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The equilibrium and motion of an infinitely-thin,
arbitrarily-curved, elastic shell
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Translated by D. H. Delphenich

Kirchhoff was the first to derive the true equations for smalpldcements and
oscillations of infinitely-thin elastic plates frometlyeneral equations for elasticity in his
treatise in volumelO of this journal and calculated the sound figures on thmular
discs. In volumes6 of this journal,Kirchhoff likewise developed the theory of the
motion and equilibrium of infinitely-thin rods for whichnite changes of form are
possible, without the elements suffering more than Istlatations, which is the single
assumption in the general theory of elasticity, anthe@tsame time we remarked that one
could obtain his results for infinitely-thin plates iretekame way. Accordingly, in his
Berlin dissertation that he submitted in 18@&®hring treated the differential equations
for the equilibrium and motion of infinitely-thin platésat suffer small deformations,
and at the same time he allowed the plate to havgsgattine composition. In his book
Theorie der Elasticitat fester Korpe€lebsch also presented the equations for finite
deformations of thin plates whose elements experienge iofitely-small dilatations
by applying the principles thtirchhoff had developed in his treatment of thin rods and
derived the equations for infinitely-small displacemeftsn those equations. Here,
bolstered by the aforementioned work, | would like to @néshe general equations for
the equilibrium and motion for arbitrarily-curved platesid thus, for very thin elastic
shells that can experience finite deformations, but foickvthe elements can enter into
only infinitely-small dilatations, but then considehet case of infinitely-small
displacements in particular.

Let the coordinates of the middle surface of the dbeX, Y, Z, when referred to a
rectilinear, right-angled, fixed coordinate system. theise three coordinates be given as
functions of two independent variabless. FollowingGauss, one then sets:

X _ oY _, 0Z _

— =3, —= — =g,
ou ou ou
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X _
ov

, oYy ., 0z _
a, —=Db, —=C;
ov ov
furthermore:
a+ b+ 2 =E,
ad +bb +cc =F,
alz + er + C12 = G.

I would now like to choose the, v-coordinates in such a way that= const.,v =
const. define two families of curves on the surfacé thé at right angles, or in other
words, that= = 0. Not only does such a coordinate system always @xia surface, but
an infinite number of them will exist on each surfas®reover. If theu, v have that
property andls’ is the element of arc length on the surface then:

d€ =E df + G d\/.

s shall now denote the length of the cuwe const. that goes through the painv,
and indeed as measured from its point of intersectitdntive curveu = 0 to the point,
v. By contrasts, shall denote the length of the cutve O that goes through the point
v, from its point of intersection with the curve= 0 to the point, v.

One then has:

d¢ =Edf, ds =G dV,

because! (v, resp.) are constant along those curvesiuso 0 (dv= 0, resp.).

| employ two such families of curves= const.v = const. in order to decompose the
surface into a doubly-infinite family of small rectargjl@hose dimensions in width and
length have the same order as the thickness of the shie¢ space coordinates of the
centerP of the rectangle that webd¢ Y, Z might beé, 7, { after deformation. Such an
element suffers only infinitely-small deformations ilghthe shell experiences finite
changes of form, and the work that corresponds to tthefeemations can then be found
from the general equations of elasticity.

To that end, | imagine that each element has a semmordinate system. It is fixed
in neither the element nor in space. Its positionefeh form of the shell shall now be
established. Let its origin be Bf which is the center of the element considered, fer th
rest position of the shell, and let they, andz axes have the directions @d;, ds, andn,
resp., the last of which is the normal to the surcde point in question. Le&t+ g,y

+ vo, Z + g then be the coordinates of any point of the elemennwéterred to the

indicated coordinate systemny, y, z shall be the coordinates of that same point in the res
position of the element itself. However, for curvedfaces, that rest position of the
element itself is different from the rest positidrtlee same element when it is coupled to
the surface. A pressure will then be exerted by onequathe other, and the element,
which tries to remain in the tangent plane, will etfassigned its curvature in that way.
Let the coordinates of the same material points weldat the coordinate system that was
laid down be:
X+ ug+u, y+vp+, Z+tog +ty,

after deformation.
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The position of the coordinate system in the elenitsetf and the element when
coupled to the shell during or after the deformation salv be determined in such a

way thatug, vo, o, u, v, 1o will contain neither common displacements nor camm

rotations. Namely, if no common displacements &®@ eonsidered then the origin of the
coordinate system must be found at the point that wadetbgP, so for:

x=0, y=0, z=0,
one must also have:

uo=0, no=0, mo=0,

u=0, v=0, tw=0.

However, common rotations shall also be omitted n@when the position of a point
in a body is given then the position of the body Wwél determined by the position of a
plane that goes through that point and the directica lofe that goes through that point.
Now, let thexy-plane be chosen in both varied positions in suclagp tvat it defines a
tangent plane to the surface at the p®&imto which the originaky-plane will go in both
cases. At the poirR, one will then have:

O, _ O,

0, — 0, o _
1)

oy 0x

—=0.
oy

01

Furthermore, in both cases, tkeaxis shall be the tangent to the curve that the
original x-axis defines each time, and indeed, the positive sensebghditected in the
same way as the positive side of the origiiakis.

One also has%& =0, ? = 0 at the poinP then. However, since no displacement
X X

or rotation exists in the neighborhood of the pdithen, there will be no common
displacement or rotatioa fortiori. We have arrived at this in such a way that the
following six conventions were assumed for the positbnhe coordinates each time,
namely, that for:

one must have:

%:0’ Ow, -0 ow, _ ’
0x 0x oy
or
u=0, v=0, w=0,
% = 0’ a_m = 0’ a_m = 0’
X X oy
resp.

Let the direction cosines of tley, andz axes after deformation with respect to the
three fixed coordinate axes be:
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a, fo, Yoo ou B 02 [

resp., and then lef’, 7', {’ be the coordinates of the original point in the elenvetit
respect to the fixed coordinate axes. Now, one caadyr see that the form of the shell
will be determined completely when the position of teater pointP of the individual
element after deformation is given, and thus the coatesd, 77, {, as well. It must be
also determined uniquely by the nine quantities:

a, fo, Yo on B 02 [

and furthermoreé’, ', {’ will already be determined for each poxiy, z in the element
P, and alsat, v, to, when the original form of the shell is known.

Six equations exist already for the nine direction casine

as+ B +Ve=1 a,a,+B.B,+y.y,=0,
(1) ai+BEHYE =1 a,a,t BLBot Y.V 6=0,
0'22'*',322'*'1/22:1' a,a.+B.B,+y.y,=0.

We shall now address the problem of finding threee equations that relate r, {
to each other.

The pointu, v has the coordinates 7, { after deformation. The point+ du, v then
corresponds to the point:

0¢ on 74
+—du, n+—Ldu, {+—-du
¢ ou 4 ou ¢ ou
after deformation, or since:
du= d_%

JE
ogds onds 00 ds
‘qauﬁ’ ,7+6u\/E’ +6u\/E'

Since{, n, { are the coordinates of the origin of the elenustafter deformation,
these will be the final coordinates. Noag goes tods after the deformation, so we will

have:

o6ds  opds  oc dy
ou . JE ou \[E ou \JE
dg ds ds

as the direction cosines of the element after #ierchation.
Now let & be the dilatation in the direction of tkexis, so we will have:



Aron — The equilibrium and motion of an infinitely-thin, drarily-curved, elastic shell 5

¢ 1 o1 a1
ou (L+¢)JE’ u@re)JE'  du(l+g)JE

after deformation.
However, since the elemeds also defines the change of form of thaxis, whose

direction cosines arey, (5, , we will have:

g;: o 6_0;: ﬁ) %;: M)
u+e)JE du@+rg)lJE ou+g)E
therefore:
9 ) )
2) %= ayEare), =g Eare), L=y Eare).

