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The recent paper by LECORNU “Sur [l'équilibre des suwfacflexibles et
inextensibles,” in volume XLVIII of thelournal de I'Ecole polytechniqubas, quite
opportunely, attracted the attention of the mathemaatscto an argument that was never
studied to the degree that it deserved and that can bele@isto have been forgotten
for some time.

LECORNU'’s assertion that the argument was not madenggne before him is
correct, except for the fact that it referred to thethrad that was due to him, and above
all, to the intimate link that he justifiably recognizbdtween the mechanical question
that he treated and the geometric theory of the detmnsaof surfaces. That viewpoint
constitutes the principal benefit of his lengthy workg @énsuggests a geometric study.
However, the purely mechanical question of the equilibraimsurface, in relation to
which LECORNU can be credited for having establishecettaet differential equations
for the first time, | believe, has quite a number ofcpdents, even if its story is not as
true as that of some other questions that are mucintesssting and less intricate.

Even if one would, in fact, like to pass over to GimwaBERNOULLI’s sail problem
(i.e., to the search for the cylindrical surface tedbrmed by a sail that is inflated by the
wind), which is a problem that, in substance, enterghbery of funicular curves, one
cannot doubt that LAGRANGE, in hMeccanica analiticaPart I, Sec. V, Chap. lll, 8
1) and POISSON, in a paper in 1814 on elastic surfadeshéive sought to erect a
general theory that includes, quite obviously, the casdleaible and inextensible
surfaces. Indeed, CISA DE GRESY, in his “Considératgumsl’équilibre des surfaces
flexibles et inextensibles” [Memorie della R. Accaderdialorino (1)23 (1817)], has
done nothing more than to reconsider and discuss thdheges and formulas of those
celebrated authors. Moreover, although they have nopedso deduced the true
equations of the problem, they have always pointed cléarthe path that one should
take, which is a path that would later be made much ebgi¢he use of curvilinear

() That paper is included in the volume that containsrtemoirs of the French institute from the year
1812, part 2, pp. 167. The first paragraph of that paperhleastie: “Equation d’équilibre de la surface
flexible et non élastique” (pp. 173-192).
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coordinates. However, without insisting upon these moteddpapers or citing other
more recent ones that are more or less relatedetargjument that they address, | shall
confine myself to recalling one of the well-knowezioni di meccanica razionaley
MOSOTTI (Florence, 1851) that is dedicated entirelyn® e¢quilibrium of flexible and
inextensible surfaces and offers a fairly broad treatrtteat is accompanied by several
examples.

However, MOSSOTTI has made an errrtkiat does not invalidate the applications
of what he did, but only detracts from the generalithisfequations of equilibrium and
makes them less adaptable to other applications that iy wish to make that do not
present the accidental peculiarity of the ones thatdated.

In order to better clarify the origin and nature attarror, one should go back to the
step that was cited before in LAGRANGHRW#eccanica analitica If one observes the
process of calculation that he adopted and interpret®thmilas that he found from the
standpoint of flexible and inextensible surfaces thenwillesee immediately that the
inextensibilitythat he refers to should not be interpreted (as waeddnsnatural) in the
sense of thénvariability of the line elementut in the sense of thavariability of the
surface element:In other words, one needs to associate the surfack am
incompressible liquid film of constant and invariable inBsimal thickness. Under that
hypothesis, the surface tension will always be exertedhaldr to the line element and
will be the same in all directions around that poinbwdver, when one reconsiders the
study of the question by POISSON, before all otherswalhsee that this equivalence of
the tensions around a point would be a too-restrictive thgses, and one would prefer to
assume that two line elements that emanate fronsdinge point and are or are not
mutually-perpendicular can be subject to tensions tleatdmected normally to each of
them but have different values for each of them. Nmowfact, for any point on the
surface, there are twarthogonalelements that are subject to only normal tensions that
are generally unequal. However, assuming #mtline element that emanates from a
point is subject to only normal tensions will nece$gdead one back to LAGRANGE'’s
hypotheses and will be in contradiction with the other hygmghthat those normal
tensions possess values that are different for eaofeste In particular, the hypothesis
that two obliqueline elements are subject tormal, unequaltensions is absolutely
contradictory. At any rate, equations that are based gpasiderations of unequal
normal tensions that act upon pairs of normal elemeiitde applicable to only those
cases in which the special nature of the problem peonésto predict priori what the
(orthogonal) lines on the surface are that can be ceedpof a succession of line
elements that are subject to only normal tensions.

Now, MOSSOTTI, who initially supposed that the direcsiaf the tensions were
completely unknown, later excluded (by means of an ailysconsideration) the
possibility that they had a tangential component, whichewawallowed the difference
between the normal tensions on the two systems ofgotiad coordinate lines to persist,
and took advantage of the resulting freedom to choose liheserbitrarily by assuming
that one of the two coordinate systems is a systegeadetic lines. It will then follow
that his equations of equilibrium are not even applicabédl cases in which the lines of

() That error is, in part, common to some previouskadsy BORDONI and CODAZZA that had
another theory as their objective (namely, the dyuilin of vaults), but was based, in substance, on the
same considerations and had the same differential egsiasdts focus.
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normal tensor are knowa priori, but also demand that the lines of one of the two
systems are geodetics. Those conditions are verifiatl applications that he made.

Considering that the work of MOSSOTTI is consulted astly appreciated by those
Italians that deal with the doctrine of rational mecbsnand that on the other hand,
LECORNU has passed over the strictly mechanical patteofjuestion in order to give
preference to the geometric part, | managed to do soefel wgork while summarizing
ab initio the problem of the equilibrium of flexible and inextensilslerfaces by
establishing all of the fundamental equations with theéhatethat seems simplest to me,
as well as the most direct, and above all, the mostrgkrnin the sense that it excludes
any preconception about the distribution of surface eassi That method is nothing but
that of LAGRANGE, combined with the true analytic defom of inextensibility.

Therefore, after having clarified in&8with some very simple (and some might say,
intuitive) considerations in regard to the imperfectitimst are inherent to the process
that MOSSOTTI employed and other similar ones, | edtablish in 8 the general
principle of equilibrium, and from that single principleyill deduce in 883, 4, and5 the
indefinite equations and the boundary equations in compleeheral curvilinear
coordinates. In 8% and7, | will arrive at the theory of surface tensions fromose
equations, which plainly conforms to what LECORNU esshlgida priori by taking
advantage of geometric considerations. The followintjses 888, 9, and10 contain an
exposition of some equilibrium cases that are not#wofor their simplicity and
generality, and one of them was mentioned by POISSQOle \the other ones do not
seem to have been looked at, up to now. 11,8 shall point out the conditions under
which one can arrive at the general equations that ween diy the other authors.
Finally, in 812, | shall collect some observations in regard to thendas that relate to
infinitely-small deformations of a flexible, inextensilslerface.

I was inclined to add the deduction of the equationsnofion of those surfaces,
which are equations that one can put into a form thatnalogous to the form of
equations (Ill) in 84. However, the necessity of considering many otheermifitial
equations in addition to them rendered the problem of irtiegr&o complex that it
seemed almost impossible for me to be able to arrianyatuseful results. | therefore
believed it best to leave aside that argument, whichbealeft to more capable hands,
and that might, in particular, give rise to interestamgl relatively less arduous research
in the case of infinitely-small motions around a figafequilibrium.

8 1. Preliminary considerations

Suppose that we have a homogeneous planar rectangie thdijected to tensions
that are distributed uniformly on its opposite sides, andogjately letP be the absolute
value of the tension on a unit of length for two of afgposite sides, whil€) is the
analogous quantity for the other two. It is obvious thateurthose conditions, the
rectangle will be in equilibrium and that the unit tendtowill be transmitted to any line
element that is parallel to the first two sides, psthe tensio® will be transmitted to
any element that is parallel to the other two sides.

Having said that, let andb be two arbitrary points that are taken from that megis
and letR be the unit tension that prevails on any line elemétie lineab. Draw the
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line ac through the poina that is parallel to the sides with the tendiband draw the line
bc through the poinb that is parallel to the sides with tensiQnso one will get a right
triangle abc that one supposes to be rigid and which must be in equhbunder the
action of the force®.ac Q.ch R.abthat are distributed uniformly on its three sides
cb, ab with the first two in directions that are normalttee respective sides, while the
third one has an unknown direction, and all of themtpioinm the inside of the triangle
to the outside. Those forces can be regarded as havingeked to the midpoints of
the respective sides, and therefore their directwwiisconcur at the midpoint of the
hypotenuseb. Hence, if one draws a lireec’ = P.acthrough an arbitrary poir@’ in the
plane in the directiobc and one then draws a second lftg = Q.bcto the endpoint’
of that line in the directiorac then it will be clear that the connecting lib& will
represent the third forde.abin magnitude and direction. The unknown tengiowill
then be determined completely with that.

