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M echanics. — The ordinary theory of elasticity and the theory of finite deformations.
Note by corresp. E. ALMANSHY.

Translated by D. H. Delphenich

1. In some notes that were published in 1911 in these Renditatamined the
finite deformations of elastic solids, and in particulgpyoposed to obtain the formulas
that one arrives at from those of the ordinary theasymuch as possible.

In the ordinary theory, one studies th&énitesimal deformations; in order to do that,
one assumes, by way of approximation, that the fornthltsone obtains are valid only
for sufficiently small deformations, and are appliealtb the examination of real
phenomena only to that extent.

However, as is known, those formulas do not correspandhé results of
observations with sufficient precision, from which, résults that, in particular, the
components of the stresses are not representable hysmédinear functions of the
characteristics of the deformation without approximaidor the major part of the
materials, broadly speaking. It is then necessatyit@ thefinite deformations under
examination: Namely, to study the deformations of elasilids, while also taking into
account the terms that are neglected in the usualythedne can then obtain formulas
that are more exact than the ones that the usualtbeavides, and one can then appeal
to experiment in order to determine the values of thetaotss that these formulas
contain for various materials.

2. On the other hand, the theory of finite deformatials® presents much that is of
interest from a purely theoretical viewpoint, and intipafar, the fact that the theorems
that appear to be fundamental theorems in the theanyioitesimal deformations do not
persist in it.

Given an elastic bodg, | call the passage from one initial st&eo a final state&s
anelagtic deformation when the projections, v, w of the displacements at the points and
their first and second derivatives are finite aodtinuous functions of the coordinates.

Assuming that a stat® of C is the reference state and denoting another stdte
same body C by S;, we intend tha€C can pass from the stafgto the staté&; by means of
a deformation that satisfies the indicated conditions.

Having said that, recall how in the ordinary theorglafsticity one proves th&tSy is
an equilibrium state for a body C that is subject to no external forces then there exist no
other equilibrium states for the body C in the absence of external forces (provided that
one considers the possible statethe body C to be only the ones that one arrives at by
means of continuous displacements upon starting Sjtlaccording to the conventions
that are made).
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Now, observation shows how the cases in which tredrém does not prove to be
true will arise.

The simplest example is provided by theersion of aring. Consider the space that
is generated by a planar surfazéhat rotates around a limethat is situated in the plane
of g and that does not meet that surface. That spacéeviticcupied by an isotropic,
elastic body that is not subject to external forced snin equilibrium. All of the
particles that compris€ will be in the natural state. We call that statéhe bodyS, .

It results from observation that there exists armogh@ilibrium states, for the bodyC
in the absence of external forces. One passes frostdtes, to the stat&, by means of
an elastic deformation that consists essentiallg oftation by 180that is performed in
each sectioro of the ring around the barycentric line that is noritoathe plane. The
rotation is then accompanied by a small deformationttie@section experiences in the
plane in which it lies.

Therefore, two different states of equilibritss and S, exist for a ring that is not
subject to external forces.

There is no reason why the theory of elasticity eaclude states of the tyi& from
its domain of researchpriori. One also notes that they are not excluded as Ipiigea
form and dimensions of the body are not fixed, noha¥@ne imposes a limit on the
magnitude of the deformations of the individual materiafiglas in some way. Suppose
that one assigns an upper limit on the absolute valubeotinitary elongations of the
linear elements of the solid. In the case of the rihg,same intuition will make one
expect that the limit will not be exceeded, even iflérgth of the axis of the ring (which
goes through the barycenter of the sect@ns sufficiently large with respect to the
linear dimensions of a section. It is obvious th#héf length of the axis exceeds a certain
limit then the state of deformation of the individyalrticles that is due to the inversion
will not be very appreciable.

3. Merely the condition that the deformation is snfall each material particle is
therefore not enough to exclude that class of eldsfirmations. They will be excluded
when one supposes (as in the ordinary theory)athaif the first derivatives ofi, v, w
with respect to the coordinates are small. Meanwhl@rder for the deformation of
each particle to be small, it is enough that the siantties that characterize that
deformation should be small.

In the study of finite deformations, one agrees torassthat the coordinates of the
points of the solid in th@nal stateS, are the independent variables, and they will be the
variables with respect to which the derivatives of thenmonents of stress refer in the
indefinite equations of equilibrium. One can assume Heasix quantities:

Exxs &y, 1572
gyZl £ZXl é‘Xyl
which are given by the formula:
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are the characteristics of the deformation at artrargipointP of the solid.

The necessary and sufficient condition for the de&dion of the particle that is
attached to the poim to be small is that thesex quantities should be smallt but that
does not demand that thine derivativesdu / 0%, du / dy, etc., should be small.