When we multiply each of these equations by:

a, fo, Yoo au B 02 [

resp., and add them three at a time, we will get anéaharfor those three equations that
we will need later, namely:

0¢ on 0
a,—+ 06 —+y.—=., E(1+¢&,),
° du Po au "y JE@re)
0¢ on 0
2a a—+ 08B —+y——=0,
(22) Y ou A au g
0¢ on 0
a,—+fB—L+y —=0.
2 du = au 2oy
We will similarly find:
1 a1 1
0u (1+¢,)\/G u(l+e,)JG' du(l+g)JG

for the direction cosines of the elements after the deformation when we set its
dilatation equal tas; . However, the elememts, will no longer define they-axis after
deformation, but will deviate from it by a small angleand as a result, we will have:
oé 1 on 1 il4 1
-+t >
You @a+ 52)\/6 ou (1+ 52)\/6 ou (1+ 52)\/6

= Cosrt or =1

when we neglect second-order quantities. However, dineey-plane should also
contain the elementds; andds, after deformation, th&axis should define an angle of
90° — r with theds, after deformation, so:
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o6 1 op 1 ol

1
O @reG PG e G

when we neglect second-order quantities. By contiaesiz-axis will still define a right
angle withds, after deformation, and we will have:

=cos(90-7)=sint=1

6 1 6 1 o¢ 1

¢ 1 ¢ 1 _
Y (1+g)f < 1+&)JG ary 1+&,)/G

When these equations are converted, and the quartity neglected as a second-
order quantity, that will give:

6 on
A=+ fogl +yo =1,/G,
(30) 0% /31"’” aZ = [Ga+ey,
65 ,326,7 6Z:
6v

After deformation, the, y, z axes will define angles of inclination with the Y, Z
axes whose cosines are:

a, fo, Yo, 0n B @2 [ 1,

resp. Conversely, th¥, Y, Z axes define angles of inclinations with they, z axes
whose cosines are:

o, a1, @2, fo, Lo MW
resp. Hence:

a§+0'12+0'22:0, O'oﬁ)+0'1,81+a'2ﬁ2:0,
Bi+Bi+Bi=0, [w+tBn+tBy =0,
VotVity, =0, wao+tya+pa =0.

If we multiply equations @) in succession by:

a, a1, G2 o, B B Yo N

resp., and add them three at a time then we will get:



Aron — The equilibrium and motion of an infinitely-thin, drarily-curved, elastic shell 7

= [G(a,+¢&,)+ag),
3) 0 = [G(B 2+ i),
=/ G(hA+&,)+ ).

In fact, since the six equations (2) and (3) contaieetiguantities:, &, 7, in addition
to the desired ones, they collectively define three eguations. The quantities, &, 1
can be easily expressed in termg,0f, .

After squaring and adding (2), we will get an equatiorefor

o& ; a(j

4 E(l1+&

@ (auj (auj (au ( )"

Upon squaring and adding (3) and neglecting second-order temilsfollow that:
o& ; a(j

5 G(1+e&

®) (avj ( 6vj ( ov ( 2"

When we multiply each two equations of (2) and (3) tieate the same order and add
them, while neglecting higher-order quantities:

a¢0¢ anan ¢ ¢

EGr,
duodv Oduodv Oudv

(6)

or if, following Gauss, | let E’, F’, G’ denote the same thing for the surfdce, { thatE,
G, F means for the surfacg Y, Z then it will follow that:

E—1+£ E’—1+£ L'—r
\VE Lt \ G 2 JEG

One can already infer a remarkable conclusion fraesdhequations. If we neglect
the small quantities;, &, rin comparison to finite quantities then it will follothat:

f F f“”

E=E; G=G; F=F'=0;
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i.e., the shells remain mutually developable under ahghs of form. However, since
have neglected small quantities in comparison to thiefones, we can say only that the
shells will remain mutually-developable surface under veryistasiations.

We shall address the problem of obtainfig;’, {’, as well ast, v, to, as functions of
u andv.

That initially yields three equations immediately.

Sinceé’, n’, {’is the point:

X+ ug+u, y+vp+0, Z+tg t+to

in the elemenP whose coordinate origin is &t 77, {, and whose axes have the direction
cosines:

ao, o, )b, a1, B Y, a, B, V5
one will have:

'=&f+a,(xtu,tu)+a(yto,+o)+a,(z+w +w),
(7) n'=n+ B (Xx+u,+u)+ B (y+v,+v) + B,(z+w +1),
{ :Z+y0(X+uo+u)+y1(y+no+n)+y2(2+m0+m)'

In order to obtain three more equations, | shall apjeedle following considerations:
A system of values, v corresponds to a certain system of valges, . Hence{, 7, ¢,
and the cosines of the angle of inclination of a peinv can then be regarded as
functions of and; ands, . &', n7', {"then correspondingly represent functions of:

S +X+u, S*+X+tu, 2z

Therefore:
0¢ _ & D@(sl+ X+u,) _ 0& 1+ Ou,
03 O(s+xtu) 0§ o(s + x+u,) T 9g)’
&' _ o0&’ A(s+ xtu) _ a¢' [€1+ auoj
X 0(S + X+u,) ax a(s + x+1u,) ax )’

sincex is independent .
However,0ug / 0x has the same order as the dilatation, so it isiiafy small and can

be neglected in comparison to 1, whille / 0s; is infinite of an even higher order, which

shall be shown immediately below. We can then%éelz%—g, up to small quantities, or
s OX

also:
1 o0& _of

and it will follow similarly that:
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1 op_on 1 9f" _od"
JE 0u ox’ JE ou  ox’
so it will likewise follow that:

1 9& _ 65 1 an' _ 6/7 1 0" _ 6(

\/76v ay \/76v oy \/76v ay

If we first differentiate the system of equationsWith respect to and then with respect
to u and divide by\/E , and likewise differentiate with respectyt@and thens and divide

by \/E then we will get twelve equations. The left-hand swleany two of them are

equal, so when we set the right-hand sides equal to elaeh wote will eliminate the six
derivatives of¢’, 7', {’ and get six equations for the partial differential quaseofu +

u, b + v, oo + 1o with respect tx andy. The first of those equations reads:

a, (1+—a(uO " u)j+cr1(1+ 00, * )J 2(1+—6(m° +m)}
ox 0x 0X

_ 1 (65 aao(x+ +u)+aoa(uo+u)
JE\du odu au
+%(y+n0+n)+alm
ou
+ 94, (z+m0+m)+azmj.
ou ou

We can now negleaty + u, vo + v, tvp + tv In comparison t, y, andz. However,

0(ug +u) . .0y, +u)

, etc., can also be neglected in comparlson—teg—, so one will have:
X

ou
0(u, +u) — \/E 0(uy+u)
ou s
o(u, +u) , : : .
In B the numerator is the difference between the dtgrhentsnside of the
S

element in the direction of thg-axis at two correspondingpoints of neighboring
elements. The denominatds; is the distance to the center of that element,nwhe
O(ug +u)
0x
between displacements inside of an element anénergl at twaneighboring points of
the sameelement here, but it will still have the same orde above. By contrast, the

measured along the-axis. In , the numerator likewise means a difference
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denominator is an infinitely-small part d§; . Hence,@ Is very small and can be
S
neglected in comparison t%(g—u) the same thing will be true for the corresponding

expressions, so it will follow that:

ao(l+a(uo+u)]+ala(no+n)+a26(mo+m): 1 (g+aaox+aal y+6a2 z),
ox ax X JE\du au au du

0(u, +u) (o, +v) , 5 O +w) _ 1 (07 05 0B, 95,
ax jﬁl * A ax ‘ﬁ(aquau auy+auzj’

A, +u)) . O(,+v) (g +w) 1 (05 IR AR 2 Zj
(1+ ax jﬂ/l ax RE ax \/7 ou Ou Ouy ou )’

Correspondingly, differentiating with respectytandv will yield:

A

Yo

aoa(u();u)+al[1+a(uo+u)]+aza(mo+m)_ 1 (ngaaoXJraal da, ZJ’
y

) oy G '

ov  ov ov ov
Oug+u) o[, 9(vy+0) 9(wy+w) _ i(a_nﬁ/fo w498, , 95, z]
oy ﬁl( dy j+ﬁ2 dy JGlov av™ ov v %)

