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 1.  One considers an isotropic elastic solid that occupies a cylindrical space S.  Let σ 
denote normal plane sections to the cylinder (along the barycenter of that section), and let 
σ′ and σ ″ denote the two extreme sections. 
 

 

Figure 1. 
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 Let the space S be multiply-connected.  A section σ will be bounded by a certain 
number of closed lines that will be denoted by s1, s2, …, sn (Fig. 1). 
 Refer the points of space to a triad of orthogonal axes, and take the z-axis to be the 
axis of the cylinder. 
 We propose to determine the most general state of deformation of the solid supposing 
that: 
 1. Its elements are subject to no volume force. 
 2. The elements of the external surface that are parallel to the axis (viz., the lateral 
surface) are not stressed. 
 3. The internal tension depends upon just the variables x, y. 
 
 We find that the most general deformation that satisfies these conditions can be 
decomposed into a deformation D0, which relates to the cases that were examined by 
Saint-Venant, and which consequently corresponds to monodromic components of the 
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displacement, and a deformation D for which that condition is not verified.  The six 
fundamental internal tensions in the deformation D are expressed by the formula: 
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(2)     τ31 = 
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∂

, τ32 = −
x

ϕ∂
∂

, 

 
where Φ is a biharmonic function (∆2∆2Φ = 0) of the variables x, y, ϕ is a function of the 
same variables that verifies the equation ∆2ϕ = k = const, and λ is the contraction 
coefficient (1). 
 
 
 2. The six internal tensions must verify the three equations: 
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where 
T = τ11 + τ22 + τ33 . 

From the last equation, one gets: 
∆2T = 0. 

 
 Since the tensions must not contain the variable z, the nine preceding equations will 
become: 
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 (1) On the theory of regular deformations with polydromic displacements, see the note of prof. Volterra 
in the Rendiconti della R. Accademia dei Lincei, 1904.  
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 At the points of the lateral surface (which, by hypothesis, is unstressed), if cos α, cos 
β, 0 denote the cosines of the (external or internal) normal then one must have: 
 

(7)     
11 12

21 22

31 22

cos cos 0,

cos cos 0,

cos cos 0.

τ α τ β
τ α τ β
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+ =
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 3.  By virtue of equations (3), we can set: 
 

 τ11 = 
y
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where Φ′ and Φ″ are functions of the variables x, y.  Since τ12 = τ12 , one must have 

x
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, and Φ is a new function of the same variables.  One 

thus has: 
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 Note that one has ∆2T = ∆2(τ11 + τ22 + τ33) = 0, and from the last of (6), ∆2τ33 = 0, so 
∆2(τ11 + τ22) = 0, and upon taking formula (8) into account: 
 

2 2
2

2 2x y
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 = 0, 

 
or, since the functions depend upon just the variables x, y: 
 
(9)      ∆2 ∆2 Φ = 0. 
 From equations (8), one gets: 
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Therefore, we can write: 
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∆2τ11 = − 
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By comparing these equations with (5), set: 
 
(10)    T = (1 + λ) ∆2Φ + G,  G = G(x, y), 
and one will have: 
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One must therefore have G = mx + ny + p, where m, n, p denote constants, and from 
formula (10): 

T = (1 + λ) ∆2Φ + mx + ny + p. 
 

However, T = τ11 + τ22 + τ33, and from (8), τ11 + τ22 = ∆2Φ, so: 
 

τ33 = λ ∆2Φ + mx + ny + p. 
 
 Note that the system of tensions τ33 = mx + ny + p, τ11 = τ22 = τ12 = τ31 = τ32 = 0 now 
corresponds to a deformation of the cylinder that reverts to the cases that were examined 
by Saint-Venant.  Since our interest is only in considering the deformation D (cf., § 1), 
not D0, we omit the term mx + ny + p and get: 
 

τ33 = λ ∆2Φ. 
 
 Finally, from formula (4), we can write: 
 

τ31 = 
y

ϕ∂
∂

, τ32 = − 
x

ϕ∂
∂

, ϕ = ϕ(x, y). 

