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 I shall take the expression for the square of the line element in the known form: 
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in which x1, x2, …, xn are the linear coordinates of an arbitrary point in n-space (i.e., such 
that each line is represented by n – 1 equations of degree one), R is the constant pseudo-
spherical radius, and x is an extra variable that is defined by the equation: 
 
(2)     2 2 2 2

1 2 nx x x x+ + + +⋯ = a2, 

 
in which a is a bounded constant. 
 I shall now consider a continuous system of points.  I let δx1, δx2, …, δxn denote the 
infinitely-small variations of the coordinates  x1, x2, …, xn of one of those points as a 
result of an arbitrary elementary displacement, and let δx denote the variation that ensues 
for x, and I would like to seek an expression of a convenient form for the variations δds 
that the distance ds between two contiguous points of the system experiences. 
 One infers from equation (1), when written in this manner: 
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the latter can also be written in the form: 
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However, one also has: 
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 That is the form that one agrees to give to the expression for δds. 
 Due to its generality, that formula can serve as the basis for the search for the 
fundamental equations of kinematics of systems of variable form.  However, for the 
moment, I shall confine myself to the consideration of rigid systems, so I will set δds = 0, 
which will give the following necessary and sufficient condition for a displacement to not 
be accompanied by a deformation: 
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It now comes down inferring the most general values of the variations δx1, δx2, …, δxn as 
functions of the coordinates x1, x2, …, xn from that equation. 
 First set: 

Xr = x δ rx

x
    (r = 1, 2, …, n). 

 
One sees that, by virtue of equation (4), the n unknown functions X1, X2, …, Xn must 
satisfy the identity: 
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which demands that one must have: 
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for all values of the indices r and s, whether they are equal or unequal.  One infers from 
this equation that: 
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for any third index t, namely, due to the same equation (5), when applied to the indices r, 
t and s, t in succession: 
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 Since r, s, t are three arbitrary indices here (equal or unequal) from the series 1, 2, …, 
n, one will see from the last formula that the n functions X1, X2, …, Xn have all of their 
second derivatives equal to zero.  They are then necessarily of the linear form: 
 

Xr = cr + c1r x1 + c2r x2 + … + cnr xn , 
 

in which the quantities cr , as well as the crs , are constants with respect to the coordinates 
(and functions of time, in general); however, since the functions X must further satisfy the 
original conditions (5), the quantities crs are not absolutely arbitrary.  One must have: 
 
(6)       crs + csr = 0 
 
for all values (equal or unequal) of the indices r and s. 
 If those conditions are assumed to have been satisfied then one will have: 
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from which, one will infer that: 
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 Multiplying this by xr and summing over r, while keeping equations (2) and (6) in 
mind, one will find that: 
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which is a value that will finally give: 
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for r = 1, 2, …, n when it is substituted in the preceding formula.  One must complete 
these n expressions with the one for δ x: 
 

(8)      δx = −
2 i i

x
c x

a ∑
. 

 
 The n equations (7) are the fundamental differential formulas (analogous to those of 
Euler) of the kinematics of solid bodies in an n-space of constant curvature.  The n (n + 
1) / 2 arbitrary quantities cr and crs , which one must consider, generally speaking, to be 
arbitrary functions of time t, multiplied by δ t (viz., the infinitely-small duration of the 
elementary displacement), are the analogues of the six components of the translation and 
rotation in the usual theory. 
 One can infer a very important consequence from the complementary equation (8), 
which is necessary adjunct to formulas (7).  Indeed, it results that for all points of the 
limit (n – 1)-space x = 0 (which is supposed to be linked with the solid system), one will 
have δx = 0.  That is, that those points do not leave that (n – 1)-space, or (what amounts 
to the same thing) that the space is displaced within itself, while remaining invariable 
with respect to the n-space that is being considered.  That property, which is only a 
corollary to the invariability that one supposes for the line element here, will, on the 
contrary, become the definition of the special homographic transformation that one calls 
a motion of the invariable system when the geometric of spaces of constant curvature is 
imagined, as Cayley and Klein did, to be a general projective theory; the projective 
conception of distance is the key to that identity, which is admirable, as well as 
fundamental. 
 Let u1, u2, …, un denote the coordinates of a point (or pole), while the linear equation 
in x1, x2, …, xn : 
(9)     u1 x1 + u2 x2 + …+ un xn = a2 
 
represents what one can call the (n – 1)-plane that is polar to that point with respect to the 
limit space x = 0.  If the point (u) is real then I would like to call it interior to x = 0, while 
the plane (9) is ideal – i.e., exterior to x = 0.  On the contrary, the point (u) is ideal and 
the plane (9) is real; i.e., it possesses a simply-connected region that is indefinite in every 
sense that is interior to x = 0.  Moreover, since equation (9) can represent an arbitrary (n- 
1)-plane, one can also define the coefficients u1, u2, …, un on the left-hand side of that 
equation to be the (tangential) coordinates of an (n − 1)-plane.  Now, if one considers the 
limit locus x = 0 and the arbitrary plane (9) to be invariably coupled with each other then 
the pole (u) of the plane will also itself become invariably coupled to the locus x = 0, and 
since that locus can only slide along itself when it makes up part of an invariable system 
that moves in n-space, it will be obvious that the pole (u) itself must displace with the 
system, and as a result that the variations δu1, δu2, …, δun of the tangential coordinates of 
an (n − 1)-plane that makes up part of an invariable system that moves in n-space will be 
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functions of u1, u2, …, un with the same form that the δx1, δx2, …, δxn have with respect 
to the x1, x2, … 
 That conclusion can be verified directly by inferring from equation (9) that: 
 