A(u, +11) B0, *+v)), B(wytw) 1 (0 0% 0¥ . 0V, Zj
Yo dy +y1[1+ dy jﬂ/z dy _\/E(OV ov 6vy ov )

When we multiply the first and last three equationsuccession by:

Po———

001 ,&1 J’ﬁ! all ,311 }’i, 021 ,321 Jé ’

resp., and add them three at a time, while recp(a) and (&), we will get:

O(ugtu) _ 1 ( 0B, ayl) 1 ( 0a,, 9B, ayz)
=&+ +—— 2
ox - JE ou '3°au “9u )’ JE du 'Boau ermk

(7a) 0(vy +v) _ 1( 00y , 596, ., 9o +i( 00, . 0B, 9V,
ax JEU " au 'Blau 50 ) You th: ylau

JE du

dw,+w) _ 1 ( day, , 9B, @ 1( da,, 0B, @
(1 710) ( ﬁzaﬁjma’ﬁ’}ﬁ ( +8,%4y, yl)

ax JE au ﬁ au au au
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furthermore:

Oug+u) _ 1 ( B, ayl) 1 ( 0a,, 5 9B, ayz)
a— - Z

ay \/_ du Aoy au " 3u JG 'Boav v

(@) | v, , 1 ( 00y, 3, ayo) L, ( oa, , , 0P, ayz)
RN = G VL VARG vl L T R DAL T T

A, +w) 1 ( 0a, , , s, ayoJ 1 ( oa, . , 0B, aylj
= X+—— + :

dy o\ %y oy gy s e ey ey

Sincex, y, z are themselves of order one, it will suffice to edesthe coefficients,
Yy, z up to first-order quantities, since the error that wikexin that way will be of order
two.

Now, from equation (2), one has, up to small quantities:

1 o0& 1 dn _16{

T TEw P TEw PR

1 of 1 dan _16{

TTea P ew JG o

In analogy withGauss's notation, except that | shall choose German sysiiooplace
of the Latin ones in order to indicate that the s@facdifferent from the one in the rest
configuration, | shall now set:

%—a on _ =b, %—c
ou ou ou
0§ _ 9 _ o _
ov | ov ov

It will then follow that:

0., 0B, o _ ‘{ﬁjba{H (WGJ
ETREETRESET JE ou JE du ﬁau

] ] ] ’G
JEGU O0u Qu au «/E ou

However, one has:
aa' +bb" +c¢c' =F'=0,

up to small quantities, as was shown above; moreoverhast
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0°¢ _ 9%
dudv  ovou’
o)
Oda' _Oa
o ov’
hence:

,[)’ ayl 1 ( da 0b acj
————| 0 — b—+c— | =
'80 u Yo 3u JEGU du ou “ou

however E’was equal t& (up to small quantities), so:

® i, By, Yo L

u "9u 2JEG AV

In a similar way, one finds that:

da, , ,0f c
9 0+ O+ O
(9) A h v 2JEG U’

Now, one has:
aa +5Lb +pg=0,
ma +Bb0 + g =0,
SO:
B yp=(0c —cb'): (ca’ —ac): (ab' —ba'),

12

and when | introduce a notation here that also correlspmGauss's notation, one will

have:
QB p=A:B:C.

Now, a? + B; +y; =1, so it follows that:

A B _ ¢

a = 132:

) ) Jé_ .
AT +B2+¢2 AT +B2+¢2 AT +B2+¢2

Now, 2% + B2 + ¢2 =E’G’— F’?, or (up to small quantities):

A2 +B% + €2 =EG,
SO.

and therefore:
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ao B,y - 1 jg0) a | g0 b | -0 ¢
TG 'E{mf’u{ﬁj%au{ﬁjw@u{ﬁﬂ

a(lj
—— (Ra +‘Bb+€c)a—\/uE.

1 ( oa 0b oc

= = | A—=—+B—+¢ _j 1
EJG\U ou ~du odu) JEG
However, one has:

a b ¢
Aa+Bb+Cc=|a b c¢].
a b

The determinant is zero, since two equal rows occtr iHowever:

298, 500, 0
ou oJu Ju

is whatGauss calledD, when it is written in Latin symbols. Tl@&aussian notation shall
remain for the surface in the rest configuration, whiletfie deformed surfaak, A', A"

shall be used instead BDf D', D”. If we apply a similar process repeatedly then wé wil
get:

600 6,[)’0 ayo 1
+ + =
a 182 y2 au E\/7
oa, 6,[)’0 oy, 1
a + + =
0 2 9v P v V2 v EJG
(10) oa, ‘B 6,[)’1 %: 1 A
2 & GJE
a 0 0 1 "
+B— 'Bl vy, =

du '*ou GJE

a+Bot =0, -

A

Furthermore, since:

one will have:

da, B, . ., 9V, ( 9B, . aylj 1 OE
Q. + + = - 71 -—,
Y au A au "oy '80 u °du 2./ EG ov

It will then follow that:
Oup+w)_ _y JE

A
ox  2EJG ov EJEG

Z+ &,
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6(00+n): X E A
ox 2E\/G ov EG”

0(ro, +1v) __A N

X+ ,
ox EJEG EG Y
6(u0+u):_ y é)E N Lo
dy 2G,/E 0u EG

(b, +v) X d@

A"
dy  2GJE ou GJEG

0(rv, +m) Iy

oy EG G«/ G

However, for the case of the equilibrium configima of the shell, one will have:

2+ &,

u=0, v =0, w =0,
& =0, & =0, r=0,
A=D, AN=D, A"=D",
and upon introducing these special values, wegeili
ou, _ dLE Dz
ox zef ~ EJEc

When we substitutes these expressions in the dioe®awe will get:

du_ D- A v _ D'—A’Z ow__ D-A X_D’—A'y
x EJE G ox EG ' X EJEG EG
Ou _ D’—A'Z+T d_ D"- A"Z+£ am_ D’—A'X D"—A"y
1 2! - - 1
dy  EG ay G EG EG G. EG
maoreover.

Although the expressions fag + u, vg + v, v + v above were not integrable, the
ones fon, v, to are integrable. That implies that:
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D-A D'-A

u= ZX— Zyt+tax+ryt+ug,
EJ EG EG
U _ D'_A’ ZX D"_A" Zy + g y + U
- - 2 1,
EG G, EG
_ D-A x* D A D"-A" y2
to =— - = —+ mll

EJEG2 EG G\/EGZ

in whichuy, b1, vy can be functions af In order to determine them, we appeal to the

following considerations: That part of the externatés that acts upon the outer surface
or the interior of an element, while the remaininge®keep the same distribution, is
inessential for defining the form of the shell, and ¢f@re for the change of form of the
elements, as well. It influence is felt in the fortlest act upon a part of the outer surface
of the element that is not free — i.e., on its boundarye must then demand that the
displacements that one finds must satisfy the equatdrelasticity for the interior and
for the free outer surface of the elements when geanas that no external forces act
upon the interior and the outer surface, and that wilked suffice to determine the
functionsus , vy, to;. Namely, from the equations of elasticity for theerior, one will
have:

X,  OX, oX, _ ay, odY, ay, _ 0z, 0Z, 0z, _
X 4 + z — O, X 4 + zZ — O, X 4+ + Z — 0,
ox dy 0z ox o0y 0z ox dy 0z

and for the outer surface:
X;=0, Y,=0, Z,=0,

since thez-axis is the normal to the outer surface.

