"Étude algébrique d'un certain type de tenseurs de courbure. Le cas 3 de Petrov," C. R. Acad. Sci. Paris **246** (1958), 2097-2099.

Algebraic study of a certain type of curvature tensor. Petrov's case 3

Note by Louis Bel

Presented by Georges Darmois

Translated by D. H. Delphenich

Algebraic study of the curvature tensors that admit a vector l such that: $R_{\alpha\beta,\mu\nu} l^{\alpha} l^{\beta} = 0$, $*R_{\alpha\beta,\mu\nu} l^{\alpha} l^{\beta} = 0$ when $R_{\alpha\beta} = 0$. Petrov's case 3.

1. Let $ds^2 = g_{\alpha\beta} dx^{\alpha} dx^{\beta}$ (¹) be the normal hyperbolic metric that is defined on V_4 , let $R_{\alpha\beta,\mu\nu}$ be the curvature tensor, and let $*R_{\alpha\beta,\mu\nu}$ be the tensor that is defined as follows:

* $R_{\alpha\beta,\mu\nu} = \frac{1}{2} \eta_{\alpha\beta\gamma\delta} R^{\gamma\delta}_{,\lambda\mu}$ (η , the volume element form).

If the tangent vector space T_x at x is referred to the basis (\mathbf{e}_{α}) then H_{IJ} and $*H_{IJ}$ (¹) denote the components of those tensors referred to the basis $E_{I} = \mathbf{e}_{\alpha} \wedge \mathbf{e}_{\beta}$ (²) that is induced by (\mathbf{e}_{α}) in $T_x^{2\wedge}$ (subspace of the antisymmetric tensors of order 2). From now on, we shall suppose that $R_{\alpha\beta} = 0$ ($R_{\alpha\beta} = g^{\mu\nu} R_{\alpha\mu,\beta\nu}$) and that is always an orthonormal frame (\mathbf{e}_{α}) ($\mathbf{e}_{0}^{2} = +1$). The matrix (H_{IJ}) is written (¹):

(1)
$$(H_{\rm IJ}) = \begin{pmatrix} X_{ij} & Z_{ij} \\ Z_{ij} & -X_{ij} \end{pmatrix}$$
$$\sum_{l} X_{ll} = 0, \qquad \sum_{l} Z_{ll} = 0$$

with respect to an arbitrary (\mathbf{e}_{α}) , in which (X_{ij}) and (Z_{ij}) are the matrices of spatial components of the two tensors that are associated with \mathbf{e}_0 , on the one hand, and H_{IJ} and $*H_{IJ}$, on the other, respectively.

(¹) $\alpha, \beta, \ldots = 0, 1, 2, 3; i, j, \ldots = 1, 2, 3; I, J = 1, 2, 3, 4, 5, 6.$

$$\begin{pmatrix} 23 & 31 & 12 & 10 & 20 & 30 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix}$$

 $^(^2)$ The correspondence between indices α and I conforms to:

2. If there exists *l* such that:

(2)
$$R_{\alpha\beta,\lambda\mu} l^{\alpha} l^{\lambda} = 0, \qquad *R_{\alpha\beta,\lambda\mu} l^{\alpha} l^{\lambda} = 0$$

then l will necessarily be isotropic. Suppose that (\mathbf{e}_{α}) is such that $l = \mathbf{e}_0 + \mathbf{e}_1$. (From now on, l will be defined in that way.) It follows from (2) that:

(3)
$$\begin{cases} X_{21} + X_{31} = 0, & X_{31} - X_{21} = 0, \\ X_{22} + X_{32} = 0, & X_{32} - X_{22} = 0, & X_{11} = Z_{11} = 0, \\ X_{23} + X_{33} = 0, & X_{33} - X_{23} = 0, \end{cases}$$

and by a direct calculation, one will see that:

(4)
$$A = B = \det(H_{IJ}) = 0$$
 $(A = \frac{1}{2}H_{IJ}H^{IJ}, B = \frac{1}{2}H_{IJ}*H^{IJ}).$

Conversely, suppose that (4) is satisfied. Since det $(H_{IJ}) = 0$, there exists an antisymmetric tensor $F^{\alpha\beta}(F^{I})$ such that $H_{IJ}F^{I} = 0$, or rather:

(5)
$$X_{ij} u^i + Z_{ij} v^i = 0, \qquad X_{ij} u^i - Z_{ij} v^i = 0$$

 $(u^{\alpha} = *F^{\alpha 0}, v^{\alpha} = F^{\alpha 0})$. If $F^{\alpha\beta}$ is singular then $\mathbf{u} \cdot \mathbf{v} = 0$, $\mathbf{u}^2 = \mathbf{v}^2$, in which \mathbf{u} and \mathbf{v} are orthogonal to \mathbf{e}_0 , and one can choose a (\mathbf{e}_{α}) such that $\mathbf{u} = k \mathbf{e}_2$, $\mathbf{v} = k \mathbf{e}_3$. (3) are satisfied from (5) and (1), and l satisfies (2). If $F^{\alpha\beta}$ is regular then we can choose a (\mathbf{e}_{α}) that is a principal frame. \mathbf{u} and \mathbf{v} are the collinear: $\mathbf{u} = k \mathbf{e}$, $\mathbf{v} = k' \mathbf{e} (\mathbf{e}^2 = -1)$. It follows from (5): $X_{ij} e^i = Z_{ij} e^i = 0$. If $\mathbf{e} = \mathbf{e}_1$ (that is always possible), (X_{ij}) and (Z_{ij}) take the form:

$$(X_{ij}) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & -\alpha \end{pmatrix}, \qquad (Z_{ij}) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \sigma & \Phi \\ 0 & \Phi & -\sigma \end{pmatrix},$$

and the scalars A and B will become:

$$A = 2 (\alpha^2 + \beta^2 - \sigma^2 - \Phi^2), \quad B = 4 (\alpha \sigma + \beta \Phi).$$

