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In the present investigation, it will be shown how the difference between ordinary matter and a “light 
quantum gas” (cavity radiation) becomes smaller with increasing pressure.  Protons, and especially 
electrons, increasingly take on the character of electrically-neutral light quanta.  At extreme pressures, 
ordinary matter and cavity radiation will become identical, and in fact at any temperature, even for an 
arbitrary low temperature.  One can raise the objection to the paradoxical-sounding assertion that the 
radiation pressure varies in proportion to T 4 ; therefore, an extremely high radiation pressure would be 
unthinkable at low temperature.  However, a closer examination shows that this objection is based upon a 
misunderstanding.  In conclusion, the meaning of the results obtained will be related to some questions in 
astrophysics. 
 
 
 It is known that a so-called “degeneracy” occurs for all gases (even for an ideal 
monoatomic gas) at sufficiently high pressure or sufficiently low temperature.  For a non-
degenerate ideal gas, the pressure is equal to p = nkT, where T means the absolute 
temperature, k is Boltzmann’s constant, and n is the number of free atoms in a cubic 
centimeter. 
 From Fermi ’s well-known theory, one has the relation: 
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for a weakly-degenerate ideal monoatomic gas, in which m means the mass of an atom 
(*).  However, this formula can be applied with sufficient accuracy only when the second 

term in the brackets is small in comparison to the first; i.e., 
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comparison to 1.  In the contrary case, the degeneracy will be large, and formula (1) will 
be unusable then. 
 In the case of large degeneracy, from E. Fermi, one will have the relation: 
 

                                                
 (*) E. Fermi, Zeit. Phys. 36 (1926), 911.  
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As far as the mean kinetic energy L of the atom is concerned (*), one will always have: 
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3

2

p

n
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If the gas is found at the absolute zero point of temperature then one must set T = 0, and 
one will get from (2) that: 
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or more briefly: 
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in which A means a constant.  (3), (4), and (5) imply that: 
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 We see that the degenerate gas must have a finite “zero-point pressure,” as well as a 
finite “zero-point energy,” even at absolute zero temperature.  That zero-point energy 
poses as a temperature that the gas does not have, in reality.  We would like to call this 
apparent temperature a “pseudo-temperature” and denote it by Tp , while the true 
temperature will be Tw (†).  We shall refer to the temperature that our gas must have at the 
same p and m in order for it to be non-degenerate as the pseudo-temperature.  We then 
define Tp by the equation: 

p = n k Tp ,      (7) 
 
in which p and n have the same values that they have in (4).  Naturally, one will have Tp 
= Tw for a non-degenerate gas.  We get from (3) and (7) that: 
 

L = 3
2 k Tp .      (8) 

 
One can eliminate n from (5) and (7), and that will give: 
 

p = B m3/2 5/ 2
pT ,     (9) 

in which B is a constant. 

                                                
 (*) Fermi denoted this mean kinetic energy by L .  
 (†) Translator’s note: the “w” comes from the German wahre, which means “true.”  
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 We expand our gas, which is found to be totally degenerate at absolute zero, by doing 
work on it adiabatically.  Naturally, the true temperature Tw cannot drop any further as a 
result, since the gas was already found to be at absolute zero before the expansion.  Doing 
work by the gas can happen only at the expense of its zero-point energy, which will be 
reduced as a result, and will thus produce a drop in the Pseudo-temperature Tp .  Tw will, 
in turn, remain constant under adiabatic compression of the gas; namely, it will remain at 
0 K.  The work that is done by external forces will only be at the expense of raising the 
zero-point energy.  The process will then be, at the same time, adiabatic and isothermal. 
 The zero-point velocities of the atom must get larger and larger for ever-increasing 
pressure.  However, as long as these velocities are small in comparison to the speed of 
light, the mass m of an atom can be regarded as constant; i.e., it can be set to the rest mass 
m0 .  However, from (9), p will then be proportional to 5/ 2

pT .  The true temperature of a 

non-degenerate, ideal, monoatomic gas will change by precisely the same law under 
adiabatic compression.  We would therefore like to refer to the first phase of the total 
degeneracy, in which m = m0 and the zero-point velocities of the atoms are small in 
comparison to the speed of light, as the gaseous phase of the total degeneracy. 
 At extraordinarily-high pressures, the zero-point velocities of the atoms will be 

comparable to the speed of light.  In that case, one must set m = m0 / 
21 β− .  We will 

then have: 

