“Sul movimento geometrico infinitesimo di un sistemadag’ Rend. dell’Accad. scienze fisiche Nap®li
(1870), 89-100.

On theinfinitesmal geometric motion of arigid system

NOTE by the ordinary memb@&iuseppe Battaglini
(Announced on 14 November 1870)

Translated by D. H. Delphenich

As a continuation of the notes that were insertethé Rendiconti (fascicules for
February, May, and August 1869) and related testagcsof systems of invariable form,
we now pass on to the treatment of kiveematicsof those systems.

1. In order to evaluate an infinitesimal rotation aroundais that is impressed upon
a rigid system by means of the space that is describad atbitrary point of the system
that is at a unit distance from the axis, det M, AN be infinitesimal rotations that are
impressed in a rigid system around the edged, N , resp., that belong to the fabeof
the fundamental tetrahedron. Sét (

R=A2+M>+ N?+2M NcosMN + 2N A cosNL + 2 M cosLM,

so R will be the resultant of the forces that one intetalsepresent byd., dv, dN),
which act along the lined. ( M, N), resp., and the line of action of that resultant laal
determined in the plar by the equation:

Aa + b Bb Cc

da — _ + Mc— =0
sinAD sinBD sinCD

For any poinp of D, one will then have the relation:
RRp=A Lp+dLp+t NNp,

so if one observes that the right-hand side of this tequaenotes the infinitesimal
displacement of the poimt by the three simultaneous rotatiodls oM, AN around the

axesL, M, N, resp., and that the left-hand side denotes the mdiniial displacement of
p by the single rotatio@R around the axif, then it will follow that the three rotations

() Note: “sulle compositione delle forze,” Rend. detitad., February 1869.
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composénto just one in the same way that forces compoe They will compose into
just one around an axthat is the intersection of four planes:

db—B  _x5c—C L4990 -
SInAB sinCA sinAD

Fo—C 32 L a2 -o
sinBC SInAB sinBD

(1)

Ga—2 _5p-PB g9 -
sinCA sinBC sinCD

da—2 s s ac—E -
sinAD sinBD sinCD

if one satisfies the condition:

@ OFJSL . O0GOM ., JHON _ 0
sinBC sinAD  sirCA siBD  siAB sitD '

The resultant rotatiodR will then be given symbolically by:
(3) R =(JF cosF + &5 cosG + H cosH + A cosL + M cosM + N cosN)%
When the rotationsdt, ..., A, ...) verify the conditions:

SN M OF 3L 8N 3G _ . M JOL OH _
ON O OF 2 =9, 92 g M _9E 00 _,

ab ca ad ' bc ad bd ca bc cod
(4)

the lineR will be at infinity and one will havéR = 0; in such a case, the given rotations
will give rise to aranslationof the system.

If one regards the lin® as the intersection of two plangd, (P;), and denote its
coordinates byK, ...,L, ...) then one will have:

5FZJG:5H:5L:5M:5N
FsinBC GsinCA HsinAB LsinAD MsinBD NsinCD
(5)
= _5R =Jr.
sinP P,

(") POINSOT,Théorie nouvelle de la rotation des corps.
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With this formula, an infinitesimal rotatiodR = Jr sin P; P; around the lineR will
decomposénto six infinitesimal rotations:

F=0rFsinBC, ..., =JdrLsinAD, ...

around the edge§( ..., L, ...), resp., of the fundamental tetrahedron.

This formula, when adapted to the case in which alatms & = Jr pi p; is
impressed upon the system along with a rotation, wilbress the infinitesimal
displacement of an arbitrary point of the systemdbyand the distances between two
planes that are perpendicular to the direction ofttheslation byp; p;. One will then
have the relations:

NsinCD _ M sinBD _ F sinBC _ LsinAD _ N'sinCD _ G sirCA _

0, 0,
ab ca ad bc ab bd
(4)
M sinBD LsinAD H sinAB FsinBC GsinCA H sinAB
- + =0, + + =0,
ca bc cd ad bd cd

between the coordinateB,(..., L, ...) of the lineR, which is the intersection at infinity
of the two planes above.

If (F, ..., L, ...) are the coordinates of a liRg that is the intersection of two planes,
andR; is the sine of the angle between them, then orénate:

(6) R R[R,R] = o (FLx + ... +LF+ ...) SinABCD,

and it is easy to see th@R [R, Rj] expresses the infinitesimal displacement, when
evaluated along the linBy , (i.e., the virtual velocityjhat iscommonto all points of the
line Ry of the system for the rotatiadiR of that system around the aks If one regards
R« as a force that acts along the IRethen the quantityR R [R, Ri] will be what one
calls thevirtual momenof the forceR relative to the infinitesimal rotatiofR around the
axisR.

