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On the infinitesimal geometric motion of a rigid system 
 

NOTE by the ordinary member Giuseppe Battaglini 
 

(Announced on 14 November 1870) 
 

Translated by D. H. Delphenich 
 
 

 As a continuation of the notes that were inserted in the Rendiconti (fascicules for 
February, May, and August 1869) and related to the statics of systems of invariable form, 
we now pass on to the treatment of the kinematics of those systems. 
 
 
 1. In order to evaluate an infinitesimal rotation around an axis that is impressed upon 
a rigid system by means of the space that is described at an arbitrary point of the system 
that is at a unit distance from the axis, let δL, δM, δN be infinitesimal rotations that are 
impressed in a rigid system around the edges L, M, N , resp., that belong to the face D of 
the fundamental tetrahedron.  Set (*): 
 

δR2 = δL2 + δM2 + δN2 + 2 δM δN cos MN + 2 δN δL cos NL + 2 δL δM cos LM, 
 
so δR will be the resultant of the forces that one intends to represent by (δL, δM, δN), 
which act along the lines (L, M, N), resp., and the line of action of that resultant will be 
determined in the plane D by the equation: 
 

δLa 
sin

Aa
AD

+ δMb 
sin

Bb
BD

+ δMc
sin

Cc
CD

 = 0. 

 
For any point p of D, one will then have the relation: 
 

δR Rp = δL Lp + δL Lp+ δN Np, 
 
so if one observes that the right-hand side of this equation denotes the infinitesimal 
displacement of the point p by the three simultaneous rotations δL, δM, δN around the 
axes L, M, N , resp., and that the left-hand side denotes the infinitesimal displacement of 
p by the single rotation δR around the axis R, then it will follow that the three rotations 

                                                
 (*)  Note: “sulle compositione delle forze,” Rend. dell’Accad., February 1869. 
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compose into just one in the same way that forces compose (** ).  They will compose into 
just one around an axis R that is the intersection of four planes: 
 

 δHb
sin

bB
AB

 – δGc 
sin

cC
CA

 + δLd
sin

dD
AD

 = 0, 

 

 δFc 
sin

cC
BC

– δHa
sin

aA
AB

 + δMd
sin

dD
BD

 = 0, 

(1) 

 δGa 
sin

aA
CA

– δFb 
sin

bB
BC

+ δNd 
sin

dD
CD

 = 0, 

 

 δLa
sin

aA
AD

 + δMb 
sin

bB
BD

+ δNc 
sin

cC
CD

 = 0, 

 
if one satisfies the condition: 
 

(2) 
sin sin sin sin sin sin

F L G M H Nδ δ δ δ δ δ+ +
BC AD CA BD AB CD

 = 0. 

 
The resultant rotation δR will then be given symbolically by: 
 
(3) δR2 = (δF cos F + δG cos G + δH cos H + δL cos L + δM cos M + δN cos N)2. 
 
 When the rotations (δF, …, δL, …) verify the conditions: 
 

N M Fδ δ δ− +
ab ca ad

 = 0, 
L N Gδ δ δ− +

bc ad bd
 = 0, 

M L Hδ δ δ− +
ca bc cd

 = 0, 

(4) 
F G Hδ δ δ+ +

ad bd cd
 = 0, 

 
the line R will be at infinity and one will have δR = 0; in such a case, the given rotations 
will give rise to a translation of the system. 
 If one regards the line R as the intersection of two planes (Pi, Pj), and denote its 
coordinates by (F, …, L, …) then one will have: 
 

sin

F

F

δ
BC

= 
sin

G

G

δ
CA

= 
sin

H

H

δ
AB

= 
sin

L

L

δ
AD

= 
sin

M

M

δ
BD

= 
sin

N

N

δ
CD

 

(5) 

= 
sin i j

Rδ
P P

= δτ. 

