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On the equilibrium of a flexible, inextensible filament
By P. APPELL

Translated by D. H. Delphenich

The goal of this note is to complete and prove dyextheorem that was only stated
in a note that was presented’'fscadémie des Sciencasthe session on 12 March 1883.

Consider a flexible, inextensible filament that is rethyi free whose element of length
dsis subject to the forcé dswhose projections onto three rectangular axes are:

Xds Yds Zds

in which X, Y, Z are functions of only the coordinatesy, z of the point of application.
Assume, moreover, that there exists a force fundfioire., that:

If one letsT denote the tension then the equations of equilibriumbsill
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dsl ds/ 0x
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One then deduces immediately that:
(2 T=-(U+h),

in which h is an arbitrary constant. Having said that, in orddmis the integrals of the
equations of equilibrium (1), one can proceed in the fotigviashion:

Consider the partial differential equation:
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which defines® as a function of x, y, z, and suppose that one has found a complete
integral:

Oxy.z,a,5 )

of that equation with two arbitrary constantsand £, which are distinct from h and the
constant that one can always add@o The integrals of the equations of equilibrigi)
are then the following ones:

4) — =0, — =0 — =s+h

in which a’, £, h’, are new constants, and s denotes the arc lengtheokquilibrium
curve, when counted positively in a convenientesens

In order to prove that theorem, we shall see, updawalg the method that Jacobi
pointed out in hid/orlesungen tUber Dynamikhat the values of, y, z as functions of
that one infers from equations (4) verify the differahgéiquations (1) and the equation:

2 2 2
ERGEGE
ds ds d
Let us first calculatelx/ ds dy/ ds dz/ds In order to do that, we must differentiate

equations (4) while considering y, z to be implicit functions ot that are defined by
those equations. We will then have:

0’0 dx 0’0 dy, 0°0 dz_
0a ox ds daoy ds 0ad z ds
0’0 dx 0’0 dy, 0°0 dz_
3Box ds 0Bdy ds 930 z ds
9’0 dx 0’0 dy, 0°0 dz_
ahaxds ah?ydsaﬁzds'

(5)

On the other hand, if we repla@ein the differential equation (3) with the function that
was found:

O XY, z,a 5h)

then the result of the substitution will be an identity, vy, z ; a, S, h. If we take the

partial derivatives of that identity (3) with respeata, £, andh, in succession, then we
will have:
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9’0 6@ 9’0 6@ 0’0 00 _
da dx dx aaay 6y 0adzdz
9’0 6@ 0’0 6G)+ 0°0 00 _
0 0x ox 6,86y dy 050 20z

9’0 6@ 9’0 6@ 0’0 00

—=U +h.
6h6x6x ahayay 0z z

(6)

Equations (5) are three equations of first-degresxihds dy/ ds dz/ ds and equations
(6) are of first degree Id® / 0x, 0© / dy, 0© / 0z . Furthermore, equations (5) are
deduced from equations (6) by substituting:

dx dy dz
U+h—, U+h—=, (U+h—,
( )OIS ( )OIS ( )OIS

for
00 00 00
ox oy 0z
One will then have:
(U + h)%_a_@ (U+h$’:a_@, (U + h)d_z_a_@
0x ds oy ds o0z

Upon taking the sum of the squares of those three egsatind taking relation (3)
into account, one will find the relation:

2 2 2
(6) (6 1=
ds ds d
which shows thas is indeed the arc length of the curve. If one reglace h with —T in
the equations above then they will become:

7) 19X _ 6_@ Tﬂ—_a_@ t9z__09

ds ~ ox’ ds oy’ ds o0z

Hence, upon differentiating these, one will get:

Q(ng __d0dx_0%0 dy 0% dz
ds ds x> ds dxdyds 9 ¥ zd

or, since:
g 100 dy_ 100 dz_ 100
ds U+hoax' ds U+hay’ ds U+h oz’




Appell — On the equilibrium of a flexible, inextensibikfent 4

upon differentiating:

E(ng:_ 1 (9°000 90 00 _9°0 90
ds ds U+h|{ 0x 0x 0xdydy 0> z0 2’

However, upon differentiating the identity (3) with resip® x, one will get:

0’000 _5°0 00 0000 _ U
0x* Ox 0xdyoy 0x0zd z ox

Hence, the preceding equation becomes:

E(TQ( = —a_U
ds ds ox
and one will similarly find that:
E(TQ = —a_U ,
ds\ ds oy
E(Td_z = —a_U ,
ds\ ds 0z

which are equations that are nothing but the equationguilftgium (1). The theorem is
thus proved.
Suppose that one would like to determine the constaritappaar in the integrals (4)
from the condition that the curve must pass throughpainots:
(%0, Yo, 20), (X1, Y1,2)

and that it must have a lendthetween those two points. Upon setting:

© =0 (%, Yo, % ; @, B, h),

@1:@(x1,y1, Z, 0’,,3, h),

One will then have to solve the three equations:

00, 09, _, 00, 09, _, 09, 00, _

da oa o op oh  oh

for a, S, h.
One can easily apply the method of integration thajusepresented to each of the
following special cases:
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1. The functiorJ depends upon only the distance from the poiny,(2) to a fixed
plane.

2. U depends upon only the distance from the poiny, () to a fixed axis.
3. U depends upon only the distance from the poiny, @) to a fixed point.
However, the calculations that one must carry othasé three cases will only repeat

those of Jacobi in hi¥orlesungen Uber Dynamilor example, Lecture XXIV; there
would be no point in repeating them here.



