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LAME gave the name oflifferential parameterso certain expressions that are
defined by the partial derivatives of a function of ehnaariables that one encounters
frequently in various doctrines of pure and applied amalysi

Those expressions first present themselves in theytlédine attraction of spheroids,
and LAPLACE dealt with performing a transformation (whimdcame quite celebrated)
of the potential equation, which is an equation thatlteprecisely from equating to zero
what LAME later called thesecond-order differential parametesf the attractive
potential. It is intimately connected with some impotrtaansformations in the theory of
spherical functionswhich has been developed a great deal in this centuryaenktidh to
many useful applications.

The LAPLACE transformation requires somewhat long-wihdalculations with the
usual methods. With his ingenious theory of curvilinear coatds, LAME achieved
results that he reduced to supremely simple and elegamuls in a much more
extended category of transformations. His proofs of theowever, seemed to be
somewhat artificial, and they were, on the other hanbdprdinate to the hypothesis that
the curvilinear coordinates were orthogonal. The firssqeto lift that restriction and to
point out a much briefer path to achieving what LAME hagppsed to do was JACOBI
in his beautiful paper “Sopra una soluzione particolare etplhzione del potenziale.”
(See v. 2 oDpuscula Mathematica In that work, one will find the property that seems
to me to be truly the most important in the study éfedential parameters written down
expressly, namely, that the transformation does rmmuire anything except for
knowledge of the form that line element assumes im#we system of variables. That
property was indeed also revealed in the formulas of EARLt with the restriction that
he imposed upon the nature of the coordinates, it doeppeaato be clearly necessary.

Nevertheless, the JACOBI process was also not usdthbguthor in all of the extent
to which it is susceptible, and therefore, without a dofalotthe single reason that the
guestion that he treated did not demand a great degree salggnsince the method
would have lent itself to the extension that was alludedith no difficulty. | mean that
in the JACOBI paper, the original line element is alwagsumed to have the form

\/dxz +dy’ + dZ, while the theory of differential parameters likesvisersists when the

given element is not reducible to that form, but ratimer laws of composition of its
parameters keep all of them unaltered under that moeraednypothesis. On the other
hand, it is true that in the ordinary geometry of spalcat hypothesis offers little interest.
However, in order to convince oneself of the inopporitheracter of the restriction that
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was imposed, it is enough to consider that it tacitguages something that has been
ignored for a long time, even in the case of just t@gables, namely, the existence of
the parameters of the surface, the nature and utflizhach (especially the ones of order
two) has been manifested in some recent studies of [fiimeerche d’analisi applicata
alla geometria” in Giornale mathematico di Napoli, aridl 3 (1864-65); “Delle variabili
complesse, ecc.” in Annali di Matematica (2)“Teoria generale delle superficie d’area
minima,” in Memorie dell' Accademia di Bologna (Z)

In the present article, | propose to establish the rgértbeory of differential
parameters on a purely analytical basis, free fromusmmgcessary restriction, either on
the number of variables or their significance. | htpe the simplicity of the method
that is used, which does not differ from that JACOBISmprincipal features (apart from
the greater scope in which it is applied), will persuade tbat the path that it follows is
the most natural and direct one for achieving the goal.

The theory that is discussed here is containedautisly in 8 3 of the present work.
The first two 88 expose the principles upon which the abptethod is founded, which
is an exposition that | wished to perform while rectmngi brevity with clarity and
addressing the fact that some readers might not hava pegliminary exposure to those
principles yet. 8 4 is dedicated to the search for sfmmmaulas of integral calculus that
give a perfect confirmation and that are known alraadgome particular cases and that
also give one an opportunity to understand the notiaifferential parameters with all
of the generality that | have tried to invest in ih 8 5 and the last one, one finds the
proof, which is founded upon one of the general propositmins,theory that was stated
simply by (Carlo) NEUMANN [Schlémilch’s JourndP (1867)] and which he proposed
as an extension of that of GREEN.

| am obliged to mention, in addition to that of NEUMANBbme later writings in
JACOBI’s papers, in which the theory of differentiarameters is recalled, in various
aspects, and in greater generality than one finds iwohle of LAME.

CHELINI has defined the general expressions for theespanding conventional
expressions in ordinary rectangular coordinates in thgaat paper “Sulle formole
fondamentali risguardanti la curvatura delle superficie eedilee” Annali di Scienze
Matematiche e Fisiche of Prof. TORTOLINI, Rome (1858)pr that purpose, he took
advantage of some very spontaneous and simple anafg@moetric considerations that
often served to shed some light on it, as well as alggements, and he referred to the
beautiful paper “Sulla teoria delle coordinate curvilinealiich the same author has
presented recently to the Academy, and in which he sumedathe essence of his
research on that interesting subject.

In Teorica dei determinanfPavia 1854, 8§ X, eq. (114)], BRIOSCHI gave a general
transformation of the sum of the second derivatives foinction ofn variables, which is
a transformation that the illustrious author had olb@hiwith great elegance and
simplicity, and from which we deduced (by means of theiap®ariables that he also
made use of in § 5 of that paper) a formula that reductwtof LAPLACE in the case
of three variables.

In volume 8, series VII, of Reports of St. Petersbd®66), one can read a paper of
SOMOFF that contains an interesting exposition ofthie®ry of differential parameters
in the case of three arbitrary curvilinear coordinafBise basis for the SOMOFF method
is essentially the same as that of JACOBI, but thiaa gave it a dynamical context by
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regarding the variables as the coordinates of a moving anthtonsidering theis viva

in place of the line element. Without detracting frdva merit of the research, which is
carried out with elegance and originality, for the most,prseems to me that the
viewpoint is not, perhaps, the most preferable one furaly analytical question.

Finally, in the first paper “Sulle coordinate curvilineeui superficie e dello
spazio,” Annali di Matematica (2] (1868) (Milan), CODAZZI has calculated the
expressions for the differential parameters in antyitcaordinates, by starting from their
normal form in the system of orthogonal, rectilineaordinates and performing all of the
necessary transformations in detail.

It emerges from these brief hints that the more gémesults are, up to now, the ones
that BRIOSCHI achieved in the cited classic referendewever, it is worth pointing out
that the process of proving them that was employed byailtaior assumes essentially
that the quadratic differential expression upon whosdficeats the definition of the

parameters depend is deducible from the normal fonlv<f+dx§ +..+d¥. The

purpose of the present work is precisely to exclude thesséyg of that supposition
without resorting to transformations that would be tdmit&ous, which however would
appear to be simple verifications under those more gelmgratheses that are ill-suited
to create an opportunity to consider the expressiogsastion. Nonetheless, | shall not
neglect to confirm the result upon which the analytaefinition of the second-order
parameter is founded with a calculation of that typei¢tv will be done with the greatest
possible speed).

Before entering into that material, | beg your permisd¢o use geometric language
sometimes, notwithstanding the fact that the numbe&oordinates can be greater than
three. The present study, like all of the onesdhatconnected with multiple integration,
belongs essentially (as GAUSS said in regard to soher analytic investigations) “to a
higher field of the abstract study of quantities thatiadependent of any concept of
space, and that has as its objective the combinationguahtities that proceed
continuously, which is a field that has been cultivatexy Vittle in our time, and in which
one cannot take a step without invoking the phraggothat is appropriate to the figures
that exist in spacé[Gottinger Berichted (1850)].

81
ALGEBRAIC THEOREM S ON QUADRATIC FORMS

Suppose that one has the quadratic formvariables:
(1) P=21s s % Xs (ars = asn),

in which theX sign is extended over all terms that arise whervatities all of the values
1, 2, ...,nfor each of the two indicess.
If one sets:

(2) 1de =X r=1,2,..n)

2dx
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then from EULER’s theorem in homogeneous functionsvaitidave:
(3) Xt Xp +Xo Xo+ ...+ Xy Xn = @.
Moreover, if one solves equations (2) for #iten one will have:
(4) X = Arr Xp +Agr Xo + ... +Anr Xn,

in which A are the quotients of the complementsgin the discriminant:

A, 8, " Ay
a= &y &y vt Gy
ay a, - a,

overa, so that (if one considess to not be distinct froms,) one can write:

_dloga
Ars dars ’

and one will havé\s = A .
Now, if one considers the quadratic form:

(1) D =35As X Xs
then it will be clear that formula (4) can be werit

1do

2 ——=
@) 2dX,
so, by the cited theorem of EULER:

X1 X1 +X Xo+ ... +X, Xy =D,
and therefore, from (3):
d=¢

Hence, the new form is nothing but the old on@when the variables are transformed
into theX by means of equations (2).