                                                
 (** ) POINSOT, Théorie nouvelle de la rotation des corps.  
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With this formula, an infinitesimal rotation δR = δτ sin Pi Pj around the line R will 
decompose into six infinitesimal rotations: 
 

δF = δτ F sin BC, …, δL = δτ L sin AD, … 
 

around the edges (F, …, L, …), resp., of the fundamental tetrahedron. 
 This formula, when adapted to the case in which a translation δr = δτ pi pj is 
impressed upon the system along with a rotation, will express the infinitesimal 
displacement of an arbitrary point of the system by δr and the distances between two 
planes that are perpendicular to the direction of the translation by pi pj .  One will then 
have the relations: 
 

sin sin sinN M F− +CD BD BC
ab ca ad

= 0, 
sin sin sinL N G− +AD CD CA

bc ab bd
= 0, 

(4) 
sin sin sinM L H− +BD AD AB
ca bc cd

= 0, 
sin sin sinF G H+ +BC CA AB
ad bd cd

= 0, 

 
between the coordinates (F, …, L, …) of the line R, which is the intersection at infinity 
of the two planes above. 
 If (F, …, L, …) are the coordinates of a line Rk that is the intersection of two planes, 
and Ri is the sine of the angle between them, then one will have: 
 
(6)   δR Rk [R, Ri] = δτ (FLk + … + LFk+ …) sin ABCD, 
 
and it is easy to see that δR [R, Ri] expresses the infinitesimal displacement, when 
evaluated along the line Rk , (i.e., the virtual velocity) that is common to all points of the 
line Rk of the system for the rotation δR of that system around the axis R.  If one regards 
Rk as a force that acts along the line Rk then the quantity δR Rk [R, Ri] will be what one 
calls the virtual moment of the force Rk relative to the infinitesimal rotation δR around the 
axis R. 
 Now, let several infinitesimal rotations δR1, δR2, …, δRi, … around the axes R1, R2, 
…, Ri, …, resp., be impressed on the system simultaneously.  They will be equivalent to 
six simultaneous infinitesimal rotations around the edges of the fundamental tetrahedron 
that are expressed by: 
 
(7)   δF = ∑ δFi = δτ sin BC (∑ δFi), …, δL = ∑ δLi = δτ sin AD (∑ δLi), … 
 
They will compose into just one infinitesimal rotation δR around the axis R that has the 
coordinates: 

F = ∑ Fi , …, L = ∑ Li, …, 
which will verify the condition: 
 

( )( ) ( )( ) ( )( )

sin sin sin sin sin sin
i i i i i iF L G M H Nδ δ δ δ δ δΣ Σ Σ Σ Σ Σ+ +

BC AD AC BD AB CD
= 0, 
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or also: 
(8)   (∑ Fi)( ∑ Li) + (∑ Gi)( ∑ Mi) + (∑ Hi)( ∑ Ni) = 0. 
One will then have: 
 

δR2 = [(∑δFi) cos F + … + (∑δLi) cos L + …]2 = (∑δRi cos Ri)
2, 

or 
(9)  δR2 = δτ 2 [(∑Fi) sin BC cos F + … + (∑Li) sin AD cos L + …]2. 
 
 The resultant rotation will be converted into a translation that verifies the conditions 
that are obtained by taking (∑δFi , …, ∑δLi , …) or (∑Fi , …, ∑Li , …), instead of (δF, 
…, δL, …) or (F, …, L, …), resp., in the first or second system of equations in (4). 
 In the general case, in which equation (7) is not satisfied, the infinitesimal rotation 
that are impressed upon the system simultaneously will be equivalent to two 
simultaneous infinitesimal rotations around two axes, one of which passes through a 
vertex of the fundamental tetrahedron and the other of which lies in the opposite face. 
 Finally, the rotations that are impressed upon the system will cancel each other when 
one has: 
(10)  ∑δFi = 0, …, ∑δLi = 0, … or ∑Fi  = 0,…, ∑Li = 0, … 
 
 If one applies equation (6) successively to each of the infinitesimal rotations that are 
impressed upon the system and takes the sum of the resultants then one will get: 
 
(11)  Rk ∑ δRi [Ri, Rk] = δτ [(∑ Fi ) Lk + … + (∑ Li ) Fk + …] sin ABCD. 
 