Now, let several infinitesimal rotation®;, ARy, ..., &R, ... around the axeR;, Ry,
..., Ri, ..., resp., be impressed on the system simultaneouslgy Wil be equivalent to
six simultaneous infinitesimal rotations around the edd@ekseofundamental tetrahedron
that are expressed by:

) F =Y F =3rsinBC (T F), ..., =Y d; = drsinAD (T d), ...

They will compose into just one infinitesimal rotatidR around the axi® that has the
coordinates:

FZZH,m¢:ZMNM
which will verify the condition:

(20F)(24L) , (39G)(EOM) , (RoH)(ZON) _
sinBC sinAD  sinAC siBD SiMB si@D




Battaglini — On the infinitesimal geometric motion afigid system. 4

or also:

(8) CR(XL)+CG)(XZM)+ZH)XN)=0.
One will then have:

R = [(ZF) cosF + ... + ) cosL + ...J* = AR cosRi)?,
or
(9) R = or? [(ZF) sinBC cosF + ... + &L;) sinAD cosL + ...]A

The resultant rotation will be converted into a tlamsn that verifies the conditions
that are obtained by taking.& , ..., >d., ...) or &F, ..., 2L, ...), instead of {F,
oA, )orF, L, L), resp., in the first or second system of equatioi4).

In the general case, in which equation (7) is not satisthe infinitesimal rotation
that are impressed upon the system simultaneously bell equivalent to two
simultaneous infinitesimal rotations around two axa® of which passes through a
vertex of the fundamental tetrahedron and the otheshath lies in the opposite face.

Finally, the rotations that are impressed upon theesysvill cancel each other when
one has:

(10) Zd:i:O, ...,ZJ_iZO, or ZFi :0,...,2Li:0,

If one applies equation (6) successively to each oinfiratesimal rotations that are
impressed upon the system and takes the sum of theargsutien one will get:

(11) RERI[R,R]=or[EF) L+ ... + C L) Fc + ...] SinABCD.

2. R [Ri, R will be the infinitesimal displacement of the lif& along the proper
direction (i.e., the virtual velocity) that is due toetimfinitesimal rotations that are
impressed simultaneously on the system, R R [Ri, Ry] will be the virtual moment
of the forceRy relative to those rotations.

Applying formula (11) to the various forc&g of a system and summing the results
will give:

(12) ZRER[R,RP=r[(XF)XZL)+...+EL)(XF+...] sSNABCD,

so the force® that will bring about equilibrium will then satisiy Fi =0, ...,2 L =0,
..., and one will ge®. R« (& IR [Ri, Ry]) = 0, which is a formula that expresses the
principle ofvirtual velocity.

2. Letr or R denote a line, which can be considered to be a locus offspoi an
intersection of planes, and Iét (.., 1, ...) or F, ..., L, ...), resp., denote its coordinates,
which depend upon the pair of poins, (o;) of r or the pair of planesP(, P;) that go
throughR, resp., so one will have:

f bc - - | ad - - PiP;
LsinAD ~ FsinBC ~  sinPP
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For greater simplicity, we always suppose tha; = sinP; P;, and if the system is to
be impressed around the axis R) of the infinitesimal rotatiorr = drr = R = drR
then we will putp; pj =r = sinP, P, = R That rotation will be equivalent to the
simultaneous infinitesimal rotations:

orfbc=90rLsinAD, ...,drlad =JdrFsinBC, ...

around the edge$, L), ..., (, F), ... of the fundamental tetrahedron.

Now, consider the infinitesimal motion of the systthat is due to several rotations
or (ri, Rj) around the axesi(R)), resp. As we have already seen how these rotations
compose among themselves in the same way that thesftirat are expressed by, R))
that act along the linesi(R)), resp., compose. Now, lety(r) = (Q, R) denote the
moment of that system of forces with respect tma {, R), so the virtual velocity of
that line, when provided with the given rotations, wdlfound to be expressed by:

> &i[ri,r] = or(awr), or else > R [R,R=0r(Q,R),

with which, the properties of the moments of the systé forces (i R;) will translate
immediately into properties of the virtual velocities thie corresponding system of
rotationsar (ri R;)) ().

