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 1. In some notes that were published in 1911 in these Rendiconti, I examined the 
finite deformations of elastic solids, and in particular, I proposed to obtain the formulas 
that one arrives at from those of the ordinary theory, as much as possible. 
 In the ordinary theory, one studies the infinitesimal deformations; in order to do that, 
one assumes, by way of approximation, that the formulas that one obtains are valid only 
for sufficiently small deformations, and are applicable to the examination of real 
phenomena only to that extent. 
 However, as is known, those formulas do not correspond to the results of 
observations with sufficient precision, from which, it results that, in particular, the 
components of the stresses are not representable by means of linear functions of the 
characteristics of the deformation without approximations for the major part of the 
materials, broadly speaking.  It is then necessary to bring the finite deformations under 
examination: Namely, to study the deformations of elastic solids, while also taking into 
account the terms that are neglected in the usual theory.  One can then obtain formulas 
that are more exact than the ones that the usual theory provides, and one can then appeal 
to experiment in order to determine the values of the constants that these formulas 
contain for various materials. 
 
 
 2. On the other hand, the theory of finite deformations also presents much that is of 
interest from a purely theoretical viewpoint, and in particular, the fact that the theorems 
that appear to be fundamental theorems in the theory of infinitesimal deformations do not 
persist in it. 
 Given an elastic body C, I call the passage from one initial state S0 to a final state S1 
an elastic deformation when the projections u, v, w of the displacements at the points and 
their first and second derivatives are finite and continuous functions of the coordinates. 
 Assuming that a state S0 of C is the reference state and denoting another state of the 
same body C by S1, we intend that C can pass from the state S0 to the state S1 by means of 
a deformation that satisfies the indicated conditions. 
 Having said that, recall how in the ordinary theory of elasticity one proves that if S0 is 
an equilibrium state for a body C that is subject to no external forces then there exist no 
other equilibrium states for the body C in the absence of external forces (provided that 
one considers the possible states of the body C to be only the ones that one arrives at by 
means of continuous displacements upon starting with S0, according to the conventions 
that are made). 

                                                
 (1) Received by the Academy on 22 June 1917.  
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 Now, observation shows how the cases in which that theorem does not prove to be 
true will arise. 
 The simplest example is provided by the inversion of a ring.  Consider the space that 
is generated by a planar surface σ that rotates around a line r that is situated in the plane 
of σ and that does not meet that surface.  That space will be occupied by an isotropic, 
elastic body that is not subject to external forces and is in equilibrium.  All of the 
particles that comprise C will be in the natural state.  We call that state of the body S0 . 
 It results from observation that there exists another equilibrium state S1 for the body C 
in the absence of external forces.  One passes from the state S0 to the state S1 by means of 
an elastic deformation that consists essentially of a rotation by 180o that is performed in 
each section σ of the ring around the barycentric line that is normal to the plane.  The 
rotation is then accompanied by a small deformation that the section experiences in the 
plane in which it lies. 
 Therefore, two different states of equilibrium S0 and S1 exist for a ring that is not 
subject to external forces. 
 There is no reason why the theory of elasticity can exclude states of the type S1 from 
its domain of research a priori.  One also notes that they are not excluded as long as the 
form and dimensions of the body are not fixed, not even if one imposes a limit on the 
magnitude of the deformations of the individual material particles in some way.  Suppose 
that one assigns an upper limit on the absolute value of the unitary elongations of the 
linear elements of the solid.  In the case of the ring, the same intuition will make one 
expect that the limit will not be exceeded, even if the length of the axis of the ring (which 
goes through the barycenter of the section σ) is sufficiently large with respect to the 
linear dimensions of a section.  It is obvious that if the length of the axis exceeds a certain 
limit then the state of deformation of the individual particles that is due to the inversion 
will not be very appreciable. 
 
 
 3. Merely the condition that the deformation is small for each material particle is 
therefore not enough to exclude that class of elastic deformations.  They will be excluded 
when one supposes (as in the ordinary theory) that all of the first derivatives of u, v, w 
with respect to the coordinates are small.  Meanwhile, in order for the deformation of 
each particle to be small, it is enough that the six quantities that characterize that 
deformation should be small. 
 In the study of finite deformations, one agrees to assume that the coordinates of the 
points of the solid in the final state S1 are the independent variables, and they will be the 
variables with respect to which the derivatives of the components of stress refer in the 
indefinite equations of equilibrium.  One can assume that the six quantities: 
 
 εxx, εyy, εzz, 
 εyz, εzx, εxy, 
which are given by the formula: 
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are the characteristics of the deformation at an arbitrary point P of the solid. 
 The necessary and sufficient condition for the deformation of the particle that is 
attached to the point P to be small is that these six quantities should be small at P, but that 
does not demand that the nine derivatives ∂u / ∂x, ∂u / ∂y, etc., should be small. 
 If the six characteristics prove to be small, and in addition, one makes the convention 
that one should neglect quantities whose order of magnitude is quadratic then one can 
assert that the first three of them – viz., εxx, εyy, εzz – represent the unitary elongations that 
relate to the directions of the coordinates axes, while the remaining three are the shears 
that relate to couples whose directions are y and z, z and x, and x and y, respectively. 
 If the nine derivatives are that small then one can set: 
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and substitute these expressions in the formulas of the ordinary theory. 
 