0,

The solutions of the system of equations A = B = 0 are:

$$(S_1) \qquad \qquad \alpha = -\Phi, \qquad \qquad \beta = -\sigma,$$

(S₂)
For (S₁), *l* satisfies:
(6)
$$R_{\alpha\beta,\lambda\mu} l^{\alpha} = 0, \qquad *R_{\alpha\beta,\lambda\mu} l^{\alpha} =$$

and (2) *a fortiori*. The result will remain valid for S_2 when one switches \mathbf{e}_1 with $-\mathbf{e}_1$. Therefore: $A = B = \det(H_{IJ}) = 0$ are the necessary and sufficient conditions for there to exist a vector \mathbf{l} such that (2) are satisfied.

3. There always exists a (\mathbf{e}_{α}) such that (X_{ij}) and (Z_{ij}) take one of the following three forms (³):

$$(C_{1}) \qquad (X_{ij}) = \begin{pmatrix} \alpha_{1} & 0 & 0 \\ 0 & \alpha_{2} & 0 \\ 0 & 0 & \alpha_{3} \end{pmatrix}, \qquad (Z_{ij}) = \begin{pmatrix} \beta_{1} & 0 & 0 \\ 0 & \beta_{2} & 0 \\ 0 & 0 & \beta_{3} \end{pmatrix}, \\ (\sum_{i} \alpha_{i} = 0, \sum_{i} \beta_{i} = 0); \\ (C_{2}) \qquad (X_{ij}) = \begin{pmatrix} -2\alpha & 0 & 0 \\ 0 & \alpha - \sigma & 0 \\ 0 & 0 & \alpha + \sigma \end{pmatrix}, \qquad (Z_{ij}) = \begin{pmatrix} -2\beta & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & -\beta \end{pmatrix}, \\ (C_{3}) \qquad (X_{ij}) = \begin{pmatrix} 0 & -\sigma & 0 \\ -\sigma & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad (Z_{ij}) = \begin{pmatrix} 0 & 0 & \sigma \\ 0 & 0 & \sigma \\ \sigma & 0 & 0 \end{pmatrix}.$$

For (*C*₁), (4) will imply that $R_{\alpha\beta, \lambda\mu} = 0$. For (*C*₂), it will imply that $\alpha = \beta = 0$. *l* will then satisfy (6) (special case 2). (4) are satisfied for (*C*₃). Therefore: *if* $A = B = \det(H_{IJ}) = 0$ *then* H_{IJ} *will belong to either special case 2 or special case 3*.

4. Suppose that H_{IJ} belongs to case 3 at each point a domain D of V_4 , and let (\mathbf{e}_{α}) be the frame for which (X_{ij}) and (Z_{ij}) take the form that was indicated above. The tensor (⁴):

$$T_{\beta\gamma,\mu\nu} = g_{\beta\gamma}g_{\mu\nu}A - R^{\alpha}{}_{\beta,\mu}^{\lambda}R_{\alpha\gamma,\lambda\nu} - R^{\alpha}{}_{\beta,\nu}^{\lambda}R_{\alpha\gamma,\lambda\mu}$$

admits the reduction:

$$T_{\beta\gamma,\mu\nu} = -2\sigma^2 \left(P_{\mu\nu} l_\beta l_\gamma + P_{\beta\gamma} l_\mu l_\nu + Q_{\beta\gamma} Q_{\mu\nu} + G_{\beta\gamma} G_{\mu\nu} \right),$$

in which:

 $P_{\mu\nu} = e_{(0)\mu} e_{(0)\nu} - e_{(1)\mu} e_{(1)\nu} + e_{(2)\mu} e_{(2)\nu} + e_{(3)\mu} e_{(3)\nu},$

$$Q_{\mu\nu} = e_{(2)\mu} \, l_{\nu} + e_{(2)\nu} \, l_{\mu} \,, \qquad \qquad G_{\mu\nu} = e_{(3)\mu} \, l_{\nu} + e_{(3)\nu} \, l_{\mu} \,.$$

It follows from $\nabla_{\beta} T^{\beta}_{\ \gamma,\mu\nu} = 0$ (⁴) that:

^{(&}lt;sup>3</sup>) PETROV, Sci. Not. Kazan. St. Univ. **114** (1954), pp. 55.

^{(&}lt;sup>4</sup>) BEL, C. R. Acad. Sci. Paris **247** (1958), pp. 1094.

$$-l^{\mu} e^{\nu}_{(2)} \nabla_{\beta} T^{\beta}{}_{\gamma,\mu\nu} = -4\sigma^{2} l_{\gamma} e^{\nu}_{(2)} l^{\beta} \nabla_{\beta} l_{\nu} = 0,$$

$$-l^{\mu} e^{\nu}_{(3)} \nabla_{\beta} T^{\beta}{}_{\gamma,\mu\nu} = -4\sigma^{2} l_{\gamma} e^{\nu}_{(3)} l^{\beta} \nabla_{\beta} l_{\nu} = 0,$$

namely:

$$e_{(2)}^{\nu} l^{\beta} \nabla_{\beta} l_{\nu} = 0, \qquad e_{(3)}^{\nu} l^{\beta} \nabla_{\beta} l_{\nu} = 0.$$

However, since $l^{\beta} \nabla_{\beta} l_{\nu}$ is also orthogonal to l, one must have:

 $l^{\beta} \nabla_{\beta} l_{\nu} = a \, l_{\nu} \, .$

Therefore: The trajectories of the vector field **l** are isotropic geodesics of the metric.