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Ordinary matter and radiating energy as different “phases”
of one and the same basic material.
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In the present investigation, it will be shown how ttiference between ordinary matter and a “light
guantum gas” (cavity radiation) becomes smaller wittréasing pressure. Protons, and especially
electrons, increasingly take on the character aftetally-neutral light quanta. At extreme pressures,
ordinary matter and cavity radiation will become idealti and in fact at any temperatusyen for an
arbitrary low temperature. One can raise the objection to the paradoxical-sognassertion that the
radiation pressure varies in proportionTtd ; therefore, an extremely high radiation pressurelavde
unthinkable at low temperature. However, a closer exaimimahows that this objection is based upon a
misunderstanding. In conclusion, the meaning of thetsesbtained will be related to some questions in
astrophysics.

It is known that a so-called “degeneracy” occurs fibrgases (even for an ideal
monoatomic gas) at sufficiently high pressure or sffidy low temperature. For a non-
degenerate ideal gas, the pressure is equal fonkT, where T means the absolute
temperaturek is Boltzmann's constant, anah is the number of free atoms in a cubic
centimeter.

FromFermi’s well-known theory, one has the relation:

3
p=nkT {1+ 2o N, . (1)
16 (77mKT)
f9r a weakly-degenerate ideal monoatomic gas, in whiaheans the mass of an atom
(). However, this formula can be applied with suffitiaccuracy only when the second

3
term in the brackets is small in comparison to the; firet, i[—lhinmis small in
16 (77imKT)

comparison to 1. In the contrary case, the degenewill be large, and formula (1) will

be unusable then.
In the case of large degeneracy, frenermi, one will have the relation:

() E. Fermi, Zeit. Phys36 (1926), 911.
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As far as the mean kinetic enerigpf the atom is concerned,(one will always have:
L=—. 3)

If the gas is found at the absolute zero point of teatpes then one must sét= 0, and
one will get from (2) that:

1(6)"°nn3
o= L8] 0 @
20\ 7 m
or more briefly:
n5/3
p=A—, (5)
m

in which A means a constant. (3), (4), and (5) imply that:

213 2. 2/3 2/3
40\ 1 m 2 m

We see that the degenerate gas must have a‘feite-point pressure,” as well as a
finite “zero-point energy,” even at absolute zeemperature. That zero-point energy
poses as a temperature that the gas does notihaeality. We would like to call this
apparent temperature a “pseudo-temperature” anateleih by T, , while the true
temperature will b&,, (). We shall refer to the temperature that ourrgast have at the
samep andm in order for it to be non-degenerate as peeudo-temperatureWWe then
defineT, by the equation:

p=nkT, (7

in which p andn have the same values that they have in (4). Biyuone will haveT,
=T, for a non-degenerate gas. We get from (3) anthéf)

L=

Nlw

KTp. (8)
One can eliminata from (5) and (7), and that will give:

p — B n,.iS/Z Tp5/2: (9)
in whichB is a constant.

() Fermi denoted this mean kinetic energy by
(") Translator’s note: thex” comes from the Germamahre which means “true.”
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We expand our gas, which is found to be totally degenetratlesalute zero, by doing
work on it adiabatically. Naturally, the true temgaraT, cannot drop any further as a
result, since the gas was already found to be atwtlestéro before the expansion. Doing
work by the gas can happen only at the expense of wspoent energy, which will be
reduced as a result, and will thus produce a drop in thedesemperatur®, . T, will,
in turn, remain constant under adiabatic compressioreajdl; namely, it will remain at
0 K. The work that is done by external forces will obé/at the expense of raising the
zero-point energy. The process will then be, astdrae time, adiabatic and isothermal.

The zero-point velocities of the atom must get laayed larger for ever-increasing
pressure. However, as long as these velocities aa#t Bncomparison to the speed of
light, the massn of an atom can be regarded as constant; i.e., iteaptiio the rest mass

mp . However, from (9)p will then be proportional td'p5’2. The true temperature of a
non-degenerate, ideal, monoatomic gas will change bysgigcihe same law under
adiabatic compression. We would therefore like terréd the first phase of the total
degeneracy, in whicm = my and the zero-point velocities of the atoms are simnall
comparison to the speed of light, as ¢glaseous phasef the total degeneracy.