 
 4. These considerations draw attention to a noteworthy fact: Namely, it might be 
possible to extend the scope of research in the theory of elasticity while still remaining 
within the order of approximation of the ordinary theory. 
 Let ζ denote a quantity that can be considered to be small of first order.  The six 
characteristics εxx , …, εxy  that are given by formulas (1) are small of order ζ, and we 
agree to ignore small quantities of higher order in their expression.  We can then adjoin 
terms δxx , …, δxy that are small of order higher than ζ, along with their first derivatives, 
but otherwise arbitrary, to the right-hand side of (1), that is, we can set: 
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and assume that these six quantities are the expressions for the elongations and shears.  
As for the expressions for the components of the stress τxx , …, τxy , we can preserve the 
ones in the ordinary theory.  In particular, if the solid is isotropic then one can assume 
that: 
 τxx = A {εxx + k (εyy + εzz)}, 
 …………………………., 
 τxy = B εxy , 
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in which A, B, k denote constants.  The equations of equilibrium will then provide the 
components X, Y, Z and L, M, N of the volume forces and the stresses that act upon the 
surface, resp. 
 If we know how to determine the functions u, v, w (which are finite, continuous, etc.) 
and the additive terms δxx , …, δxy (which are small of some desired order) in such a way 
that the state that is assumed by the solid with the displacements (u, v, w), which is a state 
that we believe to be due to the external forces (X, Y, Z) and (L, M, N), which correspond 
to the givens in the problem, then we can consider that problem to have been resolved. 
 The foundation of the ordinary theory consists of setting: 
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so, from formula (2), εxx = ∂u / ∂x, etc., this presupposes that the first derivatives of the 
functions u, v, w are all small of first order (or higher).  The general theory of elastic 
deformations then acquires great simplicity and elegance.  However, one then excludes a 
class of problems that can be solved to the same approximation, provided that one assigns 
various expressions to the terms δxx, …, δxy . 
 In the case of a circular ring, for which, 2πR denotes the length of the axis, and a 
denotes the width of its section σ − viz., the maximum distance between two lines that 
are tangent to its contour and parallel to the line r (§ 2) − then the maximum absolute 
value of the unitary elongations that originate in the inversion (assuming that a is much 
smaller than R) is sensibly equal to the ratio ζ = a / R.  We then propose to determine the 
state of deformation that the ring assumes as a result of the inversion when we ignore 
quantities that are small of order higher than ζ in the expressions for its six 
characteristics. 
 However, this does not exclude the possibility that the problem can be studied and 
solved with a higher approximation. 
 
 
 5. The inversion of a ring provides a first example of a state of equilibrium S1 that is 
different from the natural state S0 that an elastic solid can assume in the absence of 
external forces. 
 Another example is provided by an elastic lamina of small thickness that is not 
perfectly planar.  A state of equilibrium S1 exists in many cases that is different from the 
natural state that one obtains by requiring that the gibbousness that is presented by the 
lamina to pass to the opposite side with respect to which it was found initially. 
 The important research that given rise to the theory of distortions in recent years is 
well-known.  It also exhibits states of equilibrium for elastic solids that are not subject to 
external forces that correspond to non-zero externals stresses. 
 
 There obviously exists no analogy between this class of phenomena and the one that 
gave us our examples above. 
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 The equilibrium states S1 that we consider to have been obtained, in fact, belong to a 
state S0 in which the stresses are all zero by means of a deformation with continuous 
displacements. 
 Moreover, in the theory of distortions, one examines the equilibrium states, which 
one calls 0S ′ , that cannot be considered to have been obtained by starting with an initial 

state S0 in which all of the stresses are zero if one does not assume that relative 
displacements of the points present a discontinuity surface.  The passage from the state S0 
to a state 0S ′  cannot therefore be a true and proper elastic deformation, according to the 

adopted criteria. 
 Allow me to note, in regard to this statement, that in the study of elastic equilibrium, 
one might perhaps agree to return the concept of deformation to its original significance, 
and not include the possibility that one does not deform with continuous displacements in 
that term.  Apart from any consideration of an analytical character, the hypothesis of 
continuity of the displacements seems justified by the fact that if the displacements are 
discontinuous then the physical phenomena that might present are considerably diverse. 
 We would then like to limit the consideration to a well-defined body C whose only 
states are obtained by means of elastic deformations upon starting with a reference state, 
or as one would say in the theory of distortions, we do not consider equilibrium states of 
the body that admit a state S0 in which no particle is subject to any stress.  However, it 
teaches us how to construct, by special procedures, bodies in which one always has non-
zero internal stress, even when the external forces are zero, and to examine the 
equilibrium states that these bodies assume in the absence of external forces. 
 