L = c2 m0 
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for the mean kinetic zero-point energy. 
 The second term in parentheses can be neglected for extreme zero-point velocities, 
and that will give: 

L = c2 m.     (11) 
One gets from (11) and (6) that: 
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When one introduces the value of m that was just obtained into (5) that will yield: 
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We eliminate n from (12) and (7), and thus obtain: 
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in which K is a constant.  It is well-known that the pressure of cavity radiation exhibits 
precisely the same dependency upon temperature.  Thus, we would like to refer to the 
second phase of the total degeneracy (in which m is much larger than m0 , and the zero-
point velocities of the atoms approach the speed of light) as the light phase of the total 
degeneracy. 
 But why is the behavior of our degenerate gas so similar to the behavior of cavity 
radiation?  The well-known theory of Louis de Broglie gives us an answer to this 
question. 
 According to that theory, light quanta are particles of exceptionally small rest mass 
m0 .  The velocities of these light particles come very close to the speed of light c, but do 
not attain it.  Therefore, when one is close to the speed of light, even the most minimal 
change in velocity is already coupled with a large change in kinetic energy.  For example, 
the energy quantum of violet light is considerably larger than that of red, since violet light 
is somewhat faster than red light.  However, that difference in velocity is too small to be 
accessible to direct measurement.  Louie de Broglie believed that the rest mass m0 of a 
light quantum could be estimated to be around at most 10−50 g (*).  Total degeneracy must 
occur only very slightly for such a small mass of the light quantum. 
 We get from (6) and (10) that: 
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We set h = 6.55 × 10−27 and c= 3 ×1010 here and get: 
 

m2 – m0 m − 5.5035 × 10−75 n2/3 = 0 
 
in that way.  The solution of this quadratic equation yields: 
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In the case of protons, one must set m0 = 1.66 × 10−24, for electrons, one has m0 = 9 × 
10−28, and for light quanta (according to L. de Broglie), m0 = 10−50. 
 For the density of a gas, one obviously has the equation: 
 

ρ = n m g cm−3.     (15) 
 
 If we introduce the value of h into (4) then we will get: 

                                                
 (*) Louis de Broglie, Phil. Mag. (6) 47 (1924), 447.  In another place, de Broglie found the upper limit 
for m0 to be around 10−44 g, but he still thought it was possible that m0 could be even smaller [Ann. Phys. 
(Leipzig) (10) 3 (1925), 79.] 
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p = 3.3021 × 10−54 ⋅⋅⋅⋅
5/3n

m
 dyn cm−2.   (16) 

 
 As far as the pseudo-temperature Tp is concerned, (7) implies that: 
 

Tp = 
p

k n
 = 

161.372 10

p

n−×
.    (17) 

 
 When m0 and n are given, one can calculate m from (14).  However, one can then also 
calculate ρ, p, and Tp from (15), (16), and (17), resp. 
 

Table 1. 
 

 

p (zero-point pressure in dyn cm−2) 
 

ρ (zero-point density in g cm−3) 
 

n (number of  
particles per 

cm3) 
Proton 

gas 
Electron 

gas 
Light quantum 

gas 
Proton gas Electron 

gas 
Light quantum 

gas 
10−60 1.99×10−150 3.67×10−127    3.30×10−104 1.66×10−84 9.00×10−88    1.00×10−110 
10−45 1.99×10−105 3.67×10−102    3.30×10−79 1.66×10−69 9.00×10−73    1.00×10−95 
10−42 1.99×10−100 3.67×10−97    3.28×10−74 1.66×10−66 9.00×10−70    1.01×10−92 
10−39 1.99×10−95 3.67×10−92    2.37×10−69 1.66×10−63 9.00×10−67    1.39×10−89 
10−36 1.99×10−90 3.67×10−87    4.16×10−35 1.66×10−60 9.00×10−64    7.94×10−86 
10−24 1.99×10−70 3.67×10−67    4.45×10−49 1.66×10−48 9.00×10−52    7.42×10−70 
10−12 1.99×10−50 3.67×10−47    4.45×10−33 1.66×10−36 9.00×10−40    7.42×10−54 