At extraordinarily-high pressures, the zero-point veiesiof the atoms will be
comparable to the speed of light. In that case, on¢ setis1=my / /1- 5. We will
then have:

L:c?mOL ! —}=cz(m—na) (10)

for the mean kinetic zero-point energy.
The second term in parentheses can be neglectezkti@me zero-point velocities,
and that will give:

L=c*m. (11)
One gets from (11) and (6) that:
3 n2/3
“m=A—
2
or:
1/2  4/3
m= (§ Aj n_.
2 c
When one introduces the valuemthat was just obtained into (5) that will yield:
1/2
p= (Z?AJ cn*?. (12)

We eliminaten from (12) and (7), and thus obtain:

3 3/2 k4
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in which K is a constant.lt is well-known that the pressure of cavity radiation exhibits
precisely the same dependency upon temperatiiteis, we would like to refer to the
second phase of the total degeneracy (in whabk much larger tham, , and the zero-
point velocities of the atoms approach the speed bf)ligs thdight phaseof the total
degeneracy.

But why is the behavior of our degenerate gas so sinuléing behavior of cavity
radiation? The well-known theory dfouis de Broglie gives us an answer to this
guestion.

According to that theory, light quanta are particleexdeptionally small rest mass
my . The velocities of these light particles come vdoge to the speed of light but do
not attain it. Therefore, when one is close to teed of light, even the most minimal
change in velocity is already coupled with a largengleain kinetic energy. For example,
the energy quantum of violet light is considerably latban that of red, since violet light
is somewhat faster than red light. However, théi¢idince in velocity is too small to be
accessible to direct measuremehbuie de Broglie believed that the rest masg of a
light quantum could be estimated to be around at most 4@). Total degeneracy must
occur only very slightly for such a small mass oflight quantum.

We get from (6) and (10) that:

5 3 ( 6\ h2n2'3
c(m-m)=—|—
( ) 40(71) m

or:

213 2. 2/3
mz—mom—i(éj ™ o

40\ 71 c?

We seth = 6.55x 10?" andc= 3 x10™ here and get:
n’ —mpm-5.5035x 10 °n*3=0

in that way. The solution of this quadratic equationdgel

1/2

m= %+ %+5.5035< 10°n%3| . (14)

In the case of protons, one must sgt= 1.66x 102* for electrons, one hag, = 9 x
1028 and for light quanta (according to de Broglie), mp = 10°>°.
For the density of a gas, one obviously has thateon:
o=nm g cm®. (15)

If we introduce the value ¢finto (4) then we will get:

() Louis de Broglie, Phil. Mag. (6)47 (1924), 447. In another plaate Broglie found the upper limit
for m to be around I¢* g, but he still thought it was possible timatcould be even smaller [Ann. Phys.
(Leipzig) (10)3 (1925), 79.]
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p=3.3021x 10%* 0 —
m

5/3

dyn cm®.

As far as the pseudo-temperatiliggs concerned, (7) implies that:

Whenm, andn are given, one can calculatefrom (14). However, one can then also

P
T, = —
"~ kn

p

1.372x 10*°n’

calculatep, p, andT, from (15), (16), and (17), resp.

n (number of
particles per

Table 1.

p (zero-point pressure in dyn ¢

(16)

(17)

0 (zero-point density in g ci)

