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8 1.
Introduction.

It is known that the basic equations of the electnadyics of moving bodies that
were presented by. HERTZ (%), which can be regarded as the natural generalization of
MAXWELL s field equations for bodies at rest, prove to belégmate: They contradict
the experiments tha. EICHENWALD (%) andH. A. WILSON (®) performed on the
behavior of moving dielectrics.

The results of those efforts are found to be in egent with the electrodynamical
theories oH. A. LORENTZ (%) andE. COHN (°). The heuristic ideas that guided the
two researchers were completely different: WherdasA. LORENTZ started with
hypotheses that related to the behavior of electromsrameculesg. COHN sought the
simplest description of electromagnetic processeseKtIRCHHOFF sense.

The theory ofe. COHN explained the inconclusive nature of the attempts up to the
time in a satisfactory way as the influence of the omotof the Earth on the
electromagnetic processes that took place on the Eastrface. By contrast,
LORENTZ's electron theory, which started with the electronedignfield in the ether,
was closely-related to the concept that the motioa sfstem through the ether might
influence the perception of a co-moving observer. In e, H. A. LORENTZ (®)
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succeeded in adapting his theory to the relativity postulasuibgble hypotheses in the
variations that the electrical and mechanical propediasatter should experience as a
result of its motion through the ether. As is knowme fact that this is possible is
explained by the property of the field equations in therethat they go to themselves
under certain transformations of coordinates and liglys,r namely, the so-called) (
“LORENTZ transformations.”

It is not my intention to discuss the entire compdéxquestions that are connected
with the postulate of relativity in this paper. | haveldedth some of those questions
elsewhere). Here, we shall be interested in that postulate tmithe extent that it is
connected with the electrodynamics of ponderable ma&tgraper byH. MINKOWSKI
(°) that appeared recently placed precisely that conneatiis forefront. Here, the basic
equation for moving bodies will be given in such a form thaty will go to
MAXWELL s field equations for bodies at rest und&f@GRENTZ transformation.

MINKOWSKI ’s basic equations, like those Bf COHN andH. A. LORENTZ,
explain the results of all experiments up to now. Tin@ye the symmetry of electric and
magnetic quantities in common wi@OHN'’s basic equations, which they coincide with
when one neglects second-order quantities (in the quotightofelocity of matter and
that of light). By contrast,ORENTZ’s basic equations, in their original form, in which
that symmetry was not present, already deviate frargetlof the other two theories by
terms of first order. Therefore, that deviation, whigs pointed out bf. COHN (*9),
would be relevant to only paramagnetic and diamagnetilatmss, and would be
difficult to prove experimentally, due to its negligilblagnitude.

However, it is not difficult to alter the relatiobstween electric and magnetic vectors
that LORENTZ assumed in such a way that the symmetry will stitham valid.
Paragraphs (8) and (10) of the present investigation will esddithe form of
LORENTZ's theory, thus-modified. It will be shown that ¥eylapsMINKOWSKI ’s
theory completely, as far as actual content is comeck The formal difference lies in the
interpretation that will be given to the vectors thae denoted b¢ and$. ForH. A.

LORENTZ, they represented the electric and magnetic excitafithe ether, while for
MINKOWSKI , they lacked any intuitive meaning. In my opinion, iniprecisely that
absence of an intuitive interpretation tMINKOWSKI ’s theory lies. Now that the
theory of the electron has borne such rich fruiessteodynamics, in turn, seems to have
entered a phenomenological phase of its development.

The method of the present examination is also phendogcal. Given the
embarrassment that the increasing number of rival igeogpresents, it seems desirable
to me to possess a system of the electrodynamics whgiwodies that is constructed
uponMAXWELLian foundations and is free of the special Ansatzen ofrttiridual
theories from the outset. The assumptions of theegyshat will be presented here are
contained in laws of impulse and energy (8 3), and in additiertain equations that we

() H. POINCARE, “Sur la dynamique de I'electron,” Rend:cCMat. Palerm@1 (1% semester 1906),
129-176.

() M. ABRAHAM, Theorie der ElektrizitatBd. II, 2'“ ed., Leipzig, 1908, pp. 356-397.

() H. MINKOWSKI, “Die Grundgleichungen fiir die elektromagischen Vorgénge in bewegten
Kdrpern,” Nachr. Kgl. Ges. Wiss. Gottingen (1908), 53-111.

(*® E. COHN, “Zur Elektrodynamik bewegter Systeme. 1,"zSiKgl. Preuss. Akad. Wiss. (Berlin)
(1904), 1294-1303; pp. 1301.
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shall refer to as the “main equations” (8 4). Two ofnthevhich are reasonable
generalizations of the main equationdAXWELL ’s theory in the case of rest, couple

the line integrals of the vecto® and$' (viz., the forces on moving unit electric and
magnetic poles) with the temporal variation of theaste integrals of the vecto® and
® (viz., the magnetic and electric excitations). Tbgetwith the three closely-related

main equations that expression tHeULE heat, the relative radiation, and the relative
electromagnetic stresses in moving matter by means abrge they will define a
mathematical framework into which the various picturéflectromagnetic processes
can be inserted. Each of those pictures is charaetieli two relations between the four
vectorse¢', ', ©, B. By appending these relations, the first two main eqostwill go

to differential equations that represent the temporahtran of the electromagnetic field
in the theory in question, while the other three main egnstdetermine the energy
processes and ponderomotor forces. Meanwhile, thatextevhich one can pursue the
consequence of the main equations without adding any spepiations that would
couple the theories in question is remarkable. In paaticthe deviations that exist
between the various theories in the expressions foponeleromotor force (8 12) are
negligible. In the case of rest, the ponderomotare®fLORENTZ s, COHN'’s, and
MINKOWSKI ’s theories will even be identical to each other.

While | shall organize the various theories of thetet®lynamics of moving bodies
into a general system, | shall ignore the topics & itidividual pictures that are not
required by the characteristic laws for coupling the elesgnetic vectors. Hopefully,
one will excuse me for having introduced such alteratios®me of the aforementioned
theories, since the essential elements of the pg&iarquestion will emerge all the more
clearly with the manner of representation that wellgiven.

8 2.
Useful mathematical formulas.

Time differentiation at a fixed point in space will tenoted by / dt. The temporal
change in a surface integral that is taken over a cinfghose points move with a

velocity ofto:
d oA
— | dfA = | df - —
dtI " I { ot }

defines another type of time differentiation for vesto

(1) O _ OA o divel + curl [ w].
o ot

Moreover, the differential quotient that refers towing points will be:
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o
) =D

It is connected with the temporal change in the volumegral of a vector by the
relations:

EJ. va[:J.dvﬂ,

dt ot
oA . .