Now, if that tension is also normal &b then the triangle of forcesb'c’ will have its
sidesa’b’, b'c, ca perpendicular to the sideb, bc, ca, respectively, of the triangkbg
so it will be similar to that triangle, and one willve:

P.ac: Q.bc: R.ab=ac:bc:ab, namely, P=Q=R

Hence, the arbitrary linab (and in general any line element that is oblique to thessof
the rectangle) cannot be subjectednmrmal tension unles$ = Q, and when that
happens, the normal tensi®&of the lineab cannot differ in magnitude from the one that
is common to all sides of the rectangle. That thiirefore contradict the supposition that
two arbitrarily-chosen orthogonal line elements can be subjectuteequal normal
tensions. The tension is generally oblique to thedlaeent upon which it is exerted.

However, let us pursue the geometric considerationdedtiats to that conclusion. If
we transport the triangl@b'c’ parallel to itself within the equilibrated rectanglattive
assume it to belong to, while operating on it just adea®n the original trianglabg
then we propose to determine the tendahat prevails on its hypotenuad'. In order
to construct the new force triangle, one draws thelfité = P.Bc’ = PQ.bcthrough an
arbitrary pointb” in the plane in the directicaic’ (viz., bc), and then draw the lingfa” =
Q.dc =PQ.acthrough the point” in the directiorbc (viz., ca). The linea"b" that joins
them will represent the unknown foreeab' (viz., RR.ab) in magnitude and direction.
The new right triangle thus-formed is homothetic lte briginal oneabc because its
cathetib”"c” andc"a" are proportional to, parallel to, and with the same esexssthe
cathetibc, ca, respectively, of the original triangle. The hypotenah” = RR.ab will
be parallel taab and will have the same ratio of the catheti witht tine, so one will have
RR =PQ.

One concludes from this that the tensi®non a linea’b’ that is parallel tdR (i.e.,
parallel to the tension that prevails on an arbittexy ab) has the same direction ab,
and that the product of the unit values of the twemjugatetensionsR, R will be
constant, and therefore necessarily equal to thategirincipal tensions?, Q.

() See the footnote by BERTRAND on pp. 140 of LAGRANGHMeccanica analitica1853 edition,
volume .
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There is thus an infinitude of pairs of lines li&bk anda'b’ such that the tension on
one of them is directed along the other one. Howseter directions of those conjugate
lines are related to each other in such a way thateifi® given one of them then the other
one will be determined absolutely.

It then follows that if one imagines ambitrary parallelogram inside of the usual
equilibrated rectangle then it would not be legitim@telemand that the tension on one
of the pairs of opposite sides acts parallel to the atider. If that is the case then one
can decompose that tension into two of them, one of wkichirected along the other
pair of sides, while the other one is directed along pha whose tension it refers to, but
the second component will be non-zero unless the pasisles have conjugate directions
and to suppose that it is zaroany casewill imply a contradiction, at least, as long as the
parallelogram is not a rectangle and the tensiona@rsupposed to be equal alh sides
of the rectangle and equal to thos@ny other analogous rectangle.

On the other hand, the equilibrium that exists for ttal rectangle will necessarily
imply the equilibrium of any parallelogram that is palyiainside of it, and that
equilibrium cannot therefore be at least confirmed NB3SSOTTI believed) by the
existence of (equal and contrary) pairs that are dueetdatigential components of the
tensions along it.

One easily sees that the considerations that weedawut for a planar rectangle of
finite dimensions will be valid for the infinitely-smaétlement of any equilibrated
surface, and it was precisely by reasoning with that elethabh LECORNU established
the formulas for the tensions. However, it seemsenmatural and more consistent with
the spirit of analytical mechanics to avoid any preeptions about the way by which
those tensions are generated and distributed, and to dedecéreory from the
interpretation of those equations of equilibrium thates&blished directly on the basis
of the concept of inextensibility of any line elementthe surface.

That is what we shall proceed to do in the succe&8§ve

§ 2. General principle of equilibrium
Refer the surface to an arbitrary system of curvilimeerdinates andv, and if one

considers the Cartesian coordinates, z of its points to be functions of those two
independent variables, then one takes:

() )G

_ 0X 0X 6y6y 020z

(1) 6u6v 6u6v oud Vv

o=(50) () (52
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as usual, such that if one letsdenote the line element that emanates from the paint
V) and corresponds to the incremeshisdv then one will have:

(1)a ds’ =E df + 2F du dv+ G dV.

If one assumes that the linasv () are real then the two quantiti€&s G will be
greater than zero, and if it becomes necessary todevrsjuare roots, it shall always be

intended that/ E and,/G denote the absolute value or the positive root. Hehoegi

takes:
H=\EG-F?,

for brevity, thenH will be meant to denote the absolute value of thecatdd radical.
The expressioEG — F inside the radical is also always greater than zerra as the
lines u and v always intersect at an angle that is differentmfrd6 and 189 as one
supposes. In particular, assume that these condsrengerified at any point of the piece
o of the surface whose equilibrium must be considerekde area of an elemedu of
that surface that is included between the Imesconst.,u = const.v + dv = const.,u +
du = const. will be given by:

do=H du dv

Let a, B, ydenote the cosines of the angles that the nonmalthe surfaces makes
with the three axes of vy, z, resp. That normal is intended to be directed in sualay
that the rotation of the line towards the liner will take place around it in the same sense
as the rotation of the positiveaxis to the positivg-axis, when the angle traverses ig<
and will occur around the positizeaxis when the angle traversed is a right angle.h Wit
that convention, one will have, as is known:

_0yodz_0yoz

_ oy 0yoz _0z0x 0z0X H _ 0x0dy_0xay
dudv dvau’

H= ———-—— == —
p duov ovaou 4 duov dvou
Having said that, let:

Xdo Ydo Zdo

be the components along the three axes of the extiemcal that acts upon the surface
elementdg; and let:
XS ds Ys ds Zs dS

be the analogous components of the external forceatstupon the line elemeds of
the contous of o

If the surfaceg; which is assumed to already be equilibrated, submits tofiaitely-
small virtual deformation, by virtue of which, any ondasfpoints X, y, 2) will pass to the

() By saying “the linas,” we intend to refer to a line along which oniwill vary (and therefore will
remain constant), and accordingly regard that line agheaversed in the sense of increasing An
analogous situation will be true for “the limg
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position k + X, y + dy, z+ d2), then that force will do a virtual work that is reeted
by:
[(Xox+Yoy+r 203 +[( XS x W ¥y &)z

The variationsx, dy, dz are continuous, finite, monodromic functions df trariablesy,
v. In order for the surface to be inextensible,sth@ariations must satisfy the three
conditions:

(2) E =0, & =0, &G =0,
in which:
o3[ 20, 02

By virtue of LAGRANGE's principle, the general exjion of equilibrium will then
be the following one:

0 j(x5x+Y5y+ ZszT+J'( XOx YW ¥ D)z

J.()IJE+2,UJF +|/5G)—— 0,

in which A, y, v are three multipliers that are functionswéndv. (The divisor H is
introduced in the last integral for the sake odédatalculations.)

Finally, observe that if one assumes, with LAGRARNG®@nNIy the invariability of the
surface element — i.e. if one sets the single ¢momdi

3) H =0,

in place of the three conditions (2) — then thé lategral in equation (I) would contain
just one multiplierx, and it would have the form:

J- «on 99 dO’ namely, %J- K(GOE-2FOoF+ E5G)£.
H H H

Therefore, assuming only the invariability of theface element is equivalent to setting:

KG KF KE
A=—, H=—— v —
H H H

in the general formula (1), and therefore in alltioé equations that one deduces from it,
as well, or more simply:
(3)a A:u:v=G:-F. E.
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Conversely: If the multiplierd, u, v prove to be proportional 1@, — F, E, resp., in a
given case of equilibrium then one can conclude withfurther discussion that the
equilibrium will also persist when the surfaces logsslinear inextensibility, while
keeping its surface inextensibility.

8 3. Deduction of the equations of equilibrium

In order to deduce the equations of equilibrium, propgwaking, from formula (1),
one needs to duly transform the last of the threeyiate that are contained in the left-
hand side of that formula.