It is clear that if one operates dnas one would o then one must revert back to
gitself. For that reason, the two quadratic forrh¥y 4nd (1) are calledreciprocal
Formulas (2), (3 serve to transform the one into the other. Tdwprocity of the two
forms certainly shows tha&s is the quotient of the complement @& in the
discriminant:
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All A&z A&w
as| B e
Ahl Ahz o Am

over a, which also results from the theory of determinasts,one can write (if one
considersA,s to not be distinct from)):

:dlogA
T dA,

It results from the rules for the multiplication @éterminants thaha = 1.
Now, suppose that the variablesre substituted for other ongdy means of the
linear equations:

(5) X =PrYitpPxrY2et ... +Par Vo (r=1,2,...n

from which, one infers that, reciprocally:

(6) Vr=01 X1t G2 X+ ... +Qmn X0,

so ifp, g, denote the determinants that are formed by te#ficentsprs, g, respectively,
then one will have:
dlo
(7 Ors = 9P
dp,

dl
’ prS = qu ’ pq = 1
dq

S

Assume that when the forgis transformed by means of (5) it will become:

(8) Y=2Zsbs Vi Vs,
so that one will have:
9) Brs = Zyv 8uv Pru Psv (brs = bsy)

and therefore if one substitutes the values (&)@new functions (8), while recalling (1),
then one will have, reciprocally:

(10) ars = Zyy buy Gru Gov -

The formy possesses the reciprocal:

(8) W=2sBs Y Vs,
which one gets by putting:
(11) 1dy _
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in it, and which will give the inverse formula:

1dy
17 RV
(1) 2dY ¥

TheBs are given (in the usual way) by the formula:

dl
BI’S - Og b ’
dh,
in whichb is the discriminant of the form.
Write (5), (6) in the following way:
Yu=Zr Qur X Xu=2Zr PruYr s

and apply the double sul, to both sides, after multiplying the left-handesiay b, qus
and the right-hand side tay, psv . While taking (9), (10) into account, one wilhd in
that way that:

2 Aur X% = 2y Ovs (Zu buv ), 2 brs Y =2y Psv (Zu 8uv X)),
or, from (1), (8):
1d 1d 1d 1d
__wzzvq\ls__w, __w:zvpsv__w,
2 dx 2dy, 2 dy, 2 dx,
or finally, from (2), (11):
(5) Xs=Chs Yr+ s Y2+ ... +Ons Yn,
(6) Ys=P1s Xe +P2s Xo + ... +Pns Xn

which are formulas in which the coefficients areviobsly the same as in the original
substitutions (5), (6), except that andq, are found to be exchanged with each other.
Thanks to that simple exchange, the substitutibas serve to transform the one form
@into the other one/turn into the ones that serve to transform th@recal form® into
the other on.

If one multiplies both sides of equation (9) dpyand sums over the indexhen one
will find that:

2 brs O =2y 8 Psvs

because; py gi = 1 or 0 according to whethar=i or not, resp. If one suitably alters
the indices then one will have:

(12) Zm (&m Psm— Bms Gmr) = 0,
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which is an equation that will persist for any pair ofues for the indices ands. One
easily obtains the formulas that express the coeffisp as functions of the coefficients
g, and vice versa. Indeed, if one multiplies the precedguation, first byA; and then
by Bis and sums, the first time with respect tand the second time with respecstohen
one will find that:

Psi — Zmr Brms Avi Omr =0, 2ms &m Bis Psm— Gir = 0,
S0, upon altering the indices, one will deduce the fibamn
(13) Prs = 24y by Asy Qv =0, Ors = 2uv @sv Bru puv »

which are precisely the ones that we shall treanally, if one multiplies the first of
these byB,i and sums ovarthen one will get a result that can be writtencdlss:

(14) Zm (Arm Gsn— Bnspmr) = 0,
and which is the reciprocal of the one that is coethim equation (12), which could

have been established without any further proof.
Along with the form (1), it is often necessary to ider the bilinear expression:

$=ZasX X,

which is defined by not one, but two, seriesohriables:
X1, X2y oeey Xn,
Xy Koy veny X,

and it will be necessary to know some of their propgrtie

In the first place, one observes that if the vaegakl are transformed linearly with the
same substitutions (5), i.e., if one sets:

X:— = ZU pur y:,,
then obviously, together with:
2 as X %= 2 brs Vi Vs,

one will also have:

Zas(X +AX) X+ AX) =Zas(Yr +AY;) (s +AY.)

for any value off, i.e.:
P+AL+ A=Y+ 2+ A%y,
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in which 7= % bs i y.. Therefore, if one letg = ¢, ¢’ = ¢’ then, by virtue of the

substitution (5), one must likewise have = 7, by virtue of that, such that the
substitutions that transform either of the two quadraqressions:

2 &s X X, Zbrsyrys

into the other one will also transform either of thwe bilinear expressions:
zarerX'S, 2 brs Vi y;

into the other. For the same reason, the inverseitatiosns (3), (6) will transform one
of the two functions:

(16) DA X X, ZBsY Y,

into the other one.

It is known that the coefficients of a quadratic focan be such that they remain
positive for all real values of the variables. It ist mecessary to write down the
conditions (of inequality) under which that result is traied which can be given in many
different forms. It is enough to know that when tha@saditions are fulfilled, any
transform that contains only squares of the varialdeduction that is well-known to
follow in an infinitude of ways) will necessarily havd af its coefficients positive.
Therefore, if one supposes that the fogmstays positive for all real values of the
variables then one can always reduce it to the form:

w:zxrz (r=1,2,...n

by a suitable real linear substitution. Now, from wihvat saw earlier, the same linear

substitution will also make:
g=3. %% &= xX.

Hence, one will have:
2
W—fZ:ZerTZK—[Z X Xj ,
or, by a well-known algebraic theorem:

oy —E2=3 (XX =% %)

An important property emerges from this that thecfion g’ — £2, namely:

2
ZamxrxSDZasu—(Z a x%j,
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stays positive for any system of real values of théaldasx, X when that property is
true for) as X Xs .
In general, one has (as is easily proved):

(17) da.xxD a % X—(Z a x%j
=2 (asau—aua) (XX - XX)(X%- ¥ ¥,

in which the four indices, s, t, u in the right-hand side must separately take on ahef
values 1, 2, ...n, in such a way that any square of one of the binonthafsare formed
from the variables will appear just once, and any produtivofbinomials will appear
twice.

One must observe that since two reciprocal forms ballmade identical by the
transformation formulas, and since those formuladiaear with respect to one and the
other variable, it is obvious that if one form is kepsipive for any system of real values
of its own variables then the same property will alsarbe for the other one.

The algebraic theory of reciprocal quadratic forms usceptible to an elegant
application of the method of rectilinear coordinateliciv is an application that deserves
to find its place in the literature of analytic geometiy that end, it is enough to set:

p=xXt +y* +Z + yzcosa + 2zxcosS + 2xy cosy,

in which a, S, yare the angles between the three oblique exe®©y, Oz, when taken
two at a time. In that way, the quantgpwill express the square of the distamceom
the point &, y, 2) to the originO, and the variableX, Y, Z in the reciprocal form tgare
nothing but the orthogonal projectionsradnto the three axe3x, Oy, Oz | shall briefly
deviate from the present subject to consider wherenagbat encounter some elegant
relations that were found by CHELINI amongst what héed componentcoordinates
andprojectioncoordinates, along with their analytical origin. Wak®a only the general
observation that the quadratic expression for the distémen a point to the origin has
the same status in respect to finite geometry inlirexr coordinates as that of linear
element in respect to the infinitesimal geometry of cum@dr coordinates. The most
important, and most essential, formulas of the omktha other geometry do not depend
upon the coefficients of the quadratic forms that remtetieat two aforementioned
geometric elements.

§2.

