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in spaces of constant curvature

By Eugenio Beltrami

Translated by D. H. Delphenich

| shall take the expression for the square of thediement in the known form:

ds® _ dx’ +dx; +---+dx?
1) R2 - NG '
in whichxy, X, ..., X, are thdinear coordinates of an arbitrary pointnrspace (i.e., such
that each line is represented oy 1 equations of degree onB)js the constant pseudo-
spherical radius, andis an extra variable that is defined by the equation:

(2) XX+ X2+ x2= @

in whicha is a bounded constant.

| shall now consider a continuous system of pointket &, dx,, ..., &, denote the
infinitely-small variations of the coordinates;, x,, ..., X, of one of those points as a
result of an arbitrary elementary displacement, ahdxlelenote the variation that ensues
for x, and | would like to seek an expression of a converiggnt for the variationgxds
that the distancds between two contiguous points of the system experiences

One infers from equation (1), when written in this manne

w5z

that:
dsdds_dx s, 5 A% 50
R X X X X
as a result of the identity:
O g% X
X X X

the latter can also be written in the form:
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dsods _ dx . dx dx | X dx (xr dxj
= X P g5l + 5 P 5 A X
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However, one also has:

zd_xr 5(&%} =

X X

szXr 5(&%} = d_;(ZdTXrgﬁ_%a'% ,

X OX X dX < X dx
— ) —LO0—+L+0— :
xz X X 2 x?
namely, from (2):

X X X X X
SO
dstds: zd_xr(d(yi.;.%(yﬁj,
R X X X X
hence:
3) s = 4 ( 5ij
N ds X

That is the form that one agrees to give to the sgpa fordds.

Due to its generality, that formula can serve aslasis for the search for the
fundamental equations of kinematics of systems ofab#eiform. However, for the
moment, | shall confine myself to the considerationigitl systems, so | will sedds = 0,
which will give the following necessary and sufficienhdition for a displacement to not
be accompanied by a deformation:

(4) S dx, d(xé%jz 0.

It now comes down inferring the most general valuesi®@fariationsdx;, o, ..., &, as
functions of the coordinates, Xy, ..., X, from that equation.
First set:

Xr:xéi r=1,2,..n).
X

One sees that, by virtue of equation (4), thenknown functionsXy, X, ..., X, must
satisfy the identity:
(r=12...,n)

X, 2,
Zzs:axs B & { (s=1,2,...n),

which demands that one must have:
(5) X g
ox, Ox
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for all values of the indicesands, whether they are equal or unequal. One infers from

this equation that:
0 (0X 0 [0X.] _
R Pl S S 1 =0
ox,\ 0x ) ox | ox

for any third index, namely, due to the same equation (5), when applidtetmtlices,

t ands, t in succession:
0 (%), 0 (X)) _q
X\ OX. ) Ox | 0X

%X,
OX, 0X,

or finally:

Sincer, s, t are three arbitrary indices here (equal or unequal) fhrenseries 1, 2, ...,
n, one will see from the last formula that théunctionsXi, X, ..., X, have all of their
second derivatives equal to zero. They are then netgsdahe linear form:
Xr=C +Cy Xg+Coxr X2+ ... +Cor X,
in which the quantities, , as well as the;s, are constants with respect to the coordinates

(and functions of time, in general); however, sirfee functionsX must further satisfy the
original conditions (5), the quantities are not absolutely arbitrary. One must have:

(6) Crs+Csr:0

for all values (equal or unequal) of the indicesds.
If those conditions are assumed to have been sdtibia one will have:

X2 = 0t D16 X,

from which, one will infer that:
XK =G+ .G X +56x, r=1,2 ..n
i X
Multiplying this by x, and summing over, while keeping equations (2) and (6) in
mind, one will find that:

X
d(:_gzcr X

which is a value that will finally give:
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) G =t 36X~ 26X

forr =1, 2, ...,nwhen it is substituted in the preceding formula. @nest complete
thesen expressions with the one foix:

-_X
(8) X = azZq)g'

Then equations (7) are the fundamental differential forsf&nalogous to those of
Euler) of the kinematics of solid bodies in mispace of constant curvature. Tinén +
1) / 2 arbitrary quantities, andc,s, which one must consider, generally speaking, to be
arbitrary functions of time, multiplied by dt (viz., the infinitely-small duration of the
elementary displacement), are the analogues of theosmponents of the translation and
rotation in the usual theory.

One can infer a very important consequence from thelemnentary equation (8),
which is necessary adjunct to formulas (7). Indeedgstlts that for all points of the
limit (n — 1)-space = 0 (which is supposed to be linked with the solid systeng,will
haveox = 0. That is, that those points do not leave that {)-space, or (what amounts
to the same thing) that the space is displaced withelf,itehile remaining invariable
with respect to then-space that is being considered. That property, whiatnig a
corollary to the invariability that one supposes for khe element here, will, on the
contrary, become the definition of tggecial homographic transformation that one calls
a motion of the invariable system when the geometric of spaces of constant curvature is
imagined, as Cayley and Klein did, to be a general progdtieory; the projective
conception of distance is the key to that identity, whishadmirable, as well as
fundamental.