To that end, for the sake of brevity, consider only plaet of that integral that
contains the variatiodx and that can be written as:

o0x o0X 65x 6x 0 X 65x d7
[{| A=+ u— | ==+ | pm v — ,
ou ov au Ju 0V av H

by virtue of formulas (2). That expression can be transformed into the fatigwne:

J’ 0 ()I% ,ua—xjé'x +i (,u%+ Q(jé_x @
ou odu ov oV Ju 0V H
( 6x axj 0 ( 6x axj o
—j t—| U OX—.
ou au 6v oV au ov H

Now, for any functiong (u, v), as long as it is continuous, finite, and monodromie

will have ():
.[6_406_0':_'[( 6u anwdS
ou H 6n on

J-a_qoa_a:_J(Fau Ganwd
ov H on on

in which n is the direction of the line element afthat is normal to the contosrand

directed towards the interior of the region Therefore, the preceding expression can be
converted into this one:

J(Aa_Jr j(Fau Gavj (’uax VaXJ(FG_UJ’Ga_\,;J 5xd
ou 6v on on Ju O0v on 0

() See art. V in my paper “Delle variabili compless@raouna surpeficie qualunque,” Annali di
Matematica, new series, vol. I.
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6( 0X axj 6( 0Xx axj X
—J' — A2+ y= | —| g+ =1 do .
du\ du Jdv) ov. ou 0v/|] H

Similar things will be true for the two analogous integthiat contain the variations
oy andoz

If one substitutes the expressions thus-transformefbrmula (I) and annuls the
coefficients ofdx, dy, o separately in the surface integral, as well as incth&our
integral, then one will get the following equations:

HX :i(/}%+ a_X +i ,UQ('*'VQ(,
Jdu\ ou ov) Ovl Odu 0V
0 oy ady) 0 ady 0y
I HY =—| A2+ =2 |+—| u—2+v=2|,
h au( Jdu ”av av(”au Vav
HZ:i(/}%+ a_Z +i ’ua_z+ a_Z;
Jdu\ oJu ov) ovl Odu 0V
HXS:()I%ﬂu% (E@+ F@ + /,12(+V6—X Fa—u+Ga_ ,
ou ov on on Ju 0V on 0
(Il HYSZ()Iﬂﬂuﬂ (Eﬂﬁ oV +(yﬂ’+u@(|:a—”+ea— ,
ou ov on on Ju 0V on 0
HZS:(A%*'AIG—Z (E@-{- Fy +(Iua_z-+-|/a_2 G%-}-GG_V )
ou ov on on Ju 0V on on

These are the desired equations of equilibriurhe first three (I) are valid for any
point of the surfacs, and are therefore the so-caliedefinite equationsf equilibrium.
The last three (I)are valid for any point of the contour, or moregsely, for any point
of that part of the contour that is not fixed inedty (since one obviously hak = dy =
& = 0, for any fixed point): They are then the stletbboundary equation§).

When the figure of equilibrium has already beesigaseda priori, the preceding
equations will serve to determine the unknown fiomst A, 1, v, if one assumes that
equilibrium is possible. However, when the figuwk equilibrium is not assigned
priori, one needs to associate equations (ll)s (i) which the functiong (u, v), y (u, v),

z (u, v) will also become unknown, with the three equati¢k), which express the idea
that those functions are the coordinates of thetpaf a mappable surface (by flexion,
without extension) on which the line element, {$)given.

The three conditions (2) are obviously equivaterthe single one:

(2 dx dox + dy ddy + dz doz = 0,

() For the fixed part of the contour, equationss(Wjll yield the reactions that are exerted by the
supports.
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which is satisfied identically when the variatiods dy, oz have values that correspond to
the most general infinitesimal displacement of a rigndy. It will then result (I) that the
external forces must always be such that they ardiegted in the surfacs, which is
supposed to be rigid, which is obvious, moreover, and abdbkes for the method that
MOSSOTTI followed.

8 4. Transformation of the equations of equilibrium

Equations (lI), (II) that were just obtained contain the components of tterral
forces along the three y, z axes and therefore refer to the system of thoss. akeis
good to consider other equivalent equations along with thatrcontain the components
of that force along three directions that are matgniately connected with the nature of
the surface. For each point of the surface, thosetibns are those of the limethe line
v, and the normak. Let:

Udg Vdo Wdo

be the components along those three directions oéxternal force that acts upon the
elementdo of the surface and let:
Usdg, Vsdo, Ws do

be the analogous components of the external force ttatupon the elememnls of the
contour ().

The new equations that we speak of can be obtainedoiways: Namely, one can
deduce them from the ones that were established alrea$yaiblish them directly on the
basis of the principle that was contained in fornfilla

We commence with the first of these two ways andrebsthat the deduction can be
made immediately with respect to the boundary equafitas since it is enough to set:

:L{ (E%+ Fanj y(F%‘]+GZ\Q}

(s, :L{ ( g0, oV j (F@m@j}
on on on on

Indeed, equations (Wjhave the form:

_U 6x V. 0x

\/76u\/76

=Uscos (x) + Vs cos ¢X),

() ltis almost pointless to caution that we are speakimipliiue components.
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_U ay V, dy _

\/76u\/76v

_U 62 V, 0z

\/76u\/76v

I.e., they express the idea that the resultant ofidtoe Xs, Ys, Zsis identical to that of the
forceUs, Vs, Ws.

In order to reduce the transformation of the indedieitjuations (Il) to that principle,
develop the differentiations that are indicated in thersuch a way that one will see the
first equation in the form:

= Us cos (1y) + Vs cos (y),

=Uscos (12 +Vscos (2 ;

2 2 2
(@ HX = (a)l a,ujax (a,u avjax Aa X+2,u 0 X+v6 X
ou odv/ou \du odv/ov 04 owv 0%

Then recall that the second derivatives of the coatdsx, y, z with respect to the, v
can be expressed in the following way:

0°X X
—=F —+ —+ Aa,
ou? Elau E2
0%y _ o dy 6y

+ +
u? Elau E2 B,
0°z 0z
- - T+ EF °
ou? Elau E2

2
IX _pOX, g 9%, by
ouov Ju ov

2
0Y _p Y, g Y,pp
duav  ‘du  ‘av

0%z 0z 0z
92 g%, %% By,
dudv  ‘ou ‘oav 4

(4)

2
a_)z(:Gl%-*_Gz%-*_ Ca',
ov odu ov

9’y oy ay
9Y-g Y6 Y+ cp,
o tdu  ‘av p

0%z 0z 0z
972_592,69%% ¢y
N ou zov Y
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In order to convince oneself of the legitimacy ofsthdéormulasa priori, it is enough
to observe that, for example, the three derivatives:
9°x 9%y 0°z
ou’’ au®’ au?

can be considered to be the components along thexhyeeaxes of a certain force that
is applied to the pointx( y, 2 — namely, ¢, v) — and that this force can also be
decomposed along the three directiang, w. If one lets:

EJVE.  EJG, A

denote those three new components, then one will haeggsply the three relations (4).
Similar things are true for the other two triples. régard to the determination of the
coefficientsks, E,, F1, F2, G1, Gy, A, B, C, in the first place, when one differentiates each
of equations (1) with respect toandv and substitutes the values (4), one will get the
following relations:

=
u 2(EE + FE,),

OE
— = 2(ER+FF,)

& ~ER+F(E+F)+GE,

(4)a

g—'\:/:EGl+ F(F,+G,)+ GF,

0G
E = 2(FF1 +GF2),

oG
—=2(FG, +GG),
5 2AFG+GG)

to which, one should add the two following ones:

oH oH
(4)o —=H(E1+F), —=H(F1+Gy),
ou ov

which are consequences of them. The group of equatiopnde®rmines the quantities
Ei, By, F1, F2, G1, Gy, which do not depend upon the functidisF, G and their first
derivatives, as one sees, and therefore they are irdiepteaf any deformation of the
surface (by flexion, without extension). In the secptate, one obviously has from
equations (4):
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9°x 0%y 9%z
A=qa + + ,
ou? '[))au2 yau2

9°x LY 0°z

4 B=a %X+ + |
) suov Pacov 3wy
9°x _0° y, 6 z
C=a +
o Pod o

and the three quantities thus-defined, which are well-knowthe theory of surfaces,
have a very important geometric significance that maisummarized completely by the
formula:

(4)4 dFS: A ddf + 2B du dv+ C dV¥ = 0,

in which the differentialslu, dv, dsare coupled by the equations(1andR is the radius
of curvature of the normal section that goes throtghihe elementls

Introduce the expressions (4), whose coefficients ptovee perfectly determined,
into equationsd) and find that:

0A a,u
HX = +EA+2Fu+ Gy
{au ov & # Gl} Ju

ou ov
Lt EA+2E U+ Gy —
{au ov 5 H 2I/}av

+ A1+ 2Bu+Cy) a,

and operating likewise on the other two analogogsagons, one will get two other
formulas by first replacini, x, a with Y, y, fand thery, z, y.

One can deduce the following equations from thefof the equations thus-obtained
and by virtue of the considerations that have dleslowed us to pass from equations
(I sto (1), with no further discussion:

HU = f[ﬂ+a—"’+ E1A+2F1u+6yj

(1) HV = J_(a_”+a_"+ EA+2Fu+ GZ")
HW = M +2Bu+ Q.

These, along with (11} are the equations that we alluded to at the Ipaggnof this 8.
The new componentd, V, W are obviously coupled with the original ones bg th
relations:
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(5) v=— X = Diwg

(5)a

8 5. Another way of deriving thetransformed equations

In order to establish the equations of equilibrium inftwen (111), (Ill) s , one should
regard the coordinates y, z of an arbitrary point in space as functions of thedh
variablesu, v, w; i.e., the normal distance between that point and the surfazand the
curvilinear coordinates, v of the foot of that normal. Since the points in sphee we
need to consider are infinitely-close to the surfgdeis impossible for there to be any
ambiguity in regard to the values of the variahles, w that correspond to the given
values of the coordinatesy, z

If one considers the quantitigsy, z from that standpoint then one will have:

X= %Ju +%5v+%5w,

u ov ow
and if one setw = 0 then:
(6) &:%5u+a—x5v+a5w,
ou ov

and one gets similar results foy anddz. In the last equations (6), the variatiaks dy,

. . X .
oz, as well as the derlvatlveg‘,—, ? etc, and the cosines £, yare now those of the
u ov

same quantities that were previously denoted with thee sammbols. As for the new
variations au, ov, ow, they must be considered to be finite, continuous, hamic
functions of the variableg, v.
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It results from the expressions (6) thadsfis the line element whose projections onto
the threex, y, z axes arex, dy, o then one will have:

K =EA’+2F U N+G &+ W,

and also that iPs; is another similar element that has the originvf in common with
the first one, but corresponds to the other variaténs ovi , dw , then one will have:

3805 COS s, 05) =Edudy+F (dudv+ dvau)+Govov+owow .

Now, if the second elemeidt; is in the direction of a forcR whose components along
theu, v, wdirections ar&J, V, Wthen one will obviously have:

U:V:W:R:a'ul\/_E:J\g\/_G:va:J%

and the preceding formula will give:

(6)a RECOSR &) = ——(EA+F &) +——(F & + G &) +W dw.