∑ δRi [Ri, Rk] will be the infinitesimal displacement of the line Rk along the proper 
direction (i.e., the virtual velocity) that is due to the infinitesimal rotations that are 
impressed simultaneously on the system, and Rk ∑δRi [Ri, Rk] will be the virtual moment 
of the force Rk relative to those rotations. 
 Applying formula (11) to the various forces Rk of a system and summing the results 
will give: 
 
(12)  ∑ Rk (∑ δRi [Ri, Rk]) = δτ [(∑ Fi ) (∑ Lk) + … + (∑ Li )( ∑ Fk) + …] sin ABCD, 
 
so the forces Rk that will bring about equilibrium will then satisfy ∑ Fi = 0, …, ∑ Li = 0, 
…, and one will get ∑ Rk (∑ δRi [Ri, Rk]) = 0, which is a formula that expresses the 
principle of virtual velocity. 
 
 
 2.  Let r or R denote a line, which can be considered to be a locus of points or an 
intersection of planes, and let (f, …, l, …) or (F, …, L, …), resp., denote its coordinates, 
which depend upon the pair of points (pi, pj) of r or the pair of planes (Pi, Pj) that go 
through R, resp., so one will have: 
 

sin

f

L

bc
AD

 = … = 
sin

l

F

ad
BC

= … = 
sin

i j

i j

p p

P P
. 
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 For greater simplicity, we always suppose that pi pj = sin Pi Pj , and if the system is to 
be impressed around the axis (r, R) of the infinitesimal rotation δr = δτ r = δR = δτ R 
then we will put pi pj = r = sin Pi Pj = R.  That rotation will be equivalent to the 
simultaneous infinitesimal rotations: 
 

δτ f bc = δτ L sin AD, …, δτ l ad = δτ F sin BC, … 
 
around the edges (f, L), …, (l, F), … of the fundamental tetrahedron. 
 Now, consider the infinitesimal motion of the system that is due to several rotations 
δτ (r i , R i) around the axes (ri Rj), resp.  As we have already seen how these rotations 
compose among themselves in the same way that the forces that are expressed by (r i , R i) 
that act along the lines (ri Rj), resp., compose.  Now, let (ω, r) = (Ω, R) denote the 
moment of that system of forces with respect to a line (r, R), so the virtual velocity of 
that line, when provided with the given rotations, will be found to be expressed by: 
 

∑ δr i [ri, r] = δτ (ω, r), or else  ∑ δRi [Ri, R = δτ (Ω, R), 
 
with which, the properties of the moments of the system of forces (ri Rj) will translate 
immediately into properties of the virtual velocities of the corresponding system of 
rotations δτ (ri Rj) (

*). 
 The lines (r, R) of zero virtual velocity, or the ones that are normals to the trajectories 
of their points, constitute the first-degree complex that is represented by the equations: 
 
(1)  (∑ fi) l + … + (∑ l i) f + … = 0, (∑ Fi) L + … + (∑ Li) F + … = 0, 
 
and one will then have the following properties (** ): 
 The line r that passes through the point p with coordinates (a, b, c, d) that belongs to 
the corresponding plane P with coordinates (A, B, C, D) is determined by the equations: 
 

( ) ( ) ( )i i in b m c f d

A

Σ − Σ + Σ
⋅aA

= 
( ) ( ) ( )i i il c n a g d

B

Σ − Σ + Σ
⋅bB

 = 
( ) ( ) ( )i i im a l b h d

C

Σ − Σ + Σ
⋅cC

 

(2) 

= − 
( ) ( ) ( )i i if a g b h c

D

Σ + Σ + Σ
⋅dD

 = 
( , )ω p
abcd

, 

 
and the lines R that lie in the plane P with coordinates (A, B, C, D) that belongs to the 
corresponding point p with coordinates (a, b, c, d) are determined by the equations: 
 
( ) ( ) ( )i i iN B M C F D

a

Σ − Σ + Σ
⋅ Aa

=
( ) ( ) ( )i i iL C N A G D

b

Σ − Σ + Σ
⋅Bb

=
( ) ( ) ( )i i iM A L B H D

c

Σ − Σ + Σ
⋅Cc

 

(2) 
 

                                                
 (*) Note: “sulla teorica dei Momenti,”  Rend. dell’Accad., May 1869. 
 (** ) CHASLES, Mémoires de l’Institut, 1843. – JONQUIÉRES, Mélanges de Géométrie pure. 
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= − 
( ) ( ) ( )i i iF A G B H C

d

Σ + Σ + Σ
⋅ Dd

 = 
( , )

sin

Ω P
ABCD

. 

