
“Das Gleichgewicht und die Bewegung einer unendlich dünnen, beliebig gekrümmten elastischen Schale,” 
J. f. reine u. angew. Math. 78 (1874), 136-174. 

 
 

The equilibrium and motion of an infinitely-thin,  
arbitrarily-curved, elastic shell 

 
By H. Aron 

 
Translated by D. H. Delphenich 

_________ 
 
 

 Kirchhoff was the first to derive the true equations for small displacements and 
oscillations of infinitely-thin elastic plates from the general equations for elasticity in his 
treatise in volume 40 of this journal and calculated the sound figures on thin, circular 
discs.  In volume 56 of this journal, Kirchhoff likewise developed the theory of the 
motion and equilibrium of infinitely-thin rods for which finite changes of form are 
possible, without the elements suffering more than small dilatations, which is the single 
assumption in the general theory of elasticity, and at the same time we remarked that one 
could obtain his results for infinitely-thin plates in the same way.  Accordingly, in his 
Berlin dissertation that he submitted in 1860, Gehring treated the differential equations 
for the equilibrium and motion of infinitely-thin plates that suffer small deformations, 
and at the same time he allowed the plate to have a crystalline composition.  In his book 
Theorie der Elasticität fester Körper, Clebsch also presented the equations for finite 
deformations of thin plates whose elements experience only infinitely-small dilatations 
by applying the principles that Kirchhoff had developed in his treatment of thin rods and 
derived the equations for infinitely-small displacements from those equations.  Here, 
bolstered by the aforementioned work, I would like to present the general equations for 
the equilibrium and motion for arbitrarily-curved plates, and thus, for very thin elastic 
shells that can experience finite deformations, but for which the elements can enter into 
only infinitely-small dilatations, but then consider the case of infinitely-small 
displacements in particular. 
 
 

I. 
 

 Let the coordinates of the middle surface of the shell be X, Y, Z, when referred to a 
rectilinear, right-angled, fixed coordinate system.  Let those three coordinates be given as 
functions of two independent variables u, v.  Following Gauss, one then sets: 
 

 
X

u

∂
∂

= a, 
Y

u

∂
∂

= b, 
Z

u

∂
∂

= c, 
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X

v

∂
∂

= a′, Y

v

∂
∂

= b′, Z

v

∂
∂

= c′ ; 

furthermore: 
 a2 +   b2 +  c2 = E, 
 aa′ + bb′ + cc′ = F, 
 a′2 + b′2 + c′2 = G. 
 
 I would now like to choose the u, v-coordinates in such a way that u = const., v = 
const. define two families of curves on the surface that cut at right angles, or in other 
words, that F = 0.  Not only does such a coordinate system always exist on a surface, but 
an infinite number of them will exist on each surface, moreover.  If the u, v have that 
property and ds2 is the element of arc length on the surface then: 
 

ds2 = E du2 + G dv2. 
 

 s1 shall now denote the length of the curve v = const. that goes through the point u, v, 
and indeed as measured from its point of intersection with the curve u = 0 to the point u, 
v.  By contrast, s2 shall denote the length of the curve u = 0 that goes through the point u, 
v, from its point of intersection with the curve v = 0 to the point u, v. 
 One then has: 

2
1ds  = E du2, 2

2ds  = G dv2, 

 
because u (v, resp.) are constant along those curves, so du = 0 (dv = 0, resp.). 
 I employ two such families of curves u = const., v = const. in order to decompose the 
surface into a doubly-infinite family of small rectangles whose dimensions in width and 
length have the same order as the thickness of the shell.  The space coordinates of the 
center P of the rectangle that were X, Y, Z might be ξ, η¸ ζ after deformation.  Such an 
element suffers only infinitely-small deformations while the shell experiences finite 
changes of form, and the work that corresponds to those deformations can then be found 
from the general equations of elasticity. 
 To that end, I imagine that each element has a second coordinate system.  It is fixed 
in neither the element nor in space.  Its position for each form of the shell shall now be 
established.  Let its origin be at P, which is the center of the element considered, for the 
rest position of the shell, and let the x, y, and z axes have the directions of ds1, ds2, and n, 
resp., the last of which is the normal to the surface at the point in question.  Let x + u0, y 

+ v0, z + w0 then be the coordinates of any point of the element when referred to the 

indicated coordinate system.  x, y, z shall be the coordinates of that same point in the rest 
position of the element itself.  However, for curved surfaces, that rest position of the 
element itself is different from the rest position of the same element when it is coupled to 
the surface.  A pressure will then be exerted by one part on the other, and the element, 
which tries to remain in the tangent plane, will be first assigned its curvature in that way.  
Let the coordinates of the same material points relative to the coordinate system that was 
laid down be: 

x + u0 + u, y + v0 + v, z + w0 + w, 

after deformation. 
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 The position of the coordinate system in the element itself and the element when 
coupled to the shell during or after the deformation shall now be determined in such a 
way that u0 , v0 , w0 , u, v, w will contain neither common displacements nor common 

rotations.  Namely, if no common displacements are also considered then the origin of the 
coordinate system must be found at the point that was denoted by P, so for: 
 

x = 0, y = 0, z = 0, 
one must also have: 
 u0 = 0, v0 = 0, w0 = 0, 

 u  = 0, v  = 0, w  = 0. 

 
 However, common rotations shall also be omitted now.  When the position of a point 
in a body is given then the position of the body will be determined by the position of a 
plane that goes through that point and the direction of a line that goes through that point.  
Now, let the xy-plane be chosen in both varied positions in such a way that it defines a 
tangent plane to the surface at the point P into which the original xy-plane will go in both 
cases.  At the point P, one will then have: 
 

0

x

∂
∂
w

= 0, 0

y

∂
∂
w

= 0, 
x

∂
∂
w

= 0, 
y

∂
∂
w

= 0. 

 
 Furthermore, in both cases, the x-axis shall be the tangent to the curve that the 
original x-axis defines each time, and indeed, the positive sense shall be directed in the 
same way as the positive side of the original x-axis. 

 One also has 0

x

∂
∂
v

 = 0, 
x

∂
∂
v

 = 0 at the point P then.  However, since no displacement 

or rotation exists in the neighborhood of the point P then, there will be no common 
displacement or rotation a fortiori.  We have arrived at this in such a way that the 
following six conventions were assumed for the position of the coordinates each time, 
namely, that for: 
 x   = 0, y   = 0, z     = 0, 
one must have: 
 u0 = 0, v0 = 0, w0 = 0, 

  0

x

∂
∂
v

 = 0, 0

x

∂
∂
w

 = 0, 0

y

∂
∂
w

 = 0, 

or 
 u = 0, v = 0, w = 0, 

  
x

∂
∂
v

 = 0, 
x

∂
∂
w

 = 0, 
y

∂
∂
w

 = 0, 

resp. 
 Let the direction cosines of the x, y, and z axes after deformation with respect to the 
three fixed coordinate axes be: 
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α0, β0, γ0, α1, β1, γ1, α2, β2, γ2, 
 
resp., and then let ξ′, η′, ζ′ be the coordinates of the original point in the element with 
respect to the fixed coordinate axes.  Now, one can already see that the form of the shell 
will be determined completely when the position of the center point P of the individual 
element after deformation is given, and thus the coordinates ξ, η, ζ, as well.  It must be 
also determined uniquely by the nine quantities: 
 

α0, β0, γ0, α1, β1, γ1, α2, β2, γ2, 
 
and furthermore, ξ′, η′, ζ′ will already be determined for each point x, y, z in the element 
P, and also u, v, w, when the original form of the shell is known. 

 Six equations exist already for the nine direction cosines: 
 

(1)    

2 2 2
0 0 0 1 2 1 2 1 2
2 2 2
1 1 1 2 0 2 0 2 0
2 2 2
2 2 2 0 1 0 1 0 1

1, 0,

1, 0,

1, 0.

α β γ α α β β γ γ
α β γ α α β β γ γ
α β γ α α β β γ γ

 + + = + + =
 + + = + + =
 + + = + + =

 

 
 We shall now address the problem of finding three more equations that relate ξ, η, ζ 
to each other. 
 The point u, v has the coordinates ξ, η, ζ after deformation.  The point u + du, v then 
corresponds to the point: 

ξ +
u

ξ∂
∂

du, η +
u

η∂
∂

du, ζ +
u

ζ∂
∂

du 

after deformation, or since: 

du = 1ds

E
, 

ξ + 1ds

u E

ξ∂
∂

,  η + 1ds

u E

η∂
∂

,  ζ + 1ds

u E

ζ∂
∂

. 

 
 Since ξ, η, ζ are the coordinates of the origin of the element ds1 after deformation, 
these will be the final coordinates.  Now, ds1 goes to 1ds′  after the deformation, so we will 

have: 

1

1

ds

u E

ds

ξ∂
∂

′
,  

1

1

ds

u E

ds

η∂
∂

′
,  

1

1

ds

u E

ds

ζ∂
∂

′
 

 
as the direction cosines of the element after the deformation. 
 Now let ε1 be the dilatation in the direction of the x-axis, so we will have: 
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1

1

(1 )u E

ξ
ε

∂
∂ +

,  
1

1

(1 )u E

η
ε

∂
∂ +

,  
1

1

(1 )u E

ζ
ε

∂
∂ +

 

 
after deformation. 
 However, since the element 1ds′  also defines the change of form of the x-axis, whose 

direction cosines are α0, β0, γ0, we will have: 
 

  
1

1

(1 )u E

ξ
ε

∂
∂ +

= α0,  
1

1

(1 )u E

η
ε

∂
∂ +

= β0,  
1

1

(1 )u E

ζ
ε

∂
∂ +

= γ0 ; 

therefore: 

(2)  
u

ξ∂
∂

= 0 1(1 )Eα ε+ , 
u

η∂
∂

= 0 1(1 )Eβ ε+ , 
u

ζ∂
∂

= 0 1(1 )Eγ ε+ . 

 
 When we multiply each of these equations by: 
 

α0, β0, γ0, α1, β1, γ1, α2, β2, γ2, 
 
resp., and add them three at a time, we will get another form for those three equations that 
we will need later, namely: 

(2a)    

0 0 0 1

1 1 1

2 2 2

(1 ),

0,

0.

E
u u u

u u u

u u u

ξ η ζα β γ ε

ξ η ζα β γ

ξ η ζα β γ

∂ ∂ ∂ + + = + ∂ ∂ ∂


∂ ∂ ∂ + + = ∂ ∂ ∂
∂ ∂ ∂ + + = ∂ ∂ ∂

 

 We will similarly find: 
 

2

1

(1 )u G

ξ
ε

∂
∂ +

,  
2

1

(1 )u G

η
ε

∂
∂ +

,  
2

1

(1 )u G

ζ
ε

∂
∂ +

 

 
for the direction cosines of the elements ds2 after the deformation when we set its 
dilatation equal to ε2 .  However, the element ds2 will no longer define the η-axis after 
deformation, but will deviate from it by a small angle τ, and as a result, we will have: 
 

α1

2

1

(1 )u G

ξ
ε

∂
∂ +

+ β1

2

1

(1 )u G

η
ε

∂
∂ +

+ γ1

2

1

(1 )u G

ζ
ε

∂
∂ +

= cos τ or = 1 

 
when we neglect second-order quantities.  However, since the xy-plane should also 
contain the elements ds1 and ds2 after deformation, the x-axis should define an angle of 
90o – τ with the ds2 after deformation, so: 
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α0

2

1

(1 )u G

ξ
ε

∂
∂ +

+ β0

2

1

(1 )u G

η
ε

∂
∂ +

+ γ0

2

1

(1 )u G

ζ
ε

∂
∂ +

= cos (90 – τ) = sin τ = 1 

 
when we neglect second-order quantities.  By contrast, the z-axis will still define a right 
angle with ds2 after deformation, and we will have: 
 

α2

2

1

(1 )u G

ξ
ε

∂
∂ +

+ β2

2

1

(1 )u G

η
ε

∂
∂ +

+ γ1

2

1

(1 )u G

ζ
ε

∂
∂ +

= 0. 