3 Proton Electron | Light quantum| Proton gas Electron | Light quantum
cm) gas gas gas gas gas
10 1.9%10° | 3.67101% | 3.3x10%* | 1.66x10% | 9.00<10°%8 1.00x10110
10% 1.9%101% | 3.6710°2 | 3.3x10°"° 1.66x10%° | 9.00x10 " 1.0x10°°%°
10 1.9%1071%° | 3.67%10°% 3.2&107 1.66x10°% | 9.00x10° 1.0x107%2
10°% 1.9%10°% | 3.67%10% 2.3%10°%° 1.66x10°% | 9.00x<10°% 1.3%10°°
10°% 1.9%10%° | 3.6%10°% 4.16¢10°%° 1.66x10°%° | 9.00x10°% 7.9410°%
102 1.9%107° | 3.67%10°% 4.45%10™%° 1.66x10%8 | 9.00x10™>2 7.4x107°
101 1.9%10°%° | 3.6%10°% 4.45%10°3 1.66x10°%° | 9.00x10™° 7.4x10°*
1 1.9%10%° | 3.6x10°% 4.45%10% 1.66x10%* | 9.00x10°%® 7.4%10°%8
10° 1.9%10%° | 3.6%10Y 4.45%10° 1.66x10°%8 | 9.00x10% 7.4x10°%°
10% 1.9%10%° | 3.6%10° 4.45%10* 1.66x10%% | 9.00x10*° 7.4%1072%2
10% 1.99 3.67x10° 4.4510 1.66x10° | 9.00x10%° 7.4x10
10 1.9%10° | 3.6%10" 4.45%10% 1.66 9.00x10™ 7.4%10°
107 1.9%10"° | 3.64x10'® 4.4510"° 1.66x10° 9.00x10t 7.4%102
10%° 1.9%10%° | 2.51x10% 4.4510° 1.66x10° 1.3%10° 7.4%10°
10*® 1.9%10° | 4.19%10* 4.45107 1.66x10° 7.8810¢° 7.4x10°
10%® 1.9%10°° | 4.45¢10™ 4.4510* 1.66x102 | 7.4210% 7.4%10"
10 1.9%10°° | (4.45¢10°) | 4.45%10® 1.9410° | (7.4210") 7.4%104
10 1.9%10°° | (4.45¢10%) | 4.4510° 8.2%10® | (7.42¢10") 7.4%10°
10 1.9%10% | (4.45<10%) | 4.45%10% 7.5x107 | (7.42%x107) 7.4%107
10%® (4.45¢10%) | (4.45<10%) | 4.4510" (7.42¢10%°) | (7.4210%) 7.4%10°°

In Table 1, | have calculated the zero-point pressndezaro-point density for the
proton gas, electron gas, and light quantum gas (whoseetnperatures,, are assumed

to be 0 K everywhere). That table shows that forllsmadues ofn, our three gases have
very different pressures and densities. HoweverJdtgern becomes, the smaller the

differences that our gases will show in regargtand o . The difference will vanish
completely for very large. Hence, e.g., 0 electrons per cubic centimeter and®10
light quanta per cubic centimeter will yield the same qmint pressure (4.48.0° dyn
cm?) and the same zero-point density (%2@° g cn1®).
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| have worked out the pseudo-temperatures in Table 2. SUesek the same pattern
here: Our three gases will exhibit ever-narrower diffees with increasing.

Table 2.
n (number of T, (pseudo-temperature) n /Tp3
partlclgs per Proton Electron Light quantum | Proton gasg Electron| Light quantum

cnm) gas gas gas gas gas
10°%° 1.45<10>* | 2.6710°>* 2.4%107%® 3.28x10' | 5.23«10™ 7.1%10%
104 1.45<10* | 2.67x10°* 2.4%1078 3.28x10%° | 5.23«10%° 7.1%10
1042 1.45<10% | 2.67x10°% 2.3%107'° 3.28x10% | 5.23«10% 7.2%10"
10°%° 1.45<10%° | 2.6710°% 1.7%10* 3.28x10%° | 5.23«10%° 1.9510°
1076 1.45<10°%® | 2.67x10°%° 3.0x10" 3.28x10" | 5.23<10F’ 35.84
102 1.45<10% | 2.67x10% 3.24107° 3.28x10”° | 5.23«10°° 29.29
1012 1.45<10% | 2.67x10°%° 3.2410° 3.28x10” | 5.23«10% 29.29