2 — = +2A div 0.

(22) 5

It follows from (2) and (2) that:

(3) OA _ O, (1o ) 2+ div o,
3t ot

Correspondingly, for scalars, that will yield:

5_¢I: a_l// i
(32) 5 ot + div ¢ 1o.

Finally, if one considers the general rule that:

curl A ] = 0)A - @ 0) o +2A diviv —ro div,

then the relation:
oA _ oA
4 —=—-®R 0w
@ ot ot @0
will follow from (1) and (3).
Since the type of time differentiation that wasadiuced in (2) obeys the usual rules

of calculus, one will have, if one recalls)2
: S .
[AB] +[ ANB _E[Q[ B] - [A B] div 1o,

From this equation, in conjunction with the ones tbéow from (4) and (3):

aa_tm: 2 +2 divio — @ 0O) w,

aa—t%z% +%B divio — (B 0) 1o,

one will obtain:

[6(;_3[93}[9‘%—?}: %[Ql B] + [ B] div o - [2 (B 0) o] + [B (A 0) w].



Abraham — On the electrodynamics of moving bodies. 5

On the basis of the easily-verified identity:
[0 (B 0) o] —[B (A D) o] = [A B] div o — ([A B] O) o — [[A B] curl o],

one will get the relation:

(5) [i—f{%}+[ﬂi—?} = %[Q[ B] + ([A B] O) ro + [[A B] curl w].

8§ 3.
The energy equation and the impulse equations.

We understand, y, z, t to mean coordinates and time, when measured in a spdtem
reference in which the observer occupies a fixed positibme ponderomotor force that
acts upon a unit volume of moving matter as a resuhegtlectromagnetic process that
such an observer will measure shall possess the contgonen

_0X,  OX, 0oX, g,

= + + - 2x
* ox o9y o9z Ot
:an +6Yy +6Yz_a‘gy,
Yoox oy 09z ot
ZZGZX +azy .97, _agz_
ox dy 0z Ot

R

(6) R

R

We refer to the vectog that appears here as thkectromagnetic quantity of motion
density or more briefly, thempulse density. The system ofictitious electromagnetic
stressegonsists of six quantities, namely, the normal stegsseYy, Z,, and the pair-wise
equal shear stresses:

(6a) Xy = Yy, Y, =2y, Zy = X;.

Theimpulse equation&) replace thenergy equation:

7) mﬁ+Q:—div6—%—l‘tﬂ.

In this, Q means thed OULE heat,{ means the electromagnetic energy density, and
& means the energy current.
Like the impulse equations that determine the quantfiesotion that are carried by

the electromagnetic field, the energy equation, whieidgi the total energy per unit
space and time, will be converted into a non-electrowiag form (viz., work and heat).
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If one introduces the temporal differential quotiehat tare defined by (3) and,}3
into (6) and (7) then one will obtain another formtloe law of impulse and energy:

_ox; 90X, ax;_dg,
* ox 9y 0z Ot
_0Y; 0%, 0% %9,
Y oox ody 09z Ot
:az:(+azy +aZ;_5gz,
 9x o0y 0z Ot

R

(8) R

R

(9) mﬁ+Q:—div{6—m¢/}—55—l‘i/.
Here, the vector:

S—-wy
represents theelative energy currenfThe system ofelative stresses:

X>’< = Xx+mxgx’ X’y: Xy+mygx’ ><’z: Xz+r0 ﬂ X
(10) Yo=Y+wg, Y,=Ytwg, Y= Yrwg,
Z>’( :Zx+mxgz’ Z’z: Zz+r0 yg 2 ZZ: Zz+r0 g z

is defined in such a way that (6) and (8) leadh® same values of the ponderomotor
force.
The relations:

YX’_ X’y :mxgy_mnga
Z;_YZ' =1ty gz — 10z gy,
X! - 7. = tv, gy — t0x gz

follow from (6,) and (10), and they can be written vectorially as:
(11) N' = [ g].

9" is the rotational moment of the relative stresspsr unit volume. In ordinary

mechanics, it will vanish, since the direction loé impulse vector coincides with that of
the velocity vector here. In electromagnetic meats it cannot be neglected in general,
but it will be compensated by the rotational mom#ratt originates in the co-moving
guantities of motion when one refers them to adireoment point.

We can think of the relative energy current aagelivided into two parts, one of
which represents the energy transfer that is reduiy the relative stresses, while the
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other one represents the “relative radiatiti,{ which can be measured, e.g., in optics,
by the production of heat on a black surface:

6x _mxl// = 6’x _{rox>(’x+r0 yY’x+rO ZZ}<’
(12) 6, =6, —{rn X +w Y +w 7},
S, ~w Y =6,~{w X' +w ¥+w Z},

We call the vecto6 therelative ray
We find the expression:

mR=-1w %, 9 — (0, X, +10 Y, +10,Z)
ot 6x Y
a I T
+a—y(mxxy+myYy+mZZQ
+ai(mxx;+myv;+mzzg
, 0o 0
i By Ty 7 Py Ty y Iy 00y Ty S 7,00
oy 6y ay 0z 0z 0z

for the work that is done by the ponderomotive édoftom the impulse equations (8). If
we set:

Pr - ! amx + Xr at’Oy 4 amz
) Y oy * 0z

(13) +Yx,amy+Yy,6my+\é6my
0x ay 0z

L7 Ow, L7 6mz+ 7 O,

“ox Yoy oz

here, to abbreviate, then if we recall (12), thergy equation (9) will yield:

. 51//
14 +dive' = o8 4 P
(14) Q ot Jt

The relation that follows from the laws of impulsed energy will prove to be
important later on.

() M. ABRAHAM, loc. cit. (%), pp. 324.
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§ 4.
The main equations.

What all theories of the electrodynamics of moving ésdiave in common is the
form of the first two main equations:

0D
| ceurlH =—=+ 3,
(1 9 PR
(I ccurle' = _6_%.
ot

They are nothing by a general model that will firéetan a physical meaning when one
adds two relations between the vectors that appearem.thTwo such relations are
necessary in order to reduce the number of unknown vetdorso. The temporal
variation of the fields of these two vectors will bescribed by the first two main
equations.

We interpret the vectorg’, ' as theforcesthat act upommoving unit electric and
magnetic poles. We shall follow the terminology of theEnzyklopadie der
mathematischen Wissenschaftamd call the vector®, B the electric and magnetic
excitations resp.