7e JE

Therefore, the left-hand side of the last equation sgmts the work that is done by the
force R when it displaces bys from its point of application, and the right-hand side
represents the expression for that work as a funcfieimeocomponents of both the force
and displacement along the directiany, w. That result can be obtained, less directly,
from equations (5).

If one substitutes the expressions:

00X _ 0°X 9°x oa 0x9du, 0Xddv, 65w
= _—ou+ OV+—OowW+—
Ju du ouov ou duadu 6v6u au

90X _ 0°X 9°x oa 0x0du, dXdd v, 65\/\
= 9% su+ L2 5v+ 29 sw+ X
ov  duov oV v duov 6v6v av

which one gets from equation (6), in the right-hand sidesjoations (2), then one will
find that:

t0E= E@+F@+15E Aw
ou oJu
Ko 5F:E65u+F(65u+65VJ+Gaav+5F—285w
ov Ju 0v Jdu
20G = F@+G@+156 Cow
ov ov
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in which the characteristi@represents the operation:

o= Jui+5vi.
ou ov

It is appropriate to add the following equation to these:

Jd(H du) + d(Hdv) AG-2BF+ CE

7 H= ow,
(7e ou ov H
which is a consequence of them.
If one sets:
(7 Edu+F=dAa, Fu+Go=d’

and makes use of the relations,(#)en it will be easy to give the following form toeth
preceding equations (7):

léE_aaﬂ—(Elam EOV+ A,

(7)c 5F—@ ﬂ—2(F ou' +F,0V + Bdw),
ov odu
156—66ﬂ—(q&f+ Gov+ COW.

By using the formulas that were established before,ilitb@come clear that the
fundamental equation (1) is equivalent to this one:

e 1

(1
+ 1[(AOE+2u0F +|/JG)O|I_|—U=

in which &, &, &G have the values (#) Since the quantitiedr, o/ are arbitrary, like
the du, dv, all that remains to be done is to develop the lash@three integrals, while
considering thel', o/ to be the arbitrary variations.

Now, one gets from equations { at:

1A B+ 2u F + v )

_ oo (aau' 65\/) 00V
=A +Uu + +v
ou ov Ju ov
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—EA+F u+G VA -(EA+2u+G o —-(AA+2B u+Cu) ow

However, one has:

A

oou’ (65u’ 65\/j 00V
+ U + +V
ou ov Ju ov

_ 0(AdU'+ uodv) +6(,L15u+|/5\i) _(@Jra_,ujdu, (a_era_ujM’

ou ov ou adv ou 0v
so with the transformation of the integrals thasvadopted already in 3§ it will result
that:

-[(ASE+2u0F +u5c;)‘L—”

04 du 6,u ov
j{(ﬁJr_erEMJFZFlﬂJFGleéu{au S, EAT2Fu Gyj5v+(Aa+231+ (D)}—

Ju ov Jdu A d<
+ ! I
H(M“”‘W)(Ea +Faj (”‘m“"”)(% Ga_nj}

If one substitutes that expression in formula @Yl &quates the coefficients af’, o/,
ow to zero then one will get equations (111), (L16f 8§ 4.

8 6. Determination of the surface tensions

Trace out a closed line arbitrarily on the surface, which is supposed to be
equilibrated, call the line elements and the normal elememtn, which is directed
towards the interior of the region that is bountgd. If s means the variable arc length
of that line when measured from an arbitrary origian one needs to fix the sense of
positive increase along that arc in such a way\lien the elemersis traversed in that
sense, it will be arranged with respectdio andw in the same way that theaxis is
arranged with respect to tlgeaxis andz-axis, respectively. For us, that will be the €ens
of positive circulation along the lines. With those conventions, one will have the
following relations {):

6u ov ov ou, ~0v

+F—=H— F—+G—=-H 6_’
as ds on 0s O0s Jon
6u

U, pOV_ OV Ldu oV 0
on on 0s on on 6

(8)

() “Della variabili complesse, etc.,” art. V.
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two of which are consequences of the other two. In cwefistinguish them, let
denote the line of the contour that was previously deroys.

Having said that, imagine that for a given system afefe ¥, Y, Z; Xs, Ys, Zg) that is
applied to the surfacgand the contous such that it is capable of producing equilibrium
on that surface, one must determine the three funcépps v in such a way that the
indefinite equations and the boundary equations will be matisflentically. If one
substitutes the three functions thus-found in equatibns (vhich are referred to the new
closed lines, then one will recover the values that are determioethe quantities that
are denoted b, Ys, Zs therein, and it is clear that when the new systeforges K, Y,

Z; Xs, Ys, Zg) is applied to the portion af that is inside o and to its contous, it must
maintain equilibrium in that portion when it is considkne isolation, since the indefinite
equations and the boundary equations for that portion afutface and for that system
of forces will be satisfied identically. On the etthand, when that portion of the surface
is considered to be part of it will already be equilibrium under the actiontbe force
(X, Y, 2) that is applied to that portion and some other unknfosres that arise when
one connects that portion with the residual portiomofHence, the system of the latter
force is equivalent to the system of the forkg Ys, Zs) that is determined from equations
(s, and since one can suppose that the dilecomes rigid in all of its extension,
except for the elememts without perturbing the equilibrium, one must then codel
that the two equal and opposite forces:

(Xs ds Ys ds Zs dS) and 6 Xs ds - Ys ds - Zs dS)

that are applied to the elemeds represent the mutual action that exists in the
equilibrium state between the two surface regions @natcontiguous to that element.
That mutual action is what one calls thasionof the surface along the elemeist

Although the tension thus-defined is not properly a fotnd, the result of the
coexistence of two equal and opposite forces, one canysisallone or the other force
interchangeably. That will cause no inconvenience wimenumambiguously establishes
what one must take for the two forces. We shall atgpeslways take the second one;
namely, the one that, under the preceding hypothesesheavéixerted by the portion of
the surface that is inside efon the residual portion, and thereforelifds denotes the
absolute value of the tension along the elent=nand Ts, ds denotes the (normal or
oblique, according to the case) component of that temsian arbitrary directiom then
we will have, from equations (H) that:

HTSX+()I%+,L1% (E@+ F@ +(,u%+va—x(lzg—u+Gg—z]=0,

ou ov on on Ju O0v n
HTSy+()lﬂ+,ua—y (E@+ Fﬂ/ +(,uﬂ+va—y(lza—u+Ga—z]=O,
ou ov on on Ju 0V on 0

HTSZ+()|6—+,u— (E—+ F— +(,u—+|/— (F@+G@j=o,

on on
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in which Tsyx Tsy, Ts; are thenormal components ofls, and we will also have from
equations (111 that:

B3]
HTSV+\/E{,U(E—+F—j+V( +G%'J}=0,
=0,

in which Ty, Ts, are theobliquecomponents ofs and thenormal components, resp.

The last of those equations shows that the surfaosion is always directed
tangentially to the surface, which can be regardedbviousa priori. We shall no
longer refer to the componeny,, then.

From the conventions that were made, the surieg®m where the tensicemanates
from will always be the one towards which the norma directed.

By virtue of the relations (8), one can give tldlofving very simple form to the
values of the components of the tension alongitiesl andv:

T ﬁ(/ﬂ—u%j,

(v) ZS ss
\' u
T \/7( —S_Va—sj

Since the directiom of the normal does not appear in these formulasight seem, on
first glance, that the region of the surface whaeetension acts upon the elemdsivill
remain indeterminate, while it is rather obviouattiwvhen one passes from one of the
regions that are contiguous to the element to therane, the components of the tension
must change sign, while preserving their absolatees. One should therefore not forget
that the relations (8) that led to equations (IVeuppose that there is a well-defined
relation between the directiomls anddn, so the sense of increasing arc lengtland
therefore the sign of the derivatives wfand v with respect to that arc length, will
determine the direction aln implicitly. By virtue of the conventions that véeemade in
regard to them, equations (V) define the companeftthe tension in the elemeds
such that the tension proceeds frtrat region to the one with the arc lengthwhich is
traversed in the sense of its increase, whichasctintour or part of the contour, when
traversedpositively and that should remove any ambiguity (and alsennte lines is
not closed).

