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On the general equations of elasticity
(Paper by E. BELTRAMI, in Pavia)

Translated by D. H. Delphenich

It is known that LAME was the first to transformetlequations of elasticity into
orthogonal curvilinear coordinates. That transfornmatwhich he presented for the first
time in a paper that was published in v. 6 of LIOUVILLE sudwl (first series), was
reproduced posthumously in lessons XV and XVI of legons sur les coordonnées
curvilignes.

C. NEUMANN, and later BORCHARDT, noticeably abbrevéhtine elegant, but
somewhat prolix, calculations of that famous Frencbngger by procedures that
differed in places.

The first of those authors, in his very interestinggrd’Zur Theorie der Elastizitat”
[Berliner Berichte57 (1859)], has addressed the question again from the beginning by
calculating the potential of the molecular forcesisatropic bodies and deduced the
known equations for the variations in that potential diyec The simplifications that
were obtained in that work resulted mainly from certaatations that were first
established in curvilinear coordinates by the author betwebat wne calls the
coefficients of variation of that potential before aafter the transformation. (Those
coefficients are no different from the expressiorad #re found to multiply the variations
of the unknown functions in that part of the variataf the integral that is represented by
an integral of order equal to the dimensions of theipiicity.)

BORCHARDT, in an article that was entitled “Transf@tion der
Elastizitatsgleichungen in allgemeine orthogonale rGmaten,” [page 76 of the
aforementioned Journal (1873)], which was reproduced in theetl® des Sciences
mathématiques et astrodynamiques [v. 6 (1875)], has alsd ba&sdeductions upon the
variation of the integral that represents the potemifathe elastic force, but the
simplification that he arrived at was in both the seppion of certain parts of the integral
that are convertible into surface integrals, and tbeeeflo not contribute to any of the
indefinite equations and the direct transformation ofdRkpression that represents the
square of the elementary rotation.

At its basis, for all three of the cited authors, #®sential innovation in the
transformation consisted of grouping three unknown functonstheir nine derivatives
into just four distinct expressions, which are the onesrd@esent the cubic dilatation
and the three components of rotation. Indeed, LAMBestatirectly from the Cartesian
equations between those four expressions, while NEUMANN BORCHARDT
arranged the elementary potential in such a way that thdge expressions would
provide terms in the transformed equations.
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Now that innovation, which permits one to arriveéhaise equations with the greatest
expediency that the nature of the argument allows, helests leaves in the shadows a
situation of great interest, which, it would seem, carb@tvoided and which leads to
consequences that are totally unexpected.

In order to shed a better light upon that point, werbégi establishinglirectly the
general equations of elastic equilibrium in orthogonakrdmates of any type.

Let g1, Oz, s be the orthogonal curvilinear coordinates of an arlyitpaint in a three-

dimensional space, and let:
ds'= Q7 dof + @ df+ G dg (1)

be the expression for the square of any line elemdhatrspace.
If one varies the position of any point then one finldl that:

dsads=Q’dqddq+ G dgd g+ Qdgd g¢ @ Qda Q@ Qg L L*

However, one has:

dag = 994 dql+65q d%+65q dg
g, 0q, 0
fori =1, 2, 3; therefore, if one sets:
8, _99g, +5_Q1,
Jdg, Q
56,=20% 0%
dg, Q
56,= %% ;0%
% O ®)
M:&65q2+%6503
Q 0 Q 0
50)2:%6508+365q,
QoJdgqg Qg
o _Q 09q +% 004q,
Q 93, Q dq
then one can write:
E_ Al 591+A2 592+A3 553'*' Ao Az O + A3 A1 Oy + A1 As Oz (2)3

in which the three quantitie , A2, A3, which are defined by:
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are the cosines of the angles that the line eledsemiakes with the three coordinate lines
01, O, Oz (Which denote the lines along which only the coordinatar g, or g; varies, for
brevity).

We then have a continuous material system that occapesnected spa&ethat is
bounded by a surfacg and we let that system be in equilibrium under th®RoOf:

1) The external forces that are applied to any voleteenentdS and any surface
elementdo.

2) The internal forces that are developed in each eled$by the deformation that
the external force determines in the system.

That systempnce it has been deformed and equilibratsdthe one whose points are
individuated by the coordinates, g, Js .
Let:
F1dS F,dS Fs;dS

be the components along the directignsa,, gs of the external force that acts upon the
volume elementlS and let:
¢do,  ¢.do,  ¢3do

be the analogous components of the external forcastaguplied to the surface element
do:

In order to express the conditions for equilibriunthe system, imagine that any of
its points ¢n, 02, 0s) is subjected to a new displacement, under whichpisdinates will
becomeq; + &1, 02+ A, Gz + 3. The work that is developed under the displacement
by the external force that acts upon the volume eled@is:

(F1 Qi A0+ F2Q2 02 + F3Q3 Az) dS

and the work that is developed by the external forceattatupon the surface elemewt
is:

(¢ Qu o + @2 Q2 A + 93 Q3 Aps) do.