PROPERTIES OF THE QUADRATIC DIFFERENTIAL EXPRESSIONS

Let:
(1) ds = ) a, dx dx (@s = asr)
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be a quadratic differential expressiominariables«, X, ..., X, such that the coefficients
as are functions of those variables. Many theorems are with respect to that
expression (for whickls® must be regarded as simply its representative symbaiofey
that are perfectly analogous to the ones in the pregddinThat analogy is based upon
the fact that if all of the variables, x,, ..., X, are replaced witih new variables;, y-,

., Yn that are coupled to the latter byndependent equations then the differentialg of
will be coupled to those of theby two (equivalent) systems of linear equations. If one
also sets:

d d
(2) Prs = ﬁ Qsr = di

r

then those equations will be the same as (5), (6) in 8lpng as one writes the
differentialsdx, dy in place ofx, y, respectively. As a consequence, if one represents the
transform of (1) by:

(3) ds’ = zbrs dy; dys (brs = bsy)

then one will get immediately the following relationsm (9), (10) of § 1:

dx, dx dy dX,
4 brS - S = b 4
(4) Zaw ay Oy as = Z
(12) of § 1 will then become:
dx, dy, | _
5 -b,—/ | =0,
( ) Z[arm dys sm d)ﬂj

which is an equation that will be valid for any pair ofues of the indices, s. (13) will
then become:

dyV
(6) dys ; st' ;asv oy u !

in which As, Bis are the coefficients of the reciprocal forms to (8), and are therefore
functions ofx andy, respectively. Finally, (14) is converted into:

- Z[ dy g dx j o

dy,

Under the hypothesis that the expression (1) is simply:

ds = dx¢ + dx+ ... + d¢,

the preceding equations will reduce to the ones thae s&s the basis for the theory of
curvilinear coordinates.
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One also encounters the doctrine of reciprocity of qatadalgebraic forms when one
considers quadratic differential expressions. In fadhe preceding §, we found that the
two forms:

ZAerXs’ zBrsYr i’

which are reciprocal to thg ¢, are the transforms of the respective formulds (6) of
that 8, and due to (2), they will become:

X = %Y +%Y +...+dyn X,

1 2

dx dx dx
_ dx dx, dx,
Yr= X A2 X+ 0 X
dy, ' dy ° dyx”

in the present case. Now, these will obviously besfadi when one sets:

Xr:d_U, Yr:d_U

dx dy,

in which U is any function ok, X, ..., Xa Ory1, Yo, ..., ¥n, respectively. An interesting
property then results from this (which was pointed out AQBI in the case of three
variables, and which was proved in general in my articiherGiornale matematicof
Naples, t. 5, pp. 24), namely, that the transformatiohs/ariables that render the
equation:

2 s A% d% = 2 brs dy dys
an identity will also render the other equation:

5 QAU 5 dUdU

dx dx ® dy, dy
an identity, and conversely, so the nature of the sge:

du du

(7) > A dx o

is that one can assign the results of its transdition without actually knowing tha
relations that exist between the original variableend the new variableg since it is
enough to know only the results that are obtained mstoamations that are analogous
to the quadratic differential expressions (1). By virtuembht was proved in 8 1 in
regard to the functions (16), that property belongs tofdahe expressions:
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du dv
(®) > A
s dx dx
no matter what the two functiokk V are.

In the applications that one makes as a result sfiion, one always supposes that
the coefficientsas satisfy the conditions that are necessary for thigerential
expressions (1) to be positive for any system of valmethé ratios:

dxg i dx @ ... 1 dX,
(in particular, one consequence of this is that theridigtant a is never negative), so
there will always exist that positive infinitesimalantityds whose square is equal to the
value of the differential expression (at least, if @wes not consider some domain of

values for the variables in which that property is notfieel). With that hypothesis, if
Xy, Ko, ..., Kq IS a second system of infinitesimal incrementg pk,, ..., X, , and if one

sets:
&=, as dx dx

then from what was proved at the end of § 1, it will ltethat the expression:

ds? O — O as dx )?

is positive, and therefore that the expression:

D adxdx
dslds

iS not greater than unity, such that one can alwaygraaseal anglé& for which one has:

(9) > as dx dx = ds 1% cosé.

By virtue of equation (17) in § 1, the sign of the arg\eill be given by the formula:

(10) 2. (s A — A as) (A% O — dx ) (dxs K, — dx, ) = d V& sirf 6

The possibility of satisfying equation (9) with a realue of & as soon as the
conditions are satisfied for the quadratic differentigbression to stay positive for any
system of values faix leads to the important consequence thatdtbat is given by the
expression (1) can be considered to dama elementhat is analogous to the one that
bears that name in the theory of surfaces and in thigtengeometry of space. Thus, if
one calculates the three valuegsthat arise from the following three systems of values
for the variables, when considered two at a time:

(X1, X2, +.vy Xn),



Beltrami — On the general theory of differential parasrset 13

(X1 +dxg, X + dX, ..., X, +dX),
(X1+ d(l, X2+d(2, ey Xn d(n),

then one will find three numbers that serve to expilesdength of the three sides of a
rectilinear triangle. Indeed, I&, M’, M” denote the aforementioned three systems of
values, and leMM 'represents while MM “representgs. The values of the systelvh

can be deduced from those of the syskérhy means of the increments that are given to
the latter:

d(l—dxl, d(z—dXZ, caey d(n_dxn,

respectively. Thus, if one neglects infinitesimalooder higher than two then one can
set:

MM =D as (G — dx) (G — dx) =d + & — 22 asd% K,

or, from (9):
(11) MM =MM +MM" -2M M' M M" [tosd,

in which @ is a real angle. That equation proves the stategerty, and one can
understand how it is possible to associate angsysif values for the variableg xo, ...,
Xnto a definitepoint with those coordinates. It is along that same @hthinking that the
two line elementsls Js can be considered to bethogonalwhen one ha®g = 77/ 2, i.e.,
(9), when the incrementt dthat relate to them satisfy the condition:

(12) > a,dxdx=0,

which one can call aarthogonality conditionfor ease of expression. If one pursues the
same analogy then one can say that the left-hatel ofi equation (10) expresses the
square of the area of a parallelogram whose sidaisacs.

It is useful to observe that, by virtue of whatsveaid at the end of the preceding §, it
will result from the conditions that were given rbein regard to the sign of the
expression fods that the expression (7) will always stay positiwe any real function
U.

When the quadratic expression (1) is kept constaositive, with the introduction of
a determinant that depends upon theariablesxs, x,, ..., X, of a single independent
variablest, one can define a (generally continuous) seriesystems of values for the
variables, which is a series that be conceivecetalime for whichdsis the element arc.

dx

If one writes, for brevitys and x , in place ofg—f, T resp., then the differential

equations that characterize thaimal linewill be the following ones:

dd _ d(dd _
(13) &— dt(d){j (r=1,2,...n),
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in which one intends that should have the expression:

s={Saxx

and in which the indicated derivation in the left-harak gefers to the fact that are
contained explicitly in the coefficientss .

If the line along which only; varies — or, as one says more briefly, if the Ikg € is
that minimal line then the preceding equations must tified by:

I

'2:)(3:___:)(;:0’

and in that case, if one takes x; then one will have the following — 1 equations, in
place of (13):

d(a,/
(14) dg} = (3./Va) r=23,..0).

dx

If, moreover, the parameter of the ling)(— i.e., the variable; — depends upon only the
arc lengths then one will havels = dx, ,/ 8, for that arc length, and it is clear ttat
must be a function of only the variablg such that from the preceding equations, one

must have:
d(a./Va)
dx o
so:
(15) a1t =fr (X, X2, ...y Xn) D\/E

in which f, is the symbol for an arbitrary function. Suppose thatlines %) are, in
addition, orthogonal to the domak = c (c is a specific constant) — i.e., they are
orthogonals to all of the line elements that exisitiand emanate from the point of
intersection with each of those lines. Since if sets:

de=dx=...=d% =0, K =0
in (12) then that equation will reduce to the following:one
a1 Ko + A3 OKg + ... +au Ky =0,
which cannot be satisfied by any elemésthat belongs ta; =c unless one has:
app=a3=...=a;n=0

for x; = ¢, given the form of the expressions (13), one will $e¢ if a;1 iS non-zero for
x;= ¢ then then — 1 coefficients;2 , a13, ... ain will necessarily always be equal to zero
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when they are zero for just the vakie c. Hence, ifa;1 is non-zero fox; = c then it will
result from the preceding that the lines) (will all be orthogonal to the doma =
const.when just one of them is. That property, in conjurctivith the other one that any
two of those domains will cut out equal arcs along ithesl ;) (sincea;; is a function of
only x;), constitute the obvious generalization of a known riteoof GAUSS regarding
systems of geodetic lines on a surface. Converselpeifdbmainsx; = const.are all
orthogonal to the linest{), which are assumed to b&nimal then from (13), one will
have:

Qo=a3=...=an =0

for any value ok;, and then, from (14):

da (=23 ..
dx

from which, it will emerge tha;; is a function of only; and therefore the arcs that are
cut out by the two regions will all be equal.

From the conditions that were just assumed, it isitegte to assume for the variable
x; that the distance between two regians const.is constant — i.e., that; = 1 — and in
that case, witho, X1, ..., X.-1 In place ofx, X, ..., X, one will obtain the line elements in
the noteworthy form:

(16) d¥=d¢+> g dx dx (rs=1,2 ..n-1).

If the linesxp all emanate from the same poirg € 0) then the coefficientss will all
contain the factox’

In the case of just two variabl&g xi, (16) will reproduce the known reduction that
was pointed out and used by GAUSS for the formula ofitleeelement of a surface. As
for the general case, it is good to observe thatcaneintroducen arbitrary functions of
just as many new variables in place of theriginal variables, so one can, in general,
satisfy n conditions with those new variables that can conslist relations that are
prescribed for the coefficients of the new line elaméNhen the form (16) is compared
with (1), it will offer an example of precisely thatetermination. In fact, the
conditions:

ago = 1, Q1=802= ... =a,n-1=0
will be satisfied for the form (16).