 
 The quantities that are expressed by the symbols (ω, p) and (Ω, P) are deduced from 
equations (2), while taking into account the relations: 
 

(A cos A + B cos B + C cos C + D cos D)2 = 1, 
 

(a + b + c + d) = 1. 
 
 δτ (ω, p) and δτ (Ω, P) will be the resultant virtual velocities of the system relative to 
the point p and the plane P, resp.  For a line r or R that goes through the point p or the 
plane P, resp., the virtual velocity will be expressed by: 
 

δτ (ω, r) = δτ (ω, p) sin rR or δτ (Ω, R) = δτ (Ω, P) Rp , resp. 
 
 If the plane P′ that corresponds to p′ passes through the point p″ then the plane P″ 
that corresponds to p″ will pass through p′.  If the point p′ that corresponds to P′ lies in 
the plane P″ then the point p′ that corresponds to P″ will lie in P′.  In other words, the 
pairs (p, P) of corresponding points and planes will describe correlated figures with the 
peculiarity that the plane P that corresponds to a point p will pass through p and that the 
point p that corresponds to a plane P will lie in P. 
 If a point p traverses a line r′ then its corresponding plane P will pass along another 
line R′.  Similarly, if the plane P turns around a line R′ then its corresponding point p 
will traverse a line r″.  If r′ coincides with R′ then R″ will coincide with r″.  The lines 
(r′, R′) and (r″, R″) are called conjugate lines.  A line r that coincides with its conjugate 
R will be normal to the trajectories of its points. 
 Let (r′, R′) and (r″, R″) be two conjugate lines.  Set: 
 

 (∑ fi) (∑ l i) + (∑ gi) (∑ mi) + (∑ hi) (∑ ni) = 
k

abcd
, 

 

 (∑ Fi) (∑ Li) + (∑ Gi) (∑ Mi) + (∑ Hi) (∑ Ni) = 
sin

K

ABCD
, 

 
so k = K, and furthermore: 
 
(3)   r′ (ω, r′) = r″ (ω, r″) = k,  R′ (Ω, R′) = R″ (Ω, R″) = K, 
 
and one will find that: 
 
(4)  f′ + f″ = ∑ fi , …, l′ + l″ = ∑ l i , …, F′ + F″ = ∑ Fi , …, L′ + L″ = ∑ Li , … 
 