As for the internal forces, which will no do work if thenagined displacement does not
alter the lengths of linear elements, it is obvious ti@twvork that they do on the element
dScan only have an expression of the form:

(@15914'@25924'@35934'915@14'925@4'935@)(15

since, from (2), the variation of the line element depends upon th&&ixda , and is
annulled by them. The six multiplie®; , Q; are functions ofq;, gz, g3 whose
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significance we do not need to investigate, for the momdirom the foregoing, the
general equation of equilibrium is the following one:

[(RQdq+F,Qdq+ RQJIq) dS
+[($. Q30 +4,Q00,+$,Q3 ) & (3)
+[(0,36,+0,00,+0,30,+Q 0w, + Q 0w ,+Q Pw)dS=0.

In order to get the equations of equilibrium from thatrfola, properly speaking, we
need to duly transform the integrals into the form:

[@0qds, [Q ands.

Starting with the first one, one has, from (2):

[ sqds=[o [Mq' +5Qj S,
Jag  Q
and if one set®: Q. Qs =0, for brevity, that:

[o5qds= jD@ 99q dS j@i‘yqu

ql D Q
0 ds _(fo0e, oq _© 3Q
j (D®5 ) j{ % 0 Q }ds.

Now, from the known equation:

o ds__ [Q feosha)y,
og U O

in whichn is the internal normal to the surfageone will have:

9 ds__
ja_qi(mei oq)—="=-[Q O cosg)dq I,

and therefore:

[© 66ds =- J'{a?q@' 53 —G‘gq}ds—j QO cos(ng)d q &.

Passing on to the second integral, one has, frgm (2
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09q 00q, |dS
Q, dw dS = Q| QF—2+Q—= |—
[Qomds = [Q {Qza saqzjm

119 o vasasl ds
- I{aqs QY 915q2)+6q2(q@915q9} -

_J’ 6(Q1Q§§21) oq +6(Q1Q§ Ql) 503 d_S
o, °  0q, 0

or, from the theorem that was recalled:

2

- [{Q,cos(nq)dq+ Qeos(ng ¥ q)Q, @
One transforms the other two integrals, viz:

[Q,w,ds, [Q,dmds

analogously.
If one substitutes the values, thus-transformétheosix integrals:

[@08ds, [0 dyds
in equation (3) then one will get a result of tbhen:
[(S6q+S5g+ $9 9 d8[(0,0 @00 @oJ pa=0,
which will split into three equations:
$=0, $£$=0, $=0,
due to the arbitrariness in the variatiag which are valid at any point of spagealong
with three equations:
o =0, o =0, *x=0

that are valid at any point of the surfaze
The substitutions that were performed give thedghndefinite equations:
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QlFlzi{a(Delm(Qf QQ) , 0 QZQZ)}_[gaQ1+e_ZaQ2+gaQ3}
0| oq oq, oq, Qdq Qdq Qag
OF, :i{a(sz QQ.) ,3(8,) , Q3 anl)}_[glaque_zacz“gaqg} @)
ol o 0q, oq, Qdq Qdg Qdg
Q3F3:£{0(Q§QZQZ)+a(Q§Q191)+@(D@9}_[36Q1+gaQZ+gaQ3}
Ol oq oa, 0, | \Qdg Qadg Qog

and the three boundary equations:

¢, =0,cosfq, )+Q,coshqg, ¥Q, cosig ),
¢, =Q,cosfiq, )+O, cosfiqg, }Q, cosfg ), (4
#,=Q,cos1¢,)+Q, cosfig, ¥ O, cosfig, ).

The latter provides the definitions of the six functi@sQ; . Indeed, it is applicable
to any portion of the system @ represent the components of the force that must be
applied to the surface of that portion in order to mamnggjuilibrium when the remaining
portion is destroyed. Now, for an elemela; of a surfacey; = const., one will have,
from (4), :
M=0, P=Qs, P=0Qy;

for an elementia; of a surfacey, = const., one will have:

2) — 2) — 2) — .

for an elementig; of a surfacey; = const., one will have:

3) — 3) — 3) —
®=Q,, P=Q,, ®=03.

Therefore, the quantitie®;, ©,, O3 represent the unit tensions that are developed
normallyto the coordinate surfacgs= const. g, = const.gs = const., and the quantities
Qi, Q,, Qs represent the unit tensions that are develo@egentiallyto the surfaces. The
equalities:

3= A2 W= A3 (2 = O
2 3 3 1 i P

which result from the preceding values, are the oresafe ordinarily deduces from the
consideration of the elementary tetrahedron.