Consider, for example, the angular region (of widt7) that is found between the
two linesu, v that start from a pointu( v) of the surface in the directions of increasing
andv. From the conventions that were made R) § is clear that the first of those lines,
when considered to be part of the contour of thgion, is traversed positively when
increases, while the second one is traversed pelsitivhenv decreases. If we would
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then like to calculate the tensions that proceed flmhriegion into two elements that are
contiguous to the vertex of the angle from formulag (hén we will need to set:

% - i % - O
os JE’ s
when we treat the line, while we will need to set:
% - O % - —i
os s \/E

when we treat the line. If T,, T, denote the two tensions thus-defined, for the sake of
convenience, then we will have:

(9)

and therefore:

/ /E
9 A:_Tvu " :_Tuu:_Tvv, I/:_Tuv -
(9)a E H G

These last formulas summarize the mechanical signifie of the multipliersi, L, v,
along with the necessary relation:
(g)b Tuu = Tvv .

®

In order to interpret that relation, observe thalsif, ds, denote the absolute values of
the two line elements to which the tensiohs T, refer, and if @ denotes the angle
between them then one can write:

Ty ds Bin 8ds, =Ty ds, [kin 8ds,.
In that form, it will become obvious that there is@ontaneous equivalence of the pairs
that arise from the tangential components of the dession opposite sides of the
parallelogram whose sides atg,, ds,, which are pairs that act in opposite senses, and
that is precisely by virtue of the equality{9)

§ 7. Study of the surface tensions

If one letsdt denote the line element that issues from the origofsaf the direction
of the tensiols dsthen one will obviously have:
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Tsds: Teuds: Ty ds=dt: duy E: dvy/G,

in whichdu, dv are the increments im v that correspond to the new elemdnt It will
then follow that:
Tau= Tsﬁg—‘t‘, Tov= Tsﬁ%,

and therefore if one substitutes that in formulag (hén one will get:

ou_,du Jdu
S Ae _A__/j_!
ot 0s Js
ov ov du
S U—V—.
ot 0s s

(V')

If one recalls that any pair of derivatives (such%e?s and % for example) will

satisfy the relation:

2 2
(20) E Ll +2F%@+G(@j =1,
ot ot ot ot

by virtue of equations (1), then one will see that if the directiens given then the
preceding formulas (1Y will define the absolute valu& ds and the direction of the
tension on the elemedts which is understood in the sense that was agreed upoa in th
preceding 8. However, since equations (10), which mustverterin the determination

L v . : :
of the derlvatlvesg—Ltj, % will remain unaltered when one changesto —t (i.e., when

one inverts the direction of the elemetty, that will yield an opportunity to remove the
restriction thafTs must always represent the absolute value of theryrigasion, and to
allow Ts to take one or the other sign indifferently. Sincengiagt into —t andTs into
—Ts will leave formulas (IV) unaltered, that would be equivalent to agreeing that a
tensionTs in the directiort is equivalent to a tensionTs in the direction +, and that is
the usual convention in mechanics.

If one eliminatedTs from the two equations ('Y then one will find the fundamental
relation:

(11) 0,

du du (6u6v 6u6vj OVvo\ _
V———U| ——+—— [+ ] —— =
0s ot 0sot 0dtads 0 s0 1
which establishes the necessary dependency between ¢otodirof an arbitrary line
element and that of the tension to which it is subje&s one sees, that dependency is
reciprocQI, since if one traces out the system @slinarbitrarily then it will always be
possible () to associate another system of linesich that the tension at any point of the

() Except in a case that will be discussed below.
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surface on the element of the linewill be directed along the ling and conversely the

tension on the element of the limevill be directed along the line. The characteristic

property of such associated systems is that the fungticemains identically zero for

them. In general, annulling at a point of the surface will indicate that the linesndv

are mutually conjugate at that point, in the sensewhatdefined by equations (11).
One deduces from formulas ()\hat:

ov odu Ju
T A—-u— |[+(Av-1*)— =0,
S( ot ”atj ( ”)as
ov du ov
T,| y—-v— |+(Av-1#)—=0.
S(”at atj V=45

However, due to the reciprocity of the directient (IV') will also give:

Tau_)lav_ ou

tg_ a /ja,
Tﬁ: ’u%—v%
‘0s ot ot

in which T; is the unit tension on the elemaitf which will be positive or negative
according to whether its direction agrees with tifads or is opposite to it, resp. It then
results that the tensiong , T; on two conjugate line elements will be coupledthg
relation:

(11) TsTi+Av—1F =0,

and we have already encountered a special cabatdht81.

The infinitude of pairs of conjugate directisandt at one of the points of the surface
form (11) a quadratic involution whose unit elenseate given by the equation:

ou)’ Jduov v\’
11 QU)o 0U0V 4OV _
(11) V(asj Hasos (asj

These elements are real, coincident, or imaginecgraing to whether one has:
Av—1£<0, =0, >0,
resp. In the first case, each of those elemergshiect to only tangential tension €

i.e., to a tension that acts in the sense of tleahent — and the value of that tension is
given (11) by:

() When that case is verified at any poinigptthere will exist an infinitude of lines that are sabje
only tangential tensions, and therefore ones that@mgigate to themselvest will then be impossible to
associate the system of those lines with a secotensytiat is distinct from it and its conjugate. Fot,tha
one should refer to the exception that was pointed obikiprevious note.
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T2+ Av—yF = 0.

In the second case — i.e., when the two unit elememtside in one — the corresponding
tension will bezera Conversely, those unit elements, when they exidt beithe only
ones that are free of tension, sinceTg# 0O, the two equations (IYwill not be mutually
consistent unless they are subject to the conditiahth — 1# = 0, and when that is
satisfied, they will define the same direction as &qoa (11) .

A pair of orthogonal elements will always exist &ty quadratic involution. Hence,
for any point of the surface, there will be two mutuglgrpendicular line elements, and
each of them will be subject to normal tension.

In order to determine the directions of thgssncipal elementsand the tensions to
which they are subject, observe that the two direst® andt must be mutually
perpendicular for them, so one will have:

gL Vo0 Lu cav ou
as 0s ot as Js ot

on the basis of equations (8), and formulas)(Mll give:

T (E%+ Favj H(,uﬂl—vﬂjj,

(12) 0s Js s 05
T(F@+Gavj (yﬂ‘ )la"j
0s 0s 0s 05

If one recalls what was said in regard to the relati(8) then it will be clear that the
principal tension Twill prove to be positive when it is directed towarts interior of
the region where it comes from. If one eliminatedrom the two equations (12) then
one will have:

T LG
0s 0s s  0s s 0 0s 0

However, if one eliminates the derivativeaupf then one will have:
(E Ts+HY) (GTs + HA) — F Ts— Hw)® = 0.

One can give the first of these two equations the:for



Beltrami — On the equilibrium of flexible, inextensilderfaces

24

(&) 5o (34

0s 0sds \0

(12)a A 7, v [=0,
G -F E

and give the form:

12) T2+ E“ZE””LG"TS +Av—12=0

to the second of them.
The solutions to these two equations are always liea¢ the expression:

(EA = GV? + 4 Eu + FY)(FA + Gp),
as well as the other one:
(EA+ 2Fu+GV? - 4H? (Av—u?),

are equivalent to the single one:

(EFA+2EGu+ FQ/)>+ H*(EA - @)?
EG ’

(12)

which cannot become negative.
In addition, equations (12pffectively define two orthogonal directions, ®n€ one
calls the arc lengths that correspond to tiserst then one will have:

A v

05 0¢ (0408 053’9 0'D "

6uﬂ,(6u 6v+6u6\3,y6 v_
0s08 050"

F G||c E

E F
v -ul’
from the aforementioned equations, and it willdellfrom this that:

VO V_

a'd "

ou du (6u ov 6u6\g
——+F|——+—— |+
0s 0¢ 0s08 050"

which is a relation that expresses precisely thigogonality of the arc lengtls§ s’ at the
point (U, v).
The two principal tensionEs, Ts-that are defined by equation (3pyove to be equal
to each other when one has (12)
EFA+2EGu+FGv=0, EA-Gr=0;
le.

(12) Aru:v=G:-F:E.
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In that case, equation (L2)ill become an identity, andny line element that emanates
from the point at which the relations (32re verified will then be subject tmrmal and
constanttensions. Indeed, equation (18jves:

Te=Ts = =—Ff=-__
ST G TF E
and equations (1Y will become (8):
Tsa_u: Ts’%’ TS@: Ts’ﬂ’
ot on ot on
SO:
t = n, Ts = Ts’ .

When the proportionality (12)s verified at any point of;, one will get back to the
hypotheses that have been mentioned many times of indiignsaccording to
LAGRANGE, which are inferred from that proportionalgsecisely [see formulas (B3at
the end of 8l]. That is to say, under those hypotheses, the temslbalways be normal
to the element and constant for one point of the serf@onversely, when the tension
obeys that law, equilibrium will demand only the inedibility of the surface element.