1 1.99×10−30 3.67×10−27    4.45×10−17 1.66×10−24 9.00×10−28    7.42×10−38 
106 1.99×10−20 3.67×10−17    4.45×10−9 1.66×10−18 9.00×10−22    7.42×10−30 
1012 1.99×10−10 3.67×10−7    4.45×10−1 1.66×10−12 9.00×10−16    7.42×10−22 
1018 1.99 3.67×103    4.45×107 1.66×10−6 9.00×10−10    7.42×10−14 
1024 1.99×1010 3.67×1013    4.45×1015 1.66 9.00×10−4    7.42×10−6 
1027 1.99×1015 3.64×1018    4.45×1019 1.66×103 9.00×10−1    7.42×10−2 
1030 1.99×1020 2.51×1023    4.45×1023 1.66×106 1.32×103    7.42×102 
1033 1.99×1025 4.19×1027    4.45×1027 1.66×109 7.88×106    7.42×106 
1036 1.99×1030 4.45×1031    4.45×1031 1.66×1012 7.42×1010    7.42×1010 
1039 1.99×1035 (4.45×1035)    4.45×1035 1.94×1015 (7.42×1014)    7.42×1014 
1042 1.99×1039 (4.45×1039)    4.45×1039 8.29×1018 (7.42×1018)    7.42×1018 
1045 1.99×1043 (4.45×1043)    4.45×1043 7.50×1022 (7.42×1022)    7.42×1022 
1048 (4.45×1047) (4.45×1047)    4.45×1047 (7.42×1026) (7.42×1026)    7.42×1026 

 
 In Table 1, I have calculated the zero-point pressure and zero-point density for the 
proton gas, electron gas, and light quantum gas (whose true temperatures Tw are assumed 
to be 0 K everywhere).  That table shows that for small values of n, our three gases have 
very different pressures and densities.  However, the larger n becomes, the smaller the 
differences that our gases will show in regard to p and ρ .  The difference will vanish 
completely for very large n.  Hence, e.g., 1036 electrons per cubic centimeter and 1036 
light quanta per cubic centimeter will yield the same zero-point pressure (4.45×1031 dyn 
cm−2) and the same zero-point density (7.42×1010 g cm−3). 
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 I have worked out the pseudo-temperatures in Table 2.  We also see the same pattern 
here: Our three gases will exhibit ever-narrower differences with increasing n. 
 

Table 2. 
 

 

Tp (pseudo-temperature) 
 

3/
p

n T  
 

n (number of  
particles per 

cm3) Proton 
gas 

Electron 
gas 

Light quantum 
gas 

Proton gas Electron 
gas 

Light quantum 
gas 

10−60 1.45×10−54 2.67×10−51    2.41×10−28 3.28×10101 5.23×1091    7.17×1022 
10−45 1.45×10−44 2.67×10−41    2.41×10−18 3.28×1086 5.23×1076    7.17×107 
10−42 1.45×10−42 2.67×10−39    2.39×10−16 3.28×1083 5.23×1073    7.29×104 
10−39 1.45×10−40 2.67×10−37    1.73×10−14 3.28×1080 5.23×1070    1.95×102 
10−36 1.45×10−38 2.67×10−35    3.03×10−15 3.28×1077 5.23×1067 35.84 
10−24 1.45×10−20 2.67×10−27    3.24×10−9 3.28×1065 5.23×1055 29.29 
10−12 1.45×10−22 2.67×10−19    3.24×10−5 3.28×1053 5.23×1043 29.29 

1 1.45×10−14 2.67×10−11    3.24×10−1 3.28×1041 5.23×1031 29.29 
106 1.45×10−10 2.67×10−7    3.24×101 3.28×1035 5.23×1025 29.29 
1012 1.45×10−6 2.67×10−3    3.24×103 3.28×1029 5.23×1019 29.29 
1018 1.45×10−2 2.67×101    3.24×105 3.28×1023 5.23×1013 29.29 
1024 1.45×102 2.67×105    3.24×107 3.28×1017 5.23×107 29.29 
1027 1.45×104 1.87×107    3.24×108 3.28×1014 5.34×104 29.29 
1030 1.45×106 1.83×109    3.24×109 3.28×1011 1.64×102 29.29 
1033 1.45×108 3.05×1010    3.24×1010 3.28×108 35.13 29.29 
1036 1.45×1010 3.24×1011    3.24×1011 3.30×105 29.29 29.29 
1039 1.24×1012 (3.24×1012)    3.24×1012 5.26×102 (29.29) 29.29 
1042 2.90×1013 (3.24×1013)    3.24×1013 40.94 (29.29) 29.29 
1045 3.21×1014 (3.24×1014)    3.24×1014 30.28 (29.29) 29.29 
1048 (3.24×1015) (3.24×1015)    3.24×1015 (29.38) (29.29) 29.29 