Equations (4) coincide with the ones that LAME deducethfiioe transformation of
the analogous equations into Cartesian coordinategofs sur les coordonées
curvilignes pp. 272). The only difference consists of the fact tIE introduced the
derivatives with respect to the arcs at the locatib®.9 Q., Qs ; however, it is easy to
pass from one form to the other by means of formulatsviiil be pointed out below.
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However, it is more important to observe (and thi$ gribve to be obvious from the
process that was used here in order to establish theatg)ahat the space to which it is
referred is not defined by anything else but the expressipfol the line element, with
no conditions on the functior@,;, Qz, Qs . Therefore, equations (4), {4ossess much
greater generality than the analogous ones in Cartestadioates, and in particular, one
should immediately note that thaye independent dEUCLID’s postulate. That fact is
intimately connected with the one that | alluded tohat beginning. However, before
proceeding to other things, it is necessary to completgtésentation of the theory of
the equations of elastic tensions.

Set:
Hl:%.{.i 6Q1K1+6Q1K2+6Q1K3j,
o, Qldgq = dg ° dq
92=%+i 6Q2K1+6Q2K2+6Q3K3}
0q, Q\dq = 0dg ° 0q
93=%+i aQ3K +6Q3K +6Q3K3J,

0, Ql\dg = 9g ° dg
:&%-{-%%

(5)

Q0 Qg
o= 0%, Q0K
Qdgq Qadg
=%, Q0K
Q, 00, Q 0dq

If one compares these quantit@s w with the 08, da that were defined in equations (2)
then one will perceive that the latter are the vamest of the former if one assumes that:

oK = &,

and that the coordinatggsare invariable with respect tb

Assume, as usual, that the deformation that is producéuebgxternal force is small
enough to allow one to treat the total variations thatdoordinates of each point are
subjected to as differentials, so it will be legitimetesubstitute the initial coordinates for
the final ones in the functior@ , ©;, Q; , and if one considers the quantitieto be the
total increments in the initial coordinatgghen one can establish the equation:

Ad(is: OGN +6,A;+ 045+ cd o As+ @ As i+ @y A A, Ok

which is analogous (g) in order to determine the total variatidrdsthat the elemerds
submits to during the deformation.
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The six quantitie®], a (like the preceding onedd , dw) have a simple geometric
significance. Indeed, in order to perform the deforomathat is produced by the external
forces, the three orthogonal line elements:

ds,=Q1day, d$ =Q.dp, dss=Qsdgs,

whose resultant ids will become three line elementts, ds,, ds, that are no longer

orthogonal, but slightly oblique, whilds becomes the resultads of those three new
elements. If one then lefs, B2, 3 denote the complements of the planar angles:

(ds, ds), (ds,ds), (dg,ds)

then one will have:
ds® =dg* + d$’+ d§ +2B, ds ds- 28, Us gs28, 'ds,
from the elementary formula for the resultantoné sets:
ds =(l+m)ds, ds =(1+m)ds, ds =(1+as)ds,
ds=(1 +a) ds
then one will get from that:

a= 01A12+02A22+03A§+ﬁlﬂzﬂ3 +,82A3A1 +,83A1A2.

However, it is obvious that one has simply:

such that when one compares the preceding value fath formula (5) , it will result
that:

a=04, G=a.

Therefore, the three quantitigd and the three quantities) represent the (relative)
elongations of the edges and the decrements in thesaoigge orthogonal parallelepiped
element that is bounded by its six coordinate surfaces.

For well-known reasons, one assumes that the vintog of the internal forces:

BOL08+0,06 +0O3 06 + Q1 o + Qs oy + Q3 I
(per unit volume) is an exact variation with respecthe quantityx that defined the

deformation that was arrived at before. When one #utest the values of the variations
o8, da that they get from formula (5) in the preceding expoesst will become:
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3(28.00 a0,
Qdq Qoq QaIgq

i=1

s 0,60% Q0 50K, QQ, 50k
' Q ‘o Q oy

QZ 2 +@ 5 2 +QZQ 56/(
Ql 00ﬂ Jg, Q 0g
» QQ, 50K QQy 50Ky o 50K,

Q 60ﬂ Q 09 6q;

It results from the form of this expression that thexésts a functiod1 such that the

expression is its exact variation, and that functian depend upon only thg, the «; ,
and thex; , in which we have set:

for brevity, and one that must properly have:

3. @ 0Q.
N _$v09% 0_o (2123
ok 5Q 0q ' 9k
_I_I:_Qng a_I_I:—QlQZ
aKlZ QZ aKl3 Q3 (6)
n_QQ on _Q,Q
aK23 Q3 , aK21 Ql ,
o _QQ, o _Qo,
aKSl Ql aK32 QZ
That implies the six relations:
% ori :& or (: Ql)’
QZ aK23 QS
Qo _qon =0,)
QS aK31 Ql aK12 (6)3
Qdn _Q aon (=Q.)
Ql aKlZ QZ aKZl >
3 00.
on _ i&&_ﬂ (i=1,2,3),
6/( ,lej 0q 0k,




10 Beltrami — On the general equations of elasticity

which express the idea that the functiefnsk:, 3, and their first derivatives enter intb
only in the six combinations:

6, 6, 6, w, w, a,
and one will therefore have:
on = 6_I15€ on 5€2+an oo, + on ow, + on ow,+ on ow,
06, 00, 00, ow, ow, 0w,
or
G)i:a—n, Qi:a—n (i=1,23). (7)
08 ow

That conclusion can be based upon the simple observatbthe six quantities] ,
w that are defined by equations (5) are not coupled by any |mdation that is
independent of the; , x; . However, the preceding deduction exhibits some relations
that permit one to immediately give a new form to equwsti(4) and (4). Indeed, by
virtue of formulas (6), (6), the aforementioned equations will become:

ol o9
13 0K; ) an

IFI__ ’
° 0= G 0K,

i=123 (8
3 on
Q¢ :;Qj GTCOS(nq ),

ij

and it is in precisely that form that the genemglations of elasticity were given by C.
NEUMANN in the cited paper.

Properly speaking, the functions that NEUMANN d@utuced (as well as LAME) are
not thex;, but theQ; « ; i.e., they are the components of the displacesnéfowever, it
is easy to see that if one sets:

ki =Q ki,
and therefore:
0Q,
=Q +—K.,
QA 0

j
then when one considelfsto be a function of; andk;; , one will have:
or _ ar 0Q
0k; Q Zak oq

6I'I an
o, ok Y
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and by means of these relations, equations (8) will idiawtely reduce to the following
ones:

T0% g, ok (8

which are those of NEUMANN.
We shall now address the problem of establishing the eqgsatib elasticity for
isotropic media, namely, the ones that will givehe form:

N=-1A&+Ba), 9)
in which:
J=6+6+6,
W=+ +wi-4 Qb+ 66+ 6 6)

The constant®& andB, which depend upon the nature of the medium, are thetbaes
GREEN used (“On the laws of reflexion and refractiofigift, etc.,” 1837). In the usual
theory, the ratios of those two constants to the ideins the medium represent the
squares of the velocities of propagation of longitudindltaansversal waves, resp.

One should immediately note that the quaniity i.e., the cubic dilatation — has a
very simple expression. Indeed, one easily deducesthrerirst three equations (5) that:

Pl 1{6(5'@ L 20K;) +"’(DK3)}. (10)
0| oq aq, 00,

By virtue of (7), one deduces from equation (9) that:

©,=-AS8+2B(6,+0,), Q,=-Buw,
0,=-AS8+2B(6,+6), Q,=-Bw, (11)
©,=-A9+2B6,+6,), Q,=-Buw,

and those are the values that must be substituted migtitehand side of equations (4),
(4)a .

Such substitutions offer no difficulty in regard to equiagi(4), .

In regard to equations (4), one must first of all sepatea part that is multiplied b
from the one that is multiplied by. As far as the first part is concerned, one will see
immediately that the right-hand sides of equationsddiice to:

_A{ga@ﬂ)_za_m}
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namely, to:

_p% (=12 3) &)
dq

As for the part that contains the fac&rit has the following expression in the right-hand
side of the first equation in (4):

_B[ a0, +9) , X Q) , o(F Qu,)

0 oc, 0, 0q,

_ 25{’92“93 0Q , 5,+5,0Q, , 5,+5, aqg},
Q dJdg Q 9dq Q dq

namely, after some obvious reductions:

_B 0Q,Q) 0(Q,6,) 0(Q6),19(F Q) , 10(Q Q w,)

The direct substitution of the values (5) in that espicn B will lead to an
especially prolix calculation, as LAME knew already (ire two cited places), and in
order to avoid precisely that prolixity, he preferredstart from some opportunely-
arranged Cartesian equations. However, that stopgap atilbe admissible, from the
previous observation in regard to the greater generaliggoétions (4) in comparison to
the Cartesian ones. We therefore need to perfornmdi@ated calculation, which can be
abbreviated somewhat, above all, on the basis of anabke induction. Therefore, if
one knows that in ordinary space the final equatiohssatropy contain only the
components of the elementary rotation in the terrasdahe multiplied by then it would
be natural to think that those components must alscefiguthe equations that relate to a
more general space, since the concept of elementatiprotawith the definition of W.
THOMSON — will persist in any space.