The lines K, R) of zero virtual velocity, or the ones that are nosmnalthe trajectories
of their points, constitute the first-degree compleat th represented by the equations:

(1) CH)l+...+I)f+...=0, CF)L+...+QCL)F+..=0,

and one will then have the following propertied:(
The liner that passes through the pomwith coordinatesd, b, c, d) that belongs to
the corresponding plarfewith coordinatesA, B, C, D) is determined by the equations:

(Zn)b-(zm)c+(Z f)d_ (Zl)c-(Zn)a+(Zg)d _ (Em)a-(x[)b+(Zh) d
ARA - B[bB CeC

2)
__(Ef)a+(Eg)b+Eh) c_ (wp)

- DD abed

and the lineR that lie in the plan® with coordinatesA, B, C, D) that belongs to the
corresponding poin with coordinatesg, b, ¢, d) are determined by the equations:

(IN)B-(ZM)C+(ZF)D_(ZL)C-(EN) A+(ZG) D_(ZM,)A-(ZL)B+(ZH) D
alAa - bBb - clCc

(2)

() Note: “sulla teorica dei Momenti,” Rend. dell’Accaiay 1869.
(") CHASLES,Mémoires de I'lnstityt1843. — JONQUIERE3iélanges de Géométrie pure.
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__(ER)A+(ZG)B+(ZH)C _ (Q,P)
- d [Dd ~ SinABCD'

The gquantities that are expressed by the symlglp)(and Q, P) are deduced from
equations (2), while taking into account the relations:

(A cosA + B cosB + C cosC + D cosD)? = 1,
(a+b+c+d)=1.

or (w p) andar (Q, P) will be theresultant virtual velocitiesf the system relative to
the pointp and the plan®, resp. For a line or R that goes through the poiptor the
planeP, resp., the virtual velocity will be expressed by:

or(awr)=0r(wp)sinrR or or(Q,R)=9r(Q,P)Rp, resp.

If the planeP’ that corresponds tp' passes through the poipt then the plané”
that corresponds tp” will pass througlp’. If the pointp’ that corresponds tB' lies in
the planeP” then the poinp’ that corresponds tB" will lie in P'. In other words, the
pairs @, P) of corresponding points and planes will describe tated figures with the
peculiarity that the plan that corresponds to a poiptwill pass througlp and that the
point p that corresponds to a plaRewill lie in P.

If a pointp traverses a line' then its corresponding plafewill pass along another
line R'. Similarly, if the planeP turns around a lin®’ then its corresponding poipt
will traverse a liner”. If r' coincides withR' thenR" will coincide withr”. The lines
(r',R") and ¢", R") are callecconjugate lines.A line r that coincides with its conjugate
R will be normal to the trajectories of its points.

Let (', R") and ¢”, R") be two conjugate lines. Set:

EHEH+EYEm +Eh) (En) = .
CF)EL) +E6) EM) + CH) EN)= .
sok =K, and furthermore:
3) P () =1 (") =k, R(Q,R) =R (Q, R") =K,
and one will find that:
@)  F+fr=Sf, L H17=20, ., F+F =Y F, . L +L7=3 L, ..

Therefore, (', R) and ¢, R") will be two forces that act along the line§ R') and (",
R"), resp., and are equivalent to the system of fongeR) that act along the lines;(
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R)). As a result of thatgr (r', R') anddr (r", R") will be two rotations around the axes
(r',R") and (", R"), resp., that are equivalent to the system of rataido (r;, R) that act
along the linesr{, R;)). The lines I, R") and (", R") are calledconjugate axes of
rotation.

The virtual velocities of the conjugate ling§ R') and (", R"), which are expressed
by or(wr') = dr (Q, R") anddr (w r") = or (Q, R"), are inversely proportional to the
conjugate rotations relative to the axegsR’) and (", R") that are expressed ¢y r' =
or R andor r" =or R, resp.

Let one of two conjugate axes of rotation pass throygbird p and the other one lie
in the corresponding planB, and vice versa. These two axes will be mutually
anharmonically dependent upon each other. Given two péiconjugate axes of
rotations, any line that crosses three of them walb alross the fourth one.

Let one of two conjugate axes be at infinity, and let ather one have a constant
direction. One of these three particular pairs afjugate axes will be orthogonal. In
that pair of axes, one calls the one that liesfatii® distance thexis of twisting rotation
of the system, since the infinitesimal motion of #ystem will obviously reduce to a
rotation around that axes and a translation along the saes.

Suppose one is given five lines that are normal to #jectories of their points, or
have zero virtual velocity, and consider them four taina. The two lines that cross each
of this tetrad of lines will be conjugate axes of rotatiamd the lines that pass through a
point p and cross that pair of conjugate axes will line in tlan@P of the axes of zero
virtual velocity relative t@, just as the lines that lie in a plaRend that cross that same
pair of conjugate axes will pass through p@irdf concurrence of the axes of zero virtual
velocity relative toP. The common perpendicular to the common perpendguddative
to the two pairs of conjugate axes will then be the @igvisting rotation of the system.