The meaning of the vecta®' corresponds to the fact that we make the following

Ansatz for theneatthat is generated in the moving matter per unit time pades
(1 Q=j¢.

This third main equation is succeeded by a fourth one thgile® therelative ray
with the vectors¥’, §':

(IV) S =c[e 9]

For the case of rest, that vector will gdPOYNTING ’s.

Finally, we shall need an Ansatz that expresses thetiué that is defined in
equation (13), and therefore the relative stresses, irstefrthe vector®’, §', ©, B.
We set:

V) P=¢ ®0Dw+H (B0)w-3{eD +H"B}div v,

and thus obtain theelative stresseas:
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X =D+ 9,8, x{E¢D+H'B,
X, =€D +9,8B,
X; :€'x©z+y)'x%y’
Yx’ :€’y©y+ﬁly%w
(Va) Y, =€, D +9,B -H{ED+H'B,
Y,=¢D +9H B,
Z)'( :QE'Z©X+’$3'Z% X
Z,=¢,D +9,B,
Z,=¢'D +9' B -H{e'D+9'H.

The well-known formulas for the fictitious stresgefow from these in the case of
rest.

On first glance, the choice of expressions (IV) &W)l seems to be completely
arbitrary. However, it is the simplest generalizatidithe laws that are valid for bodies
at rest, which only employ the four vectors that appetre first two main equations.

Moreover, it follows from () that:

Y, - X’y = i)xei’y—ﬁy@’x+%xﬁ’y—% yﬁ'x.
With that, therotational moment of the relative stressal be:
(V) N =[O & +[B 9]

The mechanical principles that were set forth in tle¥ipus paragraphs, and the five
main equations, are the foundations upon which our systettmeodélectrodynamics of
moving bodies will rest.

§ 5.
Determining the impulse density and the energy density.

The various theories of the electrodynamics of movingidso differ from the
relations that are chosen between the four veatgr$', ©, B that appear in the main
equations. However, before we go on to the discusditime special theories, we would
like to pursue the general development somewhat furthieerefore, only the following
rather general assumption about the form of thosgioas shall be made: The vectors
¢, 9, D, B shall be coupled by equations that indeed contain the ityelector o
itself, but not any sort of derivatives of them witepect to time or the coordinates.

The main equation (1V) yields:

dive' =c{$ curl¢ —¢& curlH'}.
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If one recalls the first two main equations then thiditbecome:

5¢ +dive =- aa? I a_%

It follows from the main equation (lll) and the radet (14) that:

oy g 2000
1 Y _ 08 _p - 2z,
(14:) 3 T

which is a condition that, from (4), one can alsdevas:

O 098 _p = 5_9 9B _ _ &
(14) 5 mdt P = +5§ - ¢ ®@0w-9 (B0,

and which will finally go to:

oy Jg _ 0D _, OB , .
15 2=+ - e D+ BYd
(15) ot mJt ot 9 ot 2 S B

by appending the main equation (V). That relation setvesscertain the densities of
energy and quantity of motion from its dependency upoeldetromagnetic vectors.
If one recalls (g then it will read:

(15) Y-wg+ (Y- g)divio = €D+ H'B+1{¢ D + ' B} div 1.

Since the type of time differentiation that is nompdoyed satisfies the usual rules of
calculus, when we set:

(16) Y- g=9g,

to abbreviate, it will then follow that:
(17) W+in-¢D-9B+{g-1¢ D -1¢ B}div w.

As was mentioned in the beginning of this paragraph, théioe$ that coupl®, B
with &', $', will in fact contain the velocity vectan, but not its differential quotients
with respect to time and position. The same thing wildbmanded of the expressions
that represeniy andg by the electromagnetic vectors, and our next goal beatio find
them. Accordingly, we can split off the terms in (1WBat contain only differential
guotients with respect to time, into which the divergerices @nters as a factor. That
will give the equations:

(175) P+gro = ED+H'B,
(A7) p =1¢D+1H"B.
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The elimination o#p yields:

(18) 2g10 = ED-DE +H'B-H'B.

That relation will serve to tell us the componeotshe impulse density, once the
right-hand side is expressed as a linear functioth® acceleration components on the
basis of the relations between the electromagwettors that characterize the theory in
guestion.

From (\) and (11), one will get the condition:

(18,) [g] = [D€] + [BH].
This must be fulfilled in every case, since otheevour system would exhibit an internal
contradiction.

(16) and (14) determine the energy density:

(19) W=CD + 5B + g .
From (V,), the sum of the relative normal stresses will antdo:
X, +Y+Z, = {3€D+15B},
so it will follow from (10) that:
XX + Yy + ZZ == {%QEIQ +%5§’%} y
such that the remarkable relation will exist:

(19 Xy + Y, +Z,+ = 0.

If one substitutes the value (19) #f as well as the expressionj\Mor the relative
stress, in (12) then one will get:

(20) S =c[€H]+{€D +HB}-D (&) B (WH') + 1 (0g)
for the energy current, which is an expression glo&s to:

6 p— ! I U !

P [€'5']+ [€[qD]] + [H'[q B]] + g (qCg),

on the basis of known rules of calculation, whee sets:

_ o
q__l
c
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to abbreviate. One can also write that as:
6 — I I
(21) ;—W%ﬂq%hﬁ+h©ﬂ—qmcm

in which®B is understood to mean the vector:
(22) B =[D B]-cg.

We shall now go on to the discussion of the spebmdries, in which we restrict
ourselves to isotropic bodies throughout.

§ 6.

Theory of H. Hertz.

The moving body ofHERTZian electrodynamics sets the vectdfs and B
proportional to&’ and$':
(23) D =€, B=usn'

Correspondingly, as long asand i can be considered to be constants for a particular
material point in a moving body, one will have:

¢D-D¢ =0, H'B-BH = 0.

It will then follow from (18) that:
(24) g=0.

TheHERTZian theory does not include the electromagnetic quantities of motton.
derives the ponderomotor force from the stresses alonehich, from (10), it is
irrelevant whether one refers the stresses to fixedonaving surfaces. A rotational
moment of the relative stresses will not appear,esthe two sides of (3B will also be
equal to zero then.

From (19), the energy density will have the value:

(25) Y=Le€? +1pun”.

However, as was mentioned above, the simple Ansatzhigh HERTZ'’s theory
couples the excitatior®, 93 to the electromagnetic forc€s, $' has not been confirmed

by experiment. All that remains is to choose betweerthbories that will be discussed
in the following paragraphs.
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87.
Theory of E. Cohn.

