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NOTE Il

On the equilibrium of an elastic line

(By J. Bertrand)

Translated by D. H. Delphenich

The formulas that Lagrange gave (page 143) suppose thatadtee force at each
point is exerted in the osculating plane of the lineguailibrium in such a way that it
tends to restore the original radius of curvature. él@m, such a hypothesis is loath to
represent any phenomena, and Binet has remarked ihasgential to add another force
to the elastic force that Lagrange considered whosetef to oppose the variations of
the second curvature. While developing the consequencébeolast remark, the
complexity in the formulas that express that secondvature prevents us from
preserving the notation and the path that was followeddgrdnge. We shall confine
ourselves to just defining the equations of equilibriumatliyeby imitating the method
that Poisson presented in an article in @@respondance sur I'Ecole Polytechnique
(Tome lll, page 355).

Consider an elastic line in equilibriuAMB whose points are all subjected to given
forces. If we suppose that the psliB that is found between an arbitrary pdifitand the
extremityB will become inflexible and fixed and that the other pa&t will become only
inflexible, while preserving its freedom to turn around pbéent M, then equilibrium will
not be destroyed, and consequently, the elastic thateis developed &1 must cancel
the couplethat is equivalent to the forces that act on theigpoMA of the curve, due to
the fixed nature of the poild. Now, we shall assume that the elastic force cadyme
two couples, one of which (namely, the one that Lagraswesidered) acts in the
osculating plane and tends to restore the curvatuits turiginal value. The other one,
which has the tangent to the elastic curve for its agigls to cancel thersion, while
restoring the second curvature to its original valuell tBase two coupleg andE. We
shall first prove that) is constantno matter what the given forces and original form of
the curve.

Indeed, in order to determine the two couglendE, one must reduce the forces that
act upon the portioMA of the curve to a forcg that passes through the politand a
coupleG. That couplés must be equivalent to two couples — v2gndE — whose axes
are the tangent to the proposed curve and a perpendicutarosculating place. If we
begin the same decompositions once more, while repléoengointM with an infinitely-
close oneM’, then the force= and coupleG will vary, on the one hand, due to the
changes in the point of application of the force, andhe other, due to the influence of
the new forces that act on the 8t We first remark that the latter forces can exert n
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influence upon the value of the coup® because their point of application is at a
distance from the tangent to the poMt (which is the axis of the couple) that is
infinitely-small of order two. It will then sufficeo consider the change in position of the
fixed point, and that change will obviously have the eftdcadding a second couple to
the coupleG that is produced by the foréeand by a force that is equal and opposite and
applied atM”. Now, the forceF, like the ones that are applied to the Biel’, has its
point of application situated at a distance from the taingeM ‘that is infinitely-small of
order two, in such a way that it will modify the desircoupled whose axis is the tangent
by only a quantity of that order. From those remarks, @an calculate the valu# of
the torsion couple that corresponds to the pbintas if neither the magnitude nor the
direction of the coupl& changed. One must only decompose it into two other orves no
one of which is perpendicular to the tangeriiat In order to calculate the component of
the couple that represents the desired torsion momeatmoist replace the couple
with the two couples Hand —E that are equivalent to it. Each of these couplest iine
multiplied by the cosine of the angle that its axis ®nwith the axis of the couplé’,
which is nothing but the tangent to the curve under considerat the pointM’. The
axes of the couple@and &’ form an infinitely-small angle whose cosine is eqoainity,

if we neglect the second-order infinitesimals, as abd\&for the axis of the couplek
the angle that it forms with the tangentvatis a right angle if one once more neglects the
second-order infinitesimals, because the osculating pities parallel to the tangent at
M’ The cosine of that angle can then be considered #@tw, and upon neglecting the
second-order infinitesimals, one will have:

from which one concludes that the torsion momengsrausly constant along the elastic
curve.

From that remark, one can form the equations of equilibby writing down that the
forces that are applied to an arbitrary porfidéA of the curve that is supposed to be rigid
are cancelled by the fixed nature of the pdhand by two couples €and —E whose
axes are the tangent to the curve and the axis ofsthidabing plane, respectively,is
constant and is proportional to the difference between the presentature atM and
the original curvature at the same point.

In particular, we shall consider the case in which theecis originally straight and
the only force that is applied to it acts on its axiitg A, while the extremit\B is fixed.
Upon supposing that one fixes a potwhose coordinates arey, z, the moments of
the given forces with respect to that point will hagenponents of the form:

cy—bz+a,
az—cx+ by,
bx—ay + ¢,

in whicha, b, ¢, a;, by, ¢; are constants that depend upon the direction of tibe ford the
position of its point of application. Upon equating thasaments to the elastic couples
that are decomposed perpendicularly to the same thesea® will have the equations:
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dyd’*z- dzd Y. X
6—+cy—bz+ay,
p 42 ds y— il

dyd®z- dzd y_ . dy
= —+az—cx+ by,
P g ds '

2 -
dxd 3(;32dycf ’_ eg_z+bx ay+cy

which differs from those of Lagrange (page 148) only by taotation and the
introduction of the terms if.

After having obtained these equations, Lagrange added Their integration is
probably impossible, in generalWe shall show that this is, on the contraalways
possible, and in order to do that, we shall follow thin paat was indicated by Binet) (
and simplified shortly after that by Wantzel.

If one takes the-axis to have the same direction as the given fdrems,tas one will
easily see, the preceding formulas will take on thefo

dyd®z- dzd y_

9_+
p 42 ds ay,

dzd x- dxd z , dy

1 —g——L
1) p e o

dxd®y- dy d x:H_dz

ds’ ds

in whichg is a constant.

The last equation shows that if one neglé€tss Lagrange did, then the curve will be
necessarily planar. Upon multiplying those equationdXpgy, dzand adding them, one
will get (7):

(2) 0=8ds+g (ydx —xdy.

Upon adding the first two, when multiplied Byandy, respectively, one will then find
that:

P g2 _
3) g 4 2(xdy= ydx

pdz( xd y yd X_ e(xdx+ ydyj
dg ds ’

or, by virtue of the preceding, if one talst® be the independent variables then:

() See the&Comptes rendus de I’Académie des Sciefarek844, pages 1115 and 1197.

(") One can remark that if one can supposexhaD,y = 0 in formula (2) then one can conclude that
6= 0. In order for there to be torsion, it will thea lecessary that the force should not be applied directly
to the point of the curve on which it exerts its attid. Bertrand
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p d®z_ xdx+ ydy

4 L =

@ g ds ds

and upon integrating this:

(5) 2P0z o, C
g ds g

If one replaceg andy with polar coordinates by setting:
X +yP =12 Y= tangy
X
then the preceding equations will become:

2_
r2dw= gds, dz_gr-c
g ds 2p

Hence, upon settindz/ dt = cos¢ and appealing to the known formula:

d€ =dr® +r? ddf + dZ,
one will deduce that:

ds= psing d¢ |
\/ gsin® ¢ (2p cosp + ¢ »- 6?
deo= dsing dg

(2pcos¢+c)\/ gsifd (2 cop+cyo?

One will then have:
dz= j dscosg ,

X=r cosw
y=rsinw

2 03
g dw’

in such a way that, y, z can be expressed as functions of the agdlg quadratures.