Now, one has: i
X, = % 6_u+® ou @ am
| OX X oy az

Y, = % an @au @ am
6y ox ay az

7, = % 6_m+e ou @ [y
| 0z ax 6y 9z

Zy=Y, =Kk @+6_m
0z dy)’
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szxzzk(aerauj,

x 0z

Xy:YX:k(a—u+@j.

dy 0X

Now, | set:

Ju Ov Ow

— 4+ —+—=]

ox dy 0z
One will then have:

_ D _A DII n l
J= - z2+e+6+ ,

D-A
Xy = XK Z2+& +0OT |,
EJEG j
DII_AII
Yy = K Z+&,+0O7 |,
YN =Rl j
Z = X% (%wmj ,
0z
Z,=Y,=k%% |
0z
Zo= X =k
0z
Xy:Yx:k(MZ‘*‘TJ,
EG
SO one must have:
0X, -0 ay, -0 0Z, -0
0z 0z 0z
in the interior, or:
0%u, _ 0 0%, _ 0
07> ’ oz

072 Ew/EG+G\/ EG 07 |

2 _ n_pAm 2
6ml+@{D A D A+6mlj_o

and for the free outer surface:
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6ml+@{(D—A)h+(D -A )h+51+52+amlj: 0

0z | 2E/EG 2G/EG 0z

if his the thickness of the shell, and the surfacesidened is the middle surface of the
shell, such that one will hava= + h/ 2 for the free outer surface.
It follows from the equations for the interior then general:

0 Jo
9 const., — = const.,
0z 0z

and it follows from the equations for the outerface that these constants are 0, so, in
general:

and therefore:
uq = const., v; =const.,

and since one must have= 0,0 = 0 forx =y =2z= 0, it follows that:

dw, __ © { D-A +D"—A”J
90z  1+0|EJEG G/ EG/
SO.
oo, ___© { D-A4 z+ D" -4’ z} + const.
oz  1+O|EJEG G/ EG ’
but forz=+h/ 2:
om, __ © { D-A D=2 h+£+£j
oz 1+0|2E/EG GJ/EG ' ?)
S0, in general:
w, __© { D-A D' Z+£+£j
0z 1+0|EJEG GJ/EG  ?)

01 =

_ 0 (D—A)z_2+(D”—A”)é

1+ E\/EG 2 GJ EG 2
but sincew = 0 forx =y =z =0, one will also havan; = 0, and this constant will also be
equal to zero, so we will get:

+£ Z+E, zj + const.,
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- D-8 ,..D- ’Zy+£ XHT Y
E{ EG EG '
_D’_A’ ZX+ D"_A" Zy-*-g y
EG =~ GJEG =~ °
11
(11) w=—| DD x_2+D A LD -A" Y
E\J EG 2 G/ EG 2
__ 6 (|b-aZ D-A zz+£ 2+g, 7
1+O| E\/EG 2 G,/ EG 2

Now, these displacements have the for
elasticity for the interior and the free outer
forces. As far as the outer surface that is n

m that mdkas tsatisfy the equations of
surfadeen we can neglect the external
otifemncerned — so the boundary of the

elements — stresses will appear as a result of tthepdacements. However, they are
always equal to the external forces that act in that, so here they will be the forces

that are exerted upon the rest of the shell, s

ingeraahd reaction are equal. Therefore,

the equations of elasticity are also satisfied onhkbendary, and since no common

displacements or rotations will exist for:

x=0, y=0, z=0,
u =0, v =0, to =0,
%:O, a_m:O, a—m:O,
ox 0x oy

as one sees, v, 1o will, in fact, be displacements that come about tgesis a result of
the elastic forces. The stresses that appear asilh oé these displacements when one

sets:
J= 6u+6U+6m 1 D- A =N Jiete
ox dy 0z 1+O|EJE EG. G/ EG. o
will be:
XX:Zk{E?/_EAGz++£1+@JJ,
(12)
D"—A"
Y, =2k Z++£,+0 J|,
’ {GJEG ’ j

Z;
Zy
Zx

Xy

0 ’
YZ 0
YZ 0

YX:k

(20,
EG '
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The work that must be done in order to deform an eleahenly dzwhile the shell
goes from its initial configuration to its second ond bd represented by:

_ (aujz oo )’ (amjz 1(dv o)
F=k|| = | +|—| +| — | +=| —+—
0x oy 0z 20z 0dy
2 2 2
+E(a_u+a_mj +£ a_u+@ +0 a_u+@+a_m ,
2\ 0z 0X 2\ 0y 0x 0x 0y 0z

when this is multiplied bylx dy dz so the total work that is necessary to deform the
entire shell will be represented by:

([[Fds ds d=[[[FEG dudvd:

The fact that one can represent the element of kgehn, and not just the middle
layer, byds, ds dzfollows from the fact that the shell is assumedéarifinitely thin, so
the element of the layer of the middle surface wdlrepresented bgls, ds z if the
thickness iz

We can further represent the general equations of matitn the help oHamilton’s
principle when we know the potenti@l of the external forces that act on the interiadt an
the boundary, as well as the external conditions tiatshell should be subjected to
under its deformations (we have already developed teenad conditions that originate
in the assumption of continuity):

0 :5]]”(%@/2—9—F+/1¢+y¢/+-.-)JE_G dudvdzec,

in whichv is the velocity of a point at tinte o is the density at that point, agd= 0, ¢ =
0, etc., are the external, as well as internalditmms that the surface is subjected to,
while A andx might mean undetermined coefficients.

However, since we have not assumed that the edtésrces have a potential, we
shall introduce the virtual moment of the exterfoates that act in the interior and on the
boundary in place of X2, but | would first like to convert the part thaiginates in the
internal work:

_ OF a_6u_*_ oF 6u+ oF 5au
aau ox a@ oy a@ 0z
0x oy 0z
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OF _dv OF _dv OF _Ov
+ o—+ +

6@ ox 6@ oy a@ 0z

0x oy 0z
+—6F 56_m+_aF 56_m+_6F a_m.
aaﬁ ox aaﬁ ay aaj 0z
0x oy 0z
Now:
o o e
0x ay 0z
a%° a%° 2%
0X oy 0z
ac;:mzzx’ ac;:m_ y ac;:mzzz'
0— 0— 0—
X oy 0z
Now, from (12):
X, =0, Y, =0, Zy =0, Z,=0, Z,=0,

so what will remain when we sk} =Yy = T, will be:

F=X 04T, =+2 |+Y, 02

ou ou Ov oo
ox dy ox) ' oy

so from (11):

—xx%+ X [ EGJ,

5[] [FyEG dudvdze= [[[[{ -21, 22 +7, EGar | dudvdzc

JEG
-y, ng" +Y,/ EGe,

The integration ovez is easy to perform with the use of equations (12et:
[X,dz= X, [ X zdz X
(13) [Y,dz=Y, [Y zdz )y
[T,dz=T, [T zdz 3
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and when we carry out the variations further, and thiweduce, from equation (10):

ou

0
:\/_ a, a2+,30 ﬁ2+yo auj

ou oJu oJu

-A" E 62+,[>’1 '82+yl Zj

G ov ov ov

9B, ,

2 -/ ala”2+ﬁlaﬁ2+ylaV2j+J_E[ L)
ov

6v

6yzj
ov)’

By contrast, if&;, &, andr are expressed as in equatiors) @d (&) then we will get:

X 6| 52 a0, + B o, + Yoy v 200

Jdu

0B, , aéyzj
Jdu

096, . ., 99y,

+T2ﬁ[aa‘fjéa+aﬁ25ﬁl+ayzayl+a L2 p,

Jdu
03B, ,

)

65y2

+T2\/7E(aac\y/25cr +a’825,[>’0+6y25y0+a 2+ﬁ0

ov

°9v

03B, , , 0,

Jif +Y2J_E(%5al+%5ﬁl+%5yl+a 15,

ov

)

+Xf[a‘(5a + 90 35,4 5 oy, o 5 20

05(

65{)

u Jdu

+TJ_[655 + 2 5,4 L oy va, V+ﬁoa

00¢

\Y} v

+,[>’1

+YJ_E(6‘( 0a,+9% 05,49 gy, 0.2
ov

65{)
ov

J

J

du dvdi.

We must next convert the last three summands ah eaw, which contain the

variations of the differentials:

] xzﬁ% dudv= [f a(xzﬁ% %) 4 dv- HG(XZG—JU—G”") o, du dh.