E. COHN based the electrodynamics of moving bodies on thewaily coupling
equations:

(26) { D=e¢ -[99],

B=puH +[q¢].
When & and /& are, in turn, set equal to zero, they will imply:
ED-DE =g[EN] +q¢'H] ~d ¢'q] ,
H'B-BH = 4[EH] +qEH] -4 €] .
Now, since the relation (18) demands that:
24cg = €D -DE +H'B-BFH,
one can classifCOHN'’s theory within our system when one sets:

(27) Ca=[€H] = %

In COHN's electrodynamics, the impulse density must be set equal telttre ray,
divided by &

One easily confirms the fact that from (26) and)(2he relation (1§ will also need
to be satisfied when one observes that the follgudentity exists:

[a [€9T =€ [qa 9] - [%'[q €11
It now follows from (19) that the electromagnetitergy densitwill be:
(28) W=D +3:9'B +q[€H],
which is an expression that, according to (26),alaa be written as:
(28a) W=1e €2 +ipy G2+ 2q[E 9,

this coincides witle. COHN’s Ansatz.
| shall come back to the calculation of the poondwtive force later.
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§ 8.
Theory of H. A. Lorentz.
When we change the coupling equations of the theory 8f. LORENTZ in such a

way that there is symmetry in the electric and magnetctors, we will arrive at the
Ansatz:

(29) { ©=€€"—[q53],
B =uH +[q€],

(30) { Qf: =€ +[q9],
9 =9H-[q€].

Here, two new vectorg, §) appear, along with the four vectors that are contaimed i
the main equations. This situation mak€3RENTZ's theory more complicated than
COHN'’s. The latter coupled the components®f® with those ofe’, §' directly by

means of equations that were linear in the velocity cowpis; by contrast, in this one,
the coupling equations that are obtained elimina¢ing [§ 10, eq. (3#)] will no longer

be linear in the velocity components.
Hence, thd ORENTZ vectors¢ and$ will take on an intuitive meaning. Namely,

from eqgs. (29), (30), the excitatio@sand®B can be split into two parts:

(31) { D=C+P, P=(e-De&,

B=H+M, M=(u-1)9".

LORENTZ interpreted the first components of the electric angmatic excitation,
which the represented & and ), resp., as the electric and magnetic excitation ef th

ether, resp., and the second components, which is represeytde® vectorsg ando

(viz., the electric and magnetigolarizatior), resp., was the electric and magnetic
excitation ofmatter. The latter is set proportional to the electric amabnetic forces’

and$’ that act upon the unit charges in the moving matter.

In this paragraph, we would like to consideand to be independent of velocity and
time for a well-defined material point, although we shtlthose restrictions later on.

In order to ascertain the impulse density on the lodgi®e relation (18), we calculate
the quantities:

ED-DE =¢'¢-¢¢ +¢" P - P&,
(31) { B-P

H'B-BH =HH-HH +H5'M- M.
It follows from (30) that:

Ee-¢¢=—q[EeH]+q[EH]+ q[¢ 9],
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HH-99'=-q[€H] +q[EH] + g[€ 9.
Now, according to (31), since the other two terms in)(8&nish, the relation (18) will
imply that:
(32) cg=[€ 9]

is the value of thelectromagnetic impulse density.
Now, the question arises whether that value likewasisfges the condition (1R

[acg]l =[D€]+[BH].
From (29), one will have:

[D€]+[BH]=[€ [q H]] - [ [q €]I.
It will further follow from (30) that:
[D€] +[BH]=1[€[q H]]-[$ [q €.
On the basis of the well-known identity:
[q[€ 9]l =[€[q 5] -[9 [q €I,

one can prove that the expression (32) for the impulssitgeactually satisfies the
condition (18).
Now, it follows from (19) that thenergy densithas the value:

(33) Y=3¢CD +39"B +q[¢ 9],
SO one can also write:
Y=1E+167+1¢H + 1o'M.

The first two terms are to be regarded, in the sens€GRENTZ's theory, as
contributions of thestherto the electromagnetic impulse density, while the thast are
contributions from the polarizedatter.

We now proceed to the calculation of the energy ctirrém LORENTZ 's theory,
with consideration given to (32) and (31), we will halve &xpression:

(34) W =[D B]-[€ H] =[€M] + [P H] + [P M]
for the vecto®J that was introduced at the close of 8§ 5. From (31) and ¢B6)has:

¢ —[q B]=¢—[q M,
H' +[qD]=9+[q Pl
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such that equation (21) will assume the form:

%=[€—[q9ﬁ],53+[q 1] - g (q 20).

Now since, from (34), one must set:

q (a9 20) =[lq €] [q M| + [[a P [a HI] + [[q B [q ],

it will finally follow that the value of the energy currerg:
S , '
(35) < [€ H] +[€ [q BI] + [ [q M.

The first term can be regarded as the portion oetiergy current that is due to the
ether, while the second one is the portion that is due tctreally-polarized matteras
G. NORDSTROM (*%) has explained in a work that appeared recently andésvoethy
other respects. The third term, which enters when magtgtpolarized matter is in
motion, corresponds to the second one in such a way tleguires the symmetry of the
electric and magnetic vectors that was assumed here.

§09.
Theory of H. Minkowski.

In that theory, the following relations between thecgomagnetic vectors will be
true:

(36) { ©=€€"—[q53],
B =uH +[q€],

37) { Qf: =¢+[q],
9 =9-[q9].

Here, as well, a new vector-pair appears along wighttvo vector-pairs that are
included in the main equations that mediates the relagbmeen them.

From the standpoint of the system that we have usedrdsasis, the problem arises,
in turn, of deriving the impulse density from the relati®8). It follows from (36) that:

ED-DE =4 [¢ H]+q[¢ H]+q[¢ 9],
HB-BH =g [¢ H]+q[€H]+q[eH ]

(** G. NORDSTROM, Die Energiegleichung fiir das elektromagnetische Feld bewegtepeKor
Dissertation, Helsingfors, 1908.
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Thus, the right-hand side of (18) will become:
(38) €D-DE+HB-BH=[€'] {eq} Hi €P b €Y [- EH[- B’

On the basis of (37), we expregs §), as well as¢, §, in terms of the vectors that
appear in the main equations and find that:

(38) [€ H]+[E€H]=2[¢ H]+q (€ D)-D(q€)+q(H B)-B (q9)

[@H]+HeEn] {¢'F {esq
=q(E'D)-D@E)+q(H'B)-B(4H)
+{ED-DE+HB-BH')
~D(q€) -D(q&) +B(q9) —B(q9)}

(38)

When we substitute (38) in (38), we will obtain:

ED-DE -HB-B§H
=2q{[¢'H' -« €'D) +q(H' V) -D(q€) —B(qH)}
(38c) +(D)@¢) - (@D)@¢") - (a9)(@€¢") + (@) (&)
+(B)(@9) ~ (@B)(@9) ~ @B) @) +@B)(q$)
+q4¢'D-D¢ + 5B -B H).