 
The first and second equations in (6) become: 
 

2

y

ϕ∂∆
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2

x

ϕ∂∆
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namely, one must have: 
∆2ϕ = k, 

where k denotes a constant. 
 The nine equations (3), (4), (5), and (6) are thus verified.  The internal tensions are 
expressed by formulas (1) and (2).  Q. E. D. 
 
 
 4. Now, take the boundary conditions into account.  When one substitutes the 
expressions found for the tensions, formula (7) will become: 
 



Somigliana – On a particular class of deformations with polydromic displacements, etc. 5 

2 2

2 cos cos
y x y

α β∂ Φ ∂ Φ−
∂ ∂ ∂

 = 0,  − 
2 2

2cos cos
x y x

α β∂ Φ ∂ Φ+
∂ ∂ ∂

 = 0, 

cos cos
y x

ϕ ϕα β∂ ∂−
∂ ∂

 = 0. 

 
We must therefore have: 
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i

y

s
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 = 0,      
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at any point of an arbitrary si of the n closed lines that constitute the contour of a section 
σ, if si also denotes the arc length of that line when measured from a fixed point. 
 Let sn be that one of the n lines si that encloses all of the other ones.  Render the 
section σ simply-connected by means of n – 1 cuts that join the points P1, P2, …, Pn−1 of 
the lines s1, s2, …, sp−1 to the points 1P′ , 2P′ , …, 1nP −′  of the line sn . 

 The tensions τ11, τ12, … (and thus, from formulas (1) and (2), the first derivatives of ϕ 
and second derivatives of Φ) must be functions of just one value at all of the points of σ; 
so ϕ, ∂Φ / ∂x, ∂Φ / ∂y can have different values on the two parts of the cut. 
 Formula (11) expresses the condition that the functions ϕ, ∂Φ / ∂x, ∂Φ / ∂y must have 
constant values at each of the two segments into which the n closed lines si are divided by 
the points P that bound the cuts. 
 However, the n – 1 lines s1, s2, …, sn−1 each contain just one point P.  Therefore, the 
three functions ϕ, ∂Φ / ∂x, ∂Φ / ∂y must reduce to constants for each of them. 
 Since the first derivatives of ϕ and the second derivatives of Φ are functions of just 
one value at all points of σ, the difference between the values of ϕ, ∂Φ / ∂x, ∂Φ / ∂y on 
the two parts of a cut i iPP′  must be the same at all points of the cut, and therefore zero, 

since it is zero at the point Pi that belongs to one of the n – 1 internal lines s1, s2, …, sn−1 . 
 Therefore, ϕ, ∂Φ / ∂x, ∂Φ / ∂y will also be functions of just one value at all points of 
σ, including the line sn , and on any one si of these n lines s1, s2, …, sn one must have: 
 

ϕ = qi , 

(12)    
x

∂Φ
∂

 = ai ,  
y

∂Φ
∂

 = bi , 

 
where qi , ai , bi represent constants for the line si . 
 From formula (12), one gets (if one conveniently assigns a positive direction to each 
line si): 
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namely: 
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( )i i

i

a x b y

s

∂ Φ − −
∂

 = 0. 

 
 By a line of reasoning that is analogous to the preceding one, we find that Φ – aix – 
biy must be a function of just one value at all points of σ, and constant on each of the n 
lines s1, s2, …, sn .  We therefore have: 
 
(13)    Φ = ai x + bi y + ci (ci = const.) 
for the line si . 
 From formula (12), if one lets νi denote the normal to σ that points inward at the 
points of si then one will get: 
 

(14)    
iν

∂Φ
∂

 = 
( )i i i

i

a x b y c

ν
∂ + +

∂
. 

 
 Conditions (13) and (14) can be substituted for (12). 
 
 
 5.  Consider the constant: 
 

(15)    M = 32 31( )x y d
σ

τ τ σ−∫  (torsional moment). 

 
If we compose the deformation that we examined with a simple torsion of the cylinder 
(which would not modify our formula, since one should recall that it was presented 
relative to a simple torsion) then that can be done in such a way that: 
 

M = 0. 
 