We conclude this § with an important observation. \\Mebe any function of the
variablesx, X, ..., X, and form then-fold integral:

.[(n)W\/E dx dxe ... dx,,

which is extended over a certain continuous region odethwariables, and which we
denote byS, . In order to perform the transformation of that gnég with respect tm
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new variablesyi, y,, ..., yn, according to the known rule, one needs to replace the
product:
dx dx ... dx,
with
p dyi dys ... dyn,

in which p is the determinant (2) that is defined by the derivatyes However, from
the known theorem on the discriminant of the form @ie will haveb = ap?, so the
transformation in question will be expressed by the equatio

(17) ["Wa Oix dx ... dx = [“W,/b Dy dye ... dy,

in which the roots,/a, /b are taken to be positive. (As is known alreaalgndb are

necessarily positive quantities as longdsS is a positive quantity.) The form of the
preceding quantity allows one to regard the quantities:

\/Elitixldxz...dxn, \/_bEtiyldyz...dyn

as two different expressions for the elemd§{ of the regionS, over which the two
integrals are extended, not only in the sense that timemcal values of the two
expressions are the same, by in the sense thatdmrat for the element is the one that
corresponds to the decompositionSefin terms of the variables and the second one is
the one that corresponds to the decomposition in terrtieegf That is obvious on the
basis of the analogy with what one has in the cassudhces and ordinary three-
dimensional space.

As a consequence of that, either one or the other for the integral will be denoted
by the notation:

(18) [wds,

which is very useful as an abbreviation for the writingvdahe integral formulas.

§3.
DEFINITION AND PROPERTIES OF THE DIFFERENTIAL PARAMETERS

We saw in the preceding 8 that the expression:

du duU
1 AU = _—
(1) 1 rZ,S:ASdX dx

has the property of transforming into another one @stme form when one replaces the
original variablesx with the new variabley; that is to say, in order to perform that
transformation, it is enough to replace the derivativesl with respect tax with the
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homologous derivatives with respect yoand to replace the coefficienfgs (viz., the
reciprocal ofa;s) with the homologous coefficiengs (which are reciprocal tbs). The
expression will be called tHest (or first-order) differential parameteof the functionJ,
and will be denoted by the symhmlU.

Since that term was already applied by LAME to an esgio@ that is used often in
the geometry of space and in much research in mechanigshgsids, and it is already
used in that accepted sense by many writers, it will ésessary to show that the
extension of that term to the more general expregdipis legitimate — i.e., it is founded
upon an essential analogy.

To that end, note that in order for the quantifiggo be coefficients of the reciprocal
guadratic form to the one whose homologous coefficiantsa,s, one must (with the
same definition of the reciprocal form) pass diretrttyn the expression:

(2) d52 = Z s d)Q dXS

to (1), by equating one half of the derivativedsf with respect todx to the partial
derivativedU / dx , and replacing the values dx;, dx, ..., dx, in d* with the values of
the n linear equations that are thus established. Howeverrdar do maintain the
differential homogeneity, one should form thequations:

3) 19(X a.dx d) - akpdY r=1,2,..n),
2 d(dx) dx

and in that way, by means of the aforementionedtgution, one will get:

(4) ds’ = dk V.

Now, equations (3), when multiplied la¥;, o, ..., &, and summed, will give:
() ars dx s = dk O,

so if the increment® leave the value dfi unaltered, or if they makdJ = 0, then it will

be clear that any elemeids that corresponds to it will be orthogonal [by wet of

equation (12) of § 2] to the elematdfor which it will satisfy equations (3). Convelge
the variationd that refer to (3) are directly orthogonal to tlegionU = const. On the

other hand, when one supposes that the increrndearts identical tal that were defined
just now, (5) will give:

(6) ds’ = dk [HU.

Therefore, if one eliminategk from that equations and (4) then one will have:

du?
ds”

(7 AU =
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That formula expresses the idea that the first diffeal parameter of the functids is
equal to the square of the ratio of the increntintthat is due to a variatioths that is
normal toU = const.to the one that is due to the normal variaian Now, that property
concurs precisely with the one that is characteristicthe parameters that were
considered by LAME in ordinary three-dimensional spaceé,are cannot avoid the fact
that such concurrence (which is manifested by all ofgaemetric evidence in the
parameters of surfaces) is not just contingent upordehaity of the analytical relations,
but is in fact founded upon it.

Formula (7) confirms the property that was pointed oaady in the preceding 8 that
the first differential parameter of any real functisralways a positive quantity when that
is true fords’,

One infers from (7) that:

(7, cont.) — =AU,

which is an equation in which (as in any other formuat® iwhich \/ AU enters) one

supposes that the radical is given gusitive sign, which one intends to mean that the
normal elementls points towards the direction in whithincreases.

From the theory of reciprocal quadratic forms, when eos (3) are solved with
respect talx, dx, ..., dx, they will give:

3) dx = dk [, r=1,2,..n),
in which we have set:
8) u =1 _d@ay)

2d(dU/dx)
for brevity. These new equations’)(3when multiplied bydU : v Y e v , and

dx  dx dx
summed, give:
dv= deU gv
or
du dv
dv=dk
Z A

so when one eliminateik using (6), one will infer that:

ZA du dv dUdV
Sdx dx = d

which is an equation in which the variatiothare, as in (7), normal to the regibth=
const. We already saw that the left-hand side of thisa#ign possesses the same
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character as the differential parameters — i.e.,itheansforms into an expression of the
same nature when one changes the variables. bevidenoted by the symbol:

du dv

(9) AUV = z A — O

and for that reason, one can call it theermediate (or mixed) parametef the two
functionsU, V. That expression will be converted into a first défgial parameter when
the two functiondJ, V are equal and by virtue of the foregoing will satisfyreilation:

du dv
ds” ’

(10) AUV =
which is equivalent to the other ones (7), (7, cont.):

av —— av
(10, COI’]'[) A]_UV - E AlU y A]_UV - wA U

in whichds s the normal element #d = const.that points in the direction of increasing
U, anddU, dV are the increments &f, V along that element.

If one haddV = 0 then one would have to say that any variad®tinat was normal to
U = const.would makeV = const. In that case, the two regiobhk= const, V = const.
would be considered to be mutually orthogonal, and the seace and sufficient
condition for that is consequently:

AUV = 0.

One can observe that (9) gives:
(11) D1 X X =As,
such that (9) can be written:

du dv
AUV = z —Xr—)gAlxr Xs,

which is an equation that obviously also persists wherxthx,, ..., X,, are not the
independent variables, loyarbitrary functions of them.

In my article “Ricerche di analisi applicata alloogeetria” (art. 1V), | proved that the
equation:
(12) AMU=1

[in place of which one can consider, with no greateregaity, A;U = f (U)] defines a
certain relation on the surface that | caligsbdetic parallelismwhich consists of saying
that the system of orthogonal linesWo= const.is formed fromgeodetic(or minimal)
lines on which (from GAUSS'’s theorem) the= const.cut out constant lengths. That
property, whose justification one already sees inmtda (7), is also preserved
(analytically speaking, if one prefers) in the genera¢ cds variables, as we shall now
proceed to prove.
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In order to do that, one now represents the quan%fés?j—):, bys’, x (as in the

preceding 8) and observes that, in light of (4), equationg33)of the present § can be
written as:

ds 1 du dx 1
13 —_— — = u,.
(13) d AU dx ds AU
Assuming that, one recalls the equations of the pregedin

ds _d{ ds
14 —_— = — r=1,2,...n),
(14) o dt[ ; xj ( )

which characterize the minimal line, and supposes that ltheg the followingn first
integrals:
(15) X = func. €, X2, ..., Xn) (r=1,2,...n)

Imagine that one replaces the values (15%0fX,, ..., X, as functions oKy, X, ..., X, in

the expressions:
=JTaxx, =
S d)<

and if one represents the derivative that is taken ngpect to (with those hypotheses)
by d / & then one will have two equations:

d( ds , d (ds ds' _ dé ds dx,
16 Rl ek Loy B
o) dt[dxj medxm(dxj b dx 4 df, dx

In the same way, the identity equation:

o,
d><n

& 5, d(dS) 5 dsd,
dx. 5 de ax )% ax, dy

and when one compares this with the second equiatid®), one will get:

d8 o d (a8
o, = x| dx )

will give:
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From this equation and the first of (16), the systemgoké&ons (14) will transform into
the following one:

(14, cont.) Zm: {%[%j—%(di:j}xm =0 t=1,2,..n),

which is notable for itsPfaffian form. Forn = 2, one will obtain from it the
transformation that was discussed in my note “St@ltaia delle linee geodetiche,” Atti
dellIstituto Lombardo, t. 1 of series II.