 
 When these equations are converted, and the quantity τ ε is neglected as a second-
order quantity, that will give: 
 

(3a)    

0 0 0

1 1 1 1

2 2 2

,

(1 ),

0.

G
v v v

G
v v v

v v v

ξ η ζα β γ τ

ξ η ζα β γ ε

ξ η ζα β γ

∂ ∂ ∂ + + = ∂ ∂ ∂


∂ ∂ ∂ + + = + ∂ ∂ ∂
∂ ∂ ∂ + + = ∂ ∂ ∂

 

 
 After deformation, the x, y, z axes will define angles of inclination with the X, Y, Z 
axes whose cosines are: 

α0, β0, γ0, α1, β1, γ1, α2, β2, γ2 , 
 
resp.  Conversely, the X, Y, Z axes define angles of inclinations with the x, y, z axes 
whose cosines are: 

α0, α1, α2, β0, β1, β2, γ0, γ1, γ2 , 
resp.  Hence: 
 2 2 2

0 1 2α α α+ +  = 0, α0 β0 + α1 β1 + α2 β2 = 0, 

 2 2 2
0 1 2β β β+ + = 0, β0 γ0 + β1 γ1 + β2 γ2   = 0, 

 2 2 2
0 1 2γ γ γ+ +   = 0, γ0 α0 + γ1 α1 + γ2 α2  = 0. 

 
 If we multiply equations (3a) in succession by: 
 

α0, α1, α2, β0, β1, β2, γ0, γ1, γ2, 
 
resp., and add them three at a time then we will get: 
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(3)  

1 2 0

1 2 0

1 2 0

( (1 ) ),

( (1 ) ),

( (1 ) ).

G
v

G
v

G
v

ξ α ε α τ

η β ε β τ

ζ γ ε γ τ

∂ = + + ∂


∂ = + + ∂
∂ = + + ∂

 

 
 In fact, since the six equations (2) and (3) contain three quantities ε1, ε2, τ, in addition 
to the desired ones, they collectively define three new equations.  The quantities ε1, ε2, τ 
can be easily expressed in terms of ξ, η, ζ. 
 After squaring and adding (2), we will get an equation for ε1 : 
 

(4)     
2 2 2

u u u

ξ η ζ∂ ∂ ∂     + +     ∂ ∂ ∂     
= E (1 + ε1)

2. 

 
Upon squaring and adding (3) and neglecting second-order terms, it will follow that: 
 

(5) 
2 2 2

v v v

ξ η ζ∂ ∂ ∂     + +     ∂ ∂ ∂     
= G (1 + ε2)

2. 

 
When we multiply each two equations of (2) and (3) that have the same order and add 
them, while neglecting higher-order quantities: 
 

(6) 
u v u v u v

ξ ξ η η ζ ζ∂ ∂ ∂ ∂ ∂ ∂+ +
∂ ∂ ∂ ∂ ∂ ∂

= EGτ , 

 
or if, following Gauss, I let E′, F′, G′ denote the same thing for the surface ξ, η, ζ that E, 
G, F means for the surface X, Y, Z then it will follow that: 
 

E

E

′
= 1 + ε1 , 

G

G

′
= 1 + ε2 , 

F

EG

′
= τ . 

 
 One can already infer a remarkable conclusion from these equations.  If we neglect 
the small quantities ε1, ε2, τ in comparison to finite quantities then it will follow that: 
 

 
E

E

′
= 1, 

G

G

′
= 1, 

F

EG

′
= 0, 

 
 E = E′, G = G′, F = F′ = 0; 
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i.e., the shells remain mutually developable under all changes of form.  However, since 
have neglected small quantities in comparison to the finite ones, we can say only that the 
shells will remain mutually-developable surface under very small deviations. 
 We shall address the problem of obtaining ξ′, η′, ζ′, as well as u, v, w, as functions of 

u and v. 
 That initially yields three equations immediately. 
 Since ξ′, η′, ζ′ is the point: 
 

x + u0 + u, y + v0 + v, z + w0 + w 

 
in the element P whose coordinate origin is at ξ, η, ζ, and whose axes have the direction 
cosines: 

α0, β0, γ0, α1, β1, γ1, α2, β2, γ2 , 
one will have: 

(7)   
0 0 1 0 2 0

0 0 1 0 2 0

0 0 1 0 2 0

( ) ( ) ( ),

( ) ( ) ( ),

( ) ( ) ( ).

x y z

x y z

x y z

ξ ξ α α α
η η β β β
ζ ζ γ γ γ

′ = + + + + + + + + +
 ′ = + + + + + + + + +
 ′ = + + + + + + + + +

u u v v w w

u u v v w w

u u v v w w

 

 
 In order to obtain three more equations, I shall appeal to the following considerations: 
A system of values u, v corresponds to a certain system of values s1, s2 .  Hence, ξ, η, ζ, 
and the cosines of the angle of inclination of a point u, v can then be regarded as 
functions of and s1 and s2 .  ξ′, η′, ζ′ then correspondingly represent functions of: 
 

s1 + x + u0 , s1 + x + u0 , z. 

Therefore: 

 
1s

ξ∂
∂

 = 1 0

1 0 1

( )

( )

s x

s x s

ξ ∂ + +∂ ⋅
∂ + + ∂

u

u
 = 0

1 0 1

1
( )s x s

ξ  ∂∂ ⋅ + ∂ + + ∂ 

u

u
,  

 

 
x

ξ ′∂
∂

 = 1 0

1 0

( )

( )

s x

s x x

ξ ′ ∂ + +∂ ⋅
∂ + + ∂

u

u
 = 0

1 0

1
( )s x x

ξ ′ ∂∂  ⋅ + ∂ + + ∂ 

u

u
,  

 
since x is independent of s1. 
 However, ∂u0 / ∂x has the same order as the dilatation, so it is infinitely small and can 

be neglected in comparison to 1, while ∂u0 / ∂s1 is infinite of an even higher order, which 

shall be shown immediately below.  We can then set 
1s

ξ ′∂
∂

=
x

ξ ′∂
∂

, up to small quantities, or 

also: 
1

uE

ξ ′∂
∂

=
x

ξ ′∂
∂

, 

and it will follow similarly that: 
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1

uE

η′∂
∂

=
x

η ′∂
∂

, 
1

uE

ζ ′∂
∂

=
x

ζ ′∂
∂

, 

 
so it will likewise follow that: 
 

1

vG

ξ ′∂
∂

=
y

ξ ′∂
∂

, 
1

vG

η ′∂
∂

=
y

η ′∂
∂

, 
1

vG

ζ ′∂
∂

=
y

ζ ′∂
∂

. 

 
If we first differentiate the system of equations (7) with respect to x and then with respect 

to u and divide by E , and likewise differentiate with respect to y and then v and divide 

by G , then we will get twelve equations.  The left-hand sides of any two of them are 

equal, so when we set the right-hand sides equal to each other, we will eliminate the six 
derivatives of ξ′, η′, ζ′ and get six equations for the partial differential quotients of u0 + 

u, v0 + v, w0 + w with respect to x and y.  The first of those equations reads: 

 

0 0 0
0 1 2

( ) ( ) ( )
1 1 1

x x x
α α α∂ + ∂ + ∂ +     + + + + +     ∂ ∂ ∂     

u u v v w w
 

 

 = 0 0
0 0

( )1
( )x

u u uE

αξ α∂ ∂ +∂ + + + + ∂ ∂ ∂

u u
u u  

 + 01
0 1

( )
( )y

u u

α α ∂ +∂ + + +
∂ ∂

v v
v v  

 + 02
0 2

( )
( )z

u u

α α ∂ +∂ + + + ∂ ∂ 

w w
w w . 

 
 We can now neglect u0 + u, v0 + v, w0 + w in comparison to x, y, and z.  However, 

0( )

u

∂ +
∂
u u

, etc., can also be neglected in comparison to 0
( )

x

∂ +
∂
u u

, so one will have: 

 

0( )

u

∂ +
∂
u u

= 0

1

( )
E

s

∂ +
∂
u u

. 

 

 In 0

1

( )

s

∂ +
∂
u u

, the numerator is the difference between the displacements inside of the 

element in the direction of the x-axis at two corresponding points of neighboring 
elements.  The denominator ∂s1 is the distance to the center of that element, when 

measured along the x-axis.  In 0( )

x

∂ +
∂
u u

, the numerator likewise means a difference 

between displacements inside of an element and in general at two neighboring points of 
the same element here, but it will still have the same order as above.  By contrast, the 
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denominator is an infinitely-small part of ds1 .  Hence, 0

1

( )

s

∂ +
∂
u u

 is very small and can be 

neglected in comparison to 0( )

x

∂ +
∂
u u

; the same thing will be true for the corresponding 

expressions, so it will follow that: 
 

0 0 0
0 1 2

( ) ( ) ( )
1

x x x
α α α∂ + ∂ + ∂ + + + + ∂ ∂ ∂ 

u u v v w w
= 0 1 21

x y z
u u u uE

α α αξ ∂ ∂ ∂∂ + + + ∂ ∂ ∂ ∂ 
, 

 

0 0 0
0 1 2

( ) ( ) ( )
1

x x x
β β β∂ + ∂ + ∂ + + + + ∂ ∂ ∂ 

u u v v w w
= 0 1 21

x y z
u u u uE

β β βη ∂ ∂ ∂∂ + + + ∂ ∂ ∂ ∂ 
, 

 

0 0 0
0 1 2

( ) ( ) ( )
1

x x x
γ γ γ∂ + ∂ + ∂ + + + + ∂ ∂ ∂ 

u u v v w w
= 

0 1 21
x y z

u u u uE

γ γ γζ ∂ ∂ ∂∂ + + + ∂ ∂ ∂ ∂ 
. 

 
 Correspondingly, differentiating with respect to y and v will yield: 
 

0 0 0
0 1 2

( ) ( ) ( )
1

y y y
α α α ∂ + ∂ + ∂ ++ + + ∂ ∂ ∂ 

u u v v w w
= 0 1 21

x y z
v v v vG

α α αξ ∂ ∂ ∂∂ + + + ∂ ∂ ∂ ∂ 
, 

 

0 0 0
0 1 2

( ) ( ) ( )
1

y y y
β β β ∂ + ∂ + ∂ ++ + + ∂ ∂ ∂ 

u u v v w w
= 0 1 21

x y z
v v v vG

β β βη ∂ ∂ ∂∂ + + + ∂ ∂ ∂ ∂ 
, 

 

0 0 0
0 1 2

( ) ( ) ( )
1

y y y
γ γ γ ∂ + ∂ + ∂ ++ + + ∂ ∂ ∂ 

u u v v w w
= 

0 1 21
x y z

v v v vG

γ γ γζ ∂ ∂ ∂∂ + + + ∂ ∂ ∂ ∂ 
. 