1 1.45<10 | 2.6710 3.2410" 3.28x10" | 5.2310* 29.29

10° 1.45<10%° | 2.6710°’ 3.2410" 3.28x10%® | 5.23«10%° 29.29
10" 1.45<10° | 2.6710° 3.2410° 3.28x107° | 5.23<10" 29.29
10" 1.45<102% | 2.6710 3.2410° 3.28x107 | 5.23«10" 29.29
10* 1.4510° | 2.67x10° 3.2410 3.28x10" | 5.23<10’ 29.29
107 1.45<10% | 1.8710’ 3.2410° 3.28x10" | 5.34x10" 29.29
10%° 1.45<10° | 1.8%10° 3.2410° 3.28x10" | 1.64x10° 29.29
10% 1.45<1¢¢ | 3.05¢10%° 3.2410° 3.2810° 35.13 29.29
10* 1.45¢<10°° | 3.24x10" 3.2410" 3.30x10° 29.29 29.29
10* 1.24x10% | (3.24<10") | 3.2410% 5.26<10° (29.29) 29.29
10 2.90x10"° | (3.2410) | 3.2410% 40.94 (29.29) 29.29
10® 3.21x10* | (3.2410") | 3.2410" 30.28 (29.29) 29.29
10 (3.24x10") | (3.24<10") | 3.2410"° (29.38) (29.29) 29.29

Some of the numbers in both tables are in parenthe$bat means that one can
perform the corresponding compression only while decreasengroper volume of the
particles. (Of course, | have not taken tlwentz contraction into account in that.)
However, | have not placed any parentheses for thedigénta, since our knowledge of
the “proper volume” of the light quantum seems uncettame.

Finally, | have further calculated the valuesrofT}. However,n/T> will be very
large and variable for small values of Constancy will come about whan is
significantly larger thamy, ; i.e., when the “light phase” of the total degenerbegins.
We see that one will enter into the “light phasef’ ight quantum gases even for very

small values oh. Therefore, we will be unable to observe the “gas ghéw light
quanta.

The constant value that/ Tj assumes for sufficiently largeis the same for all three
of our gases — namely, 29.29. We can also write:

n=29.29T°. (18)
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That equation will become very remarkable when weudatie the number of*light
guanta that are found in a cubic centimeter accordiiiaiock’s formula and obtain ):

( jszdx 20.62T 2. (19)

Therefore, our “zero-point theory” leads to a fatanthat is entirely similar to one in
the usual quantum theory of radiation. Only thefioients are different, but not by very
much. In any event, they have entirely similaressdof magnitude.

Due to the similarity between formulas (18) an@)(1 believe that | can draw the
conclusion thatWhen one sets the true temperature of any cauvitiatian equal ta0 K,
considers the radiation pressure to be the zerovpmiessure of a totally degenerate gas,
the energy of the light quantum to be the zerotp@nergy, and the so-called
temperature of the cavity radiation to be purelyeydo-temperature, one will indeed
introduce an error by such assumptions, but noeégpecially large one.

Our three gases differ from each other by themrghs: Protons have a positive
charge, electrons have a negative one, and ligimtgLare electrically neutral. However,
we will soon see that this difference will also @ unnoticeable for large valuesnof

We consider two electrons that move in parall¢hpavith equal velocities and in the
same direction. Our two electrons represent twalleh and equally-directed electrical
currents that attract each other, as one knowseldwtrostatic repulsion will be reduced
in that way. If the velocity of the electrons @if§ from the speed of light only slightly
then the mutual electrostatic repulsion of the tetets will be almost outweighed by the
aforementioned mutual attraction of the “elementanyents.”

Both electrons might now move along parallel pathg in the opposite directions.
We will then have two parallel and oppositely-disgtcurrents before us that repel each
other, which will increase the effect of the elestatic repulsion. However, one cannot
forget that for a very fast-moving electron thee8nof force will concentrate around the
equatorial plane (i.e., the one perpendicular ® dhlrection of motion). For extreme
velocities, all lines of force will condense intovery thin “equatorial layer.” Hence, it is
only when the other electron passes through this l#yer that it will be subject to
influence of the first electron. However, since thme of that passage is extremely short,
the electron in question must experience an alimssantaneous change in velocity, so it
must radiate energy. In extreme cases, the radétergy must be larger than the energy
that is supplied by the electrostatic repulsion tié electron, which is naturally
impossible. One must then infer the conclusion tha extremely fast electrons cannot
affect each other at all. That is precisely thguarent upon the basis of whigt. F. G.
Swannwas led to suggest that extremely fast electromnddcnot be capable of ionizing
("). Finally, we assume that the two electrons maleeg the line that connects them.
In that case as well they will exert no noticeadfiect upon each other, since their lines
of force will indeed concentrate in the “equatopéne”; i.e., the one perpendicular to
their direction of motion.

