will give:
ed
(24a) o= s 2 9l

in this case for theesultant torque in a homogeneous magnetic fieldhm case of
volume charge (For a surface charge, one would have to replaeéth 1.) The torque
will then be perpendicular to the direction of tlmeational axis and that of the magnetic
field.

Rotating forces also appear imhomogeneous fieldshen no rotation is originally
present. We would like to perhaps treat the casehich a cathode ray goes through an
inhomogeneous electric or magnetic field that igppedicular to the line of force. We
lay thex-axis parallel to the direction of the beam, anel plsitivey-axis parallel to the
electrical field strengtl€y,, or, when we are dealing with a magnetic deflectiay the

negativez-axis parallel to the magnetic field strengih. The vectorg, will then point

in the direction of thg-axis; we call its magnitudé. (In the first case, one will have=
| & |, in the second case,= S0 Hn |.) Now, the field strengths shall vary along xhe

axis;F’=dF / dxis a measure of the inhomogeneity in the fieldside of the region that
is occupied by the electron, one can Bet Fy + F, X with adequate approximation,

whereF,, F, refer to the center of the electron. The exteforah will then becomeR, =
e [Fo , while the external torque is:

(24b) 0, = —— [F,

for a volume charge.

How does the electron behave under the actiorotational external forces? We
firstt answer that question for the case in whiod velocityq of the center is zero. As
was shown in the previous section, phuge rotationbelongs to the distinguished motions
whose dynamics depend upon ttagrangian function. We calculate it in the way that
was given there. We next determine the potenl® when we seff = 0 in equations
(20) to (2@); Jwill then give the magnitude of the angular velpcitThe fact that we

have laid thex-axis parallel to the rotational is inessentialéherWe then have the
differential equations:

(25) AD=-4mp, MA=0, A% =P gy AQ[Z:—4Tnpz9y.

From (7), one will have:
(259) p=0- (W) =0+ @A —y),
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and theLagrangian function can be calculated from (21). For a volurharge on a
spherical electron of radius)( the differential equations faly , 2, can be integrated
with the Ansatz:

2
my-_zg’f(i_id_sj,
cl2a 10 a
r<a ,
Q[Z:+yd9—e i—i Sj,
(25b) cl2a 10 a
2 ——zdze[-li,
r>a ¢ br
2 :+yd9c—eE|?—2.

They also fulfill the continuity conditions thateaprescribed for the potentials of spatial
mass distributions for = a, and behave as would be required at infinity. &twer,
sincell, = 0, and® is an electrostatic potential, one will have:

-5

22,
e P2 55

Performing the integration will yield:

(25¢) L =— 3¢ i@@z

as thelL agrangian function of the rotating electron in the case olume charge.
In the case of surface charge corresponding calculation will yield:

2
(250) S aeiaﬁez
2a 9

The additive constant is inessential for dynamic3he variable part of the

Lagrangian function is proportional to the square of the alagwelocity, as it is for a
rigid, material ball. If we set:

(25¢) p= SLEV & a (for volume charge)
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then, sinced =,/ J; +J; +J; , equations (28) will give:
(25f) My=p, My=pH, M=pF, or M=pd.

As we already discovered in 8§ 10, the angular impulparallel to the rotational axi
gives theelectromagnetic moment of inerti&quation (16) then gives:

(250) p=10uwa’ for avolume charge

By contrast, for aurface chargeone will get:
(25h) p=20k?a=10wa

(It is known that the moment of inertia for a madéshat is distributed uniformly through
the volume or surface of a material ball is:

P=20M [, [P = 2Ma’ resp.].)

For quasi-stationary rotational motion, from (Mll one will have theequation of
motion:

(26) pd =0.

If the electron rotates in, say, a homogeneous magfielit then the torque will be
determined by (24). It will be:

(26a) 9= o =L0S qond.
cp 5 Ctt

The vector$ is always perpendicular t8 ; the magnitude of the angular velocity will
then stay constantThe direction of the rotational axis describes gukar precessional
motion in space around the magnetic fi€ld The angular velocity of that precession
has a magnitude of Qe / o O] Hn | (€/ o O) Hn |, for surface chargepnd is then

determined from the cathode ray constant 1 = 1.865x 10". If one knows of
phenomena for which this precessional motion matke#f known then one can decide
between volume and surface charge.