 
 When we multiply the first and last three equations in succession by: 
 

α0, β0, γ0, α1, β1, γ1, α2, β2, γ2 , 
 
resp., and add them three at a time, while recalling (2a) and (3a), we will get: 
 

(7a)   

0 1 1 1 2 2 2
1 0 0 0 0 0 0

0 0 0 0 2 2 2
1 1 1 1 1 1

0 0 0 0
2 2 2

( ) 1 1
,

( ) 1 1
,

( ) 1 1

y z
x u u u u u uE E

x z
x u u u u u uE E

x
x u u uE E

α β γ α β γε α β γ α β γ

α β γ α β γα β γ α β γ

α β γα β γ

∂ + ∂ ∂ ∂ ∂ ∂ ∂   = + + + + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

∂ + ∂ ∂ ∂ ∂ ∂ ∂   = + + + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂  

∂ + ∂ ∂ ∂ = + + + ∂ ∂ ∂ ∂ 

u u

v v

w w 1 1 1
2 2 2 ;z

u u u

α β γα β γ








 ∂ ∂ ∂  + + ∂ ∂ ∂  
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furthermore: 
 

(7b)    

0 1 1 1 2 2 2
0 0 0 0 0 0

0 0 0 0 2 2 2
2 1 1 1 1 1 1

0 0 0 0
2 2 2

( ) 1 1
,

( ) 1 1
,

( ) 1

y z
y u u u v v vG G

x z
y v v v v v vG G

x
y v v vG

α β γ α β γτ α β γ α β γ

α β γ α β γε α β γ α β γ

α β γα β γ

∂ + ∂ ∂ ∂ ∂ ∂ ∂   = + + + + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

∂ + ∂ ∂ ∂ ∂ ∂ ∂   = + + + + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂  

∂ + ∂ ∂ ∂ = + + + ∂ ∂ ∂ ∂ 

u u

v v

w w 1 1 1
2 2 2

1
.z

v v vG

α β γα β γ








 ∂ ∂ ∂  + + ∂ ∂ ∂  

 

 
 Since x, y, z are themselves of order one, it will suffice to consider the coefficients x, 
y, z up to first-order quantities, since the error that will arise in that way will be of order 
two. 
 Now, from equation (2), one has, up to small quantities: 
 

  α0 = 
1

uE

ξ∂
∂

, β0 = 
1

uE

η∂
∂

, γ0 = 
1

uE

ζ∂
∂

, 

 

  α1 = 
1

vG

ξ∂
∂

, β1 = 
1

vG

η∂
∂

, γ1 = 
1

vG

ζ∂
∂

. 

 
 In analogy with Gauss’s notation, except that I shall choose German symbols in place 
of the Latin ones in order to indicate that the surface is different from the one in the rest 
configuration, I shall now set: 

  
u

ξ∂
∂

= a, 
u

η∂
∂

= b, 
u

ζ∂
∂

= c, 

 

  
v

ξ∂
∂

= a′, 
v

η∂
∂

= b′, 
v

ζ∂
∂

= c′. 

 It will then follow that: 
 

1 1 1
0 0 0u u u

α β γα β γ∂ ∂ ∂+ +
∂ ∂ ∂

 = 
G G G

u u uE E E

     ′ ′ ′
∂ ∂ ∂          
     + +

∂ ∂ ∂

a b c

a b c
 

  = 

1

1 1
( )

G

u u u uEG E

 
∂   ′ ′ ′∂ ∂ ∂   ′ ′ ′+ + + + + ∂ ∂ ∂ ∂ 

a b c
a b c aa bb cc . 

 However, one has: 
aa′ + bb′ + cc′ = F′ = 0, 

 
up to small quantities, as was shown above; moreover, one has: 
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2

u v

ξ∂
∂ ∂

= 
2

v u

ξ∂
∂ ∂

, 

so 

u

′∂
∂
a

=
v

∂
∂
a

, 

hence: 

1 1 1
0 0 0u u u

α β γα β γ∂ ∂ ∂+ +
∂ ∂ ∂

=
1

u u uEG

∂ ∂ ∂ + + ∂ ∂ ∂ 

a b c
a b c  = 

1

2

E

vEG

′∂
∂

; 

 
however, E′ was equal to E (up to small quantities), so: 
 

(8) 1 1 1
0 0 0u u u

α β γα β γ∂ ∂ ∂+ +
∂ ∂ ∂

= 
1

2

E

vEG

∂
∂

. 

 
 In a similar way, one finds that: 
 

(9)  0 0 0
1 1 1v v v

α β γα β γ∂ ∂ ∂+ +
∂ ∂ ∂

= 
1

2

G

uEG

∂
∂

. 

 Now, one has: 
 α2 a  + β2 b  + γ2 g = 0, 

 α2 a′ + β2 b′ + γ2 g′ = 0, 

so: 
α2 : β2 : γ2 = (bc′ – cb′) : (ca′ – ac′) : (ab′ – ba′) , 

 
and when I introduce a notation here that also corresponds to Gauss’s notation, one will 
have: 

α2 : β2 : γ2 = A : B : C. 

 
 Now, 2 2 2

2 2 2α β γ+ +  = 1, so it follows that: 

 

α2 =
2 2 2+ +
A

A B C
,  β2 =

2 2 2+ +
B

A B C
, γ2 =

2 2 2+ +
C

A B C
. 

 
 Now, A2 + B2 + C2 = E′ G′ – F′ 2, or (up to small quantities): 

 
A

2 + B2 + C2 = EG, 

so: 

α2 =
EG

A
,  β2 =

EG

B
, γ2 =

EG

C
, 

and therefore: 
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 0 0 0
1 1 1v v v

α β γα β γ∂ ∂ ∂+ +
∂ ∂ ∂

 = 
1

u u uEG E E E

      ∂ ∂ ∂+ +           ∂ ∂ ∂       

a b c
A B C  

 

=

1

1 1
( )

E

u u u uE G EG

 
∂   ∂ ∂ ∂   + + + + + ∂ ∂ ∂ ∂ 

a b c
A B C Aa Bb Cc . 

 
However, one has: 

Aa + Bb + Cc = 

′ ′ ′

a b c

a b c

a b c

. 

 
 The determinant is zero, since two equal rows occur in it.  However: 
 

u u u

∂ ∂ ∂+ +
∂ ∂ ∂
a b c

A B C  

 
is what Gauss called D, when it is written in Latin symbols.  The Gaussian notation shall 
remain for the surface in the rest configuration, while for the deformed surface ∆, ∆′, ∆″ 
shall be used instead of D, D′, D″.  If we apply a similar process repeatedly then we will 
get: 

(10)  

0 0 0
2 2 2

0 0 0
2 2 2

1 1 1
2 2 2

1 1 1
2 2 2

1
,

1
,

1
,

1
.

u u u E G

v v v E G

u u u G E

u u u G E

α β γα β γ

α β γα β γ

α β γα β γ

α β γα β γ

∂ ∂ ∂ + + = ∆ ∂ ∂ ∂

 ∂ ∂ ∂ ′+ + = ∆ ∂ ∂ ∂
 ∂ ∂ ∂ ′+ + = ∆
 ∂ ∂ ∂


∂ ∂ ∂ ′′+ + = ∆ ∂ ∂ ∂

 

 Furthermore, since: 
α1 α0 + β1 β0 + γ1 γ0 = 0, ..., 

one will have: 
 

0 0 0
1 1 1u u u

α β γα β γ∂ ∂ ∂+ +
∂ ∂ ∂

= − 1 1 1
0 0 0u u u

α β γα β γ∂ ∂ ∂ + + ∂ ∂ ∂ 
= − 

1

2

E

vEG

∂
∂

, ... 

 
It will then follow that: 

 0( )

x

∂ +
∂
u u

= 
2

y E
z

vE G E EG

∂ ∆⋅ −
∂

+ ε1 , 
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 0( )

x

∂ +
∂
v v

= −
2

x E
z

v EGE G

′∂ ∆⋅ −
∂

, 

 

 0( )

x

∂ +
∂
w w

= x y
EGE EG

′∆ ∆+ , 

 

 0( )

y

∂ +
∂
u u

= −
2

y G
z

u EGG E

′∂ ∆⋅ −
∂

+ τ , 

 

 0( )

y

∂ +
∂
v v

= −
2

x G
z

uG E G EG

′′∂ ∆⋅ −
∂

+ ε2 , 

 

 0( )

y

∂ +
∂
w w

= x y
EG G EG

′ ′′∆ ∆+ . 

 
 However, for the case of the equilibrium configuration of the shell, one will have: 
 
 u = 0, v = 0, w = 0, 

 
 ε1 = 0, ε2 = 0, τ = 0, 
 
 ∆ = D, ∆′ = D′, ∆″ = D″, 
 
and upon introducing these special values, we will get: 
 

0u

x

∂
∂

= 
2

y E Dz

vE G E EG

∂⋅ −
∂

, ..., 

 
When we substitutes these expressions in the ones above, we will get: 
 

 
x

∂
∂
u

= 
D

z
E EG

− ∆
+ ε1 , 

x

∂
∂
v

= 
D

z
EG

′ ′− ∆
, 

x

∂
∂
w

= − D D
x y

EGE EG

′ ′− ∆ − ∆− , 

 

 
y

∂
∂
u

= 
D

z
EG

′ ′− ∆
+ τ , 

y

∂
∂
v

= 
D

z
G EG

′′ ′′− ∆
+ ε2 , 

y

∂
∂
w

= − D D
x y

EG G EG

′ ′ ′′ ′′− ∆ − ∆− , 

 
moreover. 
 Although the expressions for u0 + u, v0 + v, w0 + w above were not integrable, the 

ones for u, v, w are integrable.  That implies that: 
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 u = 
D D

zx zy
EGE EG

′ ′− ∆ − ∆−  + ε1 x + τ y + u1 , 

 

 v = 
D D

zx zy
EG G EG

′ ′ ′′ ′′− ∆ − ∆−  + ε2 y + v1 , 

 

 w = −
2 2

2 2

D x D D y
xy

EGE EG G EG

′ ′ ′′ ′′− ∆ − ∆ − ∆− − + w1 , 

 
in which u1 , v1 , w1 can be functions of z.  In order to determine them, we appeal to the 

following considerations: That part of the external forces that acts upon the outer surface 
or the interior of an element, while the remaining ones keep the same distribution, is 
inessential for defining the form of the shell, and therefore for the change of form of the 
elements, as well.  It influence is felt in the forces that act upon a part of the outer surface 
of the element that is not free – i.e., on its boundary.  We must then demand that the 
displacements that one finds must satisfy the equations of elasticity for the interior and 
for the free outer surface of the elements when we assume that no external forces act 
upon the interior and the outer surface, and that will indeed suffice to determine the 
functions u1 , v1 , w1 .  Namely, from the equations of elasticity for the interior, one will 

have: 
 

yx z
XX X

x y z

∂∂ ∂+ +
∂ ∂ ∂

= 0,  yx z
YY Y

x y z

∂∂ ∂+ +
∂ ∂ ∂

= 0,  yx z
ZZ Z

x y z

∂∂ ∂+ +
∂ ∂ ∂

= 0, 

 
and for the outer surface: 

Xz = 0,    Yz = 0,    Zz = 0, 
 
since the z-axis is the normal to the outer surface. 
 Now, one has: 

 Xx = 2k 
x x y z

  ∂ ∂ ∂ ∂+ Θ + +  ∂ ∂ ∂ ∂  

u u v w
, 

 

 Yy = 2k 
y x y z

  ∂ ∂ ∂ ∂+ Θ + +  ∂ ∂ ∂ ∂  

v u v w
, 

 

 Zz = 2k 
z x y z

  ∂ ∂ ∂ ∂+ Θ + +  ∂ ∂ ∂ ∂  

w u v w
, 

 

 Zy = Yz = k 
z y

 ∂ ∂+ ∂ ∂ 

v w
, 
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 Zx = Xz = k 
x z

∂ ∂ + ∂ ∂ 

w u
, 

 

 Xy = Yx = k 
y x

 ∂ ∂+ ∂ ∂ 

u v
. 

Now, I set: 

x y z

∂ ∂ ∂+ +
∂ ∂ ∂
u v w

= J. 