Therefore, (r′, R′) and (r″, R″) will be two forces that act along the lines (r′, R′) and (r″, 
R″), resp., and are equivalent to the system of forces (r i, Ri) that act along the lines (ri, 
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Rj).  As a result of that, δτ (r′, R′) and δτ (r″, R″) will be two rotations around the axes 
(r′, R′) and (r″, R″), resp., that are equivalent to the system of rotations δτ (r i, Ri) that act 
along the lines (ri, Rj).  The lines (r′, R′) and (r″, R″) are called conjugate axes of 
rotation. 
 The virtual velocities of the conjugate lines (r′, R′) and (r″, R″), which are expressed 
by δτ (ω, r′) = δτ (Ω, R′) and δτ (ω, r″) = δτ (Ω, R″), are inversely proportional to the 
conjugate rotations relative to the axes (r′, R′) and (r″, R″) that are expressed by δτ  r′ = 
δτ  R′ and δτ  r″ = δτ  R″, resp. 
 Let one of two conjugate axes of rotation pass through a point p and the other one lie 
in the corresponding plane P, and vice versa.  These two axes will be mutually 
anharmonically dependent upon each other.  Given two pairs of conjugate axes of 
rotations, any line that crosses three of them will also cross the fourth one. 
 Let one of two conjugate axes be at infinity, and let the other one have a constant 
direction.  One of these three particular pairs of conjugate axes will be orthogonal.  In 
that pair of axes, one calls the one that lies at a finite distance the axis of twisting rotation 
of the system, since the infinitesimal motion of the system will obviously reduce to a 
rotation around that axes and a translation along the same axes. 
 Suppose one is given five lines that are normal to the trajectories of their points, or 
have zero virtual velocity, and consider them four at a time.  The two lines that cross each 
of this tetrad of lines will be conjugate axes of rotation, and the lines that pass through a 
point p and cross that pair of conjugate axes will line in the plane P of the axes of zero 
virtual velocity relative to p, just as the lines that lie in a plane P and that cross that same 
pair of conjugate axes will pass through point p of concurrence of the axes of zero virtual 
velocity relative to P.  The common perpendicular to the common perpendiculars relative 
to the two pairs of conjugate axes will then be the axis of twisting rotation of the system. 
 If six forces act along any lines at all and are required to be in equilibrium then one 
can take five of these lines arbitrarily (*) and the sixth one will then belong to the linear 
complex that they determine.  Therefore, suppose that this complex is the one that is 
represented by equations (1).  One will then find that in the infinitesimal motion that is 
impressed upon the system, six lines that are normal to the trajectories of their points will 
be the lines of action of six forces that can bring about equilibrium (** ). 
 Among the conjugate axes, the ones whose directions are orthogonal merit special 
attention.  Each of them will be tangent to the trajectory of its points at which it meets its 
common perpendicular, and will be the line of maximum virtual velocity relative to all of 
the lines that pass through that point or − what amounts to the same thing − the axis of 
minimum conjugate rotation. 
 Let (r′, R′) and (r″, R″) be two of these conjugate axes.  Their coordinates must 
verify equations (3), in addition to these other ones: 
 

(f′ bc cos f + … + l′ ad cos l + …)(f″ bc cos f + … + l″ ad cos l + …) = 0, 
(4) 

(F′ BC cos F + … + L′ ADcos L + …)(F″ BC cos F + … + L″ AD cos L + …) = 0, 
 

                                                
 (*) Loc. cit., May 1869.  
 (** ) SYLVESTER and CHASLES, Comptes rendus, 1861. 
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which express their orthogonality.  It will follow from this that the lines (r′, R′) and (r″, 
R″) will both belong to the second-degree complex that is represented by the equations: 
 

(f bc cos f + …)[(∑ fi) bc cos f + …] [f (∑ fi) + …] =
k

abcd
(f bc cos f + …)2 

(5) 
  (F sin BC cos F + …)[(∑ Fi) sin BC cos F + …][F( ∑ Li) + …]  

=
sin

K

ABCD
(F sin BC cos F + …)2. 

 
Any line (r′, R′) of this complex will correspond to another conjugate (r″, R″) that 
belongs to the same complex and will be coupled to the first one by the anharmonic 
dependence that was pointed out above. 
 The fundamental property of second-degree complexes is that all of the lines that are 
tangent to the trajectory of one of its points and that pass through a point p will belong to 
a conic surface S of order two, and their conjugates (which are also tangents to the 
trajectory of one of their points) will envelop a line s of class two that belongs to the 
plane P that corresponds to p, and vice versa.  In addition, from the form of equations (5), 
it will appear that P is one of the cyclic planes of S and that p is one of the foci of s, while 
the other focus is at infinity. 
 Since the rotations δτ R′, δτ R″ around the conjugate axes R′, R″ are equivalent to the 
rotations δτ Ri around the axes Ri that are impressed upon the system, let δτ R denote the 
rotation around the axis of twisting rotation R, so R(Ω, R) = K, and one will have the 
relations: 
   R′ 2 + R″2 + 2R′ R″ cos R′ R″ = (∑ Ri cos Ri)

2 = R2, 
 

(6)    R′  = R 
sin

sin

′′
′ ′′

RR
R R

, R″ = R 
sin

sin

′
′′ ′

RR
R R

, 

 
(7)   R′ [R′, Rk] + R″ [R″, Rk] = ∑ Ri [Ri, Rj] = (Ω, Rk), 
 
(8)    R′ R″ [R′, R″] = ∑ Ri Rj [Ri, Rj] = K. 
 