If one assigns a translational motion to the nmogaelectron then it will leave the
domain of distinguished motions. Meanwhile, if thdocity g (angular velocityd, resp.)
is so small thaf3? and 3 0a &/ ¢ can be neglected in comparison to 1 then from the
differential equations (19) to (&P the vector potenti& will split into two parts; the one

partial vector will depend upon linearly, while the other one will depend up&h

() Cf., W. Voigt, Gétt. Nachr., 1902; Ann. Phys. (Leipzig)1902), pp. 115, equations 56-58. The
moment of inertia was not interpreted electromagabyi there.
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linearly. The same thing will then be true for a magnield strengths); however, the
electric field strength must be considered to be confhaslow motion. As a result, the
Poynting vector will also decompose, and therefore the impdisand the angular
impulseMt will also split into two such parts. One will obtaire parts that are linear in
q when one setd = 0, and we will find tha® = 14 g, 9t = 0 then. One will obtain the
parts that are linear it when one setg = 0; the have magnitudes= 0,0t =p J. One

must therefore also set:
(27) & =pq, M=pd

for simultaneous translation and rotati@mthe event thg8? B9 a/ c can be neglected
in comparison to 1.

We now calculate the angular velocity that a slemtyving electron will be endowed
with in an inhomogeneous field, and indeed in the specis¢ ¢hat leads to the
expression (24) for the external torque. Here, the equations of motidl read:

dq d9 ed
27a —J=-eh, 00— = —I[F,.
(27a) Ho at () p at 5 0

If q is the speed of the electrons that move in thieock ray that is originally present and
parallel to thex-axis, and if the forc& that stems from the external field increases from
the value 0 fox =X up to the valué€; for x = x; then one will have:

(27b) qyziqtllzomtziq)&l:o_dx :E[ﬂfdm
My "% My % ( Ho q
for the lateral velocity that is attained in tke direction for small path curvature, in

which F denotes the mean value of the force.
By contrast, the angular velocity that is attaimelti be:

:ﬁ XlFO’dX:%[_)Ed:_l.
Sp 7% q H 9

(27c) 3,

We calculate the quotient of the energies of rotati and lateral translatory motion that
arise in an inhomogeneous field. FromdR5 amounts to:

2 2 2
(27d) Ppo 1 ad, :l[EEQLJ _
/'10 qy 7 qy 25 F X’l - XO
If we now assume that the external field incredisas the value zero to its final constant
value along a line segment xaf—Xo = 0.1 cm, and seE = < F1 then the quotient will

amount to onlyps?/ i, q% = 10%* to 10%>. We concludeThe energy of the rotational
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motion that arises in inhomogeneous field will vanish completely in asopdo that of
the translational motion, at least for slow cathode rajforeover, the assumption thét
12 a/ ¢ should be small compared to 1, which equation (27) is based igpcertainly
fulfilled here. a/q=dalc Bis already small compared to 1,86 will be small, and
L7 al cwill be even smaller.

It is much more difficult to investigate the influenoé rotational forces on rapid
electron motions, for which, the factor (13%) must be considered in the differential
equations (19) to (19. One can generally treat rotational motion arodneddirection of
translation on the basis of the Ansatze of § 10. Jehealculated thd.agrangian
function of such a motion, although | have refrain@oh¥ publishing the result, since the
problem is much too specialized. In some situations,pexeelly strong rotations can
generally affect the character of the motion of feéetrons, as well as the magnetically-
deflected ones, in Becquerel rays in very complicategswhowever, so far nothing
suggests that such rotations exist. Rather, one findghéaiheory that considers the
rotational motions to be inessential for the dynaroicthe electron is in harmony with
experiment.

§ 12. Stability of translational motion.