 
 Some of the numbers in both tables are in parentheses.  That means that one can 
perform the corresponding compression only while decreasing the proper volume of the 
particles.  (Of course, I have not taken the Lorentz contraction into account in that.)  
However, I have not placed any parentheses for the light quanta, since our knowledge of 
the “proper volume” of the light quantum seems uncertain to me. 
 Finally, I have further calculated the values of 3/ pn T .  However, 3/ pn T  will be very 

large and variable for small values of n.  Constancy will come about when m is 
significantly larger than m0 ; i.e., when the “light phase” of the total degeneracy begins.  
We see that one will enter into the “light phase” for light quantum gases even for very 
small values of n.  Therefore, we will be unable to observe the “gas phase” for light 
quanta. 
 The constant value that 3/ pn T  assumes for sufficiently large n is the same for all three 

of our gases – namely, 29.29.  We can also write: 
 

n = 29.29 ⋅⋅⋅⋅ 3
pT .     (18) 
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 That equation will become very remarkable when we calculate the number of light 
quanta that are found in a cubic centimeter according to Planck’s formula and obtain (*): 
 

n = 8π 
3 2

0 1x

kT x dx

hc e

∞
 
  − 

∫ = 20.62 T 3.   (19) 

 
 Therefore, our “zero-point theory” leads to a formula that is entirely similar to one in 
the usual quantum theory of radiation.  Only the coefficients are different, but not by very 
much.  In any event, they have entirely similar orders of magnitude. 
 Due to the similarity between formulas (18) and (19), I believe that I can draw the 
conclusion that: When one sets the true temperature of any cavity radiation equal to 0 K, 
considers the radiation pressure to be the zero-point pressure of a totally degenerate gas, 
the energy of the light quantum to be the zero-point energy, and the so-called 
temperature of the cavity radiation to be purely pseudo-temperature, one will indeed 
introduce an error by such assumptions, but not an especially large one. 
 Our three gases differ from each other by their charges: Protons have a positive 
charge, electrons have a negative one, and light quanta are electrically neutral.  However, 
we will soon see that this difference will also become unnoticeable for large values of n. 
 We consider two electrons that move in parallel paths with equal velocities and in the 
same direction.  Our two electrons represent two parallel and equally-directed electrical 
currents that attract each other, as one knows; the electrostatic repulsion will be reduced 
in that way.  If the velocity of the electrons differs from the speed of light only slightly 
then the mutual electrostatic repulsion of the electrons will be almost outweighed by the 
aforementioned mutual attraction of the “elementary currents.” 
 Both electrons might now move along parallel paths, but in the opposite directions.  
We will then have two parallel and oppositely-directed currents before us that repel each 
other, which will increase the effect of the electrostatic repulsion.  However, one cannot 
forget that for a very fast-moving electron the lines of force will concentrate around the 
equatorial plane (i.e., the one perpendicular to the direction of motion).  For extreme 
velocities, all lines of force will condense into a very thin “equatorial layer.”  Hence, it is 
only when the other electron passes through this thin layer that it will be subject to 
influence of the first electron.  However, since the time of that passage is extremely short, 
the electron in question must experience an almost-instantaneous change in velocity, so it 
must radiate energy.  In extreme cases, the radiated energy must be larger than the energy 
that is supplied by the electrostatic repulsion of the electron, which is naturally 
impossible.  One must then infer the conclusion that our extremely fast electrons cannot 
affect each other at all.  That is precisely the argument upon the basis of which W. F. G. 
Swann was led to suggest that extremely fast electrons could not be capable of ionizing 
(** ).  Finally, we assume that the two electrons move along the line that connects them.  
In that case as well they will exert no noticeable effect upon each other, since their lines 
of force will indeed concentrate in the “equatorial plane”; i.e., the one perpendicular to 
their direction of motion. 

