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 Even though numerous analogies have been pointed out for some time between the 
equations of equilibrium for a filament and the equations of motion of a point (1), to my 
knowledge, no one has reduced those equations of equilibrium to a canonical form that 
would permit one to apply Jacobi’s theorems. 
 
 
 I. – First, consider a flexible, inextensible filament that is entirely free whose element 
of length ds is subject to the force F ds that has X ds, Y ds, Z ds for its projections onto 
the coordinate axes, which are supposed to be rectangular, in which X, Y, Z are functions 
of only the coordinates x, y, z of the point of application.  Furthermore, assume that the 
exists a force function U; i.e., that: 
 

dU = X dx + Y dy + Z dz. 
 

If one lets T denote the tension then the equations of equilibrium will be: 
 

(1)   
d dx

T
ds ds
 
 
 

+ X = 0, 
d dy

T
ds ds
 
 
 

+ Y = 0, 
d dz

T
ds ds
 
 
 

 + Z = 0; 

 
hence, one will deduce that: 
(2)     dT + dU = 0, T = − (U + h), 
 
in which h is an arbitrary constant. 
 Introduction an auxiliary independent variable σ into equations (1) that is coupled to s 
by the relation: 

ds

dσ
= T. 

                                                
 (1) See a memoir of O. Bonnet, Journal de Mathématique 9 (1844), and the work by P. Serret, Théorie 
géométrique et mécanique des lignes à double courbure. 
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The equations will become: 
 

2

2

d x

dσ
+ TX = 0,  

2

2

d y

dσ
+ TY = 0,  

2

2

d z

dσ
+ TZ = 0, 

 
or, upon setting V = 1

2 (U + h)2: 

 

(3)    
2

2

d x

dσ
= 

V

x

∂
∂

,      
2

2

d y

dσ
= 

V

y

∂
∂

,      
2

2

d z

dσ
= 

V

z

∂
∂

, 

 
which are equations that are analogous to those of the motion of a point.  We can now 
apply Jacobi’s theorems to those equations.  In order to do that, consider the partial 
differential equation: 

(4)     
22 2

x y z

 ∂Θ ∂Θ ∂Θ   + +    ∂ ∂ ∂    
= (U + h)2, 

 
and suppose that one has found an integral: 
 

Θ (x, y, z ; α, β, h) 
 

of that equation, with two arbitrary constants α and β that are distinct from h and the 
additive constant that one can always add to Θ.  The equations of the equilibrium curve 
are then: 

(5)      
α

∂Θ
∂

= α′,  
β

∂Θ
∂

= β′, 

 
in which α′ and β′ are two new constants. 
 
 
 II. –More generally, imagine that one employs an arbitrary coordinate system q1, q2, 
q3 that is coupled with x, y, z by the equations: 
 
(6)    x = f (q1, q2, q3), y = ϕ (q1, q2, q3), z = ψ (q1, q2, q3). 
 
 Let x′, y′, z′, 1q′ , 2q′ , 3q′  denote the derivatives of x, y, z, q1, q2, q3 with respect to σ . 

The expression: 
P = (x′2 + y′ 2 + z′2) 

 
will be a function of q1, q2, q3, 1q′ , 2q′ , 3q′ , and upon setting: 

 

p1 = 
1

P

q

∂
′∂
, p2 = 

2

P

q

∂
′∂

, p3 = 
3

P

q

∂
′∂

, 
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one can express P as a function of q1, q2, q3, p1, p2, p3 .  Finally, one will form the 
function: 

H (q1, q2, q3, p1, p2, p3) = P – 1
2 (U + h)2, 

 
and the equations of equilibrium will come down to the canonical form: 
 

(7)     idq

dσ
= 

i

H

p

∂
∂

, idp

dσ
= −

i

H

q

∂
∂

  (i = 1, 2, 3). 

 
 However, in order to obtain the equations of the equilibrium curve, it is pointless to 
have the general integral (1) of equations (7).  As before, it will suffice to consider the 
equation: 

(8)     H 1 2 3
1 2 3

, , ; , ,q q q
q q q

 ∂Θ ∂Θ ∂Θ
 ∂ ∂ ∂ 

 = 0 

 
and find an integral Θ (q1, q2, q3; α, β, h) of that equation with two arbitrary constants α 
and β.  The equations of the equilibrium curve will then be: 
 

(9)     
α

∂Θ
∂

= α′, 
β

∂Θ
∂

= β′. 

 
 
 III. – Finally, suppose that one must seek the equilibrium position of a filament that 
is subject to the same form F and constrained to remain on a given surface.  Since the 
coordinates of a point on that surface supposed to be expressed as functions of two 
parameters q1 and q2 , one will define the function: 
 

P = 1
2 (x′2 + y′ 2 + z′2), 

 
and one will express it in terms of the parameters q1, q2, and some new variables p1, p2 
defined by the equations: 

p1 = 
1

P

q

∂
′∂
, p2 = 

2

P

q

∂
′∂

. 

 
 If one then lets H (q1, q2 ; p1, p2) denote the function P − 1

2 (U + h)2, and if one 

considers the partial differential equation: 
 

1 2
1 2

, ; ,H q q
q q

 ∂Θ ∂Θ
 ∂ ∂ 

= 0 

 

                                                
 (1) Indeed, equations (7) give the first integral H = C.  However, by virtue of the value (2) of T, one 
must attribute the particular value 0 to that constant C.  
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then it will suffice to find an integral Θ (q1, q2 , α, h) of that equation with an arbitrary 
constant α, and the equation of the equilibrium curve will be: 
 

α
∂Θ
∂

= α′, 

in which α′ is a new arbitrary constant. 
 
 

___________ 