One will then have: 

J = 
D D

z z
E EG G EG

′′ ′′− ∆ − ∆−  + ε1 + ε2 + 1

z

∂
∂
w

, 

 

Xx = 2k 1

D
z J

E EG
ε

 − ∆ + + Θ  
 

, 

 

Yy = 2k 2

D
z J

G EG
ε

 ′′ ′′− ∆ + + Θ  
 

, 

 

  Zz = 2k 1 J
z

∂ + Θ ∂ 

w
, 

 

  Zy = Yz = k 1

z

∂
∂
v

, 

 

  Zx = Xz = k 1

z

∂
∂
u

, 

 

  Xy = Yx = k
2( )D

z
EG

τ
′ ′− ∆ + 

 
, 

so one must have: 

zX

z

∂
∂

= 0,  zY

z

∂
∂

= 0, zZ

z

∂
∂

= 0 

in the interior, or: 
2

1
2z

∂
∂
u

= 0, 
2

1
2z

∂
∂
v

= 0, 

 
2 2

1 1
2 2

D D

z zE EG G EG

 ′′ ′′∂ ∂− ∆ − ∆+ Θ + +  ∂ ∂ 

w w
= 0, 

 
and for the free outer surface: 
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1

z

∂
∂
u

= 0, 1

z

∂
∂
v

= 0, 

 

1 1
1 2

( ) ( )

2 2

D h D h

z zE EG G EG
ε ε

 ′′ ′′∂ ∂− ∆ − ∆± Θ + + + +  ∂ ∂ 

w w
= 0, 

 
if h is the thickness of the shell, and the surface considered is the middle surface of the 
shell, such that one will have z = ± h / 2 for the free outer surface. 
 It follows from the equations for the interior that, in general: 
 

1

z

∂
∂
u

= const., 1

z

∂
∂
v

= const., 

 
and it follows from the equations for the outer surface that these constants are 0, so, in 
general: 

1

z

∂
∂
u

= 0, 1

z

∂
∂
v

= 0, 

and therefore: 
u1 = const., v1 = const., 

 
and since one must have u = 0, v = 0 for x = y = z = 0, it follows that: 

 
2

1
2z

∂
∂
w

 = − 
1

D D

E EG G EG

 ′′ ′′Θ − ∆ − ∆+  + Θ  
, 

so: 

1

z

∂
∂
w

 = − 
1

D D
z z

E EG G EG

 ′′ ′′Θ − ∆ − ∆+  + Θ  
 + const., 

but for z = ± h / 2: 

1

z

∂
∂
w

 = 1 21 2

D D
h h

E EG G EG
ε ε

 ′′ ′′Θ − ∆ − ∆+ + +  + Θ  
∓ , 

so, in general: 

1

z

∂
∂
w

 = − 1 21

D D
z z

E EG G EG
ε ε

 ′′ ′′Θ − ∆ − ∆+ + +  + Θ  
, 

 

w1 = − 
2 2

1 2

( ) ( )

1 2 2

D z D z
z z

E EG G EG
ε ε

 ′′ ′′Θ − ∆ − ∆+ + +  + Θ  
 + const., 

 
but since w = 0 for x = y = z = 0, one will also have w1 = 0, and this constant will also be 

equal to zero, so we will get: 
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(11) 

1

2

2 2

2 2

2 2

,

,

2 2

.
1 2 2

D D
zx zy x y

EGE EG

D D
zx zy y

EG G EG

D x D D y
xy

EGE EG G EG

D z D z
z z

E EG G EG

ε τ

ε

ε ε

′ ′− ∆ − ∆ = + + +

 ′ ′ ′′ ′′− ∆ − ∆= + +

  ′ ′ ′′ ′′− ∆ − ∆ − ∆ = − + +    


  ′′ ′′Θ − ∆ − ∆− + + +   + Θ  

u

v

w

 

 
 Now, these displacements have the form that makes them satisfy the equations of 
elasticity for the interior and the free outer surface when we can neglect the external 
forces.  As far as the outer surface that is not free is concerned – so the boundary of the 
elements – stresses will appear as a result of those displacements.  However, they are 
always equal to the external forces that act in that case, so here they will be the forces 
that are exerted upon the rest of the shell, since action and reaction are equal.  Therefore, 
the equations of elasticity are also satisfied on the boundary, and since no common 
displacements or rotations will exist for: 
 
 x = 0, y = 0, z = 0, 
 u = 0, v = 0, w = 0, 

 
x

∂
∂
v

= 0, 
x

∂
∂
w

= 0, 
y

∂
∂
w

= 0, 

 
as one sees, u, v, w will, in fact, be displacements that come about merely as a result of 

the elastic forces.  The stresses that appear as a result of these displacements when one 
sets: 

J = 
x y z

∂ ∂ ∂+ +
∂ ∂ ∂
u v w

= 1 2

1

1

D D
z z

E EG G EG
ε ε

 ′′ ′′− ∆ − ∆+ + +  + Θ  
 

will be: 

(12)    

1

2

2 ,

2 ,

x

y

D
X k z J

E EG

D
Y k z J

G EG

ε

ε

  − ∆= + + + Θ     


 ′′ ′′− ∆ = + + + Θ   
 

 

 
 Zz = 0, 
 Zy = Yz = 0, 
 Zx = Yz = 0, 

 Xy = Yx = k 
2( )D

z
EG

τ
′ ′− ∆ + 

 
. 
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 The work that must be done in order to deform an element dx dy dz while the shell 
goes from its initial configuration to its second one will be represented by: 
 

F = k 
2 22 2

1

2x y z z y

    ∂ ∂ ∂ ∂ ∂   + + + +       ∂ ∂ ∂ ∂ ∂       

u v w v w
 

+ 
2 22

1 1

2 2z x y x x y z

   ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + + + Θ + +     ∂ ∂ ∂ ∂ ∂ ∂ ∂      

u w u v u v w
, 

 
when this is multiplied by dx dy dz, so the total work that is necessary to deform the 
entire shell will be represented by: 
 

1 2F ds ds dz∫∫∫ = F EG du dvdz∫∫∫ . 

 
 The fact that one can represent the element of each layer, and not just the middle 
layer, by ds1 ds2 dz follows from the fact that the shell is assumed to be infinitely thin, so 
the element of the layer of the middle surface will be represented by ds1 ds2 z if the 
thickness is z. 
 
 

II. 
 

 We can further represent the general equations of motion with the help of Hamilton’s 
principle when we know the potential Ω of the external forces that act on the interior and 
the boundary, as well as the external conditions that the shell should be subjected to 
under its deformations (we have already developed the internal conditions that originate 
in the assumption of continuity): 
 

0 = 21
2( )v F EG du dv dz dtδ ρ λϕ µψ− Ω − + + +∫∫∫ ∫ ⋯ , 

 
in which v is the velocity of a point at time t, ρ is the density at that point, and ϕ = 0, ψ = 
0, etc., are the external, as well as internal, conditions that the surface is subjected to, 
while λ and µ might mean undetermined coefficients. 
 However, since we have not assumed that the external forces have a potential, we 
shall introduce the virtual moment of the external forces that act in the interior and on the 
boundary in place of − δΩ, but I would first like to convert the part that originates in the 
internal work: 

 δF = 
F F F

x y z
x y z

δ δ δ∂ ∂ ∂ ∂ ∂ ∂+ +∂ ∂ ∂∂ ∂ ∂∂ ∂ ∂
∂ ∂ ∂

u u u

u u u
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  + 
F F F

x y z
x y z

δ δ δ∂ ∂ ∂ ∂ ∂ ∂+ +∂ ∂ ∂∂ ∂ ∂∂ ∂ ∂
∂ ∂ ∂

v v v

v v v
 

 

  +
F F F

x y z
x y z

δ δ δ∂ ∂ ∂ ∂ ∂ ∂+ +∂ ∂ ∂∂ ∂ ∂∂ ∂ ∂
∂ ∂ ∂

w w w

w w w
. 

Now: 

  
F

x

∂
∂∂
∂
u

= Xx , 
F

y

∂
∂∂
∂
u

= Xy , 
F

z

∂
∂∂
∂
u

= Xz , 

 

  
F

x

∂
∂∂
∂
v

= Yx , 
F

y

∂
∂∂
∂
v

= Yy , 
F

z

∂
∂∂
∂
v

= Yz , 

 

  
F

x

∂
∂∂
∂
w

= Zx , 
F

y

∂
∂∂
∂
w

= Zy , 
F

z

∂
∂∂
∂
w

= Zz . 

Now, from (12): 
 

Xz = 0,  Yz = 0,  Zx = 0,  Zy = 0,  Zz = 0, 
 

so what will remain when we set Xy = Yx = Tz will be: 
 

δF = x z yX T Y
x y x y

δ δ δ ∂ ∂ ∂ ∂+ + + ∂ ∂ ∂ ∂ 

u u v v
, 

so from (11): 

F EG du dv dz dtδ ∫∫∫ ∫ = 

1

2

2

x x

z x

y y

z
X X EG

E
z

T T EG du dvdz dt
EG

z
Y Y EG

G

δ δε

δ δτ

δ δε

 ∆− + 
 
 ∆− + 
 
 ′′∆
 − +
 

∫∫∫ ∫ . 

 
 The integration over z is easy to perform with the use of equations (12).  I set: 
 

(13)    

1 2

1 2

1 2

, ,

, ,

, ,

x x

y y

z z

X dz X X z dz X

Y dz Y Y z dz Y

T dz T T z dz T

 = =

 = =


= =

∫ ∫

∫ ∫

∫ ∫
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and when we carry out the variations further, and thus introduce, from equation (10): 
 

 −
E

∆
 = 2 2 2

0 0 0G
u u u

α β γα β γ∂ ∂ ∂ + + ∂ ∂ ∂ 
, 

 

 
2

EG

′− ∆
 = 2 2 2 2 2 2

1 1 1 0 0 0G E
u u u v v v

α β γ α β γα β γ α β γ∂ ∂ ∂ ∂ ∂ ∂   + + + + +   ∂ ∂ ∂ ∂ ∂ ∂   
, 

 

 
G

′′− ∆
 = 2 2 2

1 1 1E
v v v

α β γα β γ∂ ∂ ∂ + + ∂ ∂ ∂ 
. 

 
By contrast, if ε1, ε2, and τ are expressed as in equations (2a) and (3a) then we will get: 
 

2 2 2 2 2 2
2 0 0 0 0 0 0

2 2 2 2 2 2
2 1 1 1 1 1 1

2 2 2 2 2 2
2 0 0 0 0 0 0

2
2 1

X G
u u u u u u

T G
u u u u u u

T E
v v v v v v

Y E
v

α β γ δα δβ δγδα δβ δγ α β γ

α β γ δα δβ δγδα δβ δγ α β γ

α β γ δα δβ δγδα δβ δγ α β γ

α δα

∂ ∂ ∂ ∂ ∂ ∂ + + + + + ∂ ∂ ∂ ∂ ∂ ∂ 

∂ ∂ ∂ ∂ ∂ ∂ + + + + + + ∂ ∂ ∂ ∂ ∂ ∂ 

∂ ∂ ∂ ∂ ∂ ∂ + + + + + + ∂ ∂ ∂ ∂ ∂ ∂ 

∂+
∂

2 2 2 2 2
1 1 1 1 1

1 0 0 0 0 0 0

1 0 0 0 0 0 0

1 1 1 1 1

v v v v v

X G
u u u u u u

T E
v v v v v v

Y E
v v v v

β γ δα δβ δγδβ δγ α β γ

ξ η ζ δξ δη δζδα δβ δγ α β γ

ξ η ζ δξ δη δζδα δβ δγ α β γ

ξ η ζ δξδα δβ δγ α

∂ ∂ ∂ ∂ ∂ + + + + + ∂ ∂ ∂ ∂ ∂ 

∂ ∂ ∂ ∂ ∂ ∂ + + + + + + ∂ ∂ ∂ ∂ ∂ ∂ 

∂ ∂ ∂ ∂ ∂ ∂ + + + + + + ∂ ∂ ∂ ∂ ∂ ∂ 

∂ ∂ ∂ ∂+ + + +
∂ ∂ ∂ ∂ 1 1

du dv dt

v v

δη δζβ γ

 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 ∂ ∂  + + ∂ ∂   

∫∫∫ . 

 
 We must next convert the last three summands in each row, which contain the 
variations of the differentials: 
 

2
2X G du dv

u

δα∂
∂∫∫  = 2 0 2 2 0

2

( ) ( )X G X G
du dv du dv

u u

α δα α δα∂ ∂
−

∂ ∂∫∫ ∫∫ . 