Add this new condition, which, by virtue of formulas (15) and (2), can be written: 
 

(16)    x y d
x yσ

ϕ ϕ σ ∂ ∂+ ∂ ∂ 
∫ = 0. 

 
 This establishes a relation between the constants k and qi, as one easily sees when one 
takes ϕ = kϕ′ + ϕ″, where ϕ′  represents the function that verifies the equation ∆2ϕ′  = 1 
in the area σ and is annulled on the contour, so ϕ″ is the harmonic function that assumes 
the values qi along the line si . 
 In order to complete our study, we would like to prove that the deformation that we 
considered [when it also satisfies the condition (10)] cannot be a deformation with a 
monodromic displacement, unless all of the tensions are zero. 
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 6.  Hence, take into account the formulas: 
 

(17) 
u

x

∂
∂

= Aτ11 – BT, 
u v

y x

∂ ∂+
∂ ∂

 = Aτ12 , etc. (A, B = const., 
B

A B−
= λ) 

 
that link the components of the deformation to the tensions. 
 Introduce a harmonic function ϕ1(x, y) that satisfies the equation: 
 

2
1

2x

ϕ∂
∂

 = ∆2Φ. 

 
 It is always possible to determine such a function in an area σ0 that is bounded by a 
rectilinear segment s′ that is parallel to the y-axis (Fig. 2), two segments s″, s″′ (possibly 
zero) that are also rectilinear and parallel to the x-axis, and a line s″″ that is met at just 
one point by any parallel to that axis.  Moreover, one can always decompose the area σ 
into a certain number of areas like σ0 . 
 The function ϕ1 and its derivatives can present discontinuities on the separation lines 
around the area σ0 . 

 

Figure 2. 
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 We also introduce the function ϕ2(x, y) that is linked to ϕ(x, y) by the equations: 
 

2

x
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k
y
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∂

, 2

y

ϕ∂
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 = − 
2

k
x

x
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∂
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which are mutually compatible, since ∆2ϕ = k. 
 It is easy to verify that the formula that results from (17) when one sets: 
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(18)  
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is verified. 
 Suppose that the space S that is occupied by the cylinder has been rendered simply-
connected by means of n – 1 cuts Ti that form a surface Σi that is parallel to the axis and 
passes through the line i iPP′  (§ 4) that is traced in σ.  Since the internal tensions, and 

therefore the components of the deformations, are monodromic, we can dispose of the 
arbitrariness that remains in the functions ϕ1 and ϕ2 in such a way that the displacements 
u, v, w present no discontinuities across the surface Σi . 
 In order to prove that u, v, w cannot be continuous in all of the area s unless all of the 
tensions are non-zero, consider the quantity: 
 

Q = 11 22 33

u v w

x y zσ
τ τ τ ∂ ∂ ∂+ + ∂ ∂ ∂

∫ + 23 31 12

w v u w v u
d

y z z x x y
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   ∂ ∂ ∂ ∂ ∂ ∂ + + + + +     ∂ ∂ ∂ ∂ ∂ ∂    
, 

 
which is essentially positive or zero, and which will reduce to zero only when all of the 
tensions are zero.  I say that if u, v, w are continuous then one must have Q = 0. 
 In fact, under that hypothesis, one will have: 
 

11 22 12

u v v u
d

x y x yσ
τ τ τ σ
  ∂ ∂ ∂ ∂+ + +  ∂ ∂ ∂ ∂  

∫  = 0, 

31 32

w w
d

x yσ
τ τ σ ∂ ∂+ ∂ ∂ 

∫ = 0 

 
as one recognizes upon integrating by parts and taking equations (3) and (4) into account, 
along with the boundary conditions (7). 

 Furthermore, from formula (18), 
u

z

∂
∂

= Aky, 
v

z

∂
∂

 = − Akx, 
w

z

∂
∂

= 0; therefore: 

 

Q = Ak 31 32( )y x d
σ

τ τ σ−∫  = − AkM = 0  (cf., § 5). 

 
Q. E. D. 

 
_________ 

 