In my “Cinematica dei fluidi” (8 11), | already gave tigeneral values of the
components of rotation in arbitrary curvilinear coordinatééth the present orthogonal
coordinatesy, tp, g3, those formulas will become:

1 {6(Q§ k) 0(Q KZ)}

‘"oq| 9 g
- {a(kal)_a(Qi Kg)}, (12)
QQl 94  dq

_ 1 {a(stz)_a(kal)}
*QQ| oq 0g, |
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in which &, &, & denotetwice the components of the elementary rotatibat
accompanies the deformation of the system or elasédium. These are just the
expressions that figure in the transformed equations AME, NEUMANN, and

BORCHARDT. The presence of the produ@sx in those formulas suggests that one

should set:
QiZKi =K,

and to write equations (5) in the following form:

10K, _ 109, , 19Q, , 10Q,

%A Faq T Gag t Gag ®
O U S
a4 40
R
st 2 {1800 180
o B )

The substitution of those values in the expresgf@ncan be accomplished quite
easily if one keeps separate the terms that comteinpartial derivatives of first and
second order of the functiok& from the ones that contain those functions. Tmenér

can be grouped into the expression:

_BQ {a(Qzﬁz)_a(Qsﬂg)} 0
Q,Q | dq g,

with no great difficulty. The latter constitute mmmogeneous linear function of the
guantitieski, k2, k3 . The coefficients of those functions are someéwdmamplicated.
However, with a little bit of attention, one cansiya reduce them to a form whose
symmetry makes immediately obvious the law thategos the composition of all three
analogous linear functions that enter into equati@). Namely, set:
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_ {1&@@%
C0q, |Q dq

10Q9Q

{ 10Q,0Q,,

{1&%@)
Q 0g

} {1&@@
Q dg

1aqag}

Q 9q 50!1 Qdgdq Qigdg

10Q), 0
Ql{aqz(Qz 00,

+1G@}
dql Qoq

10Q
(%%%(%6%

alasal

109,00,

Qdqdq

10Q,9Q

Qdqd g

10Q9Q

|

33:Q3{ ( ! an + 9 (i‘anj}+ )
0\ Q 0q ) 0\ QO g Qodqgaq
10Q0Q,, 19Q0aQ; _ °Q
@6%6% Qogdg 0gdq
H o=y = 10909 10Q0Q _ 0°Q,
#7870 9, 04 Q0qdq 9gdq
10Q,0Q, 10Q,0Q  0°Q (13)
Qﬁqa% Qdqdq 0gog

H23 = H32

H12 = H21

and if one takes into account the identity:

Hi1 + Hoo + Hzz=H (13}

then one will find that the linear function of thethat relates to the first of equations (4)
can be put into the form:

) QfBQ3 {(H11—H) Q1 k1 + H12 Q2 K2 + H13 Qs A3},
namely:
2B 09
QQ QK ’
in which one sets:
©=>H;QQ KK ~HY QK .

If one recalls the partial expressioms,(()), (d and forms the analogous expressions
for the second and third of equations (4) then wie get the following indefinite

equations for isotropic elastic media:
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AE_{_ B {G(Qzﬁz) _a(Qsﬁg)}_i_ B 0P +F =

Qg QQl ag g, ] QQQa( Q) '

A B{MQ&Q_MQ&%+ B0 .. _g (15)
Q0q, QQ| dq dq QQ QI( k)

Aﬂ_{_ B {G(Qlﬁl) _a(Qzﬂz)}_i_ B 0P +F, =

Qdq QQ| dg 0q QQ QI( Q)

As for the boundary equations {4)they will not give rise to any reductions that are
worthy of note or differ from the ordinary ones, anattls why it does not seem
necessary to transcribe them explicitly.

One deduces from the form of equations (15) that in oodferin those equations by
the method of variation of the potential, it is enougkeke that potential in the form:

Bo
—|{IAS +1B(F +97+5] d 15
Hz +1B(97+ +)+Qgg}s (15)

from which, one can conclude directly that the expoess

()
QQQ

possesses the same invariant character as the expsessio
2 2 2
J and S +95+J;.