 
 In order to be able to further convert the integral: 
 

2 0 2( )X G
du dv

u

α δα∂
∂∫∫ , 
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I must extend a theorem here that is well-known for the plane so that it will be true for 
arbitrary surfaces. 
 u and v shall now mean the rectangular coordinates of an arbitrary surface, and f shall 
be a function of u and v.  We would now like to examine what: 
 

1 1

0 0

u v

u v

f
du dv

v

∂
∂∫ ∫  

 
will mean when it is taken over a closed surface patch and f is single-valued, continuous, 
and finite on the entire surface.  If I denote that integral by J then one will first have: 
 

J = 
1

0
1 0( )

u

u
f f du−∫ , 

 
in which I have used f0 and f1 to denote the values of f when v is replaced with v0 (v1, 
resp.), or when I multiply by the same quantities and divide: 
 

J = 
1

0

01
1 0

1 0

u

u

ff
E du E du

E E

 
− 

 
 

∫ . 

 
Here, E0 and E1 once more mean the values of E when v is replaced with v0 (v1, resp.). 
 However, our coordinate system was a rectangular one, so: 
 

ds2 = E du2 + G dv2. 

 The arc length of the curve for v = const., which we have denoted by s1, is then: 
 
 2

1ds = E du2, 

 

 ds1 = E du. 

 
 The sign of the root is still arbitrary, because I have still not established the sense of 
the curve that will be reckoned as positive.  Now, s1 shall be reckoned to be positive on 

the side for which u increases.  When du is positive, ds1 shall be positive, so E  must 

take the + sign, and therefore one must have: 
 

J = 
1

0

1
1 1

1 01

u

u

f f
ds ds

E E

    
 −         

∫ , 

 
in which the positive sign is chosen, and the indices 0 and 1 shall mean that the 
corresponding expression shall be taken for the values v = v0 and v = v1, resp. 
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 I would now like to introduce ds, which is the arc length element of the boundary 
curve of the surface over which one integrates.  I must now establish the sense in which 
ds is reckoned to be positive. 
 I shall next give some definitions and theorems for the plane that still preserve their 
meaning for arbitrarily-curved surfaces, because the elements of any surface can be 
regarded as planar. 
 When a and b are two directions in a plane, I will say that b lies to the left of a when 
one needs to rotate a through less than two right angles to the left in order for it to 
coincide with the b direction, and otherwise it will lie to the right of b.  It follows from 
this that when a lies to the right of b, b will lie to the right of a, and vice versa.  It further 
follows that if a and b lie on the same side of c, and a defines a right angle with c, then a 
will define an acute angle with b.  By contrast, they will define an obtuse angle when 
they lie on different sides of c.  ds1 and ds2 (viz., the arc lengths of the curves v = const., u 

= const.) were defined as E du ( E dv, resp.), where the roots are taken to be positive; 

in that way, the directions of ds1 and ds2 will also be determined. 
 I would now like to prove that ds2 lies on the same side of ds1 over the entire surface.  
I would first like to prove it for the elements of a well-defined curve. 
 The curve v = c + dc, in which c is a constant and dc means a small quantity, cannot 

cut the curve v = c.  The perpendicular distance between both curves is ds2 = G dc, so 

this must be zero at the point of intersection, and since dc is not equal to 0, one must have 
G = 0.  However, since G is a sum of three squares, they must be zero individually; that 
would give three equations for the two variables u and v.  Such points can therefore not 
exist on the surface, in general.  However, if such a point were present on a surface then 
one would have to make any sort of slit through the point and then consider the surface 
patches that would arise in that way.  Those exceptional points are the ones at which the 
surface has an edge or a vertex, so the curvature will be: 
 

k = 
2

2 2( )

DD D

EG F

′′ ′−
−

, 

 
in Gaussian notation.  F = 0 for us, so E = 0 or G = 0 would mean that the surface is 
infinitely curved at the points in question; i.e., it has an edge or a vertex.  However, we 
shall not concern ourselves with those discontinuities. 
 However, if the curve v = c + dc did not cut the curve v = c then that would mean that 
ds2 would always lie on the same side of ds1 along the curve v = c.  However, a curve u = 
c1 does not cut the curve u = c1 + dc1 either (i.e., ds1 lies on the same side of ds2 along the 
curve u = c1), so conversely, ds2 would lie on the same side of ds1 along those curves.  
However, if it were to lie on different sides of ds1 along two curves u = c1 and u = C1 then 
it would also have to lie on different sides of ds1 at the point of intersection of that curve 
with the curve v = c.  Nonetheless, ds2 must likewise lie on the same side of ds1, so ds2 
must lie on the same side of ds1 over the entire surface; I shall call that side the plus side.  
Now, I shall establish the sense in which the boundary curve is taken to be positive in 
such a way that if I think of lines piercing the surface through any point of the boundary 
curve then they should always lie on the plus side of ds (viz., the element of the boundary 
curve that is assumed to be positive) after they pierce it, or what amounts to the same 



Aron – The equilibrium and motion of an infinitely-thin, arbitrarily-curved, elastic shell  24 

thing, that the direction of the lines that pierce the surface should lie on the plus side of 
the direction ds.  It will then be meaningful for me to speak of ds1, ds2, ds.  I shall let (s, 
v) denote the angle that ds defines at any point of the boundary curve with ds1, namely, 
the arc length element of the curve v = const. at that point. 
 ds and ds1 define the hypotenuse and cathetus of a right triangle, which define either 
the angle (s, v) or (s, v) – π / 2, so: 
 

ds1 = ± ds cos (s, v). 
 

 One can show that the positive sign must be taken for pieces of the boundary curve 
for which v has smaller values than it does in the surface patches that are bounded, while 
the negative sign must be taken for pieces on which v has larger values than it does on the 
surface patches that are bounded.  For the smaller values of v, the curve u = const. will 
increase in the surface, so ds2 will have the direction of the lines that enter the surface, 
and it will then lie on the plus side of ds.  However, ds2 always lies on the plus side of 
ds1, so conversely ds and ds1 lie on the same side of ds2 .  ds1 defines a right angle with 
ds2, so ds will define an acute angle with ds1 .  Wherever: 
 

v = v0 , 
one will then have: 

ds1 = ds cos (s, v), 
 

while if the curve u = const. exists on the boundary pieces where v has larger values than 
it does in the surface that they bound then ds2 will have the direction of the lies that exit 
the surface, so it will lie on the minus side of ds.  However, ds2 always lies on the plus 
side of ds1 , so ds and ds1 will lie on different sides of ds2 .  ds1 and ds2 define a right 
angle, so ds1 and ds will define an obtuse angle, so at the location v = v1 : 
 

ds1 = − ds cos (s, v), 
so one will have: 

 1

1

f
ds

E

 
  
 

= − 
1

cos ( , )
f

ds s v
E

 
  
 

, 

 

 1

0

f
ds

E

 
  
 

=   
0

cos ( , )
f

ds s v
E

 
  
 

, 

and therefore: 
 

1

0

1
1 1

1 01

u

u

f f
ds ds

E E

    
 −         

∫ = − 
1

0

1 0

cos ( , ) cos ( , )
u

u

f f
ds s v ds s v

E E

    
 −            

∫  

 
over the entire boundary curve. 
 Ultimately, the integral over the surface is then: 
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1 1

0 0

u v

u v

f
du dv

v

∂
∂∫ ∫ = − cos ( , )

f
ds s v

E∫ , 

 
in which the latter integral is taken over the entire boundary curve. 
 Furthermore, one has: 
 

1 1

0 0

u v

u v

f
du dv

v

∂
∂∫ ∫ = 

1

0
2 2

1 0

v

v

f f
ds ds

G G

    
 −            

∫ , 

 

in which G  must be taken to be positive. 

 Now, one has ds2 = ± ds cos (s, u), if (s, v) means the angle that ds (viz., the element 
of the boundary curve) makes with ds2 (viz., the element of the curve u = const.).  Here, 
one must likewise take the positive or negative sign according to whether (s, u) is an 
acute or obtuse angle, resp.  For the smaller values of u, the curves v = const. enter into 
the surface increasing, so ds1 will have the direction of the entering curves in the surface, 
so it will lie on the plus side of ds.  Hence, ds will lie on the minus side of ds1, but ds2 
will lie on the plus side of ds1, and then ds and ds2 will lie on different sides of ds ; ds1 
and ds1 define a right angle, so ds and d2 will define an obtuse angle.  We have: 
 

ds2 = − ds cos (s, u) 
 

wherever u = u0, while the curves v = const. will leave the surface increasing wherever u 
= u1 .  ds2 lies on the minus side of ds, so ds will lie on the plus side of ds2 .  However, 
ds2 always lies on the plus side of ds1, so ds and ds2 will lie on the same side of ds1 .  ds1 
and ds2 define a right angle, so ds and ds2 will define an acute angle.  Here, one has: 
 

ds2 = ds cos (s, u), 
and it will then follow that: 

 2

1

f
ds

G

 
  
 

=    
1

cos ( , )
f

ds s u
E

 
  
 

, 

 

 2

0

f
ds

G

 
  
 

= − 
0

cos ( , )
f

ds s u
G

 
  
 

, 

so ultimately, one will have: 
 

1 1

0 0

u v

u v

f
du dv

u

∂
∂∫ ∫  = cos ( , )

f
ds s u

G∫ . 

 
 We would now like to employ these theorems in order to convert the pieces that 
originate in the internal work that were pointed out already. 
 One has, e.g.: 
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2
2 0X G du dv

u

δαα ∂
∂∫∫ = 2 0 2 2 0

2

( ) ( )X G X G
du dv du dv

u u

α δα α δα∂ ∂
−

∂ ∂∫∫ ∫∫ , 

 
so: 

2
2 0X G du dv

u

δαα ∂
∂∫∫ = 2 0

2 0 2 2

( )
cos ( , )

X G
X ds s u du dv

u

αα δα δα∂
−

∂∫ ∫∫ , 

 
and thus the summands that follow from the internal work will be: 
 

(I) − 

2 2
2 2 1 1 0

2 2
2 2 1 1

X G T E X G T E
u v u v

T G Y E Y E
u v v

α α ξ ξ δα

α α ξ δα

 ∂ ∂ ∂ ∂ + + +  ∂ ∂ ∂ ∂   
 

∂ ∂ ∂  + + +  ∂ ∂ ∂  

∑∫∫∫ du dv dt, 

 
in which the sign ∑ means, here and in what follows, that two more similar summands 
are added in which the symbols β and η or γ and ζ appear in place of α and ξ, resp. 
 

(II)   +

2 2 2 2 2 0 2 1
2

1 0 1 0 1 1

( ) ( ) ( ) ( )

( ) ( ) ( )

X G T G T E Y E

u u v v

X G T E Y E

u v v

α α α α δα

α α α δξ

  ∂ ∂ ∂ ∂
+ + +   ∂ ∂ ∂ ∂  

 
 ∂ ∂ ∂ + + +   ∂ ∂ ∂  

∑∫∫∫ du dv dt, 

 

(III) − 2 0 2 1 2 0 2 0 2

1 0 1 0 1 1

[ cos( , ) cos ( , ) cos ( , ) cos( , )]

[ cos ( , ) cos( , ) cos( , )]

X s u T s u T s v Y s u

X s u T s v Y s u

α α α α δα
α α α δξ

+ − − 
 + − − 

∑∫∫ ds dt. 

 
 The work that originates in the external forces shall now be calculated, and first of all 
for the forces that act upon the points in all layers inside the shell whose coordinates are 
ξ′, η′, ζ′ .  Let A, B, C be the components of the force that act at a point ξ′, η′, ζ′ when 
they are taken along the three axes.  Hence, the work that they do will be: 
 

( )A B C EGδξ δη δζ′ ′ ′+ +∫∫∫ ∫ du dv dz dt . 