Let:

_ T 6x T, 0x

= JEu JGov
= T 9y T, 0y
(au NG
_T 62 T, 0z

\/76u\/76v

If one projects the tension onto the directisasdn then one will have:

ou ov T ou ov
E—+F— [+ F—+G— |,
( ds asj \/E( ds asj

TS S~

JE

ou ov T Ju ov
Ton= 2% | E—+F— [+ F—+G—
" \/E[ on anj \/E( an anj

(JerTen)

When one substitutes the values (V) in this, onedatluce that:
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2 2
T.,=-H V(a_uj —Zy%ﬂu)l(ﬂg ,
0s 0s0s 0

ou)’ duav (av\

(13) (Ej 3s0's (a—J
T,=-| A Y7, vV

G -F E

In these expressions, one has a confirmation, alahffesient path, of the fact that the
equations (11), (12)define the directions of the line elements that algest to only
tangential tension or only to normal tension, respeltiv

Suppose that line elements at a painw) on the surface that are directed alorand
alongv are principal elements. That will imply the two ctiashs ¢z = 0, F = O for that
point. Inthat case, the equations that precede (IVpwe:

T, G=-0a % T, E=-c12,
on on
or (u:
Ju ov
T, =—T E, T, =—T.,JG.
0 on V”\/7 on

The Ty, Tw Will then be the principal tensions. One deduces freamtthat:

To T
T—2+F— l,

and if one then draws the ellipse in the tangent plare, & that has its center at that
point and its semi-axeB,,, Ty directed alongi andv, respectively, then the magnitude
of any semi-diameter of that ellipse will represem ténsion that is directed along that
semi-diameter. That ellipse will not teach onedimection of the element to which that
tension belongs in a simple way. That direction igrefd from equation (11), which

will become:

ou 6u+ GT ovov_

ET VU 3 A .
0sot

W A~ A O’
0s ot

in the present case, or also:
Tsu Tuv COS 6U) + Tgy Tyu cOS 6V) = 0.

It results from the first of equations (13) that in orfike the normal componeitt, to
never be negative, one must have:

A<0, v<0, Av—1£=0.
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Those conditions are necessairy,general since the internal tensions counteract the
inextensibility of the surface. However, if its contagifixed, totally or partially, then
the tensions can also become negative without pertutba equilibrium. That must be
examined in each particular case, moreover.

§ 8. Noteworthy first case of equilibrium

One deduces from formulas {2hat:

I(GE-2FF+EK) = Z(G%_ Faxjaax+2(5%_ Faxjacfx

du  av)ou v au/av’
or
GIOE-2FJ0F+ EOG
2H
(e pdx ) (gox_gox
== U 0Vgy|+ | _0v  dugsy
ou H ov H
S (e ) [g0X_ pox
“yox] 2| Tou_av|, 9] Tov__ou
ou H ov H
Now the expression:
0p_0¢ 0p_ 09
G-r-F——= —~L-F—=
1J0)"ou ov|, 9] "av  au
H |du H ov H

is what | have been referring to for quite someetif) by the name of “second
differential parameter” of the functiog (u, v) and denoted by the symbfy} @ | have
shown (), in addition, that fog=x, y, z, one will have the formulas:

R o !

() “Ricerche di analisi applicata alla geometria,” @ade di BATTAGLINI 2 (1864).
(") “Sulla teoria generale delle superficie d’area mininMgmorie dell’ Accademia di Bologna (2)
(1868).
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in which Ry, R, are the two principal radii of curvature of the surfacéha point @, v),
which are considered to be positive or negative accoringghether their directions
[from the respective center of curvature to the paint)] agree with that of the normal
w or not. Therefore, if one sets:

for brevity — i.e., if one leth / 2 denote thenean curvatur®f the surface — then one will
have:
GOE-2FJF+ EOG

2H
1 0 gﬁ‘FZC 0 EZC_FZL(
=h(a X+ + 5z+—§ — | 2 PV |+—| 2L Y%
( Foy+ya) H ou H ov H

When that equality is multiplied o and integrated over an arbitrary piezef the
surface considered, it will give (with the usualrtsformations):

do= j(a5x+ﬁ5y+ ydd har

 (GIE-2FJF+ EJG
E.[ H2

—j (Ea—u+ Fa—VjZ(G%— F%jdx{ F@+ GQJZ( Ea—x— Fa—ﬂd _s’
on  an ou dv on on ou dv H
or more simply, by virtue of formulas (6), (7)

_jhdwda+j(%5U+%5\?j dsr1 | GOE-2 E‘zFJ’ BOG 4 -0

Now that equation will have the general tygg iflone sets:

U =0, V =0, W=ph,
(14) U, =-pEL, v,=-p/G L, w=o,
on on
A:—E’ /j:p_F’ V:—p—E’
H H H

in which p is a constant factor. However, that equation bdlsatisfied identically for
any system of values for the variatiods dv, dw : Hence, the system (14) of forceés (
V, W) and (s, Vs) that maintains equilibrium in the piece of thefaoe over which the
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integration is extended will generate tensions whosgesawill result from the general
formulas when one gives the values (14)tq, v.

The forces that are applied at the various pointh@fsurface are normal to it and
proportional to the local mean curvature in the casgoilibrium.

The forces that are applied along the contour havedhstantintensity o and are
directed in the opposite senserndgsince the factop is supposed to be positive) — i.e.,
along the external normal to that surface.

In addition, equation (11) becomes the condition for ¢hmthogonality of the
directionss, t : Hence, any line element is subject to only normaditem and that tension
will be same at any point and equal to the one that fgealang the contour. The first
part of that property depends upon the fact that the preakms of the quantitiey y, v
satisfy the conditions (8), so the inextensibility can be interpreted in the Lagjem
sense in that equilibrium case.

We then have the following theorem:

Any piece of a flexible, inextensible surface is maintained in bgui by a
constant tension that is normal to the contour and a normal force over tine snface
that is proportional to the local mean curvature. The constant tension icotiteur is
transmitted equably to any point of the surface.

Among the special cases that are worthy of note, wa pat thesurfaces otonstant
mean curvaturefor which the normal force to the surface is evdrgme constant, like
the tension on the contour, and that of the surfédaaimmum area, for which one has
the theorem:

An arbitrary piece of a surface of minimum area that is subjectedrstant tensions
that are normal along the contour will always be equilibrium and will predemisame
tension at any point and in any directipi

If the values (14) of the quantitiés V, W, A, 4, v are substituted in equations (lII)
then the first two of them [while being mindful of thelations (4)] will be satisfied
identically, and the third one will reproduce the known esgice:

_AG-2BF+CE
2H?

h_
2

for the mean curvature.

8 9. Noteworthy second case of equilibrium

Let us preface our discussion with a lemma.
From the expressions:

() That equilibrium case was known already to POISSOtiénpaper that was cited in the beginning
of this one. POISSON had also considered the moreaerase (which will be discussed i@, but in a
very incomplete way. Moreover, the fundamental equattatshte started with are not exact, and will not
give rise to correct applications unless one compesdat the errors in some way.
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ox oa B=- axaa__zaxaa C= oxoa

ovou’ ov oV’

ou ou’ ou ov

which are equivalent to (4) one will easily deduce the following equalities:

O _gx
ou dv_ [),6_1/_ y%
H ov ~ ov’
1) 0Xx
A -B=
v ou_ y%—ﬁa_y
H ou ov’
and one will infer from this that:
1) 0x 0X X
9] %au""av |, 0] "oy Pau - o2y %)
ou H ov H oudv oOvou)

One will get two analogous formulas by permutingith y andz, anda with S and y.
Now, one deduces three relations from the two itlest

oa 0B dy oa 0B 0y _
a—+p[B-+y—~L =0, a—+[3-+y—~L=0,
ou 'Bau yau ov 'Bav yav

the first of which is:
B9y 0By _

Da,
duodv odvau

in whichD is a factor that is common to all three of themq @ order to make” + 32 +
y? =1, it will be represented by:

a B vy
du du adu
da 08 9y

ov o0v o0v

However, one will obviously have:
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a By
H= % ﬂ 6_2 ,

du Jdu OJu

x oy 0z

ov ov o0v
so one will have:

HD =AC - B,

and therefore:

D =Hk,

in whichk is themeasure of the curvatyraccording to GAUSS.
It then results that if one introduces the symbol:

00_g00) [ 30_ 509
Dw:i O] "au ov|, 9| av_au
H |odu H ov H

for brevity, which is analogous, in a way, to thepin the preceding §, one will have the
new formulas:
[x = ZKa, Oy = P, Oz = 2&ky,

which can be compared to what was said in that 8.
Having said that, go back to formulas.(@hd deduce the following one:

LCE-BF+AL) =), (c%—s%j@&“@(_ B@‘j@ ,
du ov/) ou ov 0du/ ov

or, by virtue of the formulas that were proved jgtv:

COE-2BoF+ AOG

2H?
150 33‘53§ 0 Ag:_ Bgﬁ
=-2&k(ax+ +yd) + = OX |+ OX
( Foytya H ou H ov H

When that equality is multiplied o and integrated over an arbitrary piezef the
surface considered, with the usual transformatam$ making use of formulas (6), (7),
(8), that will give:



Beltrami — On the equilibrium of flexible, inextensilderfaces 32

[2kowdo+ | AU BV su- B2Ys V) ol
0s s 0s 0 H

do=0.