However, it follows from (36) that:

-(@D)@e) +(@D)(q¢) = D)@ge) -(4D)Ge"),
- @B)(@H) +(@B)aH) = GB)aH) - @B)(a9).

The second and third rows on the right-hand sid@®j will then assume the values:

A(49)(a€) -(qD)(q€)} =2([qq][DE]) ,
A(4B)(99) ~(aB)(a9)} =2([q4l[BH]) -

Now, if one has, in fact:
(39) pcgl =[® €] +[B 9],

as (18) would demand, then the second and third row cioely will yield:
2([4d] [acg]) = 2((dq) )(qca) —a”(G2cq).

Therefore, it will ultimately follow from (18) that
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(3%) Cg=[¢ N]+q (@ D)+q(O B)-D(q€)-B(q49H)+q(gcyg).
A comparison with (20) will yield the important relation

S
Cc

If we insert theMinkowski coupling equations between the electromagnetic vectors into
our system then the impulse density in the moving body will be equa¢ tenergy
current, divided by T

It follows from (40) and (21), when one recalls (37atth

(40,) cg=[€H]—q(q2),

in which the vector:

(40) W=[DB]—-cg

is determined from:

(40) W - q (q W) = [0B] - [€9].

If we let thex-axis point in the direction af and set:

(40y) K=1-|qF
then the components 2% will become:

2, =k 4 0Y {9},
(41) W, =[9%], e,
2, =[0%8],-[e] ,
and it follows from (4€) that:

cg, = GC = k?[e],—| q|* K{DD],
Gy
(42) cg, =—L=[es],,
C
cg, =22 =[e],
C

The derivation above is missing something; vizladks the proof that equation (39),
which is assumed to be valid, is actually fulfilleth order to show that, we calculate the
vector:

N'=[O¢]+[BH] =[€ [49]] - [%' [q€]]
=q(€'9) —q (€9') + € (49) =9 (4¢').
Since one has:
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E¢H-€EH =q{[D€] +[BH]}=(q N,
€ (@9)-9 @€)=€¢ (@9 -9(q¢)=[q[c¢ 9]],

if one recalls (48 then one will have:
N —q(gN)=[qcgl

Since the component 8F' in the direction of the vectaris equal to zero by this, one

can also write:
(43) N ={[D€] +[BH'] =[qcg]

With that, the condition (18 is shown to be valid, and at the same time, the iitathe
derivation of the value af above is eliminated.

(19) implies the value of thenergy density:

(44) Y=3CD+39" B +qcy,
which can be brought into the form:

(44a) W=D +iHB —qW
by using (37) and (49).

In order to ease the comparison of our results imeHMINKOWSKI Ansatze, we
write:

CgX:X|1 ng:Y|1 CgZ:Z|1
6x=c Ty, Sy=cTy, 6;=cT,,
ct=lI, mR+Q=cK, ¢=T.

The impulse equations (6) and the energy equation (7) thén rea

X,  OX, 0X, 0X,
= + + - ,
ox dy dz 0l

ay, odY, ay, ay
+ + -
ox o0y 0z 0l
_ 0z, 0Z, 9z, aZ
= + + - ,
ox dy o0z Ol
_ 0T, 0T, 0T, _oT,
ox o9y 09z adl°

Rx

Ry =

R

ﬁt =

From (19), one then has the relation:
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Now, the relation (40) says that:
xI:Tx1 YI:Tyy ZI:Tz-

In conjunction with (§), these relations include a remarkable symmetry propéityad
system of equations that is not foundMiNKOWSKI ’'s Ansatzen. As the behavior
underLORENTZ transformations would demand, the ten quantities:

Xx, Yy, ZZ; _Ttl
xy:YXl YZ:ZYl ZX:le
—“X=-Tx, -Y=-Ty, -4=-T,

transform like the squares and products of the coordirayeg, and the light path length
I. Correspondingly, thispace-time tensosatisfies theprinciple of relativity in the
MINKOWSKI sense. The same thing is true forspace-time vector of the first kisgd

that is derived from it. Th@onderomotor forcehat will be calculated in § 1dlso
satisfies the principle of relativity then

8 10.
Relationship between the theories of Lorentz and Minkowsk

We have emphasized that the intuitive meaning thatvélotors¢&, § take on in

LORENTZ s theory is that of the contribution of the etherthe electric and magnetic
excitations. IMMINKOWSKI ’s theory, those vectors, by means of whigh % and¢’,

H' are coupled to each other, lack any such intuitive egpian. When one takes the

standpoint of the principle of relativity, there is afsmbasis for speaking of the ether and
its electromagnetic properties. That principle considaly the motion of matter relative
to an observer and the electromagnetic processestimétger.

Meanwhile, for our system of the electrodynamics olvimg bodies, the vector®

and$ are defined more narrowly than the vectorss, &', §'. If we couple those four
vectors to each other directly by eliminatiéigand §) then the relationship between the
theories oMINKOWSKI andLORENTZ will become clearer.

A) Minkowski’'s theory.
If follows from equations (36) and (37) of § 9 that:

) { O +[alq0]) =€ { g,

B+[qlqB]] =5 Haqel.

If we lay thex-axis in the direction of g then we will get:
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(45, { D=5

B, = 1N,

for the components in that direction. By contras,will have:

(45,) { k™, =€, -[q9],

2 — [ r
k %y _ﬂﬁy_{—[q@] y
for the components that are perpendicular to trection of motion.

B) Lorentz’s theory.

It follows from equations (30) of § 8 that:

) { ¢ +[aqe] = ¢ {9,

H+[ala9]] =19 H q€].

The components af ands$) that are parallel (perpendicular, resp.) to tleation of the

velocity will then be:
¢, =¢, k& =¢ -[q9

(46 e 1,76, "le0,

ﬁxzﬁx) kﬁy:ﬁy—i_[qe]y

Whereas, forMINKOWSKI , &£ and i are independent of direction in isotropic
bodies, foLORENTZ, it is permissible that different values £&ndy can come under

guestion for excitations that are parallel and pedicular toq. Accordingly, from (29)
and (4Q), one will get:

D =£.¢,
(47a) { X X X

%X = ﬂX ’S;:)'X
for the longitudinal components @f and®5, and:

2 — (L2 2Nt [ !
@7y o g T
kB, =(Ku,+a[)9, + €],

for the transversal components.