 
 A, B, C must be given as functions of  ξ, η, ζ, z.  Now, it will follow from equation 
(7) when one sets x = 0 and y = 0 (which one can do as long as one includes only all 
possible values of u, v in the integrals above when one neglects the quantities u1, v1, w1, 

which are small in comparison to higher-order quantities) that: 
 

δξ′ = δξ + z δα2 ,  δη′ = δη + z δβ2 ,   δζ′ = δζ + z δγ2 . 
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 In general, however, one can also neglect z δα2 in comparison to δξ, etc., since z is, in 
fact, infinitely small; however, there is a case in which that is not true. 
 Namely, one has: 

α0 δα0 + α1 δα1 + α2 δα2 = 0 
Now, one has: 

 α0 = 
1

uE

ξ∂
∂

, 

 

 α1 = 
1

vG

ξ∂
∂

, 

up to small quantities. 
 If I regard E and G as constant during the deformation, which is correct up to small 
quantities, then it will follow that: 

 
1 1

E u u G v v

ξ δξ ξ δξ∂ ∂ ∂ ∂+
∂ ∂ ∂ ∂

+ α2 δα2 = 0. 

 

 Now, 
u

δξ∂
∂

and 
v

δξ∂
∂

have the same order as δξ, in general, so δα2 will have the same 

order as δξ, and therefore z δα2 can be neglected in comparison to δξ.  That conclusion is 
not permissible in one case, namely, when α2 = 0; i.e., when the X-axis is parallel to the 
surface.  The same thing will be true for δβ2 and δγ2, in comparison to δη and δζ, resp., 
when the Y or Z axis is parallel to the surface, so, e.g., for an elastic plate that is parallel 
to the XY-plane or when the elastic shell defines cylinder whose axis is parallel to the Z-
axis.  Meanwhile, later on, we will also have to convert the equations for the general case, 
as well, under which even that exceptional case will have to be brought under 
consideration for each point of an arbitrary shell.  We would not like to neglect z δα2, 
etc., in comparison to δξ for the general case as well, and therefore the work that is done 
by the external forces under the deformation of the shell will be: 
 

2 2 2( )A B C Az Bz Cz EGδξ δη δζ δα δβ δγ+ + + + +∫∫∫ ∫ du dv dz dt . 

 
 The forces that act at the points of the outer surface of the shell, when one excludes 
the boundary, might have the components A′, B′, C′ in the directions of the axes.  Hence, 
the work that they do will be: 
 

2 2 2( )A B C A z B z C z EGδξ δη δζ δα δβ δγ′ ′ ′ ′ ′ ′+ + + + +∫∫∫ du dv dt . 

 
 I now set: 

 Adz∫ + A′     = A1, B dz∫ + B′    = B1, C dz∫ + C′    = C1, 

 

 Az dz∫ + A′ z = A2, Bz dz∫ + B′ z = B2, Cz dz∫ + C′ z = C2 . 
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 One can conclude from the type of summation that the forces that are applied to the 
outer surface will act like the forces that are distributed inside, and conversely. 
 The work that originates in those forces is then: 
 

(IV)  1 1 1 2 2 2 2 2 2( )A B C A B C EGδξ δη δζ δα δβ δγ+ + + + +∫∫∫ du dv dt . 

 
 However, external forces can also act on the boundary.  They might have the 
components U, V, W in the directions of the axes.  The work that they do will then be: 
 

( )U V Wδξ δη δζ′ ′ ′+ +∫∫∫ ds dz dt 

or 

2 2 2( )U V W Uz Vz Wzδξ δη δζ δα δβ δγ+ + + + +∫∫∫ du dv dt . 

 If I set: 

 U dz∫  = U1, V dz∫  = V1, W dz∫  = W1, 

 

 Uz dz∫  = U2 , Vz dz∫  = V2 , Wz dz∫  = W2  

 
then that work will be: 
 

(V)  1 1 1 2 2 2 2 2 2( )U V W U V Wδξ δη δζ δα δβ δγ+ + + + +∫∫∫ ds dz dt . 

 
 We now come to the part that originates in the vis viva: 
 

2 2 2

1
2 EG

t t t

ξ η ζδ ρ
 ′ ′ ′∂ ∂ ∂     + +      ∂ ∂ ∂       

∫∫∫ ∫ du dv dz dt, 

 
in which ρ means the density. 
 Now, one has: 
 

2

1
2 dt

t

ξδ
′∂ 

 ∂ 
∫ = dt

t t

ξ ξ′ ′∂ ∂∂
∂ ∂∫ = 

1

0

2

2

t

t

dt
t t

ξ ξδξ δξ′ ′∂ ∂ ′ ′− ∂ ∂ 
∫ ∫ . 

 
 The first summand on the right is zero, since δξ′ is zero on the boundary because the 
path is varied, but not the starting and ending points. 
 Now: 

ξ′  = ξ + α2 z, 
so: 

2

2t

ξ ′∂
∂

 = 
22

2
2 2

z

t t

αξ ∂∂ +
∂ ∂

, 

and furthermore: 
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δξ′  = δξ + z δα2 , 
and therefore: 

2

2t

ξ ′∂
∂

δξ′  = 
2 22 2

22 2
2 22 2 2 2

z z z
t t t t

α αξ ξδξ δα δξ δα∂ ∂∂ ∂+ + +
∂ ∂ ∂ ∂

. 

 
 We would now like to make use of the assumption that the surface ξ, η, ζ is the 
middle surface of the shell.  If h is the thickness of the shell then we must integrate for z 
from – h / 2 to + h / 2, and after performing that integration, we will get: 
 

 
2/ 2

2/ 2

h

h
dz

t

ξ
−

∂
∂∫ = 

2

2

h

t

ξ∂
∂

, 
2/ 2

2/ 2

h

h
z dz

t

ξ
−

∂
∂∫ = 0, 

 

 
2/ 2

2
2/ 2

h

h
z dz

t

α
−

∂
∂∫ = 0, 

2/ 2
2

2/ 2

h

h
z dz

t

α
−

∂
∂∫ = 

22
2

212

h

t

α∂
∂

. 

 
 The vis viva then yield the following summands: 
 

(VI)   − 
22 2

2
22 212

h
h EG

t t

αξ δξ δα ρ ∂∂ + ∂ ∂ 
∑∫∫∫ du dv dt. 

 
 We now have to calculate the summands that originate in the internal condition 
equations.  These conditions, in terms of the varied quantities that exist, are: 
 
  2 2 2

0 0 0α β γ+ + − 1 = 0, α1 α2 + β1 β2 + γ1 γ2 = 0, 

  2 2 2
1 1 1α β γ+ + − 1 = 0, α2 α0 + β2 β0 + γ2 γ0 = 0, 

  2 2 2
2 2 2α β γ+ + − 1 = 0, α0 α1 + β0 β1 + γ0 γ1 = 0, 

 

  1 1 1u u u

ξ η ζα β γ∂ ∂ ∂+ +
∂ ∂ ∂

 = 0, 

  2 2 2u u u

ξ η ζα β γ∂ ∂ ∂+ +
∂ ∂ ∂

= 0, 

  2 2 2v v v

ξ η ζα β γ∂ ∂ ∂+ +
∂ ∂ ∂

= 0. 

 
 These nine condition equations are supplied with undetermined coefficients.  I 
multiply the first three by L0, L1, L2, resp., the second three by M0, M1, M2, resp., and the 
last three by N0, N1, N2 , resp. 
 The coefficients of the variations of the cosines of the inclination angles can be 
written down immediately; they define the summands: 
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(VII) + 

0 0 1 2 2 1 2

1 1 2 0 0 2 0 1

2 2 0 1 1 1 1 2 2

(2 )

2

2

L M M

L M M N EG
u

L M M N N
u v

α α α δα
ξα α α δα

ξ ξα α α δα

 
 + +
 
 ∂ + + + +  ∂  
 ∂ ∂ + + + + +  ∂ ∂  

∑∫∫∫ du dv dt. 

 
 By contrast, we convert the integral that includes the variations of the derivatives of 
ξ, η, ζ in the repeatedly-applied way into an integral over the surface and an integral over 
the boundary curve and obtain: 
 

(VIII) − 0 1 1 2 2 2( ) ( ) ( )EGN EGN EGN

u u v

α α α δξ
  ∂ ∂ ∂ + +   ∂ ∂ ∂   

∑∫∫∫ du dv dt, 

 

(IX) + ( ){ }0 1 1 2 2 2cos ( , ) cos( , ) cos( , )N E s u N E s u N G s vα α α δξ+ −∑∫∫ ds st. 

 
 The internal condition equations will assume a different form for the boundary.  
Initially, only the variations δα2, δβ2, δγ2, δξ, δη, δζ will come under consideration, so 
we will also require only the condition equations: 
 

2 2 2
0 0 0α β γ+ + = 1, 

 

  2 2 2u u u

ξ η ζα β γ∂ ∂ ∂+ +
∂ ∂ ∂

= 0, 

  2 2 2v v v

ξ η ζα β γ∂ ∂ ∂+ +
∂ ∂ ∂

= 0. 

 
 However, the last two condition equations are only apparently two.  They say that the 
z-axis of each element should be normal to the middle surface.  However, for the 
boundary, that can only mean that the z-axis of the boundary element should remain 
normal to the boundary and that will give only the equation: 
 

  2 2 2s s s

ξ η ζα β γ∂ ∂ ∂+ +
∂ ∂ ∂

= 0. 

 
I multiply the first condition equation by P and then by Q, so the coefficients of the 
variations δα2, δβ2, δγ2 can be written down directly: 
 

(X)     2 2 22P Q
s

ξα α δα ∂  +  ∂  
∑∫∫ ds dt . 

By contrast, one has: 
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2Q
s

δξα ∂
∂∫ ds = (Q α2 δξ) − 2( )Q

s

α∂
∂∫ δξ dt. 

 
In the first part, one must subtract the value at the starting point of the boundary curve 
from the one at the end point.  However, the curve is closed, so that part will be 0, and we 
ultimately get the part that is endowed with δξ, δη, δζ : 
 

(XI)    − 2( )Q

s

α δξ∂ 
 ∂ 

∑∫ ds dt. 

 
 

III. 
 

 The sum of the integrals (I), (II), etc., up to (XI) must be 0.  When one sets the 
coefficients of the individual variations that relate to the interior equal to zero, one will 
get twelve equations that refer to the interior of the middle surface and six that refer to 
the position of the boundary points.  I shall set down only the first, fourth, etc. of them.  
The other ones will be obtained in such a way that one replaces the α, ξ, A, and U in them 
with the symbols β, η, B, and V or γ, ζ, C, and W, resp. 
 

Main equations 
 

(1-3) 

2
1 0 1 0 1 1

1 2

0 1 1 2 2 2

( ) ( ) ( )

( ) ( ) ( )
0,

X G T E Y E
A h EG

u v v t

EG N EG N EG N

u u v

α α α ξρ

α α α

 ∂ ∂ ∂  ∂+ + + −  ∂ ∂ ∂ ∂  

 ∂ ∂ ∂

− − − = ∂ ∂ ∂

 

 

(4-6)     

3 2
2 0 2 1 2 0 2 1 2

2 2

2 2 0 1 1 0 1 2

( ) ( ) ( ) ( )

12

2 0,

X G T G T E Y E h
A EG

u u v v t

L M M N N EG
u v

α α α α ρ α

ξ ξα α α

 ∂ ∂ ∂ ∂  ∂+ + + + −  ∂ ∂ ∂ ∂ ∂  


∂ ∂  + + + + + =  ∂ ∂ 

 

 

(7-9)     

2 2
2 2 1

1 1 2 0 0 2 02 0,

Y E T G Y E
v u v

L M M N EG
u

α α ξ

ξα α α

 ∂ ∂ ∂ + +  ∂ ∂ ∂  


∂  + + + + =  ∂ 

 

 

(10-12) 

( )

2 2
2 2 1 1

0 0 1 2 2 12 0.