In the sixth section, it was proved that if one isntaintain uniform translational
motion for an arbitrarily-distributed charge then, ingah an external torque:

(28) ©=[q 9]

would be required. Force-free, stationary motion wallpgossible only when the impulse
& points parallel to the direction of the velocity.orfulas (22) of 8§ 10 allow one to

write the condition for force-free, stationary nastiin the form:

oL aL oL

(28a) Ix 20y q 5, o9, 0,

We letqy , qy , q. denote the components of the velocity when refietoean axis-cross

that is fixed in the electric charge. If thagrangian function is known for motion in an
arbitrary direction then equation @8will determine the directions, parallel to which,
force-free translation will be possible. We alrg&dow from 8§ 6 that the three principal
axes of a homogeneously-charged ellipsoid willilfuliat condition. Now, the question
arises of which of those translational motions rhigé stable. We shall next give a
criterion for the stability of the translational ttan of an arbitrarily-distributed charge
and then apply it to the ellipsoid. We single th& position of the direction along which
stability is to be tested for the moving charged ahoose it to be theaxis. Conditions
(28a) must be fulfilled in any case, and they will give
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oL _ oL

280 —=—  for gqy=q:=0, qx=0q.
(280) o9, o, dy =4 4x =q
The magnitude of the impulse is:

(280) G= (G—Lj |
aqx dy=q,=0

We now imagine that the direction of motion has chdndg&’e choose the plane in which
the deflection takes place to be #yeplane; we now have, > 0 orgy < O then. In order
to maintain the motion thus-altered, an external torqué bei required, whose-
component is:

oL dL
oq, q,

y

O, =dx Gy — qy 6 = q,

The corresponding component of the “internal torqueit ghreserves that equilibrium
will then be:

oL oL
(28d) -0;=q,——-dq,——-

dq, ~ 0q,

We now call the original motion stable when thesiinél torque that is aroused by
changing the direction of motion always strivesatust the x-axis that is fixed in the
charge into the new direction of motioiihat will be the case if and only # @,) < 0 or
(-9, >0forgy<0orqgy>0, resp.

We develop the right-hand side of @8nto a series of increasing powers (f.

From (2&), the initial term will be zero. The term thafiisear ingy will amount to:

9°L
Ay qy=9,=0

Thus, the stability criterion for small changes the direction of motion can be
formulated as:

2
(280) G —{a_zLj >0
9 aqy dy=q,=0

for an arbitrary position of thg-axis, which is perpendicular to the direction of motion
On the other hand, we develop thagrangian function in aTaylor series in
increasing powers af,, and writel, for the value of that function whep=0q, qy =g, =

0. Moreover, we would like to think of the change in thetiam as having been
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completed in such a way that the contribution of theaist q =./q; +q. remains

constant, so we set:
19
Ox = 4/ qz_q§ :q_EE.

One will then have:

oL oL 1( oL
=t (2] (qx—q>+[—} 9 +—{—j %
0q, =0 aqy - Yy 9 aqi oo y

when terms of order three iy are not considered. From (88 (28&), one will then
have:

G [0°L
(28) L =Lo- 3q; ——LFJ
9 Ay ay=9,=0

The stability criterion (28 is then fulfilled if and only if small changes iretldirection
of motion always reduce theagrangian function when the magnitude of the velocity is
held constant. It follows that:

The translational motion of an arbitrarily-distributed charge is stable whwen
Lagrangian function possesses a maximum for the direction in question for a constant
magnitude of the velocity.

Not only formula (1) for the longitudinal mass, but also formula l§l6or the
transverse mass, applies to such stable motions. Whes no actual adjustment of the
x-axis that is fixed in the charge results from therattedirection of impulse (motion,
resp.), but rather an oscillation around it, the dioest of the impulse vector and the
velocity vector will then exhibit no noticeable deviatiom the limiting case of
sufficiently-small path curvatures, so the assumptigmsn which formula (16 was
based will apply.

We shall calculate theagrangian function of an ellipsoid that is homogeneously-
charged over is volume for an arbitrary direction of motidive again lay the-axis in
the direction of motion, which shall now have an asabyt position in the ellipsoid.
Equation (14) of § 7 gives the following expression forltagrangian function:

(29) L=—y1-8° .

In this, W, means the electrostatic energy of the distributibchargee that arises when
the ellipsoid is subjected to a stretching paraltelthe x-axis with a ratio of (1 :

J1-542).
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Another ellipsoid will be created by that stretchingoadn axes are’, b, ¢. The
electrostatic energy of such a thing amounts)to (

W= ) =

(29a) o D(s;d, b, ¢)’
D(s d, B, &)= (&+ 3( B+ ¥ 8+ %

We now come to the problem of finding the directiothe original ellipsoid(with the
semi-axes, b, c), parallel to which the stretching must be perfornmedrder to produce
a minimum electrostatic energy for the stretchéigsaid.