Comparing the preceding equations (15) with the ones thkHB gave, which are
generally assumed, one will recognize that the fornmasowill not agree with latter,
unless the functiom is zeroindependently of any hypothesis on the functignswhich
demands that one must have:

H11 =0, H22 =0, Hsz =0, Ho3 =0, Hs1 =0, Hi2 =0,

because of the identity (13) Now, those six equations are precisely the orastlie
very same LAME, in v. 5 of LIOUVILLE’s Journal andtéa in the fifth of hisLecons
sur les coordonées curviligneshowed to be necessary for the expression (1) @ be

transform of:
ds’ = dxé +dy? +d7Z,

or, in other words, for the space in which the elastediom considered exists to be
Euclidian space. Therefore, the usual equations of pptae subordinate to the truth of
EUCLID’s postulate, while the general equations (4) atependent of it, as we have
observed before.
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That fact, which is the one that was alluded to ab#dgnning of the present article,
explains the necessity of the various gimmicks thaeveelopted by the cited authors in
order to deduce the equations of isotropy in the general equatien the form of the
line element, from the indeterminacy in its coeffitgrdoes not include the Euclidian
hypothesisa priori. Hence, BORCHARDT, for example, could profit frone tiorm that
the integral (15) takes when the coordinates are Cartesian ones toer¢decyuantity
under the integral to:

AP +IB(H +I+5)).

If one abandons the Euclidian hypothesis then equations (I5pecome the
equations of isotropy in a space of constant curvatulteis calledconstantcurvature
because if the curvature of the space varied then itdvmtlbe legitimate to consider the
coefficientsA andB in the expression (9) to be constant quantdigsiori. To that end,
one can observe that if the quan#tyaries withg, then the part offl that corresponds to
the term$ A9 in the right-hand side of equations (15) will be evenpdér — i.e., it will
be represented by:

iw (i=1,23),

Q aq

as is easy to verify. Things are different for piaet that relates to the other teé&Ba

Now, the function® assumes a simple form in spaces of constant cuezat
Indeed, the line element of a space of constantitwre (=a) can always be put into
the form that RIEMANN indicated:

dof +dg +d
gs= I+ dgdd
1+ @ + 6+ )
which promises to be quite useful, due to its sytnyneSet:
1

Q= 7 (=Q1=Q2=Qy),
1+ (@ v+ )

so one finds (13) that:
H=-Qq,
hence:
Hii =Ha=Haz=-Q%q,
and finally:
Hi1 =Hx =H33=0.
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It will then result that when the coordinatgsre those of RIEMANN - i.e., the ones that
| calledstereographian my “Teoria fondamentale degli spazii di curvaturstaate,” (v.
2 of these Annali) — one will have:

2= 20 QK K] K.

QLG

Now, the quantityQ® (k2 + k2 +k?2) is the square of the displacement of the pajntdp,

0s), that is to say, the quantity that is representedQdy; + Q2 x>+ Q2«2 with the
general orthogonal coordinates that the expressiors(@gferred to. Therefore, in any
space of constant curvatusgthat is referred to orthogonal coordinates, one witeha

(0]
m:Za(Qfo+Q22K22+Q§K§), (16)
and consequently:
H = _3an Q2 Q31
H11: H22: H33:—0'Q1Q2Q3 (16)31

Hy=Hy,=H;,=0.

These last six formulas can be transformed, likarmiogue of LAME’s, into just as
many geometric relations between the curvatures ofrthegonal surfaces.

Indeed, if one lets 1rf; denote the geodetic curvatures of the lines of intaoseof
the two surfaces; = const.,q = const., when those lines are considered to exish@n t
first surface (so the geodetic curvatures of its lines, whey &re considered to exist in
the secondsurface, will, however, be denoted by 4;), then one will get the following
relations:

Q_QQ Q_QQ
an r22 , aqS r23 ,
9Q,_2Q 9Q,_Q2Q
00 s o ry
Q% _ Q%0 99 _ Q%Q
aql r21 , an r12 ,

from known formulas.
One can eliminate all of the derivatives of the tHrgeetionsQ; from the last six of
equations (16) by means of these relations, and if one also sets:

Qi dg =ds

then one can actually eliminate thd3e. Operating in that way, one will find the three
equations:

Hi1 =H=Hz3=-a Q1 Q2 Qs3,

which are equivalent to the following ones:
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1 1

0— J0—

"o 4 r13+i+i2+ L +a =0,

asz a% lfz r13 r21r31

1 1
-~ 90—

f2s + r21+i+—12+ 1 +a =0, (16),
ass a% r223 r21 r32r12
ol ol

r r 1 1 1

+a =0.
a% a % [321 r§3 r12r 23

As for the other three equations:
Hz3 = H31 =Hi12=0,

which are identical to the three LAME equations, theystate into the corresponding
relations Coordonées curvilignegpp. 80) between the radij , except that they must
naturally be considered to be radii of geodetic curvatune raot radii of principal
curvature. In addition, one should note that LAME tobk bpposite sign for his
curvature.