If we compare (45 and (4%), on the one hand, and @%nd (4%), on the other, then
we will recognize that the equations in both thesithat coupl&®, 8 and &', £ will
coincide when one sets:

(48) &= L= U
(48, §-1=k?(e-1), p-1=k*u-1)
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in LORENTZ’s theory. From (31), the longitudinal and transvecsahponents of the
electric and magnetic polarization will be:

(48,) Px =€-DE, Py =k (e-DE, P, =k (e-1) €,
(48y) M= @-1)%, My=k>(@-1)%,, M=K>E-1)9,.

H. A. LORENTZ (1904) has already spoken about the fact that if theivigfa
postulate is compatible withORENTZ's theory then the electric polarization of an
isotropic body in the rest state must be influencedt®ymotion in the manner that is
described by (48. If one assume the symmetry of the electric angnmeic vectors then
they will imply the corresponding behavior for the matic polarization.

The assumption that was made in § 8 thaind i should be independent of the
velocity is now obsolete. Hence, the values of impulensity, energy density, and
energy current that were found there must also bedea. One can no longer neglect
the quantities:

IR ol v d ]
¢p-Pe& ZZQ‘B_d—(Qf‘B),
t
(49) q
M -MH =2§'M " (59M)

that entered into (3L It follows from (4&) that:
(49%) CP = (- D{EZ+k (2 +eE )} .
Furthermore, if one considers the transversal actmeraand the rotation of the

polarization ellipsoid that it demands then one will tpe following expressions for the
components off3 :

0, = (-1, - g -Gy
lq g |
(49,) B, =k2(e-D&, +2i, |q |k‘2*ny+%lfnx,
B, =k 2(e-1)&,+ 2], |q |k‘2fnz+%lfnx.

This implies that:
26'P = 2(e - D{E, &, + k¢, ¢ + K, E}+44 q| KHE P +E P,

qy ! ! qz ! ]
—2 (@, € P 2 2{ @' P - P,
i I{ B, —€ B} ﬁq F.~ ¢ 1}

(4%)

while (49) yields:
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d Y] 2.0 ! =2l ul . ~ 1 ]
(4%) a(c’f' ) =2 €- e & +k7¢ & +ke e} 24 ] q K{E P &P,

Now, since one has, from (48that:
EB, ~€PB =|qFEP,
P, - P =|qfER,,
that will imply:
(4%) EP-PE =24, |q [K*{&, B, +€ B} -2q ql€" P -2 lq [€'"P .

The introduction of this expression and the one thatesponds to it for the magnetic
term in (31) will yield the corrected value for the impulse density:

(50) cg =[€n] +[&[qB]] + [9'[a9] +4d, [q [K*{E P, +EP,+ o' M +5'M }

in place of (32). It is easy to verify that the tela (18,) is still fulfilled.
If the value (50) forc g were substituted into the general formula (19) forathergy

density then, instead of (33), one would have:
(51) ¢=1C+i0°+1EP+LIHM+ |q PRSP, +E P, +9' M + 9 M} .

On the basis of (20), one will also obtain the fellag corrected formula for the
energy current:

(52) %= [€9] + [€[aB] + [S'[qM]] + q |q FKH{EB, +EB,+9' M + 95} .

From (50) and (52), one sees that the relation betweeanergy current and impulse
density that we encountered already in MINKOWSKI's tlyeaamely:

(53) S-cyg,
C

will exist in LORENTZ ’s theory, as well, when one modifies it in the giveay.

That result was to be expected. Once the equatiahsdhple® and®s with ¢ and
H' are brought into agreement, no essential differanit@xist between the two theories
any longer from the standpoint of our system. Only teammg of the vectors that are
denoted by&, $ has changed. As would emerge from (50) and (51)L@RENTZ
definition of these vectors also now allows the cootion from the ether to the
electromagnetic energy and impulse and that of mételiffer from each other. Of

course, formulas for the contribution of matter avevitirue that no longer admit a simple
interpretation.
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8 11.
Consideration of the temporal change ireand L.

Up to now, we have considered the dielectric const@amind the magnetic
permeabilityu to be quantities that possess constant values forea giaterial point, or
at least (cf., 8 10), vary with the velocity in a giveay. Up to now, we have not
contemplated the case in which those quantities dependstiupstate of deformation of
the body, and therefore upon time. How are the denaiions to be modified whesf
and 4 are not equal to zero?

A) Theories of H. Hertz and E. Cohn.

If we use the formulas (23) 6fERTZ’s theory or formula (26) o€OHN'’s theory
as a basis then we will find, in the case wherand ¢/ depend upon time, that the
following relation will replace (18):

(54) HED-DE +5'B-BH} =gro+ &+,
in which we have set:
(54a) J=1e¢?  np=1ig"2

In this, we have assumed that the previous expres&iri(R7), resp.] is still true for the
impulse density.

B) Theories of H. Minkowski and H. A. Lorentz.

The calculations that one makes when are stants tihe coupling equations (36) and
(837) of MINKOWSKI ’s theory are somewhat more cumbersome. One musbtnipt
add the term:

£€'2+ [1512

to the right-hand side of (38), but one must also cenglok variation of and/ in the
calculation of the terms in (38that include® and 8. As long as the value gfdoes

not change, one will also get a relation of the f¢54) here. Hence, the quantitiésy
will have a somewhat different meaning here:

Z:E{Q312+k—2(612+613},
54 22 2y
%) { D=2k + 53

This result is also true fdtORENTZ s theory in the form that we gave it in § 10.
All expressions in that theory that contain onlg tectors¢’, §', ©, B will then be

identical with the corresponding expressionMINKOWSKI ’s theory.
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Now, since equation (54) contradicts the relation (489, since we would not like to
allow any change in the values of the impulse density la@nergy density, we would
regard it as necessary for us to correct the value foquaetityP' that was given in (V),
and indeed give it the value:

—{é-np.

The considerations of 8 5 will lead directly to theatiein (54), instead of the relation
(18).