() One can find such a calculation in, eA.,S. Eddington The Internal Constitution of the Stars
Cambridge, 1926, pp. 58t seq.
(") W. F. G. Swann Phil. Mag. (6)47 (1924), 309.
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Naturally, what was just said will also relate to thetual electrostatic influence of
extremely fast protons, as well as to the interactimmt&een protons and electrons. If we
have a mixture of electrons and protons then the eletic forces will play no
appreciable role for extreme velocities. However, shdhé “molecular motions” of
these electrons and protons not be accompanied by mificsigt amount of
electromagnetic radiation? That question must be aesWiarthe negative, since we
have in fact assumed a totally-degenerate gas for whiclinth&cular motions” are
assumed to be “zero-point motions”; however, theetadre always found to take place
with no electromagnetic radiation. One recalls eéleztron gas in metals: The electrons
perform their motions even for 0 K, but it would be imphles for them to be
accompanied by radiation, since otherwise the temperattine metal in question would
have to drop below 0 K. The electrons then behave inrdgdrd as if they were
electrically neutral (.

Both of our tables show that for sufficiently langelight quantum gases will exhibit
the same pressure, density, and pseudo-temperatureceisrelgases and proton gases,
and therefore, so will a mixture of the last two. Navean be shown that such a mixture
cannot be distinguished from a light quantum gas in regaitd electromagnetic effects.
However, in the final analysis, all ordinary mattensists of electrons and protons)(
We then come to the conclusion tletsufficiently high pressures, ordinary matter and
cavity radiation (light quantum gas) will become identical in everypees even at
absolute zero.The electrons and protons cannot be distinguished fgithquanta, nor
can the gas pressure cannot be distinguished from radj@Bssure.

Such a concept seems highly paradoxical, since extrenmioadpressures will
appear only for extremely high temperatures. How coule ipossible then for cavity
radiation to exert an enormous radiation pressuresatiale zero? We will soon see that
we also encounter an entirely similar “paradox” fodioary fluids and their evaporation;
e.g., water. A simultaneous appearance of the fluidvapor phase of water (or any
other fluid) will be possible only when the pressure dagsrceed the so-called critical
pressure; i.e., when it is smaller than 217.5 atm (foemyatlf the pressure is also only
somewhat larger — e.g., 218 atm — then a meniscus will nobbb@ned at any
temperature. We will then always have only one phaikedas that can just as well be
regarded as fluid water as water vapor. From that stamdpee will be justified in
regarding water at room temperature and 218 atm as a highjyressed vapor.

We further propose that our engineering tools aresitet! that we would not be in a
position to achieve the “critical point” for watern &ddition, all experiments concerning
the evaporation of water are possible only with fluidexat present. We will then come
to the conclusion that the vapor pressure in all cases single-valued function of
temperature and increases very rapidly with it. If thea wishes to announce that water
at 218 atm can be regarded as a vapor even at room temp¢iaturels C) then that
statement would have to seem paradoxical, since the vagssupe of water at + 1€ is

() For that reason, it does not seem certain at afiedhat the usual light quanta are electrically neutral
in the strict sense. Perhaps there are positive agatine light quanta that combine into “molecules”
under especially extreme conditions.

(") Whether the latter can cling together into atomiclei seems to be questionable to me; however, |
cannot go into that matter any further here.
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not 218 atm at all, but only 12.8 mm Hg. That is precideysame “paradox” that came
about in the aforementioned case of cavity radiation.
If r means the heat of vaporization then one will haveelaion:

T _dp
r=——H—(V-V, 20
24.29 dT( K (20)

in whichv' means the specific volume of the vapor (in liteasidv is that of the fluid ).

We see: The less thdt differs fromv, the smaller will be the heat of vaporization, and
the easier it will be to go from the fluid phase he wvapor phase. Now, we see from
Table 1 that with increasing pressure, the density oighé duantum gas differs less and
less from the density of the “material phase.” Naltyr the same thing is also true for
the specific volumes. We then have grounds to assbata tonversion of matter into
cavity radiation can be produced much more easily and as a result of marehminor
causes at high pressure that at lower pressure.