 If ρ ′ and ρ″ are the minimum distances between R′, R and R″, R then one will again 
have: 

(9)     ρ ′ tan RR″ = ρ″ tan RR′ = 
( , )

R

Ω R
. 

 
 If the directions of the conjugate axes R′ and R″ are orthogonal then one will have: 
 

(10)   
tan

ρ ′
′RR
= 

tan

ρ ′′
′′RR

 = 
( , )

R

Ω R
, ρ ′ρ″ = 

2

2

( , )

R

Ω R
; 

 
(11)   (Ω, R) = (Ω, R′) cos RR′ = (Ω, R″) cos RR″, 
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in which the last equation will be deduced from the virtual velocity of the axis of twisting 
rotation, and will be the minimum of the maximum virtual velocities relative to the lines 
that go through the various points in space. 
 Equations (10) and (11) show clearly the disposition around the axis of twisting 
rotation of the lines of maximum virtual velocity that corresponding to the various points 
in space, as well as the way in which the values of that velocity vary. 
 What was said of the line of maximum virtual velocity must also be true for the axes 
of minimum conjugate rotations. 
 One can switch the upper-case and lower-case letters in formulas (6) and (11). 
 
 
 3. We now seek the variations (δa, δb, δc, δd) of the coordinates (a, b, c, d) of an 
arbitrary point p of the system that come from the rotation δR = δτ R around the axis R 
with coordinates (F, …, L, …).  Set: 
 

 aRδ
δτ

 = bH bB – cG cC + dL dD,  bRδ
δτ

 = cF cC – aH aA + dM dD, 

(1) 

 cRδ
δτ

 = aG aA – bF bB + dN dD,  dRδ
δτ

 = − aL aA – bM bB − cN cC, 

 

so aRδ
δτ

 = 0, bRδ
δτ

= 0, cRδ
δτ

= 0, dRδ
δτ

= 0 will be the equations of four planes that pass 

through R and one of the vertices (a, b¸ c, d) of the fundamental tetrahedron. 
 Now, the variation δa, δb, δc, or δd will obviously be zero for an arbitrary point p of 
the plane that passes through R and is perpendicular to the face A, B, C, or D, resp., if 
one observes that one has the relations: 
 
 dbc + dca cos BA + dab cos CA + cba cos DA = 0, 
 
 dbc cos AB + dca + dab cos CB + cba cos DB = 0, 
(2) 
 dbc cos AC + dca cos BC + dab + cba cos DC = 0, 
 
 dbc cos AD + dca cos BD + dab cos CD + cba = 0, 
 
between the parts of that tetrahedron. From the relation a + b + c + d = 1 that exists 
between the coordinates of and arbitrary point, one must have δa + δb + δc + δd = 0, and 
one will easily find that: 
 
 δa abcd = (δRa + δRb cos AB + δRc cos AC + δRd cos AD) dbc, 
 
 δb abcd = (δRa cos BA + δRb + δRc cos BC + δRd cos BD) dca, 
(3) 
 δc abcd = (δRa cos CA + δRb cos CB + δRc + δRd cos CD) dab, 
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 δd abcd = (δRa cos DA + δRb cos DB + δRc cos DC + δRd) cba . 
 Set: 

aRδ
dbc

= bRδ
dca

= cRδ
dab

= dRδ
cba

 = κ, 

 
so one will have, from equations (2): 
 