This way of looking at things finds some support inttiedry of electrostriction'f).
In the simplest-available case of fluids and gaseshich £ andx depend upon only the
densityg, one will have:

P d
-{&- Oﬂ——U{Z—JFU ,u}
do do

That will be a consequence of the continuity condif@mmmatter:

-{éE-ni = let’O{ZO’—+/70’d'u}
do

If one recalls the definition (13) of the quant®®ythen one will see that this increase will
correspond to an increase in the relative normadsteby:

(55) -p =0t anat

do

In the case whereandy go up with increasing density, the additional prespuvell be
negative; i.e., the fluid will tend to contract in@lgc and magnetic fields. In the case of
rest, (55), in conjunction with (34 or (54), will yield an Ansatz that is useful in the
theory of electrostriction.

For solid bodies, some general considerations willdlggiired if one is to represent
the dependency of the electric and magnetic constantsthpmtate of deformationH.
HERTZ (** has calculated the corresponding supplementary ssrasgeneral from the
standpoint of his theory. By contrakt, COHN, as well aH. MINKOWSKI , passed
over the introduction of such supplementary stressé¥e will also allow that
simplification from now on, since it is permitted blyet negligible magnitude of the
supplementary stress.

() F. POCKELS, Enzyklopadie der mathematischen WissenschadnV, 2, article 16, no. 4.
(*Y H. HERTZ, “Uber die Grundgleichungen der Elektrodynamik fiir bewegtep&is’ [Gesammelte
Werke Bd. Il, pp. 256-285; pp. 280.]
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§12.
The ponderomotive force.

Since the dependency of the relative stresses, assvidle impulse density, upon the
electromagnetic vectors is determined in each of tlesemt theories from now on,
equations (8) will then yield the components of the pondetonforce. From (), one
has:

X, =H{ED,-€D €D} +{ B 9P 9P},
(56) X, =C€D +9B,
X, =C€D,+93B,

It follows from this that:

X! o0X, oax!
+ +
ox dy 0z
(57) =€ divD+9, divB-D curlg+D  curlg -5 curliy+B , curl®y
30 _o0€  om o5
2 0X X 0x oX

If we consider the last row then the analogy withlgft-hand side of (54) will appear
immediately. The expressions differ by only the f&etttthere, the differentiation was
with respect to time, while here, it is with respecatcoordinate.

Now, since the train of thought that led to the refai(54) was not based upon the
meaning of the independent variables, one will have:

57
(572) )4 6x 0X 6 X

09 6@ 0B 653’ O  ,0 . Ou
== = —g—+{ —+n-
2{ v } gax Zax ,76x

The vectorial generalization of (57) comes from thrce contribution that originates
in the relative stresses:

(58) R =

=¢" div® +$ divB —[® curl ¢] -8B curl ¢'] - (g0) v — [g curlo] — {Ue—n O
According to (8), the contribution that originateem the electromagnetic impulse

will be:

(585) Ro=- %9

E .

We would like to convert the vector products thapear in (58) into:
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-[® curl¢’] = E[Qa—%}
C ot

-[®B curlH'] = E[3%] +E[6_©%]
c c| ot

with the help of the first two main equations of.8
If one recalls the rule (5) of 8 1 then the suntheke two terms will be:

%[3931 +—1{§t[©%] H{ DY D) w4 DYourl 1 }

c

One gets the ponderomotor force by adding theeboRe and R, ; the expression that
arises will simplify when one introduces the vector

(59) W=[0 B]-cg

that was defined in (22), and use the notations:

(59.) g=2 | =ct
C

One might further set:
(5%) divd =p

for the density of the true electricity and assuhag the density of the true magnetism is
zero:
(5%) divs = 0.

The electromagnetic measure of the current stramgjthlso be introduced instead of the
electrostatic one by:

(5%) J=ci.

The expression for thponderomotor forcehat acts per unit volume on the moving
matter will then read:

(60) R=Cp+]i %]—ZDE—/]D#+%+(% () g + [20 curlq].

The first term represents the force that is agpicethe moving electricity, while the
second one represents the force that is appli¢det@lectrical conduction current. The
third and fourth terms are concerned with the erice of the inhomogeneity of the body.
While those four terms already come under consiaberdor static or stationary fields in
bodies at rest, the last terms, which contain thetor 20, play a role only for non-

stationary processes or in moving bodies.
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In the expressions that were obtained for the pomdstar force, when one ignores
the extremely small deviations in the meanings of thetdieen and 77 [eq. (54.)], the
difference between the individual theories of eletyramics of moving bodies will
come about only by virtue of the fact that the ve@tbassumes different values.

If R yields the quantity of motion that given by the electignetic field then the

energy that is converted into non-electromagnetic $onntl be given by the sum of the
JOULE heat and the work that is done by the ponderomotor.foAording to the
main equation (lll) and (59 one will have:

Q=cg=3¢ =ci &

for theJOULE heat, while (60) will provide the work that is done by fiiee f:

gR=Cpq-i[qB]-J@@U)e-n@U) u+q {{%H%D)qﬂﬁﬂcurlq]}-

If one ponders the fact that the calculation @& ponderomotor force is based upon
the assumptions that:

Eg:%+ (@O)e=0,
c Jd

1. 0
=22+ qDyu=o0,
c ol

and the fact that from (3) and the known rulesadéwation:
O (q 20) =(q0) 20 + [q curl20] + (05 ) q + [T curlq],
then that will give:

{Twa@UD)q*'[QUCUHq] = aa—QIU+Qﬂddi+D(q 20) — [q curl20],

and furthermore, if one recallsgf3hen it will follow that:

q {{TQU +(0)q +[20 curl q]}

:—QH%+M+ dIVq(q w):—w%+5(qw),

ol al ol a

so one will ultimately get the following formularftheenergy deliveredo a unit volume
per unit time:
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o . 0s  OH_o-0q O(q2)
(60) q+gR={i+pq}{¢ [cl%]}+ial+/7al Qﬂd+ T

Here as well, if one ignores the slight deviation & theanings of ands in quantities
of second order then the various theories will differety by the value of the vectay
when one considers it from the standpoint of our system

We now imagine settingJ equal to those values that it takes on in each th&ory
guestion, and compare our expression (50) for the ponderofooterwith the ones that
the other authors obtained.

The value for the ponderomotor force that was giveile bEOHN exhibits a small
deviation from our own. That arises, in part, from floet thatE. COHN'’s Ansatz for

the relative stresses is not completely identicah\(W,). Namely, he set &' in place of
® there, probably in the hopes of making the rotational emrit’ of the relative

stresses vanish. The difference in the values ofotfee contributions that originate in
the relative stresses that is required for thatusidoto be equal to:

(g O) o + 1o div g.