If one letsm, a», as denote the measures of the curvature (according to GAUISS)
the three surfaceg, = const.,q; = const.,qs = const. at the pointg{, 9., gs3) and
compares the preceding equations {1%jh the known equations of BONNET then one
will get:

a, = +a,
r21r3l
1
a, = +a, (16),
r32 r12
1
a, = +a.
rl3r23

Whena = 0 (i.e., when the space is Euclidian), the radg@ddetic curvature{i, rsa),
(rsz, ri2), (ris, ro3) will coincide with the radii of principal curvature dhe three
orthogonal surfaceg; = const.,g, = const.,gs = const., and the preceding valuesaof
a2, asWill coincide with the ones that are given by GAUS®isorem.

By virtue of the form (16) that was found for the fuaaotid, the indefinite equations
of isotropy in a space of constant curvatarean be definitively put into the following
form:
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A, B {a(Qzﬂz)_a(Qsﬂg)}+4aBQl,(l+Fl:o,

Qoq QQl dg  dg

A3 B {a(Qsﬂg)_a(Qlﬂl)}+4aBQ2K2+F2=o, (17)
Q05 QQl dq g

292, 8 (003) 202 oo e =0

Qdg QQ| 9g 99

One can predica priori that the curvature of space must not be devoid afentte
on the equations of elasticity. However, it is undoulgtepiite noteworthy that its
influence would manifest itself in a very simple way.

Despite that simplicity, the theory of elastic n@eth spaces of constant curvature
presents relevant differences in comparison to theary one, and it seems to me that
the consequences to which they would lead would megaaus study.

For now, | shall confine myself to giving a summaryoime results that relate to the
case in which the elastic deformation has a rotatesase.

The three quantitied; that are defined by equations (12) are zero in that sasene
can set:

1 oU
Pi= =, 18
9 9 (18)
and therefore (10):
9=N7 U, (18}
in which:
puU=_ L {1{@@&} 0 (quau ji[ qcza_Uq]} (18}
QQRQ9q\ Q dq) dgl Qadg) dg QO
In that way, equations (17) will become:
ai{AAZU +4aBU+ QF=0 (=1,2,23),
and will show that the forcdé must have a potentist i.e., that one must have:
Fi = ia—v (18}
Q dq

With that, the three aforementioned equations lvélequivalent to the single one:

AAU+4aBU+V =0, (19)
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in which it is intended that) subsumes the quantity that was introduced by the
integration, which is independent@f oz, 0s .
If one supposes tha# = 0 (i.e., that\, U = 0) then one will have:

V =-4aBU, A V=0, (19)

and one will then get a deformation that is devoid dfegitotation or dilatation, in which
the force and the displacement have the same (orst@pdirection and magnitudes that
are constantly proportional to each other. That resdlich is not found in Euclidian
space, presents a singular analogy with certain modenoepts about the action of
dielectric media (MaxwellTreatise on Electricity and Magnetism. 1, pp. 63). If one
assumes the equivalence of the directions for theefand displacement then one will
need to suppose that the curvature of space is negative.

In order to better fix the idea, one should consideadiqular form of the line
element in a space of constant curvatmrenamely, one should set:

ds =dé?+ = sm (& a) i +sif ndd?), (20)

in which £ is the radius vector that leads from a fixed cetbean arbitrary point of
space, andy, { are two angles that determine the direction of tadius. The quantities
& n, ¢ are thespherical coordinates of the space of constant curvature. Wiibiset

coordinates, one has:

a 1 o0( . dU 1 0U
s (5\/7){6165[ (5\/7) j sm/]%(&m%}sirﬁ/]a_fz}’ (20)

and if the equation,U = 0 is satisfied then one can take:

U=ucot(éa), (21)

in which p is a constant. That solution corresponds to tw@luelementary Newtonian
potential.

If one continues to lexi, k2, k3 denote the increments in the three varialdles, ¢
that are due to the elastic deformation then ofihave:

du__ wla

K= =

dé~ sint@Efa)’

I
)
|
o

under the hypothesis, and therefore (5):
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w=w=a=0.

The internal tensions of the medium are thereforerdenhed (11) by the components:

d?u d?u

©,=-2B——, ©,=0,=B—;,

e T g (21),
Q,=0,=0,=0.

That is to say, they are represented by a force thatike of pressure or a traction in the
direction of the line of force, and will give a forti®at acts in the opposite sense — i.e., as
a traction or pressure, respectively, in the directibasare perpendicular to that line.

That result is also in harmony with the known consegt FARADAY. In truth,
MAXWELL mathematically developed that concelatc{ cit, v. 1, pp. 128) by supposing
that the absolute values of the pressure in the serke biie of force and the traction in
the normal sense were equal. However, more recetyMHOLTZ, in a new theory
of dielectrics (Monatsberichte der Berliner Akaderiiebruary, 1881) was already led to
assume the possibility of a ratio that was diffefesin unity by other considerations.