If six forces act along any lines at all and are requicebe in equilibrium then one
can take five of these lines arbitrarily &nd the sixth one will then belong to the linear
complex that they determine. Therefore, suppose thatctmplex is the one that is
represented by equations (1). One will then find that eninfinitesimal motion that is
impressed upon the system, six lines that are normag¢twdjectories of their points will
be the lines of action of six forces that can bribgu equilibrium ().

Among the conjugate axes, the ones whose directiem®rénogonal merit special
attention. Each of them will be tangent to theewyry of its points at which it meets its
common perpendicular, and will be the line of maximurtual velocity relative to all of
the lines that pass through that point-owhat amounts to the same thinghe axis of
minimum conjugate rotation.

Let (', R) and ¢", R") be two of these conjugate axes. Their coordinates must
verify equations (3), in addition to these other ones:

(f’bc cosf + ... +I"ad cosl + ...)([" bc cosf + ... +|" ad cosl + ...) =0,
(4)
(F'BC cosF + ... +L" ADcosL + ...)(F" BCcosF + ... +L" AD cosL +...) =0,

() Loc. cit, May 1869.
(") SYLVESTER and CHASLESComptes rendyd.861.
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which express their orthogonality. It will followdm this that the lineg’; R") and (",
R") will both belong to the second-degree complex thagpsesented by the equations:

(fbccosf + ..)[(Xfi) bccosf + ...][f (X f) +...] :al%cd(f bc cosf + ...¥

(5)
(F sinBC cosF + ...)[(X Fi) sinBC cosF + ...][F( X L) + ...]

=— — _ (FsinBC cosF + ...)%
sinABCD

Any line (', R") of this complex will correspond to another conjugate R") that
belongs to the same complex and will be coupled tofitke one by the anharmonic
dependence that was pointed out above.

The fundamental property of second-degree complexésati@ll of the lines that are
tangent to the trajectory of one of its points and plaats through a poipt will belong to
a conic surfaces of order two, and their conjugates (which are also tasg® the
trajectory of one of their points) will envelop a liseof class two that belongs to the
planeP that corresponds {o, and vice versa. In addition, from the form of equei(b),
it will appear thaP is one of the cyclic planes 8fand thap is one of the foci o, while
the other focus is at infinity.

Since the rotationdr R’, or R’ around the conjugate axR§ R" are equivalent to the
rotationsor R around the axeR; that are impressed upon the systemgieaR denote the
rotation around the axis of twisting rotati® soR(Q, R) = K, and one will have the
relations:

R?+R'?+ 2R'R' cosR' R" = (X R cosR)? = R,

©) R/ =R SRR Rp=p IR
sinR'R" sinR"R

(7 R’[R, RJ +R'[R", R = 2 R [Ri, R] = (Q, Ry,

(8) R'R[R,RT=2RR[Ri, R] =K.

If o' andg' are the minimum distances betwd®nR andR", R then one will again
have:

(9) p'tanRR" = ¢’ tanRR' = @Q.R) :

If the directions of the conjugate axe'sandR" are orthogonal then one will have:

(10) pF___p _QR) by = @QR)

tanRR' tanRR" R R?

(12) Q,R) = (Q, R") cosRR' = (Q, R") cosRR",
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in which the last equation will be deduced from the virtuldaity of the axis of twisting
rotation, and will be the minimum of the maximum virtuelocities relative to the lines
that go through the various points in space.

Equations (10) and (11) show clearly the disposition ardhadaxis of twisting
rotation of the lines of maximum virtual velocity thanesponding to the various points
in space, as well as the way in which the valuesaifiélocity vary.

What was said of the line of maximum virtual velocityghalso be true for the axes
of minimum conjugate rotations.

One can switch the upper-case and lower-case lett@snulas (6) and (11).

3. We now seek the variationgg( &, cc, ) of the coordinatesa( b, ¢, d) of an
arbitrary pointp of the system that come from the rotatd= Jor R around the axif
with coordinateskK, ...,L, ...). Set:

5—Ra:beB—chC+deD, 5—Rb:chC—aHaA+deD,
or or
(1)
5—R:aGaA—beB+deD, 5—R“:—aLaA—beB—chC,
or or
SO R =0, i =0, R =0, oR, = 0 will be the equations of four planes that pass
or or or or

throughR and one of the verticeg, (b, c, d) of the fundamental tetrahedron.