δa = 0, δb = 0,  δc = 0,  δd = 0, 
 
and vice versa.  However, from equations (1), one will have: 
 

aδRa aA + bδRb bB + cδRc cC + dδRa dD = 0, 
 
and, on the other hand: 
 

aA ⋅⋅⋅⋅ dbc = bB ⋅⋅⋅⋅ dca = cC ⋅⋅⋅⋅ dab = dD ⋅⋅⋅⋅ cba = abcd, 
 

a + b + c + d = 1, 
 
so one will have κ = 0, and the points of the system that will remain fixed during the 
infinitesimal motion that is provided by the impressed rotation will be the ones that 
belong to the line along which the four planes: 
 
(4)    δRa = 0, δRb = 0, δRc = 0, δRd = 0 
 
intersect, namely (as is clear), the points of the axis of rotation. 
 If the system is impressed simultaneously with several infinitesimal rotations δRi = δτ 
Ri around several axes Ri with coordinates (Fi, …, Li, …), resp., then for each of these 
rotations, one will have equations that are analogous to (1) and (3) for the determination 
of the partial variations (δi a, δi b, δi c, δi d).  If one sets: 
 

F = ∑ Fi , G = ∑ Gi , H = ∑ Hi , L = ∑ Li , M = ∑ Mi , N = ∑ Ni , 
 

(5)   δRa = ∑ δiRa ,     δRb = ∑ δiRb ,    δRc = ∑ δiRc ,    δRd = ∑ δiRd ,  
 

δa = ∑ δi a, δb = ∑ δi b, δc = ∑ δi c, δd = ∑ δi d 
 
then one will know the total variations (δa, δb, δc, δd) by means of equations (1) and (3). 
 When the condition: 
 

(∑ Fi) (∑ Li) + (∑ Gi) (∑ Mi) + (∑ Hi) (∑ Ni) = 0 
 
is verified, or when the rotations that are impressed on the system reduce to just one of 
them δR = δτ R around the axis R with coordinates (F, …, L, …), one will find, as above, 
that the planes (4) will intersect along that line, each point of it will thus remain fixed 
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during the infinitesimal motion of the system that is provided by the given rotations.  In 
the general case, for which that condition is not satisfied, or when the rotations that are 
impressed on the system cannot be reduced to two conjugate rotations, the planes (4) will 
be the faces of a tetrahedron that is, at the same time, inscribed in and circumscribed on 
the fundamental tetrahedron, and then it will not have any common point, nor will any 
point remain fixed during the infinitesimal motion of the system. 
 If one symbolically sets: 
 
(6)    δRa cos A + δRb cos B + δRc cos C + δRd cos D = δP 
 
then equations (3) will take the form: 
 
 δa abcd = δPdbc cos A, δb abcd = δPdca cos B, 
(7) 
 δc abcd = δPdab cos C, δd abcd = δPcba cos D . 
 If one then sets: 
 
 c cC cos B – b bB cos C = Φ(F), d dD cos A – a aA cos D = Φ(L), 
 
(8) a aA cos C – c cC cos A = Φ(G), d dD cos B – b bB cos D = Φ(M), 
 
 c cC cos B – b bB cos C = Φ(F), d dD cos C – c cC cos D = Φ(N), 
 

F Φ(F) + … + L Φ(L) + … = R Φ(R) 
 

then those equations will become: 
 

 
aδ

δτ
abcd = R Φ(R) dbc cos A, 

bδ
δτ

abcd = R Φ(R) dca cos B, 

(9) 

 
cδ

δτ
abcd = R Φ(R) dab cos C, 

dδ
δτ

abcd = R Φ(R) cba cos D . 

 
 The quantities in these expressions that are multiplied by the arbitrary constants (F, 
…, L, …) are the values of the same expressions that correspond to infinitesimal rotations 
of the system around one of the edges (F, …, L, …) of the fundamental tetrahedron. 
 When the constants (F, …, L, …) do not verify the condition FL + GM + HN = 0,  
equations (9) will give the variations (δa, δb, δc, δd) that correspond to an arbitrary 
infinitesimal motion that is impressed upon the system.  Therefore, without making 
recourse to long analytical developments, one will see by very simple geometric 
considerations how an arbitrary infinitesimal motion that is impressed on a system of 
invariable form can generally reduce to two infinitesimal rotations around two different 
axes. 
 

_________ 