Another simple solution of the equatiagJ = 0, when considered in the form (20)
is given by:

U=ug (22)

in which ¢ is a constant. That solution corresponds to, ands@ edual to, the usual
electromagnetic potential of a rectilinear currentt ttiaverses the polar axig = 0.
However, for the calculation of the internal tensidhat are verified in that case, it is
better to take another form of the line element, arfdat, the following one:

d¢ = di + co€ (/@ )dZ +% sirf W/ @ )2,

in whichu is the distance from an arbitrary point of space taedfaxis,z is the distance
from the foot of that perpendicular to a fixed point battaxis, and’ is the angle that the
plane through the fixed axis and the arbitrary point makés avfixed plane. Those
guantitiesu, z,  are thecylindrical coordinates of the space of constant curvature.

By means of those coordinates, one will find (while supgpthat the current flows
along the fixed axis = 0):

K1:0, K2:01

K3 = Ha

3= T o, —
sSin® (U a)

and therefore one gets from equations (5) that:

6=6=6=0,
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21 a cos a
=0 o 2K ofa) B0,

sinfuya)

The internal tensions of the medium are then detean(11) by the components:

0,=0,=0,=0,
2Buacos(n/a ) 0 -0 (22),
. 5 ’ 3~ Y
sin (u\/E)

That is to say, they are represented uniquely bintmnal force of torsion around the
line u = const.,d = const., namely, around the line that is in thee plane with the line
that the current flows through and that has itsigsoequidistant from it.

If one would like to consider the vibratory motiaf the elastic medium in the
absence of external accelerating forces, while tamimg the special hypothesis (18),
then one would need to assume that the fundtiaiepends upon time along with the
coordinateg) , and set:

Q,=0, Q,=

d°a.
I:I == 1 I )
PQ e

F :ii _pﬂ
' Qaq o )’

in which pis the density. When the last relation is compavéh (18). , that will give:

namely, from (18):

2
V:— a_U,
ot?

and therefore the general equation of vibratoryionathat one gets from (19) will be:

U _
P et A AU + 4a BU. (23)
If one sets:
u=y cos(szﬂuj : (24)

in order to consider a simple stationary vibrationwhich W is a function of just the
coordinates, and, y are two constants, the first of which represehts period of a
complete vibration, and the second of which repressthe phase. If one substitutes that
value ofU in equation (23) then one will get:
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AA2W+4[n2p+aleP = 0. (24)

TZ

When the curvaturer is zero (viz.,Euclidian space) or positive (viz., RIEMANN or
sphericalspace), there will be no admissible valuerdfiat annuls the coefficient &f.
However, when the curvatueeis negative (viz., GAUSSian @seudo-sphericadpace),
i.e., when one has:

a:_g,

in whichR is the radius of constant curvature, if one takes:

= P
r=7nR \/; (24)

then the coefficient o will be zero, and one will get a singular class ofatlons that

are defined by:
U:Wcos(E /E+,UJ, (24)
RY p

and for which the functiok of the three coordinatep will satisfy the equation:
AW = 0. (24

Those vibrations, which are devoid of rotationd dilatations at one particular time,
and which will not be found, as such, in ordinapase (except for the so-called
incompressible fluids), will take place everywhere¢he direction of the force that is due
to the potential and will have amplitudes that greportional to that force. Such
vibratory motions give birth to internal tensions the vibrating medium that can be
calculated with formulas (5) and (11), as in theecaf equilibrium, and will contain all of
the periodic factors. If one takdés to have the values (21), (22), for example, which
satisfy equation (24)then one will once more find the tensions {21(22),, multiplied
by that factor.

If one supposes that thein equation (23) depends upon oglgndt [in which  has
the same meaning as in equation (20)] then one geill the differential equation of
spherical waves in the form:

°U A a | . U
= — 2 N — 4a B U. 25
p ot sin? (Eﬂla)af{sm « a)af} ¥ (25)

One can satisfy that equation by taking:
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U= Ecos (@g¢ + ht+ k)

sin (/@)

in whichg, h, k, Eare four constants, the first two of which are couplethkyrelation:

(25)

A , A+4B
=—g°- a.
2 P

h? (25),

One obtains progressive spherical waves in thaf whgse velocity of propagation:

h
a=t—
g
and wave length:
A= 12_77'
g
are coupled by the relation:
2
a2:§_A;4BZj72- (25)

If one supposes that = a then one will be back to the case that was corsitjeist
now.

That result, which was discussed with a hastewbich | must apologize to the
reader, seems to me to be the one that justified gie attention that one should give to
the new equations (17).

Pavia, 5 June 1881.




