"Réduction à la forme canonique des équations d'un fil flexible et inextensible," Comptes rendus de l'Académie des sciences **96** (1883), 688-691.

Reducing the equations of equilibrium for a flexible, inextensible filament to canonical form

By P. Appell

(Presented by Bouquet)

Translated by D. H. Delphenich

Even though numerous analogies have been pointed out for some time between the equations of equilibrium for a filament and the equations of motion of a point (¹), to my knowledge, no one has reduced those equations of equilibrium to a canonical form that would permit one to apply Jacobi's theorems.

I. – First, consider a flexible, inextensible filament that is entirely free whose element of length ds is subject to the force F ds that has X ds, Y ds, Z ds for its projections onto the coordinate axes, which are supposed to be rectangular, in which X, Y, Z are functions of only the coordinates x, y, z of the point of application. Furthermore, assume that the exists a force function U; i.e., that:

$$dU = X \, dx + Y \, dy + Z \, dz.$$

If one lets *T* denote the tension then the equations of equilibrium will be:

(1)
$$\frac{d}{ds}\left(T\frac{dx}{ds}\right) + X = 0, \qquad \frac{d}{ds}\left(T\frac{dy}{ds}\right) + Y = 0, \qquad \frac{d}{ds}\left(T\frac{dz}{ds}\right) + Z = 0;$$

hence, one will deduce that:

(2)
$$dT + dU = 0, T = -(U + h),$$

in which *h* is an arbitrary constant.

Introduction an auxiliary independent variable σ into equations (1) that is coupled to s by the relation:

$$\frac{ds}{d\sigma} = T.$$

^{(&}lt;sup>1</sup>) See a memoir of O. Bonnet, Journal de Mathématique 9 (1844), and the work by P. Serret, *Théorie géométrique et mécanique des lignes à double courbure.*

The equations will become:

$$\frac{d^2x}{d\sigma^2} + TX = 0, \qquad \frac{d^2y}{d\sigma^2} + TY = 0, \qquad \frac{d^2z}{d\sigma^2} + TZ = 0,$$

or, upon setting $V = \frac{1}{2}(U+h)^2$:

(3)
$$\frac{d^2x}{d\sigma^2} = \frac{\partial V}{\partial x}, \qquad \frac{d^2y}{d\sigma^2} = \frac{\partial V}{\partial y}, \qquad \frac{d^2z}{d\sigma^2} = \frac{\partial V}{\partial z},$$

which are equations that are analogous to those of the motion of a point. We can now apply Jacobi's theorems to those equations. In order to do that, consider the partial differential equation:

(4)
$$\left(\frac{\partial\Theta}{\partial x}\right)^2 + \left(\frac{\partial\Theta}{\partial y}\right)^2 + \left(\frac{\partial\Theta}{\partial z}\right)^2 = (U+h)^2,$$

and suppose that one has found an integral:

$$\Theta(x, y, z; \alpha, \beta, h)$$

of that equation, with two arbitrary constants α and β that are distinct from *h* and the additive constant that one can always add to Θ . The equations of the equilibrium curve are then:

(5)
$$\frac{\partial \Theta}{\partial \alpha} = \alpha', \qquad \frac{\partial \Theta}{\partial \beta} = \beta',$$

in which α' and β' are two new constants.

II. –More generally, imagine that one employs an arbitrary coordinate system q_1 , q_2 , q_3 that is coupled with x, y, z by the equations:

(6)
$$x = f(q_1, q_2, q_3), \qquad y = \varphi(q_1, q_2, q_3), \qquad z = \psi(q_1, q_2, q_3).$$

Let x', y', z', q'_1 , q'_2 , q'_3 denote the derivatives of x, y, z, q_1 , q_2 , q_3 with respect to σ . The expression:

$$P = (x'^2 + y'^2 + z'^2)$$

will be a function of q_1 , q_2 , q_3 , q'_1 , q'_2 , q'_3 , and upon setting:

$$p_1 = \frac{\partial P}{\partial q'_1}, \qquad p_2 = \frac{\partial P}{\partial q'_2}, \qquad p_3 = \frac{\partial P}{\partial q'_3},$$

one can express *P* as a function of q_1 , q_2 , q_3 , p_1 , p_2 , p_3 . Finally, one will form the function:

$$H(q_1, q_2, q_3, p_1, p_2, p_3) = P - \frac{1}{2}(U+h)^2$$
,

and the equations of equilibrium will come down to the canonical form:

(7)
$$\frac{dq_i}{d\sigma} = \frac{\partial H}{\partial p_i}, \quad \frac{dp_i}{d\sigma} = -\frac{\partial H}{\partial q_i}$$
 $(i = 1, 2, 3).$

However, in order to obtain the equations of the equilibrium curve, it is pointless to have the *general* integral $(^1)$ of equations (7). As before, it will suffice to consider the equation:

(8)
$$H\left(q_1, q_2, q_3; \frac{\partial \Theta}{\partial q_1}, \frac{\partial \Theta}{\partial q_2}, \frac{\partial \Theta}{\partial q_3}\right) = 0$$

and find an integral Θ (q_1 , q_2 , q_3 ; α , β , h) of that equation with two arbitrary constants α and β . The equations of the equilibrium curve will then be:

(9)
$$\frac{\partial \Theta}{\partial \alpha} = \alpha', \qquad \frac{\partial \Theta}{\partial \beta} = \beta'.$$

III. – Finally, suppose that one must seek the equilibrium position of a filament that is subject to the same form F and constrained to remain on a given surface. Since the coordinates of a point on that surface supposed to be expressed as functions of two parameters q_1 and q_2 , one will define the function:

$$P = \frac{1}{2}(x'^2 + y'^2 + z'^2),$$

and one will express it in terms of the parameters q_1 , q_2 , and some new variables p_1 , p_2 defined by the equations:

$$p_1 = \frac{\partial P}{\partial q'_1}, \qquad p_2 = \frac{\partial P}{\partial q'_2}.$$

If one then lets $H(q_1, q_2; p_1, p_2)$ denote the function $P - \frac{1}{2}(U + h)^2$, and if one considers the partial differential equation:

$$H\left(q_1, q_2; \frac{\partial \Theta}{\partial q_1}, \frac{\partial \Theta}{\partial q_2}\right) = 0$$

^{(&}lt;sup>1</sup>) Indeed, equations (7) give the first integral H = C. However, by virtue of the value (2) of *T*, one must attribute the particular value 0 to that constant *C*.

then it will suffice to find an integral Θ (q_1 , q_2 , α , h) of that equation with an arbitrary constant α , and the equation of the equilibrium curve will be:

$$\frac{\partial \Theta}{\partial \alpha} = \alpha',$$

in which α' is a new arbitrary constant.