If the six characteristics prove to be smaitig in addition, one makes the convention
that one should neglect quantities whose order of magnitude is quadratic then one can
assert that the first three of them — v&,, &y, & — represent the unitary elongations that
relate to the directions of the coordinates axes, whderemaining three are the shears
that relate to couples whose directionsyaa@dz, z andx, andx andy, respectively.

If the nine derivatives are that small then one cén se
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and substitute these expressions in the formulas afrtheary theory.

4. These considerations draw attention to a noteworthy Keainely, it might be
possible to extend the scope of research in the theaglasticitywhile still remaining
within the order of approximation of the ordinary theory.

Let {denote a quantity that can be considered to be smaitsbfofder. The six
characteristicg , ..., & that are given by formulas (1) are small of orgeand we
agree to ignore small quantities of higher order in thepression. We can then adjoin
termsody, ..., &y that are small of order higher thgnalong with their first derivatives,
but otherwise arbitrary, to the right-hand side of {3} is, we can set:

_ou_1)(ou)  (ov)  (ow)
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and assume that these six quantities are the eipnesfor the elongations and shears.
As for the expressions for the components of thesst,y, ..., Iy, wWe can preserve the
ones in the ordinary theory. In particular, if thalid is isotropic then one can assume
that:

L =A{s« +k(gy + &)},
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in which A, B, k denote constants. The equations of equilibrium wéhtprovide the
components{, Y, Z andL, M, N of the volume forces and the stresses that act upmon t
surface, resp.

If we know how to determine the functioasv, w (which are finite, continuous, etc.)
and the additive term3, ..., dy (which are small of some desired order) in such a way
that the state that is assumed by the solid with B@atementsy, v, w), which is a state
that we believe to be due to the external foree%(2) and (, M, N), which correspond
to the givens in the problem, then we can considerptftdtlem to have been resolved.

The foundation of the ordinary theory consists otirsgt

_1|(0u 2 (ov) (ow)’
Ox= E{(&j +(&j +(&j }+ [ etc.,

so, from formula (2)s«x = du / 0x, etc., this presupposes that the first derivatoiethe
functionsu, v, w are all small of first order (or higher). The geal theory of elastic
deformations then acquires great simplicity and@bee. However, one then excludes a
class of problems that can be solved to the sape=anation, provided that one assigns
various expressions to the terfsg ..., y.

In the case of a circular ring, for whichj®2 denotes the length of the axis, and
denotes the width of its sectian— viz., the maximum distance between two lines that
are tangent to its contour and parallel to the ti(8 2) — then the maximum absolute
value of the unitary elongations that originateha inversion (assuming thatis much
smaller tharR) is sensibly equal to the ratfb=a/R. We then propose to determine the
state of deformation that the ring assumes as wdt rethe inversion when we ignore
guantities that are small of order higher th&nin the expressions for its six
characteristics.

However, this does not exclude the possibilityt tie problem can be studied and
solved with a higher approximation.

5. The inversion of a ring provides a first exampl@state of equilibriung, that is
different from the natural stat® that an elastic solid can assume in the absence of
external forces.

Another example is provided by an elastic lamiriasimall thickness that is not
perfectly planar. A state of equilibriu exists in many cases that is different from the
natural state that one obtains by requiring thatgiibbousness that is presented by the
lamina to pass to the opposite side with respeathioh it was found initially.

The important research that given rise to the rhed distortions in recent years is
well-known. It also exhibits states of equilibritfor elastic solids that are not subject to
external forces that correspond to non-zero extesteesses.

There obvioudy exists no analogy between this class of phenomena and the one that
gave us our examples above.
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The equilibrium stateS; that we consider to have been obtained, in facongeto a
stateS in which the stresses are all zero by means of a mafan with continuous
displacements.

Moreover, in the theory of distortions, one examittes equilibrium states, which
one calls§;, that cannot be considered to have been obtained bngtaith an initial

state § in which all of the stresses are zdfoone does not assume that relative
displacements of the points present a discontinuity surface. The passage from the st&e
to a state§, cannot therefore be a true and proper elastic deformatarording to the

adopted criteria.

Allow me to note, in regard to this statement, thaha study of elastic equilibrium,
one might perhaps agree to return the concegéfof mation to its original significance,
and not include the possibility that one does not defeitin continuous displacements in
that term. Apart from any consideration of an anadytwharacter, the hypothesis of
continuity of the displacements seems justified byfdu that if the displacements are
discontinuous then thghysical phenomena that might present are considerably diverse.

We would then like to limit the consideration to allvdefined bodyC whose only
states are obtained by means of elastic deformationsstpding with a reference state,
or as one would say in the theory of distortions,deenot consider equilibrium states of
the body that admit a stag in which no particle is subject to any stress. Howeire
teaches us how to construct, by special procedures, badidsah one always has non-
zero internal stress, even when the external foeres zero, and to examine the
equilibrium states that these bodies assume inkiberge of external forces.