Now, the variatiorda, d, &c, or & will obviously be zero for an arbitrary poiptof
the plane that passes throughand is perpendicular to the faée B, C, or D, resp., if
one observes that one has the relations:

dbc + dca cosBA + dab cosCA + cba cosDA = 0,
dbc cosAB + dca + dab cosCB + cba cosDB =0,
@ dbc cosAC + dca cosBC + dab + cba cosDC = 0,
dbc cosAD + dca cosBD + dab cosCD + cba =0,
between the parts of that tetrahedron. From theioalat + b + ¢ + d = 1 that exists

between the coordinates of and arbitrary point, one hawada + b + &c + &d = 0, and
one will easily find that:

caabcd = (AR, + ARy c0SAB + AR c0SAC + ARy cosAD) dbc,
d abcd = (AR, cosBA + AR, + AR cosBC + dry cosBD) dca,

3)
& abed = (AR, cosCA + AR, cosCB + dR. + ARy cosCD) dab,
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ad abed = (AR, cosDA + AR, cosDB + dR. cosDC + dRy) cbha .

OR,_ OR, _ OR _OR, _
dbc dca dab cha

Set:

so one will have, from equations (2):

a=0, db=0, & =0, a =0,
and vice versa. However, from equations (1), one will have

adR; aA + bR, bB + cdR: cC + ddR, dD = 0,

and, on the other hand:

aA [Hbc =bB [Hca = cC [Hab = dD [tba = abcd,

a+tb+c+d=1,

so one will havex = 0, and the points of the system that will remaindixieiring the

infinitesimal motion that is provided by the impressed trotawill be the ones that
belong to the line along which the four planes:

(4) R, =0, R, =0, R.=0, Ry=0

intersect, namely (as is clear), the points of ttie af rotation.

If the system is impressed simultaneously with sevefiaitesimal rotationgR = or
R around several axd® with coordinatesK;, ..., L, ...), resp., then for each of these
rotations, one will have equations that are analogo($)tand (3) for the determination
of thepartial variations @ a, ab, dc, ad). If one sets:

F=XF, G=XG, H=XH, L=XL, M=>XM, N=XN,
(5) Ra=2 ARy, Rp=2XAdRy, R =2XAR, Ry=2 Ry,
a=Yda d=2XAdb, &=>X4gc, dAd=>4gd

then one will know théotal variations @a, &, &, a) by means of equations (1) and (3).
When the condition:

CRCL+EG) EM)+EH)XEN)=0

is verified, or when the rotations that are impressedhe system reduce to just one of
themdR = Jr R around the axiR with coordinatesHR, ..., L, ...), one will find, as above,
that the planes (4) will intersect along that line,hepoint of it will thus remain fixed
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during the infinitesimal motion of the system that isyided by the given rotations. In
the general case, for which that condition is nos8at, or when the rotations that are
impressed on the system cannot be reduced to two conjugatienst the planes (4) will
be the faces of a tetrahedron that is, at the sangg inscribed in and circumscribed on
the fundamental tetrahedron, and then it will notehamy common point, nor will any
point remain fixed during the infinitesimal motion of thstem.

If one symbolically sets:

(6) AR, COSA + dR, cosB + AR; cosC + ARy cosD = P
then equations (3) will take the form:

daabcd = dPdbc cosA, b abed = dPdca cosB,
(7)
ac abed = dPdab cosC, ad abed = dPcba cosD .
If one then sets:

c cC cosB —b bB cosC = ®(F), d dD cosA —aaA cosD =d(L),
(8) a aA cosC —c cC cosA =d(G), d dD cosB —b bB cosD =®(M),
c cC cosB —b bB cosC = ®(F), d dD cosC —c cC cosD = ®(N),

FOF)+...+LPL) + ... =RP(R)

then those equations will become:

[ abcd = R®(R) dbc cosA, ob abcd = R®(R) dca cosB,
or or
9)
? abcd = R®(R) dab cosC, ? abcd =R ®(R) cba cosD .
T T

The quantities in these expressions that are mudifpiethearbitrary constantqF,
..., L, ...) are the values of the same expressions thatspame to infinitesimal rotations
of the system around one of the eddes.(., L, ...) of the fundamental tetrahedron.

When the constant${( ..., L, ...) do not verify the conditiofL + GM + HN = 0O,
equations (9) will give the variationgg, d, Jc, &) that correspond to aarbitrary
infinitesimal motionthat is impressed upon the system. Therefore, withoaking
recourse to long analytical developments, one will bgevery simple geometric
considerations how an arbitrary infinitesimal motioattis impressed on a system of
invariable form can generally reduce to two infinitesimahtions around two different
axes.