However, should it be possible for a pressure to reiga stellar interior that is so
high that no difference exists between an electron gdsaalight quantum gas there?
That question must be answered in the affirmative onlynmthe mass of the star is
sufficiently concentrated towards the cent&err Grant calculated on the grounds of
the possibility that the central density of the sta5x40’ times than the mean density
("). FromG. I. Pokrowski, the maximum density of mattergs= 4x10"*! g cm® (7).
When pressures of that order of magnitude prevail in tharsietlerior, many question of
astrophysics must take on a new character. For exathpl@uestion of the absorption
coefficients of the electrons will become meaninglesgadiation in the stellar interior,
since the difference between electrons and light quaiitavanish there. The well-
known question of the conversion of matter into rademdrgy will also be meaningful
only when the pressure is not excessively large, so wiagtemand cavity radiation can
still exist as separate phases }.

All of our calculations up to now were based upon theimpton that the true
temperature was equal to O K; all of the calculationsadly became very simple then.
In reality, the situation is much more complicated¢sireal stars often have a very high
“true” temperature. | regard it as possible that theralge a critical temperature that

()  See, e.glandoit-Bérnstein, Phys.-chem. TabelleB" ed., Berlin, 1923, pp. 1580.

(") Kerr Grant, Nature118(1926), 373.

(") Zeit. Phys49 (1928), 588.

(™) Of course, in order for the protons to also be igahtiith light quanta, one must assume much
larger densities in the stellar interior than were itesgor evenPokrowski. The question of whether or
not such extremely high densities are nonetheless pmssibstellar interiors might remain in the
background for the time being. One cannot forget in tbgard that such densities would require the
contraction of the proper volume of the electrong (altimately even protons). (On the other hand, one
must also consider theorentz contraction.) However, | cannot go further into thisrieséing question of
the compressibility of electrons and protons herevelbeless, such extremely high pressures are also not
at all necessary for the conversion of protons iigiat quanta. Even for much smaller pressures,vwill
already have narrowed so much that, from (20), the transftom the “proton phase” to the “light
guantum phase” will not require an especially violent irapullf the electrons — or especially the protons —
should split into smaller particles then the conversib matter into radiant energy could take place for
correspondingly minor pressures.
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relates to the transition from matter to radiant gnealong with the critical pressure.
However, | cannot go further into that question here.

It is known that from time to time a phase will happe be unstable. For example,
under some circumstances, a fluid can be heated betgobdiling point. However, for
such an overheated fluid, even the slightest perturbatiould suffice to produce an
explosive boiling (often with shattering of the vessehAccording toG. Krebs, there
exists an essential difference between that explosaitng and a normal vigorous
boiling. Even the “thin-walled piston” does not burst ung@mal boiling, but it might
proceed as violently as it will)( From the analogy, one can suspect that similkatile
states are also possible for the conversion of matter radiant energy. G. Krebs
regarded it as having been established that “by the gradual oedulctpressure, as
indeed can take place for the cooling of steam boildiesn they are temporarily allowed
to rest, slightly high boiling delays can exist, ang&assult, explosions, and indeed with
all of the other consequences.”)( An astronomical analogue for such steam boilers is
defined by the red dwarfs, which in fact also cool down wttike radiation pressure
drops in their interiors (precisely like the vapor pressur the interior of a cooling
boiler). Should that not lead to an explosive transitiom the “overheated” matter into
radiant energy under certain circumstances? It wbaltempting to explain the flaring
up of “new stars” in that way.

As far as the cooling steam boiler @f Krebs is concerned, the cooling would be
accompanied by a single large explosion under very oppodongitions. Under less
opportune conditions, the explosion would happen muonesp such that with further
cooling, a second, third, etc, one can take place. bhstea single large explosion, we
would have a series of smaller and less violent oSé®uld it not be possible to explain
the irregular changes of light from red dwarfs in aalegous way? It that were true then
there would be no qualitative difference between thev*nstars and the irregularly
changing ones, but only a quantitative one.

*

() G. Krebs, Pogg. Ann138(1869), 448.

*

(") Loc. cit.