The preceding equations (14, cont.), and thus, (da) obviously be satisfied when
one can assign a functidhsuch that one has:

ds _ du _
(17) X dx (r=1,2,..n).

Now, if one observes the first of equations (13ntlone will see that this condition is
verified by any functiord that satisfies the partial differential equatid2). Hence, the

lines that cross the regiduh = const.orthogonally wherU is a solution of equation (12)
all be minimal lines, and their differential equais will be (17) and the equivalent ones:

These equations, or (15), can be integrated ifolleaving way:
Imagine that the expressions (15) far as functions ofx, contain an arbitrary

constanta. Obviously, that constant will also enter int@ tunctionU, and since one
has, from (17), that:

du = Z—dxr

differentiating with respect ta will give:

du d(d
. G Tal ot
One likewise has:
de _odd X,
a Z dX do’
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one will infer that:

a da -
SO
d(de)_, _
(19) ) M(&jm “o.

By virtue of that equation, it is clear that in place of
(20) dxg idxo . idXa =X DX DL DX
in (18), one can equivalently set:

dd_U = O’ i_e_, d_U: ﬁ,
da da

in which Sis a new constant. Now, observe thdtl ifs acompletesolution of equation

(12) then it will contaim — 1 arbitrary constants;, a,, ... an-1, in addition to an additive

constant. Having assumed that, one assumes thatasme-hl new arbitrary constants
L 5, ... Bi-1, and establishes the equations:

d_U:IBL du :'32, . du :’31_1_

da, da, da,

(21)

If one compares the two systems of equations thatledeces from (18), (19) when one
setsa equal toay, a», ..., an-1 In succession then one will easily see that theegysif
equations that results from differentiating (21) (witheatying a1, @z, ..., aw-1; B, [,
..., fBr-1) is equivalent in substance to the system (20), osyheem (15) of first integrals
of which it is part. If one concludes that equations (2&)nathing by the finite integrals
with 2 (n — 1) arbitrary constants of the minimal lines thatstibute the system that is
orthogonal tdJ = const.

The correspondence between that process and the HADNEIJACOBI method of
integration is obvious.

From the preceding formulas [or from (7)], one blas s, from which it results (and
this is a conformation of what was proved in the prece@inthat the portions of the
minimal lines that are cut out betwedrs ¢; andU = ¢, are all equal, no matter what the
constants;, c; are.

| shall pass over the consequences that one deduoethzee formulas in the case of
ordinary three-dimensional space, as they are too obvious.

If one now considers thefold integral that is extended over the reg&n

[ayu s, = I(n)AlU a [Hx, d ... dx,
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and if one recalls that by virtue of equation (17) of thezeding §, one will have:
I(n)AlU Dl/EEle dx ... dx, = I(n)AlU E{/B y; dys ... dyn,

in which one intends that the parameigd should be expressed by the formula:

du du
2 A O Ox

on the left-hand side and by:
z g Y du du

*dy, dy

on the right. If one varies the functidth and denotes its variation b§J (which is
assumed to be zero on the boundary of the regjothen one will get, from known rules
[and using the notation in (8)], that:

["au Dzd(udf—fj‘) M d ... dx, = [ AU DZd(L:jf—yﬁ’) dy dys ... dy ,

r

or

jw{fzd(uﬁ)}de { d(Uﬁ’)}ds

dx dy,

in which U] expresses the quantity that is analogoud,tavhen the variables are tlye

instead of thex. One obviously concludes from this that if theralways just one region
(which is otherwise arbitrary) over which one oe thther integral is extended then one

will have:

du.ya) _ d(U;/b)
+
" Jas e d b4 2 dy,

which is an equality that must be true by virtuetlodé relations that are established
between thex andy. However, the two sides of this equality are tauted in
completely analogous ways, the one, from only teffcients of the expression:

D & dx dx,
and the other, from only those of the expression:
. b, dy, dy,

and it is clear that in order to perform the transfation of the one side into the other
one, it would be not necessary to know all of #slations that were established between
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thex andy, but it would be enough to know the form that the lireements assume in the

one system of variables or the other. That propeitychwwe encountered before in the
first differential parameter, confers great importanpen the equivalent expressions that
we just encountered, and contains the first and seconditiegs of the functiot. The

expression:
d(u, \/_a)

fzdx

will be called thesecond(or second-orderdifferential parameteof the functiond, and
will be denoted by the symbabU. It is then appropriate to justify the suitalyilaf that
term, since the device by which one gets that seqmarameter from the first-order
parameter is precisely the one that was used 3ii@adACOBI in order to arrive at the
same objective with respect to the ordinary LAMEapaeters. One should note only
that forn = 2, formula (22) will yield the expression thabdve often used by the same
name in the theory of surfaces, and that CHELINS hecently recovered by his own
methods in his excellent memoir on the curviline@ordinates.
One infers from (22) that:
d(A./ @)

ﬁz dx,

and from this, if one recalls formula (11) then ar@ easily conclude the following
development of the second differential parameter:

(22) AU =

du d*u
22, cont. AU=>Y —AX + A ,
( ) 2 der X, gdxdélm

in which one can obviously suppose thkatx,, ..., X, aren arbitrary functions of the
independent variables. This development also dedithe one that CAUCHY made for
three variables in t. 2 of higxercises d’analyse et de physique mathématioje347, as
a particular case.

The fundamental property of the expression (28)measily verifie@d posterioriin
the following way:

By virtue of formula (13, 2a), the equation:

will give rise to this one:

Ur-zg;‘fu

[This can be easily proved by a direct route whaa ocludes equations (6) of 8§ 2.]
After one multiplies both sides of this QX/E [and recalling the notation (2) of § 2], one
will deduce:
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U, Ja) _ z{dxr {zd(%ﬁ)%}%um}

dx m Ay, |5 dy,  dx ) dx
However:

% = % = dR,r
dx, Z dy, Z ay, ™

or, from (7) in 8§ 1:

APy _ z din pdp,
dx < dp, dy,’
SO:

du, /) :Z[%d‘jd(%ﬁ)+z[d'” p%ju'ﬁ-

dx  aldxdy,) dy &\ dp dy
One now takes the sums of both sides over the ind&mnce the expression:

dy, dx.
Z‘ dx. dy,

is equal to 1 or 0 according to whether the indioes are equal or unequal, respectively,
the first group of terms in the left-hand side watuce to:

d(u:,./a)
dy,
The second group can be written:

5 TPy, fa = p ARy, 3,

= 7 dp, dy,
so one will have:

dUp/a) _ < [dUa) dinp |,
dy; -Z{ ay, | dy Urﬁ}’
or

dU'Ja) 1w dU p/a)
ydUNa) Ly dUip/a)

: dy, P dy,

in which if one recalls thap,/a = /b then one will finally deduce that:

1 < dU,Ja) _ 1 Zd(uiﬁ’)
Ja®T odx Jo4 dy
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which is an equation that is identical to (1), which viesnd directly by the calculus of
variations, and which served to define the second diffiegparameter analytically.
If one keeps (13, 2a) in mind then (22) can be written:

k)
Jas d

u = /B0 {dln\/_aJrzd(d)g/ ds}m,

(23) AzU =

or

ds ds ; dx
so, from (7, cont.):
AU _dJAU _d In\/_a d(d)g / d9

(24)
JAU  du ds r dx

which is a symbolic equation in which the quansttie

d{/AU dinJa  dx
du ’ ds ds

are not (in general) true derivatives, but simplptients of the simultaneous variations
of the quantities:

AU, u, Ja, X

by a displacementdsthat is normal tdJ = const.