COE-2BoF+ AOG
.[ H?2

Now that equation will get back to the general typewhen one sets:

U =0, V =0, W = pk,
(15) US:——'O\/_( o ca—vj e G(Aa_“+ B@j w=0,
2H 9s Js 2H s 05
Azﬁ, /j:p_B, V:p_A\’
2H 2H 2H

in which pis a constant. On the other hand, the aforemaedi@quation will be satisfied
identically for any system of values for the vaaas A, dv, &z : Therefore, the system
(15) of forces (J, V, W) and {Us, Vs) that maintains the equilibrium in a piece of the
surface over which the integration is extended gelherate tensions whose values result
from the general formulas when one gives the valu&stoA, y, v.

The tensions thus-calculated will be:

Tsu—p\/_( ou Cavj To= - ,0\/_( ou Bavj

2H as 0s 2H as s

for an arbitrary line elements and it will result naturally that around the cmunt, they
will be equal and opposite to the external folde V). Equations (11) will become:
Audu, B(w_v 6_ua_vj LA
0s ot Jsdt 0tods 950 1

in this case and will coincide with the known r&las between the (Dupiniagpnjugate
tangentsof the surface, so the tension in any elementheiltirected along the conjugate
tangent to it. It will then follow that the lin@ghose elements are subject to only normal
tensions will be thdines of curvatureand that the lines whose elements are subject to
only tangential tensions will be tlaesymptotic lines.Formulas (13) will become:

2
Tg=-2 A(@j +28249Y, C(@j ,
2 0s 0s0s 0s
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& G
0s 0sds \0s
Tss= _% A B Cc |,
E F G
namely:
Y P
15 Ten = —, =
( )a sn 2& SS ZSS

in which 1 /Rs is the normal curvature of the arc lengthand 1 /S; is the geodetic
torsion of that arc length. When the directiontlod tensionTs is known, it will be
enough to know the first of these components irotd determine its magnitude.

We then have the following theorem:

An arbitrary piece of a flexible, inextensible swé is kept in equilibrium by a force
that is normal everywhere on the surface and propoal to the measure of local
curvature, and it will give a tension along the tmur that is directed along the
conjugate tangent to that contour and have a noramehponent that is proportional to
the normal curvature of the contour. The linesnofmal tension are the lines of
curvature of the surface, while those of tangergakion are the asymptotic lines of that

surface.

Among the particular cases that are worthy of nate recall the case of surfaces of
constant curvature, for which the normal force \&rgwhere constant, and that of
developable surfaces, for which that force is ewéigre zero, while the tensions along
the contour will be directed along the generators.

If the values (15) of the quantitieés V, W, A, 4, v are substituted in equations (I11)
then they will become:

a& 5B
H_°H ,AG-2BE+CE _,
ou ov H '
a A 5B
(15), H H+AG2—ZBF2+CE2:O
ov odu H
A(:sz:k-

The last of these formulas reproduces the knownesgmon for the measure of curvature.
The first two constitute the known differentialagbns between the quantitiés B, C,
which are relations that can present themselvestapeously when one seeks the values
of the four expressions:
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03x 03x 03x 03X
zaﬁ’ Zaauzav’ Zaauaxﬁ’ Zaa_va'

Indeed, if one differentiates the values (4) with respeal andv and substitutes the
derivatives in those expressions then one will find: tha

3
S 09X =9% AR, +BE,,
ou® adu
03x 0B 0A
a-2% =% AR +BF =24+ BE +CE,
2 aov ou ARirBR =T+ BEACE
®x  oC 0B
a =% AG, +BG, = +BF, +CF, |,
2 dudv:  ou 1+ BG =5, * BR+CR

0°x  oC
a—=—+BG; +CG,,
Z oV ov 1+ CG

which give the two relations:

a—C—@+AG1+B(Gz—F1)—CF2:0,
ou ov
a—A—E—AFl‘FB(El—Fz)'*'CEz:O,
ov adu

which coincide with the first two equations in (5py virtue of formulas (4).

8 10. An outline of some other cases of equilibrium

If one combines the two cases of equilibrium thateniscussed in the preceding two
88 then one will immediately obtain a third one in whitie force that is applied
normally to the surface is given by:
W=p h+ oKk,

in which o1 and p, are two constants, and in which the force that idiegh@long the
contour will likewise prove to be the sum of the homgmlus components that relate to
the first and second case, when one chamgedgo o, for those of the first one and
changew into p, for those of the second.

However, with respect to the possibility of deducing mases of equilibrium from
the cases that are known already, it is good to makielibe/ing general observation:

Suppose that one has already determined the funcliops v for given external
forces U, V, W) and (s, Vs, W), and then set:
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A= pA, U= pu, V'=pv,

in which pis a function oti andv. If one setsl’, i, v’ in place ofA, i, vandU’, V', W’
in place ofU, V, Win equations (Ill) then one will find that:

U':E(/]a_p.{-’ua_pj.{-pu,

H ou ov
(16) V'=E(Aa—p+va—pj+pv,
H ou ov
W' = pW,

and if one putdJ_, V., W, in place ofUs, Vs, Ws in (11l) s then one will find that:
(16) U.=pUs, V.=pVs, W, =0.

It will result from this that the problem of equilibnuwith respect to the new forcds |
V', W), (U, V., W,) can be solved by the functioAs u/, v’.

Suppose, for example, that the quantideg:, v are the ones that correspond to the
first equilibrium case (8), when the constant is equal to unity; in that case, one will
have:

)I’:—ﬁ ’ 'O—F Vv o=-—.
H

’ /J:_

Those values are the most general ones possible gomditipliersA, 4, v) when the
inextensibility is intended in the Lagrangian sense. Assarthogonal coordinates, for
simplicity, setF = 0, and thereforg = 0, as well. It will result from (16) that:

u=-92 =92 \Ww=pn

and one will then get a new case of equilibrium thanasurally valid under the
hypotheses of purely-superficial inextensibility, and themeefalso under that of linear
inextensibility. In that equilibrium case, other thdwe thormal forceoh, a tangential
force with potentiajp will intervene, while the force that acts along tle@tour will also
be normal to it, but vary from point to point like thpattential.

If the surfaceo is part of one of the external level surfaces thédteeto the
Newtonian potentialll then the LAPLACE equation will translate into theokm
relation:

2
0Tl +h6|‘|

_ :0
ow’  ow
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for points on that surface. If one therefore sets:

then one will have:

L L A ]
0s, \ 0w 0s, \ O0w ow\ ow

and one will then conclude the following theorem:

Any portiono of an external level surface that relates to a téewvan potentiallT,
when considered as a flexible, inextensible surftsfcdensity= 1 can be maintained in
equilibrium by a force that is due to the potentll / 0w and a force that is normal to
the contour and equal in value to that potenti@he tension in any internal line element
will always be normal to it, and its magnitude vib# represented by that potentgll /
ow .

If the surface considered is imagined to be a fluid {dee above, in the foreword)
then the pressure in that fluid will bedl / ow.

8 11. On various special formsfor the equations of equilibrium

When the system of curvilinear coordinateandv is supposed to beblique the
only special case that is worthy of note is the one irclwthe liness and the liney are
mutually conjugate with respect to the tension — i.ewhich the quantity is zero at
any point of the surface (§. Under that hypothesis, when one recallg (3quations
(1) will become:

0 ox |G| 0 ox | E

HX==-—|T,—.,[—= |-——| T,—
ou JouY E)] ov 0ovy G

0 (1 oy [G)_a(; oy [E

oul “ouV E] ovl "oV G

z=- 2192 [C) 0 Tua_zf_E,
ou JouY E)] ov 0ovy G

in which, for the sake of convenienck, is written in place ofl,, and T, is written in
place ofT,, in order to makd,,=T,, = 0.
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These equations agree with the ones that BRIOSCHgikiaa incidentally in note 1
of his paper “Intorno ad alcuni punti della teoria delleestipie” (). Under the same
hypotheses, after some convenient reductions, equatibhsvi{l take the second form
that the author in question gave to the preceding equatichs.we have already
cautioned to begin with, they can be usefully invoked anthe case in which a system
of lines that are mutually-conjugate with respect to éimsion is knowm priori.

The most obvious (and always legitimate) simplifizatis then one that one gets by
supposing that the linasandv are orthogonal. Under those hypotheses, equations (lI)
will suffer no alteration, but (lll) can be easilyndch entirely developed with the
intervention of only the functiors, G, since equations (4ivill give:

E:ia\/E 1 af __JGa/c
! JE ou ’ \/E ’ E ou '
_ JEOJE _ 194G _ 196G

E,=-Y_— . Fo=— . Gy —

G ov JG au G ov

for F = 0. By virtue of these equalities, equation (@ill initially become:

uo 1)1 OAME)  op 26\/_ J_GaJ_G
_\/E{\/E u_ oy \/E v “TTE au }

yo 11 0WyG) ou, 2 aJ_ \/_Ea\/_E
_\/E{\/E v au \/E au G dv }

W= L(A)l + 2Bu + Cv).

JEG

If one substitutes the values {® place ofA, u, v, writesT, in place ofT,,, Ty In
place ofT,,, T in place ofT,, =T\, and sets:

JEdu=ds, JGdv=ds,

then one will get:

9T _oT, 2 aJ_ 1 aJ_ 1),
Jdu

c’)sV asﬁ EG 0v /G

() Annali di TORTOLINI, 1852.