X G T E X G T E
u v u v

L M M EG

α α ξ ξ

α α α

 ∂ ∂ ∂ ∂ − + + +  ∂ ∂ ∂ ∂ 
 + + + =
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Boundary equations. 
 

(1-3) 
1 0 1 0 1 0 1

2
0 1 1 2 1 2

cos ( , ) cos ( , ) cos ( , )

( )
cos( , ) cos ( , ) cos ( , ) 0,

X s u T s u Y s v U

Q
N E s u N E s u N G s v

s

α α α
αα α α

− + + +


∂ + + − − = ∂

 

 

(4-6) 
2 0 2 1 2 0

0 1 2 2 2

cos( , ) cos ( , ) cos ( , )

cos ( , ) 2 0.

X s u T s u T s v

Y s u U P Q
s

α α α
ξα α α

− − +


∂ + + + + = ∂

 

 
 The twelve main equations can be reduced to five. 
 I multiply equations (10-12) in sequence by α2, β2, γ2, resp., and add them, and when 
one considers equations (2a) and (3a), it will then follow that: M1 = 0. 
 If one multiplies those equations by and α1, β1, γ1, resp., and adds them then when 
one considers equations (8), (9), (10) and neglects quantities of higher order, it will 
follow that: 

2 2
1 2

X T
T EG M EG

GEG

′ ′′∆ ∆+ − + = 0. 

 
 If one multiplies equations (7-9) by α2, β2, γ2, resp., and adds them then it will follow 
that M0 = 0. 
 If one multiplies the same equations by α2, β2, γ2 , resp., and adds them then it will 
follow that: 

2 2
2 0

Y T
M EG N E EG

EEG

′∆ ∆+ + +  = 0. 

 
 It then follows from both equations that: 
 

0N E EG= 2 2 2 2
1

X T Y T
T EG

G GEG EG

′ ′′ ′∆ ∆ ∆ ∆+ − + − . 

 
 We shall not need equations (7)-(11), inclusive, from now on. 
 We now multiply equations (1)-(3), inclusive, by: 
 

α0 , β0 , γ0 , α1 , β1 , γ1 , α2 , β2 , γ2 , 
 

resp., add them each time, and, at the same time, replace 0( )X G

u

α∂
∂

, …: 

 

10
1 0

( )X G
X G

u u

α α ∂∂ +
∂ ∂

, ..., 
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then when we consider equations (8), (9), (10) and neglect quantities of higher order, it 
will follow that: 
 

Main equations 
 

(1)  

2 2 2

0 0 02 2 2

1 1
1 0 1 0 1 0

01
1 2

( ) ( )
( )

0,
22

h EG
t t t

X G T E
EG A B C

u v
NY G E

N N
u vG E E

ξ η ζρ α β γ

α β γ

  ∂ ∂ ∂+ +  ∂ ∂ ∂ 
 ∂ ∂ − + + − − ∂ ∂

′∂ ∂ ∆ ∆ + + − − − = ∂ ∂


 

 

(2)  

2 2 2

1 1 12 2 2

1 1 1
1 1 1 1 1 1

0
1 2

( )
( )

2 2

( )
0,

h EG
t t t

Y E X TE G
EG A B C

v v uE G

N EG
N N

u E E

ξ η ζρ α β γ

α β γ

  ∂ ∂ ∂+ +  ∂ ∂ ∂  
 ∂ ∂ ∂ − + + − + − ∂ ∂ ∂
 ∂ ′ ′′∆ ∆ + − − =
 ∂

 

 

(3)  

2 2 2

2 2 22 2 2

1 2 1 2 1 2 1 1

0 2
1 0

( )

( ) ( )
0.

h EG
t t t

EG A B C X Y
E G

N EG N EG
T N

u vEG G

ξ η ζρ α β γ

α β γ

  ∂ ∂ ∂ + +  ∂ ∂ ∂ 
 ′′∆ ∆ − + + − −

 ′ ′ ∂ ∂∆ ∆ − + + + =
 ∂ ∂

 

 
 If we multiply equations (4-6) successively by α0 , β0 , γ0 , α1 , β1 , γ1 , resp., and add 
them then it will follow that: 
 

(4)  

2 2 22
2 2 2

0 0 02 2 2

2 2
2 0 2 0 2 0

2 2
1

12

( ) ( )
( )

0,
2 2

h
EG

t t t

X G T E
EG A B C

u v
T YE G

N E G
v uE G

α β γρ α β γ

α β γ

  ∂ ∂ ∂+ +  ∂ ∂ ∂ 
 ∂ ∂ − + + − − ∂ ∂

∂ ∂ − + − = ∂ ∂

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(5)  

2 2 22
2 2 2

1 1 12 2 2

2 2
2 1 2 1 2 1

2 2
2

12

( ) ( )
( )

0.
2 2

h
EG

t t t

Y E T G
EG A B C

v u
X TE G

N G E
v uE G

α β γρ α β γ

α β γ

  ∂ ∂ ∂+ +  ∂ ∂ ∂ 
 ∂ ∂ − + + − − ∂ ∂

∂ ∂ + − − = ∂ ∂


 

 
Boundary equations 

 
 If we multiply equations (1-3) of the boundary equations by: 
 

α0 , β0 , γ0 , α1 , β1 , γ1 , α2 , β2 , γ2 , 
 
resp., add them three at a time, and at the same time set: 
 

 2

z

α∂
∂

= 2 2u v

u z v z

α α∂ ∂∂ ∂+
∂ ∂ ∂ ∂

= 2 1 2 21 1s s

u s v sE G

α α∂ ∂ ∂ ∂+
∂ ∂ ∂ ∂

 

 

  = 2 2cos ( , ) cos ( , )s v s u

u vE G

α α∂ ∂+
∂ ∂

 

then we will set: 

(1)   
1 0 1 0 1 0 1 1( ) cos ( , ) cos ( , )

cos ( , ) cos ( , ) 0,

U V W X s u T s v

Q Q
s v s u

EGE EG

α β γ+ + − +
 ′∆ ∆ + + =


 

 

(2)   
1 1 1 1 1 1 1 0( ) cos ( , ) cos ( , )

cos ( , ) cos ( , ) 0,

U V W Y s v N E s u

Q Q
s v s u

EG G EG

α β γ + + + +
 ′ ′′∆ ∆ + + =


 

 

(3)  (U1 α2 + V1 β2 + W1 γ2) + N1 E cos (s, u) – N2 G cos (s, v) − 
Q

s

∂
∂

= 0. 

 
We multiply equations (4-6) by α0 , β0 , γ0 , α1 , β1 , γ1 , resp., and observe that: 
 

s

ξ∂
∂

= 
u v

u s v s

ξ ξ∂ ∂ ∂ ∂+
∂ ∂ ∂ ∂

= 1 21 1s s

u s v sE G

ξ ξ∂ ∂∂ ∂+
∂ ∂ ∂ ∂

 

 

= 
cos ( , ) cos ( , )s v s u

u vE G

ξ ξ∂ ∂+
∂ ∂

. 
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 It will follow that: 
 
(4)   U2 α0 + V2 β0 + W2 γ0 − X2 cos (s, u) + T2 cos (s, v) + Q cos (s, v) = 0, 
 
(5)   U2 α1 + V2 β1 + W2 γ1 + Y2 cos (s, v) − T2 cos (s, u) + Q cos (s, u) = 0. 
 Here: 

X1 , Y1 , Z1 ,   X2 , Y2 , Z2 
 
are calculated from equations (12) on page 18 and substituted. 
 Since the integrations should be extended from – h / 2 to + h / 2, we should get: 
 

 X1 =
2

1

kh

+ Θ
((1 + 2Θ) ε1 + Θ ε2), 

 

 Y1 =
2

1

kh

+ Θ
(Θ ε1 + (1 + 2Θ) ε2), 

 
 T1 = kh τ, 
 

 X2 =
3

(1 2 )
6(1 )

kh D D

E EG G EG

 ′′ ′′− ∆ − ∆+ Θ + Θ + Θ   
, 

 

 Y2 =
3

(1 2 )
6(1 )

kh D D

E EG G EG

 ′′ ′′− ∆ − ∆Θ + + Θ + Θ   
, 

 

 T2 = 
3

6

kh D

EG

′ ′− ∆
. 

 
 It follows from this, in turn, that: 
 

0N EG= − 
3

6

kh D D D D
kh G

E GEG E
τ ′ ′ ′′ ′ ′ ′′∆ − ∆ ∆ − ∆ + + 

 
. 

 
 If the shell is a plate, so the middle surface is a plane, then D = D′ = D″ = 0.  These 
will then include the derivatives of the cosines of the inclination angles of the normal 
with the axes with respect to u and v as factors, but that angle will be constant for the 
plane, so their derivatives are 0.  If one further sets E = 1, G = 1 then the coordinate 
system that is assumed on the plate will be an orthogonal rectilinear one, so if we ignore 
the acceleration then our equations will then go over to the ones that Clebsch (*) gave for 
the equilibrium of an infinitely-thin elastic plate that suffers finite deformations. 
 

                                                
 (*) Theorie der Elasticität, §§ 69, 92, and 93. 



Aron – The equilibrium and motion of an infinitely-thin, arbitrarily-curved, elastic shell  36 

Infinitely-small oscillations in the neighborhood of the equilibrium position 
 

 Whereas the coordinates ξ, η, ζ of each point were determined as functions of u, v, 
and t for finite changes of form by our equations, in the case where the shell executes 
only infinitely-small oscillations, one can convert the equations in such a way that the 
coordinates of the displacements of each points inside and normal to the surface will 
enter into them. 
 To begin with, the quantities that appear in those equations: 
 
 ε1 , ε2 , τ , 
 
 ∆, ∆′, ∆″ 
 
should be expressed in terms of the stated displacements.  To that end, the things that 
were denoted by α0 , β0 , γ0 , α1 , β1 , γ1 , α2 , β2 , γ2 during the deformation shall be 
denoted by a0, b0, c0, a1, b1, c1, a2, b2, c2 for the surface in the equilibrium configuration. 
 I now set: 
 α0 = a0 + 0α ′ , β0 = b0 + 0β ′ , γ0 = c0 + 0γ ′ , 
 α1 = a1 + 1α ′ , β1 = b1 + 1β ′ , γ1 = c1 + 1γ ′ , 
 α2 = a2 + 2α ′ , β2 = b2 + 2β ′ , γ2 = c2 + 2γ ′  
 
for small deformations of the shell, in which the symbols that are expressed with a prime 
mean small quantities. 
 Now, since the α0 , ... satisfy equations (1) on page 4, but the a0, … must satisfy 
similar equations, when one ponders the fact that 0α ′ , … mean small quantities and that 

one would like to neglect quantities of higher order, it will follow that: 
 

0 0 0 0 0 0a b cα β γ′ ′ ′+ +  = 0, 1 1 1 1 1 1a b cα β γ′ ′ ′+ +  = 0, 2 2 2 2 2 2a b cα β γ′ ′ ′+ +  = 0, 

 
 0 1 0 1 0 1 1 0 1 0 1 0a b c a b cα β γ α β γ′ ′ ′ ′ ′ ′+ + + + +    = 0, 

 1 2 1 2 1 2 2 1 2 1 2 1a b c a b cα β γ α β γ′ ′ ′ ′ ′ ′+ + + + +    = 0, 

 2 0 2 0 2 0 0 2 0 2 0 2a b c a b cα β γ α β γ′ ′ ′ ′ ′ ′+ + + + +  = 0. 