For n = 2, the left-hand side of equation (24) will be@ the expression for the
tangential curvaturef the lineU = const.at the pointX;, x2), which would emerge from
formulas (55) in the citeRicerche d’analisietc. (pp. 71). That observation will become
interesting as a result of the significance that assumes for its left-hand side in the case
of ordinary three-dimensional space. In fact, aggthat one has:

ds’ = dxé +dy? +d7Z, and thus = 1,

so the quantltlesd—x dy dz
ds’ ds’ds

normal to the pointxX, y, 2 of the surfacd) = const.makes with the axes, so that (24)
will give:

will be nothing but the cosine§ Y, Z of the angles that the

AU dyAU _dx  dy dz
J AU du dx dy dz

However, from the identitX 2 + Y? + Z %=1, one will have:
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&dy dz

dx Z ds

dX dY dz_ (dx X dxj dy Yd
+—+ - + - ,
dy zZd

or, from the fact thaflz % —iz d—Z:
Z dx Z dy

dxX . dy dZ_(dxj dy
—t— = | = |+ — |,
dx dy dz dx dy

in which the derivatives in parentheses are taken with cedpethex, y, which are
considered to be principal variables in which the a function by virtue of the equation
U = const Due to a well-known theorem (cf., Correspondance Ktcole
Polytechnique, t. 3, pp. 168):

in which R;, R, denote the principal radii of curvature of thefsoce U = const.at the
point (X, y, 2. By virtue of that relation, which one can atsiablish directly (see, e.g.,
BORCHARDT in t. 19 of LIOUVILLE’s Journal, pp. 3749ne will have:

AM —d AU :i-}-_l
JAU du R R

This result (which was found already in LAMEgcons sur les coord. cunpp. 42), in
conjunction with the one that we recalled earlrethe case of = 2, reveals a perfect
analogy between thtangential (or geodetic) curvaturef a line that is traced on a
surface and theum of the principal curvaturexf a surface that exists in space, insofar as
either quantity is represented (abstracting froeartbmber of variables) by just one and
the same analytic expression. That analogy idrtleeorigin of two properties that have
been known for quite some time, namely, that the i the principal curvatures is
constant for the surfaces whaoaseea is a minimum for the same volume enclosed, and
that it is zero for the ones whoaeea is an absolute minimum between given limits.
Indeed, those properties offer an exact countergoirthe other two, namely, that the
tangential curvature (of a line that is traced @mudace) is constant for those lines whose
lengthis a minimum for the sanmereaenclosed, and it is zero for the ones whesgth
between two given points is an absolute minimum.

One should note that the curvaturerlof a plane curvé) = const.can be expressed,
on the basis of (24), by the formula:

(25)

=——+— (X2+Y?=1),
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in which X, Y are the cosines of the angles that the normél foconst.that points in the
direction of increasingy makes with two orthogonal axes.

The differential parameters assume a noteworthy feh@n the line element has the
form (16) of 8 2. Indeed, from equations (1), (9), (22) ef phesent §, one will have,
with that hypothesis:

2
AU:(QEJ+AM,
dx,
(26) auv =Y N Aoy,
dx, dx,
1 d(du
Ap=—21% 3l+ay,
V= fa )

in which A}, A, denote the parameters that relate to the element:
> a, dx dy r,s=1,2,...,n-1).

The first formula says that is a function of only, then the same thing will be true for
A;U. Thus, in general, if the orthogonal trajectoridsthe regionU = const.are all
minimal lines then one will have:

AU =1 (U),

which reproduces, in a different way, the theoreat wvas proved already in this § as a
consequence of equation (12), to which the last#gu that was written will reduce
immediately.

The last of formulas (26) says that the equation:

(27) AU =0

cannot be satisfied by a function of oy unless the discriminart of the differential
expression i, X, ..., Xo-1 IS the product of a function of onkg with a function of the
othern — 1 variables. In fact, in that case X is the factor that is a function of onty
then it will be enough to set:

(28) u:ijBL

\/YO .
For example, if one sets:
dS = dy? + dy? +---+ dy
and
Y1=A1%, Y2=MA2%, ..., Y=AnX0,

with the condition that:
A+AZ++ A= 1,
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then one will obtain:
ds = d¢ + > dA\?, dA®=dAZ+dAZ+---+ dA2.

The coefficients of the elememA? are obviously reducible to functions af— 1
independent variables of, so the discriminant of that element will be equalhe

product of x>™™ with a function of then — 1 variables, and from (28) one will have the
following solution for equation (27):

ie.:
1
U=—; whenn > 2,
X
1
U=In whenn = 2,
X
in which:
Xo= Vi Yoty

§4.
PROOFS OF SOME INTEGRAL FORMULAS

In what follows, we shall suppose that the don@inalues for the variables, o,
..., Xn Is always limited in such a way that the functi@asall stay monodromic, finite,
and continuous, along with their first derivativds. addition, one supposes the equation
ds® = 0 cannot satisfy any real relations that insifithat domain unless one seltg = 0,
dx =0, ...,dx, = 0.

One letsU4, U, ..., Uy denoten of the variablesq, X, ..., X, that are monodromic,
continuous, and finite in all of the interior ofdmmainS,, within which, one has the
aforementioned assumptions, and one considernsfibld integral:

V\/r:J'd(L;r—X\r/E) dxg dx ... dX,,
or
() W, = 1 d(uya) ds.,

Ja odx

which is extended over all systems of values oftilaes that are found & .
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The boundary 08§, is ann — 1-dimensional region that one will denoteS$y, and
which one assumes to be composed of the complex @&nsyf values of the variables
that satisfy the equation:

(2) Yo =h,

in whichyp Is a given function oki, Xz, ..., X,, andh is a constant. From the level of
precision of the considerations and what was just saigl also supposes that the function
Yo Will increase in value when one passes from an intgoiak of S, to an external one
(which are both close to the bound&y:).

Having said that, one will have:

- jala) (U ﬁ)

in which the notations:

=X (0.3), X (0.
pa),. (u4E)

denote the values that the expressl'ubq/z will assume when, having first assigned
well-defined values (included in the dom&) to then — 1 variables:

Xll ---,Xr—laxr+l, ---axn,

one attributes values to the (at least two in number and always an even number) tha
satisfy equation (2), along with the preceding ones;vayes that define systems of
values that belong to the boundary reg&n with the preceding ones. If one supposes
that x, varies continuously from the smallest to the largdsthose values then the
corresponding values of the places where the expre@sigﬂﬁ is odd will be denoted by
just one prime, and the places where it is even willderoted by two primes. In
figurative language, one can say that those values afrrespond to points at which a
line (x) enters or exits the regid® ; i.e., the points at which it crosses the boundary
regionS,4 .
If one multiplies both sides of equation (3) by:

dxg dx ... dX—1 dX+1 ... dX,

and integrates over the entire regirthen one will get:

(4) W, = j{z (Ufﬁ)s' —z (Ur\/E)J dxg dX% ... dX—1 OX41 ... d%, .

The integral on the right-hand side must obviouslytiereled over just the regidh .
It is composed of several partial integrals, each lutkvrefers to a portion of the region
S4 that is bounded by systems of values of the variabledioh the value oxk. (while
keeping those of the other variables constant) is a daobk of equation (2); i.e., it is
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bounded by the points at which the aforementioned line nloesross, but only touches,
the boundary regio§,; .

We now agree to replace the original variables withew variablesy, v, ..., Va1
(which are analogous to thg, vy, ..., yn of the preceding 88), the first of which is
precisely the functiogp, and is therefore constant in all of the boundaryore§,— . If

one sets:
_ dx dx  dx, j
p= +
Z[ dy, dy dy,

then it will be clear, from the rule for the tramghation of multiple integrals, that in
place of:
dxg dXo ... dX-1 dX+1 ... A%,
one will need to set:
dp
+t ———— dydy, ... dyh1,
d(dx / dy) P R

in the f— 1)-fold integral, or, from a known relation:

d
+ pd—io dyr dys ... dyp-1.

The sign of that quantity must be chosen in suelag that it proves to be positive as
long as one supposes that the determipgmthich cannot be annulled) is kept positive.
Now, since, by hypothesig, increases from the inside to the outside of tig@reS,, the
derivativedy, / dx will be negative when the ling ] enters the given region and positive
when the line leaves it. One then needs to tai&e-thign in the former case and the +
sign in the latter, from which it will result thé&t — 1)-fold integral can be written in the
following way:

J.Z(Urg_zl((: p\/_aj dyr dys ... dyh- .

In the expression in parentheses, it is intendatildhe must replace thg xo, ..., X, with
they, y», ..., Yo @and give the value dftoy,. One can suppress thesign, provided that
one understands that the integration extends divef the regionS,4 . In addition, one
can write /b, in place ofp./a, whereb is the discriminant of the quadratic expression
that defined by the, and finally, one can suppress the parenthesefngsas one
understands that the integration is taken overthesboundary region. In that way, time (
— 1)-fold integral can be denoted in the followingy:

J'Urg—f\/g dyl dy2 dyn_l.
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If one substitutes that integral in equation (4) and ték@sum over on both sides
then one will get:

Lyt

as.

d
(5) jurd—fﬁ dyi dys ... dyng =

The first integral must be taken over the entire re@on while the second one must be
taken over the entire regi .