∑ ur δxr + ∑ xr δur = 0, 
namely: 

∑ cr ur + ∑ r ∑ i cir ur xi − ∑ cr ur + ∑ xr δur = 0, 
or rather: 
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 The relation that this formula establishes between the x1, x2, …, xn obviously cannot 
differ from the one (9) that one started from; one will then have: 
 

2

r r ir i i ii i

r

u c c u c u

u a

δ − −
+∑ ∑

= 0, 

so 

(7)     δur = cr + 
2
r

ir i i ii i

u
c u c u

a
−∑ ∑  

 
for r = 1, 2, …, n.  These n formulas are perfectly similar to formulas (7). 
 If there is some point (x1, x2, …, xn) that remains immobile during the elementary 
motion of the invariable system then the variations δx1, δx2, …, δxn of its coordinates 
must all be = 0 at the instant considered, and therefore one will also have x δ x = 0 for 
that same point ; i.e., δx = 0, if one supposes that the point is not found on the limit x = 0.  
Now, due to (8), those condition x > 0, δx = 0 will give: 
 

∑ ci xi = 0, 
 
and as a result, the conditions δxr = 0 give, in turn: 
 
(10)    cir + ∑ cir xi = 0, r = 1, 2, …, n, 
 
which are equations that imply the preceding one. 
 When there exists a system of values of the x1, x2, …, xn that satisfies these n linear 
equations there will be a point (which will be real or ideal according to whether 2 2

1 2x x+ + 

… + 2
nx  is < or > a2, resp.) that possesses the character of an instantaneous center of 

rotation, and whose polar (n – 1)-plane with respect to x = 0 is an instantaneous glide (n 
− 1)-plane (which will be ideal or real according to whether the pole is real or ideal, 
resp.). 
 Now, due to (6), the determinant: 
 

∑± c11 c22 … cnn 
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of equations (10) will be equal to zero or a positive quantity that is generally non-zero 
according to whether the number n is odd or even, resp.  Therefore: 
 When n is even there will always exist either a real instantaneous center of rotation or 
a real instantaneous glide (n – 1)-plane in an n-space of constant curvature for each 
(completely general) elementary motion of the rigid system. 
 When n is odd there will never exist, in general, either a center of rotation or a glide 
(n – 1)-plane in an n-space of constant curvature.  However, if the motion is such that it 
has an instantaneous center [or instantaneous (n – 1)-plane] then it will have an infinitude 
of them that will form a line or pencil. 
 For the moment, I shall stop with these conclusions of an absolutely-general nature 
whose development and discussion has led me quite far, moreover.  I shall add simply the 
remark that the fundamental theorems of ordinary kinematics already provide us with 
some special examples of the preceding general properties.  Indeed, it teaches us that 
there always exists an instantaneous center of motion in the plane, while there will not 
generally exist an analogous point in three-dimensional space, or if it does exists then 
there will be an infinitude of them that lie along a straight line.  On the contrary, there 
will always exist an instantaneous line in that space that one calls the central axis of the 
motion.  Now, that fact is in perfect accord with the preceding theorems, because 
Euclidian space, when one considers the line to be the primitive element (analytical 
point), is an n-space of constant curvature for which n is even and equal to 4.  It must 
always have an invariable instantaneous element then, and that element, which is in a line 
in this case, will be precisely the central axis.  In the same case of n = 4, one will have: 
 

∑ (± c11 c22 … cnn) = (c14 c23 + c24 c31 + c34 c12)
2, 

 
as one knows, and under the special hypothesis that c14 c23 + c24 c31 + c34 c12 = 0, the 
number of invariable elements can become infinite.  That condition answers to that of 
(ordinary) simple rotation, as one can convince oneself. 
 Upon adopting, with Schering, the term of Gaussian and Riemannian space for the 
spaces of constant curvature whose measure of curvature is negative or positive, 
respectively, one will see that the preceding results refer to the Gaussian spaces.  There is 
a completely similar theory for the Riemannian spaces, and it would be easy for the 
reader to formulate it from the foregoing.  There is no essential difference in regard to n-
spaces for which n is odd, but when n is even, the center of rotation and the glide (n – 1)-
plane will always exist simultaneously in the real state, no matter what the elementary 
motion is.  The simplest example, which is drawn from ordinary kinematics, is provided 
by the displacement of a spherical figure on its own sphere.  There will always be a 
center of rotation then, and at the same time, a great circle of sliding (whose center is the 
pole). 
 

___________ 
 