In order to be able to further convert the intégra

”a(x JE”O ) qua,
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| must extend a theorem here that is well-knowntli@r plane so that it will be true for
arbitrary surfaces.

u andv shall now mean the rectangular coordinates of an arpiturface, antishall
be a function otiandv. We would now like to examine what:

will mean when it is taken over a closed surface patdf & single-valued, continuous,
and finite on the entire surface. If | denote theggnal byJ then one will first have:

J:ﬁ%g—f@dm

in which | have used, andf; to denote the values bfwhenv is replaced withz (vi,
resp.), or when | multiply by the same quantitied divide:

=1l

Here,E; andE; once more mean the valuestoivhenv is replaced withvg (vi, resp.).
However, our coordinate system was a rectanguley 0:

rdu—rﬁdu

d€ =E dif + G d\/.

The arc length of the curve fer= const., which we have denoteddyis then:

ds=E dif,
ds; =/ E du.

The sign of the root is still arbitrary, becaudeale still not established the sense of
the curve that will be reckoned as positive. Newshall be reckoned to be positive on

the side for whichu increases. Whedu is positive,ds; shall be positive, SQ/E must
take the + sign, and therefore one must have:

1e) (e

in which the positive sign is chosen, and the iedgi® and 1 shall mean that the
corresponding expression shall be taken for theeg= vy andv = vy, resp.
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| would now like to introducels which is the arc length element of the boundary
curve of the surface over which one integrates. | musteasiablish the sense in which
dsis reckoned to be positive.

| shall next give some definitions and theorems ferglane that still preserve their
meaning for arbitrarily-curved surfaces, because the @lsmaf any surface can be
regarded as planar.

Whena andb are two directions in a plane, | will say thwelies to the left of when
one needs to rotata through less than two right angles to the left in orderit to
coincide with theb direction, and otherwise it will lie to the right b. It follows from
this that whera lies to the right ob, b will lie to the right ofa, andvice versa.lt further
follows that ifa andb lie on the same side of anda defines a right angle witty thena
will define an acute angle with. By contrast, they will define an obtuse angle when
they lie on different sides af ds, andds (viz., the arc lengths of the curves const.u

= const.) were defined ag E du (,/ E dv, resp.), where the roots are taken to be positive;

in that way, the directions dls; andds, will also be determined.

I would now like to prove thals, lies on the same side d$§; over the entire surface.
| would first like to prove it for the elements of allagefined curve.

The curvev = ¢ + dc, in whichc is a constant andc means a small quantity, cannot

cut the curver = c. The perpendicular distance between both curvds, is\/E dc, so

this must be zero at the point of intersection, ancesln is not equal to 0, one must have
G = 0. However, sinc& is a sum of three squares, they must be zero indiWglubht
would give three equations for the two varialklesndv. Such points can therefore not
exist on the surface, in general. However, if such at pa@ne present on a surface then
one would have to make any sort of slit through the pamak then consider the surface
patches that would arise in that way. Those exceptpmats are the ones at which the
surface has an edge or a vertex, so the curvature will be

_ DD"-D"
(EG- F?)?’

in Gaussian notation. F = 0 for us, s = 0 orG = 0 would mean that the surface is
infinitely curved at the points in question; i.#.has an edge or a vertex. However, we
shall not concern ourselves with those discontigstit

However, if the curve = ¢ + dc did not cut the curve = c then that would mean that
ds would always lie on the same sidedsf along the curve = c. However, a curva =
c: does not cut the curwe=c; + dc; either (i.e.ds lies on the same side d$ along the
curveu = ¢;), so converselyds would lie on the same side d§ along those curves.
However, if it were to lie on different sidesdd; along two curves = c; andu = C; then
it would also have to lie on different sidesdsf at the point of intersection of that curve
with the curvev = c. Nonethelessls, must likewise lie on the same sidedsf, sods
must lie on the same side d@d; over the entire surface; | shall call that sideplus side
Now, | shall establish the sense in which the bampaurve is taken to be positive in
such a way that if | think of lines piercing thefsice through any point of the boundary
curve then they should always lie on the plus sidés (viz., the element of the boundary
curve that is assumed to be positive) after theycpi it, or what amounts to the same
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thing, that the direction of the lines that pierce sheface should lie on the plus side of
the directionds It will then be meaningful for me to speakdsi, ds, ds | shall let §,
V) denote the angle thds defines at any point of the boundary curve vdgh namely,
the arc length element of the cumwe const. at that point.

dsandds define the hypotenuse and cathetus of a right trianglehwdefine either
the angleg, v) or (s,v) — 77/ 2, so:

ds =+ dscos 6, V).

One can show that the positive sign must be takepiéwes of the boundary curve
for whichv has smaller values than it does in the surface patbhaeare bounded, while
the negative sigh must be taken for pieces on whlwds larger values than it does on the
surface patches that are bounded. For the smaller vaflveghe curveu = const. will
increase in the surface, gs will have the direction of the lines that enter tweface,
and it will then lie on the plus side d& However,ds always lies on the plus side of
dsi, so converselgls andds, lie on the same side df; . ds; defines a right angle with
ds, sodswill define an acute angle witls; . Wherever:

V=V,

one will then have:

ds =dscos §, V),
while if the curveu = const. exists on the boundary pieces whdras larger values than
it does in the surface that they bound thenwill have the direction of the lies that exit
the surface, so it will lie on the minus sidedsf However,ds, always lies on the plus
side ofds, , sods andds, will lie on different sides ofls, . ds andds, define a right
angle, sads anddswill define an obtuse angle, so at the locatienv; :

ds, =—dscos §,V),

L
ﬁd% 1_ {\/Edscos(s,v)l,

fge]= [
ﬁds1 0— {\/Edscos(s,v)l,

so one will have:

and therefore:

jﬁ% dsil{ﬁ dgM =- I:H%dscos (s,v)l—{ﬁ dscos (s %J

over the entire boundary curve.
Ultimately, the integral over the surface is then:
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[1fGoudi= [ pgoscosisnn

in which the latter integral is taken over the enboendary curve.
Furthermore, one has:

I Vfa_‘:/d dv= [ H%dgl—{% d%M,

in which ./ G must be taken to be positive.

Now, one hasls =+ dscos §, u), if (s, vV) means the angle thds (viz., the element
of the boundary curve) makes witls, (viz., the element of the curve= const.). Here,
one must likewise take the positive or negative sigmraieg to whetherq u) is an
acute or obtuse angle, resp. For the smaller valuastbé curvew = const. enter into
the surface increasing, slg; will have the direction of the entering curves in sheface,
so it will lie on the plus side afls Henceds will lie on the minus side ads;, butds
will lie on the plus side ofls, and therds andds, will lie on different sides ofls ; ds,
andds, define a right angle, stsandd, will define an obtuse angle. We have:

ds =-dscos 6, u)
whereveru = up, while the curves = const. will leave the surface increasing wherever
=u; . ds lies on the minus side afs sodswill lie on the plus side ofls, . However,
ds always lies on the plus side @di, sodsandds, will lie on the same side alfs, . ds
andds define a right angle, sisandds, will define an acute angle. Here, one has:

ds =dscos §, u),
Ld = Ldscos(s u)
Jo )T (VETREL

e

so ultimately, one will have:

and it will then follow that:

L Ivlﬂd dv = dscos (s, u).

Lawon= [

We would now like to employ these theorems in orgeconvert the pieces that
originate in the internal work that were pointed alieady.
One has, e.qg.:
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IIX\/Ea de ”a(x\/an Z)dudv—ijZ—*/—Gao)aazdud\,

oJu

SO:

(%, ﬁa o, 22 dudv= [ X, a 6, dscos (s, - jj%aa dud,
and thus the summands that follow from the intewwak will be:
da, da, & 0¢
(XZ\/E au T E ov Xl\/_GE+ '[\/_Egvjéa
oa, oa, 0¢
{TZ\/E ou F% E v Y\/_Egvjéa

du dv dt

O [z

in which the sign>, means, here and in what follows, that two morelamsummands
are added in which the symbg#saand s or yand {appear in place af andé, resp.