In order to make a first application of that generainiala, take the produdt,V, in
place ofU,, in whichU; is the expression that is deduced frdrby using formula (8) of
the preceding 8. That requires that the functiomust be monodromic, continuous, and
finite in the regionS, , along with all of its first-order derivatives, whiele conditions
that one also assumes to be satisfied by the fungtioRrom that substitution, one will
have:

YU -vauy,
o dx

and therefore, by virtue of equation (10, cont.) of 8 3Hwie hypotheses that were
made there regarding the way thgvaries):

d du
Z:Uri :_VE\]AD/O’

o dx

in whichdv is the line element that is normal to the redin andinternal to the region
S, anddU is the increment thad takes on alongv. Equation (5) can then be written:

d(u,J/a)

dx

dS =0.

du 1
(6) J.VEJ bA,y, dyidy, ... dyn4 + I \/EZ

Now, if one takego = h, dyy = 0 in the expression:

d$=>b.dydy (r,s=0,1,2 ..n-1)

then the resulting value fals which one can denote log, and which is given by:

dg=>b.dydyx (,s=0,1,2 ..n-1),

expresses the generic line element of the red@gmn such that, from what was
established at the end of § 2, one needs to set:
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dS1 =

db
Etiyl dyz dyn_l.
diy,

However, the quantitBqe, which is the inverse diyo, is given by:

and on the other hand, from equation (11) of § 3, one witt:ha

Boo = A1Yo ,
SO:
db
=bA1yo,
dhy,
and therefore:
(M dSi1 = bAlyo CHy; dys ... dyh-1 .

On the basis of this, the equation (6) can be @rithore briefly as:

d(u,y/a)

ds, + IV%—L\J/dS;_F 0,

@) szZ

dx
or also:
®) [ @uv+va, U)d§+.[V—d3”_ ,
SO:

(uvﬁ\) dV
g =TU VY

=AUV + VA2U.

o(0./3)

dx

If one compares equation (8) with the one that deduces by permuting andV then
one will get:

dv . du
(9) j(UAv -VA,U) d§+j (U—V—VTjdsﬁ_l =

This last equation (9) contains the generalizafwhich, it would seem, increases
with its amplitude) of a known, useful theorem frartegral calculus. For the caserof
= 2, it was established for the first time (with nonecessary restriction) in my paper
“Sulla variabili complesse in una superficie,” Atirth matematica, (2), tl.

We agree to make a caveat regarding the preceesudfs: In this §, it was assumed,
in principle, that from the nature of the functiamps, the expression fais’ could not be
annulled fordx, = dx = ... =dx, = 0. That condition was necessary for validatimg
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proof that was adopted, but is not indispensible in jtseite equations (8), (9) no longer
contain any trace of the special system of varialbilas gerved to deduce them. Those
equations can then apply in any case, provided that the ittegrare suitably adjusted
according to the circumstances, with rigorous attergand to the nature of the variables
with which one works. One will see a simple exampl¢haf in the special study that
defines the subject of the following §.

By virtue of the formula that was found before, equati®ncan also be put into the
form:

(10) [ way -va,u)ds=[ (UAV y,-VAV y)|/ bdy dy- dy,,

in which the integral in the right-hand side isexded over the entire regi®..

We now pass on to another application of formala (

Imagine that the position of each poirt, (x2, ..., X,) varies with timet. With that
hypothesis, the derivatives , X,, ..., X, of the coordinates with respect to time will
become (generally speaking) functions of those dinates and time, and, properly
speaking, functions that one can assume to be momiz] continuous, and finite.
Assuming that, one sets:

Ui =Vx, U, =VX, ...,Un =V X,

in (5), whereV is another function ofy, X, ..., X, , andt that is monodromic, continuous,
and finite. Sincegp does not contaiy one will have:

ZU _vz dy°>¢ vy,

and then equation (5) will become:

[ v/bDy, dydy: .. dyn-l—j\/_Z (VXﬁ)

dx

One now observes that during the infinitesimal timterval dt, the regionS,, which is
limited by the boundary regio®.1, will change into another regio§, that is limited by

a boundary regiorg,_, and is infinitely close t&.-1. (One regardss, as being composed
of points that were first if,.) Under that change, the integral:

V=[Vds,
which is taken over the regidh, will change into the integral:

V= '[\/t+dt dS1 '



Beltrami — On the general theory of differential parasrset 35

which is taken over all of the regio8,, and will take on an incremed¥ = V’-V that

must be calculated.
That increment is composed of two parts.
In fact, the two region§, and S, have a third regior§, in common, in which the

variation ofV depends upon only the incremaditthat is given at time that figures
explicitly in the functionv. The part oflV that relate to that common region is then:

dt j —ds;
which is, however, a quantity in which one can coryem$lsume that the other one:
(12) dt J. —dSh

which differs only to second order, in order far— S’ to be obviously an infinitesimal
quantity.

The other part oflV is provided by the aggregate of elemevitsSthat are found
between the bounding regior$-; and S, which are elements that appear as

increments of decrementsVhaccording to whether the correspondd®are external or
internal toS,. Moreover, these elements can correctly be coreidm the state that
relates to the instant instead of the instamt+ dt, as they properly should be. Now, the

functionyo, which is constant in the entire regin,, takes on the incremern dt while
passing toS,_;, so that the general expression (in the variay)lédsr an elementSthat
is found betwee,-; and S_; will be:

dsS=./b O/, dtdy dys ... dyn-1.

Keeping in mind the hypotheses that were made about thigoiuigg, thedSthat is given
by that expression will be positive at the places witeieexternal taS,-; (with respect
to S)) and negative at the ones where is internghte . It results from this that the
quantity:

dt [ Vb O dtdy dys ... dyn-s,

avava) o

dx,

or (11):

(13) dt j 72 >

expresses precisely the second part of the incredveint both numerical value and sign.
If one combines the two parts (12), (13) then one withiob
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a(viiya)

dV
(14) — = j \/_Z o ds,,
or:
(14) av _ (KJ_ )

dt \/_Z dx ’

in which the integral is extended over the entire infgglionS, . That is the formula that
gives one the variation of the integhal which depends upon the motion of the points
that fill up the region, when one supposes that this (mg)wiegion is always composed
of the same (moving) points.

WhenV expresses the value of an entity that is (or is asduim be) invariable in
time (for anys,), one will havedV = 0, and therefore:

d(Vxa , d(Vxya
?j_\t/+\/zzr: (dX ) or (InV) +\/1€Zr“ (dxr )

In ordinary three-dimensional space, the preceding edquatib coincide with the one
that is called theequation of continuityn hydrodynamics whel is the density of the
fluid in question.

If V=1 then (19 will become:

=0.

dt J.\/_Z dx
SO
dInS,

dt \/_Z dx

One can deduce a definition of the second-order diffedeparameter of an arbitrary
functionU (x1, X2, ..., X,) from this, which is a definition that inherently inclgddne one
that was given by SOMOFF (cf., cited paper) in theeaasordinary three-dimensional
space. In fact, suppose that the trajectories of theusmpoints are everywhere normal
to the regionU = const. and that their velocities are everywhere governed by the

equation:
ds AU U

dt

(15) lim for S, =0.

so formula (23) of the preceding 8 will give:
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ac dx

d a
AU = \/1— Z (Kf) :
and then (15) will give:
dInS,

lim =AU for S, =0.

One can then say that the second differential pasméa functiorlJ is the limit, forS,
= 0, of the derivative:

(16) dins,

dt

under the hypotheses that any pointSpfis displaced normally t&J = const. with a

velocity = /AU .

The quantity (16) was callethe mean cubical dilatatiorof the volumeSs by
SOMOFF (in the case of ordinary space).
From the general equation (5), which can be writteherfallowing way:

Z dy

Y 1 d(U. /
_ U,y a)

A O Ml

by virtue of (1), when one makes:

u =YX inwhich Y, = %d(Ayo)

JAY, af W
dx

(one supposes thgd is a function that is monodromic, continuous, &ntle in the entire
regionS,, along with its derivatives), one will deduce that

1 d (VY
(17) [vas, =] ﬁZ &{ J%y_:j ds.,

which is a formula that includes the one that BOR®BT (Journal de Liouville, t. 19)
and SOMOFF I6c. cit) gave for the quadrature on the surface as aapease. By
virtue of formula [13, (2a)] and (24) of § 3, itrcde further transformed into the
following one:

av Ay, dJyAy,
(18) VdS, = | {—+V| 22— J ds,
.[ 1 .[{dp L Ay, dy,
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in which ¢ is the normal element ®-; that is external t&, .
In the case of ordinary three-dimensional space, byevot equation (25) of § 3, one
infers from this that:

(19) [vde = | {3_\;+v[%+—éj} ds,

and for the case of an arbitrary surface, by vifieghe expression for the tangential
curvature 1 f that was given in 8 3:

(20) [vds =] {%%} o .