We have regarded it as necessary fliashould vanish only when no electromagnetic

impulse came into question, as HERTZ's theory. MeanwhileE. COHN likewise
inserted a second part of the force into the calariaghat was coupled with the vecigr

namely:

From (4), this expression for the electromagnetictigleforce deviates from our own
(58,) by:
(g 0) o.

In total, the difference betweddh. COHN'’s expression for force and the one that is
obtained here amounts to:
2 (@0 +divg,

in whichg is determined by (27). That is probably too small be exgetially provable.
We now go on tMINKOWSKI s theory. It was already mentioned in 8§ 9 that the
close relationship that exists between impulse densityeaadyy current because of the
results of the present investigation was not assumed MINKOWSKI .
Correspondingly, our value (60) of the ponderomotor fortso aleviates from
MINKOWSKI ’'s Ansatz. In particular, the ter@2J / Jdl, which already comes into

guestion in the case of rest, is lacking from the lattérwas already proved b.
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EINSTEIN andl. LAUB (*) that the force that should act upon the polarizatiorent
in a magnetic field accordingORENTZ is lacking with MINKOWSKI ’s Ansatz.
Now, an experimental proof of the existence of thatddnas not, in fact, emerged, so
one bases one’s confidence in its existence on the gridagexists between conduction
current and polarization current in the picture thagiven by the theory of the electron.
That analogy asserts itself in such a way that ooaldvnot like to reject that force
without a compelling reason. As would emerge from eq. (@3),expression for the
force contains that force. We have already remaakede conclusion of § 9 that it does
not contradict the principle of relativity.

In the case of restvhere one write€, §), instead o', ', theponderomotive force

will be:

(61) RA=¢p+[iB]-1¢®Ne-15° Dwaa_aln_

In the various theories, the vectif possesses the following values:

A) Theory of H. Hertz.
Here, it follows from (22) and (24):
(61) 220 = [D B] = u[¢€ 9]
B) Theories of E. Cohn, H. A. Lorentz, and H. Minkowski.

In all three theories, as would emerge from (27), (@®),), one will have:

(61n) cg=[€ A],
W = [DB] - [€9] = (gu—- 1) [€N]

in the case of rest. The fact that the all threzoties yield the same value for the
ponderomotor force on bodies at rest is, in the sehsarosystem, based upon the fact
that the equations that couple and® with & and$’, with the inclusion of the terms

that are linear i, coincide. The notation &fORENTZ s theory might be used in the

discussion of the forces on bodies at rest.
If one sets?y equal to the value (@l then the ponderomotor force (61) can be

decomposed into two parts:

R, =ep—%ezms+(5y—1)[e%—ﬂ,
(62)

8, =[i93]—%532m+(eu—1)[%—f5]

(*®) A. EINSTEIN and I. LAUB, “Uber die im elektromagnetischen Felde auf ruhende Korper
ausgeulbten ponderomotorischen Kréfte,” Ann. Phys. (Leii¢§)908), 541-550.
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which are to be interpreted as the electric and maginetds.
From the main equations for bodies at rest:

0 .
curl$H =—— +1,
9 )l
curlcft:—a—%,

0l

when one introduces the electric and magnetic polaimat

P =D-¢=(e-1)¢,
M=B-H=w-1)9,

one can derive the following two relations:

O=—-[Pecurl&]—ule-1) [@%—?}

. . o¢
[i B] = [i H] - [ curl 9] — £ (u—1) [E”’}
If one takes them into account then the expressions (B2jonto:

R, =Cp—[P crl €] -1&’(e-1) [eaﬂ},
ol
(62) on
Ry =[191-[M cuel §] =1 H°0( 1) [Wﬁ}
Since one further has:

1(e-10€*+ 1€’ 0(e- 1) =10(e - 1) € = 10(P¢),
1(e—1)0¢® = (BO)€ + [P curl €],

$(u- 109" + 16 O(u—1) =3 0(u - 1) 9° = $0(M),
1(u-1)09% = (MO)$ + [M curl 9],

one will ultimately have:

3 =(%D)@+@p+[e"’a—”ﬂ—%m(m),

(63) ;
&, = (MO)9H + m{a—?fo} —10(ms).
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The formulas for the electric and magnetic contidng to the force that one gets
from (61) and (64) here might be compared with the Ansatzen AhdEINSTEIN andl.

LAUB (**) made for the ponderomotor force on bodies at rele fifst three terms ifte
and K, are found there, as well. The first term can berpreted as the forces that the

field exerts upon electrically and magnetically pokdizvolume elements, where the
vector product of and$ can be interpreted as the force of the magnetid €éipon the
electrical conduction current. The aforementioned fartéhe magnetic field on the
electric polarization current is added to that, along wheh force that corresponds to it
when the electric field acts upon the magnetic polaomacurrent. Nevertheless, the last
two terms in the expression (63) are missing from theaxesof the aforementioned
authors, which is connected with the fact that thelues for the fictitious normal
stresses deviate somewhat from the ones that arevigéerssumed. That term will drop
away when one is dealing with the force on a regionpwgwose boundarys and9t are
equal to zero. The surface integrals that they produtéhem vanish.

In this not-infrequent present case, one might also appdse Ansatz oEINSTEIN
and LAUB. However, the conclusion that those authors inferreghmely, that the
vector B was not definitive for the force on the conduction currerdoes not seem

applicable to me. We saw in (61) that it is precise® ¥hctor’3 that determines the
force on the current conductor. Meanwhile, it is thecdothat acts upon a current-
carrying and simultaneously magnetized wire in a magrietid, which is calculated,
either approximately as the vector product ahd®B or as that of and$. Moreover,

that vector product is to be added to the forgeza%D,u that exists in the transition layer
between the wire and the air, while this includes tree )t [1) $ that acts upon the

magnetized wire in the event that the field itselfiad, perchance, homogeneous. Except
for those entirely-special cases, one must thethseforce that is applied to magnetized
volume elements of a homogeneous current-carryingegoal to the vector product of
and®B, but not that of and$).

Moreover, do the formulas (63) do not, by any means, éakeuch a fundamental
meaning as that of the original expressions (61) for thelgg@motor force. Whereas the
latter were produced by a system of electrodynamicsalbatsubsumes moving bodies,
the former can hardly be generalized in such a way tiey also determine the
ponderomotor forces on moving bodies.

Ospedalletti, Liguria, December 1908.

MAX ABRAHAM

(*°) A. EINSTEIN andl. LAUB, loc. cit. (*°), pp. 549.