La(x ~Gay) a(Tﬁaz) a(TZ\FEaO) a(YZ\FEa])J

Ju ov

[a(xﬁao) L0/ Eay) | a(Y\FEa])J

du dv dt

(1 +sz

Jdu ov ov

(i) _ﬂz{[xzaocos(s,uﬁ Ta,cos(s,ux Ta, cosE,W Y, cos(s,utfpz}ds dit

+[ X, a,cos(s,u)- Ta,cos(s,vy Ya, cos(s,uflé

The work that originates in the external forceallsmow be calculated, and first of all
for the forces that act upon the points in all lsymside the shell whose coordinates are
& n, {’. LetA, B, C be the components of the force that act at a @gimt’, ' when
they are taken along the three axes. Hence, thietvat they do will be:

HH(Mf' +Bdy' + C')y/ EGdu dv dz dt

A, B, C must be given as functions & 7, ¢, z Now, it will follow from equation
(7) when one sets = 0 andy = 0 (which one can do as long as one includes ally
possible values af, v in the integrals above when one neglects the dignt;, vy, 13,

which are small in comparison to higher-order qiias) that:

oK'=0f+ 20, on'=on+zob,, of'=0(+z0p.
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In general, however, one can also negte&t, in comparison ta¥, etc., sincezis, in
fact, infinitely small; however, there is a casevimich that is not true.
Namely, one has:
Qo0 +a1 0+ a, oo, =0
Now, one has:

7
E du
aL = ! %
G ov

up to small quantities.
If I regardE andG as constant during the deformation, which is correcougnall
guantities, then it will follow that:

10§00 | 106 0%

" +a'250'2:0.
Eodu du Govov

Now, % and aa;‘\_/g have the same order & in general, s@a, will have the same
order asodé, and therefore oa», can be neglected in comparisondo That conclusion is
not permissible in one case, namely, wimer= 0O; i.e., when th&-axis is parallel to the
surface. The same thing will be true &% and d)s, in comparison t@n and d¢, resp.,
when theY or Z axis is parallel to the surface, so, e.g., for artielatate that is parallel
to theXY-plane or when the elastic shell defines cylinder wlzose is parallel to th&-
axis. Meanwhile, later on, we will also have to cohtlee equations for the general case,
as well, under which even that exceptional case willeh#o be brought under
consideration for each point of an arbitrary shelle Wbuld not like to negleca da,
etc., in comparison td¢ for the general case as well, and therefore the Watkis done
by the external forces under the deformation of thd shiébe:

jj”(A55+ B+ C& + Azda, + B2, + Cdy,)/ Edu dv dz dt

The forces that act at the points of the outefaserof the shell, when one excludes
the boundary, might have the componeitB’, C’in the directions of the axes. Hence,
the work that they do will be:

jjj(A'55+ Bonp+Cdl+ Az, + BDB,+ Cay,) Eudvdt

| now set:
jAdz+A' =A, dez+B' =B, dez+C' =C,

jAzdz+ A'z=A,, szdz+ B’'z=B,, jCzdz+ C'z=0_C,.
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One can conclude from the type of summation thatahee$ that are applied to the
outer surface will act like the forces that are distied inside, and conversely.
The work that originates in those forces is then:

(V) [[[(Aa+Ban+Ca+ Adr,+ BB+ Cdy)y ECdudvdt

However, external forces can also act on the baynd They might have the
componentsJ, V, Win the directions of the axes. The work that tdeywill then be:

HJ(U &' +V o' +W ") ds dz dt
or
[[[U & +Vv an+Wa¢ +Uzda, + VaB, + Way,) du dv dt
If | set:
'[U dz = Uy, '[V dz = Vi, '[W dz = Wi,

jUzdz:UZ, ijdz:vz, szdz:W2
then that work will be:
(V) [[[ U, 8 +V, a7+ W& + U, 30+ V, 3B ,+ W,dy ) ds dz dt

We now come to the part that originates inuiseviva
3o[[[] (a—‘vjz{a—”'jz{a—zljz o EG du dv dz dt
2 ot ot ot

in which p means the density.
Now, one has:

([0 08 08 . _ (9E ) , 0%
55{(5} dt—J.E Edt—j(ﬁ&‘l —jé{th.

The first summand on the right is zero, sidééis zero on the boundary because the
path is varied, but not the starting and ending{soi
Now:
¢ =¢é+mz
So:
0%¢& _ 625+ z9%a,
o> ot*  ot?

and furthermore:
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' =0+z0om5,
and therefore:
0%¢& 0%& 0%¢ ’a d%a,
— O =2 +z7—2da,+ 2+ I—Fd
ot> % ot> % a2 T at? % az

We would now like to make use of the assumption thatstirfaceé, 7, { is the
middle surface of the shell. fis the thickness of the shell then we must integiate
from—-h/2to +h/ 2, and after performing that integration, we will get:

2 2
["2 98 gp= 02 [ ¢ 40,

-2 ot ot -hiz- ot

J»h/z 02 CZZ dz= 0, J»h/z 0? cz dz= h? 6202,2 |
-hiz ot -hiz ot 12 ot

Thevis vivathen yield the following summands:

(V1) —mz[ 5 & 12 6t2 jp\/_Gdudvdt

We now have to calculate the summands that otgima the internal condition
equations. These conditions, in terms of the dagigantities that exist, are:

as+ B +y,;-1=0, nm+tB B+ k=0,
af+ B +y;-1=0, o+l G+p =0,
a;+BI+y;-1=0, am+BHBi+Kw)h=0,

0{ _
+y = =
'Blau ylau '
65 6/7 6(
= O,
au '82 au
05 5/7 5( _
Py thoy VAT

These nine condition equations are supplied witdetermined coefficients. |
multiply the first three by, L1, Lo, resp., the second three ldy, M1, M2, resp., and the
last three byNo, N1, N2, resp.

The coefficients of the variations of the cosimdsthe inclination angles can be
written down immediately; they define the summands:
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2L, a,+M,a,+M,a)da,

vy + [[[> (2L1a1+M ay+M,a,+N g‘(jaal J EGdu dv dt

(2La+M a,+M.a,+N,— 5 agjéaz
6u 20v

By contrast, we convert the integral that inclutles variations of the derivatives of

& n, {in the repeatedly-applied way into an integralrdie surface and an integral over
the boundary curve and obtain:

i mz{ad_ N7 a(J_GNaZ) a(J_GI\;aZ)J }du av

(IX) +IIZ{(NOa1 Ecos(s,ur Na,/ Ecos(s,uy Iyaz\/_Gcos(s,\))if}dsst

The internal condition equations will assume dedént form for the boundary.
Initially, only the variationsda., o, d)s, &, dn, o will come under consideration, so
we will also require only the condition equations:

2 2 2
0’0 +:30 +yo_ 11

& _on ¢
—+03—"L+y —2=0,
23 ﬁzau 254
& _on ¢
—+pB,—++y,—=0.
23y B, Y23y

However, the last two condition equations are @plgarently two. They say that the
z-axis of each element should be normal to the raicklirface. However, for the
boundary, that can only mean that thaxis of the boundary element should remain
normal to the boundary and that will give only grpiation:

o _

o0& an
2+ f L =
29 ﬁzas *ds

| multiply the first condition equation bl and then byQ, so the coefficients of the
variationsoa,, 95, dys can be written down directly:

¢
(X) I} Zszaz + Qazgj mz}ds dt.

By contrast, one has:



Aron — The equilibrium and motion of an infinitely-thin, drarily-curved, elastic shell 31

G(Qaz) SEdit

ana ds=(Q a» &%) - j

In the first part, one must subtract the value atstaeting point of the boundary curve
from the one at the end point. However, the curadoised, so that part will be 0, and we

ultimately get the part that is endowed wéif) dr, A¢ -

(X1) ol Z(%dfj ds dt

The sum of the integrals (1), (Il), etc., up tol)>tnust be 0. When one sets the
coefficients of the individual variations that ttelao the interior equal to zero, one will
get twelve equations that refer to the interiothef middle surface and six that refer to
the position of the boundary points. | shall setvd only the first, fourth, etc. of them.
The other ones will be obtained in such a way tin&t replaces the, & A, andU in them
with the symbolgs, 7, B, andV or y; ¢, C, andW, resp.