 
 One will satisfy those equations when one sets: 
 
 0α ′  = p1 a2 – p2 a1 , 0β ′  = p1 b2 – p2 b1 , 0γ ′  = p1 c2 – p2 c1 , 

 1α ′  = p2 a0 – p0 a2 , 1β ′  = p2 b0 – p0 b2 , 1γ ′  = p2 c0 – p0 c2 , 

 2α ′  = p0 a1 – p1 a0 , 2β ′  = p0 b1 – p1 b0 , 2γ ′  = p0 c1 – p1 c0 , 

 
in which p0 , p1 , p2 mean small quantities.  Now, from equation (10) on page 12, one will 
have: 
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E G

∆
= 0 0 0 0 0 0

2 2 2 2 2 2

( ) ( ) ( )
( ) ( ) ( )

a b c
a b c

u u u

α β γα β γ
′ ′ ′∂ + ∂ + ∂ +′ ′ ′+ + + + +

∂ ∂ ∂
, 

 

 
E G

∆
= 0 0 0 0 0 02 2 2

2 2 2 2 2 2 2 2 2

a b c a b c
a b c a b c

u u u u u u u u u

α β γ α β γ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ′ ′ ′+ + + + + + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

, 

 
so it will follow, with the help of equations (8), (9), and (10), that: 
 

E G

∆
= 01 2

2

pp p DD E

u vE G G E EG

′∂ ∂+ − −
∂ ∂

. 

 
 It will follow similarly that: 
 

 
E G

′∆
 = 01 2

2

pp p DD G

v uE G G E EG

′′′ ∂ ∂+ − +
∂ ∂

, 

 

 
G E

′∆
 = 01 2

2

pp p DD G

v uE G G E EG

′′′ ∂ ∂+ − +
∂ ∂

, 

 

 
E G

′∆
 = 1 2 1

2

p p D pD E

u vG E E G EG

′ ∂ ∂− + −
∂ ∂

, 

 

 
G E

′′∆
 = 0 2 1

2

p p D pD G

v uG E E G EG

′′′ ∂ ∂− + +
∂ ∂

. 

 
 Now, from equation (2) on page 5: 
 

u

ξ∂
∂

= 0 0 1( ) (1 )a Eα ε′+ + , … 

 
 I set ξ = X + ξ′, η = Y + η′, ζ = Z + ζ′, in which ξ′, η′, ζ′ mean the small changes in 
the coordinates under deformation.  Hence: 
 

X

u u

ξ ′∂ ∂+
∂ ∂

= 1 2 2 1 1 0 1( ) (1 ) (1 )p a p a E a Eε ε− + + + . 

 Now: 
X

u

∂
∂

= 0a E , 

 
so it will follow that when one neglects second-order quantities: 
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1

uE

ξ ′∂
∂

= p1 a2 – p2 a1 + a0 ε1 ; 

it likewise follows that: 

  
1

uE

η′∂
∂

= p1 b2 – p2 b1 + b0 ε1 ; 

  
1

uE

ζ ′∂
∂

= p1 c2 – p2 c1 + c0 ε1 . 

 
 In a similar way, it follows from equations (3) on page 6 that: 
 

  
1

vG

ξ ′∂
∂

= p2 a0 – p0 a2 + a1 ε2 + a0 τ, 

  

  
1

vG

η ′∂
∂

= p2 b0 – p0 b2 + b1 ε2 + b0 τ, 

 

  
1

vG

ζ ′∂
∂

= p2 c0 – p0 c2 + c1 ε2 + c0 τ . 

 
 If one multiplies the equations above by a0, b0, c0 in succession and adds them then it 
will follow that: 

  1Eε = 0 0 0a b c
u u u

ξ η ζ′ ′ ′∂ ∂ ∂+ +
∂ ∂ ∂

. 

 
 It will follow similarly that: 
 

  2Gε  =   1 1 1a b c
v v v

ξ η ζ′ ′ ′∂ ∂ ∂+ +
∂ ∂ ∂

, 

 

  τ =   0 0 0

1
a b c

v v vG

ξ η ζ′ ′ ′∂ ∂ ∂ + + ∂ ∂ ∂ 
− p2 , 

 

  p0 = − 2 2 2

1
a b c

v v vG

ξ η ζ′ ′ ′∂ ∂ ∂ + + ∂ ∂ ∂ 
, 

 

  p1 =   2 2 2

1
a b c

u u uE

ξ η ζ′ ′ ′∂ ∂ ∂ + + ∂ ∂ ∂ 
, 

 

  p2 = − 1 1 1

1
a b c

u u uE

ξ η ζ′ ′ ′∂ ∂ ∂ + + ∂ ∂ ∂ 
. 
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 It is essential to simplify these expressions.  I imagine that the geometric locus of the 
middle surface of the shell is fixed in its rest configuration.  The actual middle surface 
oscillates about it, as the equilibrium configuration.  Let u, v be any point of that middle 
surface in the equilibrium configuration.  After deformation, I imagine that an altitude 
has been dropped from that point to the fixed middle surface.  Let u + u′, v + v′ be the 
surface coordinates of the foot of that altitude, and let n be its magnitude.  I now imagine 
that the fixed coordinate system is arranged in such a way that its origin falls upon the 
point u, v of the middle surface, and the axes rotate in such a way that the X-axis assumes 
the direction of ds1, the Y-axis assumes the direction of ds2, and the Z-axis assumes the 
direction of the normal.  The cosines of the inclination angles of ds1 with respect to the 

three axes are a0, b0, c0 (1, 0, 0, resp.).  However, one can set dξ′ = Edu′  in the 

neighborhood of the origin, and it will then follow that: 
 

0 0 0a b c
u u u

ξ η ζ′ ′ ′∂ ∂ ∂+ +
∂ ∂ ∂

=
u

E
u

′∂
∂

, 

and one will then find that: 

ε1 = 
u

u

′∂
∂

. 

It follows in a similar way that: 
 

ε1 = 
v

v

′∂
∂

, τ =
E u

G v

′∂
∂

− p2 , 

 

p0 = − 1 n

uG

∂
∂

, p1 =
1 n

uE

∂
∂

,  p2 = − G v

E u

′∂
∂

, 

 
so one ultimately has: 

τ =
E u G v

G v E u

′ ′∂ ∂+
∂ ∂

. 

 With the use of the values for p0, p1, p2 that were found above, ∆, ∆′, ∆″ can also be 
expressed in terms of u′, v′, n: 
 

 
E G

∆
= 

1 1

2

D n D v E n

u u u v vE G E E G G E

  ′ ′∂ ∂ ∂ ∂ ∂+ + +  ∂ ∂ ∂ ∂ ∂ 
, 

 

 
E G

′∆
= 

1 1

2

D n D v G n

v u u u vE G E E G G E

 ′ ′′ ′∂ ∂ ∂ ∂ ∂+ + −  ∂ ∂ ∂ ∂ ∂ 
, 

 

 
G E

′∆
= 

1 1

2

D n D v E n

u v u v uG E G E E E G

 ′ ′∂ ∂ ∂ ∂ ∂+ − −  ∂ ∂ ∂ ∂ ∂ 
, 
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G E

′′∆
= 

1 1

2

D n D v G n

v v u u uG E G E E E G

 ′′ ′ ′∂ ∂ ∂ ∂ ∂+ − +  ∂ ∂ ∂ ∂ ∂ 
. 

 
 We can express ∆′ / (EG) in two different ways with these equations: 
 

 
EG

′∆
= 

21 1 1

2 2

D n E n D v G n

EG u v v u EG u u vEG E EG G EG

′ ′′ ′∂ ∂ ∂ ∂ ∂ ∂+ − + −
∂ ∂ ∂ ∂ ∂ ∂ ∂

, 

 

 
EG

′∆
= 

2

2

1 1 1

2 2

D n G n D v E n

EG u v u v E u v uEG G EG E EG

′ ′∂ ∂ ∂ ∂ ∂ ∂+ − − −
∂ ∂ ∂ ∂ ∂ ∂ ∂

. 

 
However, these two expression differ by quantities that include ∂v′ / ∂u .  We conclude 
from this that, in general, ∂v′ / ∂u is small and can be neglected in comparison to the 
quantities that come under consideration, and therefore the derivatives of n with respect 
to u and v.  We then ultimately get: 
 

 
E EG

∆
 = 

2

2 2

1 1 1

2 2

D n E n E n

G u E u u EG v vE EG

∂ ∂ ∂ ∂ ∂+ − +
∂ ∂ ∂ ∂ ∂

, 

 

 
EG

′∆
 = 

21 1 1

2 2

D n E n E n

EG u v v u u vEG E EG G EG

′ ∂ ∂ ∂ ∂ ∂+ − −
∂ ∂ ∂ ∂ ∂ ∂

, 

 

 
G EG

′′∆
 = 

2

2 2

1 1 1

2 2

D n G n G n

v G v v EG u uG EG E

′′ ∂ ∂ ∂ ∂ ∂+ − +
∂ ∂ ∂ ∂ ∂

. 

 
The stresses that were given on page 35 can be expressed in terms of only the time-
dependent quantities u′, v′, n with the help of these expressions for ε1 , ε2 , and τ: 
 

ε1 = 
u

u

′∂
∂

,  ε2 = 
v

v

′∂
∂

,  τ =
E u G v

G v E u

′ ′∂ ∂+
∂ ∂

. 

 
However, one remarks that these stresses are independent of D, D′, D″, and depend upon 
only E and G.  The theorem follows from this that: 
 
 If two surfaces are mutually developable and the derivatives of n, u′, v′ with respect 
to u and v (i.e., the relative displacements) are equal at corresponding locations then the 
stresses that appear at those places will also be equal. 
 
 It still remains for us to convert the summands in the equations of motion that 
originate in accelerations, if we ignore the external forces.  We have: 
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2 2 2

0 0 02 2 2t t t

ξ η ζα β γ∂ ∂ ∂+ +
∂ ∂ ∂

=
2

2

u
E

t

′∂
∂

, 

 

 
2 2 2

1 1 12 2 2t t t

ξ η ζα β γ∂ ∂ ∂+ +
∂ ∂ ∂

=
2

2

v
G

t

′∂
∂

, 

 

 
2 2 2

2 2 22 2 2t t t

ξ η ζα β γ∂ ∂ ∂+ +
∂ ∂ ∂

=
2

2

n

t

∂
∂

, 

 

 
2 2 2

2 2 2
0 0 02 2 2t t t

α β γα β γ∂ ∂ ∂+ +
∂ ∂ ∂

= −
2

1
2

p

t

∂
∂

= −
3

2

1 n

t uE

∂
∂ ∂

, 

 

 
2 2 2

2 2 2
1 1 12 2 2t t t

α β γα β γ∂ ∂ ∂+ +
∂ ∂ ∂

=   
2

1
2

p

t

∂
∂

= −
3

2

1 n

t vG

∂
∂ ∂

. 

 
 The last two summands are not to be considered for the case of a plane or a cylinder 
that is parallel to an axis, but only for any surface at all.  When we apply our latter 
considerations to that point, that point will become a starting point, as we mentioned on 
page 27. 
 With the conversions that were made, our equations for the equilibrium and motion of 
an elastic shell that performs infinitely-small oscillations in the neighborhood of the 
equilibrium configuration will go to the equations for u′, v′, n, viz., the displacements 
inside and normal to the surface. 
 These equations simplify essentially for the plane, for which D = D′ = D″ = 0.  
Namely, one sees that the first two main equations and boundary equations will contain 
only u′ and v′ then, while n will appear in the remaining ones, in addition to them.  Those 
four equations for the oscillations inside of the plane will be satisfied when one sets u′ = 
0, v′ = 0.  If one also substitutes those values for u′ and v′ in the remaining equations then 
one will get equations for the transversal oscillations of the plate that correspond to the 
ones that Kirchhoff first applied to the calculation of the sound figures of circular plated.  
In order to obtain the equations that are appropriate to a circular plate from our equations 
in polar coordinates, one chooses u = r, v = ϑ, where r is the radius vector, and ϑ means 
the amplitude.  Since: 

ds2 = dr2 + r2 dϑ 2, 
 
one must set E = 1, G = r2.  One will then get the same equations that Clebsch (*) had 
obtained by transforming the equations into orthogonal rectilinear coordinates.   
 
 Berlin, 1873 

___________ 

                                                
 (*) Theorie der Elasticität, §§ 78, 129.  