The second integral in equation (19) is extendedr dhe entire volumes that is
contained within the surface, over which the first integral is extended, ang phincipal
radii Ry, R, refer to the surfacg) = const, which constitutes part of the boundary surface
Q. The second integral in equation (28) is extendedr the entire are® that is
enclosed by the contow over which the first integral is extended, and thngent
curvature 1 f refers to the lingp = const, which constitutes part of the conteur

ForV =1, equation (19) reproduces the known formula:

o i3-3)e

§5.
APPLICATIONS OF THE PRECEDING FORMULAS

In my cited paper “Sulla variabili complesse, gttshowed that for the case nf=
2, equation (9) of the preceding 8§ can be deducmu finother formula that could be
considered to be the analogue of GREEN'’s theoréhe deduction of a formula of that
nature in the case of arbitrany presents very appreciable difficulties, unless one
introduces special hypotheses about the expredsiothe line element. | shall then
confine myself to presenting that deduction in ecs&d case that was considered already
by (Carlo) NEUMANN in his excellent work on spheaiand ultra-spherical functions
(Schlémilch’s Journal, Bd. 12, 1867).

The case in question is the one in which thedieenent has the form:

(1) &= dC+dx + ... +dx,

and in which, as we saw already at the end of &e,equatiom\,V = 0 will then be
satisfied by the function:
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1
V: 2 2 n/21"
{(x—a)?+(x-a)*++(x-a}

(2)

in whichay, ay, ..., a, are constants.

If the system of valueg = ai, Xo = ay, ..., Xn = &, (or, as one can say more briefly, if
the pointa) is found within the region then one cannot agptynula (9) of the preceding
8§ to the value (2) oV, because the functionwill become infinite at that point. In order
to remove that obstacle to the application of tbatula, imagine that a small regids)

is removed from the regio&, which contains the poird and is bounded by another
small regionS,_; . In that way, formula (9) of § 4 will become éipable to the residual

regionS, — S, and will assume the form:
\Y u U _
[vaums -] VAZUDd$+j( L%— \%j q§1+j( %— s%vj 4s=0

for it, because when one subtra8sfrom S,, one must add5,_;, to S,-1, assuming that
the elementV is normal toS,; and directed towards the inside of the residuatsf,

- §,. However, ifz represents a function (that is analogouggjahat keeps the same
valuek at all points ofS _, and that increases from the inside to the outsid§ , if z,

2, ..., Zn-1 represent — 1 variables (analogous ¥®, yo, ..., Yn-1), Which, along withz,
specify the points ofS,, and ifc represents the discriminant of the quadratic esgio@

of d< that is defined by the variables z, ..., z,-1, then one will have (from what we
saw in the preceding § and if we observe thatsddirected in the sense of increasig

dv ., du
| (UW—VWJ ds,, = [ (UANVZ-VAUZ)( ddz dz ... dz-.

The equation above can then be written:

vV . du
@ [vauws-| VAZUDd$+J( L,;LV— V?ij ds,

+[ (UBNVZ-VAUZ) ddadz ... dza = 0.

The choice of the regioB, is arbitrary, as long as the poats contained in it. One
can therefore define it by the condition:

(4) (1 —an)’ + (e —a)° + ... + a—an) <K,

in whichk is a positive constant that is subject to onlydbedition that it must be small
enough that the regid®, (which obviously includes the poia} does not come from the
boundary of5, . Afterwards, one can define the functmrby taking:
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(5) 20= (% @)%+ (%= @)+ (% — @)’

and always attributing the positive value to thdical. In that wayz, will become =k in
the entire regiors,_;, and increase from the inside to the outsid&gfwhich is precisely

what was assumed. That being the case, by vifttleedormulas of § 3, when they are
applied to the present case, one will have:

dvdz _ 2-n
MVzp=Y-—-2= ,
AT L ey g
1l —-du 2-n
MUz ==> —(Xx-8)=—7,
o= 2, 7
so, forzy =k
1 du
(6) UA1VZO—VA1U20:-kn_l{(n—Z)U+Z&(xr—q)}.

It now remains for us to suitably fix the meanwifgthe new variableg, z, ..., z,-1
over which the last expression must be integra@dserve that, from the two relations:

g=pcosy, n=psiny,
which give rise to the other two:
&+nt=p’ df*+dp®=do®+p*dy?,

one will see immediately that when one establishes — 1 pairs of formulas:

(7)

{ Xr_ar:KCOSZ’ r=1,2,..n-1)

kr+1: K Sinz ’

in whichk, is intended to meax, — a,, one will have, correspondingly, the following-
1 pairs of relations:

(Xr_ar)2+ K2+1:|§21 _ B
{ d¥ +di€, = dé+ K dZ, (r=1,2..n-1)

from which, one will infer, upon separately summthg firstn — 1 and the second— 1:

(p—ar)’ + (o —an)’ + ... + ko —an) = K2,

(8) ¢ +dX+ ... +dx =dk’+ k*dZ+ K dZ+---+ K, dz,.
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The first of these equations coincides with (5) when @tgks = z, and with the same
hypotheses, (7) will easily give:

©) { XTATESNZSNE SN2, 052,y 5 n-1)
X —a, = zsin zsin z---sin z, sin z,
(20) k- =2 sinz sinz ... sinz_; r=1,2,...n=-1).

Equations (9) show that in order to makex., ..., X, traverse all of the values that are
found within the regiorfs, just once, it is necessary and sufficient for anearyz, from

Otok, z, 2, ...,z from 0 toz andz,—; from O to 2z However, in order to have all of
the values that belong to the boundary reg®n, it is necessary and sufficient for one

to vary thez;, z, ..., z, in the manner that was just given, while takango be constant
and =k. The quantityc, which is the discriminant of the quadratic differeintigpression
that constitutes the right-hand side of (8), is gilgn

C= Kk ks

hence, for the values (10):
(11) Jc =27 (sinz)"2 (sinz)™... sinz-, .

We need to observe that in the right-hand side of exuéi), \/E refers to the boundary
region S _;, so that one must make= k, while in the left-hand side of that equation, one
needs to set, more generally (11):

(12) dS = 2 (sinz)"? (sinz)">... sinz>dz dz ... dz; .
Z,

If one substitutes the values (6), (11), (12), along with valueV = 1 / 0™
equation (3) then one will find that:

jzo AU Osinzy)" 2 (sinz)">... sinz— dz dz ... dz

j(u d—V—V—j ds.-[ \B,Uds
= I{(n—Z)U +Za(xr -3 )} (sinz))"? (sinz)">... sinz—dz dz ... dz1 .

One now decreases the constlamdefinitely, while one recalls that the functidhis
kept finite, along with its derivatives, in the reatregionS,, and therefore, also at the
pointz = 0. The firsin-fold integral obviously converges to zero, frore factorz that
multiplies the element and is always found betw@esndk. In the last it — 1)-fold
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integral, the functiotJ tends to assume the valug (i.e., the value that corresponds«o
=a, X2 =ay, ..., Xn = @y) Over the entire course of integration, while the :sum

du
Za(xr a)

will obviously tend to zero for the values (9). It villen emerge that the equation that
was found will reduce to the following one:

dv _, du _ ~
| (U E—VWJ ds, —[ \8, U0ds = 277(n-2)Z U,

for zy = 0, in which:
Z= joﬂ(sin z)"? dzEj:(sin 2 dz~-j: sin zc.

That last quantity is easily calculated by recgllihat:

ﬂl[:B—(m—l) whenm is evel
T 24--- m
jo (sinz)"dz = o1 _q
2¢) wherm is odd
from which one will deduce that:
n-2
2
L whenn is ever
2[4---(n-2)
Z = n-3
\ 2
ﬂ whenn is odd.
30 (n-2)

If one, with NEUMANN, then sets:

2
ﬂ whenn is ever
N = 2[4---n
- n-1
2
ﬂ whenn is odd
3[5n

then one will finally have:
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_ av _,,au
(13) n(n—2)NUa—'[(UdV VdvdeH

AU S,
(% -a)2+(%—a)2++(x- 332

in which, for brevity, we have neglected to subséitthe value fo¥ that was developed
in (2) in the first integral on the right-hand side

This equation will be valid as long as the pant contained ir5,, because if that
were not true then equation (9) of the precedingogld be true, and thus (13) would
give U, = 0.

If one supposes that the functionsatisfies the equatialyU = 0 in the entire region
S, then the preceding formula will contain the newatem that was given without proof
by NEUMANN as an extension of that of GREEN.

In the case o = 2, equation (3) comes down to (9) in the prawgd, even whea
is inside ofS, . In order to obtain the true equation that iglagous to (13) in this case,
one needs to assume that:

Vv 1

=1In ,
J O -a)? +(% - a)?

as a result of the observation that concluded &8, as | did precisely in the paper that
was cited already, in which the theorem under dision was established without any
restriction regarding the form of the line element.