Main equations

a(X, ﬁa) a(Tﬁza) a(Y\FEal) (A& ] _ng—G
(1-3) ov t
_a(ﬁ Na) 9/ EGNa,) oG/ EGNay _,
ou ou ov
a(x2\/6a0)+a(T2J’Gal)+a(T2fan)+a( WE)_F _hpd’a,
(4-6) ou ou ov [AZ 120 ¢ j\/?G
(2La+l\/| a4 M ag+N O i CN a‘zjﬁ 0,
oa, oa, 0¢
. (VO T e
+(2Llal+Mzao+MOaz+No%j\/E_G:0,
B da, oa, 6 ¢
o1z | XA O T B xS T
+(2L0aO+Mlaz+Mzal)\/EiG:0.
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Boundary equations.

-X,a,cos(s,ur Ta,cos@,uy Ya, cos@s,v U
(1-3) +N, a1/ Ecos(s,u)+ Na,/ Ecos(s,ur Na,/ Geos(s, v)a(QaZ) (
-X,a,cos(s,uy Ta, cos@s,uy Ta, cosE,\
(4-6) o¢ _
+Y,a,cos(s,uy+ U,+ 2R, + Q?/2 e

The twelve main equations can be reduced to five.

| multiply equations (10-12) in sequencedsy 5, )4, resp., and add them, and when
one considers equationsaj2and (&), it will then follow that:M; = 0.

If one multiplies those equations by aad £, 4, resp., and adds them then when
one considers equations (8), (9), (10) and neglguatmtities of higher order, it will

follow that:
XzEAG JzGA -T,J EG+ M, EG=0.

If one multiplies equations (7-9) lag, 5, )4, resp., and adds them then it will follow
thatMo =0.

If one multiplies the same equations dgy /%, )5 , resp., and adds them then it will

follow that:
YZTAG+ TZEA+ M,/ EG+ N,/ E/ EG =0.

It then follows from both equations that:

X, A TA_Tﬁ LA

" Jes Tes 6

We shall not need equations (7)-(11), inclusivemf now on.
We now multiply equations (1)-(3), inclusive, by:

a, fo, o, 0, B NA, @2, S s,

resp., add them each time, and, at the same taplaqea(a—\/ua%),
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then when we consider equations (8), (9), (10) and neglectitiggif higher order, it
will follow that:

Main equations

hoy G( Do atz'g‘) atiy"j

9 9
) ~JEG(Aa,+ B4, + Gyy-20e/0) 20D
Y, 0G N, 0E A A’ _
"ojcou 2 av e MyET?
0°¢ 0 5, 0%
hp\/E_G[atz 1 atz ﬁl t2 ylj
0¥ E), X, E T 0G
2) -JEG(Aa,+ BB+ Gy)- A

v 2JEdv 2/Gau
LNNVES)

2

ou *JE E

625
h[)\/I?G[atz 2 atzﬁ2 atzyzj
@3) - JEG(Aa,+ BA,+ Gyy)- X2 \qu

S 6(N\/_G) 6(N2\/_C;)
" JEG O\/_G au

If we multiply equations (4-6) successively &y, K, w, o1, b, i, resp., and add
them then it will follow that:

,0 o-a, 6,8 oy,
(at2 0 atjﬁo t;yoj

0 0
@ ~JEG(Aa,+ B4+ Gy~ 2KelO) ATV D

ov
-1 0B, Y a—G—NlEJ_G:O,
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hp d’a, .9 B %
_~ EG 2 2
12 ( o Bt Bt

0 0
(5) - JEG(Aa,+ BB+ Cy)- (Yﬁ) (Tﬁ)

X, OE T, aG—NZG\/_EZO

2J_av2J_a

Boundary equations

If we multiply equations (1-3) of the boundary atjans by:
o, fo, W, o, B A, a2 B b
resp., add them three at a time, and at the sameestt:

da, _ 0a, du aa ov_oda, 1 0s 602 1 0ds
0z du 62 ovaz au\/763 avfas

_da, cos@,v)+ da, cos6 u.

ou JE ov /G

U,a,+V,B,+W,y)— X,cos(s,u T cos(s,v

QA o1
E\/E_GCOS(S’V)+ EG cos6 u¥F O,

U, @, +V, B,+W,y) + Ycos (s o+ Ny Ecos(st

2 1 n

@ +—QA cos@,Vv)+ Q4
EG G\ EG

then we will set:

(1)

+

cos6 u¥F O,

(3) Ui @ +Vi B + Wi s) +N; \[E cos 6 U) — Nz\/ECOSSV)——Q

We multiply equations (4-6) bgo, &, 6, a1, b1, Wi, resp., and observe that:

0§ _ 0¢0u afav o¢é 1 65 o 1 0s

s 6uas ovos aufas av\/765

_0écosis v) 0 cosb u

au\/E av\/E

34
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It will follow that:
(4) Uao+ Vo o+ Ws g— Xz cos 6,U) + Tocos 6, v) + Qcos 6, v) =0,
(5) U,an+ Vo Bi+Wo i+ Yo cos V) —To cos 6 u) + Qcos 6 u) =0.
Here:
X1, Y1, 21, X2, Y2, 2,

are calculated from equations (12) on page 18 and substituted.
Since the integrations should be extended frdni 2 to +h / 2, we should get:

2kh
X1 =——— (1 + ) g +0 &),
1 1+@(( ) & 2)
2kh
Y, =— +(1+ ,
1 1+®(@€1 ( B)Sz)
T =kh 7,
3 B _ " n_
X, = kh (1+2@)DA+@D’A |
6(1+G))_ E. EG EG|
ki | D-A D' -A" |
Y, = © +(1+20 ,
® 76(1+0)| EJEG 2oy EG|
3 ' [}
T2 :ﬁ D-A )
EG

It follows from this, in turn, that:

_ k' (DA'-DA DA -DA"
Ny EG= khrJ_G+6EGJTE( — j

If the shell is a plate, so the middle surface [gane, the =D’'=D”=0. These
will then include the derivatives of the cosinestloé inclination angles of the normal
with the axes with respect toandv as factors, but that angle will be constant fa th
plane, so their derivatives are 0. If one furthetskE = 1, G = 1 then the coordinate
system that is assumed on the plate will be arogdhal rectilinear one, so if we ignore
the acceleration then our equations will then gerde the ones thalebsch () gave for
the equilibrium of an infinitely-thin elastic platleat suffers finite deformations.

() Theorie der Elasticitjt§§ 69, 92, and 93.
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Infinitely-small oscillations in the neighborhood oé&thquilibrium position

Whereas the coordinatés /7, { of each point were determined as functionsl,of,
andt for finite changes of form by our equations, in the cakere the shell executes
only infinitely-small oscillations, one can convert thguations in such a way that the
coordinates of the displacements of each points ingidenarmal to the surface will
enter into them.

To begin with, the quantities that appear in those eznusmti

&, &, r,
A, A', A"
should be expressed in terms of the stated displacem@&itghat end, the things that

were denoted by, K, W, v, B, K, a2, B, )6 during the deformation shall be
denoted byag, by, co, a1, by, 1, @, by, ¢, for the surface in the equilibrium configuration.

| now set:
m=a+a;, S=bo+p, 6 =Co *V,
m=a +a, Bi=bi+4, Kh=cty,
m=x+a,, [=b+p, yp=C2tY,

for small deformations of the shell, in which the syislibat are expressed with a prime
mean small quantities.

Now, since theap , ... satisfy equations (1) on page 4, but &he... must satisfy
similar equations, when one ponders the fact ttfjat... mean small quantities and that

one would like to neglect quantities of higher order, It follow that:
8 0o thy ot ¢y =0, aathpi+cy, =0, a,a,+h, Bt c,y,=0,

&a,+b B+ G Y1+ aad' s+ bt oy =0,
aa+h B+ cy,+aai+ bty =0,
8, +b, B+ C, /gt aa'yt b ,+ ¢ = 0.