Letus, W, ..., Uy denote the coordinates of a point (or pole), while theali equation
N Xg, X2, <oy Xn:

(9) Up Xo+ Up Xo + ...+ Up X = &°

represents what one can call the-(1)-plane that is polar to that point with respec¢hto
limit spacex = 0. If the point ) is real then | would like to call interior to x = 0, while
the plane (9) is ideal — i.eexterior to x = 0. On the contrary, the poini)(is ideal and
the plane (9) is real; i.e., it possesses a simpiyrected region that is indefinite in every
sense that is interior to= 0. Moreover, since equation (9) can represent atrampn-
1)-plane, one can also define the coefficiantsu,, ..., u,on the left-hand side of that
equation to be the (tangential) coordinates ofren {)-plane. Now, if one considers the
limit locusx = 0 and the arbitrary plane (9) to be invariably couplett @ach other then
the pole () of the plane will also itself become invariably ctagto the locus = 0, and
since that locus can only slide along itself when it reake part of an invariable system
that moves im-space, it will be obvious that the pold (tself must displace with the
system, and as a result that the variatidns du,, ..., du, of the tangential coordinates of
an ( — 1)-plane that makes up part of an invariable system the¢srian-space will be
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functions ofuy, Uy, ..., U, with the same form that th&q, ox,, ..., &, have with respect
to theX]_, X2, ...
That conclusion can be verified directly by inferringm equation (9) that:

2 U O +2XX Ay =0,
namely:

2C U+ 2iCrU X —2C U+ X A =0,
or rather:

2r(dr—2icGrui—C) % +2icu=0.

The relation that this formula establishes betweenxthe, ..., X, obviously cannot
differ from the one (9) that one started from; onktiven have:

2 =0,

5ur_cr_zic|r ui + iC|ui
u, a

SO
u
(7) djf:cf"'Z-Cwui_a_rz G U

forr =1, 2, ...n. Thesen formulas are perfectly similar to formulas (7).

If there is some pointx{, X, ..., X,) that remains immobile during the elementary
motion of the invariable system then the variatidrs o, ..., &, of its coordinates
must all be = 0 at the instant considered, and therefoeewill also havex dx = 0 for
that same point ; i.eq = 0, if one supposes that the point is not found oninhie = O.
Now, due to (8), those conditicr™ 0, ox = 0 will give:

2.Cix=0,
and as a result, the conditiods = 0 give, in turn:
(10) Gr+2CrX =0, r=1,2,...n,

which are equations that imply the preceding one.
When there exists a system of values ofxheq, ..., X, that satisfies these linear

equations there will be a point (which will be real oridgccording to whethex? + x2 +

.+ X2 is <or >a?, resp.) that possesses the character dhsiantaneous center of

rotation, and whose polan(-— 1)-plane with respect to= 0 is aninstantaneous glide (n
— 1)-plane (which will be ideal or real according to whether theepwsl real or ideal,
resp.).

Now, due to (6), the determinant:

2+ C11C22 ... Cmn
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of equations (10) will be equal to zero or a positive gtyaiiat is generally non-zero
according to whether the numbeis odd or even, resp. Therefore:

Whenn is even there will always exist either a real insta@bais center of rotation or
a real instantaneous glida £ 1)-plane in am-space of constant curvature for each
(completely general) elementary motion of the rigistegn.

Whenn is odd there will never exist, in general, either a@eaf rotation or a glide
(n = 1)-plane in am-space of constant curvature. However, if the mososuch that it
has an instantaneous center [or instantaneoddlf-plane] then it will have an infinitude
of them that will form a line or pencil.

For the moment, | shall stop with these conclusioinan absolutely-general nature
whose development and discussion has led me quiteandmeover. | shall add simply the
remark that the fundamental theorems of ordinary kinematiready provide us with
some special examples of the preceding general propertiekeed, it teaches us that
there always exists an instantaneous center of motitimeiplane, while there will not
generally exist an analogous pointthmee-dimensional space, or if it does exists then
there will be an infinitude of them that lie along eaght line. On the contrary, there
will always exist an instantaneous line in that spacedha calls theentral axis of the
motion. Now, that fact is in perfect accord with theeceding theorems, because
Euclidian space, when one considers the line to beptimitive element (analytical
point), is ann-space of constant curvature for whighs even and equal to 4. It must
always have an invariable instantaneous element thehanelement, which is in a line
in this case, will be precisely the central axis. he $ame case af= 4, one will have:

Y (£C11Co2 --. Cn) = (C14 Co3 + Co4 Ca1 + Caa C12)°,

as one knows, and under the special hypothesiscth@s + Co4 C31 + C34 C12 = O, the
number of invariable elements can become infinite. Thadition answers to that of
(ordinary) simple rotation, as one can convince oneself.

Upon adopting, with Schering, the term@G4#ussian and Riemannian space for the
spaces of constant curvature whose measure of curvetureegative or positive,
respectively, one will see that the preceding resafts to the Gaussian spaces. There is
a completely similar theory for the Riemannian spaeesl it would be easy for the
reader to formulate it from the foregoing. Thereasessential difference in regardro
spaces for which is odd, but whem is even, the center of rotation and the glie ()-
plane will always exissmultaneoudy in the real state, no matter what the elementary
motion is. The simplest example, which is drawn franginary kinematics, is provided
by the displacement of a spherical figure on its ophese. There will always be a
center of rotation then, and at the same time, a gnede of sliding (whose center is the
pole).