Since thex-axis is, in general, skew to the principal axeshaf ellipsoid, we shall
write its equation as:
(2%) aOC+ BOF + yOF + 20yz+ 2e zx+ 20 xy = 1.

The entire function of third degree #that gives the negative squares of the semi-axes

for its roots when it is set equal to zero, andokhaccordingly remains invariant under
coordinate transformations, is:

sa+l & &

2% g(sabo=z| ¢ B+l D E(%+1j(—s+1j(—j+lj.
s Y g+l a

The following identity then exists:
(29d) D? (s, a b, ¢) = a® [b* [ [s(s; &, b, ©).
Let the equation of the stretched ellipsoid be:
(2%) o K?+ B0+ y 2+ 20y7Z + 272X + 20Xy = 1.

Since (29) will go into (2%) by the substitution:

(29 x=xXJ1-F =X A, y=y, z=1Z,

one must set:
(29) a'=al L=B y=y =06 =€) =7

and as a result:

() Cf., E. Betti, Lehrbuch der Potentialtheorid 885, pp. 134.
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1
wr+1 i, $,r Sa+? SZ .
(%) gi(sd, B, = ' L+l & |=| ¥ P+l P |
s¢' ) y +1 s Y y+1
The identity (29) corresponds to this one here:
(29) D?(s a’ b’ c’)=a?b?k"* (s, a’ b’ c’).

Since the volumes of the two ellipsoids have a rdtio o
a’'lb’'xalbl=1:41

for the given stretching, moreover, it will then falldhat:

sa+)l—12 < &

(30) Di(sa’b,c)=a? X0 & B+1 9 |,
s Y g+l

and if one recalls (29, (29d) then:

2 v m’ I A — A2 2 A2 i— ﬁ+1 85
(30a) D°(sa’b’c’)=a"b"c D{%(S&bﬁbz 1)%5;&1}'

The equation of the intersection with the originéipsbid that is perpendicular to the
x-axis will be obtained when one sats 0 in (2%):

(30b) BY +yZ +20yz=1.

We callh;, h, the two semi-axes of that intersection. We wilrtthave:

o st 22 ) {2

The function of second-degree drthat was just computed is the only one in thetrigh
hand side of (38 that expresses the dependency on the positiciheok-axis; it is
multiplied by a factor that depends upon the conistretching ratio 1 A, but is always
positive. For a given, positive D*(s; a’, b’, ¢’) will certainly assume its greatest value
when1/h’ hZ, as well as(1/h’+1/h2), have their greatest values for the position ef th
x-axis in question. Now, that is, in fact, the ¢ase (1 hy) will be proportional to the
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area of the ellipse (B, and that is known to be smallest when the){plane is laid
through the two smallest semi-axes of the ellipsdighirthermore, it follows from the
relation:
1 1
[R5

1
+E = constant,

which is true for any three perpendicular radithe ellipsoid, that./h* +1/hZ will attain

its maximum when the-axis coincides with the greatest semi-axis of eélipsoid. If
one then lays the-axis through the greatest semi-axis tlg(s; a’, b’, ¢’) will assume
its greatest value for an arbitrary positaze

It follows from (2%) that:

By stretching parallel to the major axis, the etestatic energyW, of the stretched

ellipsoid will become an absolute minimumEquation (29) will now say:The
Lagrangian function for constant velocity will be an absolateximum for motion that is
parallel to the major axis.

If one recalls the theorem that was just proved theiill follow from this that:

For an ellipsoid that is homogeneously-charged tigiwout its volume, motion that
parallel to the greatest axis will be stable.

That result can be important when one is compebenhtroduce the assumption of
spherical symmetry say, for the positive electron. If one then goedo an ellipsoid of
rotation that advances parallel to the axis oftrmtathen the ellipsoid of rotation will
need only to be lengthened, not flattened; in atket case, the motion would be unstable.

Wiesbaden in October 1902.
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