One will satisfy those equations when one sets:

ay =praz—pza, By =piby—p2by, Yo =pP1C—p2C1,
a, =p2ao—poadg, B =p2bo—poby, Y, =P2Co—PoCz,
a, =Poar—pP1ao, B, =pob1—p1bo, Yy =PoC1—pP1Co,

in whichpo, p1, p2 mean small quantities. Now, from equation (10) on pageriill
have:
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aﬁ’wzzfﬁ)%Uw+@ﬁw S 4 (e, 4y HE N,
A aao ab) oa, 05, oy, 665 ol 0 (5
E\/7 ou bzau au azauijzauchzau+ 'Bzau VZ

so it will follow, with the help of equations (8), (¥nd (10), that:

A D ap1 p,D  p, OE

EJG EJG U GJE 2J EGOV

It will follow similarly that:

N D' .op_pD, p 09G
EJ/G E\F ov qﬁz 2/ EGau’
N D' .op_pD, p 0G
GJE E\F ov Gﬁ 2/ EGau’
N D’ ap1 p,D_ p OE
EJG GJE ou EJE 2 EGov’
' D" 9p, p,D', p 0G

GJE GJE ov EJE 2/ EGou’

Now, from equation (2) on page 5:

= (g +ap)J E(l+s), ...

lseté=X+¢&,n=Y+n",{=2Z+,inwhich{’, n’, {’mean the small changes in
the coordinates under deformation. Hence:

0X 9
T ‘:—(plaz p, )/ EL+&)+ ay El+e)).
Now:
aX
_ = E,
o 3 E

so it will follow that when one neglects second-orgieantities:
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1 65’_p —Ppata s,
—— T P —pPpa 1,
J E ou

it likewise follows that:

1 97
————=prbo—p2br + o & ;
JE du P P

1 aZ'—p Co—P2C1+Co &
————PLC- 1 1.
JE ou

In a similar way, it follows from equations (3) orgpab that:

LU a-patantar
G ov ’
1 9

= 9 by—poby by & +bo T,
G ov
1 ol

_\/EW:pZCO_pOCZ-I-Cng-I-CO r.

If one multiplies the equations above dy bo, Co in succession and adds them then it

will follow that:
oF . on' ol
Eg=a —>—+h—L+c—.
JEa= au % au “ au

It will follow similarly that:

o8 on . ol
JGe, = 8% 0040

ov ov oV’
P2 =—ﬁ[q%—‘:+b1%—'g+ q%)
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It is essential to simplify these expressions. Igimea that the geometric locus of the
middle surface of the shell is fixed in its rest configiora The actual middle surface
oscillates about it, as the equilibrium configuratioret W, v be any point of that middle
surface in the equilibrium configuration. After deformafid imagine that an altitude
has been dropped from that point to the fixed middle surfaetu + u', v + v’ be the
surface coordinates of the foot of that altitude, and l@ its magnitude. | now imagine
that the fixed coordinate system is arranged in suchyath its origin falls upon the
pointu, v of the middle surface, and the axes rotate in suclyetlat thex-axis assumes
the direction ofds;, the Y-axis assumes the direction @&, and theZ-axis assumes the
direction of the normal. The cosines of the incimatangles ofls with respect to the

three axes areo, b, Go (1, O, O, resp.). However, one can dét= [EdU in the
neighborhood of the origin, and it will then followatt:

& 0" _
- 4 _+
% ou % Ju “au ou au
and one will then find that:
az M
YT
It follows in a similar way that:
& = ﬂ T= Ea_U'_ p:
YT Gov
o Lo _1n 0= |G
JGau’ ! JEdu' 2 Eou’

SO one ultimately has:
F Gov
Gov VEau

With the use of the values fps, p1, p2 that were found abové, A', A" can also be
expressed in terms af, v/, n:

A Lo 10n), D ov 1 9Edn
E\/E E\/7 oul JEdu Eﬁau 2G/ EOvOV
5 _ D ,o(1m), D ov_ 1 oGon
E/JG EJG ov|/Edu) E/Gou 2G/ EQuaV
N _ D a{ 1 anJ_ D oV 1 9Ean

GJE GJE ou| JGov) EJEOU 2E/ Govau

Gov
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A _ D ,0f10n) D v, 1 3Gdn
GJE GJE ov|/Gov) E/Eou 2E/ Goudu
We can expres®' / (EG) in two different ways with these equations:

AN_D 1 dn 1 9Eon,_ D av 1 0Gan
= + - e
EG EG JEGOudv 2E/EGOvou EGIu 2G/ EGO W

N _D, 1 @ 1 0Gdn_ DoV _ 1 0Edn
EG EG EGOudv 2GJ/EGOudv Edu 2E[ EGI W U

However, these two expression differ by quantitiest includedv’/ du. We conclude
from this that, in generafv’/ du is small and can be neglected in comparison to the

guantities that come under consideration, and thexehe derivatives afi with respect
tou andv. We then ultimately get:

A _ D ,1dn_19Edn, 1 0Edn

= +
EJEG EJEG Goau T2E9udu 2EGO VO \

& _D, 1 on__ 1 0Edn__ 1 oEdn
EG EG \/_Gauav 2E./EGOvou 2(3/ EGO ud \
A _ D', 1n_10Gon, 1 3Gan

GJEG GJEG JEM 2G’ dvov 2EGOUd L

The stresses that were given on page 35 can bessgut in terms of only the time-
dependent quantities, v’, n with the help of these expressions foy &, andr.

o’ Y \F Gov
&= —, EH= —, —_—
ou ov G av Eou

However, one remarks that these stresses are indepeofD, D', D”, and depend upon
only E andG. The theorem follows from this that:

If two surfaces are mutually developable and thewvdtives of n, ¢ v’ with respect
to u and v (i.e., the relative displacements) ageat at corresponding locations then the
stresses that appear at those places will alsoduale

It still remains for us to convert the summandsthe equations of motion that
originate in accelerations, if we ignore the exééforces. We have:
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2 2.0
f J°u
at2 ﬁO at2 6t2 */_ ot ’

2
0°¢ |
at2 ﬁlatz 6t2 \/_ t2’

25 ﬁ ZZ aZn
e 26t2 Sroare

aa 6,32 62y2_ °p,_ 1 d°n

o P Vg T e T JE o au’
62a ’36 ,32 62y2: °p__ 1 n
a2 "t oat? at2 at? ﬁatzav'

The last two summands are not to be considered éocdbe of a plane or a cylinder
that is parallel to an axis, but only for any surfacealat When we apply our latter
considerations to that point, that point will becom&arting point, as we mentioned on
page 27.

With the conversions that were made, our equationfiéeduilibrium and motion of
an elastic shell that performs infinitely-small ostitbns in the neighborhood of the
equilibrium configuration will go to the equations fof v’ n, viz., the displacements
inside and normal to the surface.

These equations simplify essentially for the plafioe, which D = D’ =D” = 0.
Namely, one sees that the first two main equations anddary equations will contain
only u”andv’then, whilen will appear in the remaining ones, in addition to théhose
four equations for the oscillations inside of the plank ve satisfied when one sai$=
0,v’= 0. If one also substitutes those valueuuf@ndv’in the remaining equations then
one will get equations for the transversal oscillagiofh the plate that correspond to the
ones thaKirchhoff first applied to the calculation of the sound figuresicdular plated.
In order to obtain the equations that are appropriatechiacalar plate from our equations
in polar coordinates, one chooses r, v = J, wherer is the radius vector, and means
the amplitude. Since:

ds’ = dr® +r* dg?,

one must seE = 1, G = r2%. One will then get the same equations tBkbsch () had
obtained by transforming the equations into orthogondlirear coordinates.

Berlin, 1873

() Theorie der Elasticit4t§§ 78, 129.