                                                
 (*) One can find such a calculation in, e.g., A. S. Eddington, The Internal Constitution of the Stars, 
Cambridge, 1926, pp. 55, et seq.  
 (** ) W. F. G. Swann, Phil. Mag. (6) 47 (1924), 309.  
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 Naturally, what was just said will also relate to the mutual electrostatic influence of 
extremely fast protons, as well as to the interactions between protons and electrons.  If we 
have a mixture of electrons and protons then the electrostatic forces will play no 
appreciable role for extreme velocities.  However, should the “molecular motions” of 
these electrons and protons not be accompanied by a significant amount of 
electromagnetic radiation?  That question must be answered in the negative, since we 
have in fact assumed a totally-degenerate gas for which the “molecular motions” are 
assumed to be “zero-point motions”; however, the latter are always found to take place 
with no electromagnetic radiation.  One recalls the electron gas in metals: The electrons 
perform their motions even for 0 K, but it would be impossible for them to be 
accompanied by radiation, since otherwise the temperature of the metal in question would 
have to drop below 0 K.  The electrons then behave in that regard as if they were 
electrically neutral (*). 
 Both of our tables show that for sufficiently large n, light quantum gases will exhibit 
the same pressure, density, and pseudo-temperature as electron gases and proton gases, 
and therefore, so will a mixture of the last two.  Now, it can be shown that such a mixture 
cannot be distinguished from a light quantum gas in regard to its electromagnetic effects.  
However, in the final analysis, all ordinary matter consists of electrons and protons (** ).  
We then come to the conclusion that at sufficiently high pressures, ordinary matter and 
cavity radiation (light quantum gas) will become identical in every respect, even at 
absolute zero.  The electrons and protons cannot be distinguished from light quanta, nor 
can the gas pressure cannot be distinguished from radiation pressure. 
 Such a concept seems highly paradoxical, since extreme radiation pressures will 
appear only for extremely high temperatures.  How could it be possible then for cavity 
radiation to exert an enormous radiation pressure at absolute zero?  We will soon see that 
we also encounter an entirely similar “paradox” for ordinary fluids and their evaporation; 
e.g., water.  A simultaneous appearance of the fluid and vapor phase of water (or any 
other fluid) will be possible only when the pressure does not exceed the so-called critical 
pressure; i.e., when it is smaller than 217.5 atm (for water).  If the pressure is also only 
somewhat larger – e.g., 218 atm – then a meniscus will not be obtained at any 
temperature.  We will then always have only one phase before us that can just as well be 
regarded as fluid water as water vapor.  From that standpoint, we will be justified in 
regarding water at room temperature and 218 atm as a highly compressed vapor. 
 We further propose that our engineering tools are so limited that we would not be in a 
position to achieve the “critical point” for water.  In addition, all experiments concerning 
the evaporation of water are possible only with fluid water at present.  We will then come 
to the conclusion that the vapor pressure in all cases is a single-valued function of 
temperature and increases very rapidly with it.  If one then wishes to announce that water 
at 218 atm can be regarded as a vapor even at room temperature (i.e., +15o C) then that 
statement would have to seem paradoxical, since the vapor pressure of water at + 15o C is 

                                                
 (*) For that reason, it does not seem certain at all to me that the usual light quanta are electrically neutral 
in the strict sense.  Perhaps there are positive and negative light quanta that combine into “molecules” 
under especially extreme conditions.  
 (** ) Whether the latter can cling together into atomic nuclei seems to be questionable to me; however, I 
cannot go into that matter any further here.  



Anderson – Ordinary matter and radiating energy. 9 

not 218 atm at all, but only 12.8 mm Hg.  That is precisely the same “paradox” that came 
about in the aforementioned case of cavity radiation. 
 If r means the heat of vaporization then one will have the relation: 
 

r = 
24.29

T dp

dT
⋅ (v′ – v),    (20) 