Beltrami — On the equilibrium of flexible, inextensilderfaces 38

T _aT, 20\/_ 16\/_ 0

ds, 05 \/EG ou \/EG ov

w=- | AL, 28T  CT,
\/EG G

Finally, if one recalls that if:

denote the normal and tangential (namely, geodeticyatures of the linesa andyv,
respectively, then one will have:

E  -._G o E _ JEG oG _ JEG
R’ R’ ov r, ou r,

A=-

and that the quantity:
_ B
J EG

is the geodetic torsion of the lime(which is equal and opposite in sign to that ef lihe
V) then one can give the following form to the pding equations:

nlr

_oT o1, 2T T,-T,
o5, 9y, K
_oT T, 2T T-T,
o, 9 L,

These are (if one abstracts from the differenceaigm, which is due to differing
conventions) the equations of equilibrium that weyeen for the first time by
LECORNU, which are equations in which, as one seesgstrictive hypothesis is made
upon the choice of the orthogonal linesndyv ; i.e., no relation between the course of
those lines and the distribution of the tensionassumed priori, so they are perfectly
general.

If one assumes that the orthogonal lineendv are those of normal tension then one
must sefl = 0, and the preceding equations will become:
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U :_GTV+TU—TV’
o5,
0s, r
W:L+L,
R R

under that hypothesis. These equations coincide withriée ia the article that was cited
before that BRIOSCHI had deduced from the equationsatbet referred to above in the
case of orthogonality. They are usefully applicablall cases (which are certainly not
infrequent) in which the nature of the question will irdecthe disposition of the lines of
normal tensiora priori.

Finally, if one supposes that one of the two systenimed of normal tensions — for
example, that of the lines— is composed geodetic lines (which obviously can happen
only in special cases) then one mustrset o, and one will obtain the MOSSOTTI
equations from the preceding:

The equations that POISSON gave (on pp. 179 of the cited)gagperot be deduced
from the general equations in any way, since they aredbapon the inadmissible
hypothesis ofunequal normaltensions acting upon elements that abéique to each
other, in general. It is only in the case of equalittheftensions that those equations will
become the translation of the LAGRANGE hypothesis.

CISA DE GRESY obtained the same thing for equations with tensions in the
paper that was cited above, but under hypotheses thanaewery plausible, and quite
artificial, in any case; his equations led back to thaSBOISSON. CISA DE GRESY
did not know how to derive the maximum benefit fromtstgrfrom the considerations
(which were justified, for the most part) that one reimdihe foreword to his work. In
particular, he observed therein that “in order to get argéselution of the problem of
surfaces in equilibrium, one must be ableekpress the inextensibility of the surface in
the calculations in a general manner That general manner of expressing the
inextensibility consists simply of imposing the condifiof2), which is an observation
that might now seem quite obvious, but which is, in tgaé long way from being the
first one that GAUSS's doctrine made known.



Beltrami — On the equilibrium of flexible, inextensilderfaces 40

8§ 12. On theinfinitesmal deformation of a flexible, inextensible surface

The conditions (2) of inextensibility translate inte following equations:

E@+ F@+%5E: MW
ou oau
(17) E65u+F(65u+65vj+665v+m::285w
ov Ju 0V Jdu
F@+G@+%5G:C5w
ov ov

by virtue of formulas (7).

Other equations that are entirely equivalent esé¢hcan be obtained from formulas
(7)c by settingde = oF = G = 0.

First of all, we would like to show how the threguations (17) can be summarized in
just one supremely simple formula.

To that end, observe that by the definitions of tfariationsdu, ov (8 5), the
guantitiesu + Au, v + ov will be the coordinates of the point at which treinal surface
s is met by the normak that passes through the point in space to whielpthnt (1, v)
will be transported when the surface suffers amitely-small deformation. However,
those same variationdl, ov can also be considered from another standpo@t,as the
increments that the variablasandv receive when the pointi(v) changes positioan the
original surface by passing to the position that is occupied by fbet of the
aforementioned normal. When considered from tleisosd standpoint, denote the
variations bydu anddv and notice immediately that in order to performtthisplacement
on the surface, the quantities F, G will have to take the increments that were already
denoted bydE, &, &G in equations (17) when referred to the point tlatlisplaced.
Having said that, if one letdy, dv denote othearbitrary increments of the variablesv
and one sums the aforementioned equations, aftémchanultiplied them byd'?, du dy
d\4, then one will get:

(E du+F dv) ddi + (F du+ G dV) dov +1 (E duf + 2FF du dv+ &G dV)
= (A duf + 2B du dv+ C dvf) dw .
However, from the significance of the symbdls dv, one has:
dau=au,  dov=dy,
so the last equation will be equivalent to theoiwihg one:
15(E df + 2F du dv+ G dV’) = (A dUf + 2B du dv+ C dV’) ow;

hence, from formulas (1) (4}, one will finally have:
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(17) s, ow_ g
dx R

That very simple formula’), which is easy to interpret geometrically, subsunikes a
three equations (17). Indeed, is it obvious that when enrms the transformation
again in the opposite sense and observes that theiaredtthe elements (viz., the
value of the ratiadu : dv) is arbitrary, it will again resolve into three eqoas, namely,

(2).

JELLETT already considered some relations that weaégous to (17), and one can
basically confer his interesting paper “On the propertésnextensible surfaces,”
Transactions of the Royal Irish Acader®y (1853), 343-377. That author’s equations
(B) correspond precisely to equations (17), just as his equdt@)nsorrespond to the
ones that result from formulas {7)except that JELLETT assumed Cartesian coordinates
X, Yy, in place of our variablasandyv, so the verification of that correspondence cannot be
achieved by a simple substitution, but will require someeats. Indeed, supposing that
u =x, v=y will not exactly imply that the variationd, ov can be identified witld, dy
with no further discussion, and in fact, equations (6l give:

XK=+ adw, =+ [w, Z=pa+qd+ydw,
under those hypotheses, in whighk 0z /0x, g =0z/0x. One will then observe that if:
E=1+p?> F=pq, G=1+q
then the first equation (17) will become:

0du, 0(pdu+ g3y _ op

y oW,
0Xx oXx 0x
namely:
0(0x—a ow) + pa(éx—yJV\) _ @ yan,
0x oX 0Xx
or also:
65x+ paéz: Jl(a+ py)ow
ox X ox '
However, one hag + py= 0, so:
ox X ’

and one similarly gets:

() In order to make the significance of this formulapeacise as possible, ldg be the line element
that corresponds ts on the deformed surface — i.e., the elementdli converted into (such thds =
ds). Projectds normally to the original surface (by means of the liv) and letds' be the projected
element. The symbals will then represent the differendd’ —ds
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00X 00y K6 00z, 6 00z_
+ +p +q =

01
dy  0Ox oy 0x

00y , 00z _ 0

27 g ==

oy oy

from the other two equations (17). These are JELLETHIee equationsA), whose

direct proof is naturally simpler.
LECORNU also gave three equations that were analogdts fareceding one at the
end of his Chap. I, but in a different form. In ordeotdain his formulas, one needs to

make use of the relations:

cosH:L sinB:L
JEG’ JEG’

which defines the angle between the linesdv, along with:

F F

00— 0——
dJE_H,  JE dyG_H_ G
ov r, ou ou r, ov

u

which define the tangential curvatures of those linesnéf sets:

JEA=&,, JG =&,

in addition, then equations (17) will be easily transfed into the following ones:

99s, +—655V cosg+ 199 0s, Sing= —A5W,
05, 0s [ 0% E

6531+655V+ 65$J+65§ cosh— ﬁ+65§ sirg= 2Bow
0s, 03 \0ds 95§ |

99s, +—655“ cose{l—%j 0s, sing= Cow 5W.
o5, 0s [ 0% G

When the linesi andv are mutually-orthogonal, those equations will become:

00s, + o0 _ Adw
ds, I, E ’
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00s, +65§,_5§_65§: 2Bow
d, 0s  r, .JEG'

00s, +5§, _Cow
ds, G '’

\

and these coincide with the ones in LECORNU excepthdifference in symbols.
When one must operate on equations (17), it is good to kemmah some second

relations that are consequences of them and whichesmileédo ease the calculations. We

cite only two of them, due to their special importan€ée first one is the following one:

d(H du) , (H oY)

+Hh ow=0,
ou ov

which one deduces immediately from equation (7)The second one, which requires a
bit more artifice, is this one:
0k —hk ow + O(ow) = 0.

The symbold, k, O are the ones that were adopted already i8,88 The last relation
will serve, for example, to verify the invariability tfe measure of curvatuke since if

one looks for the variation of that quantity as a tesdilan arbitrary infinitesimal

deformation () then one will find precisely:

& = 0k — hk aw + 0(Aw).

That verification can be achieved more expediently BYLETT’'s simple formulas.
However, the too-special choice of the independenablas will make those formulas
less adapted to other applications, such as, for exatia@ ones that we have in mind in
the present article.

() le., itis not constrained by the conditions (2).