 
in which v′ means the specific volume of the vapor (in liters), and v is that of the fluid (*).  
We see: The less that v′ differs from v, the smaller will be the heat of vaporization, and 
the easier it will be to go from the fluid phase to the vapor phase.  Now, we see from 
Table 1 that with increasing pressure, the density of the light quantum gas differs less and 
less from the density of the “material phase.”  Naturally, the same thing is also true for 
the specific volumes.  We then have grounds to assume that a conversion of matter into 
cavity radiation can be produced much more easily and as a result of much more minor 
causes at high pressure that at lower pressure. 
 However, should it be possible for a pressure to reign in a stellar interior that is so 
high that no difference exists between an electron gas and a light quantum gas there?  
That question must be answered in the affirmative only when the mass of the star is 
sufficiently concentrated towards the center.  Kerr Grant  calculated on the grounds of 
the possibility that the central density of the star is 5×107 times than the mean density 
(** ).  From G. I. Pokrowski, the maximum density of matter is ρρρρ = 4×1013±1 g cm−3 (*** ).  
When pressures of that order of magnitude prevail in the stellar interior, many question of 
astrophysics must take on a new character.  For example, the question of the absorption 
coefficients of the electrons will become meaningless for radiation in the stellar interior, 
since the difference between electrons and light quanta will vanish there.  The well-
known question of the conversion of matter into radiant energy will also be meaningful 
only when the pressure is not excessively large, so when matter and cavity radiation can 
still exist as separate phases (**** ). 
 All of our calculations up to now were based upon the assumption that the true 
temperature was equal to 0 K; all of the calculations actually became very simple then.  
In reality, the situation is much more complicated, since real stars often have a very high 
“true” temperature.  I regard it as possible that there is also a critical temperature that 

                                                
 (*) See, e.g., Landoit-Börnstein, Phys.-chem. Tabellen, 5th ed., Berlin, 1923, pp. 1580.  
 (** ) Kerr Grant , Nature 118 (1926), 373.  
 (*** ) Zeit. Phys. 49 (1928), 588. 
 (**** ) Of course, in order for the protons to also be identical with light quanta, one must assume much 
larger densities in the stellar interior than were possible for even Pokrowski.  The question of whether or 
not such extremely high densities are nonetheless possible in stellar interiors might remain in the 
background for the time being.  One cannot forget in that regard that such densities would require the 
contraction of the proper volume of the electrons (and ultimately even protons).  (On the other hand, one 
must also consider the Lorentz contraction.)  However, I cannot go further into this interesting question of 
the compressibility of electrons and protons here.  Nevertheless, such extremely high pressures are also not 
at all necessary for the conversion of protons into light quanta.  Even for much smaller pressures, v′ – v will 
already have narrowed so much that, from (20), the transition from the “proton phase” to the “light 
quantum phase” will not require an especially violent impulse.  If the electrons – or especially the protons – 
should split into smaller particles then the conversion of matter into radiant energy could take place for 
correspondingly minor pressures. 
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relates to the transition from matter to radiant energy, along with the critical pressure.  
However, I cannot go further into that question here. 
 It is known that from time to time a phase will happen to be unstable.  For example, 
under some circumstances, a fluid can be heated beyond its boiling point.  However, for 
such an overheated fluid, even the slightest perturbation would suffice to produce an 
explosive boiling (often with shattering of the vessel).  According to G. Krebs, there 
exists an essential difference between that explosive boiling and a normal vigorous 
boiling.  Even the “thin-walled piston” does not burst under normal boiling, but it might 
proceed as violently as it will (*).  From the analogy, one can suspect that similar volatile 
states are also possible for the conversion of matter into radiant energy.  G. Krebs 
regarded it as having been established that “by the gradual reduction in pressure, as 
indeed can take place for the cooling of steam boilers when they are temporarily allowed 
to rest, slightly high boiling delays can exist, and as a result, explosions, and indeed with 
all of the other consequences.” (** )  An astronomical analogue for such steam boilers is 
defined by the red dwarfs, which in fact also cool down while the radiation pressure 
drops in their interiors (precisely like the vapor pressure in the interior of a cooling 
boiler).  Should that not lead to an explosive transition from the “overheated” matter into 
radiant energy under certain circumstances?  It would be tempting to explain the flaring 
up of “new stars” in that way. 
 As far as the cooling steam boiler of G. Krebs is concerned, the cooling would be 
accompanied by a single large explosion under very opportune conditions.  Under less 
opportune conditions, the explosion would happen much sooner, such that with further 
cooling, a second, third, etc, one can take place.  Instead of a single large explosion, we 
would have a series of smaller and less violent ones.  Should it not be possible to explain 
the irregular changes of light from red dwarfs in an analogous way? It that were true then 
there would be no qualitative difference between the “new” stars and the irregularly 
changing ones, but only a quantitative one. 
 
 

__________ 
 

                                                
 (*) G. Krebs, Pogg. Ann. 138 (1869), 448.  
 (** )  Loc. cit. 


